
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Enabling Efficient and Reliable Robot Manipulation Through Optimization, Interactive
Perception and Self-Supervised Learning

Permalink
https://escholarship.org/uc/item/6725c31m

Author
Avigal, Yahav

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6725c31m
https://escholarship.org
http://www.cdlib.org/

Enabling Efficient and Reliable Robot Manipulation Through Optimization, Interactive
Perception and Self-Supervised Learning

By

Yahav Avigal

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ken Goldberg, Chair
Professor Jitendra Malik

Professor Angjoo Kanazawa
Professor Dan Halperin

Spring 2024

Enabling Efficient and Reliable Robot Manipulation Through Optimization, Interactive
Perception and Self-Supervised Learning

Copyright 2024
by

Yahav Avigal

1

Abstract

Enabling Efficient and Reliable Robot Manipulation Through Optimization, Interactive
Perception and Self-Supervised Learning

by

Yahav Avigal

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

Robot manipulation research is essential for advancing automation technologies, allowing
robotic arms to execute complex and precise tasks across various industries. In recent years,
several technologies have matured and transformed industries, such as logistics and manu-
facturing automation, through advancements like robot grasping. To enable the adoption
of these emerging capabilities into real-world automation scenarios, these technologies need
to be both efficient and reliable. However, achieving a balance between efficiency and reli-
ability is challenging, as improving one often requires compromising the other. As a result,
many impressive methods, initially developed for practical applications, struggle to make
the transition into industry use.

This thesis explores five research areas within the field of robot manipulation, examining
diverse angles and domains such as industrial automation, deformable manipulation, agri-
cultural robotics, and surgical robotics. It proposes strategies to achieve efficient and reliable
robot manipulation. By focusing on enhancing both efficiency and reliability, the thesis aims
to facilitate the transition of robot manipulation from proof of concept to practical appli-
cations. Among the various methods explored, three primary strategies have proven to be
particularly effective: constrained optimization, which given a reliable model, applies strict
mathematical constraints to find efficient and reliable solutions; interactive perception and
self-supervised learning, which are used to improve the efficiency and reliability in situations
where there is high uncertainty in the dynamics of the system or a lack a reliable model.
The thesis concludes by discussing the key insights gained through this research, reviewing
lessons learned, and suggesting potential directions for future research.

i

To all of my teachers.

ii

Contents

Contents ii

1 Introduction 1
1.1 Efficiency and Reliability in Motion Planning for Object Transport 2
1.2 Efficiency and Reliability in Grasping Partially Observable Rigid Objects . . 2
1.3 Efficiency and Reliability in Bimanual Deformable Manipulation 3
1.4 Efficient and Reliable Autonomous Gardening 3
1.5 Efficient and Reliable Autonomous Suturing 3
1.6 Thesis Contributions . 4

I Efficiency and Reliability in Motion Planning for Object
Transport 5

2 DJ-GOMP: Warmstarting Motion Planning Optimization Using Deep
Learning 6
2.1 Introduction . 6
2.2 Related Work . 8
2.3 Problem Statement . 9
2.4 Method . 10

2.4.1 Jerk- and Time-optimized Trajectory Generation 10
2.4.2 Deep Learning of Trajectories . 15
2.4.3 Fast Pipeline for Trajectory Generation 18

2.5 Experiments . 19
2.6 Discussion and Future Work . 23

3 GOMP-FIT: Making Fast Object Transport Reliable 25
3.1 Introduction . 25
3.2 Related Work . 27
3.3 Problem Statement . 29
3.4 Method . 29

3.4.1 GOMP Background . 29

iii

3.4.2 GOMP-FIT End-Effector Acceleration Constraints 31
3.4.3 Minimization Objective . 32

3.5 Experiments . 33
3.5.1 Open-Top Container Transport . 35
3.5.2 Fragile Object Transport . 36
3.5.3 Filled Wineglass Transport . 37

3.6 Discussion and Future Work . 37

4 GOMP-ST: Making Fast Object Transport with Suction Grasping Reliable 38
4.1 Introduction . 38
4.2 Related Work . 40
4.3 Problem Statement . 42
4.4 Method . 42

4.4.1 Background: GOMP-FIT . 43
4.4.2 Learned constraints in the SQP . 44
4.4.3 Self-supervised data collection and training 45
4.4.4 Analytic model of suction-cup failure for GOMP-FIT baseline 46

4.5 Experiments . 48
4.5.1 Ablation studies . 50
4.5.2 Results . 50

4.6 Discussion and Future Work . 51

5 BOMP: Optimized Motion Planning for Bin Picking 53
5.1 Introduction . 53
5.2 Related Work . 55
5.3 Problem Statement . 57
5.4 Method . 57

5.4.1 Grasped Box Shape Estimation . 57
5.4.2 Suction Grasp Selection . 58
5.4.3 Optimization Formulation . 59
5.4.4 Collision Checking . 60
5.4.5 Deep Learning Warm-start . 61
5.4.6 Speeding Up Computation . 62

5.5 Experiments . 63
5.5.1 Simulated Experiments . 64
5.5.2 Physical Experiments . 66

5.6 Discussion and Future Work . 67

iv

II Efficiency and Reliability in Grasping Partially Observable
Rigid Objects 68

6 AVPLUG: Approach Vector Planning in Cluttered Environments 69
6.1 Introduction . 69
6.2 Related Work . 71
6.3 Problem Statement . 72

6.3.1 Definitions . 73
6.4 Method . 73

6.4.1 Updating the Octree . 75
6.4.2 Finding Candidate Target Object Locations 75
6.4.3 Finding Candidate Vectors . 76
6.4.4 Evaluating Candidate Vectors . 76
6.4.5 Finding and Evaluating Visible Grasps 76

6.5 Experiments . 77
6.5.1 Simulation Experiments . 77
6.5.2 Environments in Simulation . 77
6.5.3 GridSearch Baseline . 78
6.5.4 Simulation Results . 79
6.5.5 Physical Experiments . 80
6.5.6 Visibility vs Graspability . 82
6.5.7 Failure Cases . 82

6.6 Discussion and Future Work . 82

7 Grasping Transparent Objects Reliably 84
7.1 Introduction . 84
7.2 Related Work . 85
7.3 Problem Statement . 86
7.4 Method . 87

7.4.1 Preliminary: Training NeRF . 87
7.4.2 Recovering Geometry of Transparent Objects 87
7.4.3 Rendering Depth for Grasp Analysis 88
7.4.4 Improving Reconstruction with Light Placement 89

7.5 Experiments . 89
7.5.1 Datasets . 90
7.5.2 Synthetic Grasping Experiments . 90
7.5.3 Physical Grasping Experiments . 91
7.5.4 Comparison to RealSense Depth . 92
7.5.5 One vs Many Lights . 92
7.5.6 Workcell Setup . 94

7.6 Discussion and Future Work . 94

v

8 Grasping Transparent Objects Efficiently 96
8.1 Introduction . 96
8.2 Related Work . 97
8.3 Problem Statement . 99
8.4 Method . 100

8.4.1 Evo-NeRF . 100
8.4.2 Grasp Planning Network . 102

8.5 Experiments . 103
8.5.1 Physical Setup . 104
8.5.2 Rapid single object retrieval . 104
8.5.3 Sequential decluttering . 105
8.5.4 Graspability ablation . 106
8.5.5 NeRF Depth vs Ground Truth Depth 106

8.6 Discussion and Future Work . 107
8.6.1 Limitations and future work . 107

III Efficiency and Reliability in Bimanual Deformable Manip-
ulation 108

9 Using Interactive Perception to Untangle Long Cables 109
9.1 Introduction . 109
9.2 Related Work . 111
9.3 Problem Statement . 112

9.3.1 Workspace Definition and Assumptions 112
9.3.2 Task Objective and Metrics . 112

9.4 Method . 114
9.4.1 Approach Overview . 114
9.4.2 Uncertainty-Aware Perception Systems 114
9.4.3 Novel Manipulation Primitives for Interactive Perception 116
9.4.4 Sliding and Grasping for Tangle Manipulation 2.0 (SGTM 2.0) Algorithm118

9.5 Experiments . 118
9.5.1 Experimental Setup . 118
9.5.2 Results . 120
9.5.3 Failure Modes . 121
9.5.4 Ablations . 121

9.6 Discussion and Future Work . 122

10 Learning Efficient Bimanual Folding of Garments 123
10.1 Introduction . 123
10.2 Related Work . 125
10.3 Problem Statement . 126

vi

10.4 Method . 127
10.4.1 Action Primitives . 127
10.4.2 BiMaMa-Net for Bimanual Manipulation 128
10.4.3 Reachability Calibration . 130
10.4.4 Training for Smoothing . 131
10.4.5 Folding Pipeline . 132

10.5 Experiments . 134
10.5.1 Experimental Setup . 134
10.5.2 Sufficiently Smoothed . 135
10.5.3 Folds per Hour . 136
10.5.4 Generalization to Unseen Garments 136
10.5.5 System Limitations . 136

10.6 Discussion and Future Work . 137

IV Efficient and Reliable Autonomous Gardening 138

11 AlhphaGarden 139
11.1 Introduction . 139
11.2 Related Work . 140
11.3 AlphaGardenSim . 142
11.4 Modeling . 142

11.4.1 Plant Growth Model . 142
11.4.2 Life Cycle . 145
11.4.3 Water Stress . 147
11.4.4 Irrigation . 148
11.4.5 Diversity . 148

11.5 Experiments . 149
11.5.1 Experimental Setup . 149
11.5.2 Policies . 151
11.5.3 Evaluation . 151

11.6 Discussion and Future Work . 153

12 Learning Efficient Policies for Polyculture Farming with Optimized Seed
Placements 155
12.1 Introduction . 155
12.2 Related Work . 157
12.3 Plant Phenotyping . 157
12.4 Irrigation Model . 160
12.5 Growth Analysis . 161
12.6 Companion Planting . 162
12.7 Pruning and Irrigation Policies . 164

vii

12.8 Simulation Experiments . 166
12.9 Discussion and Future Work . 169

V Efficient and Reliable Autonomous Suturing 170

13 Automating 2D Suture Placement 171
13.1 Introduction . 171
13.2 Related Work . 172

13.2.1 Needle Path Planning . 172
13.2.2 The Suture Planning Problem . 173

13.3 Problem Statement . 174
13.4 Method . 176

13.4.1 Input . 176
13.4.2 Optimization . 176
13.4.3 Suture regularity constraints and objectives 177
13.4.4 Generalizing the Diamond Force Model 179
13.4.5 Closure and shear force objectives . 181
13.4.6 Force closure objective . 181
13.4.7 Parameter settings . 182
13.4.8 Adjustment . 182

13.5 Experiments . 182
13.5.1 Synthetic Splines . 182
13.5.2 Physical Experiments on Chicken Skin 184

13.6 Discussion and Future Work . 184
13.6.1 Limitations . 184
13.6.2 Future work . 186

14 Autonomous Suture Tail-Shortening 187
14.1 Introduction . 187
14.2 Related Work . 189
14.3 Problem Statement . 190
14.4 Method . 191

14.4.1 Module 1: Learned 2D Surgical Thread Detection 191
14.4.2 Module 2: 2D Surgical Thread Tracing 192
14.4.3 Module 3: 3D Surgical Thread Tracing 193
14.4.4 Module 4: 3D Surgical Thread Tracking 194
14.4.5 Module 5: Surgical Suture Tail-Shortening 194

14.5 Experiments . 196
14.5.1 Modules 1-3: 2D Thread Detection and 2D & 3D Tracing 196
14.5.2 Module 4: 3D Surgical Thread Tracking 197
14.5.3 Module 5: Surgical Suture Tail-Shortening 198

viii

14.6 Discussion and Future Work . 199

VI Conclusion 200

15 Concluding Remarks 201
15.1 Lessons Learned . 202

15.1.1 Physical Experiments . 202
15.1.2 Rejected Papers . 202

15.2 Opportunities for Future Work . 203
15.2.1 Reactive Motion Planning Around Moving Obstacles 203
15.2.2 Grasping Transparent Objects in Real-Time 203
15.2.3 Suture Planning in Real-Time . 203

Bibliography 205

ix

Acknowledgments

My journey into robotics and artificial intelligence began 10 years ago and continues to
this day. It was sparked by a book from Ray Kurzweil, which opened my eyes to the endless
possibilities within the field. I never imagined that this fascination would lead to pursuing a
PhD in Electrical Engineering and Computer Science at UC Berkeley. I am grateful to Ray
Kurzweil for his inspiring work and to Itay Hay for gifting me this transformative book on
my birthday.

I owe a great deal of thanks to Tel Aviv University for laying my foundational knowledge
in engineering and computer science. Special gratitude goes to Professor Eyal Zisser for your
invaluable guidance, advice, and the friendly discussions we shared. I am also thankful to
Professor Dan Halperin for introducing me to robotics and specifically to motion planning.
Your trust in me to lead a student team and develop a drone project provided a signifi-
cant learning opportunity, and your introduction to Professor Goldberg was instrumental in
shaping my path.

I would like to thank my advisor, Professor Ken Goldberg. First, thank you for your
mentorship. Your belief in my potential and your supportive approach allowed me to exper-
iment, learn from my mistakes, and grow academically and personally. I am thankful for the
knowledge you imparted on science and research, as well as on art and innovation, and for
showing me how well they work together. I am especially grateful for your hospitality, as you
welcomed me and my family into your home for Shabbat dinners and various events. Your
genuine care for our well-being and your commitment to supporting my long-term ambitions
have been invaluable.

I am immensely appreciative of UC Berkeley and the EECS department for broadening
my academic horizons. The enthusiastic and supportive environment fostered by the pro-
fessors, GSIs, and classmates was pivotal in my educational journey, continually motivating
me to enhance my research and expand my perspectives.

Teamwork has always been my preference, and I must acknowledge all my collaborators
for their crucial roles in my research. To the AlphaGarden team, thank you for countless
hours of planting, irrigating, pruning, paper writing, and then starting the process all over
again. To the GOMP team, thank you for consistently tackling the most challenging ex-
periments, whether it involved extensive hours collecting beads from the lab’s floor between
runs or pushing the air compressor to its mechanical limits. I would like to thank Professor
Jeff Ichnowski for showing me the fun and exciting parts of scientific research and for being
by my side in the trenches, especially when things did not unfold as expected.

I thank my many remaining co-authors and collaborators, including Vishal Satish, Yi Liu,
Max Cao, Zach Tam, Karthik Dharmarajan, Ethan Qiu, Raven Huang, Harry Zhang, Mike
Danielczuk, Justin Kerr, Max Fu, Matt Tancik, Angjoo Kanazawa, Kaushik Shivakumar,
Vainavi Viswanath, Anrui Gu, Lars Berscheid, Jensen Gao, William Wong, Kevin Li, Grady
Pierroz, Fang Shuo Deng, Mark Theis, Mark Presten, Anna Deza, Sebastian Oehme, Jackson
Chui, Paul Shao, Atsunobu Kotani, Satvik Sharma, Rishi Parikh, Sandeep Mukherjee, Varun
Kamat, Viraj Ramakrishnan, Yashish Mohnot, Harshika Jalan, Julia Isaac, Vincent Schorp,

x

Will Panitch and Aviv Adler. Thank you for all of the insightful discussions, the long hour
running physical experiments at the lab, filming robot demos, and crafting creative ”figure-
one”s. Lastly, I would like to thank all of my friends at AUTOLab and BAIR.

Lastly, I want to express my deepest gratitude to the most important people in my life
– my family. I am who I am today thanks to you.

1

Chapter 1

Introduction

Robot manipulation, defined as the process whereby “an agent moves things other than
itself through selective contact” [1], remains a significant area of research within the field
of robotics. The transition of robotic manipulation research into the automation that is
adopted in commercial sectors is notably slower. This discrepancy results from the much
higher demands of industry for efficiency and reliability.

The difference between automation and robotics is insightfully encapsulated in a state-
ment by Professor Raja Chatila, former President of the IEEE Robotics and Automation
Society and current President of the IEEE Global Society on Ethics of Autonomous and In-
telligent Systems: “One robot on Mars is robotics, ten robots on Mars is automation.” This
contrast raises an important question regarding the methods by which we can bridge the
gap between robotics, which focuses on proof-of-concept, and automation, which emphasizes
cost-effectiveness and reliability in operational contexts.

This thesis investigates five challenging research topics within the field of robot manip-
ulation, with a particular focus on enhancing both efficiency and reliability as a means to
facilitate the transition from a proof of concept to industrial applications. In Part I, we will
use nonconvex constrained optimization to speed up the execution time and model distilla-
tion to speed up the computation of robot motions for object transport, and incorporate an
additional constraint learned through self-supervised learning to increase the system’s relia-
bility. In Part II, we will use active perception and optimization to improve the reliability
of perception systems for motion planning and grasping of transparent or partially occluded
objects. In Part III, we will use interactive perception and self-supervised learning for effi-
cient and reliable manipulation of deformable objects with a bimanual robot. In Part IV, we
will present an efficient simulator for polyculture farming. We will then use constrained op-
timization, and leverage the simulator’s computational efficiency to develop optimized seed
placements, as well as efficient and reliable irrigation and pruning policies. In Part V, we will
use nonconvex constrained optimization, interactive perception and self-supervised learning
to develop reliable autonomous suturing procedures.

A central theme throughout this work is the delicate balance between efficiency and
reliability; Striving for increased efficiency often entails a compromise on system reliability,

CHAPTER 1. INTRODUCTION 2

and vice versa.
The case studies explored in this dissertation all strive to increase both efficiency and re-

liability. It is my hope that insights from these case studies can be applied to future projects.
Three primary strategies have emerged as particularly effective: constrained optimization,
interactive and active perception, and self-supervised learning.

1.1 Efficiency and Reliability in Motion Planning for

Object Transport

In tasks like pick-and-place, where actions are performed repetitively, even a marginal im-
provement can lead to a significant productivity increase. Chapters 2–5 propose methods to
optimize motion computation and execution time using advances in motion planning. Mo-
tion planning aims to generate paths from a start configuration to a goal configuration while
avoiding obstacles. Sampling-based planners [2–4] can find sub-optimal solutions quickly,
while optimization-based planners can find optimized solutions [5–8] but are often slower in
computation. In Chapter 2, we build on Ichnowski et al. [9], using a nonconvex sequential
quadratic program to compute time-optimized trajectories, and model distillation to speed
up the calculation by 300×. In some cases, e.g., open-top containers or suction grasping,
accelerating too fast can lead to increased content spill, product damage or drops. In Chap-
ters 3 and 4, we formulate additional constraints to increase the system’s robustness while
optimizing the trajectory and maintaining a balance between efficiency and reliability.

1.2 Efficiency and Reliability in Grasping Partially

Observable Rigid Objects

While optimized motion planning on its own can lead to a substantial increase in produc-
tivity, it assumes full knowledge of the location of obstacles, information typically acquired
using RGBD sensors. However, these sensors face challenges in accurately perceiving objects
under certain conditions, for example, occlusions. Leading grasp planners often struggle to
identify effective grasps on partially occluded objects [10]. Chapter 6 proposes a method to
increase the reliability of grasping using active perception, by executing a series of move-
ments with a wrist-mounted camera to find a collision-free approach towards a viable grasp
around occlusions. Another limitation of RGBD sensors is their unreliability in perceiving
transparent and translucent objects. Chapters 7 and 8 propose using optimization, leverag-
ing the ability of Neural Radiance Fields (NeRFs) to represent non-Lambertian effects, such
as specularities and reflections, while reconstructing the geometry of the scene for grasping
transparent objects [11].

CHAPTER 1. INTRODUCTION 3

1.3 Efficiency and Reliability in Bimanual

Deformable Manipulation

Even given efficient motion planning and robust perception, manipulation of deformable
objects in 1D [12–14] and 2D [15–17] remains a challenge, due to their large configuration
space and complex dynamics. A large body of research exists on single-arm deformable
manipulation [16, 18]. However, A dual-arm system extends the workspace, allows for in-
creased payload and for more complex behaviors than a single-arm system [19–22]. Chapters
9 and 10 propose to use dual-arm systems to increase the efficiency and reliability of 1D (ca-
bles) and 2D (cloth) deformable manipulation. As accurately simulating the dynamics of
deformable objects remains a challenging problem, these chapters propose methods for de-
veloping reliable deformable manipulation policies using a physical robot. Chapter 9 uses
interactive perception for untangling long cables, given high uncertainty in the state of the
cable. Chapter 10 uses self-supervised learning to learn a sequence of efficient and reliable
motion primitives for garment smoothing and folding.

1.4 Efficient and Reliable Autonomous Gardening

Unlike cable untangling and garment folding, it is difficult to develop an autonomous farm-
ing policy for planting, irrigating, and pruning crops exclusively on a physical robot due
to nature’s long time-constants. A single experiment could take months or even years.
Chapter 11 introduces a fast, first-order simulator that incorporates parameterized individ-
ual plant growth models and inter-plant dynamics to simulate competition over resources
between plants in close proximity. Yet, we found that the policies developed with the simula-
tor were unstable, stemming from a balance between preserving plant diversity and boosting
yield, along with a reliance on initial seed placement. Chapter 12 proposes a method to
optimize the seed placement to increase the policy’s stability and reliability, and leverage the
simulator’s computational efficiency to learn a look-ahead policy that increases the policy’s
performance.

1.5 Efficient and Reliable Autonomous Suturing

In contrast to the repetitive tasks described in Part I, in suturing, we don’t repeat motions
over and over and execution time is not the main objective. The quality of the suture
is important and depends on various factors, such as the suture placement and the forces
applied to the wound in the process. Existing works place evenly spaced sutures on simple
wound shapes, e.g., straight lines or circular wounds [23]. However, when dealing with more
complex wound shapes, planning and evaluating an effective set of sutures may require a more
detailed model of how the sutures hold the wound together. Chapter 13 proposes to combine
surgical heuristics with a model of the forces imparted by the sutures to ensure that the entire

CHAPTER 1. INTRODUCTION 4

wound is held sufficiently closed by the sutures. This optimization problem is nonconvex, and
similarly to GOMP [9] and Chapters 2– 5, we solve it using a sequential quadratic program.
Once the suture placement has been planned, the robot repeats suturing motions, including
needle insertion and tail-shortening. The latter is particularly challenging due to the thin
and flexible nature of suturing thread, as well as its tendency for self-intersections and partial
occlusions. Similarly to SGTM 2.0 for long cable untangling in Chapter 9, Chapter 14 uses
interactive perception to increase the reliability of the thread manipulation.

1.6 Thesis Contributions

The primary contributions of this thesis are:

• We frame the objectives of increasing the efficiency and reliability of manipulation
systems as constrained optimization problems, as shown in Chapters 2 to 5, 7, 12 and
13.

• We propose a procedure for warm starting an optimizing motion planner with an
approximation from a deep neural network to reduce the planning time and improve
the efficiency as described in Chapter 2.

• We formalize, tune, and learn acceleration constraints and 3D reconstruction objec-
tives to improve the success rate and the reliability of motion planning and grasping
as described in Chapters 3, 4, and 8. We develop active and interactive perception
primitives to increase the system’s reliability when it is difficult to estimate its state,
as presented in Chapters 6, 9 and 14.

• We use self-supervised learning to develop an efficient and reliable system when it is
difficult to model its dynamics, as described in Chapters 4, 10, and 14.

• We introduce an efficient polyculture farming simulator that integrates parameterized
models of plant growth, as well as plant interactions, and train a policy to optimize
plant coverage and diversity over a short horizon, as presented in Chapters 11 and 12.

5

Part I

Efficiency and Reliability in Motion
Planning for Object Transport

6

Chapter 2

DJ-GOMP: Warmstarting Motion
Planning Optimization Using Deep
Learning

In some tasks, e.g., pick and place, we repeat motions again and again, and even a small
improvement can lead to a significant productivity increase. GOMP [9] leverages a degree
of freedom (DOF) in the grasp pose to speed up the motion execution time, but the com-
putation is slow. To increase the efficiency, DJ-GOMP uses a neural network to predict an
initialization trajectory to warmstart the optimization, speeding up calculation time by up
to 300×.

2.1 Introduction

In e-commerce warehouses, faster pick-and-place pipelines can address labor shortages, lower
costs, and increase revenue. However, despite advances in grasp planning (e.g., Mahler et
al. [24]), the planning and executing of robot motion remains a bottleneck. To address this,
Ichnowski et al. introduced a grasp-optimized motion planner (GOMP) [9] that computes
a time-optimal motion plan subject to joint velocity and acceleration limits and allows for
degrees of freedom in the pick and place frames (see Fig. 2.1). The motions that GOMP
produces are fast and smooth; however, by not taking into account the motion’s jerk (change
in acceleration), the robot arm will often rapidly accelerate at the beginning of each motion
and rapidly decelerate at the end. In the context of continuous pick-and-place operations
in a warehouse, these high-jerk motions could result in wear on the robot’s motors and
reduce the overall service life of a robot. In this chapter, we introduce jerk limits and
find that the resulting sequential quadratic program (SQP) and its underlying quadratic
program (QP) require computation on the order of tens of seconds which is not practical for
speeding up the overall pick-and-place pipeline. We then present DJ-GOMP which uses a
deep neural network to learn trajectories that warm start computation, yielding a reduction

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 7

(A) Wrist-back top grasp (B) Left 60° (C) Right 60° (D) Wrist-front top grasp

Figure 2.1: Grasp-optimized motion planning degrees of freedom. The optimized motion
planning allows for degrees of freedom to be added to the pick and or place frames. Left: In (A),
grasp analysis produces a top-down grasp. Since the analysis is based on two contact points, the
motion planner allows for rotation about the grasp contact points shown as rotations in (B) and
(C). Similarly, reversing the contact points, visible in (D) as a different arm pose, will still be valid
according to grasp analysis. DJ-GOMP computes an optimal rotation for pick and place frames
that minimizes time and jerk of the motion. Right: Using the additional degree(s) of freedom on
the grasp, the motion planner then uses a neural network to warm start an optimization process
to quickly compute a time-optimized jerk-limited motion.

in computation times from 29 s to 80 ms, making it practical for industrial use.
For a given workcell environment, DJ-GOMP speeds up motion planning for a robot

and repeated task through a three-phase process. The first phase randomly samples tasks
from the distribution of tasks the robot is likely to encounter and generates a time-optimal
jerk-minimized motion plan using an SQP. The second phase trains a deep neural network
using the data from the first phase to compute time-optimized motion plans for a given task
specification (Fig. 2.2). The third phase, used in pick-and-place, uses the deep network from
the second phase to generate a motion plan to warm start the SQP from the first phase.
By warm starting the SQP from the deep network’s output, DJ-GOMP ensures that the
motion plan meets the constraints of the robot (something the network cannot guarantee),
and greatly accelerates the convergence rate of the SQP (something the SQP cannot do
without a good initial approximation).

This chapter describes algorithms and training process of DJ-GOMP. In the results sec-
tion, we perform experiments on a physical UR5 robot, verifying that the trajectories GOMP
generates are executable on a physical robot and result in fast and smooth motion. This
chapter provides the following contributions: (1) J-GOMP, an extension of GOMP that com-
putes time-optimized jerk-limited motions for pick-and-place operations; (2) DJ-GOMP, an
extension of J-GOMP that uses deep-learning of time-optimized motion plans that empiri-
cally speeds up the computation time of the J-GOMP optimization by 2 orders of magnitude
(300x); (3) Comparison to optimally-time-parameterized PRM* and TrajOpt motion plan-
ners in compute and motion time suggesting that DJ-GOMP computes fast motions quickly;

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 8

g0
gH

FC
8×

81
92

D
ro
po

ut

EL
U

FD
E
81

92
×
40

96

FD
E
40

96
×
20

48

FD
E
20

48
×
10

24

FDE

··
·

FD
E
10

24
2

FD
E
10

24
2 FC

1024
×

|τ60|
τH=60

··
·

··
·

FD
E
10

24
2

FD
E
10

24
2 FC

1024
×

|τ17|
τH=17

gH

g0
(A)

(B)

(C) (D) (E)

(F)

Figure 2.2: A deep neural network architecture for grasp optimized motion planning The
input is the start and goal grasp frames (A). Each “FDE” block (B) sequences a fully-connected
(FC) layer (C), a dropout layer (D), and an exponential linear unit (ELU) layer (E). The output (F)
is a trajectory τH from the start frame to the goal frame for each of the time steps H supported by
the network. A separate network uses one-hot encoding to predict which of the output trajectories
is the shortest valid trajectory.

and (4) Experiments in simulation and on a physical UR5 robot suggesting that DJ-GOMP
can be practical for reducing jerk to acceptable limits.

2.2 Related Work

Optimization-based motion planners such as CHOMP [7], STOMP [6] and TrajOpt [5] com-
pute motion plans by locally optimizing a trajectory while penalizing collisions or placing
barrier functions on collisions [25]. GOMP [9] builds on prior formulations, by taking the
mechanical limits of the robot arm and the dynamics between waypoints into consideration,
and allowing for a degree of freedom on pick and placement frames. DJ-GOMP further
extends by minimizing jerk to avoid joint wear, while significantly reducing computation
time. Model distillation, i.e., one model being trained on the output of one or more different
models, is a widely used technique to transfer knowledge between models. In many cases,
training an ensemble of models improves prediction performance, but is computationally
expensive as it significantly increases the required computation resources. The ensemble can
be distilled in a compact network [26, 27]. In RL (reinforcement learning), model distillation,
also known as policy distillation, is used to transfer knowledge from multiple policies into a
single multi-task policy [28], and to teach a robot how to solve multiple tasks [29, 30]. In
this chapter we use model distillation to improve GOMP’s running time. While the repeated
optimization executed in GOMP takes up to several minutes, a forward pass in a compact
neural network is often executed in milliseconds. We exploit this feature of neural networks
to compute similar robot’s trajectories faster.

In motion planning and control problems, warm starting the optimization solver with a
near-optimal solution can significantly increase the solver’s performance while greatly reduc-
ing the number of iterations required to reach sufficient optimality [31]. In RL, learning a
new task can be warm started by transferring features from old tasks the agent has already

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 9

mastered [32]. Memory of motion [33] is another method that use an offline learned policy
to warm start a control solver, and was shown to reduce the computation time in locomotion
problems, and to increase the performance of nonlinear predictive controllers [34]. With
the observation that the bottleneck in our algorithm is the number of iterations required to
find the optimal horizon, we use the neural network’s output to warm-start J-GOMP with
a approximation of the optimal trajectory which results with a faster convergence.

Learning-based methods for motion planning have gained increasing attention in recent
years. Motion planning algorithms can require complex cost functions, and learning-based
methods, such as learning from demonstrations (e.g., [35–37]) can reduce the amount of hand
engineering required. They reduce the hand engineering by leveraging additional knowledge
provided by a human demonstrator, often times without the need to explicitly specify the
task. A challenge sometimes tackled by learning-based methods is increasing the sampling
efficiency in sample-based methods using non-uniform sampling [38], or reinforcement learn-
ing [39] for example. Although the “pick-and-place” operation from multiple start to multiple
goal configurations (e.g., by allowing the degree of freedom around the grasp axis) is well-
suited for sampling-based motion planners, as mentioned in [9], and despite the advances
made through learning-based methods, the slow convergence rate of these planners in high
dimensions prevents them from producing the required level of improvement in picks-per-
hour. Quershi et al. [40] encode a point cloud of the obstacles into a latent space and uses a
feed-forward neural network to predict the robot configuration at the next time step given
an initial state, goal state, and the obstacles encoding. In doing so, they attempt to solve
high-dimensional problems which were previously intractable. In this chapter, we leverage
the advantage of having an accurate demonstrator in the form of J-GOMP to generate a
large training data set.

2.3 Problem Statement

Let q ∈ C be the complete specification of a robot’s n degrees of freedom (e.g., n joint
angles of a manipulator arm), where C ⊆ Rn is the set of all possible configurations. Let
qmin ∈ Rn and qmax ∈ Rn be the (possibly unbounded) lower and upper limits of the robot’s
configuration. Thus, q ∈ C implies qmin ⩽ q ⩽ qmax. Let Cobs ⊂ C be the set of configurations
that are in collision with an obstacle, and Cfree = C \ Cobs be the set of valid configurations.

Let g0 ∈ SE(3) be a grasp frame or pick frame produced by grasp analysis, and gH ∈
SE(3) be the goal or place frame. Adding degrees of freedom in rotation or translation to
these frames, e.g., corresponding to a rotation about the axis defined by parallel-jaw grasp
contact points (Fig. 2.1), rotation about the contact normal of a suction-based grasp, or in
flexibility of translation, we define a set of starting grasp frames:

G0 = {gi|gi = Ra(θ)g0 + t, θ ∈ [θmin, θmax], t ∈ [tmin, tmax]},

where Ra(·) is a rotation about axis a, θmin and θmax bound the angle of rotation, and
tmin ∈ R3 and tmax ∈ R3 bound the translation degree of freedom. The definition of GH , the

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 10

set of place frames, follows a similar definition, though with potentially different degrees of
freedom.

Let vmax ∈ Rn
+, amax ∈ Rn

+, and jmax ∈ Rn
+, be the velocity, acceleration, and jerk limits

of each degree of freedom. Let τ is a continuous sequence of robot configurations composed
of τq(t), τv(t), τa(t), and τj(t), the configuration, velocity, acceleration, and jerk at time t
respectively. Let h(τ) is the duration of the trajectory. The objective of DJ-GOMP is to
compute:

argmin
τ

h(τ)

s.t. τq(t) ∈ [qmin,qmax] ∪ Cfree ∀t ∈ [0, h(τ)]

τv(t) ∈ [−vmax,vmax] ∀t ∈ [0, h(τ)]

τa(t) ∈ [−amax, amax] ∀t ∈ [0, h(τ)]

τj(t) ∈ [−jmax, jmax] ∀t ∈ [0, h(τ)]

p(τq(0)) ∈ G0

p(τq(h(τ))) ∈ GH ,

where p : C → SE(3) is the robot’s forward kinematic function to gripper frame. Addi-
tionally, should multiple trajectories satisfy the above minimization, DJ-GOMP computes a
trajectory that minimizes sum-of-squared jerks over time.

2.4 Method

This section describes the methods in DJ-GOMP. Underlying DJ-GOMP is a jerk- and time-
optimizing constrained motion planner based on a sequential quadratic program (SQP). Due
to the complexity of solving this SQP, computation time can far exceed the trajectory’s exe-
cution time. DJ-GOMP uses this SQP on a random set of pick-and-place inputs to generate
training data (trajectories) to train a neural network. During pick-and-place operation, DJ-
GOMP uses the neural network to compute an approximate trajectory for the given pick
and place frames, which it then uses to warm start the SQP.

2.4.1 Jerk- and Time-optimized Trajectory Generation

To generate a jerk- and time-optimized trajectory, DJ-GOMP extends the SQP formulated
in GOMP [9]. The solver for this SQP, following the method in TrajOpt [5] and summarized
in Alg. 1, starts with a discretized estimate of the trajectory τ as a sequence of H waypoints
after the starting configuration, in which each waypoint represents the robot’s configuration
q, velocity v, acceleration a, and jerk j at a moment in time. The waypoints are sequentially
separated by tstep seconds. This discretization is collected into x(0), where the superscript

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 11

represents a refinement iteration. Thus,

x(0) =
(
x
(0)
0 ,x

(0)
1 , . . . ,x

(0)
H

)
, where x

(k)
t =

q
(k)
t

v
(k)
t

a
(k)
t

j
(k)
t

 .
The choice of H and tstep is application specific, though in physical experiments, we set tstep
to match (an integer multiple of) the control frequency of the robot, and we set H such that
H · tstep is an estimate of the upper bound of the minimum trajectory time for the workspace
and task input distribution.

The initial value of x(0) seeds (or warm starts) the SQP computation. Without the
approximation generated by the neural network (e.g., for training data set generation), this
trajectory can be initialized to all zeros. In practice, the SQP can converge faster by first
computing a trajectory between inverse-kinematic solutions to g0 and gH with only the
convex kinematic and dynamic constraints (described below).

In each iteration k = (0, 1, 2, . . . ,m) of the SQP, DJ-GOMP linearizes the non-convex
constraints of obstacles and pick and place locations, and solves a quadratic program of the
following form:

x(k+1) = argmin
x

1

2
xTPx + pTx (2.4.1)

s.t. Ax ⩽ b, (2.4.2)

where A defines constraints enforcing the trust region, joint limits, and dynamics, and
where P is defined such that xTPx is a sum-of-squared jerks. To enforce the linearized non-
convex constraints, DJ-GOMP adds constrained non-negative slack variables penalized using
appropriate coefficients in p. As DJ-GOMP iterates over the SQP, it increases the penalty
term exponentially, terminating on the iteration m at which x(m) meets the non-convex
constraints.

To enforce joint limits and dynamic constraints, Alg. 1 creates a matrix A and vector b
that enforce the following linear inequalities on joint limits:

qmin ⩽qt⩽ qmax

−vmax ⩽vt⩽ vmax

−amax ⩽at⩽ amax

−jmax ⩽ jt⩽ jmax,

and the following equalities that enforce dynamic constraints between variables:

qt+1 = qt + tstepvt +
1

2
t2stepat +

1

6
t3stepjt

vt+1 = vt + tstepat +
1

2
t2stepjt

at+1 = at + tstepjt.

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 12

Algorithm 1 Jerk-limited Motion Plan

Require: x(0) is an initial guess of the trajectory, h + 1 is the number of waypoints in
x(0), tstep is the time between each waypoint, g0 and gH are the pick and place frames,
βshrink ∈ (0, 1), βgrow > 1, and γ > 1

1: µ← initial penalty multiple
2: ϵtrust ← initial trust region size
3: k ← 0
4: P,p,A,b← linearize x(0) as a QP
5: while µ < µmax do
6: x(k+1) ← argminx

1
2
xTPx + pTx s.t. Ax ⩽ b {warm start with x(k)}

7: if sufficient decrease in trajectory cost then
8: k ← k + 1 {accept trajectory}
9: ϵtrust ← ϵtrustβgrow {grow trust region}
10: A,b← update linearization using x(k)

11: else
12: ϵtrust ← ϵtrustβshrink {shrink trust region}
13: b← update trust region bounds only
14: if ϵtrust < ϵmin trust then
15: µ← γµ {increase penalty}
16: ϵtrust ← initial trust region size
17: p← update penalty in QP to match µ
18: return x(k)

Additionally, Alg. 1 linearizes non-convex constraints by adding slack variables to imple-
ment L1 penalties. Thus, for a non-convex constraint gj(x) ⩽ c, the algorithm adds the
linearization gj(x) as a constraint in the form:

gj(x)− µy+j + µy−j ⩽ c,

where µ is the penalty and the slack variables are constrained such that y+j ⩾ 0 and y−j ⩾ 0.
In the QP, obstacle-avoidance constraints are linearized based on the waypoints of the

current iteration’s trajectory (Alg. 2). To compute these constraints, the algorithm evaluates
the spline

qspline(s; t) = qt + svt +
1

2
s2at +

1

6
s3jt

between each pair of waypoints (xt,xt+1) against a depth map of obstacles to find the time
s ∈ [0, tstep) and corresponding configuration q̂t that minimizes signed-distance separation
from any obstacle. In this evaluation, a negative signed distance means the configuration
is in collision. The algorithm then uses this q̂t to computes a separating hyperplane in the
form nTq + d = 0. The hyperplane is either the top plane of the obstacle it is penetrating,
or the plane that separates q̂t from the nearest obstacle (see Fig. 2.3). By selecting the
top plane of the penetrated obstacle, this pushes the trajectory above the obstacle, which

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 13

(A) Outside (B) Inside (C) At waypoints (D) Between waypoints

Figure 2.3: Obstacle constraint linearization. The constraint linearization process keeps the
trajectory away from obstacles by adding constraints based on the Jacobian of the configuration at
each waypoint of the accepted trajectory x(k). In this figure, the obstacle is shown from the side,
the robot’s path along part of x(k) is shown in blue, and the constraints’ normal projections into
Euclidean space are shown in red. For waypoints that are outside the obstacle (A), constraints
keep the waypoints from entering the obstacle. For waypoints that are inside the obstacle (B),
constraints push the waypoints up out of the obstacle. If the algorithm adds constraints only at
waypoints as in (C), the optimization can compute trajectories that collide with obstacles and
produce discontinuities between trajectories with small changes to the pick or place frame. These
effects are mitigated when obstacles are inflated to account for them, but the discontinuities can
lead to poor results when training the neural network. The proposed algorithm adds linearized
constraints to account for collision between obstacles, leading to more consistent results shown in
(D).

is a specialization of TrajOpt’s more general obstacle-avoidance approach that is useful in
bin-picking. By selecting the hyperplane of the nearest obstacle, the algorithm keeps the
trajectory from entering the obstacle. The linearize constraint for this point is:

nTĴ
(k)
t x̂

(k+1)
t ⩾ −d− nTp(x̂

(k)
t) + nTĴ

(k)
t x̂

(k)
t ,

where Ĵt is the Jacobian of the robot’s position at q̂t. As q̂t and Ĵt are at an interpolated state
between optimization variables at xt and xt+1, linearizing this constraint requires computing
the chain rule for the Jacobian:

Ĵt = Jp(q̂t)Jq(s),

where Jp(q̂t) is the Jacobian of the position at configuration qt, and Jq(s) is the Jacobian
of the configuration on the spline at s:

Jq(s) =

∂p
∂qt
∂p

∂qt+1
∂p
∂vt
∂p

∂vt+1

T

=

−3 s2

t2
+ 2 s3

t3
+ 1

3 s2

t2
− 2 s3

t3

−2 s2

t
+ s3

t3
+ s

s3

t2
− s2

t

T

.

We observe that linearization at each waypoint will safely avoid obstacles with a sufficient
buffer around obstacles (e.g., via a Minkowski difference with obstacles), however, slight
variations in pick or place frames can shift the alignment of waypoints to obstacles. This
shift of alignment (see Fig. 2.3 (c)), can lead to solutions that vary disproportionately to

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 14

Algorithm 2 Linearize Obstacle-Avoidance Constraint

1: for t ∈ [0, H) do
2: (nmin, dmin)← linearize obstacle nearest to p(qt)
3: qmin ← qt

4: for all s ∈ [0, tstep) do {line search s to desired resolution}
5: qs ← qt + svt + 1

2
s2at + 1

6
s3jt

6: (ns, ds)← linearize obstacle nearest to p(qs)
7: if nT

sp(qs) + ds < nT
minp(qmin) + dmin then {compare signed distance}

8: (nmin, dmin,qmin)← (ns, ds,qs)
9: Jq ← Jacobian of qs

10: Jp ← Jacobian of position at qmin

11: Ĵt ← JpJq

12: bt ← −dmin − nT
minp(qmin) + nT

minĴtxt − µy+t {lower bound with slack y+t }
13: Add (nT

minĴtxt ⩾ bt) and (y+t ⩾ 0) to set of linear constraints in QP

small changes in input. While this may be acceptable in operation, it can lead to data that
can be difficult for a neural network to learn.

As with GOMP, DJ-GOMP allows degrees of freedom in rotation and translation to be
added to start and goal grasp frames. Adding this degree of freedom allows DJ-GOMP
to take a potentially shorter path when an exact pose of the end-effector is unnecessary.
For example, a pick point with a parallel-jaw gripper can rotate about the axis defined by
antipodal contact points (see Fig. 2.1), and the pick point with a suction gripper can rotate
about the normal of its contact plane. Similarly, a task may allow for a place point anywhere
within a bounded box. The degrees of freedom about the pick point can be optionally added
as constraints that are linearized as:

wmin ⩽ J
(k)
0 q

(k+1)
0 − (g0 − p(q(k)

0)) + J
(k)
0 q

(k)
0 ⩽ wmin,

where, q
(k)
0 and J

(k)
0 are the configuration and Jacobian of the first waypoint in the accepted

trajectory, q
(k+1)
0 is one of variables the QP is minimizing, and wmin ⩽ wmax defines the twist

allowed about the pick point. Applying a similar set of constraints to gH allows degrees of
freedom in the place frame as well.

The SQP establishes trust regions to constrain the optimized trajectory to be within a
box with extents defined by a shrinking trust region size. As convex constraints on dynamics
enforce the relationship between configuration, velocity, and acceleration of each waypoint,
we observe that trust regions only need to be defined as box bounds around one of the three
for each waypoint. In experiments, we established trust regions on configurations.

To find the minimum time-time trajectory, J-GOMP searches for the shortest jerk-
minimized trajectory that solves all constraints. This search, shown in Alg. 3, starts with an
guess of H, then perform an exponential search for the upper bound, followed by a binary
search for the shortest H by repeatedly performing the SQP of Alg. 1. The binary search

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 15

Algorithm 3 Time-optimal Motion Plan

Require: g0 and gH are the start and end frames motion frames, γ > 1 is the search
bisection ratio

1: Hupper ← fixed or estimated upper limit of maximum time
2: Hlower ← 3
3: vupper ←∞ {constraint violation}
4: while vupper > tolerance do {find upper limit}
5: (xupper, vupper)← call Alg. 1 with cold-start trajectory for Hupper

6: Hupper ← max(Hupper + 1, ⌈γHupper⌉)
7: while Hlower < Hupper do {search for shortest H}
8: Hmin ← Hlower + ⌊(Hupper −Hlower)/γ⌋
9: (xmid, vmid)← call Alg. 1 with warm-start trajectory xupper interpolated to Hmid

10: if vmid ⩽ tolerance then
11: (Hupper,xupper, vupper)← (Hmid,xmid, vmid)
12: else
13: Hlower ← Hmid + 1
14: return xupper

warm starts each SQP with an interpolation of the trajectory of the current upper bound of
H. The search ends when the upper and lower bound of H are the same.

2.4.2 Deep Learning of Trajectories

To speed up motion planning, we add a deep neural network to the pipeline. This neural
network treats the trajectory optimization process as a function fτ to approximate:

fτ : SE(3)× SE(3)→ RH∗×n×4,

where the arguments to the function are the pick and place frames, and the output is a
discretized trajectory of variable length H∗ waypoints, each of which has a configuration,
velocity, acceleration, and jerk for all n joints of the robot. We assume that the neural
network f̃τ can only approximate fτ , thus f̃τ (·) = fτ (·) + E(τ) for some unknown error
distribution E(τ). As such, the output of f̃τ may not be dynamically or kinematically
feasible. To address this potential issue, we use the network’s output to warm start a final
pass through the SQP. This process can be thought of as polishing the output of the neural
network approximation to overcome any errors in the network’s output.

In this section, we describe a proposed neural network architecture, its loss function,
training and testing dataset generation, and the training process. While we posit that a
more general approximation could include the amount of pick and place degrees of freedom
as inputs, for brevity we assume that fτ and its neural-network approximation are parame-
terized by a preset amount of pick and place degrees of freedom. In practice, it may also be
appropriate to train multiple neural networks for different parameterizations of fτ .

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 16

Architecture

The deep neural network architecture we propose is depicted in Fig. 2.2. It consists of an
input layer connected through four fully-connected blocks to multiple output blocks. The

input layer takes in the concatenated grasp frames
[
gT0 gTH

]T
. Since the optimal trajectory

length H∗ can vary, the network has multiple output heads for each of the possible values
for H∗. To select which of the outputs to use, we use a separate classification network with
2 fully-connected layers with one-hot encoding trained using a cross-entropy loss.

We refer to the horizon classification and multiple output network as a HYDRA (Horizon
Yielding Distillation through Retained Activations) network. The network yields both an
optimal horizon length and the trajectory for that horizon. To train this network (detailed
below), the trajectory output layers’ activation values for horizons not in the training sample
are retained using a zero gradient so as to weight the contribution of the layers during
backprop to the input layers.

In experiments, a neural network with a single output head was unable to produce a
consistent result for predicting varied length horizons. We conjecture that the discontinuity
between trajectories of different horizon lengths made it difficult to learn. In contrast, we
found that a network was able to accurately learn a function for a single horizon length,
but was computationally and space inefficient, as each network should be able to share
information about the function between the horizons. This lead to the proposed design in
which a single network with multiple output heads shares weights through multiple shared
input layers.

Dataset Generation

We propose generating a training dataset by randomly sampling start and end pairs from the
likely distribution of tasks. E.g., in a warehouse pick-and-place operation, the pick frames
will be constrained to a volume defined by the picking bin, and the place frames will be
constrained to a volume defined by the placement or packing bin. For each random input,
we generate optimized trajectories for all time horizons from Hmax to the optimal H∗. While
this process generates more trajectories than necessary, generating each trajectory is efficient
since the optimization for a trajectory of size H warm starts from the trajectory of size H+1.
Overall, this process is efficient, and with parallelization can quickly generate a large training
dataset.

This process can also help detect if the analysis of the maximum trajectory duration was
incorrect. If all trajectories are significantly shorter than Hmax, then one may reduce number
of output heads. If any trajectory exceeds Hmax, then the number of output heads can be
increased.

We also note that in the case where the initial training data does not match the opera-
tional distribution of inputs, the result may be that the neural network produces sub-optimal
motions that are substantially kinematically and dynamically infeasible. In this case, the
subsequent pass through the optimization (See Sec. 2.4.3) will fix these errors, though with a

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 17

longer computation time. We propose, in a manner similar to DAgger [41], that trajectories
from operation can be continually added to the training dataset for subsequent training or
refinement of the neural network.

Training

To train the network in a way that encourages matching the reference trajectory while keeping
the output trajectory kinematically and dynamically feasible, we propose a multipart loss
function L. This loss function includes: a weighted sum of mean-squared error (MSE) loss
on the trajectory LT , a boundary loss LB which enforces the correct start and end positions,
and a dynamics loss Ldyn that enforces the dynamic feasibility of the trajectory. The MSE
loss is the mean of the sum of squared differences of the two vector arguments: LMSE(ã, a) =
1
n

∑n
i=1(ãi − ai)

2. The dynamics loss attempts to mimic the convex constraints of the SQP.

Given the predicted trajectories X̃ = (x̃Hmin , . . . , x̃Hmax), where x̃h = (q̃, ṽ, ã, j̃)ht=0 and the
ground-truth trajectories from dataset generation X = (xH∗

, . . . ,xHmax), the loss functions
are:

LT = αqLMSE(q̃, q) + αvLMSE(ṽ, v) + αaLMSE(ã, a) + αjLMSE(̃j, j)

LB = LMSE(q̃0, q0
) + LMSE(q̃H , qH

)

Ldyn =
1

h

h−1∑
t=0

∥∥q̃t + tstepṽt +
1

2
t2stepãt +

1

6
t3stepj̃t − q̃t+1

∥∥2

+
1

h

h−1∑
t=0

∥∥ṽt + tstepãt +
1

2
tstepj̃t − ṽt+1

∥∥2

+
1

h

h−1∑
t=0

∥∥ãt + tstepj̃t − ãt+1

∥∥2

+
1

h

h−1∑
t=0

∥∥ 1

tstep
(j

t+1
− j

t
)− 1

tstep
(̃jt+1 − j̃t)

∥∥2

Lh = αT Lh
T + αBLh

B + αdynLh
dyn,

where values of αq = 10, αv = 1, αa = 1, αj = 1, αB = 4×103, and αdyn = 1 were chosen
empirically. This loss is combined into a single loss for the entire network by summing the
losses of all horizons while multiplying by an indicator function for the horizons that are
valid:

L =
Hmax∑

h=Hmin

Lh
1[H∗,Hmax](h).

As the ground-truth trajectories for horizons shorter than H∗ are not defined, we must insure
that some finite data is present so that the multiplication an indicator value of 0 results in
0 (and not NaN). Multiplying by indicator function in this way results in a zero gradient for
the part of the network that is not included in the trajectory data.

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 18

Input
Neural
network
f̃H∗(·)

Neural
network

f̃τ (·)

SQP
f (·)

RobotH̃∗ x̃(0) x(k)

g0
gH

Figure 2.4: The fast motion planning pipeline. The pipeline has three phases between input
and robot execution. The first phase estimates the trajectory horizon H∗ by computing a forward
pass of the neural network. The second phase estimates the trajectories for H∗ to create an
initial trajectory for the sequential quadratic program (SQP) optimization process. The SQP then
optimizes the trajectory, insuring that it meets all joint kinematic and dynamic limits so that it
can successfully execute on a robot.

During training we observed that the network would often exhibit behavior of co-adaptation
in which it would either learn LT or Ldyn but not both. This showed up as a test loss for one
going to small values, while the other remained high. To address this problem we introduced
dropout layers [42] with dropout probability pdrop = 0.5 between each fully-connected layer,
shown in Fig. 2.2. We annealed [43] pdrop to 0 over the course of the training to reduce the
loss further.

2.4.3 Fast Pipeline for Trajectory Generation

The end goal of this proposed motion-planning pipeline is to generate feasible, time-optimized
trajectories quickly. The SQP computes feasible, time-optimized trajectories, but is slow
when starting from scratch. The HYDRA neural network computes trajectories quickly
(e.g., the forward pass on the network in the results section requires ∼1 ms to compute),
but without guarantees on correctness. In this section we propose combining the properties
of the SQP and HYDRA into a pipeline (see Fig. 2.4) to get fast computation of correct
trajectories by using a forward pass on the neural network to warm start the SQP.

The first step in the pipeline is to compute H̃∗, an estimate of the optimal time horizon
H∗. This requires a single forward-pass through the one-hot classification network. Since
predicting horizons shorter than H∗ result in an infeasible SQP, it can be beneficial to either
compute multiple SQPs around the predicted horizon, or increase the horizon if the difference
in the one-hot values for H̃∗ and H̃∗ + 1 is within a threshold.

The second step in the pipeline is to compute x̃(0), an estimate of the time-optimal
trajectory for H̃∗ using a forward pass through the HYDRA network.

The final step is to compute the trajectory using x̃(0) to warm start the SQP. In this
step, since the warm-start trajectory is close to the final trajectory and generating a smooth
training dataset is not a requirement, we can speed up the SQP process by relaxing the
termination conditions to the tolerances of the robot and task, e.g., terminating when the

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 19

(A) start

(B) (C) midway through physical experiment (E) end

(D)

Figure 2.5: Physical experiment executing jerk-limited motion computed by DJ-GOMP
on a UR5. The motion starts by picking an object from the right bin (A), moves over the divider
(B), (C), (D), and ends after placing the object in the left bin (E). Without the jerk limits, the
motion takes 448ms but results in a high jerk at the beginning and end of the motion, which in
this case causes the UR5 robot to overshoot its end frame by a few millimeters. With jerk limits,
the motion takes 544ms, reduces wear, and does not overshoot the end frame.

pick point (and other constraints) is within 10−3 meters of the target frame, instead of the
10−6 meters used in dataset generation.

We observe that symmetry in grippers, such as found in parallel and multi-finger grip-
pers, means that multiple top-down grasps can result in the same contact points (e.g., see
Fig. 2.1 (A) and (D)). In this setting, we can use f̃H(·) to estimate optimal horizons for all
the grasp configurations and quickly select the one with the lowest horizon. Experimentally,
we find that breaking ties for optimal horizons using the associated one-hot values, leads to
faster trajectory optimization compute times.

2.5 Experiments

We test DJ-GOMP on physical UR5 robot [44] fitted with a Robotiq 2F-85 [45] parallel
gripper. In the experiment setup (see Fig. 2.5), the robot must move objects from one fixed
bin location to another. We set DJ-GOMP to be constrained according to the specified joint
configuration and velocity limits of the UR5. We derived an acceleration limit based on
the UR5’s documented torque and payload capacity, and we limit the jerk to a multiple of
the computed acceleration limit. In practice, we surmise that an operator would define jerk
limits by taking into account the desired service life of the robot.

To generate train/test data for the deep neural network, we use all 80 hardware threads of

an NVIDIA DGX-1 to compute 100 000 optimized input+trajectory (
[
gT0 gTH

]T
,x∗) pairs,

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 20

where x∗ is the discretized trajectory. The J-GOMP optimizer is written in C++ and uses
OSQP [46] as the underlying QP solver. The inputs it generates consist of random pick (t0)
and place (tH) translations drawn uniformly from the pick and place physical space. For
each generated translation, we also generate a top-down rotation angle (θ0 and θH) uniformly
drawn from [0, π). Since a parallel gripper’s grasp has an equivalent, though kinematically
different (see Fig. 2.1 (a) and (d)), grasp with a 180◦ rotation, for each translation+rotation

grasp we also add its rotation by 180◦. Thus for each random
[
tT0 tTH

]T
pair, we add 4 grasp

frames with rotation (θ0, θH), (θ0 +π, θH), (θ0, θH +π), (θ0 +π, θH +π) and their trajectories.
We train the deep network with the Adadelta [47] optimizer for 50 epochs after initializing

the weights using a He Uniform initializer [48]. The network architecture and optimization
framework are written in Python using PyTorch. All training and deep network computations
are accelerated by GPUs on NVIDIA DGX-1’s Tesla V100 SXM2 GPU and Intel Xeon E5-
2698 v4 CPUs.

To evaluate the ability of the deep-learning approach of DJ-GOMP to speed up motion
planning, we compute 1000 random motion plans both without and with deep-learning-based
warm start and plot the results in Fig. 2.6. The median compute time without deep-learning
is 29.0 s. Using a network to estimate the optimal time horizon but not the trajectory,
can speed up computation significantly, but at a cost of increased failure rate. Using the
network to both predict the time horizon and the warm-start trajectory results in a median
with deep-learning of 80 ms; when compared to J-GOMP, this shows 2 orders of magnitude
improvement, an approximate 300x speedup.

To evaluate the effect on the optimality of the computed trajectories, we compare the
sum-of-squared jerks between trajectories generated with the full SQP vs. those generated
with a warm-started prediction with the optimal horizon. We observe over 99% of the test
trajectories are within 10−3 of each other, which is an error value that is within the tolerance
bounds we set for the QP optimizer. For a small fraction (less than 1%), we observe the
warm-started optimization and the full optimization find different local minima, without
clear benefit to either optimization.

As the optimality of the trajectory and the failure rate is dependent on accurately pre-
dicting the optimal time horizon of a trajectory, we separately evaluate this prediction. We
observe that shorter values of the horizon lead inevitably to SQP failures, while longer val-
ues lead to suboptimal trajectories. Since failures are likely to be more problematic than
slighty slower trajectories, we propose a simple heuristic to predict longer horizons. When
the network predicts a horizon longer than the optimal, we observe that the optimization of
trajectories with sub-optimal horizon can be faster than that of the optimal horizon (shown
in Fig. 2.6 (B)). This is likely due to the sub-optimal trajectory being less constrained and
thus faster to converge. In practice, we propose that using a readily-available multi-core CPU
to simultaneous compute multiple SQPs for different horizons around the estimated horizon
would be a practical way to address the failures and sub-optimal trajectories. However, if
constrained to a single-core computation, using an longer horizon may also be practical as
the compute time saved may be more than time saved by using the optimal horizon.

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 21

0%

1%

2%

3%

4%

0 10 20 30 40 50 60 70 80 90
compute time (seconds)

distributions when
using neural network

0%
1%
2%
3%
4%
5%
6%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
compute time (seconds)

0%
5%

10%
15%
20%
25%
30%
35%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
compute time (seconds)

H from network
H from oracle

1.0

(A) Full optimization compute time

(B) Optimization with only horizon prediction compute time

(C) Deep-learning warm start compute time

fr
eq

ue
nc

y
(%

)
fr

eq
ue

nc
y

(%
)

fr
eq

ue
nc

y
(%

)

Figure 2.6: Compute time distribution for 1000 random motion plans. In these plots the
x-axis shows total compute time in seconds for a single optimized trajectory. Plot (A) extends
to 90 seconds, while plots (B) and (C) extend to 1 second. The y-axis shows the distribution
compute time required. The full optimization process without the deep-learning prediction, shown
in the histogram in (A), requires orders of magnitude longer to compute. Using a deep network
to predict the optimal time horizon for a trajectory, but not warm-starting the trajectory (B)
leads to improvements in compute time, though with increased failures. Using the deep network
to compute a trajectory to warm start the optimization (C) further improves the compute time.
In (C), the plots include results for both estimated trajectory horizon H, and the exact H from
the full optimization to show the effect of misprediction of trajectory length—inexact predictions
can result in a faster compute time, since the resulting trajectory is sub-optimal, thus less tightly
constrained. The upper limit on the x-axis is shown in red to highlight the difference in scale—plots
(B) and (C) are magnified by 2 orders of magnitude.

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 22

tim
e

(s
ec

on
ds

)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

PRM*104 PRM*105 PRM*106 TrajOpt DJ-GOMP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

PRM*104 PRM*105 PRM*106 TrajOpt DJ-GOMP
0
1
2
3
4
5
6
7
8

PRM*104 PRM*105 PRM*106 TrajOpt DJ-GOMP

je
rk

(r
ad

/s
3)x

10
5

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

PRM*104 PRM*105 PRM*106 TrajOpt DJ-GOMP

(A) Maximum jerk (B) Compute time

(C) Motion time (D) Compute + motion time

tim
e

(s
ec

on
ds

)

tim
e

(s
ec

on
ds

)
Figure 2.7: Maximum jerk and timing comparisons for 1000 pick-place pairs computed
with PRM*, TrajOpt, and DJ-GOMP. These graphs compare motion plan (A) jerk, (B)
compute time, (C) motion time, and (D) combined compute+motion time. The filled boxes spans
the first through third quartile with a horizontal line at the median. The whiskers extend from
the minimum to maximum values. Paths computed by Probabilistic Road Map Star (PRM*) [2,
3] and TrajOpt [5] are subsequently optimally time parameterized [49]. The time parameterization
does not limit jerk as DJ-GOMP does, which allows for faster but high jerk motions. Even so,
as DJ-GOMP directly optimizes the path, unlike PRM* and TrajOpt, DJ-GOMP generates the
fastest motions; while its deep-learning-based warm start allows for fast compute and motion times.

To evaluate the effect on failure rate, we record the number of failures with both cold-
started and warm-started optimization with the optimal horizon (observing that predicting
short horizon is the other source of failures). Cold-started optimizations fail 10.7%, while
warm-started optimizations fail 5.7%. These failures occur because the optimizer cannot
move the trajectory into a feasible region due to the tight constraints. In experiments, the
failure rate went down with additional training data and longer network training, suggesting
further improvement is possible.

We compare compute-time and motion-time performance to Probabilistic Road Maps
“Star” (PRM*) [2, 3] and TrajOpt [5]. For PRM*, we precompute graphs of 10k, 100k, and
1000k vertices over the workspace in front of the robot. As PRM* is an asymptotically opti-
mal motion planner, graphs with more vertices should produce shorter paths, at the expense
of longer graph search time. For TrajOpt we configure the optimization parameters to match
that of DJ-GOMP, observing that this improves success rate over the default. Straight-line
initialization in TrajOpt fails in this environment due to the bin wall between the start and
end configurations—while DJ-GOMP’s specialized obstacle model moves the trajectory out
of collision, TrajOpt’s obstacle model result in linearizations that do not push the trajec-
tory out of collision. We thus initialize TrajOpt with a trajectory above the obstacles in
the workspace. Since both PRM* and TrajOpt do not directly produce time-parameterized

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 23

trajectories, we use Kunz et al.’s method [49] to compute time-optimal time parameteriza-
tion. This time-parameterization method first “rounds corners” by adding smooth rounded
segments to connect the piecewise linear motion plan from PRM* before computing the
optimal timing for each waypoint. Without the rounded corners, the robot would have
to stop between each linear segment of the motion plan to avoid an instantaneous infinite
acceleration. The radius of the corner rounding is tunable, however rounding corners too
much, can result in a motion plan that collides with obstacles. This time parameterization
also does not minimize or limit jerk, and thus produces high jerk trajectories with peaks
in the range 5 × 105 to 8 × 105 rad/s3 (Fig. 2.7 (a)), and meaning that they should have
an advantage in motion time over jerk-limited motions (Fig. 2.8). As a final step, since
180-degree rotated parallel jaw grasps are equivalent, we compute trajectories for each pick
and place combination and select the fastest motion. The results for 1000 pick-place pairs
are shown in Fig. 2.7. We observe that PRM* has consistent fast compute times, but pro-
duces the slowest trajectories. TrajOpt is slower to compute but produces faster trajectories
than PRM*. DJ-GOMP, since it directly optimizes for a time-optimal path, produces the
fast motions, while the deep-learning horizon prediction and warm start allow it to compute
quickly despite complex constraints, and result in the overall fastest combined compute and
motion time.

To evaluate whether motion plans that DJ-GOMP generates work on a physical robot,
we have a UR5 follow trajectories that DJ-GOMP generates. An example motion is shown
in Fig. 2.5. The UR5 controller does not allow the robot to exceed joint limits and issues
an automated emergency-stop when it does. The trajectories that DJ-GOMP generates are
constrained to the documented limits, and thus do not cause the stop. However, we have
observed that, without jerk limits, a high-jerk trajectory can cause the UR5 to overshoot
its target and bounce back. With DJ-GOMP’s jerk-limited trajectories the UR5 empirically
does not overshoot.

2.6 Discussion and Future Work

We presented DJ-GOMP, a deep-learning approach to time-optimal jerk-limited grasp op-
timized motion planning. DJ-GOMP, like its predecessor GOMP, allows pick and place
frames to be considered in the optimization, e.g., when gripper design and grasp analysis
mean moving around one or more degrees of freedom will result in the same quality of grasp.
To address the long compute time of the optimization process, DJ-GOMP computes an ap-
proximation of the optimization using a deep neural network. While the neural network
computes trajectories quickly, it does not guarantee that the trajectory is kinematically or
dynamically feasible. As a final step, DJ-GOMP performs a constrained optimization warm
started with the network’s trajectory resulting in fast computation of smooth, jerk-limited,
time-optimal motion plans. In future work we will explore expanding DJ-GOMP to addi-
tional robots performing more varied tasks that would include increased variation of start
and goal configurations and in more complex environments. We will also explore additional

CHAPTER 2. DJ-GOMP: WARMSTARTING MOTION PLANNING OPTIMIZATION
USING DEEP LEARNING 24

-1500
-1000

-500
0

500
1000
1500

0 0.1 0.2 0.3 0.4 0.5

je
rk

(r
ad

/s
3)

time (seconds)

-1500
-1000

-500
0

500
1000
1500

0 0.1 0.2 0.3 0.4 0.5

je
rk

(r
ad

/s
3)

time (seconds)

(A) Trajectory without jerk limits

(B) Jerk-limited trajectory

Figure 2.8: Jerk limit’s effect on computed and executed motion. We plot the jerk (y-axis)
of each joint in rad/s3 over time in milliseconds (x-axis) as computed (A) without jerk limits, and
(B) with jerk limits. Without jerk limits, the optimization computes trajectories with large jerks
throughout the trajectory (shown in shaded regions). With jerk limits each joint stays within the
defined limits (the dotted lines) of the robot.

deep-learning approaches to find better approximations of the optimization process, and thus
allow for faster warm starting of the final optimization step of DJ-GOMP.

25

Chapter 3

GOMP-FIT: Making Fast Object
Transport Reliable

The previous chapter discusses how to combine deep learning and optimization to speed up
collision-free motions for object transport. However, accelerating too fast with a parallel-
jaw gripper can lead to increased drops, content spill and damage the product. GOMP-FIT
increases transport reliability of parallel-jaw grippers by introducing end-effector acceleration
constraints into the GOMP optimization.

3.1 Introduction

Fast and reliable robot pick-and-place motion is increasingly a bottleneck in automated
warehouses. Motions that are too slow, while usually safe, reduce robot throughput, while
motions that are too fast can be unreliable, leading to dropped objects due to shearing forces
between the object and the gripper that holds it. Prior work, Grasp-Optimized Motion
Planning (GOMP [9]), showed that simultaneously optimizing grasp pose and pick-and-
place motion could allow for rapid object transport. However, given the torque available to
industrial robot arms, the high-speed motions that GOMP generates could lead to product
damage and spills. In this chapter, we propose a fast inertial transport (FIT) problem and
algorithm to address it, in which a robot transports objects at high speeds, banking and
limiting motions against inertial forces to safely and reliably place the object.

To enable FIT, we propose Grasp-Optimized Motion Planning for Fast Inertial Transport
(GOMP-FIT) which computes time-optimized motions while taking into account end-effector
and object acceleration constraints imposed by the object being transported. GOMP-FIT
incorporates constraints for open-top container and fragile object transport, combinations
thereof, and potentially more. For open-top containers, GOMP-FIT aligns inertial accelera-
tions so that the contents remain in the container. For fragile-object transport, GOMP-FIT
limits the magnitude of accelerations of the transported object to avoid exceeding a shock
threshold. For fragile open-top containers, GOMP-FIT constrains both magnitude and align-

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 26

Figure 3.1: High-speed transport-aware motion planning Top left: without considering
inertial effects, fast transport can lead to spills and damage. Top right: GOMP-FIT computes
high-speed transport motions for objects such as a filled wineglass, without spilling or breaking
fragile objects. Bottom: GOMP-FIT constrains the alignment between the end-effector accelera-
tions due to inertial forces and gravity (cyan arrow), against the normal defined by the container
(green arrow). Here it is limited to 30◦. The optimization rotates the robot’s joints to keep within
the constraint.

ment of accelerations. As most industrial robot arms do not provide direct access to motor
torques, GOMP-FIT instead operates in the joint configuration space, relying on the robot’s
black-box controller to follow trajectories.

In experiments, a physical UR5 robot transports various objects with end-effector accel-
eration requirements, including: transporting cups filled to various levels with beads without
spilling their contents, transporting an IMU to measure accelerations that a fragile object
would experience in transit, and moving a filled wineglass. Experiments suggest that GOMP-
FIT can achieve near 100 % success on these tasks while slowing as little as 0 % when there
are few obstacles, 30 % when there are high obstacles and 45-degree tolerances, and 50 %
when there are 15-degree tolerances and few obstacles compared to GOMP. This chapter
provides the following contributions: (1) A formulation of the fast inertial transport mo-
tion planning problem; (2) A sequential convex program, including non-convex constraints
on accelerations at the end-effector, and a sequential quadratic program to solve it; and (3)
Data from experiments on a physical UR5 robot transporting cups filled with beads, a fragile
object and a filled wineglass.

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 27

3.2 Related Work

Motion planning seeks to produce paths from start to goal while avoiding obstacles. Sampling-
based motion planners such as PRM [2], RRG [3], and RRT [4] have favorable properties such
as probabilistic completeness and asymptotic optimality, but they may be slow to converge.
Such planners also typically require a post-processing step to remove redundant or jerky
motion. Optimization-based motion planners such as TrajOpt [5], STOMP [6], CHOMP [7],
and KOMO [8] can produce smooth trajectories while fulfilling a set of constraints such as
obstacle avoidance through interior point optimization, stochastic gradients, and covariant
gradient descent. In prior formulations, the trajectory is discretized into a series of way-
points with a minimization objective such as sum of squares velocity. Motion planners such
as GOMP [9] and DJ-GOMP [50] add dynamics constraints and shrinking horizon lengths to
find a time-optimized trajectory, and apply jerk limits to avoid damaging the robot. Unlike
previous work, this chapter applies additional constraints to the end-effector acceleration
to prevent an object held by a robot arm from damage or detachment in high-acceleration
trajectories, something that constraints on configurations and their derivatives alone cannot
do.

Placing constraints on the end-effector motion path is a requisite part of many problems,
including fast inertial transport. Yao and Gupta [51] address the path-planning problem
with general end-effector constraints by exploring the task space for feasible end-effector
poses through a sampling-based planner. Li et al. [52] propose using RL to compute motion
plans for dual-arm manipulators with floating base in space. They propose to take into
account a velocity constraint of the end-effector in the planning process to improve the
robustness of the algorithm. But these methods do not support acceleration constraints for
the fast inertial transport problem we propose.

Dynamic manipulation research uses dynamic properties such as momentum to achieve
a task—whether prehensile or non-prehensile. Lynch and Mason [53] exploit centrifugal
and Coriolis forces to manipulate objects using low-degree-of-freedom robots. Lynch and
Mason [54] also formulate an SQP for dynamic non-prehensile manipulation of objects, such
as snatching, throwing, and rolling. They integrate constraints based on a 2D formulation of
the problem but do not consider obstacles. Srinivasa et al. [55] propose employing constraints
on accelerations at the end point to perform dynamic non-prehensile rotation of an object.
Kim et al. [56] propose a method to rapidly computes motions to catch an object in flight.
Mucchiani and Yim [57] propose a method to use inertial effects to dynamically sweep up an
object and stabilize it using a passive end-effector. In contrast, we propose a 3D prehensile
planner for safe and reliable object transport around obstacles.

A promising line of research, especially for objects with unknown or difficult-to-model
dynamics, is to employ learning. Zeng et al. [58] propose TossingBot that learns pa-
rameters of a pre-defined dynamic motion to throw objects into target bins. Zhang et
al. [zhang2021rotla] propose a method that learns a sweeping dynamic motion for ropes
to hit targets, weave through obstacles, or knock objects down. Wang et al. [59] propose
SwingBot, that uses inhand tactile feedback to learn how to swing up previously unseen ob-

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 28

jects. These methods rely on a learned model for dynamic manipulation, while we propose
using Newtonian physics.

Another promising approach is to combine dynamics considerations and sampling-based
planning. Pham et al. [60, 61] proposed admissible velocity propagation (AVP) and a method
to perform kinodynamic planning in a reduced dimensionality state space, and Lertkultanon
and Pham [62] formulate a ZMP constraint for AVP and integrate bi-directional RRT to
non-prehensile object transportation. Unlike the AVP formulation, GOMP-FIT integrates
all constraints, including collision, in a single optimization.

To enable real-world interaction between robots and the environments they touch, re-
searchers have looked into optimizing motions with contacts. Posa and Tedrake [63] and Posa
et al. [64] propose simultaneously optimizing trajectories and contact points. Hauser [65]
proposes a trajectory optimization that considers contact forces and convex time scaling.
Luo and Hauser [66] propose integrating feedback and learning to integrate confidence into
the optimization, and apply it to the Waiter’s Problem of stably transporting objects on
a moving platform. While these methods consider contacts, they do not consider obstacle
avoidance.

Most closely related to this chapter is research into transport of objects that takes into
account inertial effects. Bernheisel and Lynch [67] propose a Waiter’s Problem in which
object assemblies are stably transported subject to inertial and gravity forces. They focus
on multi-part assemblies and assume quasistatic motion in which only the velocity direc-
tion matters. In contrast we focus on a containment and acceleration-based inertial effects.
Wan et al. [68] demonstrates beverage transport with jerk limits help prevent spills during
transport. In contrast, we show that jerk limits alone will not prevent spills when using
a manipulator arms. Acharya et al. [69] propose methods to apply minimum-time s-curve
trajectories to the Waiter’s Problem. To transport objects with unknown mass parameters,
Lee and Kim [70] perform online estimation of payload parameters to integrate into the
trajectory generation for cooperative aerial manipulators. For fast transport of objects held
in a suction grasp, Pham and Pham [71] propose combining RRT with a trajectory time
parameterizer that remains within the suction contact stability constraint. In contrast, we
propose a single optimization process that incorporates all necessary constraints to perform
fast inertial transport.

While the primary intent for GOMP-FIT is not liquid transport, in experiments we
show spill-free transport of a liquid. The related problem of slosh-free transport requires
constraining accelerations of a container. Chen et al. [72] add liquid transport to the Waiter’s
problem and use an acceleration filter to orient the end-effector to counter sloshing effects
through Cartesian control. Aribowo et al. [73] decouple liquid transport into two steps:
computing a translation trajectory, then input shaping to counter sloshing by rotating the
end-effector. Yano et al. [74], Reyhanoglu et al. [75], Consolini et al. [76] and Moriello et
al. [77] propose using feedback and feed-forward control to avoid sloshing under varying
assumptions such as linear actuation and absence of obstacles. In contrast to these works,
GOMP-FIT integrates end-effector acceleration constraints into a single time-optimizing
method.

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 29

3.3 Problem Statement

Let q ∈ C be the complete specification of a robot’s degrees of freedom, where C is the space
of all configurations. Let Cobs ⊂ C be the set of configurations that are in an obstacle, and
Cfree = C\Cobs be the set of configurations that are not in collision. Let fk : C → SO(3) be the
forward kinematics function that computes the pose of the object in the robot’s end-effector.
Let f−1

k : SE(3) → C be an inverse kinematic (IK) function that computes the robot’s
configuration, given a desired location of the end-effector. The IK function may not always
have a solution, and may not have a unique solution. Let xT =

[
qT q̇T q̈T

]
∈ X be the

dynamic state of the robot at any moment in time, including the first and second derivative
of the robot’s configuration. Let fa : X → R3 be the linear acceleration at the end-effector
including gravity and the inertial (fictitious) forces: Euler, Coriolis, and centrifugal.

Given a starting grasp gpick ∈ SE(3) and a placement pose gplace ∈ SE(3), and con-
straints on the end-effector accelerations, the objective of GOMP-FIT is to compute a tra-
jectory τ : [0, T]→ C, where T is the duration, τ(t) ∈ Cfree, f(τ(0)) = gpick, f(τ(T)) = gplace,
and the end-effector acceleration constraints are met at all τ(t). Furthermore, the objective
is to minimize the total trajectory time, subject to the robot’s actuation limits. Thus,

arg min
τ

T (τ)

s.t. fk(τ(0)) = gpick, fk(τ(T)) = gplace

τ(t) ∈ Cfree ∀t ∈ [0, T]

τ(t), τ̇(t), τ̈(t) ∈ joint limits ∀t ∈ [0, T]

fa(τ(t)) ∈ A

where T (τ) is the trajectory’s duration in seconds (and referenced without parameters equiv-
alently), and A is the set of problem-specific end-effector acceleration constraints, such as
keeping open-top container contents or avoiding excessive shock.

3.4 Method

To compute a high-speed motion that remains within end-effector acceleration constraints,
we first discretize the problem, then formulate a non-convex optimization, and finally solve
the optimization using a sequence of sequential quadratic programs based on TrajOpt [5]
and GOMP [9].

3.4.1 GOMP Background

GOMP-FIT is built on Grasp-Optimized Motion Planning (GOMP). GOMP computes a
time-optimized obstacle-avoiding trajectory that incorporates a degree of freedom around
pick and place points. This section reviews the GOMP formulation and optimization process.

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 30

Trajectory Discretization

To facilitate solving the GOMP-FIT optimization problem, we first formulate a discretization
of the trajectory. The discretization serves a second purpose—all industrial robots operate
with a fixed control frequency, and can follow trajectories at only that rate or an integer
multiple of it. GOMP and GOMP-FIT first define a fixed number of waypoints 0, 1, . . . , H,
each separated by a fixed time step tstep. The time step should be an integer multiple of
the robot’s control frequency, and H should be sufficient to allow the problem to be solved
(more details in Sec. 3.4.1). Each waypoint xt includes a configuration qt and first and
second derivatives q̇t and acceleration q̈t.

To approximate q̇t and q̈t, we have the optimization process enforce a dynamics constraint
between each waypoint in the following form:

qt+1 = qt + q̇ttstep +

(
1

3
q̈t +

1

6
q̈t+1

)
t2step (3.4.1)

q̇t+1 = q̇t +
1

2
(q̈t + q̈t+1) tstep. (3.4.2)

This discretization comes from integrating a linear jerk between waypoints.

Sequential Convex Optimization

To solve the discretized problem, we formulate and solve a sequential quadratic program of
the following form:

min
x

1

2
xTPx + pTx

s.t. Ax ⩽ b,

where P is a positive semi-definite matrix for the quadratic costs, p is a linear cost vector,
and the matrix A and vector b define the linear constraints.

We construct A and b to include the convex constraints: (a) the dynamics from equa-
tions 3.4.1 and 3.4.2; (b) the actuation limits, e.g., box bounds of configuration, velocity,
and acceleration; and (c) jerk limits from the finite difference of accelerations.

To handle non-convex constraints from (i) grasp and placement configurations and de-
grees of freedom; (ii) obstacle avoidance; and (iii) end-effector acceleration limits, we add
linearizations of the constraints to A and b with slack variables constrained to be positive.

As with GOMP, we establish the trust region around the configurations of the waypoints,
and leave the other optimization variables (e.g., q̇t and q̈t) otherwise untouched.

Linearization of Non-Convex Constraints

To enable obstacle avoidance, grasp-optimization, and now acceleration constraints, GOMP
and GOMP-FIT formulates a (non-convex) constraint of the form g(x) ⩽ c, and linearizes

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 31

R0

R1
R2

R3

R4

R5

R6

fn(q)

Figure 3.2: Frames and parameters used in GOMP-FIT computation. Each set of arrows
is a coordinate frame associated with a joint. The recursive Newton-Euler algorithms computes
angular velocities and their derivatives, and linear accelerations at each frame R. The translation
between frames r. At the end-effector, fn(q) is the normal we align to inertial forces.

the function around the current iterate x(k) as:

Jgx
(k+1) ⩽ Jgx

(k) − g(x(k))− c,

where Jg is the Jacobian evaluated at x(k), and x(k+1) is the optimization variable for the
next iteration. These coefficients are then added to A and b.

Time Optimization

To minimize trajectory time, GOMP and GOMP-FIT repeatedly solve the optimization with
a shrinking horizon H until the SQP returns failure, and uses trajectory from the minimum
horizon that succeeded.

3.4.2 GOMP-FIT End-Effector Acceleration Constraints

To constrain inertial effects, we first compute the acceleration at the end-point due to gravity,
Euler, Coriolis, and centrifugal forces; and then form the constraint. To compute the effect of
all joint motions on the end-effector acceleration, we employ the forward pass of the Recursive
Newton Euler (RNE) method [78], summarized in Alg. 4. RNE requires the rotation i−1Ri

between joints i − 1 and i; the angular velocity vector ω and its derivative ω̇; and the
translation between successive joints ri. We do not use the backward pass of the RNE, as
the forward pass is sufficient.

We compute the acceleration at the end-effector aee = g − RNE(q, q̇, q̈), where g is the
gravity vector. We define fn(q) : C → R3 as the forward kinematic to the grasp vector
(Fig. 3.1)—i.e., normal of a container’s surface. We then formulate the non-convex con-
straints for object transport. For notation convenience, we omit the subscript t, but these
constraints apply to all waypoints.

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 32

Algorithm 4 Recursive Newton Euler

1: Input: Configuration and its derivatives q, q̇, q̈
2: /* Notation: q[i] ∈ R is i-th joint angle */
3: ω0, ω̇0, a0 ← 0, 0, 0
4: for i = 1, 2, . . . , number of joints do
5: ωi ← i−1RT

i (ωi−1 + q̇[i]zi)
6: ω̇i ← i−1RT

i (ω̇i−1 + q̈[i]zi + q̇[i]ωi−1 × zi)
7: ai ← i−1RT

i ai−1 + ω̇i × ri + ωi × (ωi × ri)
8: return 0RNaN

Open-Top Containers

To transport open-top containers, we constrain trajectories to keep the acceleration at the
end-effector within a user-defined threshold angle θmax of the container normal (Fig. 3.1).
This constraint has the form:

cos−1(äee · fn(q)/∥äee∥) ⩽ θmax. (3.4.3)

This can equivalently be expressed as

aee · fn(q)/∥aee∥ ⩾ cos θmax.

Fragile Objects

When transporting fragile objects, we constrain trajectories to avoid exceeding a threshold
acceleration amax in any direction. This constraint is:

∥aee∥ ⩽ amax. (3.4.4)

Combining Constraints

When transporting fragile objects in open-top containers, it is possible to include both
Eqn. (3.4.3) and Eqn. (3.4.4) as independent constraints.

3.4.3 Minimization Objective

As the constraints on end-effector accelerations and their linearizations depend on the ve-
locity and acceleration of the configuration, we find that adding a minimization objective
based on the sum-of-squared velocities or accelerations can work against the linearizations.
These objectives tend to “pull” trajectories against the constraints. We thus minimize the
sum-of-squared jerks of the trajectory using a finite difference between waypoints:

1

t2step

H−1∑
t=0

(q̈t+1 − q̈t)
2.

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 33

(a) (b) (c) (d) (e)

Figure 3.3: Transporting an open-top container over a barrier. Stills (top) and zoom-ins
(bottom) over the course of a fast inertial transport motion. GOMP-FIT computes a motion
that transports an open-top container while avoiding a barrier 0.9m above the floor, and keeping
the end-effector accelerations aligned to a 45◦ to keep the contents in the container. During this
motion, the robot spills 0 beads.

In practice, we find that assigning different weights to different joints benefits motion com-
putation. Specifically, we weigh joints closer to the base higher than joints closer to the
end-effector, encouraging those joints to focus more on producing a smooth overall motion
with minimal jerk whereas joints near the gripper are encouraged to fulfill other problem-
specific constraints such as the start goal constraint.

3.5 Experiments

We experiment with GOMP-FIT on a UR5 physical robot performing a series of tasks in
which success is dependent on constraints on the end-effector acceleration. These tasks are:
(1) transporting an open-top container without spilling contents, (2) transporting a fragile
object without exceeding an acceleration threshold (3) transporting wine held in a wine glass
without spilling, or dropping the wineglass.

For baselines, we run both GOMP and J-GOMP. This also forms an ablation in that
GOMP-FIT without the acceleration constraints is J-GOMP, and J-GOMP without the jerk
limits and minimization is GOMP, as GOMP instead minimizes sum-of-squared accelerations
at the joints. Here, both GOMP and J-GOMP include a minor modification so that all
baselines share the same dynamics constraints as GOMP-FIT. Additionally, we add baselines
of GOMP(+H) and J-GOMP(+H), which are GOMP and J-GOMP but with the same
minimum horizon H as computed by GOMP-FIT. These two baselines are to test whether

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 34

Tolerance GOMP J-GOMP GOMP(+H) J-GOMP(+H) GOMP-FIT

45◦ 89.7% 46.4% 84.5% 37.1% 0.0%
30◦ 90.0% 48.0% 47.0% 100.0% 0.0%
20◦ 90.3% 50.0% 39.4% 100.0% 0.0%
15◦ 91.2% 54.4% 41.2% 100.0% 0.0%

Table 3.1: Open-top container lost mass. We measure the percentage of mass lost when
performing the transport of an open-top container using various methods. The container starts
with a consistent fill level for each tilt/tolerance angle.

Metric GOMP J-GOMP GOMP-FIT 45◦ GOMP-FIT 2G

IE 330.9 121.7 73.6 82.5
IVE 255.3 61.1 94.5 18.3

Table 3.2: Fragile object transport. We compute two metrics with respect to the end-effector
acceleration vector norm: the integrated error (IE) as the sum of absolute difference from the
planned acceleration norm, and the integrated violation of the acceleration constraint (IVE). The
end-effector holds a RealSense D435i camera with an IMU to compute the acceleration norm during
the motion.

Figure 3.4: Fill levels used in open-top container transport experiments. As we use beads
(instead of liquids) for safety and ease of cleanup, we fill containers to just before spilling.

it is just the slower speed of the trajectory, or if the additional constraints on end-effector
accelerations are necessary for successful completion of the tasks.

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 35

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tr
aj

ec
to

ry
tim

e
(s

)

obstacle height (m)

GOMP-FIT 15◦
GOMP-FIT 20◦
GOMP-FIT 30◦
GOMP-FIT 45◦
GOMP-FIT 60◦

J-GOMP
GOMP

Figure 3.5: Open-top container transport time vs obstacle height. GOMP-FIT at various
tilt thresholds and baselines compute a transport motion over a wall. Taller obstacles require longer
paths and more time to clear.

3.5.1 Open-Top Container Transport

To test if GOMP-FIT can transport an open-top container without spilling the contents, we
task a UR5 robot to transport glass containing beads (Fig. 3.3). We vary the fill level based
on a tilt-level. We tilt the container 45◦, 30◦, 20◦, and 15◦, and fill it so that the beads just
barely stay and record the mass (Fig. 3.4). We then have GOMP-FIT compute motions that
include the open-top transport constraint (Eqn. 3.4.3) matching the fill level, and execute
the motion. We vary this for 3 different start-goal pairs and report the results in Tab. 3.1.
From the results we observe that GOMP-FIT does not drop a single bead, while all other
planners do. With the (+H) ablations, we observe that running slower is not sufficient for
task success, as both baselines spill contents at the same trajectory duration–some of this
is attributable to the end-effector taking a longer path to match the trajectory length. Best
performing of the baselines is J-GOMP, which, while consistent with prior observations [68]
that jerk limits reduce spills, limiting jerk alone is insufficient for fast inertial transport.

We also compare motion time to study how much time is lost due to the open-top
constraint, and report the results in Fig. 3.5. The time loss is surprisingly small, as we
observe that GOMP-FIT is able to compute motions that tilt against the inertial forces to
keep the contents in the container—most of the time lost is in accelerating and decelerating
the object at the beginning and end of the motion. As obstacle height increases and angle
tolerances tighten, the safe passage takes more time to traverse. With shorter obstacles,
GOMP’s lack of jerk constraints, requires reducing accelerations limits to prevent protective
stops, resulting in worse performance than J-GOMP. Both J-GOMP and GOMP-FIT can
run with higher acceleration limits.

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 36

5
10
15
20
25
30
35
40
45

ac
ce

le
ra

tio
n

(m
/s
2

) GOMP
IMU

J-GOMP
IMU

0
5

10
15
20
25
30
35
40

0.0 0.2 0.4 0.6 0.8 1.0 1.2

ac
ce

le
ra

tio
n

(m
/s
2

)

time (s)

GOMP-FIT 45◦
IMU

0.2 0.4 0.6 0.8 1.0 1.2 1.4
time (s)

GOMP-FIT 2G
IMU

Figure 3.6: Transported IMU readings vs predicted acceleration magnitude With an end-
effector acceleration limit of 2G (green dashed line), GOMP-FIT 2G produces trajectories with
IMU readings within a small error, whereas GOMP and J-GOMP have accelerations far exceeding
the limit. GOMP-FIT 45◦ (without acceleration limits) track well with predictions but exceed the
limit.

3.5.2 Fragile Object Transport

Transporting a fragile object may require limiting the end-effector acceleration to avoid
damaging or dropping the object. To test if GOMP-FIT can reliably limit the end-effector
acceleration, we attach a RealSense D435i camera with an Inertial Measurement Unit (IMU)
to the UR5 robot end-effector and record the acceleration norm along the executed trajec-
tories. We compute two metrics: the integrated error (IE) as the sum of absolute difference
between the end-effector acceleration norm and the planned acceleration norm:∑

(∥AIMU − Atraj∥) ,

and the integrated violation error (IVE) as the difference between the end-effector accelera-
tion norm and the acceleration limit:∑

max (0, ∥AIMU∥ − ∥Amax∥)

CHAPTER 3. GOMP-FIT: MAKING FAST OBJECT TRANSPORT RELIABLE 37

In experiments we set Amax = 2G = 19.74 m/s2 and compare GOMP-FIT with a 2G accel-
eration limit, with the baselines GOMP, J-GOMP, and GOMP-FIT with a 45◦-alignment
constraint. The results are summarized in Tab. 3.2 and a qualitative result is presented in
Fig. 3.6. From the measures, we observe that unlike baselines, GOMP-FIT is able to accu-
rately limit accelerations, subject to errors inherent to the sensor and underlying controller.

3.5.3 Filled Wineglass Transport

To test GOMP-FIT for fast inertial transport of a liquid in an open-top container, we com-
pute and execute a motion that transports a glass of wine over a barrier. Due to results of the
experiments with the cup containing beads, and the damage (and stains) that would result
from spills, we do not attempt any baseline method. This experiment is mostly qualitative,
as we do not wish to probe the limits of the method in our current lab setup—however,
during these experiments, the robot did not spill a drop. A preview of the accompanying
video is in the top-right of Fig. 3.1.

3.6 Discussion and Future Work

We present GOMP-FIT, an optimizing motion planner that solves the fast inertial transport
problem of transporting open-top containers, fragile objects, or combinations thereof around
obstacles while not spilling, damaging, or losing a grasp due to inertial forces. GOMP-FIT
uses a sequential quadratic program to optimize a discretized trajectory with the first and
second derivatives of its configuration, and incorporates non-linear constraints for obstacle
avoidance, grasp optimization, and on accelerations at the end-effector. In experiments on a
physical robot, GOMP-FIT was able to reliably and safely transport objects with only minor
slowdown compared to motions from fast planners that did not safely transport objects.
Slowed motions of the baseline planners fared little better, suggesting that slowing motions
down is not sufficient to achieve reliable inertial transport.

In future work, we will explore addressing the long computation time associated by tuning
the optimizer and using deep learning to warm start the computation [50]. The proposed
method relies on conservative approximations for joint acceleration limits based on torque
limits and transported mass—we hope to tighten up the acceleration limits by transitioning
to torque-based limits. In the current formulation, these would be non-convex constraints
that would further slow the computation but result in faster motions.

38

Chapter 4

GOMP-ST: Making Fast Object
Transport with Suction Grasping
Reliable

In contrast to the parallel-jaw grasping discussed in the previous chapter, suction grasping
is widely used in industry, but maintaining a suction grasp throughout a high-speed motion
requires balancing suction forces against inertial forces while the suction cups deform under
strain. GOMP-ST combines self supervised learning with optimization to decrease transport
time while increasing reliability and avoiding suction cup failure.

4.1 Introduction

Vacuum suction cup grasping, due to its ability to quickly hold and release a large variety of
objects, is a common grasping modality for robots in industrial settings such as warehouses
and logistics centers. With the recent rise in demand for robot pick-and-place operations,
the speed of object transport is critical. However, suction grasps can fail if the object
is transported too quickly. Determining the conditions where suction grasps fail is non-
trivial due to the difficult-to-model deformations of suction cups under stress. Existing
analytic models make simplifying assumptions, such as rigid suction cups [60] or quasi-static
physics [71, 79, 80]. An alternative is to heuristically slow motions when objects are held in
suction grasps.

In prior work, the Grasp-Optimized Motion Planner (GOMP [9]) leveraged an uncon-
strained degree of freedom (DoF) around the grasp axis to optimize pick-and-place motions
for parallel jaw grippers. Grasp-Optimized Motion Planning for Fast Inertial Transport
(GOMP-FIT [81]) computes time-optimized motions while taking into account end-effector
and object acceleration constraints to reduce product damage and spills. However, when
executed on robots with suction grippers, the resulting motions can fail due to suction cups
detaching.

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 39

(a) A fast motion resulting in suction failure (b) A successful transport over obstacle

Figure 4.1: High-speed motions can cause failure of suction cups. These multiple-exposure
images show motions computed by the time-optimizing motion planners (a) J-GOMP and (b)
GOMP-ST. The fast trajectory computed by J-GOMP and inertial forces cause the suction grasp
to fail and the grasped block to fall away and to the right. We propose GOMP-ST, an algorithm
that incorporates a learned acceleration constraint into a time-optimizing motion planner to avoid
such failures.

To address this problem, we propose the Grasp Optimized Motion Planning for Suction
Transport (GOMP-ST), an algorithm that computes time-optimized motions by integrating
a learned suction grasp loss constraint. GOMP-ST first tries varied rapid lifts of a given
object with suction grasps to find motions that cause suction failures. It then learns a
model from the data based on a history, or sequence, of end-effector accelerations to define a
constraint function. At run time, the optimization treats the learned model as a non-linear
constraint on the motion by linearizing it and computing a first-order approximation based
on its Jacobian. In our implementation, we use a neural network to learn the suction model
and use Autograd to obtain the Jacobian.

In experiments with steel rectangular blocks, we learn a model of suction failure on a
physical UR5 with a 4-cup vacuum gripper. We then apply the learned model to transport
4 objects of varying mass held in suction between multiple different start and goal pairs and
around obstacles. We compare GOMP-ST to GOMP, GOMP-FIT with an analytic model
of suction, and ablations of GOMP-ST. We find that GOMP-ST can achieve a near 100 %
success rate, for motions that are 16 to 58 % faster.

This chapter provides the following contributions: (1) A novel algorithm, GOMP-ST,
Grasp Optimized Motion Planning for Suction Transport, based on: (a) Formulation of
a learnable acceleration constraint for suction cup transport; (b) An efficient method for
learning the constraint via boundary searching and data augmentation; (c) Integration of
the learned constraint into an optimizing motion planner; and (2) Data from experiments
with a physical robot comparing GOMP-ST to baselines.

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 40

4.2 Related Work

Robot motion planning aims to find safe and efficient robot motions from a start to a goal
configuration that avoid obstacles. Sampling-based motion planners, such as PRM [2] and
bi-directional RRT [4] have variants that are probabilistically-complete and asymptotically-
optimal. Optimization-based motion planners, such as TrajOpt [5], STOMP [6], CHOMP [7],
KOMO [8], and ITOMP [82] can compute optimized trajectories iteratively improving paths
or interleaving with sampling-based planners [25].

Grasp-Optimized Motion Planning (GOMP) [9] and Deep-Jerk GOMP (DJ-GOMP) [50]
leverage a degree-of-freedom in the grasp pose while integrating dynamic and kinematic
constraints in a sequential quadratic program that iteratively computes time-optimized pick-
and-place motions. GOMP for Fast Inertial Transport (GOMP-FIT) [81] incorporates end-
effector acceleration constraints for parallel-jaw grippers by employing the forward pass of
the Recursive Newton Euler (RNE) method [78]. In contrast to prior work, GOMP-ST learns
a suction-cup constraint to avoid suction grasp failure.

Optimization using constraints based on empirical models is gaining traction. Maragno
et al. [83] integrate learned constraints into a mixed-integer optimization using trust regions
defined by the convex hull of the training data. In contrast, we propose using domain knowl-
edge to perform data augmentation in a continuous optimization. Kud la et al. [84] propose
a learning a decisions tree of constraints and a transform appropriate for mixed integer lin-
ear programming. While the decision tree provides flexible conditions for constraints, we
instead propose exploiting the nature of the trajectory optimization by regressing on inputs
containing the last h time steps. Bartolini et al. [85] and later Lombardi et al. [86] show that
neural networks can learn constraints based on difficult-to-model phenomena be integrated
into constrained combinatorial optimizations. We employ neural network constraints in con-
tinuous non-convex optimization. De Raedt et al. [87] provide a recent survey of constraint
acquisition, and Fajemisin et al. [88] provide a recent survey of optimization with constraint
learning. These surveys provide a wealth of ideas that could be extended to apply additional
constraint learning and learned constraints to optimizing motion planning.

Suction grasping is widely used in industrial settings. Due to the increasing interest
in suction grasping for pick-and-place tasks, recent models focus on computing a robust
suction grasp. Dex-Net 3.0 [79] introduced a novel suction contact model that quantifies seal
formation using a quasi-static spring system, along with a robust version of the model under
random disturbing wrenches and perturbations in object pose, gripper pose, and friction.
Huh et al. [80] use a learned model and a novel multi-chamber suction cup design to detect
failures in the suction seal early to avoid grasp failures. However, these works assume quasi-
static physics, an assumption that does not hold for high inertial forces.

Most closely related to this chapter is the work by Pham and Pham [71] which proposes a
suction-cup model and identify a contact stability constraint and a pipeline to parameterize
time-optimal geometric paths satisfying the constraint. GOMP-ST differs in a few ways.
First, their method plans a motion using a sampling-based planner, then time-parameterizes
the motion, whereas GOMP-ST integrates planning and time-parameterization into a single

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 41

optimization, allowing to explore alternate paths with potentially better timing. Second,
their method uses an analytic model that does not include suction cup deformation, whereas
GOMP-ST learns a constraint based on suction grasps failures through experimentation.

Dynamic manipulation exploits forces due to accelerations, along with kinematics, static,
and quasi-static forces to achieve a task [89]. Lynch and Mason [53] leverage centrifugal and
Coriolis forces to allow low degree-of-freedom robots to control objects with more degrees-of-
freedom. Lynch and Mason [54] also directly integrate constraints in a sequential quadratic
problem to plan robot trajectories that achieve a dynamic task, such as snatching an object,
throwing, and rolling, via coupling forces through the non-prehensile contact in an obstacle-
free environment. Srinivasa et al. [55] address the problem of rolling a block resting on a
flat palm by employing constraints on accelerations at the contact point. Mucchiani and
Yim [57] propose a grasping approach that utilizes object inertia for sweeping an object at
rest to a goal position by leveraging accelerations and torques from the path as stabilizing
forces in the passive end-effector. In this work, we employ constraints on the end-effector
accelerations to perform efficient dynamic object transport around obstacles using a suction
gripper.

One promising related avenue of research investigates motion planning and optimization
that integrates forces present at the end-effector. Hauser [65] investigates including contact
forces during the optimization, and Luo and Hauser [66] extend this to include a learned con-
fidence into an optimization. In a similar manner, Bernheisel and Lynch [67] and Acharya et
al. [69] both explore different ways to address the waiter’s problem which requires generating
motions of a tray to perform non-prehensile balancing of objects. In contrast to these lines
of work, we focus on learning and integrating a constraint to maintain suction contact as a
differentiable function, instead of learning the parameters of a model and integrating it into
a plan.

When the dynamics are unknown or the existing models are insufficiently accurate, a
promising approach is to leverage data-driven methods. Zeng et al. [58] propose Tossing-
Bot that learns parameters of a pre-defined dynamic motion to toss objects into target
bins using parallel-jaw end-effectors. Wang et al. [59] propose SwingBot, that uses tac-
tile feedback to learn how to dynamically swing up novel objects. In Robots of the Lost
Arc [zhang2021rotla], a robot computes high-speed motions to induce fixed-end cables
to swing over distant obstacles, knock down target objects, and weave between obstacles.
Ha and Song [90] propose FlingBot, a self-supervised learning framework to learn dynamic
flinging actions for cloth unfolding. Lim et al. [91], uses simulation and physical data to
train a model for swinging an object to hit a target. In this work, we integrate a learned a
constraint in the solver allowing it to compute fast motions while maintaining the suction
seal.

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 42

Figure 4.2: GOMP-ST pipeline. In an offline process (top), GOMP-ST performs self-supervised
learning of a constraint function. It first repeatedly grasps objects of known mass to perform a
boundary search on a motion profile parameterized by jerk and acceleration limits. Then, during
data augmentation, it labels slower motions as grasp successes, and faster motions as grasp failures.
Finally, it trains a neural network constraint function gθ. In the online process (bottom), GOMP-
ST computes a motion plan for a given problem. The SQP solver repeatedly linearizes the learned
suction constraint using a user-specified threshold dsafe ∈ [0, 1] and the output and Jacobian (via
autograd) of the trained neural network.

4.3 Problem Statement

Let q ∈ C be the complete specification of the degrees of freedom for a robot, where C is the
set of all possible configurations. Let O be the set of obstacles, and Cobs ⊆ C be the set of
configurations in collision with O. Let Cfree = C \ Cobs be the set of configurations that are
not in collision. Let q̇ and q̈ be the first and second derivatives of the configuration. Let
aee ∈ R3 be the linear acceleration of the end effector with one or more suction cups holding
a known object b, and n̂ ∈ R3 be the suction cup normal, as shown in Fig. 4.4

Given a start q0 and goal qgoal configuration, the objective of GOMP-ST is to compute
a trajectory τ = (x0,x1, . . . ,xH), where xt = (qt, q̇t, q̈t) ∈ X is the state of the robot at
time t, X is the set of states, such that qt ∈ Cfree ∀t ∈ [0, H], and q̇ and q̈ are within the
box-bounded dynamic limits of the robot, and qH = qgoal. The object b will remain attached
throughout the motion. As with GOMP, start and goal configurations may also be expressed
via forward kinematics and bounds on degrees of freedom.

4.4 Method

GOMP-ST learns a suction cup acceleration constraint via a sequence of physical experi-
ments, then integrates it with a time-optimizing motion planner. See Fig. 4.2 for an overview.

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 43

This section starts with background on the prior work, then describes how to learn and in-
tegrate the constraint into the motion planner.

4.4.1 Background: GOMP-FIT

The GOMP-FIT [81] algorithm formulates a fast-inertial-transport motion planning as an
optimization problem and solves it with sequential quadratic program (SQP) trust-region-
based solver. It first discretizes the trajectory into a sequence of H+1 waypoints (x0, . . .xH)
that are each separated by a fixed time interval tstep. Each waypoint xt includes the con-
figuration and its first and second derivatives xt = (qt, q̇t, q̈t). The outer loop shrinks H
to find a minimum time trajectory. The inner loop solves an SQP where the optimization
objective minimizes the sum-of-squared accelerations, the linear constraints keep the motion
within the kinematic and dynamics limits of the robot, and the non-linear constraints avoid
obstacles and limit linear accelerations experienced at the end-effector. To limit shock, it
constrains the magnitude of end-effector acceleration to be below a threshold asafe. To avoid
spills, it constrains the angle between the container normal and the acceleration to be below
a spill threshold θspill. The optimization is

min
x[0..H]

1

2

H∑
t=0

q̈t

s.t. xmin ⩽ xt ⩽ xmax ∀t ∈ [0..H]

qt+1 = qt + q̇ttstep +
1

2
q̈tt

2
step ∀t ∈ [0..H)

q̇t+1 = q̇t + q̈ttstep ∀t ∈ [0..H)

fO(q) ⩾ 0 ∀t ∈ [0..H]

cos−1(fa(q, q̇, q̈) · fn) ⩽ θspill ∀t ∈ [0..H]

∥fa(q, q̇, q̈)∥ ⩽ asafe ∀t ∈ [0..H],

where fO : C → R is the signed distance from robot to set O (thus implementing the
constraint qt ∈ Cfree) and fa : (C)3 → R3 is the linear acceleration at the end-effector
computed using the Recursive Newton-Euler (RNE) algorithm. Additionally, GOMP-FIT
optionally integrates constraints to optimize the grasp angle and location.

The SQP solver repeatedly linearizes the non-linear constraints (collision, end-effector
acceleration, and grasp) to form a quadratic program (QP), and solves the QP, accepting
solutions that improve the trajectory. In this optimization, when solving for the (k + 1)
iterate, a non-linear constraint of the form g(x) ⩽ y is linearized around the current iterate
x(k) via a first-order approximation using its Jacobian:

Jx(k+1) ⩽ y − g(x(k)) + Jx(k).

GOMP-FIT optimizes the trajectory time by repeatedly solving the SQP with a shrinking
horizon H, warm-starting each subsequent SQP solve with an interpolation of the solution

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 44

(a) Suction cup deformation before and during suction break. (b) Vertical lift motion

Figure 4.3: Suction cup deformation observed with data collection. (a) These frames from
a slow-motion video show the deformation of suction cups as the gripper is rapidly pulled upward.
At the beginning of the motion ((a) top), the suction cups compress against the grasped surface.
As the gripper lifts and starts to break from suction ((a) middle), the suction cups deform but
still maintain a seal. Continuing to pull away results in a suction grasp failure ((a) bottom). (b)
During data collection, the robot lifts the mass with a vertical motion while grasping at an angle.

from the prior horizon. The optimization terminates the smallest H the solver detects as
feasible. However, when executed on robots with suction grippers, the resulting motions can
lead to suction failures.

4.4.2 Learned constraints in the SQP

Maintaining a suction grasp throughout a high-speed motion requires balancing suction
forces against inertial forces while the suction cups deform under strain. GOMP-ST defines
a series of physical experiments to learn a constraint from real-world data. We model the
learned constraint as a function gθ : (X)h → [0, 1] parameterized by θ, where (X)h is history
of h dynamic states, and a value of 0 indicates the object is held, while a value of 1 indicates
a failure. (Notationally, we use h to indicate a history of states, and H to indicate the total
trajectory length.)

We integrate this function into the optimization as a non-linear constraint:

gθ(·) ⩽ dsafe,

where the argument is a portion of the state from of the trajectory being optimized, and
dsafe ∈ [0, 1) is a tunable failure threshold. To linearize this constraint for the SQP, we use
the automatic gradients (Autograd) provided by a neural-network package [92] to compute
the Jacobian.

Using slow-motion video capture, we observe that suction cups deform before suction
failure (Fig. 4.3), and thus failures are not an instantaneous response to a change in end-
effector state. With this observation, we propose that gθ should be a function of a sequence

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 45

(or history) of states of length h. The value of h depends on the geometry and material
of the suction cup. In a series of experiments we set h to be long enough to capture the
time between deformation start and suction failure that we observe from slow-motion video
playback (> 0.1 seconds). Further, to translate the optimization variables from the state of
the robot to the state of the end-effector, we utilize RNE function fa for each state in the
history. Thus we formulate the full constraint as:

gθ(fa(xt−h+1), . . . , fa(xt−1), fa(xt)) ⩽ dsafe ∀t ∈ [1..H).

When x has a negative subscript (i.e., it refers to a state before the start of planning), we
replace it with x0.

4.4.3 Self-supervised data collection and training

To learn gθ, GOMP-ST implements a self-supervised pipeline that defines a series of exper-
iments to lift objects of known mass and collect data. We attach a pressure sensor to the
tube connected to the suction cups, similar to Huh et al. [80]. To minimize delay between
pressure changes and pressure readings, we place the sensor close to the suction cups. During
each lift, the pipeline records the joint state and pressure sensor readings over time.

To isolate gravity during data collection, the system always lifts against gravity while
varying the angle of the suction normal (see Fig. 4.3). As convention, 0◦ is a top-down grasp
and 90◦ is a grasp in which the suction normal is perpendicular to gravity.

The pipeline computes each lift motion using Ruckig [93] between two points in end-
effector (Cartesian) coordinates, and uses an inverse kinematics solver to translate into joint
configurations. Ruckig computes straight-line time-optimal motions subject to velocity, ac-
celeration, and jerk limits. During data collection, GOMP-ST varies the motion profile by
changing the maximum acceleration amax and maximum jerk jmax parameters of Ruckig.

The pipeline defines a discretized grid with amax and jmax axes to fill with values 0 or
1 labels. To reduce data collection time, GOMP-ST performs a boundary search on the
motion profiles. It starts with a fixed lower value of amax and increases jmax until it observes
a change in the pressure measurements indicating a suction grasp failure. Afterwards, it
iteratively decreases jmax or increases amax so that it is always exploring the above and
below the continuous boundary at which suction fails.

After a suction failure, the automated data collection pipeline takes a top-down image
of the scene to find and re-grasp the target object. After confirming the grasp using the
pressure measurements, GOMP-ST moves the object to a consistent starting pose before
performing the next lift.

The pipeline then trains a multi-layer perceptron with exponential linear units (ELU)
activations using the joint and pressure data it collected. We choose ELU for its continuous
gradients. Training details are in the experiments section. The pipeline scans the recorded
pressure data to find the time at which suction pressure is lost. It then tracks a tunable
number of steps h back to create a labeled data point containing h accelerations that led to

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 46

the suction failure (labelled as 1). All sequences of h accelerations prior to the suction failure,
or in records without suction failures, the pipeline labels as 0. GOMP-ST further perform
data augmentation by scaling accelerations leading to failures by 1 + ϵ, and non-failures by
1− ϵ, for small positive values of ϵ.

4.4.4 Analytic model of suction-cup failure for GOMP-FIT
baseline

As a baseline to the learned model, we compare GOMP-ST to GOMP-FIT where its con-
straint on the magnitude and direction of the inertial acceleration vector is provided by an
analytic model. In previous work, Kolluru et al. [94] and Stuart et al. [95] proposed analytic
models for rigid suction cups, but were limited to either single suction cups or symmetrical
systems. Our analysis is more closely related to the more general method used by Valencia
et al. [96] and Pham and Pham [71] which generalises over multiple suction cups and asym-
metric loads, though still with the assumption of rigid bodies. We also choose the rigid-body
assumption as opposed to for example the spring model suggested by Mahler et al. [79],
since a spring model of suction cups where quasi-static equilibrium is not assumed would
require knowledge about the state of the springs. Alternatively, if quasi-static equilibrium
is assumed, the state of the springs may be estimated, but the purpose of the additional
complexity is defeated from a motion planning perspective as the resulting constraint would
be equivalent to that of a rigid-body model.

In this work, the analytic model makes the following assumptions:

1. There are quasi-static conditions in inertial frame, enabling equilibrium analysis.

2. The suction cups are rigid and modelled as point contacts.

3. The transported object is a rigid rectangular cuboid with uniform mass distribution
such that its center of mass corresponds to its centroid.

4. There are no air leaks between the suction cups and flat grasping surface, which results
in a static and equal suction force across all suction cups.

Consider the free-body diagram in the inertial frame of the object shown in Fig. 4.4, where
fs,i are the suction forces, fn,i are the contact forces between the suction cups and grasped
object, ff,i are the friction forces, fg is the gravitational force, and a is the acceleration from
a balance of forces. n̂obj is the unit length (denoted by the hat) normal defining the grasping
plane, and θ = cos−1 [(a · n̂obj)/(||a||2||n̂obj||2)] is the angle between the inertial acceleration
vector and suction force normal. In the idealised condition, fs,i = (patm−pv)A, where patm−pv
is the difference between atmospheric pressure patm and applied vacuum pressure pv, and A
is the effective area of grip for a single suction cup. Furthermore, under the assumption of
dry Coulomb friction, ff,i ⩽ µfn,i, where µ is the static coefficient of friction between the
grasped object and suction cups. Finally, fg = mg, where m is the object mass, g is the
gravitational acceleration.

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 47

fs,i

a

ff,i

fg

fn,i

θff,i+1

fn,i+1

fs,i

k̂

î

n̂obj

0 20 40 60 80 100
10

15

20

25

30

35

40

45

50
Sliding failure
Moment imbalance failure

(a) Free body diagram (b) Acceleration magnitude profile

Figure 4.4: Analytic model of suction cup failure (a): A set of suction cups (light blue) hold
the gray object, where the suction surface normal is a vector n̂ (not shown) that is always aligned
with the vector n̂obj. The suction forces fs,i apply the same suction force at each suction contact,
while the normal forces fn,i react unevenly based on the tilt angle θ relative to inertial acceleration
and gravity fg. The green arrow indicates the unit normal direction vector, and all other arrows
are force vectors. Under the unimodal model θ = 0◦. Under the multimodal model θ can vary.
(b) shows the acceleration magnitude drop boundaries in the sliding and moment imbalance failure
modes for varying angles θ between the inertial acceleration a and the suction normal n̂obj. Suction
fails for accelerations in the region above the blue curve in the model. We generate this plot by
solving the system of equations (4.4.1) – (4.4.6) with a combination of angles and accelerations.
For the parameters such as object dimensions and friction coefficient of our system, sliding will
always occur before moment imbalance.

We define 2 models, unimodal and multimodal. The unimodal model assumes θ = 0◦,
and thus the maximum inertial acceleration before grasp failure is trivially given by afail =
1
m

∑
i fs,i. The multimodal model includes multiple failure modes for cases where θ ̸= 0◦,

including suction grasp failure by sliding, force imbalance, or moment imbalance. This model
does not include deformation. The analysis uses the equations∑

i

fs,i +
∑
i

fn,i +
∑
i

ff,i + fg = ma (4.4.1)∑
i

ri × fs,i +
∑
i

ri × fn,i +
∑
i

ri × ff,i = 0 (4.4.2)

fn,i = −αi · n̂obj (4.4.3)

f̂f,i = − ̂projn̂obj
(fg) (4.4.4)

ff,i = βi · f̂f,i (4.4.5)

(ff,i · f̂f,i) = γ · fn,i · (−n̂obj). (4.4.6)

The force (4.4.1) and moment (4.4.2) balance in quasi-static equilibrium, where ri is the
position vector from the object center of mass to the application of forces point for the
ith suction cup. We then require the reaction forces fn,i to be normal to the grasping plane

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 48

Figure 4.5: Suction gripper with four suction cups and pressure sensor outlet. In the
custom suction gripper (right), the suction is distributed to the four suction cups using branching
connectors from the pneumatic tube where a vacuum/negative pressure is applied, as shown in the
analogous circuit diagram (left). A single pressure sensor is used to measure the applied pressure.
In the case of a successful suction grasp, all four switches are open, and so no current/air flows,
implying the applied pressure/voltage is equal for all four suction cup regardless of differing resistor
values.

(4.4.3), set the direction of the friction forces to be tangent in the grasping plane and opposing
the direction of the motion in its absence (4.4.4), (4.4.5), and require that the friction force
magnitudes share the same proportionality constant γ to the normal forces (4.4.6).

We solve the system of equations for a range of hypothetical angles θ and accelerations
a, and classify each scenario as a failure or a success based on the physical restrictions that
βi ⩽ µαi and αi ⩾ 0, where αi and βi are the magnitudes of the normal and frictional
forces, respectively. The result of this simulation is shown in Fig. 4.4, which shows that the
multimodal model converges with the unimodal model when θ → 0+, and that in contrast
to intuition, the curve is not strictly increasing nor strictly decreasing across the domain.
The inputs used to generate the curve use dimensions from our experimental setup, and
so the exact axes values do not generalise to other systems. To integrate the model with
GOMP-FIT, we approximate the curve using a 4th-order polynomial fit, which we then use
to formulate an analytic baseline constraint.

4.5 Experiments

We perform experiments on a physical UR5 with a custom 4-cup vacuum gripper and a set of
steel blocks. The gripper has four round 30 mm diameter elastodur flat suction cups driven
by a single VacMotion MSV 27 vacuum generator. Multi-cup suction grippers are common
in many commercial automated logistics systems due to the increased surface area producing
more suction force, and the multiple contact point stabilizing the hold resulting in reduced
payload swing. The pressure sensor (Adafruit MPRLS Ported Pressure Sensor Breakout) is
fitted in the gripper assembly and attached via USB to the computer that drives the UR5.

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 49

Table 4.1: Object transport success rate and motion time. We compute 3 pick-and-place
motions with 0.8, 0.9, and 1.0m horizontal separation between pick and place points, and perform
each motion 5 times, for a total of 15 trials per algorithm and mass. For algorithms, we use J-
GOMP as a time-optimized, but not suction-constrained baseline to show a lower bound on time,
GOMP-FIT with analytic constraints on end-effector acceleration, and GOMP-ST with varying
history length h, and failure threshold dsafe. Masses 1.3, 1.5, and 1.7 were seen at train time;
mass 1.6 was not. We highlight multimodal GOMP-FIT and GOMP-ST (h = 6, dsafe = 0.50), and
compare the relative speedup, observing that only 1 of the 60 trials for GOMP-ST failed, while
GOMP-ST speeds up between 16% and 58%.

Mass J-GOMP GOMP-FIT GOMP-ST (h, dsafe) Speedup
[kg]

Unimodal Multimodal (1, 0.50) (6, 0.05) (6, 0.50) (6, 0.95)

Success Rate

1.3 0% 0% 100% 0% 100% 100% 0%
1.5 0% 0% 100% 0% 100% 100% 66.7%
1.6* 0% 0% 100% 0% 100% 93.3% 100%
1.7 0% 33.3% 100% 0% 100% 100% 33.3%

Motion Time [s]

1.3 1.355 1.333 2.304 1.440 2.637 1.931 1.728 +16%
1.5 1.355 1.387 2.827 1.525 2.763 1.984 1.781 +30%
1.6* 1.355 1.472 2.827 1.643 2.795 1.807 1.781 +36%
1.7 1.355 1.728 4.459 1.173 2.432 1.856 1.792 +58%

* mass unseen in training.

horizontal distance

obstacle

1.3 kg

1.5 kg

1.6 kg

1.7 kg

2.0 kg

metal
sheets

Figure 4.6: Experimental setup In experiments, (left) we compute trajectories for varying hor-
izontal transport distances, and average the results. Shorter distances require lifting faster, while
longer distances can lift more gradually. We train and test on masses (right) composed of stacked
steel blocks and sheets. We do not train on the 1.6-kg mass to test generalization to unseen masses.

See Fig. 4.1 for a visual of the experimental setup and Fig. 4.5 for a close-up of the suction
gripper.

We first perform data collection and train (Sec. 4.4.3) on four different masses, 1.343-,
1.492-, 1.741-, and 2.196-kg steel blocks (Fig. 4.6 right), which we round to 1.3, 1.5, 1.7, and
2 kg hereafter. We then test GOMP-ST and baselines by computing trajectories between
varying start and goal positions and around varying obstacles. We automate data collection
by using an overhead Intel RealSense 435i to locate the mass after suction failures. We use
a relatively heavy mass to lower the end-effector accelerations required for a lost grasp, and

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 50

0.10.20.30.40.50.60.70.80.91.0 1.1
1.3

1.5
1.7

2.0

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

time
2.8
2.6
2.4
2.2
2

1.8

dsafe

payload
mass (kg)

tr
a
je
ct
o
ry

ti
m
e
(s
)

Figure 4.7: Computed trajectory times for varying dsafe and payload mass. We compute
trajectories for a grid of dsafe and masses shown on the lower axes, and plot the trajectory times
on the vertical axis. With lower dsafe or higher mass, the learned suction failure constraint causes
the optimizer to generate slower motions. The masses used for training (1.3, 1.5, 1.7, and 2.0 kg)
are in bold. The plot suggests that the network generalizes to unseen masses.

for safety as a lost grasp results in the released object having lower kinetic energy Ek, since
Ek = (1/2)mv2, and thus do not fly out of the workspace.

We set the automated system to collect training data for each of the four training masses,
resulting in 2,367 training trajectories. We perform an 80/20 train/test split on the trajec-
tories, data-augment failures 30× and non-failures 4× in the training set. With the UR5
operating and generating joint data at a 125 Hz, and the pressure sensor operating at 167 Hz,
this results in 597,010 training examples and 19,892 test examples.

With 15 trials each, we compare to baselines of J-GOMP, an optimizing motion planner
that does not include inertial effects, and GOMP-FIT, an extension of J-GOMP that allows
constraints on the linear acceleration at the end-effector. We include 2 GOMP-FIT baselines
in which we limit magnitude of end-effector acceleration using the unimodal model and
multimodal model.

4.5.1 Ablation studies

We perform two ablation studies on GOMP-ST. First, we compare history length of h = 1
to h = 6, to study the importance of the motion history relative to single acceleration spikes
in the motion. We also compare different values of the failure threshold dsafe to study the
potential for making a trade-off between speed and reliability.

4.5.2 Results

We vary the horizontal distance between start and goal configurations and compute trajec-
tories for each baseline and variant of GOMP-ST (Fig. 4.6 left). Each trajectory lifts over

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 51

an obstacle, thus the shorter horizontal distance (0.8 m) requires more vertical motion, while
the longer horizontal distance (1.0 m) results in a period of longer horizontal acceleration.
We also vary the masses, using 3 masses that were seen during training (1.3 kg, 1.5 kg and
1.7 kg) and a single mass that was not used during the data collection (1.613 kg, rounded to
1.6 kg). We run each computed trajectory 5 times and report the average success rate and
motion time per transported mass as the experiment’s result.

In Table 4.1, we show the results of trajectories computed by the baselines and ablations.
Here we see that the J-GOMP and the GOMP-FIT unimodal baselines consistently compute
motions that lead to suction failures. GOMP-FIT multimodal manages to compute safe
motions, however the resulting trajectories are slow. In contrast, GOMP-ST with h = 6 and
d = 0.05 reliably achieves a 100 % success rate, while the baseline method suction grasps fail
in nearly all cases. It is also 16 % to 58 % faster than multimodal GOMP-FIT. The ablation
of h = 1 shows the importance of history in learning the constraint—without it, GOMP-ST
consistently computes motions that lead to suction failures.

In the ablation of dsafe, we see that lower thresholds result in increased success rate, but
reduced speed, while the increased dsafe results in faster motions and decreased success rate.
In addition, we observe that GOMP-ST’s performance when transporting a mass unseen
during training (m = 1.6 kg) is comparable with its performance on the objects used during
the data collection.

We also study trajectories computed with the learned constraint by varying the mass and
dsafe and plotting the results in Fig. 4.7. The plot suggests that the network is interpolating
between training masses.

4.6 Discussion and Future Work

We propose GOMP-ST, an algorithm using learned motion constraints for fast transport of
objects held in suction grasps. By learning the constraint from real data, we avoid explicitly
modeling difficult-to-model properties such as deformation of the suction cup. We also
benefit from the learned model neural-network implementation, as it facilitates automatic
generation of gradients needed to linearize the constraint for the solver. Experiments on a
physical UR5 suggest that the learned constraint can allow the solver to speed up motions
by up to 58 %.

In future work, we will experiment with more complex environments, and include ad-
ditional inputs to the learned constraint to allow it to adapt to different properties of the
grasped object, for example, coefficient of friction and center of mass. We also aim to expand
the analytic model to no longer be dependent on quasi-static equilibrium or rigid bodies, and
therefore include spring state to the state of the trajectory optimization. While there are
compelling reasons to move away from single-suction-cup grippers, they present additional
suction failure modes, such as swinging and torquing out of the gripper. Addressing these
failure modes may require additional approaches, such as integration with sampling-based
optimization methods. Finally, results in modifying the failure threshold suggest that one

CHAPTER 4. GOMP-ST: MAKING FAST OBJECT TRANSPORT WITH SUCTION
GRASPING RELIABLE 52

could make a trade-off between speed and reliability, but how to beneficially make that
trade-off is an open issue.

53

Chapter 5

BOMP: Optimized Motion Planning
for Bin Picking

Previous chapters presented methods to increase the efficiency and reliability of object trans-
port in fixed, known obstacle environments. Yet, objects within these environments may
move between picking cycles, potentially necessitating the training of a new model after
every cycle. In this chapter we propose BOMP, a motion planning algorithm that extends
the training procedure presented in Chapter 2 to increase the motion planner’s efficiency in
scenarios where obstacles’ locations are not known during training.

5.1 Introduction

Robots are increasingly used for package handling and picking in logistics settings. When
transporting thousands of packages each day, a reduction of a few tenths of a second in cycle
time can significantly increase robot productivity. In deep cluttered bins, contents can shift
after each pick, necessitating a strategy to rapidly compute pick-and-place motions each
cycle using the latest sensor data (e.g., depth camera image).

Practical approaches include heuristic planning, optimization-based motion planning,
and sampling-based motion planning. A common heuristic trajectory, Up-Over-Down, lifts
to clear all obstacles, moves horizontally over obstacles to the target location, then lowers.
This is easy to implement and has negligible compute time; however, the motion is longer
than necessary and fails due to collision when using a long-nosed suction tool common in
industry.

Optimization-based methods formulate and solve an optimization problem to find the
best or fastest trajectory that avoids collisions. Sampling-based methods randomly sample
and connect collision-free waypoints to find a path. The latter two methods yield signifi-
cantly more successful and faster motions than Up-Over-Down, but at the expense of longer
compute times.

Prior work proposed GOMP [9], an optimization-based motion planner incorporating

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 54

Figure 5.1: Bin-optimized motion planning. BOMP executing a time-optimized, jerk-limited,
collision-free trajectory moving a box from a bin to a drop-off point. BOMP uses the long-nosed
“bluction” tool from Huang, et al. [huang2022bluction] to enable the robot to reach all parts
of the deep bin. BOMP uses an overhead RGBD camera and an optimizing motion planner to
compute the pick-and-place trajectory. In order to speed up the computation, a neural network
warm-starts the optimizer. It accepts the obstacle environment, grasped box, and pick points as
input, and outputs an initial trajectory.

time-optimization, obstacle avoidance, and grasp optimization. The planner computed fast
motions between pick and place points, and the grasp-optimization further sped up motions
by allowing pick and place poses to be optimized while retaining the same parallel-jaw grasp
contact points. The subsequent DJ-GOMP [50] sped up compute time by using a neural
network to warm-start motion planning for time-optimized and jerk-limited trajectories. DJ-
GOMP was trained over a distribution of start and end points, but assumes a fixed collision
environment. However, boxes often move between picking cycles. In this event, compute
time can increase by several orders of magnitude.

In this chapter, to address changing obstacle environments, we propose Bin-Optimized
Motion Planning (BOMP). BOMP finds an optimal trajectory while considering collisions
between a grasped box and the obstacle environment. We integrate BOMP into an end-to-
end bin-picking pipeline, which takes as input an RGBD image of the bin and outputs time-
optimal trajectories. BOMP modifies and extends DJ-GOMP by adding the dimensions of a

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 55

grasped box and a height map of the environment as inputs to the warm-start neural network,
which enables adapting the trajectory due to environment changes. The warm-start neural
network is trained to handle a relevant distribution of varying collision obstacles, and predicts
a trajectory to warm-start the jerk-limited and time-optimizing trajectory optimization. We
generate a dataset of synthetic collision environments in simulation to train the deep neural
network.

This chapter makes 4 contributions: (1) BOMP, a time-optimizing, jerk-limited motion
planning algorithm for bins where boxes and obstacles are detected via a depth camera; (2)
An end-to-end bin-picking pipeline that uses BOMP to iteratively remove the boxes; (3) A
deep neural network that learns from 25000 trajectories generated from simulated scenes to
accept a height map, grasped box parameters, a number of trajectory segments, and tra-
jectory endpoints as inputs and predicts an initial trajectory to warm-start the planning;
and (4) Data from 114 experiments in simulated environments and 15 experiments in phys-
ical environments, wherein BOMP generates up to 36 % faster trajectories compared to an
Up-Over-Down baseline implemented with an optimal time-parameterizer [49], as well as
58 % faster trajectories compared to Motion Planning Templates [97] (MPT) which imple-
ments a parallelized sampling-based motion planner (PRRT*). BOMP successfully generates
collision-free trajectories at a 79% rate, which is similar to MPT, and significantly higher
than the Up-Over-Down baseline.

5.2 Related Work

Optimization-based motion planners such as CHOMP [7], STOMP [6] and TrajOpt [5] com-
pute motion plans by locally optimizing a trajectory while penalizing collisions or placing
barrier functions on collisions [25]. Marcucci et al. [98] take a different approach: they de-
compose the collision-free space into convex regions and use convex optimization to find a
collision-free path. GOMP [9] builds on prior formulations by taking the mechanical limits
of the robot arm and the dynamics between waypoints into consideration. It also optimizes
over a rotational degree of freedom about the parallel-jaw gripper contact points in each of
the pick and placement frames. DJ-GOMP [50] further extends GOMP by minimizing jerk
to avoid joint wear while also significantly reducing computation time by warm-starting with
the output of a deep neural network.

Prior work has considered model distillation (i.e., one model being trained on the output
of one or more different models) for seeding optimization-based motion planners and for
achieving more general-purpose models. In many cases, training an ensemble of models im-
proves prediction performance, but is computationally expensive as it significantly increases
the required computation resources. The ensemble can be distilled in a compact network [26,
27]. DJ-GOMP used model distillation to improve GOMP’s running time. While the re-
peated optimization executed in GOMP could take up to several minutes to finish, a forward
pass in a compact neural network can be executed in milliseconds. DJ-GOMP exploits this
feature of neural networks to compute similar robot’s trajectories faster for a known col-

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 56

lision environment. However, when the collision environment is variable, and only known
during runtime, the compute time of DJ-GOMP increases by several orders of magnitude
since the neural network warm-start is no longer valid. BOMP addresses this by learning
a representation of the collision environment and the grasped box, in addition to robot’s
trajectories.

Warm-starting an optimizer with a near-optimal solution can significantly increase the
solver’s performance while greatly reducing the number of iterations required to reach suf-
ficient optimality [31]. In reinforcement learning, learning a new task can be warm-started
by transferring features from old tasks the agent has already mastered [32]. Memory of mo-
tion [33] is another method that uses an offline learned policy to warm-start a control solver,
and was shown to reduce the computation time in locomotion problems, and to increase
the performance of nonlinear predictive controllers [34]. In GOMP [9], the optimization
slowed by the number of iterations required to find the optimal horizon. To address this,
DJ-GOMP [50] uses a neural network’s output to warm-start the optimization with an ap-
proximation of the optimal trajectory, ultimately resulting with a faster convergence. BOMP
uses a similar approach, taking into consideration the grasped box and the current state of
the collision environment to predict the optimal collision-free trajectory.

In recent years, researchers have explored the approach of bypassing the optimization
step and using purely learning-based methods for motion planning. Motion planning algo-
rithms can require complex cost functions, and learning-based methods, such as learning
from demonstrations (e.g., [35–37]) can reduce the amount of hand engineering required.
Some learning methods focus on increasing the sampling efficiency in sample-based meth-
ods, for example by using non-uniform sampling [38] or reinforcement learning [39]. However,
learning-based methods tend to generate less optimal trajectories and often fail to generate
new environments.

Although pick-and-place operations are readily addressed by sampling-based motion plan-
ners, and despite the advances made via learning-based methods, the non-negligible conver-
gence rate of these planners in high dimensions prevents them from performing well in
picks-per-hour.

To address learning in a complex obstacle environment, Quershi et al. [40] encode a point
cloud of the obstacles into a latent space and use a feed-forward neural network to predict the
robot configuration at the next time step given an initial state, goal state, and the obstacles
encoding. In this chapter, we also use the advantage of having an accurate demonstrator in
the form of the cold-started optimizer to generate a large training data set, but we do not
learn a latent space.

BOMP uses a combination of RGB segmentation data computed using the Segment
Anything Model [99] and a depth image. Previous methods such as Dex-Net [10] use only
point clouds but do not analyze the RGB image. The segmentation masks generated by
SAM [99] and successor models such as FastSAM [100] give valuable information on which
points belong to the same object in a scene. We assume that all objects are boxes, and
we use this to estimate the pose and dimensions of boxes for grasping. We then pass this
information into the optimization-based motion planner.

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 57

5.3 Problem Statement

We consider a set of n boxes in a bin, and a six-axis industrial robot arm with a long-nosed
suction cup end effector as shown in Figure 5.1.

We consider the problem of transporting the boxes from the bin to a designated dropoff
location. This problem is composed of two subproblems that must be solved repeatedly for
each box: (1) detecting and selecting a box and a grasp; and (2) achieving this grasp to
transport the box with a fast and collision-free trajectory.

An overhead RGBD camera provides an RGB image yRGB ∈ Rh×w×3 and a corresponding
depth image observation yD ∈ Rh×w of the bin as viewed from above.

Let q ∈ C be the complete specification of the degrees of freedom, or configuration, of a
robot, where C is the configuration space. Let Cobs be the set of robot configurations in which
the robot is in collision with the environment, and let Cfree = C \ Cobs be the free space. Let
xt define a state composed of qt, q̇t, and q̈t. Let τ = (x0, . . . , xH) be a trajectory composed
of a sequence of H + 1 robot states. Let Q ⊂ C be the kinematic limits of the robot, and
let Q̇, Q̈, and

...
Q be the velocity, acceleration, and jerk limits. We assume these limits are

known.
The objective of subproblem (1) is to compute q0 from yRGB and yD. The objective of

subproblem (2) is to compute τ such that it picks the box at q0 and places it in a desired
target location, and qt ∈ Cfree ∩ Q, q̇t ∈ Q̇, q̈t ∈ Q̈, and

...
q t ∈

...
Q for all t ∈ [0, H], while

minimizing H.
We also assume:

• The bin is in a fixed, known pose.

• All objects in the bin are boxes.

• Boxes are rigid.

• The possible dimensions of all boxes are known in advance.

• Suction-grasped boxes are rigidly attached to the robot end effector.

• The obstacle environment is fixed during each robot motion (thus, we run open-loop
motions).

• Each target box is reachable by the robot.

5.4 Method

5.4.1 Grasped Box Shape Estimation

To find a target box, we segment it using SAM [99] on yRGB and prompt it with the highest
point among the boxes in the bin. We compute this point by first masking out the bin and

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 58

Figure 5.2: Example scenes and carved height maps. The top images show bins with target
boxes in pink. The bottom images show the capsule-modeled, padded, and carved height maps
(blue) and the robot end-effector and grasped box capsule models (green). Note that the bin
padding (solid height border) in the height maps prevents carving through the wall in the second
scene.

non-workspace pixels. Although this mask is generated by manual SAM prompting, we note
that the bin and mask prompt points are fixed between executions. We then segment the
depth map with this mask, deproject it to a pointcloud, and select the point with the highest
z-coordinate in world space.. Using the highest point heuristically selects the least-occluded
box and empties the bin in a top-down order.

To isolate the box and its dimensions, we use the segmentation to mask the depth image
yD and create a segmented pointcloud. We fit a cuboid to this segmented pointcloud using
RANSAC [101], which returns up to 3 orthogonal planes. For each plane, we compute the
bounding rectangle of the inliers. We compute potential matches based on knowledge of
available box sizes and the face areas and edge lengths of the observed rectangles. We
aggregate results using both metrics based on the smallest difference with any potential
match. In the case of a tie, we conservatively assume the largest possible box size. Using
this estimate of the box dimension, we can compute the box vertex positions from the visible
vertices.

5.4.2 Suction Grasp Selection

To determine the initial grasp configuration q0, we consider grasps at the center of each of
the visible faces of the target box. Of these, we only consider those where there exists an
IK solution for which the robot would not be in collision with the environment. We then

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 59

select the remaining grasp which is closest to a top-down grasp, as these give the robot the
most freedom to move in a bin environment. If there is more than one IK solution for a
given grasp, we compare the solutions’ elbow joint angles and preferentially choose the one
where the elbow is concave down (like the pose in Figure 5.1). This lets the robot lift boxes
without having to flip its elbow orientation.

5.4.3 Optimization Formulation

The backbone of BOMP’s trajectory generation and optimization is derived from the back-
bone of DJ-GOMP [50]. DJ-GOMP formulates a nonlinear optimization problem and
solves it using sequential quadratic programming (SQP) to compute a jerk-limited, obstacle-
avoiding, and grasp-optimized motion plan that is within the robot’s dynamic limits. In
BOMP, we extend the obstacle avoidance to the gripper, grasped box, and more complex
collision environment. We summarize the BOMP optimization formulation here:

argmin
q[0..H]

1

2

H−1∑
t=0

∥ ...
q t∥22

s.t. qt ∈ Cfree (1)

q0 = qd0 , qH = qdH (2a), (2b)

q̇0 = q̇H = 0, q̈0 = q̈H = 0 (2c), (2d)

qt+1 = qt + q̇ttstep + 1
2
q̈tt

2
step + 1

6

...
q tt

3
step (3a)

q̇t+1 = q̇t + q̈ttstep + 1
2

...
q tt

2
step (3b)

q̈t+1 = q̈t +
...
q ttstep (3c)

qt, q̇t, q̈t,
...
q t ∈ Q, Q̇, Q̈,

...
Q (4)

where H ∈ Z+ is the time horizon, or number of waypoints after the start, tstep ∈ R+ is the
time interval between waypoints, and constraints with subscript t are for all valid t.

Constraint (1) ensures a collision-free trajectory. Constraints (2a), (2b), (2c), and (2d)
fix the trajectory to the desired endpoint configurations, velocities, and accelerations. Con-
straints (3a), (3b), and (3c) enforce consistent dynamics. Constraint (4) enforces actuation
limits.

Aside from the obstacle-avoidance constraints (1), which are non-convex, the remaining
constraints are all linear in the decision variables. Therefore, only the obstacle-avoidance
constraints must be linearized to form the problem as a locally valid quadratic program
(QP).

Following from prior work [9, 50], the solver uses sequential quadratic programming
(SQP), but we change how it shrinks time. Instead of reducing H between SQP solves, it
keeps H fixed, and reduces tstep using an empirically selected upper bound, and a binary
search to find the lower bound. (In experiments, we fixed H = 16 and chose tstep = 160 ms
based on a parameter sweep.)

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 60

For the first SQP solve, BOMP initializes the solver with a trajectory that is linearly
interpolated in joint space between the start and goal configurations. For each subsequent
solution (i.e., as tstep decreases), BOMP initialize the SQP solver with the trajectory from
the previous solve.

5.4.4 Collision Checking

During optimization, BOMP must repeatedly check for collisions between the robot, grasped
box, and environment. Due to the long-nosed end-effector, the robot arm is almost always
outside of the bin, so we accelerate our collision checking by only checking for collisions the
robot’s end-effector and the environment.

Collision Model

Using the yD, we compute a height-map collision environment, and downsample it by max-
pooling to improve collision-checking efficiency. (In experiments, we downsample to 30×40.)
We use capsules (cylinders with hemispherical end caps) for collision checking because
capsule-capsule distance checks have a fast, closed-form solution, roughly 10x faster than
the box-box collision checking in Flexible Collision Library [102]. Capsules tightly bound
the tall, thin height map pixels, and the tube-like end effector.

We approximate each height-map cell with a vertically-oriented capsule. The cylindrical
portion of the capsule extends from some “world bottom” z0, outside the max reach of the
robot, to the top of the height map column, zij. The set of all environment capsules is Y .
We define R as set of capsules the bounding the robot end effector and grasped box.

Collision Optimization

During the optimization, we check for collisions between the robot end effector, grasped box,
and the height map. For efficiency, we only check each capsule in R against the height map
capsules that intersect its axis-aligned bounding box. We define d as the closest distance
between capsules in Y and R at a given time along the trajectory.

To encourage the trajectory to go over the height map, we define d to be the distance
along the up axis (i.e., out of the height map), when the center axis of the closest robot-fixed
capsule c∗R intersects the closest environment capsule c∗Y .

We follow CHOMP [7] in scaling d by the robot’s linear speed to disincentivize speeding
through obstacles. We compute the robot’s linear speed at the collision point by applying
the manipulator Jacobian to the joint velocities at that point in the trajectory. We densely
sample d uniformly over each trajectory segment between t and t+ 1 and sum the results to
get Dt. (In experiments, we sample 50x over each segment based on a parameter sweep to
find the minimum value that does not impact on success rate.) Defining D̃t as the closest
distance using the last QP solve trajectory τ̃ , we define the linearized collision constraints

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 61

Figure 5.3: Deep learning warm-start. To create the training dataset (left), we drop boxes
randomly in a simulated bin, then generate a downsampled depth map via max pooling. From the
topmost box, we compute start and goal configurations and the dimensions of the corresponding
box, and pass them to BOMP-cold to generate an optimized trajectory. We save the optimizer
inputs with the resulting trajectory in a dataset. The warm-start network (right) predicts a tra-
jectory τ and tstep given a height map converted from a depth image, start and goal configurations,
and the grasped box parameters.

as:

D̃t +
∂Dt

∂qt
qt +

∂Dt

∂qt+1

qt+1 +
∂Dt

∂q̇t
q̇t +

∂Dt

∂q̇t+1

q̇t+1 > 0.

We compute the Jacobians using finite differences.
To limit failures from the optimizer stopping with slight (e.g., < 1 cm) collisions, we

inflate the capsules in R (by 1 cm), and add an equivalent acceptance tolerance. Thus, if
the optimizer terminates within the tolerance, the trajectories are verifiably collision-free.

Carving

To avoid “phantom” collisions at q0, we model the change of the grasped box from being a
part of the obstacle environment to being attached to the robot end effector. We carve out
(remove) any capsule in Y in the same location as the capsule model for the grasped box.
To prevent physically infeasible trajectories due to carving through bin walls, we artificially
thicken the bin walls in the height map passed to the optimizer. Figure 5.2 shows carving
results.

5.4.5 Deep Learning Warm-start

Computing fast trajectories requires long compute times (roughly 30 seconds). DJ-GOMP
showed that a neural network could speed up computation by outputting an initial guess for
τ and H (the trajectory and horizon) that could warm-start the optimizer and allow it to
converge faster. We adapt this technique to reduce the computation time of BOMP. We train

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 62

a neural network (Fig. 5.3) that predicts the optimal trajectory τ and the optimal segment
duration tstep given start and end poses, radius and endpoints of the grasped capsule (in the
end-effector frame), and the scene’s height map. The neural network passes the height map
through two convolutional layers to produce an embedding, which is concatenated with the
start pose, end pose, radius, and endpoints of the grasped capsule. This concatenated vector
is passed through an encoder to yield a trajectory and tstep.

Generating Training Data

To generate training data, we use Isaac Gym [103] to simulate an environment with a rect-
angular bin that matches the real bin’s dimensions and fill it with randomly sampled boxes
with dimensions and probability matching our real setup. A virtual depth camera captures
overhead depth images of the bin and converts it into a height map. To closely match the
data distributions of boxes through the picking cycle, we repeatedly select the topmost box
using the same prompting method in real (using the ground truth box shape instead of a
SAM estimation) and remove it until the bin is sufficiently empty (more than 19 boxes re-
moved). Before each removal, we record the current scene using the virtual depth camera
mentioned above. In experiments, the training set consists of 25,000 simulated scenes and
their height maps, grasped boxes, and optimal trajectories generated from a distribution
likely to appear at test time.

Warm-starting

Even though the bin contents are different in every scene, we are able to learn a useful warm-
start by referencing the height map during training and inference. At test time, we prompt
the network with the trajectory endpoints, grasped box parameters, and height map. We
warm-start the optimizer with the network’s predicted trajectory τ and segment duration
tstep.

We differentiate from DJ-GOMP, which does not include a grasped box or the height
map in the inputs to the neural network. Furthermore, we predict tstep given a fixed H;
DJ-GOMP did the opposite. This change simplifies the neural network architecture but
requires interpolation to run on a robot’s fixed-time-interval controllers.

5.4.6 Speeding Up Computation

We make several optimizations to speed up computation. We parallelize the Jacobian calcu-
lations for the non-convex obstacle constraints over 12 Intel Core i7-6850K CPUs at 3.60GHz.
Like DJ-GOMP [50], we solve only until a collision-free solution is found. Empirically, the
additional solve time to find a fully optimal solution does not outweigh the additional com-
putation time cost to generate it.

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 63

5.5 Experiments

We compare BOMP with two baselines: (1) an industry-standard Up-Over-Down motion
that lifts the grasped box vertically, moves horizontally over the bin wall, then lowers; and (2)
an asymptotically optimal sampling-based motion planner from Motion Planning Templates
MPT [97] with a subsequent time-parameterization step [49].

We compare the algorithms on compute time, execution time, total time (compute time
+ execution time), and collision-free trajectory generation rate (“success rate”). In physical
experiments, we also report “execution success rate” which considers the percent of all exper-
iments (including those which failed in generation) where the robot successfully transports
the box from start to goal.

We note that SAM inference time is not included in our computation time because all
methods use the same prompting strategy to compute the initial pose to grasp the object.
Therefore we compare only the trajectory computation time in our tables.

Due to reachability constraints associated with our robot and environment, a fully vertical
extraction is often not possible. Thus, the Up-Over-Down baseline performs a two-stage “up”
motion. The first stage moves the end-effector vertically as far as possible; the second stage
moves the box vertically as far as possible while pitching 22.5◦ back to enable the box to be
raised higher when a top-down grasp is no longer kinematically feasible. From most locations
in the bin, it is kinematically infeasible for the robot to lift the box higher than the rim of
the bin with a top-down grasp.

We use MPT’s parallelized RRT* (PRRT* [104]), as it is a fast asymptotically optimal
planner. We configure it to optimize for minimum distance traveled in joint space. We run
MPT for 1 second (MPT-1), which is similar to BOMP’s generation time, and MPT for 10
seconds (MPT-10), which has more time to find and optimize a solution. While PRRT* will
eventually find a solution if one exists, it may fail with insufficient planning time. Since the
MPT baselines are sampling based, we execute them three times each per scene and average
the metrics. We only include successfully computed trajectories in the calculation for the
time-based metrics.

We also perform ablations to assess the impact of warm-starting and training the neural
network on the height map. We isolate the deep-learning warm-start by including cold-
started optimization with an empirically selected heuristic tstep of 160 ms, labeled BOMP-
t160ms in Table 5.1 and Table 5.2. We also consider the impact of the neural network knowing
the height map in BOMP-NH (“no heightmap”). For this ablation, we perform neural
network inference without an input height map. As in DJ-GOMP [50], since additional SQP
solves empirically take more time to compute than they save in execution time, we stop both
BOMP and BOMP-t160ms after they first find a feasible trajectory. To compare against
optimal execution times, we also show results from the cold-started optimization when run
to optimal convergence (labeled BOMP-cold).

For both simulated and physical scenes, we model a UR5 robot reaching into a deep bin
(dimensions 1.06×0.562×0.46 m3) full of boxes. To allow the robot to reach and manipulate
boxes deep in the bin, we equip it with the “bluction” tool from Huang, et al. [105] (blade

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 64

Figure 5.4: Challenging grasp poses. In physical experiments, we observe that using the long
suction tool to grasp arbitrarily oriented boxes often results in challenging grasp poses such as
the ones pictured here. While the industry-standard Up-Over-Down method fails in these cases,
BOMP is able to generate fast, jerk-limited, collision-free trajectories.

and camera attachments removed).
We fill the bin with boxes of assorted sizes. For our experiments, we use boxes that are

4×4×2 in3, 6×4×3 in3, 7×5×2 in3, and 9×6×3 in3. We use between 5 and 15 boxes of each
type to fill the bin. We use these box sizes because:

• They represent a range of aspect ratios (which directly affects the fidelity of the capsule
model).

• The 6×4×3 in3 and 9×6×3 in3 boxes have the 6×3 in2 face in common. We demonstrate
that our pipeline is robust to this.

5.5.1 Simulated Experiments

We generate trajectories in 114 simulated environments generated using the same process
used to generate neural network training data (described in Sec. 5.4.5 and shown in Fig. 5.3).
However, these scenes were not previously seen by the neural network.

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 65

As the setup can result in kinematically infeasible problems, we exclude generated envi-
ronments where the initial grasp results in an IK solution that is not in collision. Results
are shown over the remaining 96 feasible scenes.

For each simulated environment, we capture a depth image and convert it into a height
map and select the topmost box to be removed. In simulation, rather than using SAM [99]
to determine box pose and size (Section 5.4.1), we use ground truth box pose and size to
inform the solvers of the grasped box. We define the goal at a joint configuration where all
in-distribution grasped boxes can be held without collision. For a fair comparison, we use
the capsule model (5.4.4) to evaluate collisions for all planners and we carve the height maps
as in Fig. 5.2 before solving.

We then use BOMP, baselines, and ablations to plan trajectories that carry the selected
box from the given start point to the endpoint. We track computation success rate, compute
time, trajectory execution time, and total time (compute time + execution time). Table 5.1
displays the results of these experiments.

We find that MPT-10 and the cold-started BOMP ablations have the highest success rate.
With the warm-start, BOMP strikes a balance between fast computation and fast collision-
free trajectories. It achieves a similarly high success rate to MPT-10, a fast computation
time close to BOMP-t160ms, and a fast execution time close to BOMP-cold.

Only Up-Over-Down achieves a barely faster total time than BOMP due to its negligible
computation time, but Up-Over-Down’s success rate is also very low. This is primarily due
to the kinematic difficulty of safely vertically extracting arbitrarily oriented boxes, where
the suction normal is generally not aligned to gravity.

BOMP-NH, without a height map of the environment, tends to predict trajectories closer
to “average” than BOMP. This means larger (less optimized) values of tstep and trajectories
that are on average further from optimal. This explains the increase in trajectory execution
time and success rate. The higher predicted tstep also means that it is less often below the
optimal value (i.e., infeasible). This results in the slightly higher success rate. On average,
BOMP-NH’s computation time is 0.1835 s higher than BOMP, suggesting that the network’s
knowledge of the obstacles through the height map generates trajectories that are more
favorable for warm-starting.

In 93% of failure cases for BOMP-cold and BOMP-t160ms, the target box starts in
contact with the bin wall. In these cases, a long tenuous extraction path is necessary to
lift the box out of the bin without colliding. The warm-started BOMP and BOMP-NH
also occasionally under-predict the optimal segment duration tstep, resulting in their slightly
lower success rates.

We note that the baselines do not generate jerk-limited trajectories, while BOMP and
ablations do. In physical experiments (Sec. 5.5.2), we observe that the trajectories generated
by MPT are more likely to drop boxes during execution. This particularly happens when
the trajectory turns high-jerk “corners” and at the trajectory endpoint.

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 66

Algorithm Success Rate Exec. Time(s) Compute Time(s) Total Time(s)

MPT-1 69.44% 1.941±0.776 1.833±0.044 3.774±0.786
MPT-10 84.38% 1.941±1.023 10.872±0.049 12.813±1.042

Up-Over-Down 16.67% 1.689±0.225 0.837±0.158 2.525±0.293

BOMP-NH 80.21% 1.209±0.146 1.664±2.498 2.872±2.496
BOMP-cold 84.38% 0.982±0.352 33.696±20.067 34.678±20.002

BOMP-t160ms 84.38% 2.560±0.000 1.661±1.144 4.221±1.144
BOMP 78.13% 1.080±0.142 1.481±1.639 2.561±1.649

Table 5.1: Simulated experiments results. In 96 feasible simulated environments, we execute
3 trials for the sampling-based methods (MPT-1 and MPT-10) and 1 trial for the deterministic
methods. MPT-10 and the cold-started BOMP ablations have the highest success rate. With the
warm-start, BOMP achieves a similarly high success rate while also achieving the fastest total time
aside from the unreliable Up-Over-Down.

Algorithm
Generation Execution

Exec. Time(s) Compute Time(s) Total Time(s)
Success Rate Success Rate

MPT-1 68.89% 53.33% 2.448±1.319 1.747±0.137 4.194±1.334
MPT-10 93.33% 66.67% 2.210±1.269 10.792±0.140 13.001±1.300

Up-Over-Down 6.67% 6.67% 1.432±0.000 0.710±0.000 2.142±0.000

BOMP-cold 86.67% 73.33% 0.884±0.279 34.074±14.616 34.958±14.590
BOMP 86.67% 80.00% 1.035±0.168 1.583±1.075 2.617±1.067

Table 5.2: Physical experiments results. In 15 physical experiments, BOMP successfully exe-
cutes the most trajectories and the fastest trajectories by total time (except Up-Over-Down, which
only successfully executes 1 trajectory). MPT-1 and MPT-10 generate the most theoretically fea-
sible trajectories but their non-smooth trajectories and lack of jerk limits result in several dropped
boxes and automatic protective stops during physical execution.

5.5.2 Physical Experiments

We perform similar experiments in 15 real environments (see examples of the physical envi-
ronment in Fig. 5.2). We use an overhead Intel RealSense D455 camera to capture height
maps for collision avoidance and RGB images for segmentation. These images are 480×640
pixels, but we downsample the height map to 30×40 for collision checking (Sec. 5.4.4).
Grasped boxes are selected and detected using the full grasp selection pipeline (Section
5.4.1).

As with simulated experiments, we consider only scenes with reachable grasp poses that
are not in collision. The results of these experiments are in Table 5.2.

In physical experiments, BOMP successfully executes the most trajectories and achieves
the fastest total time (computation + execution) other than Up-Over-Down, which only
successfully executes 1 trajectory. While MPT-10 generates the most theoretically feasible
trajectories, these often result in dropped boxes or automatic protective stops because its
trajectories are not jerk-limited. Specifically, the trajectories computed by the sampling-

CHAPTER 5. BOMP: OPTIMIZED MOTION PLANNING FOR BIN PICKING 67

based planners often contain sharp turns and sudden changes in speed. BOMP computes a
smooth trajectory that better avoids protective stops and drops.

At execution time, the failure cases for BOMP and BOMP-cold are primarily due to
the capsule carving (Sec. 5.4.4) over-carving into adjacent obstacles (the capsule model is
an overestimate of the actual box volume, so it may enclose other obstacles). When the
resulting trajectories are physically executed, these obstacles may dislodge the box from the
robot gripper.

Up-Over-Down has an extremely low success rate in this environment due to the complex
grasp poses (not simply top down). We use a long suction gripper to be able to access all
parts of the bin, but this has a consequence of difficult grasp poses when aligning the gripper
to the surface normals of oriented boxes. Figure 5.4 shows some example scenes with complex
grasp poses from which BOMP is able to compute a solution, but Up-Over-Down is unable
to vertically lift the grasped box.

5.6 Discussion and Future Work

We present BOMP, an optimization-based motion planner integrated into an end-to-end
bin picking pipeline. We integrate a grasp and target box identification method using the
Segment Anything Model [99], and we warm-start the motion planning optimization on the
output of a deep-learning model trained to include obstacles in the form of a height map. We
train the network offline on simulated data, then use the trained network online to provide
an initial guess of the trajectory to warm-start and speeds up computation.

In 129 experiments in real bin environments and in simulation, we showed that BOMP
outperforms heuristic and sampling-based planner baselines in execution time by up to
36% and 58% respectively, while generating jerk-limited trajectories. Furthermore, BOMP
achieves the fastest total time (computation time + execution time) among methods with
comparable success rate.

In future work, we will address several limitations. We plan to extend beyond known
boxes to general unseen grasped objects by using SAM [99] alongside a grasp planner such as
Dex-Net 3.0 [79]. We will also speed up SAM prompting by using a smaller model fine-tuned
for the bin.

We also plan to improve the fidelity of our capsule modeling without sacrificing too much
of its speed. As presented in this chapter, the capsule model overestimates the extents of the
grasped box, so it sometimes carves into adjacent obstacles. As a result, the motion planner
may compute a solution that would collide in real since not all of the collision environment
is present in the carved depth map it uses to plan.

Within these limitations, though, BOMP significantly outperforms baselines in speed
while maintaining a comparable or superior success rate.

68

Part II

Efficiency and Reliability in Grasping
Partially Observable Rigid Objects

69

Chapter 6

AVPLUG: Approach Vector Planning
in Cluttered Environments

Leading grasp planners often struggle to identify effective grasps on objects that are partially
occluded. AVPLUG enhances grasp reliability by utilizing an octree-based occupancy model
and Minkowski sum calculations to determine a collision-free approach vector for grasping.

6.1 Introduction

In many automation tasks, such as extracting a product from a warehouse shelf, removing
an ingredient from a refrigerator, or retrieving a tool from a cluttered workbench, desired
objects may be hidden behind other objects. This presents a challenge in both locating the
target object and finding a grasp for it. To automate such tasks, robots need to first perform
visual search, and then robustly grasp and manipulate target objects once found. Although
prior work [10, 106, 107] proposed methods for grasping objects in isolation, finding a robust
grasp becomes significantly more challenging [108, 109] in a cluttered environment where the
target object may be partially or fully occluded.

Mechanical search [110] aims to find a target object in clutter and focuses on clearing a
view to the target by pushing or removing occluding objects [110–114]. However, this requires
planning and executing multiple collision-free motions of the arm, adding to the overall
runtime in the form of both motion planning and execution. Furthermore, the placement of
occluding objects is often structured, for example with objects resting on a kitchen counter
or supermarket shelf [115]. In such environments, pushing or removing objects may be
undesirable. In addition, when objects are in unstable poses, even glancing contacts can
lead to accidental toppling, which can damage delicate objects such as glass bottles. In
contrast, this work focuses on servoing a wrist-mounted camera with a unicontact suction
gripper tool (see Fig. 6.1) to a view from which the target object is fully visible and thus
extractable.

Efficiently searching for a view of a target object is related to next-view planning, the

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 70

Figure 6.1: AVPLUG searches for an approach vector to grasp the occluded red target object on the
worksurface. AVPLUG moves the wrist-mounted tool to a view from which it can find an approach
vector for unicontact grasping (successful view shown in green). AVPLUG uses an occupancy map
and a Minkowski sum to track previously explored regions of the scene and to find and evaluate
candidate vectors. Inset: The end effector used by AVPLUG is comprised of an RGBD camera
with its optical axis aligned to a unicontact suction gripper.

problem of finding an additional sensor placement to improve scene reconstruction [116]. This
topic has a rich history in computer vision [117–119]. Next-view planning requires keeping
track of which regions of the scene have already been explored and which have not. For the
task of unicontact grasp planning, a full scene reconstruction is computationally expensive
and unnecessary; thus, we propose the use of an efficient 3D voxel-based occupancy map
(e.g., OctoMap [120]) as it provides the required information and can be computed rapidly.

We focus on unicontact suction grasping. As opposed to parallel-jaw grasping, in which
the contact points are rarely visible from the approach vector, unicontact grasp quality is
highly correlated with the visible surface normals [79]. Accordingly, we propose that aligning
the suction gripper contact axis to the camera optical axis can be well-suited for a unicontact
grasp exploration policy, in which finding an unoccluded view of the graspable target surface
corresponds to finding an approach vector.

We present Approach Vector Planning for Unicontact Grasping (AVPLUG), an algorithm
that leverages an occupancy map based on an octree and Minkowski sum computation to
find an approach vector for unicontact grasping of a partially or fully occluded target object
in a structured clutter scene, without changing the scene. First, AVPLUG samples potential
target object locations from the unknown regions of the occupancy map. It then efficiently
casts rays outwards from these candidate locations in order to identify unobstructed candi-
date vectors. Next, it cross-references these candidate views with a pre-computed expected

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 71

grasp quality distribution (which takes into account individual grasp quality as well as uncer-
tainty in target object pose). It moves to the view with the highest expected grasp quality.
AVPLUG repeats this process until it finds a collision-free approach vector, or reports failure.

In the case of a fully occluded target object, we encounter an additional challenge, in
that there is no clear signal to guide exploration. In order to narrow the search space, we
propose to efficiently compute the Minkowski sum [121] between the target object and the
region of the occupancy map that we have explored thus far. This constrains the potential
locations of the target object on the worksurface.

Experiments in simulation and on a physical Fetch robot suggest that AVPLUG can find
an approach vector in up to 20× fewer steps than a baseline policy, even in the presence of
dense occlusions and in tight spaces (see Fig. 6.6). This chapter makes three contributions:
(1) A formulation of the problem of efficiently finding an approach vector for unicontact
grasping a target object in the presence of partial or full occlusions; (2) AVPLUG, an efficient
algorithm that uses an octree-based occupancy map and Minkowski sum computation to
address the above problem; and (3) Experiments in simulation and on a physical robot
comparing AVPLUG with a grid search baseline, which systematically visits views on a
discretized grid.

6.2 Related Work

There has been significant prior work on searching for target objects in clutter, however the
most common approach is to move or remove occluding objects. For example, Danielczuk
et al. [110] defined the mechanical search problem and proposed a pipeline to iteratively
search for a partially occluded object through a series of parallel-jaw grasping, suction, and
pushing actions. Huang et al. [112] and Danielczuk et al. [111] then extended this work
by learning an occupancy distribution to guide the search process to recover the occluded
target. Xiao et al. [122] formulate the object search in clutter task as a POMDP and suggest
an algorithm that takes into account the robot’s current belief to evaluate the success of
a manipulation task. Murali et al. [115] leveraged a variational autoencoder [107] to plan
6-DOF parallel-jaw grasps on a partially occluded target object in a cluttered scene, and
remove occluding objects if no feasible grasp is found. Boroushaki et al. [123] identify and
locate a fully occluded target object using RFID tags. In this work, we instead focus on
moving a wrist-mounted camera to find clear approach vectors. We align the optical axis
with these approach vectors in order to grasp the target object without affecting the rest of
the scene.

In active perception [118, 119, 124, 125], we change the position of the sensor to reveal
more of the scene’s geometry. This is particularly useful for tasks such as 3D scene recon-
struction [126] and mapping [127]. The next-best-view planning problem refers to computing
the optimal next view with respect to a chosen goal. In the context of manipulation, a cam-
era mounted on a robot end effector can guide the motion. Kahn et al. [128] model the
occluded regions where the target object may be located as a mixture of Gaussians, and en-

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 72

O

optic
al ax

is

r

(cx, cy)

(px, py, pz)

Figure 6.2: States in AVPLUG consist of a camera location (px, py, pz) on a sphere V centered
on O with radius r, and a focal point (cx, cy) (with implicit cz = 0) on the worksurface. (cx, cy)
represents a potential target location, at which the camera’s optical axis points.

courage exploration during the trajectory optimization by penalizing for uncertainty. Other
works constrain the action space to top-down (4-DOF) grasps. For example, Morrison et
al. [129] propose a top-down grasp planning controller that uses active perception to choose
the next-best-view of the camera as it approaches the target object along the z-axis to reveal
more robust grasps. Novokovic et al. [130] propose a reinforcement learning based active and
interactive perception system from a top-down view to uncover a hidden target cube in a pile
of cubes. In contrast, in this work we consider approach directions on a sphere centered on
the clutter centroid and consider candidate 5-DOF grasps (unicontact suction grasps have
symmetry about the approach vector).

Occupancy maps are 3D representations of the environment that store information about
which regions have already been explored and which have not. This information can be used
to guide next-best-view planning. Hornung et al. [120] presented OctoMap, an efficient
implementation of an octree-based occupancy map. Given a point cloud, OctoMap updates
a 3D voxelized representation of the scene with one of three labels per voxel: occupied,
empty, or unknown. Santos et al. [131] used an octree alongside a robotic arm and wrist-
mounted camera, however they focused on 3D scene reconstruction. Octrees have also been
used for grasping a target object in a cluttered scene [113, 114, 132], however in contrast
to moving the camera, these works remove occluding objects from the scene to expose the
target object.

6.3 Problem Statement

Given:

• An RGBD camera with known intrinsics, mounted in alignment with a vacuum suction
cup gripper on a robot arm (see Fig. 6.1 inset).

• A target object of known geometry.

• An environment of unknown objects resting on a planar worksurface, partially or fully
occluding the target object.

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 73

• A target object detector that returns a binary mask of the target object if it is visible
from the RGBD camera.

• A suction grasp planner (Dex-Net 3.0 [79]) that samples candidate suction points on
a depth image and returns the point with the highest associated grasp quality value.

Output: an approach vector v along which a collision-free linear motion can achieve a
unicontact grasp of the target object. AVPLUG aims to minimize the number of steps to
find such an approach vector, or reports failure.

6.3.1 Definitions

We define the following states, actions and observations:
Worksurface. A worksurface is a planar surface orthogonal to the z-axis which is aligned

to gravity. The space reachable by the robot may be bounded from below by the worksurface
and from above by a ceiling plane.

Sphere. Let V be a sphere with radius r centered on the origin of the worksurface (see
Fig. 6.2).

States (S). Let st ∈ S denote a state at timestep t defining the position and orientation
of the camera on V . We restrict the camera focal point to within the bounds of the work-
surface. The camera can rotate about its placement on V to look at any point on the planar
surface, but does not roll around its optical axis. The state space is thus S = S2×S2, which
we represent with a pair of Cartesian coordinates (p, c), where p ∈ R3 is the location on V ,
and c ∈ R3 is the point on the worksurface that the camera’s optical axis intersects, thus
cz = 0 (see Fig. 6.2). Let v = c − p be the approach vector, defined as the direction from
the camera to the target.

Actions (A). Let at = (∆px,∆py,∆pz,∆cx,∆cy) denote the change from the state st
to state st+1, where st+1 is restricted to remain on V .

Observations (Ω). Let yt = RH×W×4
+ be an H ×W RGBD image taken from state st

at timestep t.

6.4 Method

Given an observation yt, AVPLUG seeks a grasp approach vector aligned within a tolerance
angle ψ of the camera optical axis. After detecting and segmenting the target object, AV-
PLUG samples and evaluates grasps from its visible surface using a provided grasp planner,
G : RH×W

+ → (R3 × S2,R). G maps grasps parameterized by a 5-DOF pose g ∈ R3 × S2 to
the corresponding grasp quality q ∈ [0, 1]. A higher value of q indicates a more robust grasp.
If a termination condition T is not reached—i.e., there are no visible grasps in yt above a
certain grasp quality threshold—AVPLUG finds the next approach vector.

Scenes where the target object is fully occluded (e.g., due to inter-object and environ-
mental occlusions) can be particularly challenging, since AVPLUG does not know the target

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 74

(a) Update Octree (b) Compute Candidate
Target Locations

(c) Compute Candidate Vectors

(d) Evaluate Candidate Vectors
(e) Extract Target

or Report Failure

Support
Plane

Minkowski
sumDeprojecting

Point Cloud

Input

Single stable pose
and z-rotation

Distribution over multiple
stable poses and z-rotations

Figure 6.3: AVPLUG overview. (a) AVPLUG updates the octree by deprojecting a depth
image to a point cloud and inserting it to the octree. (b) AVPLUG queries the part of the octree
corresponding to the worksurface in order to identify candidate target locations in the unknown
regions (white is unknown, black is occupied). In the figure, the location of the target object
is gray, although in practice its location is unknown. To reduce the number of candidate target
locations, we compute the Minkowski sum between the convex hull of the known target object and
the occupied section of the worksurface. (c) AVPLUG casts rays outwards from candidate target
locations to find candidate approach vectors. The corresponding camera positions (restricted to
a sphere around the workspace) are marked by blue points. (d) AVPLUG uses a pre-computed
expected grasp quality distribution to evaluate each candidate vector. The distribution is computed
by averaging ground-truth grasp quality data from the target object model over stable poses and
z-axis rotations. The average is weighted according to the relative likelihood of each stable pose.
The data is then discretized into bins, with each bin represented by a colored dot in the figure (green
represents the highest expected grasp quality, and red represents the lowest). (e) Once the target
object is revealed, AVPLUG uses the provided grasp planner G to find a collision-free approach
vector. It then aligns the camera’s optical axis with that approach vector, moves linearly along
the approach vector to grasp the target object, and extracts the grasped target with an upward
motion.

object location. Without full knowledge of object poses and geometries, it is difficult to
estimate the location and orientation of the target object, and more difficult still to estimate
which views will uncover a graspable surface. We address this with an occupancy map, which
we use to compile knowledge from previous views into an estimate of the scene state. This
allows the policy to efficiently keep track of unexplored regions of the scene and prioritize
them in subsequent steps. The occupancy map used in AVPLUG is based on an octree,
M : R3 → {−1, 0, 1}, which maps voxels (minimum-size boxes in the octree) to occupancy
values. In this paradigm, -1 represents unknown occupancy, 0 means known to be empty,
and 1 means known to be occupied. The resolution of the octree is configurable—higher
resolution allows for a more accurate search at the expense of increased processing time.

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 75

6.4.1 Updating the Octree

To update AVPLUG’s representation of the occupancy map, the depth image in observation
yt is deprojected to a point cloud using the known camera intrinsics. It is then transformed
to a global coordinate frame centered at the center of the worksurface using the known
camera extrinsics. This transformed point cloud is inserted into the occupancy map M
(Fig. 6.3(a)).

6.4.2 Finding Candidate Target Object Locations

If the target object is partially visible, AVPLUG approximates the translation of the target
object as the center-of-mass of its visible portion. Otherwise, AVPLUG’s first priority is
finding the target object. With the assumption that all objects rest on a planar worksurface,
AVPLUG reduces the computational complexity of the problem by limiting the search for
candidate target object locations to the 2D worksurface. We define a 2D occupancy map as
the 2D slice of the octree that corresponds to the worksurface, i.e., the portion at z = 0 in
the global coordinate frame (see Fig. 6.3(b)). We note that AVPLUG does not project the
occupancy map onto the worksurface, as this can result in missing a target object that is hid-
den beneath another object (e.g., a small object hidden below a large bowl). We also observe
that there are only occupied and unknown voxels on the worksurface. AVPLUG searches
for a set of candidate target object locations U in the unknown region of the worksurface
(Fig. 6.3(b)).

Given the geometry of the target object, and assuming it has a finite set of feasible
stable poses on the worksurface, we use a Minkowski sum [121] to estimate an occupancy
distribution for the location of the target object. To compute the Minkowski sum, we first
generate polygons from both the occupied region and the target object. For the former,
we convert the 2D occupancy map to a binary image and find the contours of the occupied
components (see Fig. 6.3(B)). If the contours form self-intersecting polygons, we smooth them
using erosion and dilation [133]. To create a polygon of the target object, we project the
vertices of the known mesh to the worksurface and compute the convex hull of the projected
vertices. We then compute the Minkowski sum between the occupied region polygons and the
target object polygon. This inflates the occupied region in a way that eliminates unknown
points that are less likely to occupy the target object. Since the stable pose of the target
object and its rotation about the z axis are unknown, we discretize the rotations into 8 bins
and compute a Minkowski sum per stable pose and discretized rotation. We then sum the
results and normalize to estimate a distribution for the location of the target object. We
then use this distribution to uniformly sample a set of points U that maximize the likelihood
of occupying a portion of the target object.

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 76

6.4.3 Finding Candidate Vectors

To find a candidate collision-free approach vector v, AVPLUG casts rays outwards from
the approximated target locations. This method draws inspiration from Lozano-Perez et
al. [134], who describe an approach to fine motion synthesis by chaining backwards from a
known goal toward the current position (Fig. 6.3(c)). If ray i in direction d does not intersect
any occupied voxels, it represents a potentially clear line of sight, and the intersection point
p ∈ R3 of the ray with V is computed (see the blue points in Fig. 6.3(c)). There may be few
or many candidate vectors, in correspondence with the levels of occlusion in the scene. A
valid candidate vector consists of a point on the sphere and the negated ray direction leading
to it: v = (p,−d). To visit such a view, we move the camera to position p and align its
optical axis with −d.

6.4.4 Evaluating Candidate Vectors

Given the target object geometry and pose we could use G to compute grasps and check
which approach vector aligns with a collision-free candidate vector. However, AVPLUG
does not know the target object pose a priori; it only has access to the object geometry and
a probability distribution of stable poses. Using this information, AVPLUG computes an
expected grasp quality distribution for the target object before viewing any scenes. To com-
pute this distribution, AVPLUG performs a weighted average of grasps and their associated
quality, averaging over the known stable poses and all z-axis rotations. Higher likelihood
stable poses are given more weight in the average. It then discretizes the data into 5◦ ele-
vation × 5◦ azimuth bins (see Fig. 6.3(d)). AVPLUG evaluates each candidate vector based
on the score of the bin containing its direction vector −d. This method prioritizes views
that align with a larger number of approach vectors (generally corresponding to different
stable poses). Such views are more likely to find at least one approach vector that leads to
a successful grasp in the given scene.

6.4.5 Finding and Evaluating Visible Grasps

Once the target object is revealed, AVPLUG queries the grasp planner G for visible grasps
g ∈ R3 × S2. It then sorts the grasps by quality and iterates through the grasps in order to
classify them. First, AVPLUG discards any previously seen grasps (from visible from prior
views) known to collide or be unreachable. Next, AVPLUG casts a ray in the occupancy
map outward from the grasp contact point along the negated approach vector. If there
are any collisions with voxels known to be occupied, it classifies this grasp as colliding.
Otherwise, AVPLUG declares the grasp is collision-free, then moves to align the camera
with the candidate approach vector and attempt the grasp. It caches all remaining visible
grasps for later consideration if this grasp fails (e.g., by an undetected collision or obstacles
preventing extraction). If none of the visible grasps is collision-free, AVPLUG finds the next
view following the steps in Sections 6.4.3, 6.4.4.

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 77

6.5 Experiments

To evaluate AVPLUG, we run experiments in simulated and physical environments, and
compare to a baseline policy.

6.5.1 Simulation Experiments

We use R = 0.01 m resolution since it empirically allows for a sufficiently accurate Minkowski
sum in the fully occluded case and improves grasp collision estimation in the partially oc-
cluded case. To implement the octree for the occupancy map, we use the open-source
OctoMap [120, 135].

We use ground truth segmentation to generate a binary mask of the target object. Since
AVPLUG relies on an external instance segmentation algorithm, in practice, one could use an
off-the-shelf object segmentation algorithm such as SD Mask R-CNN [136] with an additional
matching phase for classification.

To decide whether the target object is graspable from the current state, we use a grasp
planner based on Dex-Net 3.0 [79] as an oracle. Dex-Net 3.0 pre-computes suction grasps
and associates quasi-static wrench-resistance quality metrics to a target object mesh, then
matches these to pre-computation results at evaluation time.

6.5.2 Environments in Simulation

We first evaluate AVPLUG on two simulated scenes: 1) a tabletop, for which the potential
vectors on the sphere V range between elevation angle θ ∈ [0◦, 85◦] and azimuth angle
φ ∈ [−90◦, 90◦], and 2) a counter with a cabinet above that constrains the possible grasp
approach directions to a slice of V ranging between elevation angle θ ∈ [55◦, 85◦] and azimuth
angle φ ∈ [−90◦, 90◦]. In both cases, we use a sphere V with radius r = 0.6 m. To generate
multiple different levels of occlusion, we use N = 10 objects of varying heights. Object
models were selected from Thingiverse [137] and YCB [138]. We sample the locations of the
objects from a uniform distribution in a bounded 0.4 m × 0.4 m worksurface, and position
each object in a stable pose. We also randomize the initial camera view. We generate 3
tiers of scene complexity (Fig. 6.4) by altering the relative proportions of larger objects; this
affects the level of occlusions in the scene. Tier 1 consists of 2 flashlights, 2 spray bottles
and 5 spiral bulbs; Tier 2 replaces the flashlights from tier 1 with 1.6× higher and 1.7×
wider fire extinguishers; and Tier 3 consists of 2 fire extinguishers, 2 flashlights, 2 spray
bottles, and 3 spiral bulbs. For all tiers, the target object is a light bulb, which is easily
occluded due to its small size compared to the other objects in the scene. After executing a
successful grasp, the target object is extracted with an upwards motion (Fig 6.3(e)).

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 78

(a) Tier 1 (b) Tier 2 (c) Tier 3

Figure 6.4: Difficulty tiers with varying levels of occlusions. The target is shown in red on
a tabletop environment. The difficulty tiers define scenes with increasing levels of complexity due
to increased occlusions. (a) Tier 1 includes 2 flashlights, 2 spray bottles, and 5 spiral bulbs. (b)
Tier 2 includes 2 fire extinguishers, 2 spray bottles, and 5 spiral bulbs. (c) Tier 3 includes 2 fire
extinguishers, 2 flashlights, 2 spray bottles, and 3 spiral bulbs.

Figure 6.5: Comparisons of steps to completion of successful rollouts in simulation. The scale on
the horizontal axis is 15× larger for the GridSearch policy.

6.5.3 GridSearch Baseline

We compare AVPLUG to a GridSearch baseline. GridSearch discretizes the sphere V into
212 fixed-spaced views (the distance between neighboring views is l = 5◦ in both elevation
and azimuth) and systematically visits each view until it finds a view from which it can plan
a grasp. This baseline visits all the views to the right of the initial view, moves up to the
next row of views once it reaches the maximum azimuth angle defined in 6.5.2, continues
the search by moving left until it reaches the next boundary, and so on. Once it reaches
the top-most row and cannot move up, it continues the search from the bottom-most row.

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 79

Steps Distance [m]

Scene Tier Policy Median IQR Median IQR

Tabletop

1
GridSearch 16.0 22.2 0.8 1.0
AVPLUG 1.0 1.0 0.6 0.4

2
GridSearch 20.0 26.0 1.0 1.4
AVPLUG 1.0 1.0 0.7 0.6

3
GridSearch 16.0 16.0 0.8 0.9
AVPLUG 1.0 1.0 0.7 0.8

Counter

1
GridSearch 14.5 19.0 0.7 0.9
AVPLUG 1.0 1.0 0.7 0.8

2
GridSearch 15.5 18.0 0.7 0.9
AVPLUG 2.0 2.0 0.8 1.0

3
GridSearch 18.0 19.5 0.9 1.0
AVPLUG 2.0 1.0 0.9 1.2

x

Table 6.1: Simulation Experiments. Median and interquartile range (IQR) of the number of
steps to success and the distance traveled for each policy over 100 rollouts in 2 simulated environ-
ments, for successful rollouts. The success rate is 100% for the GridSearch baseline and 94% to
100% for AVPLUG. (See Fig. 6.8 for description of failure modes)

GridSearch stops when it finds a view from which it can plan a grasp, or after it has visited
all the discretized views.

6.5.4 Simulation Results

We roll out AVPLUG on 100 scenes, until the policy reaches a termination condition T
and it finds a high-quality grasp (q ⩾ 0.75) on the target object, or it fails to find a grasp
within a maximal number of steps H and the experiment fails. We set H = 212 to account
for the total number of grid points in the countertop environment; therefore, if a successful
approach vector exists, the GridSearch baseline will find it. We benchmark the experiments
using the following metrics: median and interquartile range (IQR) for number of steps to
success, and distance traveled. We use these metrics since the number of steps to success
relates to the data acquisition and computation time, and the distance traveled by the robot
arm may result in increased travel time and a potential loss in precision. The results are
summarized in Table 6.1 and Fig. 6.5, and show that AVPLUG finds an approach vector in
up to 20× fewer steps (median) than the baseline. In Fig. 6.5 we observe that the baseline
suffers from high variance, as it is sensitive to the initial view—if it starts near a successful
approach vector it can terminate quickly, otherwise it may search the grid exhaustively.

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 80

(a) (b) (c)

Figure 6.6: Unicontact grasping in tight spaces. AVPLUG can find approach vectors for
unicontact grasping even in tight spaces due to the high resolution of the occupancy map.

The average computation time of AVPLUG for finding an approach vector is 1.05 s,
benchmarked on a server with an Intel Xeon CPU @ 2.20 GHz.

6.5.5 Physical Experiments

We evaluate AVPLUG on physical scenes in the countertop setting using a Fetch mobile
robot. To find grasps, we use a planarity-based grasp planner. The grasp planner first
samples candidate suction points from a depth image by computing surface normals, then
selects only those within 10◦ of the optical axis. Finally, it ranks these candidates by using
a planarity metric: a suction cup-sized ring is projected around the grasp point, and the
grasp is scored based on the distance from the ring to the surface depth. This distance is
minimized in higher quality grasps [79]. We filter out any grasps that will collide with the
scene when approaching or exiting using collision checking between the gripper mesh and the
observed point cloud. We consider a grasp successful if it is not in collision and its quality
value is above 0.8.

We construct 3 tiers of scenes with matching difficulty to those in simulation. For each
tier, we evaluate a single scene, and for each scene we choose 5 random starting views.
At each view, we evaluate the baseline once and AVPLUG 3 times, taking the average to
account for inherent stochasticity. We use the elevation angle θ ∈ [45◦, 75◦], azimuth angle
φ ∈ [−45◦, 45◦], and radius r = 0.5 m for kinematic feasibility. The target object is a red light
bulb similar to the target in simulation, and the occluding objects are objects found around
the house and lab. We use an HSV color detector to get the binary target segmentation mask.
Figure 6.7 shows the experimental setup. Results in Table 6.2 suggest that AVPLUG can
consistently find an approach vector in fewer steps (median 2.0) than the baseline (median
between 5.0 and 12.0). While the number of search steps taken by baseline policy highly
depends on the starting view (with a higher IQR between 3.0 and 10.0), AVPLUG is able to
achieve more consistent high performance among random starting views (with a lower IQR
of 1.0).

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 81

(a) (b)

(c) (d) (e)

Figure 6.7: Physical experiments setup. Top: Physical counter setup with a Fetch mobile
manipulator for grasping. Middle: In the first experiment starting at (a), the visible part of
the target object (in red) is not graspable from the initial position, but is graspable from the next
position (b). Bottom: In the second experiment starting with view (c), although a successful
grasp is found from the second position (d), it leads to a collision between the gripper and the
environment. AVPLUG then finds a collision free approach vector on the following step (e).

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 82

Steps Distance [m]

Tier Policy Median IQR Median IQR

1
GridSearch 5.0 10.0 0.6 0.5
AVPLUG 2.0 1.0 0.7 0.4

2
GridSearch 6.5 9.2 0.6 0.5
AVPLUG 2.0 1.0 0.6 0.3

3
GridSearch 12.0 3.0 1.1 0.6
AVPLUG 2.0 1.0 0.6 0.4

Table 6.2: Physical Experiments Results. Median and interquartile range (IQR) of the number
of steps to success and the distance traveled for each policy over 5 rollouts in a physical counter
environment. The metrics are reported for successful rollouts. The success rate is 100% for both
the GridSearch baseline and AVPLUG.

6.5.6 Visibility vs Graspability

An visibility version of AVPLUG evaluated candidate approach vectors according to their
information gain, defined by the number of voxel labels that changed from unknown to either
empty or occupied after aligning the camera optical axis with the corresponding approach
vector. In this method, AVPLUG chose an approach vector that maximized the information
gain, with the goal of discovering presently hidden graspable surfaces on the target object.
One limitation of this approach, however, was that it prioritized distant approach vectors over
near and successful ones, since drastic view changes would generally reveal more unobserved
parts of the scene. This visibility-based approach is better suited for the purpose of scene
reconstruction and mapping than for finding a grasp on an occluded target object—this
motivated using known grasp distributions instead.

6.5.7 Failure Cases

Since the occupancy map discretizes the scene into cubic voxels, the occupied section of the
octree occasionally extends beyond the true boundaries of the occluding objects (see Fig.
6.8). Furthermore, due to the long and narrow structure of the end effector, valid grasp
approach vectors can pass very close to occluding objects. As a result, AVPLUG’s grasp
evaluation step (Section 6.4.4) may detect collisions when there are none.

6.6 Discussion and Future Work

We present AVPLUG, an algorithm that employs an octree-based occupancy map and
Minkowski sum computation to find an approach vector for unicontact grasping. AVPLUG

CHAPTER 6. AVPLUG: APPROACH VECTOR PLANNING IN CLUTTERED
ENVIRONMENTS 83

(a) (b)

(c) (d)

Figure 6.8: Octree resolution failure case. AVPLUG queries the grasp planner for available
grasps on the target object. The grasp approach axis (green) passes between the flashlight and the
fire extinguisher with enough clearance for the long and thin end effector in (a) and (b), therefore
the grasp planner declares this to be an accessible grasp. However, when AVPLUG casts this ray
through the octree, it finds a collision with the flashlight at the cyan point in (c) and (d). This is
because the octree’s occupied voxels (denoted by orange points) extend slightly beyond the bounds
of the flashlight due to the discretization.

takes advantage of the strong correlation between visibility and graspability in suction grasp-
ing by servoing a wrist-mounted camera to find graspable views. It is able to find and extract
fully or partially occluded known target objects without the risk of toppling other objects.
Experiments in simulation and on a physical robot suggest that AVPLUG can find an ap-
proach vector in up to 20× fewer steps compared to a baseline policy, and can extract objects
from tight spaces (see Fig. 6.6). In future work, we will utilize shape completion and pose
estimation algorithms to reason about the graspable part of the target object. We will
also extend this work to a tight shelf environment, from which the object cannot be easily
extracted.

84

Chapter 7

Grasping Transparent Objects
Reliably

In this chapter we explore another perception challenge faced by grasp planners that operate
on depth images as existing depth cameras have difficulty detecting, localizing, and inferring
the geometry of transparent objects. The problem is that depth cameras assume that the
surfaces of the objects reflect light uniformly in all directions, but this assumption doesn’t
hold for transparent objects because of the reflection and refraction. Dex-NeRF uses neural
radiance fields (NeRF) to accurately identify and securely grasp transparent objects.

7.1 Introduction

Transparent objects are common in homes, restaurants, retail packaging, labs, gift shops,
hospitals, and industrial warehouses. Effectively automating robotic manipulation of trans-
parent objects could have a broad impact, from helping in everyday tasks and performing
tasks in hazardous environments. Existing depth cameras assume that surfaces of observed
objects reflect light uniformly in all directions, but this assumption does not hold for trans-
parent objects as their appearance varies significantly under different view directions and
illumination conditions due to reflection and refraction properties of transparent materials.
In this chapter, we propose and demonstrate Dex-NeRF, a new method to sense the geometry
of transparent objects and allow for robots to interact with them.

Dex-NeRF uses a Neural Radiance Fields (NeRF) as part of a pipeline (Fig. 7.1, right)
to compute and execute robot grasps on transparent objects. While NeRF was originally
proposed as an alternative for explicit volumetric representations and shown to render novel
views of complex scenes realistically [11], it can also reconstruct the scene geometry. In
particular, due to the view-dependent nature of the NeRF model, it can learn to represent
the geometry associated with transparency accurately. The only input requirement to train a
NeRF model is a set of images taken from a camera with known intrinsics (e.g., focal length,
distortion) and extrinsics (position and orientation in the world). While the intrinsics can be

CHAPTER 7. GRASPING TRANSPARENT OBJECTS RELIABLY 85

1 Dataset
Generation

3 Depthmap
Rendering

5 Grasp
Execution

4 Grasp
Planning Dex-Net

2 NeRF
Training NeRF

Figure 7.1: Using NeRF to grasp transparent objects Given a scene with transparent objects
(left column), we the pipeline on the right to compute grasps (middle column). The top row shows
Dex-NeRF working in a simulated scene while the bottom row shows it working in a physical scene.

determined from calibration techniques or from the camera itself, determining the extrinsics
is often a challenge [139, 140]. However, robots operating in a fixed workcell or with a
camera mounted on the manipulator arm, can readily determine camera intrinsics. This
makes NeRF a particularly good match for robot manipulators.

In experiments, we show qualitatively and quantitatively that Dex-NeRF can compute
high accuracy depth images from photo-realistic synthetic and real scenes, and achieve 90 %
or better grasp-success rates on real objects.

his chapter provides the following contributions: (1) Integration of NeRF with robot
grasp planning; (2) Transparency-aware depth rendering method for NeRF; (3) experiments
on synthetic and real images showing NeRF with Dex-Net generates high-quality grasps; and
(4) Synthetic and real image datasets with transparent objects for training NeRF models.

7.2 Related Work

For robots to interact with transparent objects, they must first be able to detect them. The
most recent approaches detecting and recognizing transparent objects are data-driven. Lai
et al. [141] and Khaing et al. [142] propose using a Convolutional Neural Network (CNN) to
detect transparent objects in RGB images. Recently, Xie et al. [143] developed a transformer-
based pipeline [144] for transparent object segmentation. Other methods rely on deep-
learning models to predict the object pose. Phillips et al. [145] trained a random forest to
detect the contours of transparent objects for pose estimation and shape recovery. Xu et
al. [146] proposed a two-stage method for estimating the 6-degrees-of-freedom (DOF) pose

CHAPTER 7. GRASPING TRANSPARENT OBJECTS RELIABLY 86

of a transparent object from a single RGBD image by replacing the noisy depth values with
estimated values and training a DenseFusion-like network structure [147]. Sajjan et al. [148]
extend this and incorporate a neural network trained for 3D pose estimation of transparent
objects in a robotic picking pipeline. Zhou et al. [149, 150] train a grasp planner directly on
raw images from a light-field camera. Zhu et al. [151] used an implicit function to complete
missing depth given noisy RGBD observation of transparent objects. However, these data-
driven methods rely on large annotated datasets that are hard to curate, whereas Dex-NeRF
does not require any prior dataset.

Recently, implicit neural representations have led to significant progress in 3D object
shape representation [152–154] and encoding the geometry and appearance of 3D scenes [11,
155]. Mildenhall et al. [11] presented Neural Radiance Fields (NeRF), a neural network
whose input is a 3D coordinate with an associated view direction, and output is the volume
density and view-dependent emitted radiance. Due to its view-dependent prediction, NeRF
can represent non-Lambertian effects such as specularities and reflections, and therefore cap-
ture the geometry of transparent objects. However, NeRF is slow to train and has low data
efficiency. Yu et al. [156] proposed Plenoctrees, mapping coordinates to spherical harmonic
coefficients, shifting the view-dependency from the input to the output. In addition, Plenoc-
trees pre-samples the model into a sparse octree structure, achieving a significant speedup
in training over NeRF. Deng et al. [157] proposed JaxNeRF, an efficient JAX implementa-
tion of NeRF reduces the training time of a NeRF model from over a day to several hours.
Deng et al. [158] add depth supervision to train NeRF 2 to 6× faster given fewer training
views. Adamkiewicz et al. [159] proposed an algorithm that uses a NeRF model for robot
navigation. In this work, we propose to use NeRF to recover the geometry of transparent
objects for the purpose of robotic manipulation.

Traditional robot grasping methods analyze the object shape to identify successful grasp
poses [160–162]. Data-driven approaches learn a prior using labeled data [163, 164] or
through self-supervision over many trials in a simulated or physical environment [165, 166]
and generalize to grasping novel objects with unknown geometry. These approaches rely
on RGB and depth sensors to generate an accurate observation of the target object. Ad-
ditionally, different methods use different inputs, such as depth maps [10, 167, 168], point
clouds [146, 169–171], octrees [172], or a truncated signed distance function (TSDF) [173,
174]. In contrast, in this chapter we propose a method to render a high-quality depth map
from a NeRF model to then pass to Dex-Net [10] to compute a grasp. While standard depth
cameras have gaps in their depth information that needs to be processed out with hole-filling
techniques, the depth map rendering from NeRF is directly usable. It is possible that other
grasp-planning techniques may be able to plan grasps from NeRF models.

7.3 Problem Statement

We assume an environment with an array of cameras at known fixed locations or that the
robot can manipulate a camera (e.g., wrist-mounted) to capture multiple images of the scene.

CHAPTER 7. GRASPING TRANSPARENT OBJECTS RELIABLY 87

Given the environment with rigid transparent objects, Dex-NeRF computes a frame for a
robot gripper that will result in a stable grasp of a transparent object.

7.4 Method

This section provides a brief background on NeRF, then describes recovering geometry of
transparent objects, integrating with grasp analysis, and improving performance with addi-
tional lights.

7.4.1 Preliminary: Training NeRF

NeRF [11] learns a neural scene representation that maps a 5D coordinate containing a
spatial location (x, y, z) and viewing direction (θ, φ) to the volume density σ and RGB color
c. Training NeRF’s multilayer perceptron (MLP) requires multiple RGB images of a static
scene with their corresponding camera poses and intrinsic parameters. The expected color
C(r) of the camera ray r = o + td between near and far scene bounds tn and tf is:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (7.4.1)

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
is the probability that the camera ray travels from near

bound tn to point t without hitting any surface. NeRF approximates the expected color
Ĉ(r) as:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci, (7.4.2)

where Ti = exp
(
−∑i−1

j=1 σjδj

)
and δi = ti+1− ti is the distance between consecutive samples

on the ray r. The training process minimizes the error between rendered and ground-truth
colors.

7.4.2 Recovering Geometry of Transparent Objects

We observe that NeRF does not directly support transparent object effects—it casts a single
ray per source image pixel without reflection, splitting, or bouncing. NeRF recovers non-
Lambertian effects such as reflections from a specular surface by regressing on view direction
and supervising with view-dependent emitted radiance. However, while RGB color c is
view-dependent, the volume density σ is not—meaning NeRF has to learn a non-zero σ to
represent any color at that spatial location. The usual result is that the transparent object
shows up as a “ghostly” or “blurry” version of the original object in rendered RGB images.

When training, a NeRF model learns a density σ of each spatial location. This density
corresponds to the transparency of the point, and serves to help learn how much a spatial

CHAPTER 7. GRASPING TRANSPARENT OBJECTS RELIABLY 88

Real Image RealSense Depth Depth (Dex-NeRF)

Figure 7.2: Comparison to RealSense Depth Camera. We compare the results of the proposed pipeline
in a real-world setting against the depth map produced by an Intel RealSense camera. In the left image is
the real-world scene, the middle shows the depth image from the RealSense, and the right shows the result
of our pipeline. The color scheme in the RealSense image is provided by the RealSense SDK, while the color
scheme in the right column is from MatPlotLib. We observe that the RealSense depth camera is unable to
recover depth from a large portion of the scene, shown in black. On the other hand, the proposed pipeline,
while having a few holes, can recover depth for most of the scene.

Real Image Depth Map
Vanilla NeRF

Depth Map
Dex-NeRF

Depth
Difference(A) (B) (C) (D) Dex-Net Grasp

Vanilla NeRF(E) Dex-Net Grasp
Dex-NeRF(F)

Figure 7.3: Using NeRF to render depth for grasping transparent objects. Dex-NeRF uses
a transparency-aware depth rendering to render depth maps that can be used for grasp planning.
In contrast, Vanilla-NeRF’s depth maps are filled with holes and result in poor grasp predictions.

location contributes to the color of a ray cast through it. Although NeRF converts each σi to
an occupancy probability αi = 1− exp(−σiδi), where δi is the distance between integration
times along the ray, thus implicitly giving αi an upper bound of 1, it does not place a bound
on the raw σ value. Dex-NeRF uses the raw value of σ to determine if a point in space is
occupied.

7.4.3 Rendering Depth for Grasp Analysis

To compute a grasp from a trained NeRF model, we propose to render a depth image
and have Dex-Net use it to plan the grasp. To generate a depth image, we consider two

CHAPTER 7. GRASPING TRANSPARENT OBJECTS RELIABLY 89

candidate reconstructions of depth. First, we use the same depth rendering that NeRF
uses. This Vanilla NeRF reconstruction first converts σi to an occupancy probability αi. It
then applies the transformation wi = αi

∏i−1
j=1 (1− αj). To render depth at pixel coordinate

[u, v], it computes the sum of sample distances from the camera weighted by the termination
probability D[u, v] =

∑N
i=1wiδi. When applied on transparent objects, however, this results

in noisy depth maps, as shown in Fig. 7.3.
Instead, we consider a second, transparency-aware method that searches for the first

sample along the ray for which σi > m, where m is a fixed threshold. The depth is then set
to the distance of that sample δi. We explore different values for m, and observe that low
values result in a noisy depth map while high values create holes in the depth map. In our
experiments we set m = 15 (see Fig. 7.8).

7.4.4 Improving Reconstruction with Light Placement

For NeRF to learn the geometry of a transparent object, it must be able to “see” it from
multiple camera views. If the transparent object is not visible from any views, then it will
have no effect on the loss function used in training, and thus not be learned. We thus look
for a way to improve visibility of transparent objects to NeRF.

One property that transparent objects share (e.g., glass, clear plastic) is that they are
glossy and thus produce specular reflections when the camera view direction is opposite
to the surface normal of the incident direction of light. To the NeRF model, a specular
reflection viewed from multiple angles will appear as a bright point on a solid surface—e.g.,
c = [1, 1, 1]T and σ > 0, while from other angles it will appear as σ ⩽ 0. As σ is view-
independent, NeRF learns a σ between fully opaque and fully transparent for such points.

By placing additional lights in the scene, we create more angles from which cameras will
see specular reflections from transparent objects—this results in NeRF learning a model that
fills holes in the scene. While the number and placement of lights for optimal training is
dependent on both the expected object distribution and camera placement, in experiments
(Sec. 7.5.5) we show that increasing from 1 light to a 5x5 array of lights improves the quality
of the learned geometry.

7.5 Experiments

We experiment in both simulation and on a physical ABB YuMi robot. We generate multiple
datasets, where each dataset consists of images and associated camera transforms of one
static scene containing one or more transparent objects. We train NeRF models using a
modified JaxNeRF [157] implementation on 4 Nvidia V100 GPUs. We use an existing pre-
trained Dex-Net model for grasp planning without modification or fine-tuning. We can do
this since NeRF models can be rendered to depth maps from arbitrary camera intrinsics and
extrinsics, thus we match our NeRF rendering to the Dex-Net model instead of training a
new one.

CHAPTER 7. GRASPING TRANSPARENT OBJECTS RELIABLY 90

7.5.1 Datasets

As existing NeRF datasets do not include transparent objects, and existing transparent-
object-grasping datasets do not include multiple camera angles, we generate new datasets
using 3 different methods: synthetic, Cannon EOS 60D camera with a Tamron Di II lens
with a locked focal length, and an Intel RealSense.

For synthetic datasets, we use Blender 2.92’s physically-based Cycles renderer with path
tracing set to 10240 samples per pixel, and max light path bounces set to 1024. We chose
theses settings by increasing them until renderings were indistinguishable from the previous
setting—finding that lower settings lead to dark regions and smaller specular reflections. For
glass materials, we set the index of refraction to 1.45 to match physical glass. We include 8
synthetic datasets of transparent objects: 2 scenes with clutter: light array and single light;
4 singulated objects from Dex-Net: Pipe Connector, Pawn, Turbine Housing, Mount; and
2 household objects: Wineglass upright and Wineglass on side. As these computationally
demanding to render due to the high quality settings, we distribute these as part of the
contribution.

For the Cannon EOS and RealSense real-world datasets, we place ArUco markers in the
scene to aid in camera pose recovery and take photos around the objects using a fixed ISO,
f-stop, and focal length. We use bundle adjustment from COLMAP [139, 140] to refine the
camera poses and intrinsics to high accuracy. We include 8 physical datasets of transparent
objects with a variety of camera poses: table with clutter, Dishwasher, Tape Dispenser,
Wineglass on side, Flask, Safety Glasses, Bottle upright, Lion Figurine in clutter. The main
difficulty in generating these datasets is calibration and computing high-precision camera
poses.

The datasets (at https://sites.google.com/view/dex-nerf) differ from prior work in
their focus on scenes with transparent objects in a graspable setting, with over 70 camera
poses each.

7.5.2 Synthetic Grasping Experiments

We test the ability of Dex-NeRF to generate grasps on the synthetic singulated transparent
Dex-Net object datasets. For each dataset, we evaluate the grasp in simulation using a
wrench resistance metric measuring the ability of the grasp to resist gravity [79]. Fig. 7.4
shows images of the synthetic objects, Dex-NeRF-generated depth map, and an example
sampled grasp for each. To measure the effect of training time on grasp-success rate, we
simulate and record grasps over the course of training. In Fig. 7.5, we observe that grasp-
success rate improves with training time, but plateaus between 80 % and 98 % success rate
at around 50k to 60k iterations. This suggests that there may be a practical fixed iteration
limit to obtain high grasp success rates.

We test Dex-NeRF on a scene of a tabletop cluttered with transparent objects. In this
experiment, the goal is to grasp a transparent object placed in a stable pose in close proximity
to other transparent objects. The challenge is twofold: the depth rendering quality should be

https://sites.google.com/view/dex-nerf

CHAPTER 7. GRASPING TRANSPARENT OBJECTS RELIABLY 91

Pipe Connector Pawn Turbine Housing Mount

Figure 7.4: Synthetic singulated objects
used in simulation experiments. Top row: im-
age of the object in the training data. Bottom
row: computed depth map and candidate grasp.

0 10 20 30 40 50 60 70 80 90 1000

20

40

60

80

100

Training epochs (×1000)

G
ra
sp

S
u
cc
es
s
R
at
e
(%

)

Pipe Connector
Pawn
Turbine Housing
Mount

Figure 7.5: Grasp-success rate
vs training epochs. As opposed
to view-synthesis, which requires
over 200k epochs, we observe high
grasp success rates after 50k to 60k
epochs.

sufficient for both grasp planning and collision avoidance. Fig. 7.1 shows the robot and scene
in the upper left, and the overhead image, depth, and computed grasp inline in the pipeline,
and the final computed grasp with simulated execution is in the upper middle image. The
final grasp contact point was accurate to a 2 mm tolerance, suggesting that Dex-NeRF with
sufficient images taken from precisely-known camera locations may be practical in highly
cluttered environments.

7.5.3 Physical Grasping Experiments

To test the Dex-NeRF in a physical setup, we place transparent singulated objects in front
of an ABB YuMi robot, and have the robot perform the computed grasps. We compare
to 2 baselines: (1) PhoXi, in which a PhoXi camera provides the depth map; and (2)
Vanilla NeRF, in which we use the original depth rendering from NeRF. The PhoXi camera
is normally able to generate high-precision depth maps for non-transparent objects. All
methods use the same pre-trained Dex-Net model, and both Vanilla NeRF and Dex-NeRF
use the same NeRF model—the only difference is the depth rendering. We test with 6 objects
(Fig. 7.6), and compute and execute 10 different grasps for each and record the success rate.
A grasp is successful if the robot lifts the object. In Table 7.1, we see that Dex-NeRF gets
90 % and 100 % success rates for all objects, while the baselines get few successful grasps.
The PhoXi camera is unable to recover any meaningful geometry which causes Dex-Net
predictions to fail. The Vanilla NeRF depth maps often have unpredictable protrusions that
result in Dex-Net generating unreliable grasps.

CHAPTER 7. GRASPING TRANSPARENT OBJECTS RELIABLY 92

Tape Dispenser Wineglass Flask

Safety Glasses Bottle Lion Figurine

Figure 7.6: Physical grasps ob-
jects. In the background is the base
of the YuMi robot.

Object PhoXi Vanilla NeRF Dex-NeRF

Tape Dispenser 0/10 0/10 10/10
Wineglass 0/10 0/10 9/10
Flask 0/10 1/10 9/10
Safety Glasses 0/10 0/10 10/10
Bottle 0/10 10/10 10/10
Lion Figurine 0/10 3/10 10/10

Table 7.1: Physical grasp success rate. For
each object, we compute a depth map using
a PhoXi camera, unmodified Vanilla NeRF,
and Dex-NeRF for grasping transparent ob-
jects. From the depth map, Dex-Net computes
a 10 different grasps, and an ABB YuMi at-
tempts the grasp. Successful grasps lift the ob-
ject.

7.5.4 Comparison to RealSense Depth

We qualitatively compare the rendered depth map of the proposed pipeline against a readily-
available depth sensor on scenes with transparent objects in real-world settings (Fig. 7.2).
We select the Intel RealSense as it is common to robotics applications, readily available, and
high-performance. The RealSense, like most stereo depth cameras, struggles with transparent
objects as they are unable to compute a stereo disparity between pixels from different cameras
when the pixels are specular reflections or the color of the object behind the transparent
object. The RealSense optionally projects a structured light pattern on the scene to aid
in computing depth from textureless surfaces; however, in experiments, we observed no
qualitative difference with and without the light pattern emitter enabled. We use a Canon
EOS for NeRF, and use a RealSense for a depth image. In this experiment, we observe that
the RealSense cannot compute the depth of most transparent objects and often produces
regions of unknown depth (shown in black) where transparent objects are. On the other
hand, the proposed pipeline produces high-quality depth maps with only a few noisy areas.

7.5.5 One vs Many Lights

We experiment with different light setups to test the effect of specular reflections on the abil-
ity of NeRF to recover the geometry of transparent objects. We create two scenes (Fig. 7.7),
one with a single bright light source directly above the work surface, and another with an
array of 5x5 (25) lights above the work surface. We set the total wattage of the lights in
each scene to be the same. Since most lights in the multiple light scene are further away
from the work surface than the single light source, the scene appears darker, though more
evenly illuminated. The effect of the specular reflections is prominent on the lightbulb in

CHAPTER 7. GRASPING TRANSPARENT OBJECTS RELIABLY 93

 (b) Depth Rendering
Single Light Source

(d) Depth Rendering
Multiple Light Sources

(a) RGB Scene
Single Light Source

(c) RGB Scene
Multiple Light Sources

Figure 7.7: More lights mean more specular reflections, and result in better NeRF depth estimation
of transparent surfaces. In (a) and (b), we show a scene lit by a single overhead high-intensity light.
In (c) and (d) we show the same scene lit by an overhead 5x5 array of lights. The combined light
wattage is equal in both scenes. Images (a) and (c) are views of the scene, and (b) and (d) are
the corresponding depth images obtained from the pipeline. Two glasses on their sides are missing
top surfaces (outlined in dashed red) in (b), while the effect is reduced in (d) due to the additional
light sources.

σ = 1 σ = 5 σ = 15 σ = 150 σ = 500

Figure 7.8: depth rendering using NeRF with different thresholds Here we show the effect
of the threshold value on the depth rendering of an isolated deer figurine. Values too low result in
excess noise, while values too high cause parts of the scene to disappear.

the lower part of the image. In the single light source, there is a single specular reflection,
while in the multiple light scene, the reflection of the array of lights is visible.

With the same camera setup for both scenes, we train NeRF models with the same number
of iterations. We show the depth rendering in Fig. 7.7 and circle a glass and a wineglass on
their side. In the single-light source image, the closer surfaces of the glasses are missing, while
in the multiple-light source depth image, the glasses are nearly fully recovered. This suggests
that additional lights in the scene can help NeRF recover the geometry of transparent objects
better.

CHAPTER 7. GRASPING TRANSPARENT OBJECTS RELIABLY 94

9 Cameras 16 Cameras 25 Cameras 36 Cameras 49 Cameras

Figure 7.9: Depth rendering using a grid of overhead cameras. Using increasing amounts
of overhead cameras improves the quality of the depth map and its utility in grasping, however,
beyond a certain number of cameras there is a diminishing return.

7.5.6 Workcell Setup

We experiment with a potential setup for a robot workcell in which a grid of overhead
cameras captures views of the cluttered scene so that a robot manipulator arm can then
perform tasks with transparent objects in the workcell. We propose that a grid of overhead
cameras would be practical to setup and would not obstruct manipulator tasks nor operator
interventions. The objective is to determine how many overhead cameras would be needed
to recover a depth map of sufficient accuracy to perform manipulation tasks.

We place a 2 m by 2 m grid of cameras 1 m above the work surface, and have them all
point at the center of the work surface. Each camera has the same intrinsics, and are evenly
spaced along the grid. We experiment with grids having 4, 9, 16, 25, 36, and 49 cameras.
The environment has the same 5x5 grid of lights as before. For each camera grid, we train
JaxNeRF for 50k iterations and compare performance.

After training, we observe increasing peak signal to noise ratios (PSNR) and structural
similarity (SSIM) scores with increasing number of cameras. The 2x2 grid of cameras pro-
duces a high train-to-test ratio for PSNR, likely indicating overfitting to training data, and
results in a depth map without apparent geometry. This ratio decreases with additional
cameras. The minimum number of cameras for this proposed setup appears to be around 9
(3x3) as its depth map is usable for grasp planning, while the 5x5 grid shows better PSNR
and SSIM and ratio between train and test PSNR, and the 7x7 grid is the best. See Fig. 7.9
for a visual comparison. Additionally, we trained 9x9, 11x11, and 13x13 grids, observing no
statistically significant improvement beyond the 7x7 grid.

7.6 Discussion and Future Work

In this work, we showed that NeRF can recover the geometry of transparent objects with
sufficient accuracy to compute grasps for robot manipulation tasks. NeRF learns the density
of all points in space, which corresponds to how much the view-dependent color of each point

CHAPTER 7. GRASPING TRANSPARENT OBJECTS RELIABLY 95

contributes to rays passing through it. With the key observation that specular reflections
on transparent objects cause NeRF to learn a non-zero density, we have Dex-NeRF recover
the geometry of transparent objects through a combination of additional lights to create
specular reflections and thresholding to find transparent points that are visible from some
view directions. With the geometry recovered, we pass it to a grasp planner, and show that
the recovered geometry is sufficient to compute a grasp, and accurate enough to achieve 90 %
and 100 % grasp success rates in physical experiments on an ABB YuMi robot. We created
synthetic and real datasets for experiments in transparent geometry recovery, but we believe
these datasets may be of interest to researchers interested in extending NeRF capabilities
in other ways and thus contribute them as well. Finally, to test if NeRF could be used in a
robot workcell, we experimented with grids of cameras facing a worksurface and their ability
to recover geometry in potential setup, and showed the increased capabilities and point of
diminishing return for additional cameras.

In future work, we hope to address one of the main drawbacks of NeRF—the long train-
ing time required to obtain a NeRF model. Many research groups have sped up training
time through improved implementations, new algorithms, new network architectures, pre-
conditioned network weights, focused sampling, and more. While these approaches apply
to general NeRF training, we plan to exploit features specific to robot scenerios to speed
up training, including using depth camera data as additional training data, manipulator-
arm-mounted cameras to inspect regions of interest, and visio-spatial foresight to adapt to
changes in the environment.

96

Chapter 8

Grasping Transparent Objects
Efficiently

The prior chapter focuses on improving the reliability of grasping transparent objects. How-
ever, NeRF costs hours of computation per grasp. Evo-NeRF uses Instant-NGP and trains
it concurrently to image capturing to increase its efficiency.

8.1 Introduction

Sequentially grasping transparent objects is critical in industry, pharmaceuticals and house-
holds. Sensing these objects is difficult; since camera-based sensors see through transparent
objects from most angles, assumptions underlying traditional disparity and structure-from-
motion-based methods break. Data driven approaches rely on large synthetic and real-world
datasets to address this problem. ClearGrasp [175] trains a CNN to infer local surface
normals on transparent objects from RGBD images based on Blender synthetic examples.
They show impressive results on 3-5 transparent objects separated by 2cm, but note chal-
lenges with open-top containers, partial occlusions in clutter, background distractors, and
transparent objects’ shadows.

Neural Radiance Fields (NeRFs) [11] are a 3D representation originally designed for novel
view synthesis which can reconstruct traditionally challenging-to-model scenes that include
transparent objects. Dex-NeRF [176] uses NeRF to grasp transparent objects, but costs
hours of computation per grasp. Recent dramatic advancements in NeRF training speed
have opened the door for real-time usage [177–179]. We propose Evo-NeRF, a method for
rapidly training NeRF for grasping, and RAG-Net, a neural network for robustly computing
grasps from NeRF rendered depth images. We apply Evo-NeRF in a purely online setting
to sequentially grasp transparent objects in clutter in the time-span of 10s of seconds, as
required in dish loading, table clearing, and other household tasks.

To make NeRF practical for robotic grasping, we build on Instant-NGP [179], a fast vari-
ant of NeRF. Rather than training on a fixed set of images, we incrementally optimize over a

CHAPTER 8. GRASPING TRANSPARENT OBJECTS EFFICIENTLY 97

stream of images as they are captured during a robot motion. Due to NeRF’s varying conver-
gence speed on different difficulty scenes, we propose a method to terminate image capture
upon achieving sufficient task confidence. We further adapt NeRF to sequential grasping
by re-using NeRF weights from grasp to grasp and demonstrate its rapid adaptability to
object removal. Since we propose that the robot captures images and trains a NeRF as it
moves, motion blur, kinematic limitations, and speed considerations reduce the quality of
the recovered geometry and introduce prominent spurious geometry known as floaters. We
propose adding geometry regularization to the training objective, which improves the recov-
ered geometry, but out-of-the-box grasp planners still struggle to find quality grasps due to
remaining artifacts. Dex-NeRF [176] on the other hand, could use an out-of-the-box grasp
sampler because it used diverse, high-quality, calibrated, still images captured in an offline
process.

To mitigate the lower-quality NeRF reconstructions, we propose a novel pipeline to train
a grasping network on depth maps directly from NeRFs, which are trained on photorealistic
renderings of transparent objects. We find the grasping network transfers well to real-world
NeRF reconstructions. This pipeline utilize the training speed of Instant-NGP—without it,
the pipeline would be computationally infeasible. Real robot experiments using an actuatable
camera to capture images suggest that Evo-NeRF can reconstruct graspable scene geometry
rapidly and reliably when combined with RAG-Net, achieving an 89% success rate on single
objects within 9.5 seconds of image capturing.

The contributions of this chapter are: (1) novel usage of NeRF in a sequential setting,
rapidly evolving the NeRF representation between grasps, (2) improvements in scene geome-
try reconstruction speed built on existing methods, (3) an approach based on task confidence
to efficiently stop image capturing early, (4) a novel training pipeline in simulation to ac-
climate a grasping planner to NeRF geometry characteristics, (5) a dataset of 8667 Blender
rendered scenes of transparent objects with robust grasps, and (6) experimental data sug-
gesting that Evo-NeRF enables rapid grasping on NeRF.

8.2 Related Work

NeRF [11] is a neural-network scene representation that enables photorealistic synthesis of
novel views of a scene given a set of images and camera matrices. The representation is a
function of location and view angle, and returns a density and view-dependent color. Den-
sities and colors sampled along a camera ray are aggregated using volumetric rendering to
produce a pixel color. NeRF is popular in the computer vision and graphics communities
with the applications in dynamic scene reconstruction [180, 181], image synthesis [182–184],
pose estimation [185–187], and more. Optimizing NeRF to reconstruct a single scene can take
hours or days—making it impractical for many robotics applications. Instant-NGP [179] and
others [177, 188] speed up NeRF by using voxel feature grids instead of multi-layer percep-
tions to simplify or remove [178] a computational bottleneck. We build on Instant-NGP [179],
which uses a learnable hash encoding and highly optimized CUDA implementation to speed

CHAPTER 8. GRASPING TRANSPARENT OBJECTS EFFICIENTLY 98

Figure 8.1: Sequential object removal. (a) The YuMi moves the camera through a hemisphere
trajectory (red arrow) to capture a scene of 5 glass objects, training a NeRF simultaneously. (b)
The robot immediately plans and executes a grasp from the NeRF after camera capture (c) Short
camera trajectories are used to evolve the NeRF between grasps (d) Evo-NeRF first reconstructs
the whole scene (1) with the camera trajectory shown in (a), then progressively updates the scene
with small camera captures shown in (c) as objects are removed.

up NeRF training from the order of hours to seconds. Others have also sped up NeRF by
reusing computation between scenes by utilizing priors. Existing methods [189–193] use con-
volutional neural networks (CNNs) to extract image features as input to a shared network
that predicts the NeRF. Tancik et al. [194] and Gao et al. [195] speed up NeRF training using
meta-learning to initialize network weights to ones that converge faster for likely scenes. In
this work, we propose using past reconstructions of a scene as an initialization for the current
reconstruction, allowing rapid adaptation to changes in the scene.

Recent research has shown NeRFs to be a promising scene representation for downstream
robotics tasks such as navigation and SLAM [196–198] and manipulation [176, 199, 200].
Yen-Chen et al. [185] and Tseng et al. [201] use a trained NeRF model to estimate an
object’s 6-DOF pose by minimizing the residuals between a rendered image and a given
observed image. Driess et al. [202] train a graph neural network to learn a dynamics model
in a multi-object scene represented through a NeRF model, while Li et al. [199] condition
a NeRF model on a learned latent dynamics model to plan to visual goals in simulated
environments. We propose building on advances in NeRF and its applications to robotics to
speed up NeRF-based grasping for practical uses.

Most closely related to this chapter are two recent works leveraging NeRFs to manipulate
objects that cannot be detected by commodity RGBD sensors. Yen-Chen et al. [200] use
a NeRF model offline to train dense object descriptors and manipulate thin and reflective
objects. Ichnowski et al. [176] show that manually constructing an offline dataset of a given

CHAPTER 8. GRASPING TRANSPARENT OBJECTS EFFICIENTLY 99

1

2
3

(a) Early Stopped Image Capture (c) Grasp(b) Online Training of Evo-NeRF

1 2 3

2 sec 4 sec 7 sec
Confidence 10% Confidence 45% Confidence 87%

Figure 8.2: Evo-NeRF for rapid grasping: (a) The robot begins capturing images along a
hemisphere trajectory (red arrow) (b) Evo-NeRF trains a NeRF during arm motion, building
graspable geometry of the wineglass. Grasp confidence from RAG-Net builds as NeRF learns
geometry, reaching the stopping threshold at (3). (c) The robot executes the grasp predicted by
RAG-Net at the early stop point.

scene then training NeRF allows off-the-shelf grasp planners [10] to compute successful grasps
on transparent objects. ClearGrasp [175] trains a Sim2Real depth prediction network on
RGB images, then uses this network in real environments to estimate surface geometry for
grasps. This idea has been extended to pointclouds and with more efficient real-world data
collection [203, 204]. GraspNeRF [205] explores neural rendering as supervision to train a
multi-view feature volume network similar to Kar et al. [206] on photorealistic simulated
scenes, which is used for grasping. In contrast, using NeRF directly in real-time does not
require a prior on the scene at hand for reconstruction, and has superior performance on
thin surfaces, occlusions, and complex backgrounds.

8.3 Problem Statement

Given a set of transparent objects resting on a planar workspace, the objective is for the
robot to find, grasp, and remove each object quickly. Objects are placed close to each other
(2.5 cm) and the robot has an actuatable camera and a parallel jaw gripper (Fig. 8.1). The
focus is on finding robust grasps rapidly, with grasp success measured as transporting an
object without dropping.

We assume (1) objects rest in graspable stable poses on a flat surface, (2) objects are in
the reachable workspace of the robot with a known forward kinematic model, (3) the camera-
to-arm transform is known and stable, and (4) the robot can follow a known obstacle-free
trajectory to capture images.

CHAPTER 8. GRASPING TRANSPARENT OBJECTS EFFICIENTLY 100

Figure 8.3: Visual comparison of Evo-NeRF’s training over time vs Instant-NGP on the exact
same camera trajectory. Evo-NeRF’s geometry regularization improves the convergence of geometry
reconstruction, resulting in fewer floaters, smoother surfaces, and ultimately faster grasps.

8.4 Method

To rapidly compute robust grasps, we propose Evo-NeRF and RAG-Net. Evo-NeRF, or
Evolving NeRF, builds on Instant-NGP [179], a fast implementation of NeRF, and modifies
it to train concurrently to image capturing, to re-use NeRF weights between grasps and to
terminate training and image collection early when sufficient task confidence if achieved.
RAG-Net, or Radiance-Adjusted Grasp Network, is a network trained to compute grasps
from geometry reconstructed from a NeRF.

8.4.1 Evo-NeRF

To shorten the time to get a trained NeRF, we propose Evo-NeRF, a method that pipelines
image capture with NeRF training, reuses weights in sequential grasping, adds regularization
to counter effects from rapid capture, and includes an early stopping condition to start a
grasp when the grasp network has high confidence.

Image capture: The Evo-NeRF method starts with the robot moving a camera around
its workspace to capture images. Heuristically, hemispherical captures are ideal for NeRF
since they maximally vary the view angles of the scene. The Evo-NeRF capture trajectory
sweeps the camera through a discretized hemisphere centered at a location of interest while
pointing at the center. First, the camera sweeps around the z-axis to maximize the variance
of viewing angle early in the capture sequence. In experiments, we capture images every
3 cm while moving at 20 cm/s. A full capture trajectory takes 16 seconds and includes 80
images with trajectory shown in Fig. 8.1. Though images have motion blur, stopping to
take each image is time-consuming and would result in fewer images, yielding lower quality
reconstructions. For dataset generation in simulation, we capture 52 images per scene since
we prioritize having a large variety of scenes and rendering is time consuming.

CHAPTER 8. GRASPING TRANSPARENT OBJECTS EFFICIENTLY 101

Continual NeRF training: NeRF training, even sped up by Instant-NGP, is a bottle-
neck. We propose continually training NeRF from the moment the first image is captured,
and incrementally adding images to the NeRF training dataset as the camera moves to new
viewpoints. This effectively pipelines the image-capture and NeRF-training processes, and
allows for usable NeRF representations quickly after (and sometimes before) the capture
process finishes.

During each capture motion we train NeRF in batches of 48 steps, adding new images
between each batch when available. This is akin to other online neural implicit methods like
iMAP [196] and NICE-SLAM [207], who also update the image sets between training batches.
We compute the camera frame using the forward kinematics and pair it with each image.
In practice, this yields pose error around 1 cm, which NeRF accounts for by optimizing the
camera extrinsics.

Reusing NeRF weights: In sequential grasping scenarios, scenes often change by only
the removal of the last object grasped. To take advantage the information already trained,
we use the NeRF network weights from the previous grasp in the subsequent grasp. In
implementation, we remove the old images from the training dataset and start capturing
and training on images for the next grasp.

Geometry regularization: A well-known artifact of NeRF’s volumetric rendering loss
are floaters, spurious regions of density floating in space. When using NeRF for view synthe-
sis, floaters can go unnoticed, but in grasping, floaters can lead to grasp failures. We apply
2 regularizations which increase the speed and smoothness of geometry reconstruction, vi-
sualized in Fig. 8.3.

First, we adapt the total-variation regularization loss (TV-loss) from Plenoxels [208] to
discourage floaters and encourage smooth scene geometry. During training, at each step
Evo-NeRF sample N random points pi using rejection sampling to constrain samples to lo-
cations with non-trivial density values. Evo-NeRF then queries the density at all 8-connected
neighbors nj at a radius r. The final TV-loss is Ltv =

∑N
i=1

∑8
j=1 λtv(σ(pi)− σ(ni

j))
2, where

σ is the raw, pre-activation output from the density network, and λtv is a loss scaling factor.
Second, sampling along each ray more coarsely during training reduces floaters and

quickly acquires meaningful geometry. By training with coarse samples, the NeRF is in-
centivized to learn a low frequency representation of the scene to minimize reconstruction
error.

Efficient perception stopping: In scenes where NeRF is able to recover usable geom-
etry before the full camera trajectory has terminated, Evo-NeRF can terminate the capture
phase early to speed task completion. In Sec. 8.5.2 we present experiments showing this by
querying grasp confidence of RAG-Net in a closed loop while the robot moves the camera
and trains NeRF. When confidence exceeds a threshold, the capture stops early and the
robot executes the grasp.

CHAPTER 8. GRASPING TRANSPARENT OBJECTS EFFICIENTLY 102

Scene Generation

Blender Rendering Evo-NeRF Training

Simulated NeRF
Grasp Dataset

Depth Rendering

Grasps Generation

Grasps on Synthetic DepthGrasps Sampling

Scene Rendering

Figure 8.4: Dataset Generation. Each scene in the grasping dataset includes a subset of the
training objects in simulation (Fig. 8.5). Top: Grasp generation samples grasps on the object
meshes and projects them to a top-down view. Bottom: We render multiple views of each scene
using Blender, then train Instant-NGP and render a top-down depth image. We accumulate NeRF
depth rendering and projected grasps into a dataset.

8.4.2 Grasp Planning Network

When NeRF is trained to completion with dense camera viewpoints, grasp planners trained
on ground truth depth in simulation like Dex-Net [209] produce usable grasps on NeRF-
rendered depth. However, in an online setting where viewpoints are limited and NeRF
training terminates early, depth images rendered from NeRF appear significantly different
from the ground truth depth images in simulation. To mitigate this test-time distribution
shift and enable reliable grasping from online NeRFs, we train a network to predict grasps
directly on NeRF-rendered depth maps.

Network Architecture: We train a location neural networks to predict the center of
the grasp location when given a NeRF-rendered image; and we train a rotation network to
predict the discretied grasp angle when given a cropped patch around the grasp location.
We adapt the grasping architecture proposed by Zhu et al. [210], which suggests that an
equivariant convolutional neural network learns to perform top-down grasps in fewer samples
than standard networks. We train location and rotation networks on a static grasp dataset,
in contrast to the online setting in Zhu et al. [210].

Dataset Generation: We generate the training dataset in simulation using 7 object
meshes that are representative of the common household transparent objects which are
graspable by the YuMi robot, shown in Fig. 8.5a. We model all objects with the same
density as glass (2500 kg/m3). We assemble scenes with labeled grasp qualities by randomly
placing objects in stable poses on a planar surface and analytically sampling antipodal grasp
closure axes based on mesh surface normals as in Dex-Net [106]. We use a soft point-contact
model [211], and evaluate the probability of grasp success using wrench resistance [212], a

CHAPTER 8. GRASPING TRANSPARENT OBJECTS EFFICIENTLY 103

(a) Training objects (Blender) (b) In-distribution real objects (c) Out-of-dist. objects (d) Clutter

Figure 8.5: Training and testing objects. (a) shows Blender rendering of the 7 objects we use in
data generation for computing grasps and rendering in various stable poses. Objects in (b) are real
objects we considered in-distribution with the training objects. We also test on out-of-distribution
objects shown in (c). To test grasping in clutter, we setup various testing scenes with objects in
and out of distribution, with examples shown in (d).

common analytic measure for grasp success that is computationally inexpensive (0.02 sec
per grasp) and has high precision [213]. We densely sample 1000 collision free grasps for
each stable pose and use Blender to render the scenes.

Training: To train RAG-Net, we project sampled grasps onto the depth images and
store at each pixel the maximum grasp confidence over all rotations, resulting in confidence
heatmaps. We dilate and blur these heatmaps with a 3x3 kernel to smooth the predictions,
and randomly augment both the depth images and the confidence heatmaps with translation,
shear and scale transformations. To train the rotation network, we sample crops from grasps
above 0.7 quality, and use a cross-entropy loss on the output rotation probabilities.

Grasp Planning: To execute a grasp from RAG-Net we render a depth image from
NeRF of size 144× 256 from the camera pose used during dataset generation, using the ray
transmittance truncation of Dex-NeRF [176]. We query the location network on this depth
image to obtain a heatmap over the image of grasp confidence, then crop a patch of the
depth image centered at the argmax of this heatmap. The rotation network takes this crop
and outputs 8 grasp angle probabilities, and we take the weighted average of the argmax
with its neighbors to produce the final grasp angle. We determine grasp depth by analyzing
a local deprojected pointcloud from the depth image at the grasp location, and subtracting
a static 1.5 cm grasp depth from the highest point.

8.5 Experiments

We evaluate the reliability of Evo-NeRF paired with RAG-Net vs Dex-Net [209], evaluate
the speed improvements from early stopping captures and Evo-NeRF’s reuse of weights, and
ablate aspects of the system including NeRF modifications and training on NeRF depth vs
ground-truth depth. We compare to Dex-Net to highlight the improvement in reliability
gained from training on NeRF-rendered depth rather than ground-truth depth, and note

CHAPTER 8. GRASPING TRANSPARENT OBJECTS EFFICIENTLY 104

Dex-Net Success RAG-Net Success Time

Full Capture 56 % 89 % 16s

Early Stop 11 % 89 % 9.5s

Table 8.1: Single objects results: each cell reports the average over 27 different trials. We
compare success rates for full capture trajectories vs trajectories which stopped early because of
sufficient grasp confidence. Early stopping results in a 41% speed improvement with no drop in
success rate for RAG-Net. Dex-Net struggles to reliably grasp on geometry rendered so early in
NeRF training.

that in Dex-NeRF [176], the NeRF model was trained for 1900x longer, with an offline,
manually captured set of images with precisely calibrated poses from Colmap [139, 140].
This difference in view quality and training length from rapid capture results in a notable
drop in raw Dex-Net grasp robustness because of lower quality reconstructions.

8.5.1 Physical Setup

We evaluate on a physical YuMi robot with a ZED Mini camera. The pose of the ZED
relative to the arm holding it is calibrated with a chessboard once before all experiments.
We surround the robot with a kitchen-like workspace containing printed images of a coun-
tertop and shelves, where test objects are positioned near the center of the workspace. The
workspace has 3 LED floodlights positioned across from the robot aiming at the workspace.
We use one NVIDIA GeForce RTX 3080 GPU for NeRF training and grasp network infer-
ence. We evaluate on 9 different objects, both in distribution and out of distribution with
respect to the train set in Fig. 8.5a. We note that in general, RAG-Net performance in
simulated scenes is worse than in real scenes because the synthetic dataset contains fewer
camera angles than real scenes (52 vs. 80) and more difficult background textures, resulting
in more floaters.

8.5.2 Rapid single object retrieval

We apply confidence-based capture early stopping (8.4.1) with a threshold of 70% to execute
a grasp as quickly as possible as shown in Fig. 8.2. We place each of the 9 test objects
near the center of the workspace, and report grasp success and total time spent capturing
images. We repeat each experiment 3 times and compare RAG-Net with Dex-Net [209] and
evaluate with and without early capture stopping. Since Dex-Net does not output grasp
confidence we use the same stopping point for both networks, as determined by RAG-Net.
An experiment is successful if the robot grasps and places the object into the storage bin.

Table 8.1 summarizes the results. Using RAG-Net for early stopping results in a capture
time reduction of 41 %, with no drop in reliability. On average, the robot grasps objects

CHAPTER 8. GRASPING TRANSPARENT OBJECTS EFFICIENTLY 105

0 1 2 3 4 5
Number of Objects Left

0

5

10
N

o.
 T

ri
al

s
RAG-Net:
NeRF from scratch

0 1 2 3 4 5
Number of Objects Left

0

5

10 RAG-Net:
NeRF updated

0 1 2 3 4 5
Number of Objects Left

0

5

10 Dex-Net: NeRF updated

0.0

0.5

1.0

C
ap

tu
re

 R
at

io

Figure 8.6: Decluttering results. Histograms show the number of objects remaining after each
trial for RAG-Net (top) and Dex-Net (bottom left) where lower is better. Bottom right:
Reusing and updating the NeRF between grasps (red, blue) rather than recapturing the scene
(green) reduces capture time by 61% where lower is better.

within 9.5 seconds with an 89% success rate over 54 trials. RAG-Net outperforms Dex-Net
in grasp success by 1.6x even with a full capture of the scene as a result of its habituation to
NeRF density. RAG-Net’s primary failure cases are on out-of-distribution objects, specifi-
cally missing grasps on the lightbulb and tape dispenser, likely because the training set has
no small profile items. In addition, some grasps failed on the sideways wineglass because it
rolled out of the jaws before they closed.

8.5.3 Sequential decluttering

We evaluate on a decluttering task where multiple transparent objects are placed within
2cm in stable poses, and the robot must grasp and place all objects in the bin one by one
(Fig. 8.1). We consider three tiers of experiment difficulties with two scenes for each tier,
resulting in 6 different scenes (Fig. 8.5). We repeat each scene 3 times and compare against
Dex-Net [209]. At the beginning of each experiment, the robot executes a full capture of the
scene (Fig. 8.1a). After each consecutive grasp, the robot executes a much smaller capture
centered at the grasp location to update the NeRF (Fig. 8.1c). We allow only as many grasp
attempts as objects in the scene.

Results are summarized in Fig 8.6, showing the number of remaining objects after each
trial and the speedup from updating the NeRF rather than retraining. Evo-NeRF with

CHAPTER 8. GRASPING TRANSPARENT OBJECTS EFFICIENTLY 106

Instant-NGP Evo-NeRF -TV Evo-NeRF -Coarse Evo-NeRF

% Trajectory Used 80.3 % 64.8 % 62.0 % 52.6%

Table 8.2: Ablations of Evo-NeRF regularizations. We query Dex-Net continuously through
camera capture trajectories and report the percent of the trajectory needed until the highest prob-
ability grasp is on an object. We compare vanilla Instant-NGP with Evo-NeRF, as well as ablating
TV-loss and coarse ray sampling. Evo-NeRF produces successful grasps the earliest.

RAG-Net clears 72 % of test objects across all tiers while Dex-Net clears 48 % of objects.
Evo-NeRF takes 39% of the capture time compared to rebuilding the NeRF from scratch
with full capture trajectories after each grasp, while maintaining similar performance (76 %).
This suggests Evo-NeRF retains graspable geometry over successive updates, despite their
short duration. The primary grasp failure modes for this experiment are the same as in
single object experiments, but sometimes the method failed to remove an object if it was
moved by more than 2-3cm from accidental contact, which wasn’t detected by the smaller
deletion captures used between grasps.

8.5.4 Graspability ablation

We ablate the changes made to NeRF speeding geometry graspability. We capture 9 single-
object and 3 multi-object scenes, then continuously train NeRF as it captures, using the same
static images and holding all other hyperparameters constant. We measure the capture time
needed until the highest confidence grasp output from Dex-Net lands on a real object as a
proxy for graspability convergence. Table 8.2 shows the percent of the capture trajectory
needed, and Fig. 8.3 shows a timelapse of visual qualities over a capture. Results suggest
that the proposed method produces graspable geometry faster, with a 32 % reduction in
capture time needed to grasp using Dex-Net.

The grasp success labels used in this experiment were manually evaluated, where a human
labeled a grasp as successful if its centerpoint lies on graspable geometry. To evaluate its
reliability we executed grasps for single-object scenes from Evo-NeRF in the real world.
All grasps labeled as successful were in fact successful (9/9), suggesting the metric used is
physically reliable.

8.5.5 NeRF Depth vs Ground Truth Depth

This section investigates the distribution shift between training on ground-truth depth and
testing on NeRF-rendered depth, to make the argument for training a grasp network directly
on NeRF-rendered depth. We compare RAG-Net with two grasp planners: 1) Dex-Net, which
is trained on a large dataset with ground-truth depth, and 2) GT-Net, which has the same
architecture as RAG-Net but is trained only on ground-truth depth generated in simulation

CHAPTER 8. GRASPING TRANSPARENT OBJECTS EFFICIENTLY 107

with pyrender [214]. We test on the held-out test set of NeRF-rendered depth images and
report average grasp confidence using the soft-point-contact model and wrench resistance.
We calibrate the grasp planners’ performance by evaluating GT-Net on ground-truth depth
images, a scenario with no distribution shift, and then normalize the results of all planners
with respect to this performance.

GT-Net, RAG-Net and Dex-Net achieves 0 %, 42 % and 0.1% success respectively, sug-
gesting a large distribution shift between training on ground-truth depth to testing on NeRF-
rendered depth. On low quality grasps with lower than 0.1 wrench resistance, the mean depth
estimation error is 2.7cm, compared to 3-5mm for values over 0.1, suggesting a failure reason
here is grasping floaters.

8.6 Discussion and Future Work

We introduced Evo-NeRF, a method that rapidly captures and trains NeRFs for practical
robotic grasping. While its image capture produces lower-quality reconstructions than prior
work, we propose reusing trained weights in sequential grasping, geometry regularization, and
continual training to obtain better 3D reconstructions. We further propose a novel training
pipeline to train grasp networks on NeRF rendered depth images in simulated environments,
which can predict high quality grasps in the physical environment. In experiments, Evo-
NeRF and RAG-Net can grasp transparent objects within 10s of seconds with 89 % success
on singulated objects.

8.6.1 Limitations and future work

RAG-Net uses rendered depth images, throwing away much of the rich 3D information
present in NeRF. Future work should explore 3D grasp planner inputs from NeRF such as
density voxel grids, akin to VGN [215]. While hemispherical captures are efficient for recon-
structing small workspaces, it may be unsuited to tasks like finding and extracting a target
object from a large scene. Though we have shown that NeRF is adaptable to geometry
deletion, NeRF still resists adding new geometry because of hash collisions in the positional
encoding and the density gradient being pushed towards 0 in empty regions. In our exper-
iments we observed a failure case where an object was toppled over by the grasped object,
changing the scene’s geometry. Future work in adapting NeRF to changing scenes would
greatly improve the practicality of real-time usage. The speed of this method is also unsuit-
able for industrial applications requiring sub-second cycle times, and is mainly practical for
household applications such as tidying which do not have such rapid requirements.

108

Part III

Efficiency and Reliability in Bimanual
Deformable Manipulation

109

Chapter 9

Using Interactive Perception to
Untangle Long Cables

Manipulating one-dimensional deformable objects like ropes or long cables is difficult due to
the potential formation of knots and the limited information available from image observa-
tions caused by self-occlusions. This chapter explains how we apply Interactive Perception
(IP) to reduce perception uncertainty and enhance the system’s reliability in untangling long
cables.

9.1 Introduction

Long cables, including electrical cords, ropes, and string, are ubiquitous in households and
industrial settings [216–218]. These single-dimensional deformable objects can form knots
that may restrict functionality or create hazards. Furthermore, as cable length increases,
perception and manipulation of these objects become more difficult as the increased amount
of free cable (which we refer to as slack) can cause the cable to not only fall into unreachable
areas of the workspace, but also form complex knots and reach irrecoverable states. Further,
retrieving full state information from image observations is especially challenging when slack
occludes or falsely resembles true knots.

In our prior work, SGTM 1.0, we approach partial observability with manipulation prim-
itives which attempt to simplify state for perception [219]. However, this approach lacks
uncertainty awareness and takes actions that are often overly aggressive or conservative (see
9.2). To address this limitation, this chapter focuses on quantifying uncertainty to enable ap-
plying interactive perception [220], which involves physically manipulating objects in a scene
to better understand it. By considering perceptual uncertainty, the robot is able to perform
targeted actions that clarify the state and take subsequent actions with higher confidence.

This chapter provides the following contributions: (1) Novel perception-based metrics to
estimate untangling-specific uncertainty in cable configurations, including tracing, network,
and observational uncertainties as described in Section 9.4.2 while reducing reliance on depth

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 110

Figure 9.1: Overview of Sliding and Grasping for Tangle Manipulation 2.0 (SGTM 2.0):
SGTM 2.0 untangles a long cable with 2 figure-8 knots. (1) The system cannot perceive a clear
path to a knot and performs an exposure move, bringing the endpoint cable segment back into
the observable workspace. (2) SGTM 2.0 confidently untangles the figure-8 knot using cage-pinch
dilation. (3) The system untangles the last figure-8 knot in the scene and does an incremental
Reidemeister move. (4) SGTM 2.0 perceives a knot-like region and uses a partial cage-pinch
dilation to disambiguate it. After another incremental Reidemeister move, the system terminates
confidently having verified that no knots remain.

sensing; (2) Novel primitives, including interactive perception actions, for cable slack man-
agement, untangling, and termination described in Section 9.4.3 to reduce the probability of
irrecoverable failures; (3) SGTM 2.0, an algorithm using uncertainty quantification to pa-
rameterize interactive perception actions for untangling described in Section 9.4.4 (overview
in Figure 9.1); and (4) Data from physical experiments suggesting 43% improvement in
untangling accuracy and 200% improvement in speed compared to SGTM 1.0, and data

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 111

suggesting that interactive perception improves accuracy by 21% in complex cases.

9.2 Related Work

Autonomous deformable object manipulation is an open problem in robotics. Deformable
objects have infinite-dimensional configuration spaces, are prone to self-occlusions, and are
subject to complex dynamics. An increasingly popular approach to these problems is end-
to-end deep learning with imitation learning [221–223] or reinforcement learning [224–226].
Since large-scale physical data collection is difficult, one technique is training in simulation
and deploying the learned policy on physical systems [16, 224, 225, 227–233]. However, there
the sim-to-real gap remains large due to challenges in modeling deformable objects [227]. An
alternative approach is to use self-supervised learning to collect the training data directly on
the physical system [226, 234, 235].

In multi-step algorithmic pipelines, perception-based techniques have shown to be effec-
tive for deformable object manipulation. Prior work uses dense object descriptors [236] for
cable knot tying [230] and fabric smoothing [237], as well as visual dynamics models for non-
knotted cables [229, 238] and fabric [16, 17, 229]. However, robust cable state estimation
and dynamics estimation remain challenging for self-occluded, knotted configurations. We
build on prior keypoint-based work [219, 239, 240] with uncertainty-aware primitives and
interactive perception for the task of autonomously untangling long cables.

Early work by Lui and Saxena [241] uses traditional feature extraction to represent a
cable’s structure as a graph. Recent work [219, 240, 242] use learning-based keypoint de-
tection to parameterize action primitives in an untangling pipeline. Specifically, we improve
upon Sliding and Grasping for Tangle Manipulation (SGTM 1.0) [219], an algorithm built
on action primitives for autonomous long cable untangling. However, SGTM 1.0 may pro-
ceed with untangling despite low confidence in the predicted actions, leading to irrecoverable
states. It also relies on shaking, a randomized reset primitive, when progress is difficult. Fi-
nally, it also requires a time-consuming physical trace to achieve the necessary confidence
for termination. SGTM 2.0 addresses these three issues through interactive perception, by
taking untangling actions sensitive to uncertainty, making targeted moves to reduce uncer-
tainty instead of generic recovery moves, and terminating only once sufficiently certain across
multiple views that the cable is untangled.

In 1984, Goldberg and Bajcsy [243] explored active perception of shape using a robot
to actively move a touch sensor to trace object contours. In 1988, Bajcsy [118] defined
active perception as a search of models and control strategies for perception. Strategies vary
according to the sensor and the task goal, including controlling camera parameters [119] and
moving a tactile sensor according to haptic input [243]. Recently, Bohg et al. [220] explore
the differences between active and interactive perception, the latter of which specifically
exploits environment interactions to simplify and enhance perception to achieve a better
understanding of the scene [220, 244]. Within robotic manipulation, several works have
focused on improving understanding of the environment through scene interaction. Tsikos

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 112

and Bajcsy [245] propose interacting with random heaps of unknown objects through pick and
push actions for scene segmentation. Danielczuk et al. [246] present the mechanical search
problem, where a robot locates and retrieves an occluded target object from a cluttered bin
through a series of targeted parallel jaw grasps, suction grasps, and pushes. Novkovic et
al. [244] propose a combination of camera motions with environment interactions to find a
target cube hidden in a pile of cubes.

Interactive perception has also been applied to deformable manipulation. Willimon et
al. [247] interact with a pile of laundry to isolate and identify individual clothing items. In
our work, the robot interacts with the cable to reveal more information about the cable
state.

9.3 Problem Statement

As in [219], we consider untangling long (∼ 3 m) cables from RGB-D image observations.
We use a bimanual robot to execute manipulation primitives until the cable reaches a fully
untangled state with no knots.

9.3.1 Workspace Definition and Assumptions

The bilateral robot operates in an (x, y, z) Cartesian coordinate frame with two 6-DOF robot
arms. The robot is equipped with cage-pinch jaws introduced in [219] to allow for both sliding
along and tightly pinching the cable (Figure 9.1(2)). The workspace lies in the xy-plane and
the only inputs to the algorithm consist of RGB-D images. The workspace contains a single
incompressible electrical cable of length lc and cross-sectional radius rc. Cable state s ∈ S
can be described as a continuous path cn(u) : [0, 1] → (x, y, z) in the workspace, where
u indexes the position along the length of the cable. cn(0) and cn(1) always refer to the
position of the endpoints of the cable. We initialize the cable’s state before n = 0 with the
procedures specified in Section 9.5. One challenge in this problem is that parts of the cable
may rest outside the reachable and observable workspace at any point in a rollout (defined
as a single experiment aiming to remove all knots in the cable). Moreover, self-occlusions
in the cable are possible due to only one overhead camera view. This partial observability
motivates the need for actions that reveal more information about the cable state s.

We make the following assumptions: (1) the cable can be segmented from the background
via color thresholding; (2) transformations between the camera, workspace, and robot frames
are known; and (3) the cable start state contains overhand or figure 8 knots of dense (6-8
cm diameter) or loose (12-14 cm diameter) configurations in series.

9.3.2 Task Objective and Metrics

The goal of the robot is to untangle the cable and terminate at time t < Tmax, specified in
Section 9.5. After each step of a rollout r, a new observation o of the cable state s is taken.

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 113

Figure 9.2: Perception system: This is the pipeline used to determine which points to cage and
pinch for a cage-pinch dilation move, the crucial action for untangling a knot. First, we detect the
endpoints and knots. Next, we trace from the endpoint to the first bounding box. If the trace is
certain, we run the cage-pinch network ensemble on the cropped knot in the bounding box with
the trace tail encoded into one of the channels. We take the pixelwise minimum across the cage-
pinch network ensemble outputs, leading to 1 heatmap encoding “worst-case” untangling success
probabilities each for the cage and pinch point. We take the argmax of each of the two heatmaps
to determine the final points to pinch and cage during the cage-pinch dilation action.

Each primitive constitutes at least one step.
The goal of the robot over the course of each rollout is to untangle the cable and output a

termination signal (DONE). We use HDONE to represent a step function, with the step occurring
when the robot outputs DONE. We define an untangled cable as one that has no knots when
its endpoints are grasped top-down and extended the maximum feasible distance, with knots
defined identically to [219]. We use krt to denote the number of knots in the cable at time t
in rollout r and assume the cable is initialized with kr0 knots.

We use the following metrics to measure performance, where 0 < K ⩽ kr0 refers to the
number of knots untangled and R is the total set of rollouts:

1. Untangling K Success Rate, the percentage of rollouts that untangle K knots:
1
|R|

∑
r∈R 1{∃t<Tmax : krt⩽kr0−K}

2. Untangling Verification Rate, the percentage of rollouts that untangle all knots and
terminate successfully: 1

|R|
∑

r∈R 1{∃t<Tmax : krt=0 ∧ DONEt}

3. Average Untangling K Time, the average time to untangle K knots across all applicable
rollouts Ra where this occurs before Tmax:

1
|Ra|

∑
r∈Ra

(min t : krt ⩽ kr0 −K)

4. Average Untangling Verification Time, the average time to reach krt = 0 and declare
termination across all applicable rollouts Ra like above: 1

|Ra|
∑

r∈Ra
(min t : krt =

0 ∧ DONEt)

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 114

9.4 Method

9.4.1 Approach Overview

Unlike SGTM 1.0, SGTM 2.0 uses interactive perception primitives designed to better man-
age slack during untangling and to reveal additional information about the cable state s ∈ S.
As s is difficult to estimate from the provided observation o ∈ O, SGTM 2.0 uses a policy
π : O → A built as described in Section 9.4.4 from the components in Sections 9.4.2 and
9.4.3 to directly predict actions to execute. Unlike prior work, SGTM 2.0 includes perception
components that lend themselves to probabilistic interpretation and manipulation primitives
that are sensitive to perception uncertainty. We note that while the distribution of states the
robot encounters may have high variance, SGTM 2.0 is sensitive only to variance that may
affect the next untangling action. Practically, this means that for example, even if much of
the cable is bunched up and occluded, as long as the path from an endpoint to the first knot
is clearly visible, the algorithm can still take an untangling action with high confidence.

9.4.2 Uncertainty-Aware Perception Systems

Endpoint Detection

We train a Faster R-CNN model with a Resnet-50 FPN (Feature Pyramid Network) backbone
[248] on 305 hand-labeled examples to detect cable endpoints. We discard all bounding boxes
with lower than 99% confidence, achieving an average precision and recall for endpoint
detection are 86.7% and 100% respectively.

Knot Detection

To identify all knots in the observable workspace, we use the same architecture as the end-
point model trained on 688 hand-labeled images. The real-world dataset is augmented with
flip, contrast, brightness, rotation, saturation, and scale augmentations. We use a 99% detec-
tion threshold, which achieves an average precision of 91.3% and an average recall of 95.5%.
We analytically filter out misclassified knots by checking if a simple loop fills the bounding
box. Because the model’s output is dependent on the orientation of the cable, in certain
cases, we use multiple observations of the underlying cable state s as described in Section
9.4.3. This allows SGTM 2.0 to be sensitive to what we define as observational uncertainty.

Analytic Cable Tracing

The objective of cable tracing is to outline all likely paths of the cable from an overhead
image. Given an RGB image and a start pixel (the center of one endpoint), the tracer we
introduce in this chapter outputs a set of possible splines. It maintains a set of valid splines
and iteratively expands it by exploring candidate successor points, preferring those that do

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 115

not deviate sharply from the current spline’s trajectory. An example of candidate trace paths
is shown in Figure 9.3.

Sliding and Grasping for Tangle Manipulation 2.0 (SGTM 2.0) uses this in 2 scenarios:
(1) finding a knot to untangle and (2) achieving robust grasps near cable endpoints. When
used for finding a path from endpoint to knot, the tracer terminates once all potential traces
intersect the knot within a bounding box. For grasping endpoints, the trace terminates after
traveling a fixed distance along the cable. At the termination of tracing, we fit a bounding
box Bt to the ending points of all the final traces; if either dimension of Bt is greater than 24
pixels for knot tracing and 12 pixels for endpoint tracing (which requires more precision), the
traces diverge and thus TRACE UNCERTAIN is returned; otherwise, TRACE CERTAIN is returned.
Note that while traces with very different topologies may be returned, as long as they end near
the same point (Figure 9.3, left and center), the untangling-relevant uncertainty remains low.
The reason for tracking uncertainty in this phase is that different paths from the endpoint
to the knot may lead to different untangling actions, especially with respect to which point
to cage and which to pinch.

Figure 9.3: Cable Tracing: multiple candidate trace paths returned by the tracer to find the
closest knot from the top-left endpoint. The tracer finds the correct knot in all cases, but is unclear
as to which side of the knot is attached to the free endpoint, and therefore returns TRACE UNCERTAIN.

Cage-Pinch Dilation Point Selection

We use an FCN [249] with a ResNet-34 backbone trained on 568 knot crops to output
two heatmaps: one for the cage point and one for the pinch point. We augment this data
with random rotations, flips, shear, and synthetically added distractor cables to improve
robustness. Approximately 250 of these images are gathered during rollouts to mitigate
distribution shift in a style similar to DAgger [250]. The input is a 3-channel image, where
one of the channels contains a Gaussian heatmap around the segment of cable entering
the image determined by the cable tracing algorithm. This additional input conditions the
network and breaks the symmetry between the cage and pinch points. We train the network
to predict the cage point as the first graspable point beyond the undercrossing forming the
knot, and the pinch point as the place to secure the cable to create an opening for the free
end to slide through. Example cage and pinch points and the perception pipeline to obtain
the points are shown in Figure 9.2.

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 116

The goal of this network is to model the probability Pp(Us) per grasp pixel p, where Us cor-
responds to untangling success on the cropped knot. We train an ensemble of 3 models on the
same data but with different initializations. For the cage point, to sample from each of the en-
semble heatmaps hcage ∈ Hcage, we create a new heatmap as such: h′cagei,j = minhcage∈Hcage hcagei,j .
The same procedure is used for the pinch point. We return the cage and pinch point as the
argmaxi,j h

′cage
i,j and argmaxi,j h

′pinch
i,j , respectively. If maxi,j h

′cage
i,j maxr,s h

′pinch
r,s < κ where

κ = 0.35 (calibrated empirically), we output NETWORK UNCERTAIN. Otherwise, we output
NETWORK CERTAIN.

The above methods help reveal whether the worst-case probability (across our predictive
distribution modeled by an ensemble) of untangling success is high enough to proceed with
untangling the cable at the specified points. If not, the network is too uncertain in its
predicted points to proceed confidently as the next action may instead tighten the knot or
lead the cable into an irrecoverable state.

9.4.3 Novel Manipulation Primitives for Interactive Perception

Cage-Pinch Dilation

To untangle an individual knot, the robot leverages the flexibility of the cage-pinch grippers
introduced in [219] and depicted in Figure 9.1(2) to cage one point and pinch another point
inside the knot and pull apart the arms to a distance determined by the length of the trace
from the endpoint to the knot, while moving its wrist joint in a high-frequency sinusoidal
motion. A major benefit of cage-pinch actions compared to cage-cage actions from [219] is the
ability to better manage slack, preventing accidentally tightening another knot. Following
this action, the robot lays the cable down as far forward as kinematically feasible to isolate
the newly untangled portion from the remaining cable.

Partial Cage-Pinch Dilation

This primitive is similar to the Cage-Pinch Dilation, but the distance the arms move apart
is fixed to 5 cm beyond their starting separation. This is meant to perturb the state and to
later retry perception rather than to completely untangle a knot.

Reidemeister Move

In this primitive, the robot uses tracing to find robust grasp points slightly down the cable
from the endpoints. Next, the robot moves both arms outward horizontally and up, lifting
the cable off the workspace, allowing for loops to fall away. Compared to prior work, we add
(1) the vertical component of the action, forming a large “U” with the cable, and (2) the
wide lay-out action, which places the cable on the workspace in a “U” shape.

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 117

0 knots

< 2 en
dpts

2 endpts
> 0

 kn
ots

0
kn

ot
s

> 0 knots
Trace uncertain

0 knots Keypts uncertain

Incremental
Reidemeister

Trace certain

0
en

dp
ts

Keypts c
erta

in

Knot & Endpt.
Detection

2 endpts

 > 0 knots Terminate

1 endpts
Cage-Pinch Dilation

Cable Tracing
(from endpoint)

Endpoint Exposure

Reidemeister Move

Partial Cage-Pinch
Dilation

Figure 9.4: SGTM 2.0 Algorithm: SGTM 2.0 first detects the number of knots and endpoints
in the scene. If the endpoints are not visible, there is no way to verify any knot’s relative position
to the endpoint. This is necessary because SGTM 2.0 only untangles knots adjacent to an endpoint
to avoid knots colliding into each other and creating irrecoverable configurations. If fewer than two
endpoints and no knots are visible, the algorithm is also unable to perform a termination check as
that requires performing an incremental Reidemeister, which grasps the cable at the endpoints. In
both these cases, SGTM 2.0 performs an endpoint exposure. If two endpoints are visible and no
knots are visible, SGTM 2.0 proceeds to the incremental Reidemeister move. If one or two endpoints
are visible and there are knots in the scene, it attempts to untangle, beginning by tracing from
the visible endpoint(s). Here, if it is not able to confidently trace from either endpoint to a knot,
SGTM 2.0 performs a Reidemeister move or endpoint exposure (based on the number of endpoints
visible) to increase likelihood of unambiguous traces in future steps. Otherwise, it assesses the
cage-pinch network uncertainty on the predicted points. If it is confident, it proceeds with a full
cage-pinch dilation. Else, it performs a partial cage-pinch dilation to disambiguate the state.

Incremental Reidemeister Move

This primitive performs the exact same motions as a Reidemeister move, but uses a multi-
stage, perception-based approach where the cable is observed at certain waypoints along the
action. We use our knot detection network at these intermediate points to determine whether
any knots remain. This can be interpreted as ensembling via perturbation of the observation
of the same underlying cable topology. Being sensitive to observational uncertainty allows
us to eliminate the time-consuming physical tracing action used in [219] for termination.

Exposure Action

When one or more endpoints are missing for an action, we uniformly at random sample a
segment of the cable leaving the reachable workspace and pull it towards the center of the
workspace to increase visibility. We also do this for unreachable knots we wish to act on.

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 118

9.4.4 Sliding and Grasping for Tangle Manipulation 2.0 (SGTM
2.0) Algorithm

Sliding and Grasping for Tangle Manipulation 2.0 (SGTM 2.0) ties together the aforemen-
tioned perception components and manipulation primitives to untangle cables. SGTM 2.0
alternates between the perception and manipulation components, using uncertainty from the
former to determine whether to untangle or disambiguate the cable state. The algorithm is
covered in detail in Figure 9.4.

9.5 Experiments

9.5.1 Experimental Setup

For our experiments, we use the bimanual ABB YuMi robot with an overhead Phoxi camera,
operating on a black foam-padded workspace of width 1.0m and depth 0.75m. Due to hard-
ware constraints, we slightly extend the workspace with cardboard (by 0.1 meters on either
side) not previously present in SGTM 1.0, but this does not make a significant difference as
the cable mostly remains in the original foam-padded workspace. We use a 2.7m-long white,
braided electrical cable with USB adapters on both ends.

We evaluate SGTM 2.0 on 3 tiers of difficulty:

1. Tier 1: A cable with 1 overhand or figure-8 knot.

2. Tier 2: A cable with 2 overhand and/or figure-8 knots.

3. Tier 3: A cable with 3 overhand and/or figure-8 knots.

The knots in all tiers are evaluated equally in both loose and dense configurations and evenly
across positions along the cable (closer to an endpoint vs. closer to the middle). Example
start configurations are shown in Figure 9.5. The cable is initialized by laying the knot(s)
flat on the workspace, raising the endpoints as high as possible without lifting the knot(s),
and then dropping the endpoints. We enforce a time limit of 15 minutes for all tiers. Note
that the cable initialization procedures in Tiers 1 and 2 of this chapter are exactly the same
as Tiers 1 and 2 in SGTM 1.0, the prior state-of-the-art [219].

For each tier, we report the average time to fully untangle the cable (for the rollouts
that succeed in doing so) as well as the average time to correctly report that the cable is
untangled (for the rollouts that succeed in doing so). Additionally, we report the success
rates for untangling alone and untangling with termination detection. For Tiers 2 and 3, we
present ablation results where SGTM 2.0(-U) represents SGTM 2.0 with the uncertainty-
based components removed. For Tiers 1 and 2, we also report the speedup of SGTM 2.0 and
SGTM 2.0(-U) from SGTM 1.0. Our baseline for experiments is SGTM 1.0 because to our
knowledge, there are no prior algorithms for untangling long cables.

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 119

Figure 9.5: Example starting configurations for all 3 tiers: Overhand knots are outlined in
purple and figure-8 knots are outlined in orange.

Table 9.1: Results from Physical Experiments (84 total trials). Key takeaways include 1) higher
success rates in SGTM 2.0, which ablations suggest is a result of interactive perception. Reduced
completion times compared to SGTM 1.0 because of novel interactive manipulation primitives.

Tier 1 Tier 2 Tier 3
SGTM 1.0 SGTM 2.0 SGTM 1.0 SGTM 2.0(-U) SGTM 2.0 SGTM 2.0(-U) SGTM 2.0

Knot 1 Suc-
cess Rate

8/12 10/12 10/12 10/12 12/12 12/12 12/12

Knot 2 Suc-
cess Rate

- - 6/12 7/12 10/12 9/12 9/12

Knot 3 Suc-
cess Rate

- - - - - 3/12 3/12

Verification
Rate

3/12 7/12 1/12 5/12 7/12 0/12 2/12

Avg. # of
Actions

5.0±1.5 5.6±1.7 12.0 6.0±1.2 7.7±1.6 N/A 12.0±0.0

Avg. Knot 1
Time (s)

189.8±69.4 53.1±7.5 93.3±16.2 128.6±41.9 75.6±21.0 88.7±25.5 69.8±15.1

Avg. Knot 2
Time (s)

- - 586.4±165.3 160.9±26.4 180.9±26.2 177.3±28.3 233.1±57.6

Avg. Knot 3
Time (s)

- - - - - 417.7±104.1 476.7±160.1

Avg. Verif.
Time (s)

330.8±127.8 295.9±61.4 1079.0 359.6±74.6 406.9±22.0 N/A 704.5±13.5

Failure Modes - (A) 2, (B) 1, - (A) 1, (B) 0, (A) 2, (B) 1, (A) 1, (B) 4, (A) 5, (B) 2,
(See Section
9.5.3)

(C) 1, (D) 1 (C) 5, (D) 1 (C) 1, (D) 1 (C) 6, (D) 1 (C) 2, (D) 1

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 120

Figure 9.6: Average Knots over Time (Tier 2): SGTM 2.0 most quickly reduces the number
of knots on average. SGTM 2.0(-U) is less successful in untangling over the given time period than
SGTM 2.0. Further, performance of even SGTM 2.0(-U) exceeds that of the prior state-of-the-art,
SGTM 1.0, at 15 minutes, showing the effectiveness of improved untangling primitives like cage-
pinch dilations introduced in SGTM 2.0.

9.5.2 Results

Results show that across Tiers 1 and 2, SGTM 2.0 outperforms SGTM 1.0 not only on
untangling and verification success rate, but also achieves statistically significant speedups
in the untangling time in Tier 1, untangling time for both knots in Tier 2, and verification
time in Tier 2. Tier 3 was unachievable in SGTM 1.0 due to algorithmic constraints, but
is now possible with SGTM 2.0, which achieves 9/12 successes in untangling 2 out of the
3 knots in Tier 3. In 9.5.3, we discuss difficulties that result in failures, leading to 3/12
untangling success on all 3 knots in Tier 3.

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 121

9.5.3 Failure Modes

(A) Timeout, unable to determine termination: This is the most common failure case
of SGTM 2.0 across all tiers, especially in Tier 3. Causes include:

1. The system inadvertently manipulates the cable into a state that is difficult to perceive
and manipulate, most common in Tier 3 due to higher complexity and a higher chance
that a rare failure in disambiguation may accidentally tighten or complicate a knot.

2. A substantial portion of the cable leaves the workspace. The system repeatedly at-
tempts exposure actions, but due to the large mass of cable, the cable continually slips
back down into its prior configuration.

3. Though the entire cable may enter a difficult configuration, the algorithm slowly dis-
ambiguates it and given more time, may have untangled and terminated.

(B) Cable or knot leaves observable/reachable workspace: This is the next most
common failure mode of SGTM 2.0. While performing a cage-pinch dilation or Reidmeister
move, one gripper may miss the grasp, causing the entire cable to slide to one side of
the workspace and fall off entirely and irrecoverably. This failure mode shows that slack
management can be improved in future work.

(C) False termination due to missed knot detection: False termination is the most
common failure mode in SGTM 2.0(-U), mostly resolved by SGTM 2.0 with uncertainty-
based components. This failure also occurs in SGTM 2.0, largely due to rarer cases where the
knotted portion inadvertently lands outside the observable workspace during an incremental
Reidemeister move, causing early termination. This can be addressed with improved motion
primitives.

(D) Irrecoverable YuMi system error: These relatively rare issues result from the
YuMi losing connection to the computer running the algorithm and freezing.

9.5.4 Ablations

We run ablations on Tier 2 and Tier 3 to compare the performance of SGTM 2.0 to the
performance of SGTM 2.0(-U), which uses the exact same algorithm as SGTM 2.0, but with
the following uncertainty-based components removed:

• Reidemeister move due to tracing uncertainty.

• Ensemble network for keypoint predictions and partial cage-pinch dilation in the case
of ensemble uncertainty in the cage-pinch dilation network.

• Intermediate views for incremental Reidemeister move.

We find, as shown in table 9.1, that SGTM 2.0(-U) achieves a lower success rate than
SGTM 2.0 on Tier 2. While SGTM 2.0 and SGTM 2.0(-U) achieve the same success rate

CHAPTER 9. USING INTERACTIVE PERCEPTION TO UNTANGLE LONG
CABLES 122

on Tier 3, the main failure case for SGTM 2.0 is timeout as higher complexity cases tend
to require more time to disambiguate and untangle. In comparison, the main failure case
for SGTM 2.0(-U) are false termination. In fact, the most common failure case in SGTM
2.0(-U) across Tier 2 and 3 is false termination, suggesting that sensitivity to observational
uncertainty may be important for higher performance. Another implicit failure that results
in more false terminations is over-tightening of knots to a diameter ⩽ 3cm. If the ensemble
cage-pinch network has low confidence, SGTM 2.0 performs a partial cage-pinch dilation
rather than a full cage-pinch dilation, preventing over-tightening knots in the case of poorly
predicted cage-pinch points. Additionally, if the trace to a knot is uncertain, the Reidemeister
move disambiguates the cable state, preventing poor grasps that may tighten or complicate
the knots. The ablations suggest that these uncertainty-based primitives may prevent the
over-tightening of knots and thus reduce false terminations.

9.6 Discussion and Future Work

The perception approach in this chapter is limited to overhand and figure-8 knots due to
reliance on geometric rather than topological features. Additionally, while perception system
operates on just RGB data, grasping is reliant on depth. Lastly, this algorithm has been
tested on only a single white cable on a black background.

In future work, we will explore cable state estimation and topological knot analysis
to generalize to other knot types, and RGB visual servoing methods that could eliminate
reliance on depth sensing altogether.

123

Chapter 10

Learning Efficient Bimanual Folding
of Garments

Manipulating two-dimensional deformable objects, such as cloth and garments, is challenging
because of their large configuration space, self-occlusions, and complex dynamics. This
chapter details how we use a bimanual robot and utilize high-velocity dynamic motions to
create a system that folds garments both reliably and efficiently.

10.1 Introduction

Garment handling such as folding and packing are common tasks in textile manufacturing
and logistics, industrial and household laundry, healthcare, and hospitality, where speed and
efficiency are key factors. These tasks are largely performed by humans due to the complex
configuration space as well as the highly non-linear dynamics of deformable objects [231,
251]. Additionally, folding is a long horizon sequential planning problem, as it requires
to first flatten or smooth the garment, and then follow a sequence of steps [252, 253] or
sub-goals [19] to achieve the desired fold.

Prior work has mainly focused on single-arm manipulation [16, 227, 231, 254] or on
complex iterative algorithms [252, 253, 255], requiring a large number of interactions and
resulting in long execution times. Recently, Ha et al. [15] proposed a method for smoothing
cloth that computes the pick points for a high-velocity dynamic fling action directly from
overhead images, and can smooth garments to 80 % coverage in 3 actions on average. How-
ever, the proposed 4 DoF action parameterization constrains the two pick poses significantly,
in particular by discrete distances and a fixed rotation in between.

We present SpeedFolding, an end-to-end system for fast and efficient garment folding. At
first, a novel BiManual Manipulation Network (BiMaMa-Net) learns to predict a pair of grip-
per poses for bimanual actions from an overhead RGBD input image to smooth an initially
crumpled garment. Once the garment has been smoothed to a desired level, determined by
a learned smoothing classifier, SpeedFolding executes a folding pipeline (see Fig. 10.1).

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 124

5 Fold

2 Fling1 Fling 3 Drag

4 Move 6 Fold 7 Done

Figure 10.1: SpeedFolding learns to fold garments from arbitrary configurations: Given a crumpled
t-shirt, the robot unfolds using fling actions (1, 2), smooths it with a drag action (3) until it is
sufficiently smoothed. It then moves the t-shirt for better reachability (4), and applies folds (5-6)
to achieve the user-defined configuration (7).

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 125
B

ef
or

e
A

ft
er

Fling

26.1% 0.0%

88.3% 34.9%

Pick-and-place

86.1% 0.8%

93.2% 71.4%

Drag

89.2% 0.4%

93.0% 10.4%

Fold Move
Sufficiently
Smoothed?

X

92.3% 98.5%

⇥

93.0% 0.7%

Smoothing Folding ClassifierCoverage Sufficiently Smoothed Confidence

Fig. 2: Action Primitives. Given an overhead RGBD image, BiMaMa-Net selects a smoothing action from a discrete set of primitives
(left box), and computes a pair of end-effector poses. Coverage calculation (in blue) is insensitive to wrinkles in the fabric (right box,
bottom) and therefore BiMaMa-Net learns to classify configurations as Sufficiently Smoothed (right box, top) (in yellow). Folding a
t-shirt from a smooth configuration is done through a sequence of folding primitives (center box).

II. RELATED WORK

Bimanual robotic manipulation has been studied exten-
sively in fields from surgical robotics to industrial manipula-
tion [11]. A dual-arm system extends the workspace, allows
for increased payload and for more complex behaviours than
a single arm system [5], [12], [13], [14], but comes at the cost
of higher planning complexity due to the additional DoFs and
self-collisions [15]. A promising line of research is to employ
dual-arm systems for garment manipulation [16]. Garments
are especially difficult to control and manipulate due to
their large configuration space, self-occlusions, and complex
dynamics [2]. Recent works have mainly focused on garment
smoothing from arbitrary configurations [10], or garment
folding, assuming the garment has been initially flattened [5].
We present an end-to-end approach to smoothing and then
folding garments from initial crumpled configurations.

Garment smoothing aims to transform the garment from
an arbitrary crumpled configuration to a smooth configura-
tion [7]. Prior works have focused on extracting and identi-
fying specific features such as corners and wrinkles [3], [4],
[17], [18]. Recent methods have used expert demonstrations
to learn garment smoothing policies in simulation [2], [6],
[7], however these methods learn quasi-static pick-and-place
actions that require a large number of interactions on initially
crumpled garments. Ha et al. [10] introduced a novel 4 DoF
dynamic fling action parameterization learned in simulation
that can achieve ⇠ 80 % garment coverage within 3 actions.
However, this parameterization is (1) limited to fling actions,
(2) fails to fully smooth garments, and (3) induces grasp
failures in more than 25 % of actions. In this work we use
expert demonstrations and self-supervised learning purely in
the physical world to train a novel bimanual manipulation
neural network (NN) architecture to smooth a garment such

that it is ready to be folded.
Garment folding has many applications in hospitals,

homes and warehouses. Early approaches rely heavily on
heuristics and can achieve high success rates, but have long
cycle times on the order of 10 to 20 min per garment [3],
[4], [9], [19], [20]. Recent methods have been focusing
on learning goal-conditioned policies in simulation [5], [6],
[21], [22] and directly on a physical robot [23]. In this
work, we compare an instruction-based folding approach that
can reliably fold smoothed garments, with a novel folding
approach that can fold a t-shirt directly from a non-smooth
configuration given prior knowledge about its dimensions.

III. PROBLEM STATEMENT

Given a visual observation ot 2 RW⇥H⇥C of the
garment’s configuration st at time t, the objective is to
compute and execute an action at to transfer the garment
from an arbitrary configuration to a desired user-defined s⇤

goal configuration. In particular, s⇤ is invariant under the
garment’s position and orientation in the workspace. We
assume an overhead observation with a calibrated pixel-to-
world transformation, as well as a garment that is easily
distinguishable from the workspace.

We consider a dual-arm robot with parallel-jaw grippers
executing actions of type m 2 M from a discrete set of
pre-defined action primitives. In particular, we parameterize
each primitive by two planar gripper poses

at = hm, (x1, y1, ✓1), (x2, y2, ✓2)i
for each arm respectively, in which (xi, yi) are coordinates
in pixel space, and ✓i is the end-effector rotation about the z
axis. We further assume a flat obstacle-free workspace and a
motion planner that computes collision-free trajectories for
a dual-arm robot.

Figure 10.2: Action Primitives. Given an overhead RGBD image, BiMaMa-Net selects a smooth-
ing action from a discrete set of primitives (left box), and computes a pair of end-effector poses.
Coverage calculation (in blue) is insensitive to wrinkles in the fabric (right box, bottom) and
therefore BiMaMa-Net learns to classify configurations as Sufficiently Smoothed (right box, top)
(in yellow). Folding a t-shirt from a smooth configuration is done through a sequence of folding
primitives (center box).

This chapter provides the following contributions: (1) The BiMaMa-Net architecture for
bimanual manipulation that computes two corresponding planar gripper poses without any
spatial restrictions, with an automated calibration procedure to account for robot reachabil-
ity constraints; (2) An end-to-end robotic system for efficient smoothing and folding. First,
the system learns to smooth a garment to a sufficiently smoothed configuration through self-
supervision. Then, the robot folds the garment according to user-defined folding lines; and
(3) An experimental dataset from physical experiments that suggests the system can fold
garments with a success rate of over 90 %, including garments unseen during training that
differ in color, shape and stiffness. Folding a t-shirt takes under 120 s on average, improving
baselines by 30 % to 47 % and prior works by 5× to 10×.

10.2 Related Work

Bimanual robotic manipulation has been studied extensively in fields from surgical robotics to
industrial manipulation [256]. A dual-arm system extends the workspace, allows for increased
payload and for more complex behaviours than a single arm system [19–22], but comes at
the cost of higher planning complexity due to the additional DoF and self-collisions [257].
A promising line of research is to employ dual-arm systems for garment manipulation [258].
Garments are especially difficult to control and manipulate due to their large configuration

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 126

space, self-occlusions, and complex dynamics [231]. Recent works have mainly focused on
garment smoothing from arbitrary configurations [15], or garment folding, assuming the
garment has been initially flattened [19]. We present an end-to-end approach to smoothing
and then folding garments from initial crumpled configurations.

Garment smoothing aims to transform the garment from an arbitrary crumpled config-
uration to a smooth configuration [227]. Prior works have focused on extracting and iden-
tifying specific features such as corners and wrinkles [252, 253, 259, 260]. Recent methods
have used expert demonstrations to learn garment smoothing policies in simulation [16, 227,
231], however these methods learn quasi-static pick-and-place actions that require a large
number of interactions on initially crumpled garments. Ha et al. [15] introduced a novel 4
DoF dynamic fling action parameterization learned in simulation that can achieve ∼ 80 %
garment coverage within 3 actions. However, this parameterization is (1) limited to fling
actions, (2) fails to fully smooth garments, and (3) induces grasp failures in more than 25 %
of actions. In this chapter we use expert demonstrations and self-supervised learning purely
in the physical world to train a novel bimanual manipulation neural network architecture to
smooth a garment such that it is ready to be folded.

Garment folding has many applications in hospitals, homes and warehouses. Early ap-
proaches rely heavily on heuristics and can achieve high success rates, but have long cycle
times on the order of 10 min to 20 min per garment [252, 253, 255, 261, 262]. Recent meth-
ods have been focusing on learning goal-conditioned policies in simulation [16, 19, 228, 263]
and directly on a physical robot [226]. In this chapter, we compare an instruction-based
folding approach that can reliably fold smoothed garments, with a novel folding approach
that can fold a t-shirt directly from a non-smooth configuration given prior knowledge about
its dimensions.

10.3 Problem Statement

Given a visual observation ot ∈ RW×H×C of the garment’s configuration st at time t, the
objective is to compute and execute an action at to transfer the garment from an arbitrary
configuration to a desired user-defined s∗ goal configuration. In particular, s∗ is invariant
under the garment’s position and orientation in the workspace. We assume an overhead
observation with a calibrated pixel-to-world transformation, as well as a garment that is
easily distinguishable from the workspace.

We consider a dual-arm robot with parallel-jaw grippers executing actions of type m ∈M
from a discrete set of pre-defined action primitives. In particular, we parameterize each
primitive by two planar gripper poses

at = ⟨m, (x1, y1, θ1), (x2, y2, θ2)⟩

for each arm respectively, in which (xi, yi) are coordinates in pixel space, and θi is the end-
effector rotation about the z axis. We further assume a flat obstacle-free workspace and a
motion planner that computes collision-free trajectories for a dual-arm robot.

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 127

Depth and grayscale
Image Input

Shared
Encoder

Classification
Head

Sufficiently Smoothed

Drag

Pick-and-place

Fling Decoder per Primitive

U-Net
Value Maps Qunc

per Orientation
Correspondence

Descriptors

Descriptor
Head

Value
Q

Fig. 3: BiManual Manipulation Net (BiMaMa-Net) architecture first maps an image to a manipulation primitive type via its shared
encoder and classification head. Given a primitive, it predicts dense unconditioned value maps for a discrete set of gripper orientations.
It then calculates pixel-wise correspondence descriptors. A descriptor pair, representing a bimanual action, is combined in the descriptor
head to predict its joint value.

IV. METHOD

SpeedFolding uses BiMaMa-Net, a learned garment-
smoothing method to bring an initially crumpled garment to a
sufficiently smooth configuration, followed by an instruction-
based garment folding pipeline.

A. Action Primitives

We are interested in the set of quasi-static and dynamic
action primitives that enable the robot to (1) transfer an arbi-
trary garment configuration st to a folded goal configuration
s⇤ (completeness), (2) reducing the number of action steps
(efficiency), and (3) with a reduced number of primitives
(minimality). Each action primitive is defined through a pair
of poses as well as a motion trajectory. All primitives share
a common procedure to reliably grasp the garment with
parallel jaw grippers: Each gripper moves 4 cm above the
grasp pose at, rotates 8� so that one fingertip is below the
other, and moves 1 cm towards the direction of the higher
fingertip. This motion improves the success for grasping in
particular at the edge of the garment. We define following
learned primitives (Fig. 2 left box):

Fling: Given two pick poses, the arms first pick those
points, lift the garment above the workspace and stretch
it until a force threshold is reached, measured using
the arms’ internal force sensors. Next, the arms apply a
dynamic motion, flinging the garment forward and then
backward while gradually reducing the height toward the
workspace. Similar to [10], we find the fling motion to be
robust under change of velocity and trajectory parameters,
and therefore we keep these parameters fixed. The fling
primitive allows to significantly increase the garment’s

coverage in a few steps, but often does not yield a smooth
configuration.

Pick-and-place: Given a pick and a corresponding place
pose, a single arm executes this quasi-static action, while
the second arm presses down the garment at a point on
a line extending the pick from the place pose. Pick-and-
place enables the robot to fix local faults such as corners
or sleeves folded on top of the garment.

Drag: Given two pick points, the robot drags the garment for
a fixed distance away from the garment’s center of mask,
leveraging the friction with the workspace to smooth
wrinkles or corners, e.g. sleeves folded below the garment.
We define heuristic-based primitives (Fig. 2 center box):

Fold: Both arms execute a pick-and-place action simultane-
ously to fold the garment. The heuristic for calculating
the pick and place poses is explained in Sec. IV-E.

Move: While similar to drag, this primitive’s pick poses and
its drag distance are calculated by a heuristic so that the
garment’s center of mask is moved to a goal target point.
Usually, the robot drags the garment towards itself to
mitigate reachability issues in subsequent actions. Sec. IV-
E provides details about the pose calculation.
We define an additional learned primitive to switch from

garment-smoothing to folding (Fig. 2 right box):
Sufficiently Smoothed: We find that deciding whether a

garment is ready to be folded purely from coverage
computation, as done in prior works [6], [7], [10], is not
sufficient. In particular, even a high coverage is prone to
wrinkles or faults that might reduce the subsequent fold
quality significantly (as described in Fig. 2). Instead of
relying on the coverage, BiMaMa-Net returns a smooth-
ness value given an overhead image. While this primitive

Figure 10.3: BiManual Manipulation Net (BiMaMa-Net) architecture first maps an image
to a manipulation primitive type via its shared encoder and classification head. Given a primitive,
it predicts dense unconditioned value maps for a discrete set of gripper orientations. It then
calculates pixel-wise correspondence descriptors. A descriptor pair, representing a bimanual action,
is combined in the descriptor head to predict its joint value.

10.4 Method

SpeedFolding uses BiMaMa-Net, a learned garment-smoothing method to bring an initially
crumpled garment to a sufficiently smooth configuration, followed by an instruction-based
garment folding pipeline.

10.4.1 Action Primitives

We are interested in the set of quasi-static and dynamic action primitives that enable the
robot to (1) transfer an arbitrary garment configuration st to a folded goal configuration s∗

(completeness), (2) reducing the number of action steps (efficiency), and (3) with a reduced
number of primitives (minimality). Each action primitive is defined through a pair of poses
as well as a motion trajectory. All primitives share a common procedure to reliably grasp
the garment with parallel jaw grippers: Each gripper moves 4 cm above the grasp pose at,
rotates 8◦ so that one fingertip is below the other, and moves 1 cm towards the direction of
the higher fingertip. This motion improves the success for grasping in particular at the edge
of the garment. We define following learned primitives (Fig. 10.2 left box):

Fling: Given two pick poses, the arms first pick those points, lift the garment above the
workspace and stretch it until a force threshold is reached, measured using the arms’

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 128

internal force sensors. Next, the arms apply a dynamic motion, flinging the garment
forward and then backward while gradually reducing the height toward the workspace.
Similar to [15], we find the fling motion to be robust under change of velocity and trajectory
parameters, and therefore we keep these parameters fixed. The fling primitive allows to
significantly increase the garment’s coverage in a few steps, but often does not yield a
smooth configuration.

Pick-and-place: Given a pick and a corresponding place pose, a single arm executes this
quasi-static action, while the second arm presses down the garment at a point on a line
extending the pick from the place pose. Pick-and-place enables the robot to fix local faults
such as corners or sleeves folded on top of the garment.

Drag: Given two pick points, the robot drags the garment for a fixed distance away from the
garment’s center of mask, leveraging the friction with the workspace to smooth wrinkles
or corners, e.g. sleeves folded below the garment.

We define heuristic-based primitives (Fig. 10.2 center box):

Fold: Both arms execute a pick-and-place action simultaneously to fold the garment. The
heuristic for calculating the pick and place poses is explained in Sec. 10.4.5.

Move: While similar to drag, this primitive’s pick poses and its drag distance are calculated
by a heuristic so that the garment’s center of mask is moved to a goal target point. Usually,
the robot drags the garment towards itself to mitigate reachability issues in subsequent
actions. Sec. 10.4.5 provides details about the pose calculation.

We define an additional learned primitive to switch from garment-smoothing to folding
(Fig. 10.2 right box):

Sufficiently Smoothed: We find that deciding whether a garment is ready to be folded
purely from coverage computation, as done in prior works [15, 16, 227], is not sufficient.
In particular, even a high coverage is prone to wrinkles or faults that might reduce the
subsequent fold quality significantly (as described in Fig. 10.2). Instead of relying on the
coverage, BiMaMa-Net returns a smoothness value given an overhead image. While this
primitive is not used to change the configuration of the garment, it is used to switch from
garment-smoothing to folding.

10.4.2 BiMaMa-Net for Bimanual Manipulation

Predicting a single pose from an overhead image is commonly done by first estimating a
pixel-wise value map per gripper z-axis rotation θ, in which each pixel value represents a
future expected reward (e.g., grasp success, increase in garment coverage, etc.), and then
selecting the maximum greedily [15, 264–266]. Extending this approach to two corresponding
planar poses (x, y, θ)1,2 conditioned on each other is however challenging primarily due to the

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 129

Execute

No Yes
Sufficiently
Smoothed?

Human
annotations

Self-supervised
data collection

BiMaMa-Net
training

Offline

Online

Input image Predict a bimanual action

fling

Fold

Figure 10.4: SpeedFolding Pipeline. We start by manually annotating input images with prim-
itives and gripper poses, train a NN and then iteratively use the NN for self-supervised data
collection (top). During runtime, we use the NN to predict a primitive and a pair of poses given
an input image and execute it on the robot. If the resulting garment configuration is classified as
Sufficiently Smoothed the robot will fold the garment, otherwise it will repeat the process.

exponential scaling of possible end-effector poses with the number of dimensions. In particu-
lar, this is a multi-modal problem, and the predicted unconditioned value maps Qunc(x, y, θ)
have multiple peaks (as in Fig. 10.6). While unconditioned value maps may provide in-
formation relevant for downstream bimanual tasks, such as the grasp success, they provide
no information regarding their correspondences. To address this we define correspondence
descriptors

d = (Qunc, x, y, sin θ, cos θ,m, e)

where e ∈ RM is a learned embedding for each pixel (disregarding orientations θ) concate-
nated with the unconditioned value Qunc, positional encodings, and the action primitive type
m. Then, the final conditioned value Q(d1,d2) depends on a descriptor pair.

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 130

1

2

3

Folding
Lines

"2-Second" Fold Fling-to-Fold

Fig. 5: Folding Approaches. We compare three approaches for folding. Left: A template mask with a sequence of folding lines that is
compiled to a number of bimanual pick-and-place actions. Center: A so-called "2-second" folding heuristic that applies only very few
steps however is for t-shirts only [31]. Right: A fling-to-fold primitive that combines a fling with an immediate folding action. Here, the
garment does not need to be fully smoothed, however prior knowledge is required.

We find that using a calibrated reachability mask for each
end-effector orientation ✓ separately significantly reduces the
number of false negatives that arise when using approxi-
mations, such as a circular mask. After selecting the final,
reachable poses (x, y, ✓)1 and (x, y, ✓)2 during runtime, we
check for possible collisions due to inter-arm interaction. If a
potential collision is detected, the next best action is selected
until reachable and collision-free poses are found.

D. Training for Smoothing

We train BiMaMa-Net via self-supervised real-world
learning to predict the manipulation primitive type m and
the corresponding action poses (x, y, ✓)1 and (x, y, ✓)2 given
an overhead image of a garment.

In order to scale real-world interaction, the learning pro-
cess is designed for minimal human intervention. First, we
collect examples of smooth configurations to train a clas-
sifier outputting the confidence p(Sufficiently Smoothed|s).
Additionally, let cov(s) be the coverage of the garment
at configuration s observed from an overhead perspective,
calculated by background subtraction and color filtering. We
define the reward r:

rt = max (tanh [↵ (cov(st+1)� cov(st))

+ � (p(smoothed|st+1)� p(smoothed|st))] , 0)

as the sum of the change of coverage and Sufficiently
Smoothed confidence with tuned weights ↵ and � respec-
tively. It is scaled to r 2 [�1, 1] first and then clipped to
a non-negative value, so that no change equals zero reward.

(a) Workspace (b) Reachability mask

Fig. 6: Reachability. (a) We perform a boundary search to compute
separate reachability masks for the left (yellow) and right (blue)
robot arms. (b) BiMaMa-Net guarantees at least one pick pose
(black) from the value map within each mask.

To ensure continuous training, the robot resets the garment
configuration by grasping it at a random position on its mask
and dropping it from a fixed height. We iteratively train a
self-supervised data collection NN, interleaving training and
execution (Fig. 4). The robot explores different actions by
uniformly sampling from the set of Ns best actions.

To avoid a purely random and sample-inefficient initial
exploration, we kickstart the training with human annota-
tions. We differentiate between self-supervised and human
annotated data within the training process in three ways: (1)
We set the reward of human annotated data to a fixed rh.
(2) Besides training the value map at the specific annotated
pixel position and orientation, we follow [26] and introduce a
Gaussian decay centered around each pose as a global target
value instead. (3) The classification head is trained only with
data that has a reward higher than a tuned threshold r � rc.

E. Folding Pipeline

We compare three approaches for folding: instruction-
based folding, which can be adapted to different garments
and different folding techniques, ”2-second“ fold, a known
heuristic for surprisingly fast t-shirt folding, and fling-to-fold
(F2F), a novel technique that can increase the number of
folds-per-hour (FPH) by leveraging prior knowledge about
the t-shirt’s dimensions.
Instruction-based Folding: As shown in Fig. 5 (left), given

a mask of a smoothed garment, the robot iteratively folds
the garment along user-specified folding lines. These allow
to define the goal configuration of a smooth garment
precisely without using high-dimensional visual goal rep-
resentations [5], [6]. A complete user instruction includes:
(1) A binary mask called template and (2) a list of folding
lines relative to the template (Fig. 5 left). The folding
direction is defined with respect to the line according to
the right-hand-rule.
To execute the folding lines, a particle-swarm optimizer
computes an affine transformation by registering the tem-
plate with the current image. Afterwards, SpeedFolding
calculates corresponding poses for a bimanual fold action:
Let pent be the first and pexit be the second intersection
point of the line and the mask, where the line enters and
exits the mask respectively. This splits the mask into a
base and a fold-on-top part. On the contour of the latter,
the algorithm finds two pick points p1 and p2 so that

Figure 10.5: Folding Approaches. We compare three approaches for folding. Left: A template
mask with a sequence of folding lines that is compiled to a number of bimanual pick-and-place
actions. Center: A so-called ”2-second” folding heuristic that applies only very few steps however
is for t-shirts only [271]. Right: A fling-to-fold primitive that combines a fling with an immediate
folding action. Here, the garment does not need to be fully smoothed, however prior knowledge is
required.

Fig. 10.3 shows the complete information flow of BiMaMa-Net: A shared encoder using
a ResNext-50 [267] backbone maps an input image (e.g. depth and grayscale) to high-level
features. First, a classification head predicts the manipulation primitive m. For a Sufficiently
Smoothed primitive, no further action is required. For all other learned primitives, a U-
Net [268] decoder predicts value maps for a discrete number N of end-effector orientations θ.
We choose a U-Net architecture over fully convolutional neural network used in prior robotics
manipulation works [15, 265, 269, 270] as U-Nets are better suited for high-resolution inputs
that we find necessary for detecting edges and wrinkles for garment smoothing.

Then, BiMaMa-Net samples a set of poses from the value map, where pixels with higher
values are more likely to get sampled. During training, BiMaMa-Net samples from p(a|s) ∼√
Qunc(a, s) to allow for sampling negative examples to better estimate the underlying distri-

bution of action values. For inference, BiMaMa-Net samples from p(a|s) ∼ Qunc(a, s)
2 which

emphasizes action poses with high values. It then calculates the correspondence descriptors
for each pose, and a final neural network head combines all descriptor pairs d1, d2 to output
the final conditioned action value Q.

If two poses are interchangeable (e.g., during a fling or a drag action), a single decoder
predicts the value maps per θ. However, if a certain relation between the poses must be
maintained (e.g., the conceptual difference between the pick and the place poses in a pick-
and-place action) then separate decoders compute two value maps Q1

unc and Q2
unc.

10.4.3 Reachability Calibration

As shown in Fig. 10.6, to ensure reliable garment smoothing and folding, the robot should
compute the actions that maximize the expected reward within the reachable space. To find
the robot’s reachable space, we perform a one-time boundary search along a discretized grid
in the action space (x, y, θ) for each gripper, assuming a constant height z above the table.
The search, done separately for each θ, starts with a fixed lower value of y and increases x

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 131

until the inverse kinematics fails to find a solution. Afterwards, it repeatedly increases y or
decreases x so that the search is confined to the continuous boundary at which reachability
fails. As a result, we get masks Ml and Mr for the left and right arms

M(x, y, θ)→ {0, 1}

that can be incorporated into BiMaMa-Net as spatial binary constraints by restricting the
action sampling to the masks. To ensure that each reachability mask contains at least one
pose, we create up to four masked value maps from Q1

unc (or Q2
unc) by multiplying them with

Ml or Mr: {Q1l
unc, Q

1r
unc, Q

2l
unc, Q

2r
unc}. An action value Qunc = 0 is ignored in the sampling

process. We then sample and combine the correspondence descriptors from Q1l
unc and Q2r

unc,
and vice versa for Q1r

unc and Q2l
unc.

We find that using a calibrated reachability mask for each end-effector orientation θ
separately significantly reduces the number of false negatives that arise when using approx-
imations, such as a circular mask. After selecting the final, reachable poses (x, y, θ)1 and
(x, y, θ)2 during runtime, we check for possible collisions due to inter-arm interaction. If a po-
tential collision is detected, the next best action is selected until reachable and collision-free
poses are found.

10.4.4 Training for Smoothing

We train BiMaMa-Net via self-supervised real-world learning to predict the manipulation
primitive type m and the corresponding action poses (x, y, θ)1 and (x, y, θ)2 given an overhead

(a) Workspace (b) Reachability mask

Figure 10.6: Reachability. (a) We perform a boundary search to compute separate reachability
masks for the left (yellow) and right (blue) robot arms. (b) BiMaMa-Net guarantees at least one
pick pose (black) from the value map within each mask.

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 132

image of a garment.
In order to scale real-world interaction, the learning process is designed for minimal

human intervention. First, we collect examples of smooth configurations to train a classifier
outputting the confidence p(Sufficiently Smoothed|s). Additionally, let cov(s) be the coverage
of the garment at configuration s observed from an overhead perspective, calculated by
background subtraction and color filtering. We define the reward r:

rt = max (tanh [α (cov(st+1)− cov(st))

+ β (p(smoothed|st+1)− p(smoothed|st))] , 0)

as the sum of the change of coverage and Sufficiently Smoothed confidence with tuned weights
α and β respectively. It is scaled to r ∈ [−1, 1] first and then clipped to a non-negative value,
so that no change equals zero reward. To ensure continuous training, the robot resets the
garment configuration by grasping it at a random position on its mask and dropping it
from a fixed height. We iteratively train a self-supervised data collection neural network,
interleaving training and execution (Fig. 10.4). The robot explores different actions by
uniformly sampling from the set of Ns best actions.

To avoid a purely random and sample-inefficient initial exploration, we kickstart the train-
ing with human annotations. We differentiate between self-supervised and human annotated
data within the training process in three ways: (1) We set the reward of human annotated
data to a fixed rh. (2) Besides training the value map at the specific annotated pixel position
and orientation, we follow [266] and introduce a Gaussian decay centered around each pose
as a global target value instead. (3) The classification head is trained only with data that
has a reward higher than a tuned threshold r ⩾ rc.

10.4.5 Folding Pipeline

We compare three approaches for folding: instruction-based folding, which can be adapted
to different garments and different folding techniques, ”2-second“ fold, a known heuristic
for surprisingly fast t-shirt folding, and fling-to-fold (F2F), a novel technique that can in-
crease the number of folds-per-hour (FPH) by leveraging prior knowledge about the t-shirt’s
dimensions.

Instruction-based Folding: As shown in Fig. 10.5 (left), given a mask of a smoothed
garment, the robot iteratively folds the garment along user-specified folding lines. These
allow to define the goal configuration of a smooth garment precisely without using high-
dimensional visual goal representations [16, 19]. A complete user instruction includes:
(1) A binary mask called template and (2) a list of folding lines relative to the template
(Fig. 10.5 left). The folding direction is defined with respect to the line according to the
right-hand-rule.

To execute the folding lines, a particle-swarm optimizer computes an affine transformation
by registering the template with the current image. Afterwards, SpeedFolding calculates

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 133

0 2 4 6 8

0.2

0.4

0.6

0.8

1

Action Step t

C
ov

er
ag

e

BiMaMa-Net Max Value Map Flingbot [10]
Only Flings No Stretching

0 2 4 6 8

0

0.5

1

Action Step t
Su

ffi
ci

en
tly

Sm
oo

th
ed

R
at

e

0 2 4 6 8
0.2

0.4

0.6

0.8

1

Action Step t

C
ov

er
ag

e

T-shirt (trained)
Towels (unseen)
T-shirts (unseen)

Fig. 7: Garment smoothing until it is Sufficiently Smoothed. We compare the normalized coverage (left) and prediction of the learned
Sufficiently Smoothed classifier (center) over the number of action steps with different baseline methods. The system is able to generalize
to unseen garments of different color, patterns, and material (right).

the area of the four-sided polygon (pent, p1, p2, pexit) is
maximized. We use the normal at the pick point for the
gripper orientation ✓. The place poses are calculated by
mirroring the pick poses at the folding line.

“2-Second” Fold: For specific garments such as t-shirts,
there exist heuristics for efficient folding. Given a smooth
configuration, the ”2-second“ fold follows a set of steps
that requires using two arms simultaneously (Fig. 5), and
is therefore well suited for a bimanual robot [31].

Fling-to-fold (F2F): We observe that (1) a fling action
while grasping a sleeve and the non-diagonal bottom
corner is especially effective and (2) the first fold action
grasps the same points. We conclude that these two
steps can be merged to reduce imaging and motion time.
We implement F2F by adding a learned primitive to
BiMaMa-Net that computes these pick points if visible.
The primitive’s motion is implemented by combining a
fling with a consecutive fold action (Fig. 5). To ensure
that the t-shirt is folded correctly, prior knowledge about
the t-shirt’s dimension is required to adapt the height of
each arm prior to the fold.

V. EXPERIMENTS

We experimentally evaluate the garment smoothing and
folding performance of SpeedFolding on a known t-shirt, as
well as on two garments unseen during training.

A. Experimental Setup

We perform experiments on a physical ABB YuMi robot
with parallel-jaw grippers. The gripper’s fingertips are ex-
tended by small 3D printed teeth to improve grasping. A thin
sponge mattress is placed on the workspace to allow the grip-
pers to reach below the garment without colliding. A Photo-
neo PhoXi captures overhead grayscale and depth images of
the workspace, generating observations ot 2 R256⇥192⇥2. As
the garment is frequently outside the camera’s field of view,
a 1080P GESMATEK RGB webcam is mounted above the
workspace and used for coverage calculation. Computing is

done on a system using an Intel i7-6850K CPU, 32GB RAM,
and a NVIDIA GeForce RTX 2080 Ti.

We first perform data collection, and train IV-D on a single
t-shirt. Initially, 600 scenes of random garment configuration
were recorded and manually annotated in 1 h. After training
a first NN, the robot collected 2200 self-supervised actions
in 16 h. To include data of less frequently observed actions,
we copied and re-annotated 1500 actions in 3 h, resulting
in a dataset of 4300 actions in total. We used a single t-
shirt shown in Fig. 1 throughout the training. We further
perform data augmentation, including random translations,
rotations, flips, resizes, brightness and contrast changes. We
use N = 20 gripper orientations equally distributed over
[0, 2⇡) to implement the BiMaMa-Net decoder as described
in Sec. IV-B. For training, we manually tune Ns = 50, rh =
0.8 and rc = 0.3 (see Sec. IV-D).

We design a set of garment smoothing and folding ex-
periments to evaluate SpeedFolding. Initial garment config-
urations are generated by environment resets as described
in IV-D. Each experiment is averaged over 15 trials. We
ignore experiments that terminate early due to a motion
planning error, as this is not the focus of this paper. A trial is
considered unsuccessful if the garment was not successfully
folded according to the majority vote of three reviewers
or the number of actions exceeded a maximal horizon of
H = 10. We define a grasp success if the gripper holds
the garment after an executed action. For known garments,
BiMaMa-Net achieves a grasp success rate of over 96 %.

B. Sufficiently Smoothed

We evaluate garment smoothing using two metrics: The
garment coverage, computed from an overhead image, and
a binary Sufficiently Smoothed value, predicted using the
Sufficiently Smoothed classifier. We compare BiMaMa-Net
to two baseline (1) Max Value Map, a variant of BiMaMa-
Net that computes the pick points directly from the value
maps Qunc by computing the maximum over the map to find
two pick points without using correspondence descriptors,
(2) Only Flings, a variant restricted to fling actions only,

Figure 10.7: Garment smoothing until it is Sufficiently Smoothed. We compare the normalized
coverage (left) and prediction of the learned Sufficiently Smoothed classifier (center) over the number
of action steps with different baseline methods. The system is able to generalize to unseen garments
of different color, patterns, and material (right).

corresponding poses for a bimanual fold action: Let pent be the first and pexit be the
second intersection point of the line and the mask, where the line enters and exits the
mask respectively. This splits the mask into a base and a fold-on-top part. On the contour
of the latter, the algorithm finds two pick points p1 and p2 so that the area of the four-
sided polygon (pent,p1,p2,pexit) is maximized. We use the normal at the pick point for
the gripper orientation θ. The place poses are calculated by mirroring the pick poses at
the folding line.

“2-Second” Fold: For specific garments such as t-shirts, there exist heuristics for efficient
folding. Given a smooth configuration, the ”2-second“ fold follows a set of steps that
requires using two arms simultaneously (Fig. 10.5), and is therefore well suited for a
bimanual robot [271].

Fling-to-fold (F2F): We observe that (1) a fling action while grasping a sleeve and the non-
diagonal bottom corner is especially effective and (2) the first fold action grasps the same
points. We conclude that these two steps can be merged to reduce imaging and motion
time. We implement F2F by adding a learned primitive to BiMaMa-Net that computes
these pick points if visible. The primitive’s motion is implemented by combining a fling
with a consecutive fold action (Fig. 10.5). To ensure that the t-shirt is folded correctly,
prior knowledge about the t-shirt’s dimension is required to adapt the height of each arm
prior to the fold.

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 134

Table 10.1: End-to-end folding for different neural network architectures, folding approaches,
and garments, averaged over 15 trials per experiment. The durations are averaged over successful
folds, while the cycle time and FPH are averaged over both successful and unsuccessful folds.

Method Folding Approach Garment Smoothing
Actions

Duration
[s]

Fold
Success

Cycle
Time [s]

Folds
Per Hour
(FPH)

Max Value Map Instruction T-shirt 5.1(5) 133.9(74) 80% 167.4(92) 21.5(12)

BiMaMa-Net
Instruction

T-shirt
3.0(4) 108.7(73) 93% 116.9(79) 30.8(21)

”2-Second“ Fold 3.0(4) 97.3(48) 53% 182.4(54) 19.7(6)
Fling-to-fold 1.8(2) 81.7(43) 93% 87.9(47) 40.9(22)

Garments Unseen During Training

BiMaMa-Net Instruction
Towel 1.7(2) 59.2(38) 87% 68.1(44) 52.9(34)
T-shirt 4.8(4) 141.1(87) 80% 176.3(109) 20.4(13)

10.5 Experiments

We experimentally evaluate the garment smoothing and folding performance of SpeedFolding
on a known t-shirt, as well as on two garments unseen during training.

10.5.1 Experimental Setup

We perform experiments on a physical ABB YuMi robot with parallel-jaw grippers. The
gripper’s fingertips are extended by small 3D printed teeth to improve grasping. A thin
sponge mattress is placed on the workspace to allow the grippers to reach below the garment
without colliding. A Photoneo PhoXi captures overhead grayscale and depth images of the
workspace, generating observations ot ∈ R256×192×2. As the garment is frequently outside the
camera’s field of view, a 1080P GESMATEK RGB webcam is mounted above the workspace
and used for coverage calculation. Computing is done on a system using an Intel i7-6850K
CPU, 32GB RAM, and a NVIDIA GeForce RTX 2080 Ti.

We first perform data collection, and train 10.4.4 on a single t-shirt. Initially, 600 scenes
of random garment configuration were recorded and manually annotated in 1 h. After train-
ing a first neural network, the robot collected 2200 self-supervised actions in 16 h. To include
data of less frequently observed actions, we copied and re-annotated 1500 actions in 3 h, re-
sulting in a dataset of 4300 actions in total. We used a single t-shirt shown in Fig. 10.1
throughout the training. We further perform data augmentation, including random trans-
lations, rotations, flips, resizes, brightness and contrast changes. We use N = 20 gripper
orientations equally distributed over [0, 2π) to implement the BiMaMa-Net decoder as de-
scribed in Sec. 10.4.2. For training, we manually tune Ns = 50, rh = 0.8 and rc = 0.3 (see
Sec. 10.4.4).

We design a set of garment smoothing and folding experiments to evaluate SpeedFolding.
Initial garment configurations are generated by environment resets as described in 10.4.4.
Each experiment is averaged over 15 trials. We ignore experiments that terminate early due

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 135

to a motion planning error, as this is not the focus of this chapter. A trial is considered
unsuccessful if the garment was not successfully folded according to the majority vote of
three reviewers or the number of actions exceeded a maximal horizon of H = 10. We
define a grasp success if the gripper holds the garment after an executed action. For known
garments, BiMaMa-Net achieves a grasp success rate of over 96 %.

10.5.2 Sufficiently Smoothed

We evaluate garment smoothing using two metrics: The garment coverage, computed from
an overhead image, and a binary Sufficiently Smoothed value, predicted using the Sufficiently
Smoothed classifier. We compare BiMaMa-Net to two baseline (1) Max Value Map, a vari-
ant of BiMaMa-Net that computes the pick points directly from the value maps Qunc by
computing the maximum over the map to find two pick points without using correspondence
descriptors, (2) Only Flings, a variant restricted to fling actions only, and (3) Flingbot, the
pre-trained method from [15] (see Fig. 10.7). Results suggest that BiMaMa-Net is able to
smooth a known t-shirt to a Sufficiently Smoothed configuration in ∼ 3 fewer steps compared
to baselines requiring ∼ 5. Although the increase of coverage is similar to Only Flings, the
latter reaches a Sufficiently Smoothed configuration later or even fails to do so, confirming
the need of additional action primitives to fully smooth a garment.

We note that the FlingBot baseline fails to reach an 80 % coverage as reported in [15],
as we observe frequent grasp failures presumably due to differences in the physical setting.
We ablate the stretching motion before a fling and observe that stretching leads to higher
coverage.

TABLE I: End-to-end folding for different NN architectures, folding approaches, and garments, averaged over 15 trials per experiment.
The durations are averaged over successful folds, while the cycle time and FPH are averaged over both successful and unsuccessful folds.

Method Folding Approach Garment Smoothing
Actions

Duration [s] Fold Success Cycle Time [s] Folds Per
Hour (FPH)

Max Value Map Instruction T-shirt 5.1 ± 0.5 133.9 ± 7.4 80% 167.4 ± 9.2 21.5 ± 1.2

BiMaMa-Net
Instruction

T-shirt
3.0 ± 0.4 108.7 ± 7.3 93% 116.9 ± 7.9 30.8 ± 2.1

”2-Second“ Fold 3.0 ± 0.4 97.3 ± 4.8 53% 182.4 ± 5.4 19.7 ± 0.6
Fling-to-fold 1.8 ± 0.2 81.7 ± 4.3 93% 87.9 ± 4.7 40.9 ± 2.2

Garments Unseen During Training

BiMaMa-Net Instruction Towel 1.7 ± 0.2 59.2 ± 3.8 87% 68.1 ± 4.4 52.9 ± 3.4
T-shirt 4.8 ± 0.4 141.1 ± 8.7 80% 176.3 ± 10.9 20.4 ± 1.3

and (3) Flingbot, the pre-trained method from [10] (see
Fig. 7). Results suggest that BiMaMa-Net is able to smooth
a known t-shirt to a Sufficiently Smoothed configuration
in ⇠ 3 fewer steps compared to baselines requiring ⇠ 5.
Although the increase of coverage is similar to Only Flings,
the latter reaches a Sufficiently Smoothed configuration later
or even fails to do so, confirming the need of additional
action primitives to fully smooth a garment.

We note that the FlingBot baseline fails to reach an 80 %
coverage as reported in [10], as we observe frequent grasp
failures presumably due to differences in the physical setting.
We ablate the stretching motion before a fling and observe
that stretching leads to higher coverage.

C. Folds per Hour

Table I shows results of end-to-end garments folding
experiments. BiMaMa-Net manages to (1) successfully fold
garments in over 90 % of the trials on known garments and
(2) 30 % faster than the Max Value Map baseline using
the Instruction-based folding approach. The ”2-second“ fold
achieves an additional speedup of 10.4 % when executed
successfully, however we find that it is sensitive to t-shirt’s
orientation in a Sufficiently Smoothed configuration and
suffers from a low fold success rate. With prior information
on the t-shirt’s dimensions, F2F uses 40 % less smoothing
actions and imaging time. As a result, it achieves a speedup

0 20 40 60 80 100

Fling-
to-fold

”2-Second“
Fold

Instruction

Duration [s]

Fling Drag Pick-and-place
Fling-to-fold Move Fold

Fig. 8: Timings for calculating and executing the action primitive
types depending on the folding approach. Instruction-based and
”2-Second“ fold share the same smoothing actions (blue), but
differ in folding (orange). By introducing a combined Fling-to-fold
primitive, a smoothed state is not required before folding. However,
the ”2-Second“ fold is suited for manipulating a t-shirt only, and
Fling-to-fold assumes prior knowledge of the garment.

of over 25 % compared to the instruction-based approach,
leading to 40.9 folds per hour on average. Calculating an
action using BiMaMa-Net takes (126.0 ± 0.9) ms on our
hardware.

D. Generalization to Unseen Garments

We explore how SpeedFolding, trained on a single t-shirt,
can generalize to garments unseen during training. In these
experiments we use (1) a t-shirt with a different color and
stiffness and (2) a rectangular towel with a different color
compared to the original t-shirt. We evaluate SpeedFolding
on unseen garments using instruction-based folding, as this
is the only approach that easily adapts to general garments.
We run the same experiments on the unseen t-shirt with no
changes to the BiMaMa-Net model or the folding template.
In contrast, when we run the towel experiments we observe
that the system fails to classify a Sufficiently Smoothed
configuration, as the object’s shape is different from that
BiMaMa-Net was trained on. To address this, we add 20
Sufficiently Smoothed towel images to the dataset and re-
train BiMaMa-Net. Table I suggests that SpeedFolding can
generalize to garments with different color, stiffness and
shape.

E. System Limitations

Grasp failures, especially during a fling motion, can de-
crease the garment’s coverage dramatically. We find that
most grasp failures happen due to losing the grip during the
stretching motion prior to a fling action. This limitation can
be mitigated using improved force feedback or by adding
visual feedback. We observe a frequent failure case during
top-down grasps while executing the first step of the ”2-
second“ fold. These grasps may require different gripper jaws
that are better suited for top-down grasps.

As common with data-driven methods, SpeedFolding can
generalize to similar unseen garments. For example, textile
patterns may be more challenging to detect and classify
correctly. This limitation can be addressed through addi-
tional data augmentation. Generalization to different garment
shapes may also be limited, and can be addressed by adding
examples of Sufficiently Smoothed configurations to the
dataset, as described in Sec. V-D for the towel example.

VI. CONCLUSION AND DISCUSSION

We presented SpeedFolding, a bimanual robotic system for
efficient folding of garments from arbitrary initial configura-

Figure 10.8: Timings for calculating and executing the action primitive types depending on the
folding approach. Instruction-based and ”2-Second“ fold share the same smoothing actions (blue),
but differ in folding (orange). By introducing a combined Fling-to-fold primitive, a smoothed state
is not required before folding. However, the ”2-Second“ fold is suited for manipulating a t-shirt
only, and Fling-to-fold assumes prior knowledge of the garment.

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 136

10.5.3 Folds per Hour

Table 10.1 shows results of end-to-end garments folding experiments. BiMaMa-Net manages
to (1) successfully fold garments in over 90 % of the trials on known garments and (2) 30 %
faster than the Max Value Map baseline using the Instruction-based folding approach. The
”2-second“ fold achieves an additional speedup of 10.4 % when executed successfully, however
we find that it is sensitive to t-shirt’s orientation in a Sufficiently Smoothed configuration
and suffers from a low fold success rate. With prior information on the t-shirt’s dimensions,
F2F uses 40 % less smoothing actions and imaging time. As a result, it achieves a speedup
of over 25 % compared to the instruction-based approach, leading to 40.9 folds per hour on
average. Calculating an action using BiMaMa-Net takes 126.0(9) ms on our hardware.

10.5.4 Generalization to Unseen Garments

We explore how SpeedFolding, trained on a single t-shirt, can generalize to garments unseen
during training. In these experiments we use (1) a t-shirt with a different color and stiffness
and (2) a rectangular towel with a different color compared to the original t-shirt. We
evaluate SpeedFolding on unseen garments using instruction-based folding, as this is the
only approach that easily adapts to general garments. We run the same experiments on
the unseen t-shirt with no changes to the BiMaMa-Net model or the folding template. In
contrast, when we run the towel experiments we observe that the system fails to classify a
Sufficiently Smoothed configuration, as the object’s shape is different from that BiMaMa-
Net was trained on. To address this, we add 20 Sufficiently Smoothed towel images to the
dataset and re-train BiMaMa-Net. Table 10.1 suggests that SpeedFolding can generalize to
garments with different color, stiffness and shape.

10.5.5 System Limitations

Grasp failures, especially during a fling motion, can decrease the garment’s coverage dramat-
ically. We find that most grasp failures happen due to losing the grip during the stretching
motion prior to a fling action. This limitation can be mitigated using improved force feedback
or by adding visual feedback. We observe a frequent failure case during top-down grasps
while executing the first step of the ”2-second“ fold. These grasps may require different
gripper jaws that are better suited for top-down grasps.

As common with data-driven methods, SpeedFolding can generalize to similar unseen
garments. For example, textile patterns may be more challenging to detect and classify
correctly. This limitation can be addressed through additional data augmentation. Gener-
alization to different garment shapes may also be limited, and can be addressed by adding
examples of Sufficiently Smoothed configurations to the dataset, as described in Sec. 10.5.4
for the towel example.

CHAPTER 10. LEARNING EFFICIENT BIMANUAL FOLDING OF GARMENTS 137

10.6 Discussion and Future Work

We presented SpeedFolding, a bimanual robotic system for efficient folding of garments from
arbitrary initial configurations. At its core, a novel BiMaMa-Net architecture predicts two
conditioned poses to parameterize a set of manipulation primitives. After learning from 4300
human-annotated or self-supervised actions, the robot is able to fold garments in under 120 s
on average with a success rate of 93 %.

While prior works e.g. by Maitin-Shepard et al. [253] or Doumanoglou et al. [252] achieved
high success rate for end-to-end cloth folding, cycle times for a single fold were on the order of
3−6 Folds Per Hour (FPH), whereas SpeedFolding achieves 30 FPH to 40 FPH. Similar to Ha
et al. [15], the fling primitive can unfold the garment in a few actions. In contrast however, we
introduce additional action primitives that enable the robot to reach a sufficiently smoothed
configuration. In future work, we will explore methods that can learn to manipulate a novel
garment given a few demonstrations.

138

Part IV

Efficient and Reliable Autonomous
Gardening

139

Chapter 11

AlhphaGarden

In this chapter, we explore various models and optimizations to increase crop yield and
maintain plant diversity under limited irrigation in polyculture farming. However, the long
growing seasons make this process impractical. We created a simulator that can approxi-
mate growth in a real greenhouse 25,000X the speed of natural growth, allowing us to tune
irrigation and pruning policies.

11.1 Introduction

Cultivating plants has been an essential human activity for over 10,000 years. Many factors
influence the quality and quantity of yield, such as irrigation, pesticide use, weather condi-
tions, and plant disease. Industrial agriculture aims to maximize yield by growing a single
plant species in isolation (monoculture). Polyculture farming, on the other hand, involves
growing different crops simultaneously in imitation of the diversity of natural ecosystems,
and is a sustainable alternative that uses biodiversity to reduce pesticides, disease, and
weeds [272–274]. Polyculture is also more practical for confined urban spaces and essential
for aesthetic gardens.

With increasing demands for fresh local herbs and produce, in spite of limited resources,
polyculture gardens may be increasingly in demand. However, polyculture requires more
human labor than monoculture to prune and maintain. A robot with a reliable and sustain-
able control policy has the potential to increase yield and reduce water consumption. Still,
finding an optimal policy is a challenging task. The long time constants for real-world experi-
ments motivates the use of a simulated environment, yet it is difficult to simulate inter-plant
dynamics, including competition for light, water and nutrients. In addition, much of the
interaction is done in the soil or beneath the leaf canopy and cannot be directly observed,
and the action space, in particular pruning, is complicated.

In this chapter we present AlphaGardenSim, an efficient, first order simulator for poly-
culture farming. AlphaGardenSim models a polyculture garden using first order models to
simulate single plant growth, inter-plant dynamics and competition for resources.

CHAPTER 11. ALHPHAGARDEN 140

Figure 11.1: Simulated polyculture garden. Planted with seeds from 13 edible plant types, and
grown for a period of 90 days. A garden simulated with AlphaGardenSim, and a corresponding
physical garden initialized with similar seed types and locations, and irrigated every 2 days for a
similar period of time. Each shade of green in the simulated garden represents a different plant
type. Left: The gardens at day 15, a few days after germination. Right: The gardens at day 30.

This chapter makes 3 contributions: (1) A fast, first order simulator, AlphaGardenSim,
that incorporates parameterized individual plant growth models and inter-plant dynamics
to simulate competition over resources between plants in close proximity; (2) An analytic
automation policy that yields leaf coverage and garden diversity; and (3) Application of the
simulator to tune the policy parameters. Experimental results in simulation suggest that
a tuned analytic policy can achieve high coverage and plant diversity compared with other
policies, even in the presence of rapidly spreading invasive plants.

11.2 Related Work

Past work in plant growth simulation has predominantly been focused on monoculture agri-
culture. Widely used simulation models include DSSAT [275] and AquaCrop [276]. However,
such models are intended for simulating large scale, monoculture agricultural operations, and
are point-based models, which make the assumption that plants are grown homogeneously.
Therefore, these models are not well-suited for a polyculture setting, where gardens are
heterogeneous.

CHAPTER 11. ALHPHAGARDEN 141

GeoSim [277] is a tool that adds spatial functionality to point-based agricultural models
by leveraging data from a geographic information system (GIS) to run independent simula-
tions at different geospatial points, allowing for heterogeneous simulation. However, to tune
a policy for managing a small-scale polyculture garden, it is desirable to simulate at the
plant level. Recently, Chebrolu et al. [278] developed a point cloud registration algorithm
that enables plant monitoring to analyze growth at the single-plant level. It can be used
to tune a single-plant growth model, but does not reveal inter-plant interactions, which are
required to provide higher granularity data for polyculture modeling.

There exist individual plant models that model inter-plant competition, but to the best of
our knowledge, there does not exist one for a polyculture setting. For example, Damgaard et
al. [279] proposed modeling competition between individual plants based on density and size
differences between plants, but their work does not explicitly model resource competition,
which is important for tuning a policy that affects the distribution of resources in a garden.
Price et al. [280] introduced a simulator for individual plant growth and competition with
promising results, but their work only modeled plant radii and did not take into account
competition for resources other than water. According to Berger et al. [281], a review on
individual-based approaches for modeling plant competition, existing models lack consider-
ation for the effect of plants on resource levels in an environment. Thus, we were motivated
to develop our own first order simulator for tuning a polyculture gardening policy.

Czárán and Bartha [282] proposed a broad classification of individual-based plant compe-
tition models as either grid-based models, or individual-based neighborhood models. Grid-
based models discretize a region into a grid of cells that may be occupied by plants, while
individual-based neighborhood models represent plants in a continuous space. Further-
more, grid-based models typically use empirical rules to define plant competition, whereas
individual-based neighborhood models define explicit mechanisms that regulate competition.
One such individual-based neighborhood model is the zone-of-influence model, where a cir-
cular zone corresponding to the plant’s size defines where a plant acquires resources from.
Plants with overlapping zones are in competition with each other, and the growth rate of
a plant decreases as more of its zone is overlapped with. While these models allow for
greater modeling complexity, grid-based models make simplifying assumptions and reduce
computational cost.

Research in agricultural automation has also been conducted specifically in crop modeling
and individually controlled plants. Wiggert et al. [283] developed a testbed that enables real-
time data collection of plant water stress to automate and optimize plant-level irrigation.
Habibie et al. [284] trained a Simultaneous Localization And Mapping (SLAM) algorithm in
simulation to automate fruit harvesting in a red apple tree field. While it supports a wide
variety of use cases and enabled successful harvesting, plant dynamics were not modeled, and
the simulation focused on a single plant type. CoppeliaSim [285] comes closer to simulating
a polyculture garden, as plants are able to be controlled separately. This simulator was used
to train a crop monitoring green house robot to navigate a greenhouse and identify diseased
crops [286]. Even though each plant had unique parameters, they did not model inter-plant
interactions.

CHAPTER 11. ALHPHAGARDEN 142

Local Variables Global Variables

d(x, y, t) h(x, y, t) w(x, y, t) s(x, y) p(k, t) c(t) v(t) s(t)

Plant
Type

Plant
Health

Water
Amount

Seed
Loca-
tions

Plant
Type

Distri-
bution

Total
Canopy
Cover-

age

Garden
Diver-

sity

Garden
Sustain-
ability

Table 11.1: Simulator local and global time-dependent state variables

11.3 AlphaGardenSim

In our simulator, AlphaGardenSim, the garden is modeled as a discrete M × N grid. The
time t is specified in units of days. Each point p(x, y) in the garden contains up to one
seed, and up to a fixed capacity of water. We define D(k) as a set of k plant types available
in the garden, as well as types soil and unknown. At each point p(x, y) in the garden at
time t, we define d(x, y, t), a vector of length k representing the distribution of the plant (or
soil) types that is visible overhead at point p(x, y), i.e., the canopy cover in the garden. For
example, when the garden is planted with plant type D[3] at point p(x, y) at time 0, then

d(x, y, 0) =
[
0, 0, 1, 0, . . . , 0

]T
. This can change over time if a plant from a neighboring point

expands and occludes the plant seeded at p(x, y). We define the seed locations in the garden
as s(x, y), the health of the plant at point p(x, y) at time t as h(x, y, t), and the amount
of soil moisture available at point p(x, y) at time t as w(x, y, t). We define the following
global quantities over the entire garden; p(k, t) holds the global population in the garden as
a distribution over point types D, c(t) is the total canopy coverage w.r.t. the garden size at
time t, v(t) is the diversity in the garden at time t, and s(t) represents the sustainability in
the garden, i.e. the savings in irrigation compared to a uniform baseline irrigation policy.

11.4 Modeling

11.4.1 Plant Growth Model

To represent each plant, we adopt the model proposed by [280] which tracks the radii
of plants for the purposes of water competition. However, we add height as a simulated
attribute, as this is necessary to model competition for sunlight. This yields efficient calcu-
lation of plant growth, while still modeling a variety of plant types and interactions. The
overall growth curve of a plant is modeled as exponential in its radius, but with adjusted
rates at each step when competition and limited resources are taken into account. This
is consistent with experimental evidence suggesting that plants grow exponentially in ideal

CHAPTER 11. ALHPHAGARDEN 143

conditions [287].
AlphaGardenSim executes a sequence of updates at each timestep: irrigation, lighting,

water use and plant growth.
In the irrigation step, each of the M ×N coordinate points accepts a water amount of 0

or 1. Values should be chosen in a garden-specific manner, such that 0 represents no water
and 1 represents the maximum amount of water a unit area of soil can hold.

We assume a fixed amount of light is available at every point in the garden, so that plants
receive light based on the size of their unoccluded leaf area (the portion of their bounding
circle that is not covered by taller plants), as demonstrated in Fig. 11.2. To estimate the
area of partially overlapping circles, we use an approximation. For a plant i with radius ri,
let Li be the set of garden coordinates which are less than distance ri away from its center
coordinate. The approximate unoccluded leaf area is then simply the number of coordinates
Li which do not belong to Lj, for any other plant j with a taller height. Light is distributed in
an exponentially decaying fashion, where the ith tallest plant at p(x, y) receives LDi amount
of light from p(x, y), where LD is a light decay coefficient in the range (0, 1).

Next, once each plant has been allocated light, we model the water use of each plant.
Here, our assumption is that plant growth potential is proportional to the amount of sunlight
they can intercept, but actual growth is dependent on the plants’ access to sufficient water
resources, allowing for transpiration and gas exchange, and therefore photosynthesis [288].
The amount of water required by a plant therefore depends on the sunlight obtained from
the previous step, and by extension the size of the plant itself.

From this assumption, the maximum water amount desired by a plant is modeled as:

wmax =
c2
c1

√
Lu

where Lu is the unoccluded leaf area of the plant, equivalent to the maximum amount of
sunlight it can receive, and c1 and c2 are plant-specific parameters that adjust its growth
pattern. Larger values for c1 correspond to higher water use efficiency, i.e. higher biomass
accumulation per unit of water. Larger values for c2 correspond to higher overall productivity,
i.e. a higher attainable growth at each timestep [289].

While the simulator uses a grid-based model, it draws from the zone-of-influence approach
described by [281], allowing a plant to only uptake water from a circular zone defined by
its radius, i.e. from coordinate points that are within radius distance of the plant’s central
coordinate. To model the sharing of water resources by plants in the same general area,
Firbank and Watkinson [290] used relative sizes to allocate proportions of water to each
plant. We take a similar approach, but add randomness in order to simulate more aggressive
competition. At each coordinate, we iterate in a random order through the plants whose leaf
areas cover that coordinate. For each such plant, we allow it to use the maximum amount
of water it desires from this coordinate, defined as wmax divided by its total approximate
leaf area, provided there is still water remaining. Thus, plants will still take a proportion
of the water in their ecological neighborhood in expectation, but the randomness allows for
some plants to take more water than usual and dominate their surrounding competition.

CHAPTER 11. ALHPHAGARDEN 144

Figure 11.2: Light and Irrigation Models. Each plant receives light based on the size of its
unoccluded leaf area in the grid, i.e., the number of grid points visible overhead, while occluded
points allocate light in an exponentially decaying fashion. The plant’s water uptake is then drawn
from its neighboring grid points, to fulfill its growth potential. The plant is limited by the amount
of light it intercepts and the amount of water available in its zone-of-influence.

CHAPTER 11. ALHPHAGARDEN 145

Furthermore, this approach causes a plant to grow slower in expectation as more of its zone
overlaps with the zones of other plants, in accordance with the zone-of-influence model.

Once the water at each coordinate has been allocated, we compute a growth value for
each plant, defined as:

G = c1 ·min (w,wmax)

where w is the actual amount of water this plant was able to uptake. Note that the water
allocation process enforces that a plant obtains no more than wmax = c2

c1

√
Lu units of water

in the best case, so this is essentially G = c1w, a linear function of the water used.
Each plant must divide its growth value G between vertical growth (increasing its height)

and radial growth (increasing its radius). We make this assumption because plants are
inherently phototropic and adjust their growth to seek light and escape shade [291], thus
they should divide G strategically to ensure maximum unoccluded leaf area. There is a
tradeoff: plants will typically seek to increase their radius as much as possible, but if their
leaves are occluded by taller plants, they will increase their height in order to outgrow
competitors and gain an advantage. We define lo,i and lu,i, the number of points where plant
i is occluded and unoccluded respectively, and model this dynamic as follows:

lp =
lu,i

lu,i + lo,i
ri = max(k1,min(lp, k2))

Gradial = riG

Gvertical = (1− ri)G
where k1 and k2 are plant-specific constants indicating lower and upper bounds on the
proportion of G the plant is willing to allocate to purely radial growth. This is reflective
of the genetically ingrained habit and morphology of the individual species. For instance,
higher values of k1 reflect a rosette habit, in which very little vertical growth occurs between
individual leaves until the transition to reproduction [292]. We estimate k1 and k2 by taking a
ratio of height and radius measurements collected from each plant species in an experimental
real garden, as can be seen in the project’s open-access repository. In the future, we intend
to tune these parameters with more data.

Finally, we increment the radius and height of each plant according to the computed
radial and vertical growth values, Gradial and Gvertical.

11.4.2 Life Cycle

Each plant is modeled with a biologically standard life cycle trajectory, consisting of five
stages: germination, vegetative, reproductive, senescence, and death [293, 294]. Plants
progress from one stage to the next after a number of timesteps sampled from a discretized
Gaussian distribution, specific to the plant type, as the model assumes that plants of the
same type share transition times between stages [295].

CHAPTER 11. ALHPHAGARDEN 146

Figure 11.3: Each plant is modeled with a life cycle trajectory, consisting of five stages: germination,
vegetative, reproductive, senescence, and death. When plants get underwatered or overwatered,
their radius decays exponentially and their color turns brown, and after a short period they move
to the death stage. However, if they receive their desired water amount prior to that, they return to
their original stage, hence it is reversible. Also, since transition times between life stages are unique
to the plant species, life stages of different species overlap in the snapshot above, for example in
the top image some plants have already germinated while others are about to germinate.

Germination

When a seed is planted, it begins the germination phase. During this phase, it only occupies
the single coordinate point where it was planted, and has both 0 radius and height. It uses
light and water according to the model specified in IV.A, but does not change in radius or
height. When the plant transitions to the next stage, it gains a nonzero radius and height,
each sampled from a plant type specific Gaussian distribution.

Vegetative

During the vegetative phase, the plant obtains resources and grows according to the model
specified in IV.A, unless it experiences stress from over or underwatering, as further detailed
in IV.C.

Reproductive

During the reproductive phase, the plant behaves similarly to the vegetative phase, except it
does not change in radius or height, unless it experiences stress from over or underwatering,
as further detailed in IV.C.

Senescence

During the senescence phase, the plant obtains resources according to the model specified
in IV.A, but its desired water amount is reduced to a proportion of its usual desired water
amount, which linearly decreases to 0 over time. More specifically, if wd is its desired water
amount, should it have been in the vegetative or reproductive stage, then its adjusted desired

CHAPTER 11. ALHPHAGARDEN 147

water amount, w̃d, is calculated as:

w̃d =
1− t
ts

wd

where t is the amount of time the plant has spent in the senescence stage, and ts is the total
duration of the senescence stage. However, the plant’s accumulated resources no longer go
towards its growth. Instead, the radius of the plant decays exponentially to a proportion of
its radius at the beginning of the stage. This proportion is a parameter associated with the
plant type. Plant height does not change during this phase.

Death

When the plant dies, it no longer uses resources nor changes in radius or height. However,
it continues to occupy space in the garden, potentially occluding plants.

Fig. 11.3 shows snapshots from a simulated garden at every stage, where the top image
corresponds with the germination phase and the bottom corresponds with the death phase.

11.4.3 Water Stress

To model the detrimental effects of suboptimal irrigation, the plant model includes a specific
response to over and underwatering when in the vegetative and reproductive stages. While in
these stages, a plant is considered overwatered if the total amount of soil moisture within its
radius, w(t), exceeds its desired water amount, wd. More concretely, a plant is overwatered
if:

w(t) ⩾ Towd

where To is a threshold parameter associated with plant type. Similarly, a plant is considered
underwatered if the amount of water it uptakes, w̃(t), falls below some proportion of its
desired water amount:

w̃(t) ⩽ Tuwd

where Tu is also a plant type specific threshold parameter.
While the plant remains in either stressed state, its radius decays exponentially to some

fraction of its prior radius, similar to its behavior in the senescence phase. Furthermore, we
visualize the effects of stress on plants by modifying their color to become progressively more
brown as they continue to be stressed. If a plant remains in either stress state after a number
of timesteps, then the plant immediately moves to the death stage. If a previously stressed
plant is no longer stressed, then for the current timestep the plant’s radius will decay, but it
will return to its normal behavior the next timestep. Afterwards, the plant will continue its
normal behavior with no lingering effects. The duration of the plant’s stage is not affected
by its stress during the stage. The plant’s stress state persists when it transitions from the
vegetative stage to the reproductive stage.

CHAPTER 11. ALHPHAGARDEN 148

11.4.4 Irrigation

For each discrete point in AlphaGardenSim, soil moisture dynamics are independently simu-
lated, without interactions between different spatial locations. One-dimensional soil moisture
dynamics can be modeled according to the Richards equation [296], which takes the form of
the following nonlinear partial differential equation:

∂s

∂t
= −∂q

∂z
− S(h)

where s is the volumetric water content in the soil, t is time, ∂q
∂z

is a term that describes the
flow of soil water as a result of differences in soil water potential, and S(h) is a term that
describes the soil water extraction by plant roots.

Soil moisture dynamics for each spatial point p(x, y) is based on the following discrete-
time linear approximation of this differential equation, proposed by Tseng et al. [297]:

w(x, y, t) = w(x, y, t− 1)− d+ a(x, y, t)− U(x, y, t)

where w(x, y, t) is the soil moisture content at point p(x, y) during time t, a(x, y, t) is the
amount of irrigation applied, and U(x, y, t) is the plant water uptake rate. d specifies local
water loss at each point, and accounts for all contributing factors, such as soil drainage and
evaporation. In AlphaGardenSim, d is approximated by a constant quantity uniform for
each point in the garden, U(x, y, t) is accounted for by the stochastic plant water uptake
model, and a(x, y, t) is specified by an irrigation policy.

Soil moisture levels are initialized according to an i.i.d. Gaussian distribution N(µ, σ2)
for each point in the garden at the start of each episode, with an irrigation amount also
specified for each point. Additionally, we enforce that soil moisture content remains non-
negative throughout the episode. Thus, soil moisture dynamics can be described by the
following equations:

w(x, y, 0) ∼ max(N(µ, σ2), 0) + a(x, y, 0)

w(x, y, t) = max(w(x, y, t− 1)− d+ a(x, y, t)− U(x, y, t), 0)

11.4.5 Diversity

Plants in a polyculture garden must be pruned to prevent invasive species from dominating. If
an invasive plant’s growth is too aggressive in relation to other plants, it uses more resources
and hinders their growth. We seek to diversify the garden through pruning. We model
diversity as the entropy of the global population in the garden:

v(t) = H (p (k, t))

We normalize the entropy, so that when p(k, t) is uniform, H̄ (p (k, t)) is 100%, whereas if
p(k, t) is completely unbalanced, for instance p(k, t) = [1, 0, 0, ..., 0]T , then its normalized

CHAPTER 11. ALHPHAGARDEN 149

entropy is 0%. Since p(k, t) represents the leaf coverage ratio per plant type, if p(k, t) is
uniform, the garden is maximally diversified, and vice versa. To increase the diversity in
the garden, an agent can prune plants that spread more than others. In AlphaGardenSim,
pruning reduces the radius of the pruned plant by a fixed percentage.

11.5 Experiments

We evaluate the performance of different polyculture farming automation policies by assess-
ing their ability to reduce water use and maximize plant diversity in AlphaGardenSim, and
we explore the robustness of the policies to varying garden settings, some of which include
invasive species. In our experiments, we use a set of 13 edible plant types with different ger-
mination times, maturation times and growth rates, sampled from plant-specific Gaussian
distributions, as specified in the project’s open-access repository.

At the beginning of the simulation, n points are randomly picked and planted with seeds
of k types. The seed locations s(x, y) = d(x, y, 0) are saved and remain fixed during the
entire simulation period. As plants grow and accumulate resources from the garden, each
plant’s health level h(x, y, t) is tracked, determined by its water-stress level in the previous
days and the current amount of water accessible at the plant’s location (see IV.C).

The state of the garden at each point p(x, y) is defined as the tuple of all local and global
quantities (see Table 11.1):

S(x, y, t)=

(d(x, y, t), w(x, y, t), h(x, y, t),p(k, t), v(t), s(t))

To simulate sensor precision limitations, we define S̃(x, y, t), a sector of size M
10
× N

10

centered at p(x, y) representing the area observable at time t. In this setting, a policy’s
access to local quantities d(x, y, t), w(x, y, t) and h(x, y, t) is limited to points within the
sector’s boundaries. In addition, we define A, the set of actions an agent can apply; watering,
pruning, both, or none. For each observation, an agent chooses a(x, y, t) ∈ A, the action
applied at point p(x, y) at time t.

11.5.1 Experimental Setup

For experiments, we initialize a 150× 300 garden with m plants, each sampled with replace-
ment from k plant types and seeded at points s(x, y), randomly sampled from all garden
points. At each time step in the garden, we sample m sectors centered at each s(x, y), as
well as an additional m

10
sectors centered at non-seed points p(x, y). One hundred garden

days are simulated. For light distribution, we choose a light decay LD of 0.5.
We allow each action a(x, y, t) to affect a small window in the center of a sector. During

irrigation, we update each w(x, y, t) of an 11× 11 square centered around s(x, y) as detailed
in IV.D with a(x, y, t) = 1. For pruning, we create a 5 × 5 window centered around s(x, y)
and collect all plants that are visible inside the window from overhead. Then we prune each

CHAPTER 11. ALHPHAGARDEN 150

Figure 11.4: Simulation Experiments. The total plant coverage and diversity in a garden over
a period of 50 days out of a 100 day growth period, as a result of using two different automation
policies and a policy that does not prune to provide a baseline for growth and diversity. We focus
on the period between days 20 and 70 because prior to day 20 the policies do not prune, and
after day 70 plants start to die. We can see that there is a trade-off between the coverage and
diversity. Top row: each policy acts on a general garden. With no pruning, the coverage in the
garden is high while the diversity is low. The fixed policy manages to increase the diversity, at
the price of reducing the coverage dramatically. The analytic policy finds the balance between the
two metrics and achieves high diversity and coverage. Bottom row: the policies act on gardens
that contain invasive species. If not pruned, the invasive species spreads rapidly until it covers the
majority of the garden. The fixed policy tries to slow the spread but fails since it prunes both the
invasive species and the other plants, and the invasive species spreads between pruning intervals.
The analytic automation policy achieves worse performance than before, but manages to keep a
balanced garden by pruning areas covered by the invasive species more frequently.

plant, reducing each of their radii by 15%. Pruning actions in the simulator are only applied
after a specified number of days, to allow plants to germinate and grow. We set this prune
delay to 20 days, after most plants reach the vegetative stage.

Plant overwatering and underwatering thresholds are closely related to the plant’s neigh-
borhood. An overwatered threshold of To = 100 was chosen as it is the maximum amount
of water in the 10× 10 square around the plant. We chose such a square to promote initial
plant growth in our experiments. We set the underwatered threshold to Tu = 0.1.

At each time step, the sectors are sampled in a random order, with the policy acting on
each observation independently. Once all actions are accumulated, we update the garden’s
water grid with irrigation amounts and update pruned plant radii. Afterwards, we distribute
light, allow plants to use water and grow, and simulate water drainage and evaporation.

CHAPTER 11. ALHPHAGARDEN 151

11.5.2 Policies

We implement two policies: a fixed policy that irrigates according to a fixed schedule and
prunes uniformly, and an analytic policy that adapts according to the plants’ needs and the
garden’s current diversity.

Fixed Policy

The fixed policy acts according to a fixed irrigation schedule, irrigating each sector it observes
every two days. This method resembles the one applied in many farms and greenhouses,
where an array of drippers or sprinklers irrigates in fixed time intervals at fixed locations.
In addition, every 5 days, the policy prunes all the plants that grew beyond a fixed radius,
limiting plants from overspreading. To prevent overpruning, we adjusted pruning to reduce
a plant’s radius by 5%.

Analytic Policy

The analytic policy utilizes soil moisture and plant health to dynamically prune and irrigate
each sector it observes. The policy chooses among four actions: irrigate, prune, irrigate and
prune, or do nothing. The policy independently decides whether to irrigate and whether to
prune, and these decisions are combined to produce an action.

If a sector contains no plants or only dying plants, the policy does not irrigate. If there are
any underwatered plants inside the irrigation window, irrigation is selected. Otherwise, we
sum w(x, y, t) for all p(x, y) in S̃. To account for overwatering, wherever h(x, y, t) indicates
an overwatered plant, we double w(x, y, t) in the summation. If the final sum is less than a
threshold, the policy irrigates.

To decide when to prune, the policy normalizes p(k, t). If any plant type inside the
pruning window has normalized coverage greater than a threshold, the policy will choose to
prune.

11.5.3 Evaluation

We evaluate each policy on 20 randomly seeded experiments per setting, using the following
metrics:

1. Total Plant Coverage - We sum the total coverage in a single experiment over days
20 to 70 of the growing period, taking into account only the coverage of the plants,
ignoring the uncovered space labeled as soil :

TC =
∑

k∈(K\soil),t
p(k, t)

2. Average Diversity - We average the diversity in a single experiment, ignoring the first
20 days and last 30 days of the growing period (i.e. averaging between days 20 and 70

CHAPTER 11. ALHPHAGARDEN 152

of the growing period, T = 50):

AD =

∑
t(v(t))

T

During the beginning and end of the growing period, the diversity is always high, since
all plants are very small (germinating or dying). Therefore, these diversity measure-
ments are not reflective of the policy’s performance.

3. Water Usage - We sum the water used in a single experiment over the entire growing
period (100 days):

WU =
∑
x,y,t

w(x, y, t)

We conduct a first set of experiments on a general setting consisting of 200 plants from 10
types, for a growing period of 100 days. This setting represents a general and unbiased setup
where there is a large variety of plants growing in close proximity. This leads to increased
competition for resources, and similar initial conditions for each plant in expectation. We
evaluate and compare the performance of the two automation policies, and an additional
policy that provides maximal irrigation and does not prune as a baseline. Averaged over 20
test gardens, the results are summarized in Table 11.2. The analytic policy balances pruning
and irrigation and achieves higher diversity with respect to the other policies. The top row
in Fig. 11.4 shows the total coverage and diversity in a garden during a single experiment,
and provides intuition for the performance of each automation policy; when irrigation is not
limited and the garden is not pruned, the total coverage reaches its maximal peak, but the
diversity is low due to the competition between plants. A fixed automation policy manages
to maintain diversity to some extent, at the cost of overpruning. The analytic automation
policy maintains high diversity, but seems to be limited by slow growing plants, which cause it
to heavily prune faster growing plants. Nevertheless, it achieves high coverage and diversity.
It also provides sufficient irrigation, while the fixed policy underwaters and the no-pruning
baseline overwaters.

To examine the effects of an invasive species in the garden, we conduct a second set of
experiments in which we replace one of the plant types with an invasive species. Invasive
species grow rapidly and consume the resources in the garden. To simulate an invasive
species, we create a plant with a short germination period, long vegetative and reproductive
periods, and large maximal radius. Fig. 11.5 shows a comparison between the growth of
a garden with and without an invasive species, marked with a red color, during 3 phases:
germination, the reproductive phase, and after most plants have died. From the second row
of Fig. 11.4 we can see that if not pruned, the invasive species has a negative impact on
diversity. The invasive species spreads rapidly until it covers the majority of the garden,
and stays dominant during a long reproductive phase, preventing other plants from growing.
The fixed automation policy struggles to hold back the spread, as after each pruning, the
invasive species recovers and continues to spread. The analytic automation policy performs

CHAPTER 11. ALHPHAGARDEN 153

Policy Coverage Diversity Water Use

No Pruning 30.13 0.78 100.00

Fixed 9.27 0.87 50.00

Analytic 19.91 0.91 67.80

No Pruning w/ Invasive 37.30 0.49 100.00

Fixed w/ Invasive 6.64 0.72 50.00

Analytic w/ Invasive 17.00 0.89 67.21

Table 11.2: Policy evaluations averaged over 20 test gardens with and without invasive species.
Coverage is the sum over 50 days of percentage of garden covered at each day, diversity is the
average of the normalized entropy of leaf distribution over 50 days, and water use is the sum of the
water applied over 100 days. Results show a tradeoff between maximizing yield and maximizing
diversity, and suggest that a tuned analytic policy can balance those to achieve gardens with high
coverage and diversity.

better, increasing the pruning rate where there are invasive plants, and reducing it where
there are none, giving other plant types the chance to grow.

11.6 Discussion and Future Work

We present AlphaGardenSim, a fast, first order simulator that uses plant growth models to
simulate inter-plant dynamics and competition for light and water. We use it to tune an
analytic automation policy that achieves high coverage and diversity, even in the presence of
invasive species. A key factor AlphaGardenSim does not model is the effects of companion
plants, that can assist neighboring plants by repelling pests or providing nutrients and shade.
In future work, we will further tune the simulator with real world measurements. We will
then apply the simulator to learning policies that optimize leaf coverage and diversity, and
evaluate the performance of the resulting policies on real gardens.

CHAPTER 11. ALHPHAGARDEN 154

Figure 11.5: Invasive species grow rapidly and spread, consuming the resources in the garden and
preventing the growth of other plants. We see the comparison between a regular garden (left
column) and a garden with an invasive species (right column). Top row: Germination phase, both
gardens look similar but the invasive species starts to germinate earlier than other plant types.
Middle row: At the peak of the reproductive phase, the right garden is dominated by the invasive
species. Bottom row: At the end, all plants die and the gardens reach a similar state.

155

Chapter 12

Learning Efficient Policies for
Polyculture Farming with Optimized
Seed Placements

In the previous chapter, we developed a simulator to tune automation policies for polyculture
farming, though these policies varied significantly in performance. To enhance reliability,
we optimized seed placement, developed a policy that can plan over a short horizon, and
improved the underlying irrigation and growth models. The new policy was more reliable
but less computational efficient. We then train a learned model to reduce the computation
time and increase its efficiency.

12.1 Introduction

Polyculture farming, where multiple plant species are intercropped simultaneously and in
close proximity, is a form of agricultural cultivation used for centuries that has been shown
to enhance pest control, reduce weeds, limit soil erosion, and provide better use of light,
water and soil nutrients [272–274, 298]. It is known that specific mixtures of cultivted plant
species can result in higher overall yield [299]. Examples of mutually beneficial polycultures
developed prior to industrial agriculture include maize-bean mutualisms, where maize pro-
vides a structural scaffold for the nitrogen-fixing leguminous vines [300], and intercropping
of deep rooted native shrubs into grain cultivation, which improves water availability in arid
regions [301]. More contemporary examples include shade-grown coffee, where species di-
verse agroforestry practices that can included cacao and banana intercropping provide not
only canopy shade for coffee, increasing yields, but also provides needed habitat for birds,
butterflies and other species [302]. Monoculture farming, as typically practiced in large-scale,
industrial applications, is often characterized by heavy agrichemical inputs, such as chemical
fertilizers and pesticides [303, 304], and increased vulnerability to disease and pestilence.
The lack of long-term sustainability of industrial agriculture [305], and its implications for

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 156

Figure 12.1: Tuning Plant Simulation Parameters Using the Physical Testbed. Using seeds
from 10 edible plant species the seed locations were computed with a seed placement optimization
process that leverages companion plants relationships to increase plant coverage and diversity.
Left: Garden at day 17. Right: Garden at day 25. Plant circles as shown are predicted using the
algorithm described in Section III(c).

human food security, has sparked renewed interest in polyculture [306–308].
One drawback is that polyculture farming requires more human labor than monoculture

farming due to variations in germination times and growth rates.
We are exploring the use of a robot with a learned control policy to automate polyculture

farming and assist - not replace - farm workers. Due to the large time constants in nature,
learning such a policy through real world experiments could require many years. In prior
work we introduced AlphaGardenSim [306], an efficient, open access, first order simulator
for polyculture farming. The simulator models inter-plant dynamics through competition for
resources, but did not take into account relations between specific plant species. In this chap-
ter, we explore inter-plant influence, seed placements, irrigation and pruning. This chapter
makes 4 contributions: (1) AlphaGardenSim 2.0, an open-source polyculture plant simulator
tuned with real world measurements from a physical testbed; (2) Significant extensions to
the AlphaGardenSim 1.0 simulator to model companion plant effects; (3) A seed placement
algorithm that uses companion plant relations to generate seed placement plans that yield
high coverage and plant diversity; and (4) A supervised-learning policy that optimizes plant
coverage and diversity over a short horizon.

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 157

12.2 Related Work

In 1995, Goldberg et al. [309, 310] presented the Telegarden, an art installation that allowed
anyone on the Internet to interact with a garden by planting and watering plants. Wiggert
et al. [283] created a testbed that enables real-time data collection for precision irrigation
based on observed plant growth and water stress. Fernando et al. [311] use a greenhouse to
evaluate mobile robot monitoring of plant health and soil moisture. We build on these prior
works by creating a robot-assisted garden which also facilitates real-time data collection for
automated control.

Few simulators include the option to model growth of multiple species in a garden [312].
Simulators such as DSSAT [275] and AquaCrop [276] simulate large-scale monoculture farms.
Whitman et al. [313] use Gaussian processes to predict weed growth across a farm. Our prior
work, AlphaGardenSim [306] simulates a polyculture garden using first order models of single
plant growth, simulating inter-plant dynamics and competition for water and light, but was
prone to error when the plants have significantly distinct germination times, growth rates,
and poor initial placements.

Gou et al. [314] propose a model to simulate the growth of two species in a strip-relay
intercropping system. They propose a method to calibrate the plant specific parameters given
observed field data. However, this model only takes into account light competition, assuming
that irrigation is sufficient. The model allows for analysis of different seed placements on
plant growth but restricts to the strip intercropping environment. Tan et al. [315] build on
Gou et al. and include the effects of water acquisition suggesting that plants use land and
water more efficiently in intercropping. However, their model does not allow for exploring
spatial patterns beyond the strip-relay setting and limits to two species.

Both Gou et al. [314] and Tan et al.[315] do not make explicit use of plant characteristics
to define plant inter-relations. Yu [316] use a simulated functional-structural plant model to
investigate which plant traits contribute to complementary relationships and the effects of
different plant placements, assuming irrigation provides sufficient water for all plants.

These simulators consider the polycultural setting, but they either do not model the light
and water competition simultaneously and/or are limited by the placement geometry that
they consider. We present extensions to AlphaGardenSim to incorporate plant relationships
and consider inter-plant cooperation.

12.3 Plant Phenotyping

We fabricated a 1.5×3m garden bed in the UC Berkeley greenhouse and mounted a commer-
cial FarmBot gantry robot system [317] to tune and test AlphaGardenSim on real plants.
We use a high-resolution overhead camera that has a full view of the garden, soil moisture
sensors and an automated pruning tool. A uniform and nutrient rich soil was used to reduce
stochastic effects in nutrient availability.

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 158

Figure 12.2: Learned Plant Segmentation Model. The figures above (from top to bottom)
show an overhead image from October 6, 2020, and the classifier output from the network with
augmented data. The overhead image is split in half as shown by the blue line. The top half is
for training while the bottom half is for testing. Below, the table shows how much of the garden
is covered by each plant and its respective IoU score based on the bottom half only. By adding
augmented data, the model was able to more accurately classify unseen leaves when compared to
the baseline with no augmented data. Low IoU for radicchio and red lettuce is consistent with a
low percent of coverage.

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 159

Camera The digital camera, mounted 2m above the garden bed, is a Sony SNC-VB770
and takes images every 24 hours. Its 35 mm sensor has a maximum 4240×2832 resolution
(1.4x higher than 4K) image mode, and a 3840×2160 (4k) video mode. We also selected
a 20 mm focal length Sony lens designed for SLR-type mirror-less cameras of comparable
quality. Its optical design minimizes aberrations and distortion, providing a clear detailed
image with no fishseye effect.

Leaf Segmentation See Fig. 2. We implemented semantic segmentation to study plant
canopy coverage. To estimate the canopy distribution from overhead images, we predict
a plant type, or “unknown,” for each pixel in the overhead image, using the UNet [268]
architecture with a ResNet34 [318] backbone pre-trained with weights from ImageNet [319]
data. We then use two 2,000×3,780 and one 1,630×3,478 overhead images taken of the
garden on September 26, September 30, and October 6, 2020, with hand-labeled ground
truth masks of plant phenotypes, and divide each image into a top half and bottom half as
shown in Fig. 12.2. We extract 48 512×512 patches from the top half for training. We then
modifwey these patches through actions such as shearing, shifting, and scaling.

A key challenge is generalizing across all garden days and plant life stages. To address
this, we extract individual leaves from October 1 to 22, 2020 to get samples of various sizes,
plant health, lighting, and texture. We augment the dataset by overlaying individual leaves
on top of each patch. By varying the position and pose of each augmented leaf, we create
100 patches of training images from a single overhead image. This additional augmented
data improves network robustness as shown in Fig. 12.2.

We train using 3,180 patches, 1,500 of them from augmented data, and 1680 from the
original data. Training uses categorical cross-entropy loss over 100 epochs and utilizes a
75-25 train-validation split. The output is a 512×512×11 array, with 11 softmax likelihoods,
representing ten plant phenotypes (or ”unknown”). We classify a pixel by choosing the
largest likelihood, and create a predicted mask for an overhead image by combining the
classified 512×512 patches. Fig. 12.2 shows the network’s prediction on the bottom half
of the image from October 6, 2020, which is unseen to the network. When evaluated, the
model has a mean IoU of 0.80. The model performs well in identifying plant types with high
coverage, but has lower accuracy in plants that are not common in the overhead image.

Converting Segmentation Masks to Circles See Fig. 12.1. To convert the pixel-wise
segmentation masks into the circular model used in AlphaGardenSim [306] we track plant
centers and radii. We define the plant center as the average over all pixel locations in the
plant’s segmentation mask. We define the radius as the distance from the new center to
the farthest point on its contour and note that although the seed locations are known, plant
centers change over time due to phototrophy [320] and irrigation [321]. Given the centers and
radii of all plants on day t− 1 as a prior, we use three heuristics to guide the circles update
on day t: the previous center, a minimum-, and a maximum-radius estimate. The radius
estimates are computed by finding the maximal and minimal observed radius per day for

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 160

each plant type using real world measurements as described in Section V. We use a breadth-
first-search (BFS) algorithm, traversing radially outward to update each of the circles. The
BFS terminates when either the max radius estimate is achieved or the percentage of new
pixels discovered during the previous two iterations is lower than a threshold (1%). After
termination, the new center is the center of mass of the pixels within the circle and the new
radius is the distance from the termination point to the center, as shown in Fig. 12.1.

12.4 Irrigation Model

We utilized six TEROS-10 [322] volumetric water content (VWC) soil sensors connected to
a ZL6 Data Logger [322] to measure soil moisture. The first set of experiments refined the
irrigation application parameter, a(x, y, t), the amount of irrigation applied at point (x, y).
We identified the flow rate from the FarmBot nozzle to be 0.083 L/s. The area of influence
from the nozzle is a circle of 0.04m radius.

We then used the soil moisture sensors to determine radial flow. By watering at vary-
ing distances spanning from 0.04m to 0.10m from the center of a soil moisture sensor, we
determined a model as follows: beginning outside of the 0.04m radius, the water gain is
roughly half that when compared to water gain within the radius. This trend continues each
additional 0.01m away from the center watering point up until 0.09m. Let w(x, y) be the
VWC centered at at point (x, y) in the garden. Thus, ∆w(xd, yd) = (1/2)d ∗ gain where d is
distance measured in 0.01m outside of the 0.04m radius, (xd, yd) is a point d + 0.04m away
from (x, y), and gain is the moisture gain for soil directly under the nozzle.

We studied changes in soil moisture content from irrigation procedures to tune the local
water loss parameter, d. Using soil moisture over time curves produced from irrigation
experiments in which we watered at different frequencies, we identified a water gain and water
loss period post watering event. In the water loss period, the change in soil moisture over
time t in hours fits nicely to a weighted, negative logarithmic decay: ∆w = −0.01675 · ln t.

Furthermore, we used the soil moisture sensors to tune the prior soil moisture content
parameter, w(x, y, t − 1). Here, the quantity that is important for identifying real world
irrigation policies is the soil’s specific maximal VWC which describes how much moisture
the soil can store [323]. By saturating several different samples of soil that we used in the
physical testbed, we discovered the max VWC of our soil to be around 0.3, and capped the
w(x, y, t− 1) accordingly.

Through the execution of irrigation and soil moisture experiments in the physical testbed,
we made adaptations to parameters based on Richards equation for soil moisture dynamics
used in [306]:

w(x, y, t) = max(w(x, y, t− 1)− d+ a(x, y, t)− U(x, y, t), 0)

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 161

Figure 12.3: Plots of growth curves, radius (cm) over time (days), for both simulated and real
world plants. Borage was occluded by other plants after day 40. Arugula was occluded starting
on day 35. The blue curve is real world radius. The red logistic curve is simulated radius from
AlphaGardenSim.

12.5 Growth Analysis

The standard agriculture parameters that dictate growth are germination time, maturation
time, and maximum radius. Individual plants also depend on the light, water, the plant
starting radius and height, and the number of days the plant remains in its growth phase
versus its wilting phase. The starting radius and height in the simulation and the number of
days in which a plant grows before wilting are sampled from a normal distribution centered
around the values defined above.

Through the use of overhead photos of the physical testbed, we can measure each plant’s
radial growth. Similar to how growth is modeled in our simulator, we annotated every plant
with a point at its center and a point at its outermost radius in an image from every day since
seeding. We then made a rough conversion of pixel coordinates to real world coordinates in
cm. These coordinates were then used to find plant radius in cm for that day.

By analyzing the growth of the one-hundred-twenty plants in the garden over 46 days,
and averaging the growth of a plant with others of its same species we created a new growth
function in AlphaGardenSim:

r(t) =
r1

1 + r1 · e−c1t

where r1 is the plant’s radial growth potential, which controls how large the plant will grow,
and c1 is the plant’s radial growth rate, which controls how fast the plant will grow. Both
values were fitted using measurements from the garden, as shown in Fig. 12.3. The growth

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 162

Plant
Type

g0 g1 m0 m1 r1 c1 c(35) e(35)

Borage 7 7 49 55 60 0.09 3107 6.61

Kale 3 7 62 55 65 0.10 7450 5.41

Swiss
Chard

7 7 53 50 47 0.11 5536 9.93

Turnip 3 7 42 47 53 0.11 3961 10.04

Green Let-
tuce

7 9 43 52 27 0.08 232 7.46

Arugula 5 8 45 52 40 0.10 1133 5.50

Sorrel 7 15 53 70 8 0.08 59 9.58

Cilantro 7 10 53 65 20 0.09 23 10.76

Red Let-
tuce

5 12 45 50 28 0.09 10 11.61

Radicchio 5 9 83 55 53 0.09 53 9.28

Table 12.1: Growth Analysis: Where g0 (days) is original germination time, g1 (days) is tuned
germination time, m0 (days) is original maturation time, m1 (days) is tuned maturation time, r1
is radial growth potential, c1 is radial growth rate, c(35) (cm2) is the simulated canopy coverage
on day 35, and e(35) (cm) is the mean absolute error on day 35 between simulated and average
real world radius. Original values were taken from published plant tables [324]. Growth time is
found by subtracting g1 from m1. Sorrel not only germinated later than other plants, but also had
a growth potential and growth rate that was minuscule compared to other plants in the physical
testbed.

parameters of all ten plant species were tuned in the simulator to match real measured
values, as shown in Fig 12.1. The mean absolute error (MAE) between the simulated plants
and physical testbed plants is displayed in Table 12.1, along with growth parameters. It
should be noted that we observe substantial plant overlap by day 35, and after this day it
was difficult to identify a plant’s outermost radius. Thus, the MAE is taken on day 35 rather
than day 46.

12.6 Companion Planting

Companion planting is an ancient technique of polyculture where mutually beneficial plant
types are placed in proximity to each other. A positive or negative relationship between
companion plants can exist due to above and below ground interactions [325], [326], [327].
Above ground includes physical environment changes such as providing shade, protecting

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 163

against weather damage, and supplying structural support. Below ground interactions in-
clude providing nitrogen which fertilizes the soil, root-root activity and allelopathy, which
occurs when a plant releases toxic chemicals that inhibit growth of other plants. While some
crops such as grain and fruit trees require uniform spacing for optimal growth or harvesting,
some such as leafy greens do not and can take advantage of large seed beds such as the
one in the physical testbed. This motivates a method to find a garden seed placement that
exploits plant relationships, which can lead to different yields and more or less efficient use
of resources [328], [329].

Modeling Companionship Consider a garden with N seeds: {s(1), · · · , s(N)}. Denote
K as the set of plant types in the garden, p(i) ∈ K as the plant type of seed i, and l(i) =
(xi, yi) as the location of seed i. Let rmax

k denote the expected maximal radius of plants of
type k. To model plant interrelationships we use the plant relationship matrix C ∈ R|K|×|K|.
Ci,j stores a number that describes the level of companionship between plants of type i and
j, which are not necessarily symmetric. In simulation, C is used to calculate a local plant
specific companionship factor c. For a given plant i,

ci =
∑

j∈[1,··· ,N],j ̸=i

Cp(i),p(j)

∥l(i)− l(j)∥22

The strength of the companionship decays as the distance between them grows.
In AlphaGardenSim 2.0, each plant’s daily radius grows according to a factor G̃, deter-

mined by the local water and light resources and competition. The effects of companionship
are modelled by a change to the growth value in the simulator. The growth value is updated
to be G = G̃ · c.

The C matrix was determined using the one-hundred and twenty annotations provided
by analyzing growth rates in the physical testbed. Plants in the same relative location on
each side of the garden were compared to one another as well as the average growth; if
the same plant on both sides exhibited either exaggerated growth or stunted growth, the
neighbors were noted and assigned positive or negative scalar values, respectively, to indicate
companionship between plants. These scalar values were then tuned to minimize the MAE
between simulated and real world individual plants.

Seed Placement Given two plants, the larger their relationship score the closer they
would prefer to be. Then for a garden of width W and height H with N seeds, the following
problem is solved to compute seed coordinates (xi, yi) for every plant i:

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 164

max
∑

i,j∈[N],i ̸=j

Cp(i),p(j)

∥l(i)− l(j)∥22
s.t. rmax

p(i) ⩽ xi < W − rmax
p(i) ∀i ∈ [N]

rmax
p(i) ⩽ yi < H − rmax

p(i) ∀i ∈ [N]

α(rmax
p(i) + rmax

p(j)) ⩽ ∥l(i)− l(j)∥2 ∀i ̸= j ∈ [N]

The objective is to seed plants with a positive symbiotic relationship close to each other
and vice versa when the relationship is negative. The first and second constraints ensure
that seed locations are within the garden boundaries. Finally the last constraint ensures
that plant radii do not overlap more than 100(1 − α) percent. α is a parameter in [0, 1]
that specifies the maximal level of overlap between plants. A larger α results in more plants
overlapping and thus interacting with each other. However if α is too large, plants tend
to create very tight clusters of companion species, resulting in a difficulty for these plants
to grow and a limited coverage. In this case, the negative effects of competition between
neighbouring plants outweigh the benefit brought by the proximity of companion plants.
To set α for a 150cm × 150cm garden with 10 species and 6 seeds of each type, gardens
were generated with α ∈ [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0]. Each garden
was simulated 5 times and α = 0.8 producing the highest average coverage and diversity was
selected. The resulting seed placement is shown in Fig. 12.4.

12.7 Pruning and Irrigation Policies

Analytic Automation Policy In prior work [306], we presented an analytic automation
policy, Fixed Pruning, with hand tuned parameters. For D(k), a set of k plant types available
in the garden, the policy observes the local canopy coverage, plant health, and soil moisture
levels defined by a H

10
× W

5
sector of the garden. In addition, the policy observes p(k, t), the

global population in the garden as a distribution over point types D. It applies one of four
actions in each sector: irrigate, prune, irrigate and prune, or null. When pruning, the policy
creates 5×5cm pruning window centered around a target plant, simulating the inaccuracy
of a pruner, and reduces the radii of all plants visible in the window by a fixed ratio U . To
decide to prune, the policy checks if the proportion of any plant type in the pruning window
is higher than a uniform threshold. To evaluate the policy’s performance, we compute the
average of canopy coverage, plant diversity and water usage across days 20 to 70. We focus
on these 50 days since during these days both the fast and the slow growing plants are in a
growing stage.

However, as described in Section VIII(b), experiments suggest that Fixed Pruning strug-
gles to manage plants with significant differences in germination times, maturation times
and max radii.

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 165

(a) Greedy (b) Random (c) Optimized

Figure 12.4: Left: Seed placement achieved by greedy neighbourhood swap algorithm which ignores
plant maximal radii, only taking into account companionship scores. This produces an artificial
looking garden with limited interactions between plants of different species. Middle: Random seed
placement, producing a sparse garden with seeds too close together, limiting the achievable coverage
and diversity due to competition. Right: Seed placement obtained by using the optimization
described in Section V. Small clusters of plants in irregular shapes are spread across the garden,
allowing for a variety of interactions between different plant species.

(a) Fixed Pruning (b) Variable Pruning

Figure 12.5: Left: Simulation results for Fixed Pruning with fixed prune levels of 15% and 2%.
15% prune level achieves good diversity but low coverage. 2% prune level is the opposite. Right:
Variable Pruning on gardens over 100 days with the fast and slow plant types from Table 12.2.
Favoring coverage initially, the policy uses variable pruning levels to achieve an average coverage
of 0.51. As Variable Pruning begins to value diversity more, it uses higher prune rates beyond day
50 to achieve good coverage and diversity.

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 166

Plant Type Germination (days) Maturation (days) Max Radius (cm)

Fast growing 9.8 99.4 140.4

Slow growing 25.6 156.0 42.4

Table 12.2: Average germination time, maturation time, and max radii of 5 fast and 5 slow growing
plant types. We vary germination times, maturation times and max radii of plants to identify
combinations, such as the one in the table, on which the analytic policy achieves significantly lower
coverage, as shown in Fig. 12.5(a).

1-Step Lookahead Policy To address this limitation, we introduce Variable Pruning, a
policy which dynamically selects a pruning level U(t) ∈ U for each day t from a discrete set
of six pruning levels U , by taking a 1-step lookahead, simulating the potential coverage cui

and diversity values dui
that would result from choosing pruning level ui ∈ U on the current

state of the garden. With the simulated results, the policy uses tunable weights wc and wd to
favor either coverage or diversity at different times of the growing period. To favor coverage
during early growing periods and diversity later on, we set wc = 1 − t̃

50
and wd = t̃

50
where

t̃ = t − 20, starting to affect after the prune delay ends and lasting for 50 days until day
70. To favor diversity early and coverage later, the weights are swapped. The policy uses a
weighted sum to determine which pruning level is preferable for day t:

U(t) = max
ui∈U

(wc · cui
+ wd · dui

)

Once Variable Pruning chooses U(t), it uses Fixed Pruning to determine actions for the
sectors observed each day to maximize both diversity and coverage.

Learned Policy The computation time of Variable Pruning however, increases with |U|.
Each day, Variable Pruning must run the simulator |U| more times than Fixed Pruning.

To reduce the computational cost of Variable Pruning, we train a deep supervised learned
policy, Learned Pruning, mapping prune level U(t) demonstrations to full garden observa-
tions as depicted in Fig. 12.6.

12.8 Simulation Experiments

Seed Placement We compare the coverage and diversity achieved on two types of gardens
shown in Fig. 12.4: (i) random seed placement and (ii) optimized seed placement using six
seeds for each of the ten plant types in Table 12.1. Averaging over 10 simulations each,
the optimized garden achieves over 60% more coverage and 10% more diversity than the
randomly seeded gardens.

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 167

Figure 12.6: Learned Pruning Policy. A deep CNN with 18,244 parameters. The network takes
three inputs: an RGB image of the full garden, the distribution of plant types, plant health and
water levels, and the global population distribution with soil. A prune level is predicted for the
input observation.

Fixed Pruning Performance To illustrate the shortcomings of Fixed Pruning on plants
with different germination times, maturation times and max radii, we simulated 2 fixed
pruning policies, with 15% and 2% pruning levels respectively, on a garden with 100 plants,
10 plants from each of the 10 plant types in Table 12.2 where faster growing plants grow
2X-20X faster than slower ones. Illustrated in Fig. 12.5(a), since 5 species grow significantly
faster than the other 5, garden diversity rapidly drops during days 10 to 20. To achieve
uniform plant diversity, 15% heavily prunes the faster plants to match the size of the slower
growing plants resulting low coverage. In contrast, 2%’s pruning fails to keep up with the
fast growing plants, resulting in lower plant diversity compared to 15%.

Variable Pruning Performance To compare Fixed Pruning and Variable Pruning, we
evaluate their performances on two sets of 10 plant types. We initialize 150 × 150cm sized
gardens with 100 plants each sampled with replacement from the plant types. For Variable
Pruning, we set wc = 1 − t̃

50
and wd = t̃

50
to favor coverage early and diversity later. After

experimenting with different pruning levels, we provided Variable Pruning these pruning
levels: U ∈ (5%, 10%, 16%, 20%, 30%, 40%). The first set of plants are from Table 12.1 and

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 168

Metric Fixed Variable Learned

Avg coverage 0.38 0.44 -

Avg diversity 0.92 0.91 -

Avg water use 0.06 0.06 -

Avg coverage 0.24 0.51 0.50

Avg diversity 0.77 0.73 0.73

Avg water use 0.08 0.08 0.08

Computation time (seconds) - 987.56 0.92

Table 12.3: Policy evaluations of Fixed Pruning, Variable Pruning and Learned Pruning averaged
across 20 test gardens. Top 3 rows: use the 10 plant types from Table 12.1. Bottom 4 rows:
use the plant types from Table 12.2.

have similar growth parameters. From experiments, we found that a fixed prune level of 15%
for Fixed Pruning leads to the highest coverage and diversity values on the plant set. Results
averaged across 20 test gardens with random seed placements are summarized in Table 12.3.
While Variable Pruning achieves higher coverage due to its ability to favor coverage over
diversity during early growing periods, both policies achieve similar diversity and water use.
This is expected as a fixed prune level is able to handle plant types with similar growth
patterns.

Using the same parameters for both policies, we evaluate their performances on the fast
and slow growing species from Table 12.2. Results are presented in Table 12.3 and Fig. 12.5.
Fixed Pruning achieves low coverage on these gardens, killing the plants at the beginning of
the growing period. The high diversity achieved afterwards represents a uniform but empty
garden. Variable Pruning, by favoring coverage early on, initially uses a small prune level of
5%. As wd increases and wc decreases over time, the policy shifts to favoring diversity and
uses higher prune levels between 10% and 40%. As a result, Variable Pruning achieves high
coverage and diversity.

Learned Pruning Performance To achieve a computationally efficient policy, we train
Learned Pruning to map full garden observations from gardens with the plant types in
Table 12.2 to prune levels. We simulate Variable Pruning on 10,000 gardens with randomized
seed locations to collect prune level demonstrations. The network is trained with 800K
demonstrations for 30 epochs with the Adadelta [47] optimizer and mean squared error loss.
Table 12.3 summarizes results averaged across 20 test gardens withheld from the training
dataset. Learned Pruning achieves comparable performance to Variable Pruning but is over
1000X faster in predicting U(t) for days 20 to 70.

CHAPTER 12. LEARNING EFFICIENT POLICIES FOR POLYCULTURE FARMING
WITH OPTIMIZED SEED PLACEMENTS 169

12.9 Discussion and Future Work

This chapter presents a physical polyculture farming testbed for estimating plant growth
parameters and inter-plant companion effects. We use the estimated parameters to tune
AlphaGardenSim 2.0 parameters, and developed an optimization algorithm that uses com-
panion plant relations to generate a seed placement which yields high coverage and plant
diversity. We trained a supervised-learned policy that is able to achieve high leaf coverage
and plant diversity 1000X faster than a lookahead policy. In future work we will estimate
stochastic models of growth parameters observed in the physical testbed and use these to op-
timize seed placements for subsequent growth cycles. This seed placement algorithm, learned
plant phenotyping model, and learned irrigation and pruning models will be combined into a
fully automated controller that will operate irrigation and pruning tools over multiple plant
growth cycles.

170

Part V

Efficient and Reliable Autonomous
Suturing

171

Chapter 13

Automating 2D Suture Placement

In this chapter, we develop an optimization to improve the reliability of autonomous suture
placement for non-linear wounds. The goal is to find the number and locations of entry and
exit suture points, and the quality depends on various factors, including the forces that are
applied to the wound in the process.

13.1 Introduction

Suturing is the process of sewing a wound or laceration closed to allow it to heal naturally.
It is extremely common in surgery and trauma care and involves long sequences of precise,
repetitive movements – something that is often burdensome to humans.

This work focuses on one aspect of automating suturing: the sub-task of suture planning,
which is to find an appropriate sequence of needle insertion and extraction points. Having a
high quality placement of suture is crucial for healing, as having sutures that are too close
or tight may lead to ischemia (under-supply of oxygen to the tissue), while having sutures
too far apart may lead to insufficient closing force on the wound to ensure the edges stay
together [330]. Furthermore, sutures may exert shear forces along the wound, which cause
more pronounced scarring and lead to cosmetically unappealing results [331] [332].

Thus, it is ideal to plan sutures by directly optimizing the forces they are expected to
generate. Humans cannot directly estimate closure and shear forces as they suture, and
typically rely on rules of thumb, intuition, and experience to guide suture placement.

This chapter makes five contributions: (1) A novel objective, optimizing Elliptical Force
on the wound, based on an extension of the well-known ”diamond force model” [333, 334] to
nonlinear 2D wound shapes; (2) A novel formulation of planar, non-linear suture planning as
a constrained optimization problem; (3) An analysis of the SP2DEEF algorithm’s output on
wounds of varying degrees and curvature; (4) Experiments comparing the suture placements
from SP2DEEF to those chosen by a human surgeon; and (5) An interactive interface that
allows surgeons to upload an image, trace the wound curve, view proposed sutures and edit
suture placement.

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 172

C: Surgeon C: SP2DEEF Z: Surgeon Z: SP2DEEF

N/A N/A

Figure 13.1: Physical Experiments with chicken skin. Top row: SP2DEEF’s outputted placements;
Middle row: Surgeon’s initial state and physical ink markings of SP2DEEF’s placements; Bottom
row: after suturing. Left half: C-shaped wound; Right half: Z-shaped wound. First and third
columns: Surgeon’s placement; second and fourth columns: SP2DEEF’s placement. SP2DEEF’s
placements were evaluated as equal or better than the surgeon’s placement by the surgeon.

13.2 Related Work

Automated and robot-assisted suturing has seen considerable study over the last decade,
with particular focus on two sub-tasks: 2D suture planning, which considers where to place
sutures (the focus of this work), and 3D needle path planning, which considers how to guide
the needle to best accomplish a desired suture. Automating either of these sub-tasks can
provide valuable assistance to a human surgeon, while having both may potentially lead to
a fully automated suturing system.

13.2.1 Needle Path Planning

Much of the work on autonomous suturing focuses on needle path planning in the vertical
plane (orthogonal to the wound line), as pushing a needle through deformable tissue repre-
sents a major challenge for sensing and control. In general, needle path planning focuses on
a single suture at a time.

Nageotte et al. [335] proposed a kinematic analysis and geometric modeling of the prob-
lem of the stitching task in laparoscopic surgery. The work particularly uncovers the degree

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 173

of uncertainty which the surgeon has with regard to where the tip of the needle is; that is,
the exit point may not be exactly where desired.

Schulman et al. [336] applied the transfer trajectory algorithm to take trajectories from
human demonstrations and adapt them to new environment geometry for suture needle path
planning. Another approach developed by Sen et al. [337], was one of sequential convex
optimization. As with the other papers, the optimization was over the execution of a single
suture. Their approach considers multiple sutures, but the suture locations are chosen by
linear interpolation of the start and end points, and each suture is treated independently
thereafter. This method does not capture the constraints that the curvature of a wound
might place on suture placement. Later, Shademan et al. [338] studied suturing on intestinal
tissue. Various constraints for good suturing are discussed in this work: for instance, that
sutures should be perpendicular to the wound, and the gaps between the sutures must be
small enough to avoid leakage, but not too small as to prevent bloodflow. However, they are
primarily used as assumptions that hold for a set of planned sutures that have been decided
beforehand.

Other papers consider additional aspects of needle path planning: for example, Pedram
et al. [339] presented an algorithm that takes in the desired suture entry and exit points on
a wound as input and computes the needle shape, diameter and path so that the execution
of the suture satisfies recommended suturing guidelines. These guidelines included: a mini-
mization of tissue trauma, orthogonal sutures, positioning the needle to allow for successful
grasps, suture symmetry and being able to enter and exit at the points defined by the sur-
geon. The optimization weights were selected based on the recommendation of surgeons and
fine-tuned during simulations. Jackson et al. [340] proposed a Kalman filter to model the
internal deformation force generated by a needle as it is driven through tissue. Similarly, Pe-
dram et al. [341] described a needle stitch path planning algorithm which deals with optimal
motion of the needle inside the tissue, with the goal of entering the tissue perpendicularly;
reaching specific suture depth; and minimizing tissue trauma.

13.2.2 The Suture Planning Problem

There is prior work in planning the location of suture entry and exit points in the hori-
zontal plane, for specific wounds, and in certain controlled settings. In particular, robotic
minimally-invasive surgery (RMIS) must conform to the robot’s kinematic constraints and
the potentially very tight space in which the operation takes place.

Saeidi et al. [23] describe a planning algorithm for autonomous suturing using a seg-
mented point cloud and demonstrated its application with the Smart Tissue Autonomous
Robot (STAR) system. However, their technique assumed a straight-line wound (as can
be expected in surgery, where the wound is the result of a surgical incision). Similarly,
Thananjeyan et al. [342] studied suture planning for a circular wound.

The primary constraints in both works were limitations to the robot’s movement ability,
either from kinematics or from a sharply bounded workspace, with the objective being to

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 174

ensure evenly-spaced sutures with the gaps between them being as close as possible to an
ideal distance.

However, when dealing with more complex wound shapes, sutures may interact with each
other in more complex ways, and thus planning and evaluating an effective set of sutures
may require a more detailed model of how the sutures hold the wound together.

Figure 13.2: Wound centerline shown in red, with two entry points (red) and two exit points (blue).
Consider the distance between extraction points e0, e1. If the distance is between βmin and βmax,
i.e. the green zone, it meets the constraints. Hence e0 and e1 violate constraints.

13.3 Problem Statement

Given an image with points along the wound selected by the surgeon, the suture planning
problem consists of choosing the number and placement of sutures to best close the wound.
We denote the number of sutures as n, and, for most of what follows, we treat it as fixed and
consider the optimization problem which represents the task of finding the best placement
of n sutures; we discuss how n is selected in Section 13.4.2. The parameters of this problem
come in two types: the first type denote physical constraints or objectives. For example,
the minimum allowable distance between any two skin puncture points or the ideal distance
between the insertion and extraction points of a single suture (which we refer to as the suture
width, α) We represent such constraints with Greek letters. The second kind of parameter
are scalar weights which set the relative importance of different components of the objec-
tive function, and are represented by c⋆ where the superscript ⋆ denotes the corresponding
component.

Let α be the suture widths, that is, the distance between the insertion and extraction
points of a single suture. These two points are placed at equal distance apart from the
wound such that their midpoint lies on the wound curve. Additionally, no two insertion

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 175

and/or extraction points should be closer than a certain minimum distance, denoted βmin,
and no two consecutive insertion and/or extraction points should be further than a certain
maximum distance, denoted βmax. We also define the suture distance which is the straight
line distance between the midpoints of two stitches. Guidance for surgeons suggests that an
ideal suturing distance is 5mm [343]. Let γ be this target distance between sutures, and let
ℓ be the length of the wound.

Let Ld be the Mean Squared Error (MSE) defined as average difference between computed
suture distance and the target suture distance γ. Let Lvar center be the variance of computed
suture distances. Let Lvar ins ext be the variance of the distances between consecutive suture
insertion and extraction points. In this term, we sum up the variance of the distance between
insertion points and the variance of the distance between exraction points. Let Lf be the
MSE between the closure force at each point along the wound curve and an ideal value.
Similarly, Let Lshr be the MSE between the shear force at each point of the wound and an
ideal value. Note that these target values are defined directly from the surgeon’s input to
the system.

Assume the suture planning is constrained to a given suture width α. Further assume
that sutures are constrained to be orthogonal to the wound curve; therefore it is sufficient
to specify the number n of sutures and at which points 0 ⩽ s1 ⩽ . . . ⩽ sn ⩽ tmax along
the wound they are placed, to describe a complete suture plan of needle insertion and ex-
traction points. Here, si serve as our decision variables (the center of suture i being w(si)).
Additional we impose hard constraints that concern minimum and maximum distances al-
lowed between consecutive insertion and extraction points. We denote these as constraints
Amin, Amax. Finally, we enforce that sutures should not ’cross.’ That is, if we draw a line
from corresponding insertion point to extraction point for each suture, it should be the case
that none of these lines are crossing. This constraint is denoted as Ac.

Each of the optimization terms L· is weighted with a factor c·. The objective is then to
find the sequence of si for all i ∈ {1, ..., n} satisfying:

min cdLd+

cvar centerLvar center+

cvar ins extLvar ins ext+

cfLf + cshrLshr

s.t.

Amin, Amax, Ac

0 ⩽ s1 ⩽ . . . ⩽ sn ⩽ tmax

(13.3.1)

Note that the number of sutures n is fixed in this problem; to minimize the loss over all
possible suture plans, the problem needs to be solved with various different values of n,
which we choose heuristically; see Section 13.4.2 for details.

The objective function consists of three geometric cost terms (Ld, Lvar center and Lvar insext)
and two force model-based cost terms, both measuring the mean squared error. Its solution
represents a sequence of suture midpoints which should be close to evenly spaced while also

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 176

explicitly ensuring good closure forces over the wound. We will set the weights to emphasize
Lf (closure forces), with the other components there to provide numerical stability and
refinement.

See sections 13.4.3, 13.4.4 and 13.4.5 for a complete mathematical description of the
objective function and constraints.

13.4 Method

The SP2DEEF algorithm is divided into three distinct phases:

1. Input, in which the system queries the surgeon for points along the wound curve,
desired suture width, and scaling information;

2. Optimization with elliptical force model, in which the system plans a set of sutures
to minimize an objective function under constraints, utilizing an explicit model to
estimate forces applied by the sutures to the wound;

3. Adjustment, in which the surgeon can optionally adjust the suture plan computed by
the system.

13.4.1 Input

The interface first collects surgeon input, via a clicking interface, as depicted in Fig. 13.6.
The surgeon selects two points on the image and inputs the measured distance between those
points as well as the desired suture width.

The program scales the image based on the calibration points provided. The surgeon
then clicks a sequence of points on the image tracing the shape of the wound. We then
use the scipy interpolation function scipy.interpolate.splprep to generate a smooth B-
spline that approximates a curve that goes through all points specified. We then generate
an initial placement of sutures to ’warm start’ the optimization. To that end, the algorithm
computes the initial number of sutures by dividing the length of the wound curve by the
ideal suture distance γ. It then places the corresponding number of equally spaced suture
midpoints along the wound curve. The insertion and extraction points are determined by
the perpendicularity constraint between the sutures and the curve as well as by the surgeon-
specified suture width.

13.4.2 Optimization

SP2DEEF solves the placement of sutures on a wound as a constrained optimization problem.
In order for the healing process to occur, the two sides of the wound must be brought together.
Ideally, we would use a detailed model to predict skin deformation after suture placement.
However, the mechanical behavior of skin is complex and influenced by the location on the

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 177

body of the wound and the patient’s height, weight, and age, amongst other factors, [330]
making full modeling impractical. Instead of this, surgeons usually employ heuristics to
plan where to place sutures. These heuristics state that sutures should be orthogonal to the
wound, or that they should be spaced evenly and as close as possible to some ideal distance
apart. However, relying exclusively on such rules can lead to solutions which leave parts
of the wound insufficiently closed, because of insufficient closure force from sutures in the
region. Thus, it is desirable to combine surgical heuristics with a model of the forces imparted
by the sutures to ensure that the entire wound is held sufficiently closed by the sutures. This
‘hybrid’ optimization problem leverages surgeons’ experience while also ensuring that each
point along the wound receives acceptable closure forces.

We assume that the wound lies on a 2D plane and place the sutures using only a 2D
image of the wound as seen by an overhead camera; we assume that the wound has been
positioned and rotated to minimize the distortion incurred by perspective effects. The wound
is thus represented by a parametric spline computed by interpolating over points clicked
by the surgeon on the image, which we denote as a function w(t) = (x(t), y(t)) where
w : [0, tmax]→ R2.

Since this optimization problem is in general nonconvex, we solve it with the SLSQP
algorithm [344], which performs constrained optimization using linear approximation.

To find the best number n of sutures, we execute a bi-linear search from an initial naive
estimation n̂, as for a typical wound there is only a small range of ‘reasonable’ values of
n. We use n̂ = ⌊ℓ/γ⌋, as this is the number of sutures resulting from naively spacing the
sutures at distance γ along the length-ℓ wound, and is therefore likely to be close to the best
number of sutures. We estimate ℓ via linear approximation and compute n̂; then we solve
the optimization problem (13.3.1) for all integers n such that 0.5∗ n̂ ⩽ n ⩽ 1.4∗ n̂ and return
the suture plan with the lowest loss.

For evaluating the hyperparameter settings we use the same loss as our training loss.

13.4.3 Suture regularity constraints and objectives

The suture width α is given by the surgeon in the input phase of the process and the number
of sutures n is selected by the algorithm. The other parameters βmin, βmax, γ, are assumed
to be constant. For our experiments, we set these values based on consulting an expert in
the field of surgery1 These parameters are depicted in Fig. 13.2. We also include several key
conditions for suture placement:

1. All sutures should cross the wound at their midpoint and be orthogonal to the wound
at that point.

2. Sutures should have width (distance between insertion and extraction points) of α.

1we consulted our co-author Danyal Fer, MD, Department of Surgery, University of California San
Francisco East Bay.

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 178

The hyperparameters α, βmin, βmax, γ, ϵ are set via... Since in general these conditions cannot
be perfectly satisfied, some conditions are hard-coded as constraints and others are encoded
via penalty terms in the objective function. Conditions (i) (orthogonality of sutures to the
wound) and (ii) (suture width) mean that if the suture crosses the wound at some w(s),
the insertion and extraction points are uniquely determined (up to swapping); therefore, as
discussed above, our decision variables are the points 0 ⩽ s1 ⩽ . . . ⩽ sn ⩽ tmax along the
wound at which we want the sutures to cross, with suture i crossing at w(si). Since the
wound w is represented as a B-spline, it has a well-defined derivative w′(t) = (x′(t), y′(t)) at
each t. Then, interpreting w(t), w′(t) as vectors in R2, the insertion and extraction points
are

a0(si), a
1(si) = w(si)±

α

2

0 −1

1 0

 w′(si)

∥w′(si)∥
(13.4.1)

Here a0 corresponds to the insertion point and a1 corresponds to the extraction point and
both are vectors in R2. The side that corresponds to insertion and the side which corresponds
to extraction was chosen arbitrarily and can be swapped if desired.

Conditions (iii) and (iv) are coded as the constraints labeled Acrs and Amin, Amax respec-
tively. Acrs states that for any i ̸= j, the line segments (a0(si), a

1(si)) and (a0(sj), a
1(sj))

cannot cross; Amin states that no two different insertion and/or extraction points can be
within βmin of each other; and Amax states that for any i ∈ [0, n] and z(·) ∈ {a0(·), a1(·), w(·)}

∥z(si+1)− z(si)∥ ⩽ βmax (13.4.2)

(no consecutive suture insertion points, extraction points, or midpoints can be more than
βmax apart).

Condition (v) states that the distance between the sutures should be as close as possible
to the ideal suture distance γ while condition (vi) ensures that the sum of variances of the
insertion, center and extraction points is low. To measure how well a set of sutures satisfies
conditions (v) and (vi), we use mean squared error and variance. To encode the constraint
concerning the endpoints of the wound, we add ‘phantom’ sutures at s0 = 0 and sn+1 = tmax,
giving:

Lidl(s1, . . . , sn) =
∑
z(·)

1

n+ 1

n∑
i=0

(∥z(si+1)− z(si)∥ − γ)2 (13.4.3)

Lvar(s1, . . . , sn) =
∑
z(·)

Var
(
{∥z(si+1)− z(si)∥}ni=0

)
(13.4.4)

where
∑

z(·) indicates summing the function inside three times, with the points z(si) being

a0(si), a
1(si) and w(si), i.e. we take the average difference squared from ideal and the

variance using the insertion points, the extraction points, and the midpoints and add them
up. Conditions (i), (ii), (iii) and (iv) are treated as constraints while (v) and (vi) are encoded
as penalty terms and in the objective function and optimized over.

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 179

Figure 13.3: Diamond Force Model.. The diamond model does not generalize well to non-linear
wounds. As shown to the left, the curve pulls away from the diamond line, and thus it is non-obvious
how to calculate distances.

13.4.4 Generalizing the Diamond Force Model

We supplement the suture regularity constraints and objectives with a model that aims to
quickly estimate the forces applied by the sutures to the wound, inspired by the diamond
force model [333, 334] on a linear wound, in which the force imparted on the wound by a
suture has a particular intensity at the crossing point and drops off linearly (to a minimum of
0) according to distance from the crossing point. An interesting feature of this model is that
placing each suture at the point where the force from the previous suture drops to 0 yields a
constant force across the wound. However, this model only considers linear wounds and does
not generalize well when applied to curved wounds, as depicted in Fig. 13.3. We extend this
to curved wounds by modifying it so that the forces imparted from an insertion or extraction
point on the skin are parallel to the suture and decrease linearly (to a minimum of 0) based
on an elliptical norm aligned with the suture. We choose an elliptical norm to represent the
fact that the force of pushing on an elastic medium is transferred more strongly to points in
line with the force than those to the side. We normalize the magnitude of the forces in our
model by letting 1 unit of force be the ideal amount applied to close any given point on the
wound, which is the amount applied by a suture to its midpoint. Since by symmetry the
insertion and extraction points of a wound exert the same amount of force on the center, in
opposite directions (since the suture center is the midpoint of the insertion and extraction
points), this means that each insertion or extraction point exerts 0.5 units of force on its
respective center. Thus, given a parameter 0 < ε ⩽ 1 denoting the ratio of the shorter axis
to the longer axis of the ellipse which defines the norm (to be discussed later), in our model

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 180

ain(si)
<latexit sha1_base64="1QKJh2qKYCUy0ezMirSVaQ3mjSo=">AAAB+3icbVBNS8NAEN34WetXrEcvi0Wol5JUQY9FLx4r2A9oY9hst+3SzSbsTqQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QSy4Bsf5ttbWNza3tgs7xd29/YND+6jU0lGiKGvSSESqExDNBJesCRwE68SKkTAQrB2Mb2d++4kpzSP5ANOYeSEZSj7glICRfLtEHtMesAmkXGZZRfv83LfLTtWZA68SNydllKPh21+9fkSTkEmggmjddZ0YvJQo4FSwrNhLNIsJHZMh6xoqSci0l85vz/CZUfp4EClTEvBc/T2RklDraRiYzpDASC97M/E/r5vA4NozX8UJMEkXiwaJwBDhWRC4zxWjIKaGEKq4uRXTEVGEgomraEJwl19eJa1a1b2o1u4vy/WbPI4COkGnqIJcdIXq6A41UBNRNEHP6BW9WZn1Yr1bH4vWNSufOUZ/YH3+AEgFlJY=</latexit>

aex(si)
<latexit sha1_base64="o56qOuYLR2xhrkcVlmkxudrFZjM=">AAAB/XicbVDJSgNBEO1xjXEbl5uXwSDES5iJgh6DXjxGMAskY+jp1CRNeha6ayRxGPwVLx4U8ep/ePNv7CwHTXxQ8Hiviqp6Xiy4Qtv+NpaWV1bX1nMb+c2t7Z1dc2+/rqJEMqixSESy6VEFgodQQ44CmrEEGngCGt7geuw3HkAqHoV3OIrBDWgv5D5nFLXUMQ/pfdpGGGIKwywrqk7Ks9OOWbBL9gTWInFmpEBmqHbMr3Y3YkkAITJBlWo5doxuSiVyJiDLtxMFMWUD2oOWpiENQLnp5PrMOtFK1/IjqStEa6L+nkhpoNQo8HRnQLGv5r2x+J/XStC/dFMexglCyKaL/ERYGFnjKKwul8BQjDShTHJ9q8X6VFKGOrC8DsGZf3mR1Msl56xUvj0vVK5mceTIETkmReKQC1IhN6RKaoSRR/JMXsmb8WS8GO/Gx7R1yZjNHJA/MD5/ACMylag=</latexit>

w(si)
<latexit sha1_base64="mZ21d1tNDHX8PI5NgUm0Kl0/1hs=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBDiJexGQY9BLx4jmAckS5idTJIhs7PrTK8SlvyEFw+KePV3vPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+85FrIyJ1j+OY+yEdKNEXjKKVWk8l003F5KxbKLpldwayTLyMFCFDrVv46vQiloRcIZPUmLbnxuinVKNgkk/yncTwmLIRHfC2pYqG3Pjp7N4JObVKj/QjbUshmam/J1IaGjMOA9sZUhyaRW8q/ue1E+xf+alQcYJcsfmifiIJRmT6POkJzRnKsSWUaWFvJWxINWVoI8rbELzFl5dJo1L2zsuVu4ti9TqLIwfHcAIl8OASqnALNagDAwnP8ApvzoPz4rw7H/PWFSebOYI/cD5/AMNwj8k=</latexit>

↵
<latexit sha1_base64="+wSBPeL8nxBdvzPXA2qswhGhfpg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIzPjxw=</latexit>

vin(w(t), si)
<latexit sha1_base64="pZgrZU9Jsu70vRv/WUEiMfSsi/Y=">AAACAHicbVC7SgNBFJ31GeNr1cLCZjAICUjYjYKWQRvLCOYBybrMTmaTIbMPZu5Gw7KNv2JjoYitn2Hn3zh5FJp4YOBwzr3cOceLBVdgWd/G0vLK6tp6biO/ubW9s2vu7TdUlEjK6jQSkWx5RDHBQ1YHDoK1YslI4AnW9AbXY785ZFLxKLyDUcycgPRC7nNKQEuueTi8TzvAHiHlYZYVH4pQOlUuL7lmwSpbE+BFYs9IAc1Qc82vTjeiScBCoIIo1batGJyUSOBUsCzfSRSLCR2QHmtrGpKAKSedBMjwiVa62I+kfiHgifp7IyWBUqPA05MBgb6a98bif147Af/S0dHiBFhIp4f8RGCI8LgN3OWSURAjTQiVXP8V0z6RhILuLK9LsOcjL5JGpWyflSu354Xq1ayOHDpCx6iIbHSBqugG1VAdUZShZ/SK3own48V4Nz6mo0vGbOcA/YHx+QNrUZZF</latexit>

w(t)
<latexit sha1_base64="Xz3Bk224qxiFs7GoEmXuWMCHWRc=">AAAB63icbVBNSwMxEM3Wr1q/qh69BItQL2W3CnosevFYwX5Au5Rsmm1Dk+ySzCpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBbHgBlz32ymsrW9sbhW3Szu7e/sH5cOjtokSTVmLRiLS3YAYJrhiLeAgWDfWjMhAsE4wuc38ziPThkfqAaYx8yUZKR5ySiCTnqpwPihX3Jo7B14lXk4qKEdzUP7qDyOaSKaACmJMz3Nj8FOigVPBZqV+YlhM6ISMWM9SRSQzfjq/dYbPrDLEYaRtKcBz9fdESqQxUxnYTklgbJa9TPzP6yUQXvspV3ECTNHFojARGCKcPY6HXDMKYmoJoZrbWzEdE00o2HhKNgRv+eVV0q7XvIta/f6y0rjJ4yiiE3SKqshDV6iB7lATtRBFY/SMXtGbI50X5935WLQWnHzmGP2B8/kDgZCN4g==</latexit>

Figure 13.4: Elliptical Force Model. Sutures (width α) with force model around insertion point
a0(si) depicted as an ellipse showing the region of nonzero force imparted from a0(si), with forces
decreasing linearly from the center, with isocontours of force being ellipses. Purple and orange
arrows show shear and closure forces generated at the wound point w(t) by a0(si).

the insertion point a0(si) has a suture-aligned distance from a point z ∈ R2 of

d0(z, si) =
√
d0∥(z, si)

2 + (d0⊥(z, si)/ε)2 (13.4.5)

where d0∥(z, si) is the distance between a0(si) and z on the axis parallel to a1(si)−a0(si) and

d0⊥(z, si) is the distance between a0(si) and z on the axis perpendicular to a1(si) − a0(si);
we define the distance d1(z, si) from the extraction point a1(si) analogously. Then, the force
exerted on z from a0(si) is the vector

v0(z, si) =
1

2

max(η − d0(z, si), 0)

η − α/2
a1(si)− a0(si)

α
(13.4.6)

where η =
√

(α/2)2 + (γ/ε)2. The force v1(z, si) imparted by an extraction point a1(si) on
z is defined analogously. The suture force model is shown in Fig. 13.4. Note that the force
vector is parallel to a1(si) − a0(si) and (since α = ∥a1(si) − a0(si)∥ by definition) has the
following properties: (a) ∥v0(w(si), si)∥ = 1/2 for any i (insertion points, and by symmetry
extraction points, exert a force of magnitude 1/2 on the suture center); and (b) on a linear
wound with sutures placed an ideal γ distance apart, each suture center lies on the boundary
of the regions in which the previous and next suture exert forces of positive magnitude. We
then set ε = 0.77 so that ideally-spaced sutures on a linear wound exert forces which are as
constant as possible along the length of the wound. These properties extend the diamond
force model to non-linear wounds.

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 181

13.4.5 Closure and shear force objectives

Given the model described in Section 13.4.4 and Fig. 13.4 of how sutures exert force on skin,
what does this imply about the quality of the sutures? While the insertion and extraction
points are placed so that the suture (and thus the forces it exerts) are orthogonal to the
wound at the crossing point, if the wound is not linear then at other points on the wound
the exerted force may have both a closure force component orthogonal to the wound and
a shear force component parallel to the wound. The total force exerted by insertion points
(which push on one side of the wound) and the extraction points (which push on the other
side of the wound) on w(t), are denoted respectively as

F 0(t) =
n∑

i=1

v0(w(t), si) and F 1(t) =
n∑

i=1

v1(w(t), si) (13.4.7)

The total closure force at point w(t) on the wound is:

f c(t) = (F 0(t)− F 1(t))⊤
a1(si)− a0(si)

α
(13.4.8)

(note the 1/α term to normalize the suture width). This value is normalized so that the
ideal value is 1 at every w(t).

To get the total shear force at a given point t on the wound, we take the components of
the forces parallel to the wound:

f s(t) = (F 0(t)− F 1(t))⊤

0 −1

1 0

 a1(si)− a0(si)
α

(13.4.9)

Since shear forces do not hold the wound together but may cause misalignment, the ‘ideal’
magnitude of the shear force is 0 at every t.

13.4.6 Force closure objective

We take m points w(t1), . . . , w(tm) and use the model above to estimate the closure and
shear forces at these points. The average closure force penalty is then

Lc =
1

m

m∑
j=1

(1− f c(tj))
2 (13.4.10)

(penalizing deviation from the ideal value of 1) and the average shear force penalty is

Ls =
1

m

m∑
j=1

f s(tj)
2 (13.4.11)

(penalizing deviation from the ideal value of 0). As with the regularity objective function,
these components of the objective function are given weights cc and cs, respectively.

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 182

Table 13.1: Suture Placement Results

Loss Type Algorithm Spline 1 Spline 2 Spline 3 Spline 4 Spline 5

Variance - Baseline 0.00 0.02 2.06 2.79 0.77

center points Optimized Placement 0.00 0.62 1.51 1.24 24.92

Variance - insertion / Baseline 0.00 0.05 28.12 18.50 47.66

extraction points Optimized Placement 0.00 1.25 28.40 13.65 87.12

Ideal distance Baseline 8.48 5.34 106.50 86.68 185.58

loss Optimized Placement 4.50 9.01 64.88 25.95 527.79

Closure Force Baseline 3431.70 9410.64 9828.90 7776.41 8283.97

loss Optimized Placement 0.61 5.68 0.01 0.00 9.54

Shear Force Baseline 0.00 54.86 29.00 104.66 17.52

loss Optimized Placement 0.00 0.55 39.13 32.00 113.43

Total Baseline 51483.98 141439.78 147878.44 117400.61 124827.93

loss (weighted) Optimized Placement 13.65 111.9 449.2 282.73 2059.8

Number of Baseline 6 13 40 15 51

Sutures Optimized Placement 7 14 39 15 53

13.4.7 Parameter settings

We take α (suture width) as input from the user while we chose the values of βmin, βmax (min
and max distances between sutures) and γ (ideal distance between sutures) by consulting
an expert in the field of surgery.

We developed the constraints using surgical suturing guidelines, setting βmin = 2.5mm be-
tween two sutures as consulted by an expert surgeon and βmax = 10mm between consecutive
sutures so as to not leave parts of the wound unclosed.

13.4.8 Adjustment

Finally, we provide a GUI for the surgeon to interact with. They are presented with the
suture points, superimposed over the wound. The surgeon is able to drag the points to the
desired place.

13.5 Experiments

13.5.1 Synthetic Splines

Our loss function contains weights on all 5 loss terms, which we manually tuned to the values:
cd = 1; cvarcenter = 12; cvarinsext = 6; cf = 15; cs = 5.

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 183

Spline 1 Spline 2 Spline 3 Spline 4 Spline 5

Optimized
Shear Force

Optimized
Suture

Placement

Baseline
Suture

Placement

Optimized
Closure Force

Figure 13.5: Results analyzing the suture placements for 5 synthetic splines. The top two rows
present the difference in the sutures placed using the baseline, as compared to the optimization
algorithm. The bottom rows present the shear forces and closure forces created by the optimization
suture placement.

Baseline Algorithm: We evaluate a baseline algorithm, which evenly places sutures
along the curve spaced at the ideal distance, on the splines. This can be implemented by
starting at one end of the wound, travelling the ideal distance along the wound, placing
sutures at increments of the ideal distance until the end of the wound.

We tested both SP2DEEF and the baseline on 5 splines generated manually. To evaluate
the robustness of the algorithms we created simple splines and splines with a higher degree
and curvature. The suture placement points generated by the algorithms are depicted in Fig.
13.5. Our results show that the suture placements generated by SP2DEEF are relatively
consistent, robust and well spaced, especially for the simpler splines. SP2DEEF also deals
well with sharp curves (depicted in Spline 3) as it places a higher number of sutures close to
the point of curvature.

SP2DEEF tended to choose a different number of sutures, when compared with the
baseline. An optimal placement over an optimal number of sutures results in a lower closure
force, while other terms tend to remain the same: the closure force that each suture exerts
on the wound decreases sharply as the curve turns away from being perpendicular to the
wound. To maintain sufficient closure force, it is necessary to increase the number of sutures.
The baseline algorithm was not able to provide consistent closure force, as it is able to vary

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 184

neither the number of sutures nor the placement to account for curvature.
While it reported high closure force losses, the baseline did well according to the variance

and ideal distance metric, since it was initialized to be evenly spaced. The variances for the
baseline aren’t always 0, because we used a greedy algorithm which approximately placed
sutures evenly. Furthermore, the insert and extract points may have additional variance on
curved segments of the wound even if the centers are approximately evenly spaced.

One major improvement SP2DEEF saw was that it always avoided sutures crossing over
and heavily penalized cases in which the sutures were placed too close to each other, in
contrast to the baseline algorithm, which did both of these.

Overall, SP2DEEF outperforms the baseline; we believe that closure force is the most
important metric as the main purpose of sutures is to provide closure forces to close a wound.
Our algorithm finds a placement almost as well spaced as the baseline, with similar shear
forces, while making sure that all the normalized closure forces are very close to the ideal.
Although it does not outperform the baseline in the variance (and the shear sometimes), it
makes up for this by returning a placement that optimizes the closure force.

13.5.2 Physical Experiments on Chicken Skin

We tested SP2DEEF in a physical experiment using chicken (thigh) skin. To find the most
realistic wounds possible, we had a surgeon cut two wounds into the tissue with a scalpel.
These two wounds, as can be seen in Fig. 13.1, were chosen by the surgeon for their relevance
to clinical wounds seen in practice, as well as their difficulty. As a baseline, we had a surgeon
suture the wound as they saw fit. We then fed an image of the wound without sutures into
our pipeline, clicked points to trace the wound shape, and recorded the optimized placement
of the sutures, the output of our optimizer. We manually marked this placement on the
phantom with ink, and had the surgeon implement the autonomous placement by suturing
on top of the ink markings with USP Size 2-0 thread and a suture needle type GS-22 as
depicted in Fig. 13.1.

Our placement was able to achieve wound closure on the phantom: we consulted an
expert surgeon who evaluated the sutures as equal or better than a human surgeon. In the
test case, having SP2DEEF’s placement marked on the skin helped the surgeon place sutures
with consistent spacing throughout the whole wound. In contrast, in the baseline case, with
no visual guides, the Surgeon stitches developed uneven spacing between suture locations as
the wound was deformed during the suturing process.

13.6 Discussion and Future Work

13.6.1 Limitations

This chapter has the following limitations:

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 185

Figure 13.6: The full autonomous pipeline for optimizing surgical suture placement..
Input: Surgeon selects two points on the image (finger length) and inputs the measured distance
between those points as well as the desired suture width. The surgeon is further asked to click
points along the wound. Output: The wound fitted as a Bézier curve (green) with the result of
the suture optimization (red and blue points). The suture plan is overlaid on the original wound
image.

CHAPTER 13. AUTOMATING 2D SUTURE PLACEMENT 186

• The wound is represented as a spline, and therefore the representation cannot have
sharp corners (or branches).

• No information about the wound depth or width is incorporated.

• SP2DEEF assumes a fixed suture width as opposed to being able to modify it for
particular sutures. Some better solutions may therefore be missed, particularly when
tight wound curves are involved.

• The explicit model of suture forces is only a rough approximation of how skin behaves
under tension.

• No objective, external measure of suture placement quality was used to evaluate the
algorithm.

• The sutures may be re-planned during the operation due to the wound changing shape
when partially sutured.

13.6.2 Future work

Prior work on the suture planning problem focused primarily on achieving evenly placed
sutures on known wound shapes under kinematic or workspace constraints. This suggests
the possibility of combining such constraints with the wound-focused constraints and objec-
tive developed in this work, for instance by modifying the objective function to include a
consistency measure and also account for the difficulty of executing the planned sutures.

187

Chapter 14

Autonomous Suture Tail-Shortening

In the previous chapter, we proposed a method for reliable suture planning. In this chapter,
we tackle the problem of autonomous robot suture tail-shortening. Similar to SGTM 2.0 for
long cable untangling in chapter 9, where perception is limited and the dynamics are hard
to model, we use interactive perception to increase the reliability of the system.

14.1 Introduction

Many steps in suturing, such as tail-shortening (where a thread is pulled through a suture
to a desired length) and knot tying, require accurate thread tracking, which is particularly
challenging due to the thin and flexible nature of suturing thread, as well as its propensity
for self-intersections and partial occlusions.

In this chapter, we propose a novel interactive perception system for tracking suture
thread in 3D, which we apply to track thread in the autonomous tail-shortening task de-
scribed in Figure 14.1, requiring precise tracking to avoid pulling the thread too far out of
the suture.

The learned 2D suturing thread detection model is trained using the Labels from Ul-
traViolet (LUV) method [345] for self-supervised data collection, which has previously been
shown to be effective for detecting cables and surgical needles. We extend it to surgical
threads and combine the detection network with a 3D tracking method for temporal stabil-
ity. Modeling the thread in 3D is a non-trivial task due to its complex shape and unclear
endpoints. To address this issue, we model the thread as a 3D Non-Uniform Rational B-
Spline (NURBS) [346] based on stereo images of the scene. We adapt the thread model
across frames by optimizing spline control points to minimize the error between the current
detections and the reprojection of the 3D spline into the images.

Using NURBS optimization alone can break down in complex thread configurations be-
cause of false-positive detections or self-intersections. To address this, we develop an analytic
2D tracing approach based on prior work for cable untangling [347], which is used as a prior

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 188

Tail-Shortening

head

3

Initial State Interactive
Perception

Final State

4

2

Tracked thread

1

Needle
extraction

point

3 cm

Thread under
phantom tissue

tail

Figure 14.1: Surgical Suture Tail-shortening with 3D Thread Tracking. We present a
thread tracking method which we use for automating surgical suture “tail-shortening”, i.e. pulling
thread through tissue until a desired length of thread remains exposed. Initially, the robot grasps
the needle close to the wound. It uses interactive perception to determine which portions of the
reconstructed thread are on the needle side (head) vs slack side (tail). The system accomplishes
tail-shortening by visually servoing the needle driver until a desired tail length remains.

to prevent the NURBS optimization from collapsing in the presence of distracting false de-
tections or challenging thread configurations.

Experiments conducted on a physical Intuitive Surgical da Vinci Research Kit (dVRK)
RSA demonstrate that the system utilizing our thread tracker achieves 18/20 successful trials
on the tail-shortening task (shown in Figure 14.1).

This chapter makes three contributions: (1) A 3D surgical thread tracking algorithm,
described in Figure 14.2, that combines a learned thread detection module trained on data
collected in a self-supervised fashion with a NURBS spline optimization; (2) An interactive
perception approach to suture thread tail-shortening which utilizes the thread tracker with
visibility-maximizing manipulation to estimate the length of remaining thread tail; and (3)
Data from experiments evaluating the perception components individually and applied to
suture tail-shortening, achieving a 90% success rate.

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 189

0.8

0.0

0.2

0.0

1.0

0.8
0.6

0.4

0.2 1.0

0.6

0.4

…
Detection

U-Net

Detection
U-Net

–– Previous 3D spline

–– Current detection

Same
procedure

as left.

Left Right

Initial 3D Trace via Triangulation of 2D Traced Points

Input Stereo Pair

Thread 2D
Tracer

Thread 2D
Tracer cmask

ctrace

cavg

Left Right

Track Spline With New Detections

Updated 3D Spline

Step t

Step 0

Figure 14.2: Overview of the first 4 modules: 2D Surgical Thread Detection, 2D Trac-
ing, 3D Tracing, and 3D Tracking. Left: For every stereo pair of images, we predict thread
segmentation masks, then run a 2D tracer to compute the sequence of pixels along the thread.
Top right: To initialize the 3D spline of the thread, we match points meeting both stereo image
and tracer topology constraints and triangulate their positions in 3D. We initialize the 3D trace by
fitting a 3D spline to these points. Bottom right: To update the 3D spline with new frames, we
compute correction vectors in 2D as an average of vectors which push the projected 3D spline onto
the new detection and push each projected 3D point to its corresponding point on the 2D trace.
We then triangulate the correction vectors across both images and apply them to the 3D spline to
perform an update.

14.2 Related Work

Detecting surgical thread from an RGB image has been previously explored in a number
of different settings. Early approaches relying on analytic curvilinear detectors [346, 348]
work well when the thread is isolated and clearly visible, but fail in realistic scenes with
shadows and occlusions. Similarly, Joglekar et al. [349] assume that thread detections can
be obtained from color segmentation; however, this may fail due to light glare, sensor noise,
materials covering the thread (e.g., blood), and varying lighting conditions. Learning-based
approaches generalize better to different backgrounds and lighting conditions, but require
manual collection of large datasets. Lu et al. [350] train a U-Net [268] using semi-supervised
learning leveraging hand-labeled images for supervision which are time consuming to obtain.
We use a self-supervised data collection method that extracts labels autonomously using UV
light [345], allowing the system to collect 10 labeled images per minute.

Lu et al. [350] propose using a 3D graph to represent the triangulated 3D candidate
thread points. The method then computes a minimum energy path through the graph and
uses it as the 3D model of the thread. Joglekar et al. [349] propose using a minimum
variation spline to represent the suture. This results in a smooth reconstruction with less
tight curvature and yields a confidence value along the spline model which is useful to chose
a grasp point along the thread. Both methods mentioned above fully reconstruct the model
on each frame, ignoring prior frames, making them more susceptible to one-off missing or

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 190

false detections. Padoy et al. [348] assume the 3D spline has been initialized in advance, and
focus on tracking the spline across frames. However, this work assumes that the length of the
thread is constant, which limits its applicability to certain applications like tail shortening
or knot tying. Jackson et al. [346] propose an approach to jointly trace and reconstruct a 3D
spline from stereo images as well as a tracking method using pixel-space error minimization.
However, their approach assumes a known initial tracing point, manually defined using a
space mouse. In contrast, we leverage tracing of 2D splines to address missing or occluded
parts of the thread and use an approach which does not rely on a user-defined seed point.
Furthermore, our method tracks the spline across frames, increasing its robustness to noisy
detections.

Goldberg et al. [243] investigate how a robot can use active perception to recognize the
shape of an object by moving a touch sensor to trace its contours. Bajcsy [118] defines
active perception as the search for models and control strategies for perception which can
vary depending on the sensor and the task goal, such as adjusting camera parameters [119]
or moving a tactile sensor in response to haptic input [243].

Similarly, interactive perception, as explored by Bohg et al. [220], utilizes robot interac-
tions to enhance perception. Interactive perception has been used in robotic manipulation to
extract kinematic and dynamic models from physical interactions with the environment [351]
and to improve the understanding of a scene in the presence of occlusions and perception
uncertainty [220, 244, 246]. Murali et al. [352] leverage feedback from visual and tactile
sensors to estimate the pose of partially occluded objects in cluttered environments. Daniel-
czuk et al. [246] propose the mechanical search problem, where a robot retrieves an occluded
target object from a cluttered bin through a series of targeted parallel jaw grasps, suction
grasps, and pushes. Novkovic et al. [244] use a robot to move a camera and interact with
the environment in order to find a hidden target cube in a pile of cubes, while Shivakumar
et al. [347] use interactive perception to reduce perception uncertainty when untangling long
cables.

In this chapter we propose an interactive perception-based approach to surgical suture
tail-shortening. The robot tensions the thread to create a sharp angle between the taut
thread on the extraction side of the suture and the slack thread on the insertion side. This
forces the thread into a linear configuration to facilitate perception. The robot then pulls
the thread through the suture until the desired length of slack thread is detected at the tail.

14.3 Problem Statement

Using stereo RGB images, we want to accurately track the state of a surgical thread and use
these state estimates to automate the task of surgical tail-shortening.

We define the workspace using a cartesian (x, y, z) coordinate system. The workspace
consists of a bimanual dVRK robot [353]; a Simulab TSP-10 human organ phantom; and a
fixed ZEDm RGB stereo camera, which outputs images at 1280x720 pixel resolution. The
camera is angled at the robot and phantom such that the whole reachable workspace of the

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 191

robot is captured in the field of view. We work with undyed (beige) PolysorbTM surgical
suture thread from Covidien. The sutures are of variable length between 10 and 40 cm, with
2-0 USP Size (0.35-0.399 mm in diameter) and are attached to a GS-21 needle or similar.
The length, diameter and needle size of the suture are unknown to the algorithm.

We make the following assumptions:

1. The robot-to-camera transform is known.

2. During test time, the thread and phantom configurations lie within the training data
distribution. However, their pose does not necessarily correspond exactly to any pose
seen in training.

14.4 Method

We decompose the problem of thread modeling and autonomous robot suture tail-shortening
into five modules:

1. Learned 2D Surgical Thread Detection: uses a convolutional neural network to segment
the surgical thread in a physical mockup of a surgical environment. This module takes
as input an RGB image of dimension 1280 x 720 and returns a pixel-wise probability
mask of the thread’s location.

2. 2D Surgical Thread Tracing : given the detection probability masks with potential gaps
in the detections and false positives, identifies the sequence of image points along the
thread.

3. 3D Surgical Thread Tracing : computes a 3D representation of the suture thread based
on the traced thread. This algorithm takes the traces from 2 rectified stereo images as
input and returns a 3D NURBS spline.

4. 3D Surgical Thread Tracking : adapts the 3D spline model to the current view of the
scene. This module takes the traces from the current pair of rectified stereo images as
well as the previous 3D spline as input and outputs an updated 3D spline.

5. Surgical Suture Tail-Shortening : This module performs the surgical tail-shortening
task using an interactive perception approach which leverages the 3D spline model
computed by the previous modules.

An overview of how these modules are combined is shown in Figure 14.2.

14.4.1 Module 1: Learned 2D Surgical Thread Detection

We train a neural network to segment surgical thread from scenes using the self-supervised
training approach proposed in Thananjeyan et al. [345]. To collect labels automatically, we

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 192

White light UV light Label

Figure 14.3: 2D Surgical Thread Detection Data Collection. The left image shows the dVRK
gripper holding a suture thread under white light. The middle image depicts the same scene under
UV light. The thread painted with UV fluorescent color lights up and can be segmented via color
thresholding. The right image displays the extracted label used for training.

paint the surgical thread with a UV-florescent paint. This paint is invisible under visible
light but shines when illuminated with UV light. For each scene, the robot arms are moved
to a new random position in the workspace, changing the thread configuration and RGB
stereo images are recorded under both visible and UV light.

The label masks are extracted from the UV images using color segmentation. Train, vali-
dation, and test sets are split from disjoint subsets of scenes to ensure no cross-contamination
of the sets from the same state. Using this self-supervised data collection technique, we are
able to acquire 10 labeled images per minute (visible light stereo images with corresponding
labels extracted under UV light). The image size of 1280 x 720 pixels is chosen to maximize
the tradeoff between resolution (which aids in segmenting the thin thread) and inference
speed (2.5 FPS on our test computer using an NVIDIA 2080 GPU).

We train a U-Net [268] to detect surgical thread from a single RGB image. We train
our model on 1320 images of size 1280 x 720 for 400 epochs. We specifically choose not
to upweight false negatives, as would be expected from the ratio of background pixels to
thread pixels, as this yields predictions that are biased towards precision over recall. This
is desirable because the 2D tracer is able to bridge missing thread detections but can get
confused by false positives.

14.4.2 Module 2: 2D Surgical Thread Tracing

We adapt the analytic cable tracing method from Shivakumar et al. [347] to trace the path
segments from the 2D thread detection masks. However, instead of generating all possi-
ble global paths, this work leverages heuristic scoring rules similar to those proposed by
Viswanath et al. [354] and Keipour et al. [355] to generate a single global trace. In contrast
to the learning-based method proposed in [354], which detects and traces cables simultane-
ously, we propose an analytical method. The method proposed in [355] is similar in the sense
that it uses scoring functions that prioritize traces which cover more of the cable and have
lesser changes in angle. However, they model the thread as a chain of cylinders whereas we

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 193

fit a 2D spline onto the traced detections to bridge gaps. The analytic thread tracer locally
traces contiguous segments and greedily stitches them together, as described in Algorithm
5.

Algorithm 5 2D Surgical Thread Tracing Algorithm

Require: D ← pixelwise thread detection
mask← D > threshd

mask← mask− (conn components with area < thresha)
path segs← []
while sum(mask) > threshs do

start point← argmax(D)
paths← sgtm2tracer(mask, start point).
best path← argmaxp∈paths score(path)
On mask, set points along best path to 0.
Append best path to path segs.

while length of path segs > 1 do
find i, j within path segs with lowest matching cost
new seg← merge of path segs[i] and path segs[j]
add new seg to path segs

return path segs[0]

14.4.3 Module 3: 3D Surgical Thread Tracing

As in prior work [346], we model the suturing thread as a 3D NURBS parametric curve.
Instead of jointly tracing and reconstructing the thread, we use a dedicated 2D tracer to
compute the sequence of thread pixels in both images before reconstructing the 3D thread
model. The spline parameter t ∈ [0, 1] describes the normalized distance along the spline.

To start the 3D tracing method, a 2D NURBS spline defined by 32 control points is
fitted to the traces in both images using a least squares approximation. The number of
control points is chosen to allow a sufficient amount of flexibility to the spline so that it can
approximate tight curves common in suturing thread.

Next, we triangulate these 2D splines into 3D to estimate the thread state. We therefore
propose the following stereo-matching approach: The left trace spline point pLi is located at
spline parameter tLi along the spline and has pixel coordinates [uLi , v

L
i] for width and height

respectively, starting from the top left corner. For each point along the left spline pLi , a
corresponding point on the right spline pRj(i) is found which minimizes the difference between

spline parameters tLi and tRj(i) and satisfies rectified stereo image properties. Specifically, the
right image point should have the same vertical coordinate than the left image point except
for a tolerance of up to α = 5 pixels (condition a). pRj(i) must be further left within the image

than pLi (condition b). The right spline candidates must be further along the spline than the

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 194

last matched right spline point (condition c). tLi and tRj(i) must be within a distance β = 0.05

(condition d). For a given value of i, we seek to solve

j(i) = argmin
j
|tRj − tLi |

such that a) |vLi − vRj | ⩽ α, b) uRj ⩽ uLi , c) tRj > tRj(i−1)∀i, d) |tRj − tLi | ⩽ β.
The matched points are then triangulated using the camera intrinsics to obtain their 3D

position. A 3D NURBS spline model is then fitted to the triangulated points using least-
squares optimization. The values for α, β and a rejection threshold for bad reconstructions
were set empirically as a trade-off between reconstruction quality and number of discarded
frames.

14.4.4 Module 4: 3D Surgical Thread Tracking

Inspired by Jackson et al. [346], we compute 200 correction vectors to update the coordinates
of the 3D spline control points between frames. The number of correction vectors was
set as a trade-off between tracking accuracy and computation speed. The thread tracking
computation time is under 2.5 FPS which is the frame rate of the 2D learned surgical thread
detection module as described in Section 14.4.1. Instead of an energy minimization approach
to compute correction vectors, we compute correction vectors using the 2D splines fitted on
the current stereo traces. The 2D correction vectors are obtained as a sum of two vectors,
cmask and ctrace. cmask is a vector in image space pointing towards the closest point on the
prediction mask. ctrace matches the point of the 2D spline fitted on the 2D trace at parameter
t with the point at parameter t of the projected 3D spline. The 2D correction vectors from
both stereo images are triangulated to find 3D correction vectors. Both 3D correction vector
terms are averaged to obtain the final set of correction vectors.

Using only the distance correction cmask, the 3D spline tends to collapse as the segmen-
tation mask of the thread does not constrain the 3D spline along the length of the thread.
This is mitigated by the second correction vector, ctrace, which assigns a fully constrained
pixel location to each point along the projected 3D spline.

Given the correction vectors, an updated set of control points is computed using the least
square control point update described by Jackson et al. [346].

14.4.5 Module 5: Surgical Suture Tail-Shortening

Initially, the thread passes through the phantom at one suture, with the needle held by one
dVRK gripper. Excess thread of between 12-16 cm exists on the needle insertion side of the
suture and needs to be pulled through while an unknown amount of thread has already been
pulled through the suture. First, the robot uses interactive perception to estimate the needle
extraction point by pulling the needle side of the thread taut. This is achieved by moving
the needle upwards in positive z direction. The algorithm detects the needle end of the
spline to be the one that has the highest z-coordinate. The system detects the taut segment
of string by computing the tangent along the 3D spline and identifying a constant tangent

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 195

RGB Image 2D Detection 3D Trace
Ti

er
 2

Ti
er

 4

Figure 14.4: Example 2D Thread Detections and 3D Traces. 2 example executions of the
3D thread tracing method. Left shows the left camera’s input RGB image, Middle shows the 2D
thread detection prediction from the neural network, and Right shows the resulting reconstructed
3D spline reprojected into the camera image. The color indicates the path from red to orange.

direction segment. The angle between the taut segment tangent and the following thread
tangent is computed. Pulling the thread upwards leads to a sharp angle in the thread which
is identified as the needle extraction point. The 3D thread spline is split into a slack-side and
a needle-side at the extraction point and the length of the slack-side thread is computed.

The robot conducts the actual tail-shortening by performing a horizontal motion away
from the computed wound location (i.e. the extraction point). We continuously run the 3D
thread tracking module during this motion, terminating when the thread tail is less than
3cm.

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 196

Table 14.1: 2D Surgical Thread Detection Results

Tier 1 Tier 2 Tier 3 Tier 4 Overall

Recall (%)

Color thresholding 32 32 14 40 30

Learned segment. (ours) 85 79 80 86 83

Precision (%)

Color thresholding 24 27 5 10 17

Learned segment. (ours) 93 93 87 90 91

IoU (%)

Color thresholding 16 17 4 9 12

Learned segment. (ours) 80 75 72 79 77

Table 14.2: 3D Surgical Thread Tracing Results

Tier 1 Tier 2 Tier 3 Tier 4 Overall

Mean Reproj. Err. (pix) 0.58 1.14 2.50 1.10 1.33

Max Reproj. Err. (pix) 13.34 20.61 62.16 43.17 62.16

14.5 Experiments

14.5.1 Modules 1-3: 2D Thread Detection and 2D & 3D Tracing

Setup

We test the first 3 modules by using the workspace described in Sec 14.3 The experiments
begin with the needle in the right end-effector and the tip of the thread going through the
phantom. We collect test examples from 4 difficulty tiers:
Tier 1: No self-intersection in thread, reversed phantom. Tier 2: ⩾ 1 self-intersection
in thread, reversed phantom. Tier 3: No self-intersection in thread, phantom facing up.
Tier 4: ⩾ 1 self-intersection in thread, phantom facing up. We collect and label stereo
images for 5 scenes per tier for a total of 10 images per tier.

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 197

Metrics

In this experiment, we evaluate the IoU, precision, and recall metrics of the segmentation
mask with respect to human-labeled ground truth segmentation masks. To evaluate the
3D model of the thread, we report the reprojection error between the human-labeled ground
truth thread segmentations and the projection of the 3D model of the thread into both stereo
images.

Results and Failure Modes

Results for 2D thread detection and 3D thread tracing are presented in Table 14.1 and Ta-
ble 14.2 respectively. Example detection masks and reconstructions are shown in Figure 14.4.
Comparison with the color thresholding baseline clearly shows that the learned method is
able to detect thread in low contrast scenes and in the presence of light reflections on the
phantom. Note that while detections can miss segments of highly difficult thread (recall of
83%), the precision of predictions is 90%. Our detection model shows slightly better recall
and IoU performance in the more difficult Tier 4 with respect to Tier 2. This difference is due
to a scene in Tier 2 in which the thread has a particularly low contrast with the background
and is thus not detected. The discrepancy lies in the error bars of this experiment. Lu et al.
[350] report an average IoU of 85% with a recall of 93%. While these are impressive results,
all their scenes have suturing threads lying on the ground plane without any tools that can
cast shadows or reflective configurations that make segmentation more challenging.

The 3D surgical thread traces have an overall mean error of 1.33 pixels, showing that
the reconstruction approximates the spline well in general. The 3D tracing fails on parts of
the thread in 3 scenes, resulting in the high maximum reprojection error. These errors are
mainly due to reflective bright edges on the phantom which lead to erroneous detections and
3D traces. Joglekar et al. [349], report reprojection errors between mean 0.4 and 1.1 pixels
on 10 real scenes with printed surgical backgrounds. These results seem comparable to ours
even though performance remains highly dependant on the particular scenes, making results
hard to compare objectively.

14.5.2 Module 4: 3D Surgical Thread Tracking

Setup

Using the workspace setup described in Section 14.3, we thread the needle through the
phantom and place it in the right gripper of the dVRK. We evaluate the thread tracking
system on two trajectories: the “no loop” trajectory, a line in the image plane, and the “one
loop”, an elliptical track above the phantom. The first trajectory avoids any occlusion or self-
intersection of the thread, while the second incurs a challenging, self-crossing configuration.

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 198

Table 14.3: 3D Surgical Thread Tracking Results

Mean Reproj. Err. Max Reproj. Err.

No loop

No tracking 0.30 pix 9.22 pix

With tracking 0.39 pix 5.39 pix

One loop

No tracking 5.37 pix 94.92 pix

With tracking 1.28 pix 16.26 pix

No tracking refers to computing a new 3D trace for every frame.
With tracking refers to using Module 4 and leads to a significantly better mean reprojection
error in the more difficult “One loop” case.

Metrics

We report the same metrics as in the single-frame 3D tracing (Section 14.5.1) experiments.
We manually label ground-truth segmentation masks in stereo images taken every 1 cm along
the trajectory and evaluate the 3D thread model against them. This leads to 10 evaluation
frames for the “No loop” trajectory and 9 for the “One loop.”

Results and Failure Modes

The results in Table 14.3 suggest that the method is able to track the thread reliably in both
configurations. The “One loop” trajectory sees higher reprojection errors, as it presents a
more challenging thread configuration for the tracer. The full tracking pipeline achieves a
mean reprojection error of 0.39 pixels on the intersection-free trajectory and a 1.28 pixels on
the loop-forming trajectory. Padoy et al. [348], report a mean reprojection error of 1.21 pixels.
However, they use only short threads in configurations which present no self-intersections.

14.5.3 Module 5: Surgical Suture Tail-Shortening

Setup

We additionally test automated suture tail shortening using the workspace setup described
in Section 14.3, with the needle threaded fully through the reversed phantom and held by
the right end-effector. The tail of the thread is then placed arbitrarily in the workspace such
that the entire suture thread is within the view of both the right and left stereo cameras.

CHAPTER 14. AUTONOMOUS SUTURE TAIL-SHORTENING 199

Metrics

We define a successful tail-shortening maneuver as a termination in which the final tail length
lies within 1 cm of the desired value of 3 cm. We report the success rate of our pipeline on
the tail-shortening task, as well as the mean absolute error between the achieved and desired
length and the average time to completion for this task.

Results and Failure Modes

The proposed method achieves 18 successes out of 20 trials with a mean absolute tail error
of 0.53cm. The mean time to completion is 106.8 seconds. The method achieves a success
rate of 90%, indicating that our pipeline provides high-confidence 3D traces using interactive
perception. The main failure case occurs during the 3D tracing of the spline due to false
detections on the human organ phantom.

14.6 Discussion and Future Work

The primary limitation is the uncertainty about the ability of the learned 2D surgical thread
detection to generalize to new thread or phantoms, which will be addressed in future work.
Also, the learned thread segmentation method remains vulnerable to false positive detections
of light reflections from the edges of the human organ phantom. This could be mitigated in
future work by adapting the lighting setup of the workspace.

200

Part VI

Conclusion

201

Chapter 15

Concluding Remarks

Efficiency and reliability are key objectives in practical applications of robot manipulation.
Yet, increasing one can result in decreasing the other, as seen in Chapter 2 where increasing
the efficiency and speed of an optimizing motion planner compromised system reliability and
in Chapter 8 where increasing perception reliability for grasping slowed down the system,
reducing efficiency. It is a common practice to develop a proof of concept showcasing that
robots are able to perform a task, leaving it to users to optimize for efficiency and reliabil-
ity. However, this is rarely straightforward, and as a result, many developments never get
adopted. To facilitate the adoption of robot manipulation research in real-world applica-
tions, this thesis explores various tasks from different industries, with the goal of developing
methods that are both efficient and reliable.

Across domains, applications and even robots, we observe that constrained optimization
is effective for enhancing the efficiency and reliability of the system when we have a reliable
model, as described in parts I, II, IV and V. However, in scenarios with high uncertainty in the
dynamics of the system, or when we do not have a reliable model, methods involving active
and interactive perception, along with self-supervised learning, prove to be more effective,
as described in parts II, III, and V.

The primary contributions of this thesis are:

• We frame the objectives of increasing the efficiency and reliability of manipulation
systems as constrained optimization problems, as shown in Chapters 2 to 5, 7, 12 and
13.

• We propose a procedure for warm starting an optimizing motion planner with an
approximation from a deep neural network to reduce the planning time and improve
the efficiency as described in Chapter 2.

• We formalize, tune, and learn acceleration constraints and 3D reconstruction objectives
to improve the success rate and the reliability of motion planning and grasping as
described in Chapters 3, 4, and 8.

CHAPTER 15. CONCLUDING REMARKS 202

• We develop active and interactive perception primitives to increase the system’s re-
liability when it is difficult to estimate its state, as presented in Chapters 6, 9 and
14.

• We use self-supervised learning to develop an efficient and reliable system when it is
difficult to model its dynamics, as described in Chapters 4, 10, and 14.

• We introduce an efficient polyculture farming simulator that integrates parameterized
models of plant growth, as well as plant interactions, and train a policy to optimize
plant coverage and diversity over a short horizon, as presented in Chapters 11 and 12.

Looking forward, the aim is to bridge the gap further between robotic manipulation
research and its practical, commercial applications. The concluding section of this thesis
will discuss lessons learned and propose future research directions.

15.1 Lessons Learned

Throughout my PhD, I’ve had the privilege of working on many research projects with a
broad range of topics and collaborating with a large number of collaborators. In the following
subsection, I’ll discuss some of the important principles that have shaped my approach,
hoping they will be of value to future readers.

15.1.1 Physical Experiments

Having a simulation of the robot and its environment is invaluable for quickly testing various
hypotheses. However, in robotics, it is essential to also test the methods on a physical
robot. This real-world testing reveals unique behaviors that highlight the limitations of
the methods being developed. For instance, it was only through physical testing that we
discovered the end-effector acceleration constraint, discussed in Chapter 3, was ineffective
for suction grasping. This finding motivated the further research detailed in Chapter 4.

From conducting thousands of physical experiments, I’ve learned a key lesson: begin
testing as early as possible. Physical experiments not only provide the most significant
insights but also expose the majority of challenges, which can stem from unsuitable hardware,
discrepancies between simulations and the physical environment, or incorrect assumptions.
Starting early is important for the success of any robotics project.

15.1.2 Rejected Papers

Receiving a rejection from a journal or conference can be quite demotivating, especially after
the extensive effort of working on a paper, incorporating feedback from collaborators, and
making last-minute updates—only to receive a rejection notice months later. This experience
can certainly be disappointing.

CHAPTER 15. CONCLUDING REMARKS 203

However, such rejections are part of the research process and can be beneficial. Detailed
and high-quality feedback from reviewers can be invaluable, allowing us to improve our
work significantly. This process of refinement and repeated exploration is the essence of
research—continually searching and reevaluating until a breakthrough is achieved.

For instance, one of my papers was initially rejected from a conference, but the compre-
hensive feedback we received was instrumental in improving it. We applied the suggestions,
and several months later, when the revised paper was accepted by a top-tier journal, we were
not disappointed anymore.

15.2 Opportunities for Future Work

There are a number of exciting areas to explore in future work related to several chapters of
this dissertation.

15.2.1 Reactive Motion Planning Around Moving Obstacles

GOMP-based methods, which we discuss in Chapters 2 to 5, are designed to plan open-loop,
collision-free trajectories in environments where obstacles are fixed. These methods can
plan trajectories in milliseconds, and we could potentially extend them to manage dynamic
scenarios involving moving obstacles. One possible approach is to extend methods like DJ-
GOMP, which we introduced in Chapter 2, using deep learning to accelerate re-planning
trajectories as obstacles move.

However, several challenges arise when adapting these methods for moving obstacles.
These include predicting future positions of the obstacles rather than merely reacting to
their current locations, ensuring the system can safely stop if it cannot find a collision-free
path, and effectively executing these trajectories on physical robots. Each of these aspects
presents significant hurdles that need to be addressed.

15.2.2 Grasping Transparent Objects in Real-Time

The methods described in Chapter 8 have significantly reduced the cycle time for grasping
transparent objects using NeRF, bringing it down from hours to several seconds. However,
to make these methods suitable for industrial applications, we need to further accelerate the
process by an order of magnitude. One strategy could involve incorporating grasp prediction
directly into the NeRF model as an additional learned feature. Alternatively, exploring
different models, such as Gaussian Splatting [356], might also achieve the desired speed-up.

15.2.3 Suture Planning in Real-Time

One challenge with open-loop planning is that it can be inaccurate due to dynamic changes
in the environment. A potential solution is real-time replanning to adjust as changes occur,

CHAPTER 15. CONCLUDING REMARKS 204

such as a wound changing shape due to the forces applied during suturing. However, existing
methods for this are often slow to converge. Similar to the optimization approach discussed
in Chapters 2–5, which deals with a nonconvex optimization objective, we address this issue
using Sequential Quadratic Programming (SQP). In this approach, the SQP is initiated with
points that are evenly spaced along the wound.

A promising strategy for improving real-time performance could be training a neural
network to provide a ”warm start” for the optimization process. This technique is similar
to the one used in DJ-GOMP, described in Chapter 2, where the neural network accelerates
the optimization by predicting a near-optimal solution, thereby enhancing efficiency and
computation time.

205

Bibliography

[1] Matthew T Mason. “Toward robotic manipulation”. In: Annual Review of Control,
Robotics, and Autonomous Systems 1 (2018), pp. 1–28.

[2] L E Kavraki, P Svestka, J.-C. Latombe, and M Overmars. “Probabilistic roadmaps
for path planning in high dimensional configuration spaces”. In: IEEE Trans. Robotics
and Automation 12.4 (1996), pp. 566–580.

[3] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal motion
planning”. In: Int. J. Robotics Research 30.7 (June 2011), pp. 846–894.

[4] Steven M LaValle and James J Kuffner. “Rapidly-exploring random trees: Progress
and prospects: Steven m. lavalle, iowa state university, a james j. kuffner, jr., university
of tokyo, tokyo, japan”. In: Algorithmic and computational robotics (2001), pp. 303–
307.

[5] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and
Pieter Abbeel. “Finding Locally Optimal, Collision-Free Trajectories with Sequential
Convex Optimization.” In: Robotics: Science and Systems. 2013, pp. 1–10.

[6] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan
Schaal. “STOMP: Stochastic trajectory optimization for motion planning”. In: 2011
IEEE international conference on robotics and automation. IEEE. 2011, pp. 4569–
4574.

[7] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. “CHOMP:
Gradient optimization techniques for efficient motion planning”. In: 2009 IEEE In-
ternational Conference on Robotics and Automation. IEEE. 2009, pp. 489–494.

[8] Marc Toussaint. “Newton methods for k-order Markov constrained motion problems”.
In: arXiv preprint arXiv:1407.0414 (2014).

[9] Jeffrey Ichnowski, Michael Danielczuk, Jingyi Xu, Vishal Satish, and Ken Goldberg.
“GOMP: Grasp-Optimized Motion Planning for Bin Picking”. In: 2020 International
Conference on Robotics and Automation (ICRA). IEEE. May 2020.

[10] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu
Liu, Juan Aparicio, and Ken Goldberg. “Dex-Net 2.0: Deep Learning to Plan Ro-
bust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics”. In: Robotics:
Science and Systems (RSS). 2017.

BIBLIOGRAPHY 206

[11] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. “NeRF: Representing scenes as neural radiance fields
for view synthesis”. In: European Conference on Computer Vision. Springer. 2020,
pp. 405–421.

[12] Vincent Lim, Huang Huang, Lawrence Yunliang Chen, Jonathan Wang, Jeffrey Ich-
nowski, Daniel Seita, Michael Laskey, and Ken Goldberg. “Planar robot casting with
real2sim2real self-supervised learning”. In: arXiv preprint arXiv:2111.04814 (2021).

[13] Hirofumi Nakagaki, Kkosei Kitagi, Tsukasa Ogasawara, and Hideo Tsukune. “Study of
insertion task of a flexible wire into a hole by using visual tracking observed by stereo
vision”. In: Proceedings of IEEE international conference on robotics and automation.
Vol. 4. IEEE. 1996, pp. 3209–3214.

[14] Yu She, Shaoxiong Wang, Siyuan Dong, Neha Sunil, Alberto Rodriguez, and Edward
Adelson. “Cable manipulation with a tactile-reactive gripper”. In: The International
Journal of Robotics Research 40.12-14 (2021), pp. 1385–1401.

[15] Huy Ha and Shuran Song. “Flingbot: The unreasonable effectiveness of dynamic
manipulation for cloth unfolding”. In: Conference on Robot Learning. PMLR. 2022,
pp. 24–33.

[16] Ryan Hoque, Daniel Seita, Ashwin Balakrishna, Aditya Ganapathi, Ajay Kumar Tan-
wani, Nawid Jamali, Katsu Yamane, Soshi Iba, and Ken Goldberg. “Visuospatial
foresight for multi-step, multi-task fabric manipulation”. In: Robotics: Science and
Systems (RSS) (2020).

[17] Xingyu Lin, Yufei Wang, Zixuan Huang, and David Held. “Learning visible connectiv-
ity dynamics for cloth smoothing”. In: Conference on Robot Learning. PMLR. 2022,
pp. 256–266.

[18] Lawrence Yunliang Chen, Huang Huang, Ellen Novoseller, Daniel Seita, Jeffrey Ich-
nowski, Michael Laskey, Richard Cheng, Thomas Kollar, and Ken Goldberg. “Effi-
ciently learning single-arm fling motions to smooth garments”. In: The International
Symposium of Robotics Research. Springer. 2022, pp. 36–51.

[19] Thomas Weng, Sujay Man Bajracharya, Yufei Wang, Khush Agrawal, and David
Held. “FabricFlowNet: Bimanual Cloth Manipulation with a Flow-based Policy”. In:
Conference on Robot Learning. PMLR. 2022, pp. 192–202.

[20] Puttichai Lertkultanon and Quang-Cuong Pham. “A certified-complete bimanual ma-
nipulation planner”. In: IEEE Transactions on Automation Science and Engineering
15.3 (2018), pp. 1355–1368.

[21] Shogo Hayakawa, Weiwei Wan, Keisuke Koyama, and Kensuke Harada. “A Dual-Arm
Robot That Autonomously Lifts Up and Tumbles Heavy Plates Using Crane Pulley
Blocks”. In: IEEE Transactions on Automation Science and Engineering (2021).

BIBLIOGRAPHY 207

[22] Yang Hu, Lin Zhang, Wei Li, and Guang-Zhong Yang. “Robotic sewing and knot
tying for personalized stent graft manufacturing”. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 754–760.

[23] Hamed Saeidi, Hanh ND Le, Justin D Opfermann, Simon Léonard, A Kim, Michael
H Hsieh, Jin U Kang, and Axel Krieger. “Autonomous laparoscopic robotic sutur-
ing with a novel actuated suturing tool and 3D endoscope”. In: 2019 International
Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 1541–1547.

[24] Jeffrey Mahler, Matthew Matl, Vishal Satish, Michael Danielczuk, Bill DeRose, Ste-
phen McKinley, and Ken Goldberg. “Learning ambidextrous robot grasping policies”.
In: Science Robotics 4.26 (2019), eaau4984.

[25] Alan Kuntz, Chris Bowen, and Ron Alterovitz. “Fast anytime motion planning in
point clouds by interleaving sampling and interior point optimization”. In: Robotics
Research (2020), pp. 929–945.

[26] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural
network”. In: arXiv preprint arXiv:1503.02531 (2015).

[27] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. “Model compres-
sion”. In: Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM. 2006, pp. 535–541.

[28] Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia
Hadsell. “Policy distillation”. In: arXiv preprint arXiv:1511.06295 (2015).

[29] René Traoré Kalifou, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Natalia Diaz-
Rodriguez, and David Filliat. “Continual reinforcement learning deployed in real-life
using policy distillation and sim2real transfer”. In: ICML Workshop on Multi-Task
and Lifelong Learning. 2019.

[30] René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Guanghang Cai, Natalia
Dı́az-Rodŕıguez, and David Filliat. “DISCORL: Continual reinforcement learning via
policy distillation”. In: arXiv preprint arXiv:1907.05855 (2019).

[31] Igor Mordatch and Emo Todorov. “Combining the benefits of function approximation
and trajectory optimization.” In: Robotics: Science and Systems. Vol. 4. 2014.

[32] Matthew E Taylor and Peter Stone. “Transfer learning for reinforcement learning do-
mains: A survey”. In: Journal of Machine Learning Research 10.Jul (2009), pp. 1633–
1685.

[33] Teguh Santoso Lembono, Carlos Mastalli, Pierre Fernbach, Nicolas Mansard, and
Sylvain Calinon. “Learning How to Walk: Warm-starting Optimal Control Solver
with Memory of Motion”. In: arXiv preprint arXiv:2001.11751 (2020).

BIBLIOGRAPHY 208

[34] Nicolas Mansard, Andrea DelPrete, Mathieu Geisert, Steve Tonneau, and Olivier
Stasse. “Using a memory of motion to efficiently warm-start a nonlinear predictive
controller”. In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2018, pp. 2986–2993.

[35] Gu Ye and Ron Alterovitz. “Guided motion planning”. In: Robotics research. Springer,
2017, pp. 291–307.

[36] Pieter Abbeel, Dmitri Dolgov, Andrew Y Ng, and Sebastian Thrun. “Apprenticeship
learning for motion planning with application to parking lot navigation”. In: 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2008,
pp. 1083–1090.

[37] M Rana, Mustafa Mukadam, Seyed Reza Ahmadzadeh, Sonia Chernova, and Byron
Boots. “Towards robust skill generalization: Unifying learning from demonstration
and motion planning”. In: Intelligent robots and systems. 2018.

[38] Brian Ichter, James Harrison, and Marco Pavone. “Learning sampling distributions
for robot motion planning”. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2018, pp. 7087–7094.

[39] Matt Zucker, James Kuffner, and J Andrew Bagnell. “Adaptive workspace biasing
for sampling based planners”. In: (2008).

[40] Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and Michael C Yip. “Motion
planning networks”. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE. 2019, pp. 2118–2124.

[41] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation learn-
ing and structured prediction to no-regret online learning”. In: Proceedings of the four-
teenth international conference on artificial intelligence and statistics. 2011, pp. 627–
635.

[42] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: a simple way to prevent neural networks from overfitting”.
In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[43] Steven J Rennie, Vaibhava Goel, and Samuel Thomas. “Annealed dropout training of
deep networks”. In: 2014 IEEE Spoken Language Technology Workshop (SLT). IEEE.
2014, pp. 159–164.

[44] Universal Robotics. UR5 Collaborative Robot Arm. https://web.archive.org/web/
20190815054522/https://www.universal-robots.com/products/ur5-robot/.
[Accessed 2019-08-15].

[45] Robotiq. 2F-85 and 2F-140 Grippers. https://robotiq.com/products/2f85-140-
adaptive-robot-gripper. [Accessed 2019-05-19].

https://web.archive.org/web/20190815054522/https://www.universal-robots.com/products/ur5-robot/
https://web.archive.org/web/20190815054522/https://www.universal-robots.com/products/ur5-robot/
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper

BIBLIOGRAPHY 209

[46] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. “OSQP: an operator
splitting solver for quadratic programs”. In: Mathematical Programming Computation
(2020).

[47] Matthew D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”. In: CoRR
abs/1212.5701 (2012). arXiv: 1212.5701.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification”. In: Proceedings
of the IEEE international conference on computer vision. 2015, pp. 1026–1034.

[49] Tobias Kunz and Mike Stilman. “Time-optimal trajectory generation for path follow-
ing with bounded acceleration and velocity”. In: Robotics: Science and Systems VIII
(2012).

[50] Jeffrey Ichnowski, Yahav Avigal, Vishal Satish, and Ken Goldberg. “Deep learning
can accelerate grasp-optimized motion planning”. In: Science Robotics 5.48 (2020).

[51] Zhenwang Yao and Kamal Gupta. “Path planning with general end-effector con-
straints”. In: Robotics and Autonomous Systems 55.4 (2007), pp. 316–327.

[52] Yinkang Li, Xiaolong Hao, Yuchen She, Shuang Li, and Meng Yu. “Constrained mo-
tion planning of free-float dual-arm space manipulator via deep reinforcement learn-
ing”. In: Aerospace Science and Technology 109 (2021), p. 106446.

[53] Kevin M Lynch and Matthew T Mason. “Dynamic underactuated nonprehensile ma-
nipulation”. In: Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems. IROS’96. Vol. 2. IEEE. 1996, pp. 889–896.

[54] Kevin M Lynch and Matthew T Mason. “Dynamic nonprehensile manipulation: Con-
trollability, planning, and experiments”. In: The International Journal of Robotics
Research 18.1 (1999), pp. 64–92.

[55] Siddhartha S Srinivasa, Michael A Erdmann, and Matthew T Mason. “Using pro-
jected dynamics to plan dynamic contact manipulation”. In: 2005 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. IEEE. 2005, pp. 3618–3623.

[56] Seungsu Kim, Ashwini Shukla, and Aude Billard. “Catching Objects in Flight”. In:
IEEE Transactions on Robotics 30.5 (2014), pp. 1049–1065.

[57] Caio Mucchiani and Mark Yim. “Dynamic Grasping for Object Picking Using Passive
Zero-DOF End-Effectors”. In: IEEE Robotics and Automation Letters 6.2 (2021),
pp. 3089–3096.

[58] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser.
“Tossingbot: Learning to throw arbitrary objects with residual physics”. In: IEEE
Transactions on Robotics 36.4 (2020), pp. 1307–1319.

https://arxiv.org/abs/1212.5701

BIBLIOGRAPHY 210

[59] Chen Wang, Shaoxiong Wang, Branden Romero, Filipe Veiga, and Edward Adel-
son. “SwingBot: Learning Physical Features from In-hand Tactile Exploration for
Dynamic Swing-up Manipulation”. In: IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). 2020.

[60] Quang-Cuong Pham, Stéphane Caron, and Yoshihiko Nakamura. “Kinodynamic Plan-
ning in the Configuration Space via Admissible Velocity Propagation.” In: Robotics:
Science and Systems. Vol. 32. 2013.

[61] Quang-Cuong Pham, Stéphane Caron, Puttichai Lertkultanon, and Yoshihiko Naka-
mura. “Planning truly dynamic motions: Path-velocity decomposition revisited”. In:
arXiv preprint arXiv:1411.4045 (2014).

[62] Puttichai Lertkultanon and Quang-Cuong Pham. “Dynamic non-prehensile object
transportation”. In: 2014 13th International Conference on Control Automation Rob-
otics & Vision (ICARCV). IEEE. 2014, pp. 1392–1397.

[63] Michael Posa and Russ Tedrake. “Direct trajectory optimization of rigid body dynam-
ical systems through contact”. In: Algorithmic foundations of robotics X. Springer,
2013, pp. 527–542.

[64] Michael Posa, Cecilia Cantu, and Russ Tedrake. “A direct method for trajectory op-
timization of rigid bodies through contact”. In: The International Journal of Robotics
Research 33.1 (2014), pp. 69–81.

[65] Kris Hauser. “Fast interpolation and time-optimization with contact”. In: The Inter-
national Journal of Robotics Research 33.9 (2014), pp. 1231–1250.

[66] Jingru Luo and Kris Hauser. “Robust trajectory optimization under frictional contact
with iterative learning”. In: Autonomous Robots 41.6 (2017), pp. 1447–1461.

[67] Jay D Bernheisel and Kevin M Lynch. “Stable transport of assemblies: Pushing
stacked parts”. In: IEEE Transactions on Automation science and Engineering 1.2
(2004), pp. 163–168.

[68] Ash Yaw Sang Wan, Yi De Soong, Edwin Foo, Wai Leong Eugene Wong, and Wai
Shing Michael Lau. “Waiter Robots Conveying Drinks”. In: Technologies 8.3 (2020),
p. 44.

[69] Praneel Acharya, Kim-Doang Nguyen, Hung M La, Dikai Liu, and I-Ming Chen.
“Nonprehensile Manipulation: a Trajectory-Planning Perspective”. In: IEEE/ASME
Transactions on Mechatronics 26.1 (2020), pp. 527–538.

[70] Hyeonbeom Lee and H Jin Kim. “Constraint-based cooperative control of multiple
aerial manipulators for handling an unknown payload”. In: IEEE Transactions on
Industrial Informatics 13.6 (2017), pp. 2780–2790.

[71] Hung Pham and Quang-Cuong Pham. “Critically fast pick-and-place with suction
cups”. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE.
2019, pp. 3045–3051.

BIBLIOGRAPHY 211

[72] Suei Jen Chen, Bjorn Hein, and Heinz Worn. “Using acceleration compensation to
reduce liquid surface oscillation during a high speed transfer”. In: Proceedings 2007
IEEE International Conference on Robotics and Automation. IEEE. 2007, pp. 2951–
2956.

[73] Wisnu Aribowo, Takahito Yamashita, and Kazuhiko Terashima. “Integrated trajec-
tory planning and sloshing suppression for three-dimensional motion of liquid con-
tainer transfer robot arm”. In: Journal of Robotics 2015 (2015).

[74] Ken’ichi Yano and Kazuhiko Terashima. “Robust liquid container transfer control for
complete sloshing suppression”. In: IEEE Transactions on Control Systems Technol-
ogy 9.3 (2001), pp. 483–493.

[75] Mahmut Reyhanoglu and Jaime Rubio Hervas. “Nonlinear modeling and control of
slosh in liquid container transfer via a PPR robot”. In: Communications in Nonlinear
Science and Numerical Simulation 18.6 (2013), pp. 1481–1490.

[76] Luca Consolini, Alessandro Costalunga, Aurelio Piazzi, and Marco Vezzosi. “Minimum-
time feedforward control of an open liquid container”. In: IECON 2013-39th Annual
Conference of the IEEE Industrial Electronics Society. IEEE. 2013, pp. 3592–3597.

[77] Lorenzo Moriello, Luigi Biagiotti, Claudio Melchiorri, and Andrea Paoli. “Control of
liquid handling robotic systems: A feed-forward approach to suppress sloshing”. In:
2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2017, pp. 4286–4291.

[78] John YS Luh, Michael W Walker, and Richard PC Paul. “On-line computational
scheme for mechanical manipulators”. In: (1980).

[79] Jeffrey Mahler, Matthew Matl, Xinyu Liu, Albert Li, David Gealy, and Ken Goldberg.
“Dex-Net 3.0: Computing robust vacuum suction grasp targets in point clouds using
a new analytic model and deep learning”. In: IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2018, pp. 1–8.

[80] Tae Myung Huh, Kate Sanders, Michael Danielczuk, Monica Li, Ken Goldberg, and
Hannah S Stuart. “A Multi-Chamber Smart Suction Cup for Adaptive Gripping and
Haptic Exploration”. In: arXiv preprint arXiv:2105.02345 (2021).

[81] Jeffrey Ichnowski, Yahav Avigal, Yi Liu, and Ken Goldberg. “GOMP-FIT: Grasp-
Optimized Motion Planning for Fast Inertial Transport”. In: 2022 International Con-
ference on Robotics and Automation (ICRA). (to appear). IEEE. 2022.

[82] Chonhyon Park, Jia Pan, and Dinesh Manocha. “ITOMP: Incremental trajectory
optimization for real-time replanning in dynamic environments”. In: Twenty-Second
International Conference on Automated Planning and Scheduling. 2012.

[83] Donato Maragno, Holly Wiberg, Dimitris Bertsimas, S Ilker Birbil, Dick den Hertog,
and Adejuyigbe Fajemisin. “Mixed-Integer Optimization with Constraint Learning”.
In: arXiv preprint arXiv:2111.04469 (2021).

BIBLIOGRAPHY 212

[84] Patryk Kud la and Tomasz P Pawlak. “One-class synthesis of constraints for Mixed-
Integer Linear Programming with C4. 5 decision trees”. In: Applied Soft Computing
68 (2018), pp. 1–12.

[85] Andrea Bartolini, Michele Lombardi, Michela Milano, and Luca Benini. “Neuron con-
straints to model complex real-world problems”. In: International Conference on Prin-
ciples and Practice of Constraint Programming. Springer. 2011, pp. 115–129.

[86] Michele Lombardi, Michela Milano, and Andrea Bartolini. “Empirical decision model
learning”. In: Artificial Intelligence 244 (2017), pp. 343–367.

[87] Luc De Raedt, Andrea Passerini, and Stefano Teso. “Learning constraints from ex-
amples”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32.
1. 2018.

[88] Adejuyigbe Fajemisin, Donato Maragno, and Dick den Hertog. “Optimization with
constraint learning: A framework and survey”. In: arXiv preprint arXiv:2110.02121
(2021).

[89] Fabio Ruggiero, Vincenzo Lippiello, and Bruno Siciliano. “Nonprehensile dynamic
manipulation: A survey”. In: IEEE Robotics and Automation Letters 3.3 (2018),
pp. 1711–1718.

[90] Huy Ha and Shuran Song. “FlingBot: The Unreasonable Effectiveness of Dynamic Ma-
nipulation for Cloth Unfolding”. In: Conference on Robotic Learning (CoRL). 2021.

[91] Vincent Lim, Huang Huang, Lawrence Yunliang Chen, Jonathan Wang, Jeffrey Ich-
nowski, Daniel Seita, Michael Laskey, and Ken Goldberg. “Planar Robot Casting
with Real2Sim2Real Self-Supervised Learning”. In: arXiv preprint arXiv:2111.04814
(2021).

[92] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-
Milne, et al. “JAX: Autograd and XLA”. In: Astrophysics Source Code Library (2021),
ascl–2111.

[93] Lars Berscheid and Torsten Kröger. “Jerk-limited Real-time Trajectory Generation
with Arbitrary Target States”. In: arXiv preprint arXiv:2105.04830 (2021).

[94] R. Kolluru, K.P. Valavanis, and T.M. Hebert. “Modeling, analysis, and performance
evaluation of a robotic gripper system for limp material handling”. In: IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics) 28.3 (1998), pp. 480–
486.

[95] Hannah S. Stuart, Matteo Bagheri, Shiquan Wang, Heather Barnard, Audrey L.
Sheng, Merritt Jenkins, and Mark R. Cutkosky. “Suction helps in a pinch: Improving
underwater manipulation with gentle suction flow”. In: 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2015), pp. 2279–2284.

BIBLIOGRAPHY 213

[96] Angel J. Valencia, Roger M. Idrovo, Angel D. Sappa, Douglas Plaza Guingla, and
Daniel Ochoa. “A 3D vision based approach for optimal grasp of vacuum grippers”.
In: 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals
and their Application to Mechatronics (ECMSM). 2017, pp. 1–6.

[97] Jeffrey Ichnowski and Ron Alterovitz. “Motion Planning Templates: A Motion Plan-
ning Framework for Robots with Low-power CPUs”. In: 2019 International Confer-
ence on Robotics and Automation (ICRA). 2019, pp. 612–618.

[98] Tobia Marcucci, Mark Petersen, David von Wrangel, and Russ Tedrake. “Motion plan-
ning around obstacles with convex optimization”. In: arXiv preprint arXiv:2205.04422
(2022).

[99] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollár, and Ross Girshick. “Segment Anything”. In: arXiv:2304.02643 (2023).

[100] Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao Yu, Min Li, Ming Tang, and
Jinqiao Wang. Fast Segment Anything. 2023. arXiv: 2306.12156 [cs.CV].

[101] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartography”.
In: Commun. ACM 24.6 (June 1981).

[102] Jia Pan, Sachin Chitta, and Dinesh Manocha. “FCL: A general purpose library for
collision and proximity queries”. In: 2012 IEEE International Conference on Robotics
and Automation. IEEE. 2012, pp. 3859–3866.

[103] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey,
Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and
Gavriel State. Isaac Gym: High Performance GPU-Based Physics Simulation For
Robot Learning. 2021.

[104] Jeffrey Ichnowski and Ron Alterovitz. “Scalable multicore motion planning using lock-
free concurrency”. In: IEEE Transactions on Robotics 30.5 (2014), pp. 1123–1136.

[105] Huang Huang, Michael Danielczuk, Chung Min Kim, Letian Fu, Zachary Tam, Jeffrey
Ichnowski, Anelia Angelova, Brian Ichter, and Ken Goldberg. “Mechanical search on
shelves using a novel “bluction” tool”. In: 2022 International Conference on Robotics
and Automation (ICRA). IEEE. 2022, pp. 6158–6164.

[106] Jeffrey Mahler, Florian T Pokorny, Brian Hou, Melrose Roderick, Michael Laskey,
Mathieu Aubry, Kai Kohlhoff, Torsten Kröger, James Kuffner, and Ken Goldberg.
“Dex-Net 1.0: A cloud-based network of 3D objects for robust grasp planning us-
ing a multi-armed bandit model with correlated rewards”. In: IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2016, pp. 1957–1964.

[107] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. “6-dof graspnet: Variational
grasp generation for object manipulation”. In: Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR). 2019, pp. 2901–2910.

https://arxiv.org/abs/2306.12156

BIBLIOGRAPHY 214

[108] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Learning robust, real-time, re-
active robotic grasping”. In: Int. Journal of Robotics Research (IJRR) 39.2-3 (2020),
pp. 183–201.

[109] Jeffrey Mahler and Ken Goldberg. “Learning deep policies for robot bin picking by
simulating robust grasping sequences”. In: Conference on Robot Learning (CoRL).
2017, pp. 515–524.

[110] Michael Danielczuk, Andrey Kurenkov, Ashwin Balakrishna, Matthew Matl, David
Wang, Roberto Mart́ın-Mart́ın, Animesh Garg, Silvio Savarese, and Ken Goldberg.
“Mechanical search: Multi-step retrieval of a target object occluded by clutter”. In:
Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2019, pp. 1614–1621.

[111] Michael Danielczuk, Anelia Angelova, Vincent Vanhoucke, and Ken Goldberg. “X-ray:
Mechanical search for an occluded object by minimizing support of learned occupancy
distributions”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS). 2020.

[112] Huang Huang, Marcus Dominguez-Kuhne, Jeffrey Ichnowski, Vishal Satish, Michael
Danielczuk, Kate Sanders, Andrew Lee, Anelia Angelova, Vincent Vanhoucke, and
Ken Goldberg. “Mechanical Search on Shelves using Lateral Access X-RAY”. In:
arXiv preprint arXiv:2011.11696 (2020).

[113] Jue Kun Li, David Hsu, and Wee Sun Lee. “Act to see and see to act: POMDP
planning for objects search in clutter”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS). 2016, pp. 5701–5707.

[114] Andrew Price, Linyi Jin, and Dmitry Berenson. “Inferring occluded geometry im-
proves performance when retrieving an object from dense clutter”. In: Int. S. Robotics
Research (ISRR). 2019.

[115] Adithyavairavan Murali, Arsalan Mousavian, Clemens Eppner, Chris Paxton, and
Dieter Fox. “6-dof grasping for target-driven object manipulation in clutter”. In:
Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2020, pp. 6232–6238.

[116] Enrique Dunn and Jan-Michael Frahm. “Next Best View Planning for Active Model
Improvement.” In: BMVC. 2009, pp. 1–11.

[117] Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee. “Active recog-
nition through next view planning: a survey”. In: Pattern Recognition 37.3 (2004),
pp. 429–446.

[118] Ruzena Bajcsy. “Active perception”. In: Proceedings of the IEEE 76.8 (1988), pp. 966–
1005.

[119] Ruzena Bajcsy, Yiannis Aloimonos, and John K Tsotsos. “Revisiting active percep-
tion”. In: Autonomous Robots 42.2 (2018), pp. 177–196.

BIBLIOGRAPHY 215

[120] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Bur-
gard. “OctoMap: An efficient probabilistic 3D mapping framework based on octrees”.
In: Autonomous robots 34.3 (2013), pp. 189–206.

[121] Dan Halperin. “Robust geometric computing in motion”. In: Int. Journal of Robotics
Research (IJRR) 21.3 (2002), pp. 219–232.

[122] Yuchen Xiao, Sammie Katt, Andreas ten Pas, Shengjian Chen, and Christopher Am-
ato. “Online planning for target object search in clutter under partial observability”.
In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2019, pp. 8241–8247.

[123] Tara Boroushaki, Junshan Leng, Ian Clester, Alberto Rodriguez, and Fadel Adib.
“Robotic Grasping of Fully-Occluded Objects using RF Perception”. In: arXiv preprint
arXiv:2012.15436 (2020).

[124] Yiannis Aloimonos. Active perception. Psychology Press, 2013.

[125] John Aloimonos. “Purposive and qualitative active vision”. In: Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). Vol. 1. 1990, pp. 346–360.

[126] Richard Pito. “A solution to the next best view problem for automated surface ac-
quisition”. In: IEEE Transactions on pattern analysis and machine intelligence 21.10
(1999), pp. 1016–1030.

[127] Henry Carrillo, Ian Reid, and José A Castellanos. “On the comparison of uncer-
tainty criteria for active SLAM”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). 2012, pp. 2080–2087.

[128] Gregory Kahn, Peter Sujan, Sachin Patil, Shaunak Bopardikar, Julian Ryde, Ken
Goldberg, and Pieter Abbeel. “Active exploration using trajectory optimization for
robotic grasping in the presence of occlusions”. In: Proc. IEEE Int. Conf. Robotics
and Automation (ICRA). 2015, pp. 4783–4790.

[129] Douglas Morrison, Peter Corke, and Jürgen Leitner. “Multi-view picking: Next-best-
view reaching for improved grasping in clutter”. In: Proc. IEEE Int. Conf. Robotics
and Automation (ICRA). 2019, pp. 8762–8768.

[130] Tonci Novkovic, Remi Pautrat, Fadri Furrer, Michel Breyer, Roland Siegwart, and
Juan Nieto. “Object finding in cluttered scenes using interactive perception”. In:
Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2020, pp. 8338–8344.

[131] João Santos, Miguel Oliveira, Rafael Arrais, and Germano Veiga. “Autonomous Scene
Exploration for Robotics: A Conditional Random View-Sampling and Evaluation Us-
ing a Voxel-Sorting Mechanism for Efficient Ray Casting”. In: Sensors 20.15 (2020),
p. 4331.

[132] Megha Gupta, Thomas Rühr, Michael Beetz, and Gaurav S Sukhatme. “Interactive
environment exploration in clutter”. In: Proc. IEEE Int. Conf. Robotics and Automa-
tion (ICRA). 2013, pp. 5265–5272.

BIBLIOGRAPHY 216

[133] Pierre Soille. “Erosion and dilation”. In: Morphological Image Analysis. Springer,
2004, pp. 63–103.

[134] Tomas Lozano-Perez, Matthew T Mason, and Russell H Taylor. “Automatic synthesis
of fine-motion strategies for robots”. In: Int. Journal of Robotics Research (IJRR) 3.1
(1984), pp. 3–24.

[135] Kentaro Wada. Octomap-python. https://github.com/wkentaro/octomap-python.
2013.

[136] Michael Danielczuk, Matthew Matl, Saurabh Gupta, Andrew Li, Andrew Lee, Jeffrey
Mahler, and Ken Goldberg. “Segmenting unknown 3d objects from real depth images
using mask r-cnn trained on synthetic data”. In: Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). 2019, pp. 7283–7290.

[137] Thingiverse online 3D object database. Thingiverse. url: https://www.thingiverse.
com/ (visited on 03/09/2021).

[138] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and
Aaron M Dollar. “Benchmarking in manipulation research: The YCB object and
model set and benchmarking protocols”. In: arXiv preprint arXiv:1502.03143 (2015).

[139] Johannes Lutz Schönberger and Jan-Michael Frahm. “Structure-from-Motion Revis-
ited”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[140] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
“Pixelwise View Selection for Unstructured Multi-View Stereo”. In: European Con-
ference on Computer Vision (ECCV). 2016.

[141] Po-Jen Lai and Chiou-Shann Fuh. “Transparent object detection using regions with
convolutional neural network”. In: IPPR Conference on Computer Vision, Graphics,
and Image Processing. Vol. 2. 2015.

[142] May Phyo Khaing and Mukunoki Masayuki. “Transparent object detection using
convolutional neural network”. In: International Conference on Big Data Analysis
and Deep Learning Applications. Springer. 2018, pp. 86–93.

[143] Enze Xie, Wenjia Wang, Wenhai Wang, Peize Sun, Hang Xu, Ding Liang, and Ping
Luo. “Segmenting transparent object in the wild with transformer”. In: arXiv preprint
arXiv:2101.08461 (2021).

[144] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: arXiv
preprint arXiv:1706.03762 (2017).

[145] Cody J Phillips, Matthieu Lecce, and Kostas Daniilidis. “Seeing Glassware: from
Edge Detection to Pose Estimation and Shape Recovery.” In: Robotics: Science and
Systems. Vol. 3. 2016.

https://github.com/wkentaro/octomap-python
https://www.thingiverse.com/
https://www.thingiverse.com/

BIBLIOGRAPHY 217

[146] Chi Xu, Jiale Chen, Mengyang Yao, Jun Zhou, Lijun Zhang, and Yi Liu. “6DoF Pose
Estimation of Transparent Object from a Single RGB-D Image”. In: Sensors 20.23
(2020), p. 6790.

[147] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Mart́ın-Mart́ın, Cewu Lu, Li Fei-Fei,
and Silvio Savarese. “Densefusion: 6d object pose estimation by iterative dense fu-
sion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 3343–3352.

[148] Shreeyak Sajjan, Matthew Moore, Mike Pan, Ganesh Nagaraja, Johnny Lee, Andy
Zeng, and Shuran Song. “Clear Grasp: 3D Shape Estimation of Transparent Objects
for Manipulation”. In: 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2020, pp. 3634–3642.

[149] Zheming Zhou, Tianyang Pan, Shiyu Wu, Haonan Chang, and Odest Chadwicke
Jenkins. “Glassloc: Plenoptic grasp pose detection in transparent clutter”. In: arXiv
preprint arXiv:1909.04269 (2019).

[150] Zheming Zhou, Xiaotong Chen, and Odest Chadwicke Jenkins. “LIT: Light-field In-
ference of Transparency for Refractive Object Localization”. In: IEEE Robotics and
Automation Letters 5.3 (2020), pp. 4548–4555.

[151] Luyang Zhu, Arsalan Mousavian, Yu Xiang, Hammad Mazhar, Jozef van Eenber-
gen, Shoubhik Debnath, and Dieter Fox. “RGB-D Local Implicit Function for Depth
Completion of Transparent Objects”. In: arXiv preprint arXiv:2104.00622 (2021).

[152] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. “Occupancy networks: Learning 3d reconstruction in function space”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 4460–4470.

[153] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. “DeepSDF: Learning continuous signed distance functions for shape rep-
resentation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 165–174.

[154] Zhiqin Chen and Hao Zhang. “Learning implicit fields for generative shape model-
ing”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 5939–5948.

[155] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. “Scene representation
networks: Continuous 3d-structure-aware neural scene representations”. In: arXiv
preprint arXiv:1906.01618 (2019).

[156] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.
“PlenOctrees for real-time rendering of neural radiance fields”. In: arXiv preprint
arXiv:2103.14024 (2021).

[157] Boyang Deng, Jonathan T. Barron, and Pratul P. Srinivasan. JaxNeRF: an efficient
JAX implementation of NeRF. 2020.

BIBLIOGRAPHY 218

[158] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. “Depth-supervised
NeRF: Fewer Views and Faster Training for Free”. In: arXiv e-prints (2021), arXiv–
2107.

[159] Michal Adamkiewicz, Timothy Chen, Adam Caccavale, Rachel Gardner, Preston Cul-
bertson, Jeannette Bohg, and Mac Schwager. “Vision-Only Robot Navigation in a
Neural Radiance World”. In: arXiv preprint arXiv:2110.00168 (2021).

[160] Kilian Kleeberger, Richard Bormann, Werner Kraus, and Marco F Huber. “A survey
on learning-based robotic grasping”. In: Current Robotics Reports (2020), pp. 1–11.

[161] Antonio Bicchi and Vijay Kumar. “Robotic grasping and contact: A review”. In:
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 1. IEEE.
2000, pp. 348–353.

[162] Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical introduction
to robotic manipulation. CRC press, 2017.

[163] Daniel Kappler, Jeannette Bohg, and Stefan Schaal. “Leveraging big data for grasp
planning”. In: IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2015, pp. 4304–4311.

[164] Domenico Prattichizzo, Jeffrey C Trinkle, Bruno Siciliano, and Oussama Khatib.
“Springer handbook of robotics”. In: Grasping; Springer: Berlin/Heidelberg, Germany
(2008), pp. 671–700.

[165] Eric Jang, Coline Devin, Vincent Vanhoucke, and Sergey Levine. “Grasp2vec: Learn-
ing object representations from self-supervised grasping”. In: arXiv preprint arXiv:18-
11.06964 (2018).

[166] Gang Peng, Zhenyu Ren, Hao Wang, and Xinde Li. “A self-supervised learning-based
6-DOF grasp planning method for manipulator”. In: arXiv preprint arXiv:2102.00205
(2021).

[167] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep learning for detecting robotic
grasps”. In: International Journal of Robotics Research (IJRR) 34.4-5 (2015), pp. 705–
724.

[168] Joseph Redmon and Anelia Angelova. “Real-time grasp detection using convolutional
neural networks”. In: 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE. 2015, pp. 1316–1322.

[169] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. “6-DOF GraspNet: Variational
grasp generation for object manipulation”. In: 2019, pp. 2901–2910.

[170] Yuzhe Qin, Rui Chen, Hao Zhu, Meng Song, Jing Xu, and Hao Su. “S4G: Amodal
single-view single-shot SE(3) grasp detection in cluttered scenes”. In: Conference on
robot learning. PMLR. 2020, pp. 53–65.

BIBLIOGRAPHY 219

[171] Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox. “Contact-
GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes”. In: arXiv preprint
arXiv:2103.14127 (2021).

[172] Yahav Avigal, Vishal Satish, Zachary Tam, Huang Huang, Harry Zhang, Michael
Danielczuk, Jeffrey Ichnowski, and Ken Goldberg. “AVPLUG: Approach Vector PLan-
ning for Unicontact Grasping amid Clutter”. In: 2021 IEEE 17th International Con-
ference on Automation Science and Engineering (CASE). IEEE. 2021, pp. 1140–1147.

[173] Michel Breyer, Jen Jen Chung, Lionel Ott, Roland Siegwart, and Juan Nieto. “Vol-
umetric grasping network: Real-time 6 DOF grasp detection in clutter”. In: arXiv
preprint arXiv:2101.01132 (2021).

[174] Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser. “Grasping in the
wild: Learning 6 DOF closed-loop grasping from low-cost demonstrations”. In: IEEE
Robotics and Automation Letters 5.3 (2020), pp. 4978–4985.

[175] Shreeyak S. Sajjan, Matthew Moore, Mike Pan, Ganesh Nagaraja, Johnny Lee, Andy
Zeng, and Shuran Song. “ClearGrasp: 3D Shape Estimation of Transparent Objects
for Manipulation”. In: CoRR abs/1910.02550 (2019). arXiv: 1910.02550.

[176] Jeffrey Ichnowski, Yahav Avigal, Justin Kerr, and Ken Goldberg. “Dex-NeRF: Using
a Neural Radiance Field to Grasp Transparent Objects”. In: 5th Annual Conference
on Robot Learning. 2021.

[177] Cheng Sun, Min Sun, and Hwann-Tzong Chen. “Direct voxel grid optimization:
Super-fast convergence for radiance fields reconstruction”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 5459–
5469.

[178] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. “Plenoxels: Radiance Fields Without Neural Networks”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2022, pp. 5501–5510.

[179] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. “Instant Neural
Graphics Primitives with a Multiresolution Hash Encoding”. In: ACM Trans. Graph.
(2022).

[180] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Steven M Seitz, and Ricardo Martin-Brualla. “Nerfies: Deformable neural radiance
fields”. In: Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion. 2021, pp. 5865–5874.

[181] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. “Neural scene flow fields
for space-time view synthesis of dynamic scenes”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 6498–6508.

https://arxiv.org/abs/1910.02550

BIBLIOGRAPHY 220

[182] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. “Graf: Generative
radiance fields for 3D-aware image synthesis”. In: Advances in Neural Information
Processing Systems (NeurIPS). Vol. 33. 2020.

[183] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.
“pi-gan: Periodic implicit generative adversarial networks for 3d-aware image synthe-
sis”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2021, pp. 5799–5809.

[184] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. “Stylenerf: A style-
based 3d-aware generator for high-resolution image synthesis”. In: arXiv preprint
arXiv:2110.08985 (2021).

[185] Lin Yen-Chen, Pete Florence, Jonathan T Barron, Alberto Rodriguez, Phillip Isola,
and Tsung-Yi Lin. “inerf: Inverting neural radiance fields for pose estimation”. In:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2021, pp. 1323–1330.

[186] Quan Meng, Anpei Chen, Haimin Luo, Minye Wu, Hao Su, Lan Xu, Xuming He,
and Jingyi Yu. “Gnerf: Gan-based neural radiance field without posed camera”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021,
pp. 6351–6361.

[187] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. “Barf: Bundle-
adjusting neural radiance fields”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 5741–5751.

[188] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. “TensoRF: Ten-
sorial Radiance Fields”. In: arXiv preprint arXiv:2203.09517 (2022).

[189] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou,
Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser.
“IBRNet: Learning Multi-View Image-Based Rendering”. In: CVPR. 2021.

[190] Alex Trevithick and Bo Yang. “Grf: Learning a general radiance field for 3d repre-
sentation and rendering”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2021, pp. 15182–15192.

[191] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu,
and Hao Su. “Mvsnerf: Fast generalizable radiance field reconstruction from multi-
view stereo”. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. 2021, pp. 14124–14133.

[192] Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard Pons-Moll. “Stereo radi-
ance fields (srf): Learning view synthesis for sparse views of novel scenes”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 7911–7920.

BIBLIOGRAPHY 221

[193] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. “pixelnerf: Neural ra-
diance fields from one or few images”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021, pp. 4578–4587.

[194] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P Srinivasan,
Jonathan T Barron, and Ren Ng. “Learned initializations for optimizing coordinate-
based neural representations”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2021, pp. 2846–2855.

[195] Chen Gao, Yichang Shih, Wei-Sheng Lai, Chia-Kai Liang, and Jia-Bin Huang. “Por-
trait neural radiance fields from a single image”. In: arXiv preprint arXiv:2012.05903
(2020).

[196] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison. “imap: Implicit map-
ping and positioning in real-time”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 6229–6238.

[197] Michal Adamkiewicz, Timothy Chen, Adam Caccavale, Rachel Gardner, Preston Cul-
bertson, Jeannette Bohg, and Mac Schwager. “Vision-only robot navigation in a neu-
ral radiance world”. In: IEEE Robotics and Automation Letters 7.2 (2022), pp. 4606–
4613.

[198] Jad Abou-Chakra, Feras Dayoub, and Niko Sünderhauf. “Implicit Object Mapping
With Noisy Data”. In: arXiv preprint arXiv:2204.10516 (2022).

[199] Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal, and Antonio Torralba.
“3d neural scene representations for visuomotor control”. In: Conference on Robot
Learning. PMLR. 2022, pp. 112–123.

[200] Lin Yen-Chen, Pete Florence, Jonathan T Barron, Tsung-Yi Lin, Alberto Rodriguez,
and Phillip Isola. “NeRF-Supervision: Learning Dense Object Descriptors from Neural
Radiance Fields”. In: arXiv preprint arXiv:2203.01913 (2022).

[201] Wei-Cheng Tseng, Hung-Ju Liao, Lin Yen-Chen, and Min Sun. “CLA-NeRF: Category-
Level Articulated Neural Radiance Field”. In: arXiv preprint arXiv:2202.00181 (2022).

[202] Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint. “Learning
multi-object dynamics with compositional neural radiance fields”. In: arXiv preprint
arXiv:2202.11855 (2022).

[203] Haoping Xu, Yi Ru Wang, Sagi Eppel, Alán Aspuru-Guzik, Florian Shkurti, and Ani-
mesh Garg. “Seeing Glass: Joint Point Cloud and Depth Completion for Transparent
Objects”. In: CoRR abs/2110.00087 (2021). arXiv: 2110.00087.

[204] Thomas Weng, Amith Pallankize, Yimin Tang, Oliver Kroemer, and David Held.
“Multi-modal Transfer Learning for Grasping Transparent and Specular Objects”.
In: CoRR abs/2006.00028 (2020). arXiv: 2006.00028.

https://arxiv.org/abs/2110.00087
https://arxiv.org/abs/2006.00028

BIBLIOGRAPHY 222

[205] Qiyu Dai, Yan Zhu, Yiran Geng, Ciyu Ruan, Jiazhao Zhang, and He Wang. Grasp-
NeRF: Multiview-based 6-DoF Grasp Detection for Transparent and Specular Objects
Using Generalizable NeRF. 2022.

[206] Abhishek Kar, Christian Häne, and Jitendra Malik. “Learning a Multi-View Stereo
Machine”. In: Advances in Neural Information Processing Systems. Ed. by I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett.
Vol. 30. Curran Associates, Inc., 2017.

[207] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng Cui,
Martin R. Oswald, and Marc Pollefeys. “NICE-SLAM: Neural Implicit Scalable En-
coding for SLAM”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). June 2022.

[208] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. “Plenoxels: Radiance Fields without Neural Networks”. In: CoRR
abs/2112.05131 (2021). arXiv: 2112.05131.

[209] Vishal Satish, Jeffrey Mahler, and Ken Goldberg. “On-policy dataset synthesis for
learning robot grasping policies using fully convolutional deep networks”. In: 4.2
(2019), pp. 1357–1364.

[210] Xupeng Zhu, Dian Wang, Ondrej Biza, Guanang Su, Robin Walters, and Robert Platt.
“Sample Efficient Grasp Learning Using Equivariant Models”. In: arXiv preprint
arXiv:2202.09468 (2022).

[211] Yu Zheng and Wen-Han Qian. “Coping with the grasping uncertainties in force-closure
analysis”. In: The international journal of robotics research 24.4 (2005), pp. 311–327.

[212] Jeffrey Mahler, Sachin Patil, Ben Kehoe, Jur Van Den Berg, Matei Ciocarlie, Pieter
Abbeel, and Ken Goldberg. “Gp-gpis-opt: Grasp planning with shape uncertainty
using gaussian process implicit surfaces and sequential convex programming”. In:
2015 IEEE international conference on robotics and automation (ICRA). IEEE. 2015,
pp. 4919–4926.

[213] Chung Min Kim, Michael Danielczuk, Isabella Huang, and Ken Goldberg. “Simulation
of Parallel-Jaw Grasping using Incremental Potential Contact Models”. In: arXiv
preprint arXiv:2111.01391 (2021).

[214] Matthew Matl. Pyrender. https://github.com/mmatl/pyrender. 2019.

[215] Michel Breyer, Jen Jen Chung, Lionel Ott, Roland Siegwart, and Juan I. Nieto. “Vol-
umetric Grasping Network: Real-time 6 DOF Grasp Detection in Clutter”. In: CoRR
abs/2101.01132 (2021). arXiv: 2101.01132.

[216] Hermann Mayer, Faustino Gomez, Daan Wierstra, Istvan Nagy, Alois Knoll, and
Jürgen Schmidhuber. “A system for robotic heart surgery that learns to tie knots
using recurrent neural networks”. In: Advanced Robotics 22.13-14 (2008), pp. 1521–
1537.

https://arxiv.org/abs/2112.05131
https://github.com/mmatl/pyrender
https://arxiv.org/abs/2101.01132

BIBLIOGRAPHY 223

[217] Jose Sanchez, Juan-Antonio Corrales, Belhassen-Chedli Bouzgarrou, and Youcef Me-
zouar. “Robotic manipulation and sensing of deformable objects in domestic and
industrial applications: a survey”. In: The International Journal of Robotics Research
37.7 (2018), pp. 688–716.

[218] Jur Van Den Berg, Stephen Miller, Daniel Duckworth, Humphrey Hu, Andrew Wan,
Xiao-Yu Fu, Ken Goldberg, and Pieter Abbeel. “Superhuman performance of surgical
tasks by robots using iterative learning from human-guided demonstrations”. In: 2010
IEEE International Conference on Robotics and Automation. IEEE. 2010, pp. 2074–
2081.

[219] Vainavi Viswanath, Kaushik Shivakumar, Justin Kerr, Brijen Thananjeyan, Ellen
Novoseller, Jeffrey Ichnowski, Alejandro Escontrela, Michael Laskey, Joseph E Gon-
zalez, and Ken Goldberg. “Autonomously Untangling Long Cables”. In: Robotics:
Science and Systems (RSS) (2022).

[220] Jeannette Bohg, Karol Hausman, Bharath Sankaran, Oliver Brock, Danica Kragic,
Stefan Schaal, and Gaurav S Sukhatme. “Interactive perception: Leveraging action in
perception and perception in action”. In: IEEE Transactions on Robotics 33.6 (2017),
pp. 1273–1291.

[221] Daniel Seita, Aditya Ganapathi, Ryan Hoque, Minho Hwang, Edward Cen, Ajay Ku-
mar Tanwani, Ashwin Balakrishna, Brijen Thananjeyan, Jeffrey Ichnowski, Nawid
Jamali, et al. “Deep imitation learning of sequential fabric smoothing from an algo-
rithmic supervisor”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS). 2020.

[222] Daniel Seita, Pete Florence, Jonathan Tompson, Erwin Coumans, Vikas Sindhwani,
Ken Goldberg, and Andy Zeng. “Learning to Rearrange Deformable Cables, Fabrics,
and Bags with Goal-Conditioned Transporter Networks”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). 2021.

[223] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik,
and Sergey Levine. “Combining self-supervised learning and imitation for vision-based
rope manipulation”. In: 2017 IEEE Int. Conf. on Robotics and Automation (ICRA).
IEEE. 2017, pp. 2146–2153.

[224] Jan Matas, Stephen James, and Andrew J Davison. “Sim-to-real reinforcement learn-
ing for deformable object manipulation”. In: Conference on Robot Learning. PMLR.
2018, pp. 734–743.

[225] Yilin Wu, Wilson Yan, Thanard Kurutach, Lerrel Pinto, and Pieter Abbeel. “Learning
to manipulate deformable objects without demonstrations”. In: Robotics: Science and
Systems (RSS) (2020).

[226] Robert Lee, Daniel Ward, Akansel Cosgun, Vibhavari Dasagi, Peter Corke, and Jurgen
Leitner. “Learning arbitrary-goal fabric folding with one hour of real robot experi-
ence”. In: Conference on Robot Learning (2020).

BIBLIOGRAPHY 224

[227] Daniel Seita, Aditya Ganapathi, Ryan Hoque, Minho Hwang, Edward Cen, Ajay Ku-
mar Tanwani, Ashwin Balakrishna, Brijen Thananjeyan, Jeffrey Ichnowski, Nawid
Jamali, et al. “Deep imitation learning of sequential fabric smoothing from an al-
gorithmic supervisor”. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2020, pp. 9651–9658.

[228] Daniel Seita, Pete Florence, Jonathan Tompson, Erwin Coumans, Vikas Sindhwani,
Ken Goldberg, and Andy Zeng. “Learning to rearrange deformable cables, fabrics,
and bags with goal-conditioned transporter networks”. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2021, pp. 4568–4575.

[229] Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, and Lerrel Pinto. “Learning predic-
tive representations for deformable objects using contrastive estimation”. In: Confer-
ence on Robot Learning. PMLR. 2021, pp. 564–574.

[230] Priya Sundaresan, Jennifer Grannen, Brijen Thananjeyan, Ashwin Balakrishna, Mi-
chael Laskey, Kevin Stone, Joseph E Gonzalez, and Ken Goldberg. “Learning rope
manipulation policies using dense object descriptors trained on synthetic depth data”.
In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2020, pp. 9411–9418.

[231] Aditya Ganapathi, Priya Sundaresan, Brijen Thananjeyan, Ashwin Balakrishna, Dan-
iel Seita, Jennifer Grannen, Minho Hwang, Ryan Hoque, Joseph E Gonzalez, Nawid
Jamali, et al. “Learning dense visual correspondences in simulation to smooth and fold
real fabrics”. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2021, pp. 11515–11522.

[232] Harry Zhang, Jeffrey Ichnowski, Daniel Seita, Jonathan Wang, Huang Huang, and
Ken Goldberg. “Robots of the lost arc: Self-supervised learning to dynamically ma-
nipulate fixed-endpoint cables”. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2021, pp. 4560–4567.

[233] Vincent Lim, Huang Huang, Lawrence Yunliang Chen, Jonathan Wang, Jeffrey Ich-
nowski, Daniel Seita, Michael Laskey, and Ken Goldberg. “Real2Sim2Real: Self-
Supervised Learning of Physical Single-Step Dynamic Actions for Planar Robot Cast-
ing”. In: 2022 International Conference on Robotics and Automation (ICRA). 2022,
pp. 8282–8289.

[234] Yahav Avigal, Lars Berscheid, Tamim Asfour, Torsten Kröger, and Ken Goldberg.
“SpeedFolding: Learning Efficient Bimanual Folding of Garments”. In: International
Conference on Intelligent Robots and Systems (IROS) 2022 (2022).

[235] Lawrence Yunliang Chen, Huang Huang, Ellen Novoseller, Daniel Seita, Jeffrey Ich-
nowski, Michael Laskey, Richard Cheng, Thomas Kollar, and Ken Goldberg. “Effi-
ciently Learning Single-Arm Fling Motions to Smooth Garments”. In: International
Symposium on Robotics Research. 2022.

BIBLIOGRAPHY 225

[236] Peter R Florence, Lucas Manuelli, and Russ Tedrake. “Dense object nets: Learning
dense visual object descriptors by and for robotic manipulation”. In: Conf. on Robot
Learning (CoRL). 2018.

[237] Aditya Ganapathi, Priya Sundaresan, Brijen Thananjeyan, Ashwin Balakrishna, Dan-
iel Seita, Jennifer Grannen, Minho Hwang, Ryan Hoque, Joseph E Gonzalez, Nawid
Jamali, et al. “Learning to Smooth and Fold Real Fabric Using Dense Object De-
scriptors Trained on Synthetic Color Images”. In: Proc. IEEE Int. Conf. Robotics
and Automation (ICRA). 2021.

[238] Angelina Wang, Thanard Kurutach, Kara Liu, Pieter Abbeel, and Aviv Tamar.
“Learning robotic manipulation through visual planning and acting”. In: Robotics:
Science and Systems (RSS) (2019).

[239] Vainavi Viswanath, Jennifer Grannen, Priya Sundaresan, Brijen Thananjeyan, Ash-
win Balakrishna, Ellen Novoseller, Jeffrey Ichnowski, Michael Laskey, Joseph E Gon-
zalez, and Ken Goldberg. “Disentangling Dense Multi-Cable Knots”. In: IEEE- /RSJ
International Conference on Intelligent Robots and Systems (IROS) (2021).

[240] Jennifer Grannen, Priya Sundaresan, Brijen Thananjeyan, Jeffrey Ichnowski, Ashwin
Balakrishna, Minho Hwang, Vainavi Viswanath, Michael Laskey, Joseph E Gonzalez,
and Ken Goldberg. “Untangling dense knots by learning task-relevant keypoints”. In:
Conference on Robot Learning (2020).

[241] Wen Hao Lui and Ashutosh Saxena. “Tangled: Learning to untangle ropes with RGB-
D perception”. In: 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.
IEEE. 2013, pp. 837–844.

[242] Priya Sundaresan, Jennifer Grannen, Brijen Thananjeyan, Ashwin Balakrishna, Jef-
frey Ichnowski, Ellen Novoseller, Minho Hwang, Michael Laskey, Joseph E Gonzalez,
and Ken Goldberg. “Untangling dense non-planar knots by learning manipulation fea-
tures and recovery policies”. In: Proc. Robotics: Science and Systems (RSS) (2021).

[243] Kenneth Y Goldberg and Ruzena Bajcsy. “Active touch and robot perception”. In:
Cognition and Brain Theory 7.2 (1984), pp. 199–214.

[244] Tonci Novkovic, Remi Pautrat, Fadri Furrer, Michel Breyer, Roland Siegwart, and
Juan Nieto. “Object finding in cluttered scenes using interactive perception”. In:
2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2020, pp. 8338–8344.

[245] Constantine J Tsikos and Ruzena K Bajcsy. “Segmentation via manipulation”. In:
Technical Reports (CIS) (1988), p. 694.

[246] Michael Danielczuk, Andrey Kurenkov, Ashwin Balakrishna, Matthew Matl, David
Wang, Roberto Mart́ın-Mart́ın, Animesh Garg, Silvio Savarese, and Ken Goldberg.
“Mechanical search: Multi-step retrieval of a target object occluded by clutter”. In:
2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019,
pp. 1614–1621.

BIBLIOGRAPHY 226

[247] Bryan Willimon, Stan Birchfield, and Ian Walker. “Classification of clothing using
interactive perception”. In: 2011 IEEE International Conference on Robotics and
Automation. IEEE. 2011, pp. 1862–1868.

[248] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 39.6 (2017), pp. 1137–1149.

[249] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional Networks
for Semantic Segmentation”. In: CVPR (2015).

[250] Stephane Ross, Geoffrey J Gordon, and J Andrew Bagnell. “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning”. In: International
Conference on Artificial Intelligence and Statistics (AISTATS). 2011.

[251] Jihong Zhu, Andrea Cherubini, Claire Dune, David Navarro-Alarcon, Farshid Alam-
beigi, D Berenson, Fanny Ficuciello, Kensuke Harada, Jens Kober, Xiang Li, et al.
“Challenges and Outlook in Robotic Manipulation of Deformable Objects”. In: IEEE
Robotics and Automation Magazine (2021).

[252] Andreas Doumanoglou, Jan Stria, Georgia Peleka, Ioannis Mariolis, Vladimir Petrik,
Andreas Kargakos, Libor Wagner, Václav Hlaváč, Tae-Kyun Kim, and Sotiris Malas-
siotis. “Folding clothes autonomously: A complete pipeline”. In: IEEE Transactions
on Robotics 32.6 (2016), pp. 1461–1478.

[253] Jeremy Maitin-Shepard, Marco Cusumano-Towner, Jinna Lei, and Pieter Abbeel.
“Cloth grasp point detection based on multiple-view geometric cues with applica-
tion to robotic towel folding”. In: IEEE International Conference on Robotics and
Automation. IEEE. 2010, pp. 2308–2315.

[254] Lawrence Yunliang Chen, Huang Huang, Ellen Novoseller, Daniel Seita, Jeffrey Ich-
nowski, Michael Laskey, Richard Cheng, Thomas Kollar, and Ken Goldberg. “Effi-
ciently Learning Single-Arm Fling Motions to Smooth Garments”. In: arXiv e-prints
(2022), arXiv–2206.

[255] Christian Bersch, Benjamin Pitzer, and Sören Kammel. “Bimanual robotic cloth ma-
nipulation for laundry folding”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2011, pp. 1413–1419.

[256] Christian Smith, Yiannis Karayiannidis, Lazaros Nalpantidis, Xavi Gratal, Peng Qi,
Dimos V Dimarogonas, and Danica Kragic. “Dual arm manipulation—A survey”. In:
Robotics and Autonomous systems 60.10 (2012), pp. 1340–1353.

[257] Aaron Edsinger and Charles C Kemp. “Two arms are better than one: A behavior
based control system for assistive bimanual manipulation”. In: Recent progress in
robotics: Viable robotic service to human. Springer, 2007, pp. 345–355.

BIBLIOGRAPHY 227

[258] Irene Garcia-Camacho, Martina Lippi, Michael C Welle, Hang Yin, Rika Antonova,
Anastasiia Varava, Julia Borras, Carme Torras, Alessandro Marino, Guillem Alenya,
et al. “Benchmarking bimanual cloth manipulation”. In: IEEE Robotics and Automa-
tion Letters 5.2 (2020), pp. 1111–1118.

[259] Li Sun, Gerarado Aragon-Camarasa, Paul Cockshott, Simon Rogers, and J Paul
Siebert. “A heuristic-based approach for flattening wrinkled clothes”. In: Conference
Towards Autonomous Robotic Systems. Springer. 2013, pp. 148–160.

[260] Bryan Willimon, Stan Birchfield, and Ian Walker. “Model for unfolding laundry using
interactive perception”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2011, pp. 4871–4876.

[261] Devin J Balkcom and Matthew T Mason. “Robotic origami folding”. In: The Inter-
national Journal of Robotics Research 27.5 (2008), pp. 613–627.

[262] Kenta Tanaka, Yusuke Kamotani, and Yasuyoshi Yokokohji. “Origami folding by a
robotic hand”. In: 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE. 2007, pp. 2540–2547.

[263] Daisuke Tanaka, Solvi Arnold, and Kimitoshi Yamazaki. “Emd net: An encode–
manipulate–decode network for cloth manipulation”. In: IEEE Robotics and Automa-
tion Letters 3.3 (2018), pp. 1771–1778.

[264] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and Thomas
Funkhouser. “Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning”. In: 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE. 2018, pp. 4238–4245.

[265] Lars Berscheid, Pascal Meißner, and Torsten Kröger. “Robot learning of shifting ob-
jects for grasping in cluttered environments”. In: 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 612–618.

[266] Jennifer Grannen, Priya Sundaresan, Brijen Thananjeyan, Jeffrey Ichnowski, Ashwin
Balakrishna, Vainavi Viswanath, Michael Laskey, Joseph Gonzalez, and Ken Gold-
berg. “Untangling Dense Knots by Learning Task-Relevant Keypoints”. In: Confer-
ence on Robot Learning. PMLR. 2021, pp. 782–800.

[267] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. “Aggregated
residual transformations for deep neural networks”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2017, pp. 1492–1500.

[268] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: International Conference on Medical
image computing and computer-assisted intervention. Springer. 2015, pp. 234–241.

[269] Lars Berscheid, Pascal Meißner, and Torsten Kröger. “Self-supervised learning for
precise pick-and-place without object model”. In: IEEE Robotics and Automation
Letters 5.3 (2020), pp. 4828–4835.

BIBLIOGRAPHY 228

[270] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria
Attarian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. “Trans-
porter Networks: Rearranging the Visual World for Robotic Manipulation”. In: Con-
ference on Robot Learning. PMLR. 2021, pp. 726–747.

[271] How to Fold a T-Shirt in Two Seconds. https://www.wikihow.com/Fold-a-T-
Shirt-in-Two-Seconds. Accessed: 2022-03-01.

[272] S Gliessman, M Altieri, et al. “Polyculture cropping has advantages”. In: California
Agriculture 36.7 (1982), pp. 14–16.

[273] Matt Liebman. “Polyculture cropping systems”. In: Agroecology. CRC Press, 2018,
pp. 205–218.

[274] Timothy E Crews, Wim Carton, and Lennart Olsson. “Is the future of agriculture
perennial? Imperatives and opportunities to reinvent agriculture by shifting from
annual monocultures to perennial polycultures”. In: Global Sustainability 1 (2018).

[275] James W Jones, Gerrit Hoogenboom, Cheryl H Porter, Ken J Boote, William D
Batchelor, LA Hunt, Paul W Wilkens, Upendra Singh, Arjan J Gijsman, and Joe T
Ritchie. “The DSSAT cropping system model”. In: European journal of agronomy
18.3-4 (2003), pp. 235–265.

[276] Pasquale Steduto, Theodore C Hsiao, Dirk Raes, and Elias Fereres. “AquaCrop—The
FAO crop model to simulate yield response to water: I. Concepts and underlying
principles”. In: Agronomy Journal 101.3 (2009), pp. 426–437.

[277] Kelly R Thorp and Kevin F Bronson. “A model-independent open-source geospatial
tool for managing point-based environmental model simulations at multiple spatial
locations”. In: Environmental modelling & software 50 (2013), pp. 25–36.

[278] Nived Chebrolu, Thomas Läbe, and Cyrill Stachniss. “Spatio-Temporal Non-Rigid
Registration of 3D Point Clouds of Plants”. In: ().

[279] Christian Damgaard, Jacob Weiner, and Hisae Nagashima. “Modelling individual
growth and competition in plant populations: growth curves of Chenopodium album
at two densities”. In: Journal of Ecology 90.4 (2002), pp. 666–671.

[280] William J Price, Bahman Shafii, and Donald C Thill. “An individual-plant growth
simulation model for quantifying plant competition”. In: (1994).

[281] Uta Berger, Cyril Piou, Katja Schiffers, and Volker Grimm. “Competition among
plants: concepts, individual-based modelling approaches, and a proposal for a future
research strategy”. In: Perspectives in Plant Ecology, Evolution and Systematics 9.3-4
(2008), pp. 121–135.

[282] T Czárán and S Bartha. “The effect of spatial pattern on community dynamics; a
comparison of simulated and field data”. In: Progress in theoretical vegetation science.
Springer, 1990, pp. 229–239.

https://www.wikihow.com/Fold-a-T-Shirt-in-Two-Seconds
https://www.wikihow.com/Fold-a-T-Shirt-in-Two-Seconds

BIBLIOGRAPHY 229

[283] Marius Wiggert, Leela Amladi, Ron Berenstein, Stefano Carpin, Joshua Viers, Stavros
Vougioukas, and Ken Goldberg. “RAPID-MOLT: A Meso-scale, Open-source, Low-
cost Testbed for Robot Assisted Precision Irrigation and Delivery”. In: 2019 IEEE
15th International Conference on Automation Science and Engineering (CASE). IEEE.
2019, pp. 1489–1496.

[284] Novian Habibie, Aditya Murda Nugraha, Ahmad Zaki Anshori, M. Anwar Ma’sum,
and Wisnu Jatmiko. “Fruit mapping mobile robot on simulated agricultural area in
Gazebo simulator using simultaneous localization and mapping (SLAM)”. In: (2017).

[285] Eric Rohmer, Surya PN Singh, and Marc Freese. “CoppeliaSim (formerly V-REP): a
Versatile and Scalable Robot Simulation Framework”. In: Proc. of The International
Conference on Intelligent Robots and Systems (IROS). 2013.

[286] K. R. Aravind and P. Raja. “Design and Simulation of Crop Monitoring Robot for
Green House”. In: (2016).

[287] Hans Peter Koelewijn. “Rapid change in relative growth rate between the vegetative
and reproductive stage of the life cycle in Plantago coronopus”. In: New phytologist
163.1 (2004), pp. 67–76.

[288] Andrew Keller. “Evapotranspiration and crop water productivity: making sense of
the yield-ET relationship”. In: Impacts of Global Climate Change. 2005, pp. 1–11.

[289] Theodore C Hsiao. “Effects of drought and elevated CO 2 on plant water use efficiency
and productivity”. In: Interacting stresses on plants in a changing climate. Springer,
1993, pp. 435–465.

[290] LG Firbank and AR Watkinson. “A model of interference within plant monocultures”.
In: Journal of Theoretical Biology 116.2 (1985), pp. 291–311.

[291] Anupama Goyal, Elizabeth Karayekov, Vinicius Costa Galvão, Hong Ren, Jorge
J Casal, and Christian Fankhauser. “Shade promotes phototropism through phy-
tochrome B-controlled auxin production”. In: Current Biology 26.24 (2016), pp. 3280–
3287.

[292] Moritoshi Iino, Chen Long, and Xiaojing Wang. “Auxin-and abscisic acid-dependent
osmoregulation in protoplasts of Phaseolus vulgaris pulvini”. In: Plant and Cell Phys-
iology 42.11 (2001), pp. 1219–1227.

[293] Argyris Zardilis, Alastair Hume, and Andrew J Millar. “A multi-model framework for
the Arabidopsis life cycle”. In: Journal of experimental botany 70.9 (2019), pp. 2463–
2477.

[294] Tadaki Hirose, Toshihiko Kinugasa, and Yukinori Shitaka. “Time of flowering, costs
of reproduction, and reproductive output in annuals”. In: Reproductive allocation in
plants. Elsevier, 2005, pp. 159–188.

[295] Peter John Lumsden and Andrew J Millar. Biological rhythms and photoperiodism in
plants. Bios Scientific Publishers, 1998.

BIBLIOGRAPHY 230

[296] J C Van Dam, J Huygen, JG Wesseling, RA Feddes, P Kabat, PEV Van Walsum,
P Groenendijk, and CA Van Diepen. Theory of SWAP version 2.0; Simulation of
water flow, solute transport and plant growth in the soil-water-atmosphere-plant en-
vironment. Tech. rep. DLO Winand Staring Centre, 1997.

[297] David Tseng, David Wang, Carolyn Chen, Lauren Miller, William Song, Joshua Viers,
Stavros Vougioukas, Stefano Carpin, Juan Aparicio Ojea, and Ken Goldberg. “To-
wards automating precision irrigation: Deep learning to infer local soil moisture con-
ditions from synthetic aerial agricultural images”. In: 2018 IEEE 14th International
Conference on Automation Science and Engineering (CASE). IEEE. 2018, pp. 284–
291.

[298] Stephen J Risch. “Intercropping as cultural pest control: prospects and limitations”.
In: Environmental Management 7.1 (1983), pp. 9–14.

[299] Sven Erik Jorgensen and Brian D Fath. Encyclopedia of ecology. Newnes, 2014.

[300] Fusuo Zhang and Long Li. “Using competitive and facilitative interactions in inter-
cropping systems enhances crop productivity and nutrient-use efficiency”. In: Plant
and soil 248.1-2 (2003), pp. 305–312.

[301] NA Bogie, R Bayala, I Diedhiou, RP Dick, and TA Ghezzehei. “Intercropping with
two native woody shrubs improves water status and development of interplanted
groundnut and pearl millet in the Sahel”. In: Plant and soil 435.1-2 (2019), pp. 143–
159.

[302] Teja Tscharntke, Yann Clough, Shonil A Bhagwat, Damayanti Buchori, Heiko Faust,
Dietrich Hertel, Dirk Hölscher, Jana Juhrbandt, Michael Kessler, Ivette Perfecto,
et al. “Multifunctional shade-tree management in tropical agroforestry landscapes–a
review”. In: Journal of Applied Ecology 48.3 (2011), pp. 619–629.

[303] Todd S Rosenstock, Daniel Liptzin, Kristin Dzurella, Anna Fryjoff-Hung, Allan Hol-
lander, Vivian Jensen, Aaron King, George Kourakos, Alison McNally, G Stuart
Pettygrove, et al. “Agriculture’s contribution to nitrate contamination of Califor-
nian groundwater (1945–2005)”. In: Journal of Environmental Quality 43.3 (2014),
pp. 895–907.

[304] Alberto Mantovani. Pesticide risk assessment: European framework shows need for
safer alternatives. 2019. url: https://www.openaccessgovernment.org/pesticide-
risk-assessment/79226/ (visited on 12/11/2019).

[305] David Tilman, Kenneth G Cassman, Pamela A Matson, Rosamond Naylor, and
Stephen Polasky. “Agricultural sustainability and intensive production practices”.
In: Nature 418.6898 (2002), pp. 671–677.

https://www.openaccessgovernment.org/pesticide-risk-assessment/79226/
https://www.openaccessgovernment.org/pesticide-risk-assessment/79226/

BIBLIOGRAPHY 231

[306] Yahav Avigal, Jensen Gao, William Wong, Kevin Li, Grady Pierroz, Fang Shuo
Deng, Mark Theis, Mark Presten, and Ken Goldberg. “Simulating Polyculture Farm-
ing to Tune Automation Policies for Plant Diversity and Precision Irrigation”. In:
2020 IEEE 16th International Conference on Automation Science and Engineering
(CASE). IEEE. 2020, pp. 238–245.

[307] Jonathan Minchin. ROMI: Robotics for Microfarming. 2020. url: https://www.

openaccessgovernment.org/romi-robotics-for-microfarming/80533/ (visited
on 01/14/2020).

[308] BOWERY FARMING INC. Bowery farming. 2020. url: https://boweryfarming.
com/ (visited on 10/15/2020).

[309] Joseph Santarromana Ken Goldberg. The Telegarden. 1995. url: https://goldberg.
berkeley.edu/garden/Ars/ (visited on 12/11/2019).

[310] Ken Goldberg. The Robot in the Garden: Telerobotics and Telepistemology in the Age
of the Internet. Mit Press, 2001.

[311] Sandunika Fernando, Ranusha Nethmi, Ashen Silva, Ayesh Perera, Rajitha De Silva,
and Pradeep WK Abeygunawardhana. “AI Based Greenhouse Farming Support Sys-
tem with Robotic Monitoring”. In: 2020 IEEE REGION 10 CONFERENCE (TEN-
CON). IEEE. 2020, pp. 1368–1373.

[312] TjeerdJan Stomph, Christos Dordas, Alain Baranger, Joshua de Rijk, Bei Dong,
Jochem Evers, Chunfeng Gu, Long Li, Johan Simon, Erik Steen Jensen, et al. “De-
signing intercrops for high yield, yield stability and efficient use of resources: Are
there principles?” In: Advances in Agronomy. Vol. 160. 1. Elsevier, 2020, pp. 1–50.

[313] Joshua E Whitman, Harshal Maske, Hassan A Kingravi, and Girish Chowdhary.
“Evolving Gaussian Processes and Kernel Observers for Learning and Control in Spa-
tiotemporally Varying Domains: With Applications in Agriculture, Weather Monitor-
ing, and Fluid Dynamics”. In: IEEE Control Systems Magazine 41.1 (2021), pp. 30–
69.

[314] Fang Gou, Martin K van Ittersum, and Wopke van der Werf. “Simulating poten-
tial growth in a relay-strip intercropping system: model description, calibration and
testing”. In: Field Crops Research 200 (2017), pp. 122–142.

[315] Meixiu Tan, Fang Gou, Tjeerd Jan Stomph, Jing Wang, Wen Yin, Lizhen Zhang,
Qiang Chai, and Wopke van der Werf. “Dynamic process-based modelling of crop
growth and competitive water extraction in relay strip intercropping: Model develop-
ment and application to wheat-maize intercropping”. In: Field Crops Research 246
(2020), p. 107613.

[316] Yang Yu. “Crop yields in intercropping: meta-analysis and virtual plant modelling”.
PhD thesis. Wageningen University, 2016.

[317] FarmBot. FarmBot. 2020. url: https://farm.bot/ (visited on 10/26/2020).

https://www.openaccessgovernment.org/romi-robotics-for-microfarming/80533/
https://www.openaccessgovernment.org/romi-robotics-for-microfarming/80533/
https://boweryfarming.com/
https://boweryfarming.com/
https://goldberg.berkeley.edu/garden/Ars/
https://goldberg.berkeley.edu/garden/Ars/
https://farm.bot/

BIBLIOGRAPHY 232

[318] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 770–778.

[319] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet:
A large-scale hierarchical image database”. In: 2009 IEEE conference on computer
vision and pattern recognition. Ieee. 2009, pp. 248–255.

[320] Craig W Whippo and Roger P Hangarter. “Phototropism: bending towards enlight-
enment”. In: The Plant Cell 18.5 (2006), pp. 1110–1119.

[321] Daniela Dietrich. “Hydrotropism: how roots search for water”. In: Journal of experi-
mental botany 69.11 (2018), pp. 2759–2771.

[322] METER Environment. METER. url: https://www.metergroup.com/environment/
(visited on 10/29/2020).

[323] Brenda B. Lin, Monika H. Egerer, Heidi Liere, Shalene Jha, and Stacy M. Philpott.
“Soil management is key to maintaining soil moisture in urban gardens facing chang-
ing climatic conditions”. In: Scientific Reports 8.1 (Dec. 3, 2018). Number: 1 Pub-
lisher: Nature Publishing Group, p. 17565.

[324] Pinetree Garden Seeds. Pinetree Garden Seeds - Vegetable Collections. 2020. url:
https://www.superseeds.com/ (visited on 10/15/2020).

[325] Katarzyna Adamczewska-Sowińska and Józef Sowiński. “Polyculture Management: A
Crucial System for Sustainable Agriculture Development”. In: Soil Health Restoration
and Management. Springer, 2020, pp. 279–319.

[326] J.E. Parker, W.E. Snyder, G.C. Hamilton, and Cesar Rodriguez-Saona. “Companion
planting and insect pest control”. In: Weed and Pest Control - Conventional and New
Challenges (Jan. 2013), pp. 1–30.

[327] Aaron L. Iverson, Linda E. Maŕın, Katherine K. Ennis, David J. Gonthier, Ben-
jamin T. Connor-Barrie, Jane L. Remfert, Bradley J. Cardinale, and Ivette Perfecto.
“REVIEW: Do polycultures promote win-wins or trade-offs in agricultural ecosystem
services? A meta-analysis”. In: Journal of Applied Ecology 51.6 (2014), pp. 1593–
1602. eprint: https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.

1111/1365-2664.12334.

[328] S Yogesh, SI Halikatti, SM Hiremath, MP Potdar, SI Harlapur, H Venkatesh, et al.
“Light use efficiency, productivity and profitability of maize and soybean intercrop-
ping as influenced by planting geometry and row proportion.” In: Karnataka Journal
of Agricultural Sciences 27.1 (2014), pp. 1–4.

[329] Weizheng Ren, Liangliang Hu, Jian Zhang, Cuiping Sun, Jianjun Tang, Yongge Yuan,
and Xin Chen. “Can positive interactions between cultivated species help to sus-
tain modern agriculture?” In: Frontiers in Ecology and the Environment 12.9 (2014),
pp. 507–514. eprint: https://esajournals.onlinelibrary.wiley.com/doi/pdf/
10.1890/130162.

https://www.metergroup.com/environment/
https://www.superseeds.com/
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2664.12334
https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2664.12334
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/130162
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/130162

BIBLIOGRAPHY 233

[330] David L. Dunn, ed. Ethicon Wound Closure Manual. Ethicon, Incorporated, 1994.

[331] Daegu Son and Aram Harijan. “Overview of surgical scar prevention and manage-
ment”. In: Journal of Korean medical science 29.6 (2014), p. 751.

[332] Nick Marsidi, Sofieke AM Vermeulen, Tim Horeman, and Roel E Genders. “Measuring
forces in suture techniques for wound closure”. In: journal of surgical research 255
(2020), pp. 135–143.

[333] Jean Gaston Descoux, Walley J Temple, Shirley A Huchcroft, Cyril B Frank, and Nigel
G Shrive. “Linea alba closure: determination of ideal distance between sutures”. In:
Journal of Investigative Surgery 6.2 (1993), pp. 201–209.

[334] Uday Devgan. Basic Principles of Ophthalmic Suturing. https://cataractcoach.com/2-
018/07/29/basic-principles-of-ophthalmic-suturing/. Accessed: 2023-03-12.

[335] Florent Nageotte, Philippe Zanne, Christophe Doignon, and Michel De Mathelin.
“Stitching planning in laparoscopic surgery: Towards robot-assisted suturing”. In:
The International Journal of Robotics Research 28.10 (2009), pp. 1303–1321.

[336] John Schulman, Jonathan Ho, Cameron Lee, and Pieter Abbeel. “Generalization in
robotic manipulation through the use of non-rigid registration”. In: Proceedings of
the 16th International Symposium on Robotics Research (ISRR). 2013.

[337] Siddarth Sen, Animesh Garg, David V Gealy, Stephen McKinley, Yiming Jen, and
Ken Goldberg. “Automating multi-throw multilateral surgical suturing with a me-
chanical needle guide and sequential convex optimization”. In: 2016 IEEE interna-
tional conference on robotics and automation (ICRA). IEEE. 2016, pp. 4178–4185.

[338] Azad Shademan, Ryan S Decker, Justin D Opfermann, Simon Leonard, Axel Krieger,
and Peter CW Kim. “Supervised autonomous robotic soft tissue surgery”. In: Science
translational medicine 8.337 (2016), 337ra64–337ra64.

[339] Sahba Aghajani Pedram, Peter Ferguson, Ji Ma, Erik Dutson, and Jacob Rosen.
“Autonomous suturing via surgical robot: An algorithm for optimal selection of needle
diameter, shape, and path”. In: 2017 IEEE International conference on robotics and
automation (ICRA). IEEE. 2017, pp. 2391–2398.

[340] Russell C Jackson, Viraj Desai, Jean P Castillo, and M Cenk Çavuşoğlu. “Needle-
tissue interaction force state estimation for robotic surgical suturing”. In: 2016 IEEE-
/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2016, pp. 3659–3664.

[341] Sahba Aghajani Pedram, Changyeob Shin, Peter Walker Ferguson, Ji Ma, Erik P
Dutson, and Jacob Rosen. “Autonomous suturing framework and quantification us-
ing a cable-driven surgical robot”. In: IEEE Transactions on Robotics 37.2 (2020),
pp. 404–417.

BIBLIOGRAPHY 234

[342] Brijen Thananjeyan, Ajay Tanwani, Jessica Ji, Danyal Fer, Vatsal Patel, Sanjay Kr-
ishnan, and Ken Goldberg. “Optimizing robot-assisted surgery suture plans to avoid
joint limits and singularities”. In: 2019 International Symposium on Medical Robotics
(ISMR). IEEE. 2019, pp. 1–7.

[343] Oxford Medical Education. Suturing techniques. Apr. 2016. url: https://oxfordme-
%20dicaleducation.com/clinical-skills/procedures/suturing-techniques/.

[344] Dieter Kraft. “A software package for sequential quadratic programming”. In: Forsch-
ungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt (19-
88).

[345] Brijen Thananjeyan, Justin Kerr, Huang Huang, Joseph E Gonzalez, and Ken Gold-
berg. “All you need is luv: Unsupervised collection of labeled images using invisible
uv fluorescent indicators”. In: arXiv preprint arXiv:2203.04566 (2022).

[346] Russell C Jackson, Rick Yuan, Der-Lin Chow, Wyatt S Newman, and M Cenk Çavuş-
oğlu. “Real-time visual tracking of dynamic surgical suture threads”. In: IEEE Trans-
actions on Automation science and Engineering 15.3 (2017), pp. 1078–1090.

[347] Kaushik Shivakumar, Vainavi Viswanath, Anrui Gu, Yahav Avigal, Justin Kerr, Jef-
frey Ichnowski, Richard Cheng, Thomas Kollar, and Ken Goldberg. “Sgtm 2.0: Au-
tonomously untangling long cables using interactive perception”. In: 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 5837–
5843.

[348] Nicolas Padoy and Gregory D Hager. “3D thread tracking for robotic assistance in
tele-surgery”. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2011, pp. 2102–2107.

[349] Neelay Joglekar, Fei Liu, Ryan Orosco, and Michael Yip. “Suture thread spline recon-
struction from endoscopic images for robotic surgery with reliability-driven keypoint
detection”. In: 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2023, pp. 4747–4753.

[350] Bo Lu, Bin Li, Wei Chen, Yueming Jin, Zixu Zhao, Qi Dou, Pheng-Ann Heng, and
Yunhui Liu. “Toward image-guided automated suture grasping under complex envi-
ronments: A learning-enabled and optimization-based holistic framework”. In: IEEE
Transactions on Automation Science and Engineering 19.4 (2021), pp. 3794–3808.

[351] Roberto Mart́ın-Mart́ın and Oliver Brock. “Coupled recursive estimation for online in-
teractive perception of articulated objects”. In: The International Journal of Robotics
Research 41.8 (2022), pp. 741–777.

[352] Prajval Kumar Murali, Anirvan Dutta, Michael Gentner, Etienne Burdet, Ravinder
Dahiya, and Mohsen Kaboli. “Active visuo-tactile interactive robotic perception for
accurate object pose estimation in dense clutter”. In: IEEE Robotics and Automation
Letters 7.2 (2022), pp. 4686–4693.

https://oxfordme-%20dicaleducation.com/clinical-skills/procedures/suturing-techniques/
https://oxfordme-%20dicaleducation.com/clinical-skills/procedures/suturing-techniques/

BIBLIOGRAPHY 235

[353] Peter Kazanzides, Zihan Chen, Anton Deguet, Gregory S Fischer, Russell H Taylor,
and Simon P DiMaio. “An open-source research kit for the da Vinci® Surgical Sys-
tem”. In: 2014 IEEE international conference on robotics and automation (ICRA).
IEEE. 2014, pp. 6434–6439.

[354] Vainavi Viswanath, Kaushik Shivakumar, Jainil Ajmera, Mallika Parulekar, Justin
Kerr, Jeffrey Ichnowski, Richard Cheng, Thomas Kollar, and Ken Goldberg. “Learn-
ing to Trace and Untangle Semi-planar Knots (TUSK)”. In: arXiv preprint arXiv:2303-
.08975 (2023).

[355] Azarakhsh Keipour, Maryam Bandari, and Stefan Schaal. “Deformable one-dimensio-
nal object detection for routing and manipulation”. In: IEEE Robotics and Automa-
tion Letters 7.2 (2022), pp. 4329–4336.

[356] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. “3d
gaussian splatting for real-time radiance field rendering”. In: ACM Transactions on
Graphics 42.4 (2023), pp. 1–14.

	Contents
	Introduction
	Efficiency and Reliability in Motion Planning for Object Transport
	Efficiency and Reliability in Grasping Partially Observable Rigid Objects
	Efficiency and Reliability in Bimanual Deformable Manipulation
	Efficient and Reliable Autonomous Gardening
	Efficient and Reliable Autonomous Suturing
	Thesis Contributions

	 Efficiency and Reliability in Motion Planning for Object Transport
	DJ-GOMP: Warmstarting Motion Planning Optimization Using Deep Learning
	Introduction
	Related Work
	Problem Statement
	Method
	Jerk- and Time-optimized Trajectory Generation
	Deep Learning of Trajectories
	Fast Pipeline for Trajectory Generation

	Experiments
	Discussion and Future Work

	GOMP-FIT: Making Fast Object Transport Reliable
	Introduction
	Related Work
	Problem Statement
	Method
	GOMP Background
	GOMP-FIT End-Effector Acceleration Constraints
	Minimization Objective

	Experiments
	Open-Top Container Transport
	Fragile Object Transport
	Filled Wineglass Transport

	Discussion and Future Work

	GOMP-ST: Making Fast Object Transport with Suction Grasping Reliable
	Introduction
	Related Work
	Problem Statement
	Method
	Background: GOMP-FIT
	Learned constraints in the SQP
	Self-supervised data collection and training
	Analytic model of suction-cup failure for GOMP-FIT baseline

	Experiments
	Ablation studies
	Results

	Discussion and Future Work

	BOMP: Optimized Motion Planning for Bin Picking
	Introduction
	Related Work
	Problem Statement
	Method
	Grasped Box Shape Estimation
	Suction Grasp Selection
	Optimization Formulation
	Collision Checking
	Deep Learning Warm-start
	Speeding Up Computation

	Experiments
	Simulated Experiments
	Physical Experiments

	Discussion and Future Work

	 Efficiency and Reliability in Grasping Partially Observable Rigid Objects
	AVPLUG: Approach Vector Planning in Cluttered Environments
	Introduction
	Related Work
	Problem Statement
	Definitions

	Method
	Updating the Octree
	Finding Candidate Target Object Locations
	Finding Candidate Vectors
	Evaluating Candidate Vectors
	Finding and Evaluating Visible Grasps

	Experiments
	Simulation Experiments
	Environments in Simulation
	GridSearch Baseline
	Simulation Results
	Physical Experiments
	Visibility vs Graspability
	Failure Cases

	Discussion and Future Work

	Grasping Transparent Objects Reliably
	Introduction
	Related Work
	Problem Statement
	Method
	Preliminary: Training NeRF
	Recovering Geometry of Transparent Objects
	Rendering Depth for Grasp Analysis
	Improving Reconstruction with Light Placement

	Experiments
	Datasets
	Synthetic Grasping Experiments
	Physical Grasping Experiments
	Comparison to RealSense Depth
	One vs Many Lights
	Workcell Setup

	Discussion and Future Work

	Grasping Transparent Objects Efficiently
	Introduction
	Related Work
	Problem Statement
	Method
	Evo-NeRF
	Grasp Planning Network

	Experiments
	Physical Setup
	Rapid single object retrieval
	Sequential decluttering
	Graspability ablation
	NeRF Depth vs Ground Truth Depth

	Discussion and Future Work
	Limitations and future work

	 Efficiency and Reliability in Bimanual Deformable Manipulation
	Using Interactive Perception to Untangle Long Cables
	Introduction
	Related Work
	Problem Statement
	Workspace Definition and Assumptions
	Task Objective and Metrics

	Method
	Approach Overview
	Uncertainty-Aware Perception Systems
	Novel Manipulation Primitives for Interactive Perception
	Sliding and Grasping for Tangle Manipulation 2.0 (SGTM 2.0) Algorithm

	Experiments
	Experimental Setup
	Results
	Failure Modes
	Ablations

	Discussion and Future Work

	Learning Efficient Bimanual Folding of Garments
	Introduction
	Related Work
	Problem Statement
	Method
	Action Primitives
	BiMaMa-Net for Bimanual Manipulation
	Reachability Calibration
	Training for Smoothing
	Folding Pipeline

	Experiments
	Experimental Setup
	Sufficiently Smoothed
	Folds per Hour
	Generalization to Unseen Garments
	System Limitations

	Discussion and Future Work

	 Efficient and Reliable Autonomous Gardening
	AlhphaGarden
	Introduction
	Related Work
	AlphaGardenSim
	Modeling
	Plant Growth Model
	Life Cycle
	Water Stress
	Irrigation
	Diversity

	Experiments
	Experimental Setup
	Policies
	Evaluation

	Discussion and Future Work

	Learning Efficient Policies for Polyculture Farming with Optimized Seed Placements
	Introduction
	Related Work
	Plant Phenotyping
	Irrigation Model
	Growth Analysis
	Companion Planting
	Pruning and Irrigation Policies
	Simulation Experiments
	Discussion and Future Work

	 Efficient and Reliable Autonomous Suturing
	Automating 2D Suture Placement
	Introduction
	Related Work
	Needle Path Planning
	The Suture Planning Problem

	Problem Statement
	Method
	Input
	Optimization
	Suture regularity constraints and objectives
	Generalizing the Diamond Force Model
	Closure and shear force objectives
	Force closure objective
	Parameter settings
	Adjustment

	Experiments
	 Synthetic Splines
	Physical Experiments on Chicken Skin

	Discussion and Future Work
	Limitations
	Future work

	Autonomous Suture Tail-Shortening
	Introduction
	Related Work
	Problem Statement
	Method
	Module 1: Learned 2D Surgical Thread Detection
	Module 2: 2D Surgical Thread Tracing
	Module 3: 3D Surgical Thread Tracing
	Module 4: 3D Surgical Thread Tracking
	Module 5: Surgical Suture Tail-Shortening

	Experiments
	Modules 1-3: 2D Thread Detection and 2D & 3D Tracing
	Module 4: 3D Surgical Thread Tracking
	Module 5: Surgical Suture Tail-Shortening

	Discussion and Future Work

	 Conclusion
	Concluding Remarks
	Lessons Learned
	Physical Experiments
	Rejected Papers

	Opportunities for Future Work
	Reactive Motion Planning Around Moving Obstacles
	Grasping Transparent Objects in Real-Time
	Suture Planning in Real-Time

	Bibliography

