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Abstract.—Markov models of character substitution on phylogenies form the foundation of phylogenetic inference
frameworks. Early models made the simplifying assumption that the substitution process is homogeneous over time
and across sites in the molecular sequence alignment. While standard practice adopts extensions that accommodate
heterogeneity of substitution rates across sites, heterogeneity in the process over time in a site-specific manner remains
frequently overlooked. This is problematic, as evolutionary processes that act at the molecular level are highly variable,
subjecting different sites to different selective constraints over time, impacting their substitution behavior. We propose
incorporating time variability through Markov-modulated models (MMMs), which extend covarion-like models and allow
the substitution process (including relative character exchange rates as well as the overall substitution rate) at individual sites
to vary across lineages. We implement a general MMM framework in BEAST, a popular Bayesian phylogenetic inference
software package, allowing researchers to compose a wide range of MMMs through flexible XML specification. Using
examples from bacterial, viral, and plastid genome evolution, we show that MMMs impact phylogenetic tree estimation
and can substantially improve model fit compared to standard substitution models. Through simulations, we show that
marginal likelihood estimation accurately identifies the generative model and does not systematically prefer the more
parameter-rich MMMs. To mitigate the increased computational demands associated with MMMs, our implementation
exploits recent developments in BEAGLE, a high-performance computational library for phylogenetic inference. [Bayesian
inference; BEAGLE; BEAST; covarion, heterotachy; Markov-modulated models; phylogenetics.]

Molecular sequence evolution is typically modeled by
Markov models of character substitution acting along
the branches of a phylogenetic tree. These models
are phenomenological descriptions of the evolution of
DNA as a string of a number of discrete character
states, with models of nucleotide substitution among
four states being the most widely used in statistical
phylogenetics. The Markovian property within such a
model reflects the common assumption that evolution
has no memory. Further, it is standard to assume that
the Markov model is time-homogeneous, so that it can be
characterized by a generator or instantaneous rate matrix
Q that remains constant during evolution (Gascuel
and Guindon 2007). Early probabilistic phylogenetic
reconstruction methods assumed a single substitution
model that acted independently across all sites and
lineages.

The characters at different alignment sites, however,
typically evolve under varying structural or functional
constraints, inspiring models that accommodate among-
site rate variation by scaling up or down the expected
number of substitutions at different sites. Sites evolve,
nonetheless, in more qualitatively different ways than
simply variation in their overall substitution rates (Pagel
and Meade 2004). Furthermore, selective pressures vary
over time and often defy a priori site partitioning into sets
with approximately equal selection across an alignment.

Examples of such a complex interplay between sites
come from studies on how the 3D structure of proteins
evolves over time. These studies show that, although a
few essential sites may be invariable over long periods of
evolutionary time, most sites do change their functional
environment—and as a result, the functional constraints
they are subjected to—during evolution (Penny et al.
2001). In order to capture and accurately model these
types of evolutionary phenomena, there is need for a
class of flexible substitution models that do not require
prior knowledge regarding data partitioning.

The increase in computational power over the past
two decades has enabled fast evaluation of complex
models in a feasible amount of time, by focusing on
exploiting many-core computing solutions (Suchard
and Rambaut 2009). This has paved the way for
evaluating high-dimensional substitution models and
modeling complex scenarios, such as clade-specific
and even branch-specific evolutionary processes.
Markov-modulated models (MMMs) constitute a class
of mixture models that allow the substitution process
to change across each branch and this for each site
independently within an alignment (we refer interested
readers to Supplementary materials available on Dryad
at https://doi.org/10.5061/dryad.230s5h0
for an in-depth introduction). In this article, we
introduce a Bayesian inference framework for MMMs,
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with an implementation in BEAST (Suchard et al.
2018)—a software package for Bayesian evolutionary
analysis—that accommodates phylogenetic uncertainty.
In doing so, we strive for optimal generality by allowing
switching between evolutionary models within the
MMM that have different substitution rates, relative
character exchange rates and stationary distributions.

METHODS

Markov-Modulated Model Structure
Consider an MMM composed of K evolutionary

models (irrespective of those models being nucleotide,
amino acid, or codon models). Each evolutionary model
is defined by a relative substitution rate multiplier
�k and a substitution model characterized by an

instantaneous rate matrix Qk =
{

Q(k)
ss

}
, of dimension

S×S, and stationary distribution �k =(
�k1,...,�kS

)
. We

also adopt the usual constraint -
∑S

s=1Q(k)
ss �ks =1. The

switching process between the K models is defined
by a K-state continuous-time Markov process with rate
matrix

�=

⎛
⎜⎜⎜⎜⎝

−∑
k �=1�1k �12 ··· �1K

�21 −∑
k �=2�2k

...
...

. . . �K−1,K
�K1 ··· �K,K−1 −∑

k �=K�Kk

⎞
⎟⎟⎟⎟⎠
,

(1.1)
where the element �ij corresponds to the rate of
switching from substitution model i to substitution
model j, and the diagonal elements are fixed such that
the rows sum to 0. We denote the stationary distribution
of this switching process by �=(

�1,...,�K
)
. These

model switches follow a homogeneous, stationary—but
not necessarily time-reversible—Markovian process. In
Equation 1.1, we do not make use of an additional
parameter � that expresses the global rate of change
between the evolutionary models because this is a
deterministic parameter obtained by normalizing the
model-switching process (Guindon et al. 2004; Gascuel
and Guindon 2007).

The MMM is characterized by a KS×KS rate matrix�
(Fischer and Meier-Hellstern 1993):

where I is an S×S identity matrix and ⊗ denotes
the Kronecker product. The MMM can therefore be
considered a single Markov process with a state space
equal to the Cartesian product of the state space
of the switching process (between the evolutionary

models) and the state space of the evolutionary models,
with cardinality KS and stationary distribution ��=(
�1�11,...,�1�1S,...,�K�K1,...,�K�KS

)
(Guindon et al.

2004). As noted by Gascuel and Guindon (2007), the
MMM in Equation 2 allows for every compound state
(k,s) to either: 1) stay in model k and transition to (k,s′)
with rate defined by �kQk , or 2) change evolutionary
models and transition to (k′,s) with rate �kk′ . All rows
in � sum to 0, and because ��=0 and �kQk =0,
it follows that ���=0. We refer to Supplementary
material available on Dryad for additional information
on these MMMs, for example on their identifiability
when combining them with among-site rate variation
(ASRV; Yang 1994, 1996).

Likelihood
In this section, we adopt a similar notation to Gascuel

and Guindon (2007) to describe the data likelihood
under an MMM. Likelihood calculations for MMMs
employ a standard pruning approach (Felsenstein 1981),
with integration over the compound states (i.e., the
evolutionary model and character state) at the internal
nodes of the tree, and integration over the unobserved
categories at the tips. Let Y= (Y1,...,YL), where Y	 are
the extant characters observed at aligned site 	 for 	=
1,...,L, and let T denote the phylogenetic tree with
its branch lengths. Let M(θ,φ) denote the MMM that
models the evolutionary process for all sites, where
θ={θ1,...,θK} and θk represents parameters for the kth
evolutionary model, and φ parameters of the switching
process. The observed data likelihood is:

L(θ,φ,T ,M |Y)=
∏

i

⎛
⎝∑

(k,s)

�k�sLR
i ((k,s),θ,φ,T ,M |Yi)

⎞
⎠,

(1.3)
where the product is taken over every site i in
the alignment, with each site assumed to evolve
independently. The sum over the compound states (k,s)
replaces the sum over the nucleotide characters s that is
performed for standard nucleotide substitution models
(Gascuel and Guindon 2007). Here, LR

i ((k,s),θ,φ,T ,M |
Yi) is the likelihood of the data at site i under category k
and given that state s is observed at site i of the root node
R. We can generalize this notation as Lv

i ((k,s),θ,φ,T ,M |
Yi) for node v to express the partial likelihood of
observing the characters at site i in the extant sequences
descending from v. This notation can be shortened to
Lv

i (k,s) because θ, φ, T , M, and Y are the same for all sites
and nodes. Let l and r be the left and right descendants
of v and tv the length of the branch connecting v to its
parent. Each partial likelihood is then defined as follows
(taking into account that the evolutionary categories are
unobserved; Gascuel and Guindon 2007):
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Lv
i (k,s)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if v is a leaf with nucleotide character s,
0 if v is a leaf with nucleotide character
different from s or(∑

(k′,s′)P(k,s)(k′,s′)(tl)Ll
i(k

′,s′)
)(∑

(k′,s′)
P(k,s)(k′,s′)(tr)Lr

i (k′,s′)
)

otherwise.

.

(1.4)
The substitution probabilities P(k,s)(k′,s′)(t) are computed
using matrix exponentiation of � with computational

complexity O
(

K3S3
)

(Pan and Chen 1999), although
lower complexity may be achieved depending on the
Kronecker structure of � (but see the Supplementary
material available on Dryad). Computing these
probabilities for all O

(
N

)
branches in the phylogeny

therefore sports a complexity of O
(

NK3S3
)

. Evaluating
the L site likelihoods through the tree-pruning (or
peeling) algorithm (Felsenstein 1981) amounts to a

complexity of O
(

NLK2S2
)

. Taken together, with a

relatively small cost O
(
L
)

for taking logarithm of
site likelihoods and summing over sites results in a

computational complexity of O
(

NK3S3 +NLK2S2
)

for
the log-likelihood of the observed data.

Implementation
We have implemented MMMs and their

corresponding likelihood function in BEAST (Suchard
et al. 2018), a widely used software package for Bayesian
phylogenetic and phylodynamic inference using Markov
chain Monte Carlo integration. These models are
available for use in BEAST through XML specification,
allowing to construct a wide range of different modeling
assumptions such as the ones detailed in this article
(and the Supplementary material available on Dryad).
The use of MMMs substantially increases computation
time in likelihood-based inference, and we offload the
computationally demanding aspects to powerful multi-
and many-core hardware through the BEAGLE library
(Ayres et al. 2019).

BIOLOGICAL EXAMPLES

We here consider substitution models that are time-
reversible and therefore substitution model k will have
instantaneous rates Q(k)

ij that can be expressed in terms
of base frequencies �kj and symmetric rate parameters

R(k)
i↔j =R(k)

j↔i as follows:

Q(k)
ij =�kjR

(k)
i↔j. (1.5)

Thus a substitution model can be specified in terms of
its base frequencies and symmetric rate parameters Rk =
{R(k)

i↔j|i �= j,(i,j)∈S}.

We adopt the following notation: MMM(M)ijkl, where
M denotes the type of substitution model and i,
j, k, and l denote the numbers of distinct sets of
symmetric rate parameters, sets of base frequencies,
the relative rate multipliers, and the structure of �
as either symmetric/triangular (T) or asymmetric (A),
respectively. For example, an MMM(HKY)222T refers
to an MMM featuring two different HKY substitution
models, each with its own set of symmetric rate
parameters and set of base frequencies, two different
relative rate multipliers and a symmetric rate switching
matrix �. An MMM(HKY)122A refers to an MMM
featuring two different HKY substitution models that
share the same set of symmetric rate parameters but
have different sets of base frequencies, along with two
different relative rate multipliers and an asymmetric rate
switching matrix �. When the relative rate multipliers
are all fixed to 1 to superimpose an ASRV model
(see Supplementary material available on Dryad), the
k subscript is omitted (e.g., MMM(HKY)22A).

We here consider two empirical data sets that show the
importance of employing MMMs to accurately model
the substitution process, as supported by Bayesian
model selection. In Supplementary material available on
Dryad, we analyze two additional empirical data sets—a
plant plastid gene and an influenza A virus data set—
that provide evidence in favor of MMMs over traditional
substitution models but also showcase the wide range
of modeling assumptions possible within our MMM
formulation.

Bacterial 16S Ribosomal RNA
Differences in base composition throughout the

genome can bias phylogenetic inference when not
properly taken into account. Often, the proportion
of A+T in a genome differs from that of G+C, and
different organisms exhibit different patterns of base
composition. At the level of the entire genome, GC
content varies greatly within and among major groups of
organisms, which can skew phylogenetic reconstruction
if not properly unaccounted for (Mooers and Holmes
2000). Two different evolutionary processes have been
singled out as possible explanations for varying patterns
of base composition: biases in the underlying process
of mutation, as similar levels of GC content are often
found in regions with different functional constraints,
and natural selection, with increased global GC content
in bacteria possibly being selected for by UV exposure
(Singer and Ames 1970).

Environmental variation shaping nucleotide
composition may cause unrelated taxa to share
similar base composition and therefore be grouped
together within a clade. To accurately reconstruct
evolutionary histories through phylogenetic inference,
these potentially differing base compositions need to be
accommodated in an explicit manner by the nucleotide
substitution model. To address this, Blanquart and
Lartillot (2006) developed a nonstationary and
nonhomogeneous model accounting for compositional
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biases, allowing the composition to change at random
points in the tree, with the total number of change
points across the tree being inferred from the data.
Through a Bayesian analysis of eubacterial 16S rRNA
and BAS1 gene yeast data sets, the authors show that in
most cases, the stationarity assumption was rejected in
favor of their nonstationary model.

We evaluate our MMM framework on 16S ribosomal
RNA of five bacterial sequences: Deinococcus radiodurans,
Thermus thermophilus, Thermotoga maritima, Aquifex
pyrophilus, and Bacillus subtilis (GenBank accession
numbers: Y11332.1, AJ251939.1, NR_029163.1, M83548.2,
and CP009796.1). We use standard nucleotide
substitution models as well as MMMs to infer
their evolutionary history while fixing the Aquifex
pyrophilus sequence as an outgroup. Given that the data
contain three thermophilic (high GC content) and two
mesophilic (lower GC content) bacteria genera (Mooers
and Holmes 2000), we consider only MMM(∗)22∗
models and do not further explore higher-dimensional
models. The true tree topology of this eubacterial
data set is believed to group D. radiodurans and
T. thermophilus together to the exclusion of B. subtilis,
T. maritima, and A. pyrophilus, given that D. radiodurans
and T. thermophilus share the same peptidoglycan
and menaquinone type (Murray 1992). However,
phylogenetic reconstruction under stationary models
has a tendency to erroneously group D. radiodurans
and B. subtilis together, because these mesophiles have
similar, relatively low GC content.

Figure 1 shows the results of the phylogenetic
reconstructions, with the HKY and GTR models—both
featuring an ASRV model and a relaxed molecular
clock with an underlying lognormal distribution—
yielding similar (log) marginal likelihoods (we refer to
Supplementary material available on Dryad for details
on the marginal likelihood estimation procedure). Note
that, because we will include an ASRV model in all
of these MMMs, we set all �i in Equation 1.2 to 1 to
ensure identifiability. Both the HKY and GTR models
express strong support in favor of a clustering of
D. radiodurans and B. subtilis (see Fig. 1), with the GTR
model yielding a small increase in model fit to the
data over the HKY model (log BF < 1). As such, both
models yield an incorrect clustering, which appears to
be primarily based on both sequences being mesophilic
(low GC content), whereas the three other sequences are
considered thermophilic (high GC content). While an
MMM of the type introduced by Tuffley and Steel (1998)
offers no improvement over these models when Q1 is
parameterized as an HKY model (see Supplementary
material available on Dryad for the model’s details), a
significant improvement in model fit can be obtained
when Q1 is parameterized as a GTR model (log BF
= 19). However, any MMM with two sets of base
frequencies and with either a single set of symmetric
rate parameters (an MMM(∗)12∗) or with two different
sets of symmetric rate parameters (an MMM(∗)22∗)
offers a further improvement in model fit compared
to the standard nucleotide substitution models tested

(8 < log BF < 45; we refer to Supplementary material
available on Dryad for the log marginal likelihood
estimates). This can be attributed to the fact that MMMs
are able to accommodate differing base compositions
throughout the tree topology, and consequently yield
an accurate phylogenetic reconstruction of the bacterial
relationships, with the D. radiodurans and T. thermophilus
clustering together (see Fig. 1) (Embley et al. 1993;
Mooers and Holmes 2000).

The base frequency estimates for the CTMC models
within the MMM reflect the presence of mesophilic
sequences (low GC content; orange in Fig. 1) and
thermophilic sequences (high GC content; blue in
Fig. 1) in our data. Despite the fact that only eight
branches connect the observed sequences, alignment
sites switch up to four times between CTMC models
across the phylogeny, indicating evolutionary dynamics
that cannot possibly be accommodated using standard
nucleotide substitution models. Over 40% of the
alignment sites undergo at least one switch between
CTMC models in a highly asymmetric manner (see
Fig. 1). The two CTMC models are also characterized
by pronounced differences in transition/transversion
ratios. In conclusion, we show that appropriately
modeling compositional heterogeneity for these
eubacterial sequences enables inference of the correct
phylogeny as well as base frequency compositions that
reflect the presence of both mesophilic and thermophilic
sequences in the data set.

Plant Plastid Genes
We consider nucleotide sequence data from the

protein-coding genes of 23 completely sequenced
plant plastid genomes, previously analyzed by Ané
et al. (2005) to measure the independence of the
substitution process between two groups of taxa as
a means of detecting covarion evolution. Assuming
a fixed underlying reference tree that represents the
likely relationships of plant taxa for which complete
chloroplast sequences were available at the time, the
covarion test of Ané et al. (2005) detected significant
covarion evolution (P<0.0005) in 14 of 57 genes analyzed
across all positions. We here analyze the psaB gene with
standard nucleotide substitution models and MMMs
and compare the inferred phylogenies and model fit; we
refer to Supplementary material available on Dryad for
our analysis of the ndhD gene.

A comparison of standard nucleotide substitution
models reveals that the combination of a GTR model
and an ASRV model, along with a relaxed clock
assuming an underlying lognormal distribution, yields
the highest (log) marginal likelihood for both data
sets. We conduct analyses with MMMs that feature
an HKY or GTR substitution model with a single set
of symmetric rate parameters along with two or three
different sets of base frequencies (i.e., MMM(∗)12∗
and MMM(∗)13∗ models), as well as generalizations
of these MMMs that feature as many different sets of
rate parameters as sets of base frequencies, and both
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a)

b)

c)

FIGURE 1. a) Maximum clade credibility (MCC) phylogeny relating five bacterial 16S sequences; unlabeled nodes have >0.9999 posterior
probability. Standard nucleotide substitution models that assume among-site rate variation (ASRV) erroneously cluster the two mesophiles
together with high posterior probability (0.649 for HKY and 0.863 for GTR in the topology on the left). However, an MMM(HKY)22A yields the
correct clustering of the Deinococcus radiodurans and the Thermus thermophilus sequences with high posterior probability (topology on the right);
each branch is annotated with the proportion of sites in each of the continuous-time Markov chain (CTMC) models, based on the maximum a
posteriori (MAP) phylogeny. b) Number of CTMC model switches per alignment site based on the most probable hidden state realizations of the
MMM on the MAP phylogeny; of the full alignment of 1304 sites, 761 sites are estimated not to switch between CTMC models. c) Mean posterior
parameter estimates of the MMM show asymmetric switching between models (with circle sizes proportional to rate switching intensity) with
pronounced differences in transition/transversion ratios and base frequencies.

symmetric and asymmetric � (i.e., MMM(∗)22∗ and
MMM(∗)33∗ models). For all of these models, we set all �i
in equation 1.2 to 1 to ensure identifiability when using
an ASRV model in combination with MMMs. We also
analyze the data with a nucleotide covarion model
(Tuffley and Steel 1998), which we can easily
compose within our MMM framework through
XML specification.

The psaB data set strongly prefers the covarion-style
model over a standard GTR+ASRV substitution model
by a log Bayes factor of 208. The MMM(GTR)12A and

MMM(GTR)22A yield log Bayes factors of 257 and
313, respectively, over the standard GTR+ASRV model.
MMM(GTR)13A and MMM(GTR)33A parameterizations
yield further increases in model fit of 321 and 347,
respectively, over the GTR+ASRV model. Because
additional categories within the MMM offer diminishing
returns in terms of model fit at the expense of
additional computation time, we did not explore MMMs
with even higher dimensions. Figure 2 shows the
maximum clade credibility (MCC) trees obtained under
the standard GTR+ASRV model and the MMM(GTR)33A
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FIGURE 2. Phylogenetic reconstruction of plant plastid sequences, based on the psaB protein-coding gene; unlabeled nodes have >0.9999
posterior probability. Left: MCC tree based on a standard GTR+ASRV model. Right: MCC tree based on an MMM(GTR)33A with ASRV, which
is strongly supported over the MCC tree generated under the GTR model (log Bayes factor of 347). While only a single different clustering can
be observed within the Angiosperms, many differing clusters that have very high posterior probabilities are generated using the MMM(GTR)33A
outside of the seed plants.

that generated the highest (log) marginal likelihood.
While the clustering within the seed plants is identical
under both models, substantial differences in posterior
support can be observed for specific clades. In the
remaining part of the tree, these models result in
completely different clustering patterns with strong
support for many clades under the MMM(GTR)33A
model.

In Figure 3, we illustrate the complex substitution
patterns across all sites on the MAP psaB phylogeny,
using the most probable hidden state realizations of the
MMM(GTR)33A. We use a simple counting procedure
to quantify the number of differences between the
ancestral model states as a means to reconstruct which
sites evolve according to which CTMC within the
MMM(GTR)33A, and we observe a relatively small
amount of CTMC switching throughout the phylogeny
(of note, we observe a 4.5-fold increase in number
of sites switching between CTMCs in our analysis of
the ndhD gene in Supplementary material available on
Dryad). The reconstructed patterns go beyond mere
codon position partitioning, as we observe different
substitution dynamics per codon position. In particular,
the third codon position is the only position that
evolves according to a particular CTMC a majority of
the time, and it also exhibits the greatest degree of
switching between CTMC realizations. We depict the

mean posterior instantaneous substitution rates of the
various MMM components in Figure 3, showing a clearly
asymmetric CTMC switching process and three distinct
GTR model realizations within the MMM. This complex
interplay of model components is consistent with the
strong Bayes factor support of the MMM(GTR)33A over
all other models tested.

CONCLUSION

MMMs can infer substantially different phylogenies
compared to standard nucleotide substitution models,
and they can be associated with significant increases
in model fit. A targeted simulation study that assesses
the ability of MMMs to retrieve the generative models
of simulated sequence alignments and to quantify
their increase in model fit when the MMM was the
generative model shows that these large differences are
not artifacts of using such high-dimensional models
(see Supplementary material available on Dryad). Our
simulation study also shows similar differences in model
fit compared to the ones obtained in this section for the
psaB and ndhD genes, as well as the ability of state-of-
the-art Bayesian model selection to select the generative
substitution model even when compared with similar
model parameterizations. Importantly, when simulating
data under a standard GTR model, MMMs exhibit
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FIGURE 3. Markov-modulated model behavior on the psaB protein-coding gene phylogeny. a) Amount of time (branch lengths in genetic
distance) spent in each CTMC model for each alignment site based on the most probable hidden state realizations of the MMM on the maximum
a posteriori phylogeny. b) Summary of the number of sites that evolve according to each CTMC, illustrating complex substitution patterns that
go beyond codon position partitioning, as well as 2.8% of sites switching between CTMC realizations. c) Distribution of sites in each codon
position across the different CTMC model realizations, showing that first and second codon positions switch far less frequently between CTMC
models than the third codon position, in which the substitutions occur according to a clearly predominant CTMC. d) Switching behavior of the
MMM between the three CTMC models, with the mean instantaneous substitution rates shown for those models (with circle sizes proportional
to rate intensity).

a worse model fit than under the generative GTR
model. These analyses of simulated data show that
MMMs can easily be used in combination with recent

developments in Bayesian model selection (Baele et al.
2016) and provide additional support for our conclusions
that these models can yield substantial increases
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in model fit over standard nucleotide substitution
models.

We note that each additional CTMC within an MMM
(significantly) increases computational demands, and
that a search for the optimal MMM may therefore
prove time-consuming for complex large data sets.
Avoiding direct evaluation of the finite-time transition
probabilities through emerging algorithms that instead
manipulate the matrix exponential action (Ji et al.
2016) represents a possible work around. In the mean
time, to make such computations manageable, BEAST
can however exploit the BEAGLE library (Ayres et al.
2019) to offload the large matrix multiplications onto
powerful multi-core hardware solutions. In particular,
the use of graphics cards for scientific computing yields
significant performance gains over standard multi-core
processors (see Supplementary material available on
Dryad), rendering phylogenetic inference under these
MMMs feasible despite their complexity.

Finally, it remains important to recognize that
phylogenetic substitution models draw inspiration
from biology and biochemistry, but do not capture
the full complexity of these underlying processes.
MMMs offer a substantial increase in model complexity
over traditional substitution models but—like most
other substitution models—also make simplifying
assumptions, for example, regarding site-independent
evolution, as there is no mechanism within an MMM in
which changes in one site result in concomitant changes
in another. Resulting model misspecification (and
potential overparameterization) can mislead model-
based tree reconstruction methods (Steel 2005). To guard
against such situations, a well-developed statistical
theory such as Bayesian model testing should be
employed to compare models in an objective manner
and choose a model that carefully balances the model’s
parameterization with the available information in the
data. After all, as Steel (2005) sagely states, the aim of
model selection is not to find the “true model” but to
find a model with sufficient parameters to capture the
key features of the data.

Additionally, we have made available an
online tutorial on how to construct XML
files to perform phylogenetic inference
using Markov-modulated models in BEAST:
http://beast.community/markov_modulated.html.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.230s5h0.
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