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Abstract 

Energy storage is a leading option to enhance the resource adequacy contribution of solar 

energy.  Detailed analysis of the capacity credit of solar energy and energy storage is 

limited in part due to the data intensive and computationally complex nature of 

probabilistic resource adequacy assessments.  This paper presents a simple algorithm for 

calculating the capacity credit of energy-limited resources that, due to the low 

computational and data needs, is well suited to exploratory analysis. Validation against 

benchmarks based on probabilistic techniques shows that it can yield similar insights. The 

method is used to evaluate the impact of different solar and storage configurations, 

particularly with respect to the strategy for coupling storage and solar photovoltaic 
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systems. Application of the method to a case study of utilities in Florida, where solar is 

rapidly growing and demand peaks in the winter and summer, demonstrates that it can 

improve on rules of thumb used in practice by some utilities. If storage is required to 

charge only from solar, periods of high demand driven by cold weather events 

accompanied by lower solar production can result in a capacity credit of solar and storage 

that is less than the capacity credit of storage alone.   

Key words: capacity credit; resource adequacy; solar; energy storage; utility planning 
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1. Introduction 

Worldwide, renewable energy is expected to grow by 50% between 2019 and 2024 with 

solar photovoltaics (PV) making up 60% of all renewables [1]. One factor contributing to 

the attractiveness of solar PV is its relatively high economic value in regions where solar 

production is aligned with periods of peak electricity demand [2].  Increasing the share of 

generation from solar PV, however, can shift timing of peaks in net demand (demand less 

solar PV generation) and displace generation with lower variable costs [3].  These changes 

contribute to a declining economic value of solar with higher penetration [4]. Energy 

storage stands out as one the more effective strategies to mitigate the decline in economic 

value of solar PV.  In a scenario with 30% of annual energy met by solar PV, Mills and Wiser 

[5] find that the marginal economic value of solar PV increases by 80% when low-cost 

storage is deployed in the power system compared to a reference case without storage.  

Energy storage can also be deployed at the same physical location as solar in a hybrid solar 

+ storage facility.  In the U.S., storage is eligible for the Federal Investment Tax Credit (ITC), 

equivalent to a 30% reduction in capital costs, when storage can be shown to charge from 

solar rather than from the grid.  Commercial activity related to hybrid solar + storage 

plants is growing rapidly in the U.S., particularly in California where recent wholesale 

electricity market prices indicate the potential additional revenue from adding storage 

exceeds the additional cost (accounting for the ITC) [6].  
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One of the sources of economic value of solar + storage plants is its contribution toward 

meeting resource adequacy requirements. Adequacy is an aspect of overall power system 

reliability that “relates to the existence of sufficient facilities within the system to satisfy 

the consumer load demand or system operational constraints” [7]. In this paper the 

contribution of a resource toward adequacy is called  the capacity credit. Estimates of a 

resource’s capacity credit are often based on a probabilistic assessment that considers its 

reduction to the risk of a loss of load when available supply is less than demand.  A 

prevailing method for estimating the capacity credit with a probabilistic assessment is 

called the effective load carrying capability (ELCC). The drivers of the capacity credit of 

stand-alone solar PV using probabilistic assessments are well established [8].  Many 

regulators, utilities, and regional planners account for the capacity credit of stand-alone 

solar PV in economic valuation studies [9]. Of particular importance, the capacity credit of 

solar declines with increasing penetration of solar PV as the timing of periods with the 

highest risk of insufficient generation can shift from the peak demand in the afternoon to 

peak net demand periods in the early evening when the sun sets [10]. Munoz and Mills 

show the importance of accounting for the decline in capacity credit of solar PV in capacity 

expansion modeling [11].  
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In contrast, the capacity credit of solar + storage resources is not yet well understood.  The 

objective of this paper is to develop methods for exploring the drivers of the capacity credit 

of solar + storage.  In practice, rules of thumb are used to determine the capacity credit of a 

combined resource.  One approach is to calculate the capacity credit of solar + storage as 

the sum of the capacity credit of the independent components (e.g., the capacity credit of 

stand-alone solar plus the capacity credit of stand-alone storage) limited by the capacity of 

any shared equipment such as an inverter or point of interconnection limit.  This rule of 

thumb is used for evaluating resource adequacy contribution of solar + storage in 

California [12] and for evaluating candidate resources for procurement in Colorado [13]. 

More generally, methods for calculating the capacity credit of energy-limited resources, 

including energy storage, are nascent.  Sioshansi et al. [14] develop probabilistic methods 

to quantify the capacity credit of storage accounting for the storage level at the time of an 

outage and, through dynamic programming techniques, potential subsequent outages in 

later hours. Previous estimates of storage’s capacity credit with probabilistic techniques 

from Tuohy et al. [15] do not account for subsequent outages, potentially overstating the 

contribution of storage.  Both Sioshansi et al. [14] and Tuohy et al. [15] calculate the 

starting storage level in each hour assuming it is dispatched to maximize revenue from 

energy arbitrage, rather than to maximize the capacity credit.  Alternatively, Parks [16] 

modifies the traditional probabilistic techniques to maximize the capacity credit of energy-

limited resources by discharging the energy-limited resources in periods of highest risk of 

a loss of load.  Hall et al. [17] use a similar technique to find the capacity credit of storage 

for the New York Independent System Operator.  Byers and Botterud [18] use probabilistic 
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methods to calculate the capacity credit of energy storage based on Monte Carlo 

simulations of system-wide chronological unit commitment and economic dispatch.  

Additional variations on probabilistic techniques for finding the capacity credit of energy-

limited resources include a two-stage optimization approach by Zhou et al. [19] and an 

approach by Nolan et al. [20] to calculate the capacity credit of a given demand response 

time series based on the assumption that demand response is dispatched to reduce peak 

demand.   

A common challenge with probabilistic techniques is the large computational burden and 

detailed nature of the data required to conduct this analysis.  This makes it more difficult to 

quickly explore the way capacity credit varies depending on technology configurations and 

characteristics of demand.  Several simple alternatives to probabilistic techniques have 

been used in the literature.  Denholm et al. [21] estimate the capacity credit of storage as 

the difference between the maximum demand and the maximum demand net of the storage 

dispatch.  Storage discharge is chosen to maintain the maximum net demand at or below a 

target level and it can charge any time that does not increase the maximum net demand.  

Richardson and Harvey [22] use storage to evenly allocate solar PV production across a day 

to meet a constant fraction of the demand above the minimum demand.  They then 

calculate the capacity credit of the combined solar + storage facility using the Garver 

approximation to the effective load carrying capability [23]. Fattori et al. [24] dispatch 

storage to smooth the net demand profile based on a moving average window of different 

durations.  The capacity credit is then based on the difference between the peak demand 
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and peak demand net of solar + storage.   None of these simple alternatives are directly 

validated against the more detailed probabilistic techniques.   

This paper presents a simple algorithm for calculating the capacity credit of energy-limited 

resources that, due to the low computational and data needs, is well suited to exploratory 

analysis.  Importantly, validation against benchmarks based on probabilistic techniques 

shows that estimates based on the method can yield similar insights. The simple nature of 

the capacity credit calculations is used to evaluate the impact of a wide variety of different 

solar + storage configurations, particularly with respect to the strategy for coupling storage 

and solar PV. The case study focuses on Florida where solar is rapidly growing and demand 

peaks in the winter and summer. 

2. Methods and Data 

The foundation of this capacity credit calculation is the load duration curve (LDC) method 

employed in two capacity expansion models developed by the National Renewable Energy 

Laboratory (NREL) called the Regional Energy Deployment System (ReEDS) [19] and 

Resource Planning Model (RPM) [25]. With the LDC method, the capacity credit is 

calculated as the reduction in the average highest peak net load hours relative to the 

average highest peak load hours.  The calculation method can be visualized as the 

difference between an LDC, which sorts the load from the highest to the lowest over a 

specified period, such as a year, and a net LDC during the peak hours (Figure 1). Here the 

peak hours are defined as the top 100 hours of the year (the top 1.1% of hours).  The net 

LDC is created by first reducing the hourly load by the corresponding generation from the 
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resource in the same hour and then sorting the resulting net load from highest to lowest. 

Because the load and net load duration curves are sorted independently, the gap between 

the load and net load duration curves represents the decrease in the highest net load hours, 

irrespective of when they occur. The LDC method can therefore capture any effects where 

deployment of a resource leads to a shift in the time of day or season in which the net load 

peak hours occur. 

a) b)

Figure 1. Illustration of load and net load duration curves for all hours of a year (a) and focusing on just the peak hours of a 

year (b). 

In the case of energy-limited resources, the LDC method defines how to calculate the 

capacity credit for a given dispatch profile, but it does not specify how to dispatch 

resources to maximize its capacity credit. Section 2.1 presents an algorithm for finding the 

dispatch of energy-limited resources, which is central to calculating the capacity credit of 

storage using the LDC method as summarized in Figure 2. Sections 2.2 and 2.3 describe an 

approach to validate the capacity credit calculated with the LDC method against two 

benchmarks based on probabilistic techniques.   
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Figure 2. Illustration of the method for estimating the capacity credit of storage. 

2.1 Dispatch Algorithm 

The dispatch algorithm is a linear programming model whose solution maximizes the 

capacity credit of storage, where the capacity credit is defined based on the LDC method. In 

the case of storage, the net LDC is created by both reducing demand by the energy 

generation from discharging storage and increasing demand by the energy required for 

charging storage.  

The approach leverages insights from the literature on optimizing the conditional value at 

risk (CVaR) [26] and the fact that maximizing the capacity credit of a resource, based on the 

LDC method, is equivalent to minimizing the area under the net LDC in the peak net load 

hours. Because the resulting optimization model is linear, it can be constructed and solved 
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within 20 seconds on a computer with a 2 GHz processor using an open source solver (e.g., 

GLPK [27] with the Pyomo package for Python [28], [29]).   

The basics of the CVaR optimization formulation and its adaptation to capacity credit 

maximization are presented before the specific application of finding the dispatch of energy 

storage. 

2.1.1 Conditional Value at Risk Optimization Formulation 

In mathematical finance theory, one of the most widely used coherent measures of risk is 

the so-called CVaR index [30]. The VaR (value at risk) calculates the losses of an investment 

portfolio with a specified probability. For example, the losses of an investment will have a 

5% probability of being higher than the VaR at 95%. The conditional value at risk (CVaR) at 

95% represents the average losses in those 5%-probability worst cases. Thus, it is directly 

proportional to the area of the density function for those 5% worst cases. 

The CVaR optimization formulation minimizes the risk associated with buying a portfolio of 

assets by minimizing the CVaR at a certain percentile, according to different returns 

associated with several scenarios. 

Given a portfolio of n assets, let Xi be the per-unit amount of each one: 

���

�

���

= 1

           (1) 
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Let s = 1,…,S be the different scenarios considered for the evolution of the price of the 

different assets. For each considered scenario s, the losses per stock can be calculated as 

the product of the per-unit amount times the loss ris for each asset in each scenario. Hence, 

the total losses for each scenario can be calculated as: 

�� = ���. ���

�

���

(2) 

Having the density function for the total losses, and given a percentile, the VaR is defined as 

the value of the density function at that specific percentile (). Typically, a 95% percentile 

is used (VaR95%). As mentioned, the CVaR is defined as the mean of losses in the 5% (or 

whatever VaR) tail of the distribution. 

The CVaR minimization for a percentile  can be expressed in equation (3). 

����� =  ������,��,��
����� +

1

1 − �
�[���(�� − ����, 0)]�

(3) 

Rockafellar and Uryasev [30] prove that this CVaR minimization can be solved by using the 

linear optimization problem described by equations (4–7). 

Objective Function: 

������,��,��
����� −

1

(1 − α) · S
· ���

�

���

�

(4) 

Subject to:  



12

�� ≥ ���. ���

�

���

− ���� � = 1, … , �

(5) 

���

�

���

= 1

(6) 

�� ≥ 0 ; �� ≥ 0

(7) 

This methodology can be applied in other contexts where areas below some curves must be 

minimized or maximized. Particularly, the CVaR model can be adapted to maximize the 

capacity credit of a resource defined with the LDC method, because the final objective is to 

minimize the area below the net load curve during peak hours. 

2.1.2 Application of Conditional Value at Risk Optimization to Capacity Credit 

Maximization  

The application of the CVaR optimization to the maximization of the capacity credit for 

storage facilities can be understood through an analogy between the different problems to 

be solved. 

On the one hand, CVaR minimization can be expressed through equation (3).  On the other 

hand, trying to maximize the capacity credit is equivalent to minimizing the net load, NLh,
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for the H peak hours. Minimizing the net load can be carried out through a minimization of 

the area below the net load-duration curve for the first H hours. The primary contribution 

of this paper is to connect the goal of maximizing the capacity credit of a resource, based on 

the LDC method, to its equivalent formulation in equation (8) which minimizes the area 

under the net LDC in the peak net load hours.  

����� =  ��������,�,��� ���
∗
��� +

1

�/8760
�[���(��� − ��∗

���, 0)]�

(8) 

Where, as shown in Figure 1b, NL*H+1 represents the net load level at the peak hour H+1, 

NLh the net load for hour h, and X the storage dispatch decisions (subject to all the 

operational and technical constraints of the storage system, such as chronology, maximum 

level of storage, and maximum output). 

An analogy between both problems shows how an equivalent linear problem can be used 

to solve the capacity credit maximization. The losses for each stock are analogous to the net 

load of the system after the storage dispatch for every hour has been determined. Scenarios 

in CVaR minimization are substituted by hours in the capacity credit maximization. Finally, 

the confidence level  will correspond to the ratio of non-peak hours, that is (8760-

H)/8760.   The parallelism between both formulations is summarized in Table 1.  The other 

major contribution of this paper is to leverage the insight from Rockafellar and Uryasev’s 

solution to the CVaR minimization problem [30] to convert equation (8) into an equivalent 

linear problem, as described next.  

Table 1. Analogy between Conditional Value at Risk and capacity credit formulation 
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Conditional Value at Risk 

(CVaR) formulation 
Capacity credit formulation 

Objective Function: Min CVaR 
Objective Function: Max capacity credit = Min 

Average Net Load for H peak hours 

VaR

Net Load for hour H+1 in the net load duration 

curve NL*H+1

Confidence level  Ratio of non-peak hours (8760-H)/8760

Scenarios s = 1,…,S Hours h = 1,…,8760 

Losses (Ls) Net load (NLh) 

Stock portfolio decisions Storage operation decisions 

2.1.3 Detailed Formulation for Capacity Credit Maximization of Storage 

Applying the capacity credit formulation to storage requires fully modeling the storage 

dispatch decisions. This formulation characterizes a storage system by its nameplate 

capacity (MW), its energy capacity (MWh), and its roundtrip efficiency. It also assumes the 

storage system charges and discharges at rates up to its nameplate capacity. The storage 

duration (in hours) is therefore the ratio of the energy capacity to the nameplate capacity. 

The analysis uses hourly time steps—no shorter time constraints or ramping limits have 

been considered. The model also assumes perfect foresight over the whole analysis period. 

Because the model searches for an optimal storage dispatch profile, the hourly system 

demand net of storage generation (the net load) is also a decision variable obtained from 

the model. The decision variable of the level of the net load just outside of the peak net load 
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hours, NL*H+1, is especially significant, as it defines the area of the net LDC that when 

minimized leads to the storage dispatch with the maximum capacity credit.  

The calculation details are as follows: 

1. Indexes and Parameters 
h Index for hours in the analysis, typically 8,760 hours for 1 year 

Lh System load in hour h (MW)

BpMax Nameplate capacity of storage (MW) 

BlMax Maximum level of storage (MWh) 

 Roundtrip efficiency of storage (%)

H Number of peak hours 

2. Variables 

Boh Discharge power from storage to the grid (MW) 

Bih Charging power from the grid to storage (MW) 

Blh Storage level (MWh) 

NLh System net load in hour h (MW) 

NL*H+1 Net load in hour H+1 (a level chosen by the model) 

�� Continuous auxiliary variable equal to the maximum of [NLh-NL*H+1] and 0 

3. Objective Function 

min ������
∗ +  1

��  ∗  � ��

����

���

�

(9) 
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4. Operational Constraints 

Load and Net Load ��� = �� + ��� − ���

(10) 

Identify Peak Hours �� ≥ ��� − �����
∗

(11) 

Ignore Net Load in Non-peak Hours �� ≥ 0

(12) 

Storage Energy Balance ��� = ����� + � ∙ ��� − ���

(13) 

Maximum Storage Level ��� ≤  �����

(14) 

Maximum Storage Discharge 0 ≤ ��� ≤  �����

(15) 

Maximum Storage Charge 0 ≤ ��� ≤  �����

(16) 

The objective function, equation (9), minimizes the area under the net LDC curve in the 

peak net load hours, as illustrated in Figure 1b.  It is analogous to equation (4) in the CVaR 

minimization problem.  The constraints that identify which hours are peak net load hours, 



17

equations (11) and (12), are analogous to equations (5) and (7), respectively, in the CVaR 

minimization problem.  The remaining equations define the net load and storage 

constraints.   

2.2 Validation 1: Florida Utility Benchmark  

In the first validation, the dispatch of storage is found by solving equations (9–16).  That 

storage dispatch is then used to compare the capacity credit based on the LDC method to 

the ELCC of storage using the probabilistic approach outlined by Keane et al. [31], similar to 

the way Nolan et al. use the time series of demand response to calculate its ELCC [20].1 The 

probabilistic benchmark accounts for the probability that random forced outages at power 

plants will lead to insufficient generation to meet demand in any hour, as quantified by the 

loss of load probability (LOLP). Overall reliability is then measured by the loss of load 

expectation (LOLE), which accumulates the LOLP over all hours. The ELCC represents the 

amount that the demand can be increased after a resource is added to the generation mix 

while maintaining the same level of overall reliability.  

The capacity credit from the LDC method is compared to the ELCC using demand and 

generation data from three municipal utilities in Florida: JEA, City of Tallahassee, and the 

1 The level of reliability based on the generation and demand can change from year to year. 

Similar to the approach used by Madaeni et al [32], load levels are scaled so that the LOLPs 

of the base system in each year sum to 2.4 in order to have a consistent starting point for 

determining the reliability contribution of solar and storage.  
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Florida Municipal Power Pool (FMPP2). Hourly load data for the three utilities is from ABB 

Velocity Suite (based on Federal Energy Regulatory Commission Form 714) for 2006–2016. 

Peak demand for JEA, City of Tallahassee, and FMPP was 3.3GW, 0.63 GW, and 3.7 GW, 

respectively. Nameplate capacity and forced outage rate for generators associated with 

each utility are also from ABB Velocity Suite, augmented with 10-year site plans filed with 

the Florida Public Service Commission [33]. The largest single generator for JEA, City of 

Tallahassee, and FMPP was 600 MW, 350 MW, and 450 MW, respectively.  For the City of 

Tallahassee, a small utility with a relatively large generator and a limited number of small 

generators, also includes 200 MW of firm capacity based on transmission capacity between 

the City of Tallahassee and resources in Georgia. This transmission capacity is not tied to 

any one generator, but provides the City of Tallahassee with access to a wide variety of 

resources at times when its own units experience forced outages.  

Finally, the capacity credit of stand-alone solar PV based on the LDC method is compared to 

the ELCC for the same utilities.  Solar PV generation profiles for 2006-2016 are based on 

the default assumptions in NREL’s PVWatts model [34], with historical weather data 

sourced from the National Solar Radiation Database [35] for particular hypothetical PV 

sites located near each utility. 

2 FMPP member utilities include the Orlando Utilities Commission, Lakeland Electric, and 

the Florida Municipal Power Agency. FMPP operates the combined resources of the utilities 

as if they were one utility.  
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Throughout the analysis, the roundtrip efficiency of storage () is assumed to be 85%, 

similar to the roundtrip efficiency of a lithium-ion battery [36]. 

2.3 Validation 2: Western United States Utility Benchmark  

In the second validation, the ELCC of 4-hour duration storage calculated by a utility in the 

western U.S. using method described by Parks [16] is compared to the capacity credit with 

the LDC method of 4-hour storage dispatched using equations (9-16).  The capacity credit 

from the ELCC and LDC methods both use the same demand and variable renewable energy 

data from the western U.S. utility.  The capacity credit of storage is considered under two 

different scenarios: one with near-term solar penetration levels (“Low Solar”) and one with 

solar penetration levels that reflect expected expansion in solar by 2030 (“High Solar”).  

The utility has a peak demand of more than 7GW.  The ELCC is based on the utility having a 

target LOLE of 2.4 hours/year.  

The primary difference between this validation and Validation 1 is that here the utility 

independently develops the storage dispatch profile for the ELCC calculation.  In contrast, 

in Validation 1 the storage dispatch profile from solving equations (9–16) is used to 

calculate the capacity credit both with the LDC method and with the ELCC method.  In 

conjunction with the results from the first validation, the second validation also illustrates 

the applicability of the method to multiple regions.  

2.4 Case Study 
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The case study employs the dispatch algorithm in Section 2.1 to an evaluation of the 

capacity credit of different possible configurations of solar + storage for two Florida 

utilities, FMPP and JEA.  The hourly demand and solar PV generation data described in 

Section 2.2, focusing only on data from representing 2012, are used in the case study.   

Though there are many factors to consider when sizing storage and solar and deciding on 

the configuration, the focus of this paper is solely on the implications for the capacity credit 

of solar + storage. 

The factors that developers can adjust when designing a solar + storage system include the 

number of hours of storage, the storage power capacity relative to the PV module capacity, 

the ratio of the inverter capacity to the PV module capacity, whether the solar and storage 

are independent (alternating current [AC] coupled) or share an inverter (direct current 

[DC] coupled), and whether the storage can charge from the grid or solar (loosely coupled) 

or whether it can only charge from solar (tightly coupled).3 One reason storage might be 

restricted to only charge with solar power relates to tax credit policy. Currently, storage 

can qualify for the U.S. federal Investment Tax Credit (ITC) that is available for solar plants 

if the storage charges from solar at least 75% of the time (with the maximum credit 

available if it charges from solar 100% of the time). The implications of the different 

configurations on solar + storage capacity credit are shown by comparing results for the 

extreme case in which storage is only charged from solar or it can be charged from either 

3 This follows the naming convention for this configuration as described by Denholm et al. 

[37]  
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the grid or solar (Table 2). In all coupled cases, the ratio of the inverter capacity to the PV 

module capacity is kept constant, rather than changing the inverter size as storage is 

added. The different configurations are illustrated in Figure 3. 

Table 2. Definition of solar + storage configurations 

Configuration Description Share 

Equipment? 

Source of 

Electricity 

for 

Storage 

Independent PV and storage do not share 

equipment, and storage is charged 

from the grid. 

No Grid 

Loosely Coupled PV and storage both connect on 

the DC side of shared inverters, 

but storage can charge from 

storage or the grid. 

Shared 

inverter 

Grid or PV 

Tightly Coupled PV and storage connect on the DC 

side of shared inverters, and 

storage can only charge from PV. 

Shared 

inverter 

Only PV 
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(a) 

(b) 

(c) 

Figure 3. Illustration of solar + storage configurations (a) independent, (b) loosely coupled, (c) tightly coupled 
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3. Results and discussion 

Results begin with the validation of the method described in Section 2.1 based on two 

different benchmarks. The method is then used to explore the capacity credit of different 

solar + storage configurations for two of the Florida utilities.   

3.1 Validation 1: Florida Utility Benchmark 

The capacity credit estimated with the LDC method is compared to the ELCC calculated 

with a probabilistic method for different storage durations using data from three Florida 

municipal utilities in Figure 4. As point of comparison, the capacity credit for stand-alone 

PV is also shown using both methods.  The sensitivity of the capacity credit to different 

weather patterns is highlighted by the range of values depending on which year of data was 

used between 2006-2016.  The capacity credit is also calculated using all 11 years of data at 

one time.  In this case, the LDC method maximizes the capacity credit over the peak 1100 

hours (i.e., the peak hours continue to be defined as the top 1.1% of all hours).  

Irrespective of the calculation method, these results show that even though storage is fully 

dispatchable, its capacity credit is highly dependent on the duration of storage. With too 

few hours of energy, storage cannot continuously reduce the peak net load hours on days 

with high, broad peaks. On these days, storage is more likely to be depleted when reducing 

peak load, leaving it unavailable for discharge during other peak hours. Because storage’s 

capacity credit depends on load shape, it can vary from year to year. Storage with a given 

duration is more likely to have a higher capacity credit in years with narrower peaks, while 

achieving a high capacity credit in years with broader peaks requires longer-duration 
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storage. These findings are in line with previous estimates based on detailed probabilistic 

methods (e.g., [14]). 

Figure 4. Comparison of the capacity credit estimated with the load duration curve (LDC) method to the effective load 

carrying capability (ELCC) calculated with a probabilistic method for the Florida utilities. 

The 20-50% capacity credits of solar are within the range of solar capacity credits, at low 

penetrations, reported in other studies or assumed in utility planning studies, though at the 

lower end [38], [39]. The solar capacity credit is somewhat lower than the 54% capacity 

credit assigned to solar by a major investor-owned utility, Florida Power & Light (FPL), in 

its evaluation of the cost-effectiveness of proposed solar plants. FPL estimates the capacity 

credit based on the expected solar generation during the typical peak demand periods of 4-

5pm in August [40]. 

For the two larger utilities with peak demand over 3 GW (JEA and FMPP), the capacity 

credit with LDC method is directionally consistent and quantitatively similar to the ELCC 
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benchmark for both storage and stand-alone solar. For these two utilities, the main 

difference is that the LDC method tends to overestimate the capacity credit of storage and 

stand-alone solar, particularly for longer storage durations. Even for the small utility with a 

peak demand of less than 1 GW (City of Tallahassee), the solar capacity credit with the LDC 

method is somewhat similar to, though slightly higher than, the ELCC.  

On the other hand, for the small utility (City of Tallahassee), the capacity credit of storage 

estimated with the LDC method is much greater than the ELCC. This starkly different result 

stems from the small number of conventional generating stations operated by Tallahassee, 

with some relatively large compared to the load, which leads to a widely distributed risk of 

outages (or a widely distributed LOLP). Whereas the risk is concentrated in less than about 

0.5% of the hours for JEA and FMPP, Tallahassee’s risk is distributed over about 17% of the 

year, Figure 5.4 As a result, short-duration storage makes a much smaller contribution to 

increasing the overall system reliability for the City of Tallahassee compared to the 

contribution of storage in JEA and FMPP.  

4 The concentration of the risk of outages is measured as the percentage of hours in which the LOLP 

is greater than 5% of the maximum LOLP. A smaller percentage of hours in which the LOLP is 

greater than 5% of the maximum indicates that the risk of outage is more concentrated in peak 

hours. 
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Figure 5. Comparison of the concentration of risk of outages in peak hours between three Florida utilities 

Though the deviation between the capacity credit estimated with the LDC method and the 

ELCC for the City of Tallahassee is important to understand, this situation is expected to be 

rare. Few utilities are as small as the City of Tallahassee, and even among small utilities it is 

unusual to find individual generators that constitute such a large fraction of the total 

capacity. More generally, since each utility is modeled in isolation, several factors that 

could be important in determining the true risk profile for utilities are not addressed.  

These include the potential to access generation over other transmission lines and to 

leverage shared reserves for short-term events. Probabilistic methods that can account for 

transmission capacity to neighboring utilities exist [41], though they are not considered in 

this validation. 

3.2 Validation 2: Western United States Utility Benchmark  
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Here the capacity credit of storage, found using the algorithm described in Section 2.1, is 

compared to the ELCC calculated from a detailed probabilistic loss of load probability 

model. In this validation the dispatch of the storage was also done independently. Figure 6 

compares the marginal capacity credit of additional 4-hour duration storage as increasing 

amounts of storage are added to the system.  

Figure 6. Comparison of the marginal capacity credit of 4h duration storage estimated with this method (This Approx.) to the 

effective load carrying capability calculated with a probabilistic method (Benchmark) for a western U.S. utility 

The capacity credit with the algorithm in Section 2.1 is again directionally consistent and 

quantitatively similar to the ELCC benchmark. Both methods find the credit of 4-hour 

duration storage declines from an initial marginal capacity credit of 85-95% to a marginal 

capacity credit of about 40-60% as storage nameplate capacity increases to 15% of the 

utility’s peak demand.  This decline occurs because the residual peak net demand gets 

broader as more storage is deployed.  Reducing broader peaks require longer storage 

durations.  Alternatively, deploying more storage with a fixed duration results in a lower 
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capacity credit. Both methods also show that the marginal capacity credit of storage is 

consistently 10-20 percentage points greater in the high solar scenario compared to the 

low solar scenario. This finding is consistent with results from Denholm et al. [42] which 

shows that high solar penetrations in California can narrow net load peaks and delay the 

decline in storage’s capacity credit. 

3.3 Case Study 

The dispatch algorithm is used to evaluate the impact of different configurations on the 

capacity credit of solar + storage for JEA, a utility with similar peak demand levels in winter 

and summer, and FMPP, a utility whose demand is highest in the summer.   

Using FMPP demand and solar data for 2012 along with the assumption that storage and 

PV both have a nameplate capacity of 100 MW, shows how a coupled solar + storage 

system can have a capacity credit less than that of an independent system (Figure 7a). In 

this particular case, the capacity credit of solar + storage is not impacted by configuration 

for short-duration storage (1 hour). Increasing the duration, however, produces a gap 

between the capacity credits of independent and coupled systems. The capacity credit of 

solar alone is 50 MW (50% of its nameplate capacity) and, with 4–5 hours of storage 

duration, the capacity credit of storage alone can exceed 90MW (90% of its nameplate 

capacity). Bringing these to resources together with a shared 100 MW inverter limits the 

capacity credit of the coupled solar + storage system. 



Similar behavior is observed with the JEA demand and solar data, but here the difference 

between the capacity credit of the tightly and loosely coupled configurations is greater. In 

the tightly coupled case, the capacity credit of solar + storage can even be less than the 

capacity credit of storage alone (Figure 7b). The reason restricting charging to solar 

impacts the capacity credit in JEA may be that some of the JEA peak hours occur in the 

winter, when solar production is lower and less able to fully recharge storage during cold 

weather events that drive peak winter demand. In addition, demand peaks are wider for 

JEA than for FMPP; wider peaks require more energy, which is limited by solar generation 

in the tightly coupled case. At 6 hours of storage duration, requiring storage to only charge 

from solar (tightly coupled) results in the capacity credit that is less than that of storage 

alone (which can charge from the grid during off-peak hours). 

a) b) 

Figure 7. Variation in solar + storage capacity credit with different configur

using 2012 demand and solar profiles from (a) the Florida Municipal Powe

utility (JEA) . 

In contrast, when storage size is reduced to only 20% 
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capacity, and the capacity credit of solar less than 50% of its nameplate capacity, there are 

few opportunities for storage and solar to compete for limited inverter capacity. Likewise, 

in the tightly coupled case, a less energy is required to charge the smaller storage system, 

making storage easier to charge only with solar energy.  

Even if storage and solar are equally sized, it may be possible to achieve the same (or 

similar) capacity credit with a coupled system as with an independent system if the 

inverter capacity is increased in the coupled system. This increases the cost of the coupled 

system, but it may be worth the cost if increasing resource adequacy is a high priority for 

the utility. The requirement to only charge storage from solar in the tightly coupled case 

may continue to be a limiting factor. 

Ultimately, the optimal configuration of solar and storage depends on much more than 

maximizing the resource adequacy contribution [37]. Storage might reduce solar’s 

levelized cost of energy, especially when the photovoltaic panels are oversized relative to 

the inverter, by charging coupled storage using energy that would otherwise be clipped. 

Storage can also provide additional value streams, including energy arbitrage and ancillary 

services. It can also smooth the solar production profile due to passing clouds. Future 

analysis could investigate how the different uses of storage alter the optimal solar + storage 

configuration and whether any of these other factors affect the capacity credit. 
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4. Conclusions  

Many factors impact the capacity credit of solar and storage, including weather, utility 

demand profiles, solar and storage deployment levels, and the configuration of solar and 

storage systems. Exploratory analysis of the relative importance of different factors can be 

useful before evaluating specific cases via more detailed and resource-intensive modeling. 

The algorithm developed in this paper is a fast and relatively simple approach for 

identifying the dispatch that maximizes the capacity credit of storage and solar, suitable for 

such exploratory analysis. 

Validation of the method shows that it mimic results from more detailed probabilistic 

methods, except for a very small utility with relatively large generators and widely 

distributed high-risk hours. Future analysis could more broadly investigate the 

circumstances that cause deviations from the benchmark based on probabilistic 

techniques. 

Application of this method to data representing Florida utilities illustrates how it can 

improve upon rules of thumb used in practice.  In particular, application of this method 

shows how, depending on the demand profile of the utility, the capacity credit of tightly 

coupled solar and storage can be less than the capacity credit of storage alone.  This 

interaction is missed if utilities instead assume the capacity credit of solar + storage is the 

sum of the capacity credit of the independent components limited by the capacity of any 

shared equipment.   
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