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Abstract

Gene networks have yielded numerous neurobiological insights, yet an integrated view across 

brain regions is lacking. We leverage RNA-sequencing in 864 samples representing 12 brain 

regions to robustly identify 12 brain-wide, 50 cross-regional and 114 region-specific co-expression 

modules. Nearly 40% of genes fall into brain-wide modules, while 25% comprise region-

specific modules reflecting regional biology, such as oxytocin signaling in the hypothalamus, 

or addiction pathways in the nucleus accumbens. Schizophrenia and autism genetic risk is 

enriched in brain-wide and multi-regional modules, indicative of broad impact; these modules 

implicate neuronal proliferation and activity-dependent processes, including endocytosis and 
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splicing in disease pathophysiology. We find that cell-type-specific lncRNA and gene isoforms 

contribute substantially to regional synaptic diversity and that constrained, mutation intolerant 

genes are primarily enriched in neurons. We leverage these data using an omnigenic-inspired 

network framework to characterize how co-expression and gene regulatory networks reflect 

neuropsychiatric disease risk, supporting polygenic models.

Introduction

Neuropsychiatric diseases are genetically complex, adhering to a polygenic architecture 

consisting of thousands of risk-conferring variants and genes.1 In contrast to Mendelian 

disorders – where generalizable mechanistic insight can be obtained from the analysis of 

a single gene – the etiology of complex genetic disorders is organized around functional 

groups of genes, or pathways.1 Genes within these groups are expected to be co-regulated 

and expressed at levels that permit the pathway to function.2,3 RNA co-expression 

and protein-protein interaction (PPI) networks provide a powerful conceptual framework 

for understanding how such groups of genes are organized, with predictive power to 

prioritize disease-associated variation in polygenic disorders.4,5,6 This framework aids 

in characterizing relevant biological pathways by arranging genes into smaller, tractable 

and coherent sets of modules for experimental analysis. Additionally, gene co-expression 

networks can further our understanding of complex, polygenic disorders by linking together 

genes that co-vary across prevalent cell types and cell states within the tissue of interest.7,8

To inform our understanding of molecular mechanisms in human brain, and their disease 

relevance, we create an atlas of co-expression networks across 12 human brain regions 

from GTEx.9 We compare different network construction methods and demonstrate that 

the co-expression relationships defined in these networks are robustly identified using 

multiple methods and orthogonal brain data sets. These networks comprise a new resource 

for understanding convergent pathways and brain regions affected by disease-associated 

variation in adult brain. We use this resource to address several biological questions. We 

show that co-expression is hierarchically organized into signatures ranging from those 

that are brain-wide, to those that are multi-region and region-specific. For both ASD and 

SCZ, three major types of genetic or genomic signals – differential expression, rare high-

impact variants, and common low-effect variants – converge on cross-regional networks that 

implicate neuronal and neural progenitor cell types. Lastly, we incorporate our networks into 

a model of genetic architecture, asking whether these networks exhibit a core-periphery 

structure that follows the recently-framed omnigenic hypothesis.10 We provide a web 

browser, HUBgene, to facilitate access to these data.

Results

Building robust human co-expression networks

To explore the molecular anatomy of the human brain, we utilized RNA-sequencing data 

from the Genotype-Tissue Expression Consortium (GTEx v7), focusing on the 12 major 

brain regions profiled: Cerebellum (CBL), cerebellar hemisphere (CBH), dorso-lateral pre-

frontal cortex (PFC), Brodman area 9 (BA9), Brodman area 24 (BA24), hippocampus 
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(HIP), amygdala (AMY), hypothalamus (HYP), substantia nigra (SNA), nucleus accumbens 

(ACC), caudate nucleus (CDT), and putamen (PUT) (figure 1a). Using a tissue hierarchy 

to structure consensus co-expression (figure 1b, Methods), we used robust WGCNA to 

create 311 co-expression modules for 20 hierarchical expression categories: 12 brain region 

specific categories (corresponding to each sampled region), 7 multi-regional categories 

(corresponding to multiple, structurally-linked regions, figure 1b), and a brain-wide 

category, correcting for known technical factors (Extended Data Fig. 1), sample outliers, 

and brains impacted by inflammation at time of death (Methods). We found that 87% 

(173/199) of the region-level modules were highly preserved in independent datasets (figure 

1c, Supplementary Note) and that region-specific networks showed low preservation in 

other brain regions (figure 1d). To further demonstrate the robustness of co-expression 

relationships to methodological factors, we show that modules were robust to multiple 

alternative network methods (figure 1e), and aggregation methods (figure S1, Supplementary 

Note). By down-sampling our dataset, we establish that we have power to identify all 

module hub genes (Extended Data Fig. 1), and that the co-membership of gene pairs is 

identified with reasonable accuracy (figure 1f,g).

We summarize our analyses at the whole-brain, multi-regional, and region-specific levels, 

structuring our analysis in terms of 48 module sets, based on merging modules – 

within the tissue hierarchy – by their similarity (Methods; table S1). As expected, the 

most physiologically distinct regions, HYP, CBL, and SNA show the largest number of 

region-specific modules (figure 1d). We were also able to identify modules representing 

components shared between specific regions, such as ependymal and choroid epithelial 

cells comprising the choroid plexus, which is juxtaposed in striatum and parts of 

the telencephalon, providing evidence that our modules reflect the biologically correct 

placement of this cell-type module (CP - figure 2a).

Module sets reflect brain cell types and processes

Previous work has shown that cellular composition is a major driver of gene expression 

in tissue.11,12 We therefore expect whole-brain co-expression modules to represent major 

cell classes, and multi-regional or regional modules to represent more specialized cell 

subtypes. We find that five of 11 whole-brain modules (M4, M6, M7, M10, M11) represent 

the 5 canonical brain cell classes (figure 2b; table S2; Methods), and two additional 

modules (M1, M8) reflect neuronal differentiation and glial activation (both microglia and 

astrocyte), respectively (Extended Data Fig. 2). The most significantly cell-type-enriched 

module, BW-M1, enriches for markers of neural progenitor cells, neuronal migration, and 

differentiation, and is most preserved in neurogenic regions, suggesting that it corresponds 

to adult neural progenitor cells (NPCs). BW-M5, another neuronal module, enriches for 

neurodegenerative disease pathways (Extended Data Fig. 2). Modules in the nucleus 

accumbens enrich for morphine addiction and alcoholism terms (table S2; Supplementary 

Note), and the region-specific module BRNHYP-M7 enriches for the oxytocin signaling 

pathway, meeting prior expectations. Thus, we hypothesized that region-specific modules 

may reflect region-specific biology, such as unique cellular subtypes. We use single cell data 

to confirm (Supplementary Note) that the region-specific modules BROD-M8, CEREB-M1, 

and STR-M2 correspond to regional cell classes: cortical interneurons, Purkinje cells, and 
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medium spiny neurons, respectively (figure 2c; table S2). We identify three region-specific 

excitatory neuron modules (CTX-M3, PFC-M1, PFC-M3), and an inhibitory neuronal 

module (figure 2e): BROD-M8 (neuropeptide signaling, perception of pain), while PFC-M1 

(serine/threonine kinase activity) and PFC-M3 (circadian rhythm) both enrich for a specific 

excitatory cell-type (table S3).

Signatures of mutational intolerance

Brain expressed genes are under higher levels of purifying selection than average13 and 

genes intolerant to loss-of-function (LoF) mutations are expressed disproportionately in 

brain.14,15 But, whether mutation intolerance is a general feature of brain expressed genes 

is not known, so we explored the relationship of mutation intolerance to specific cell types. 

Across all modules, the whole brain module BW-M1 is the most significantly enriched for 

LoF intolerant genes (defined as pLI16 > 0.9), followed by BW-M4 and closely related 

BW-M5 (figure 2d, Extended Data Fig. 2), all of which are neuronal. Several of the regional 

or cell type specific modules such as BROD-M8, CEREB-M2, STR-M1, were also enriched 

in LoF intolerant genes. Notably only one glial module, BW-M7 (oligodendrocytes) enriches 

for LoF-intolerant genes, but its degree of enrichment is lower than that of neurons (table 

S4). The concentration of LoF-intolerance within neuronal modules suggests that genetic 

disruption of microglia and astrocyte enriched genes is buffered.

Identifying cell-type-specific lncRNA

Long non-coding RNA (lncRNA) are diverse species that play roles in neurodevelopment 

and neuropsychiatric disease, yet only 52 known lncRNA species were quantified in 

the initial GTEx analysis.9 We use Gradient Boosted Trees to learn module signatures 

(Methods), assigning 286 lncRNA, the majority of which associate with neuronal module 

BW-M4 (66) or the NPC module BW-M1 (109) (Table S5). Notably, more than 20% 

(61/286) of our cell-type specific lncRNAs were previously shown to be dysregulated in 

neuropsychiatric disease, augmenting previous work on differential expression of lncRNA in 

ASD (Table S5).17

Identifying cell-type-specific gene isoforms

We next integrate isoform-level expression with cell type modules (figure 3a; Methods), 

identifying 1,987 isoforms showing specificity to major cell types, of which 549 are 

neuronal, 543 astrocytic, and 696 oligodendroglial (table S6). We validate a subset of 

these findings in sorted cells, quantified at the isoform-level (Supplementary Note; figure 

3b) and build cell-specific isoform maps for D1/D2 medium spiny neurons, Purkinje cells, 

basket cells, and inhibitory neurons - cells for which we have strong enrichments and region-

specific modules (figure 3c, table S6). All modules enrich for synapse-related functions, 

indicating that splicing plays a major role in regional cell type synapse diversity (figure 3d).

A subset of ASD risk genes switch isoforms across cell types

We observed that in 7% of cases, the parent gene of an isoform differs in co-expression 

relationships from an alternatively spliced derivative (figure 3e). We identify 52 genes 

exhibiting switching between cell type modules, 11 of which show neuron/astrocyte 
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switching (BW-M4/BW-M6), and 8 of which show neuron/oligodendrocyte switching (BW-

M4/BW-M7), trends validated in sorted cells (Extended Data Fig. 3). Of the 11 neuron/

astrocyte switching genes, ANK2 and SCP2 are known autism susceptibility genes (figure 

3f,g), while two others, ERGIC3 and PDE4DIP, are weaker candidates (AutDB score 4; 

Extended Data Fig. 3; p < 0.01, Fisher’s exact test). We validate previous observations 

of isoform switching of ANK2 in ASD and SCZ18 at the protein level, establishing that 

the long isoform is primarily neuronal (figure 3h, Extended Data Fig. 4). The neuronal 

ANK2 transcript includes a giant exon which is an organizer of initial axon segments and a 

stabilizer of GABA-A synapses,19 confirming a neuron-specific role for this ANK2 variant.

Ribosomal genes are down-regulated across the cortex

We next sought to understand module-level regulation and its relationship with differential 

gene expression across brain regions. We developed a Regional Contrast Test (RCT, figure 

4a) to test a gene’s regional enrichment (methods; table S7), which we examined at varying 

degrees of granularity (figure 4b). Genes up-regulated in subcortical regions enrich for 

non-neuronal cell-type modules (p < 1e − 10 for BW-M11, BW-M6, BW-M8, BW-M10, and 

BW-M7), consistent with a higher glia/neuron ratio (figure 4c). Conversely, we find BW-M4 

(neuronal) to enrich for the genes up-regulated in cortex compared with sub-cortical regions. 

Interestingly, we observe a significant enrichment in BW-M2 (p = 4.89e − 3), a module 

dominated by small- and large-ribosomal subunit RNA (figure 4d, e), for sub-cortical 

upregulated genes. This is consistent with the observation that that ribosomal turnover 

drastically increases in cultures with higher glial proportion.20

Regional specificity of neuropsychiatric disorder networks

We next assess the regional specificity of disease associated transcriptomic modules by 

re-evaluating changes identified in post mortem tissue from 11 publications representing 

multiple childhood and adult brain disorders (Supplementary Note). We find that a common 

set of modules are involved in overlaps across every co-expression study: BW-M1, BW-M3, 

BW-M4, BW-M6, and BW-M10 (Extended Data Fig. 5). At least one – and in some 

cases every – disease-significant module overlaps with at least one of our whole-brain or 

multi-regional modules (table S8). Thus, although each study was performed in a specific 

brain region, the modules that associate with disease largely reflect brain-wide co-expression 

signatures. While this definitely does not rule out region-specific components for each 

disease, it does suggest that genetic risk has brain-wide impact in neuropsychiatric disorders.

Brain-wide and regional pathways in neuropsychiatric disease

We next investigate whether genetic risk for neuropsychiatric disease converges onto region-

specific or cross-regional modules, identifying two whole-brain modules, BW-M4 (neuron) 

and BW-M1 (neural progenitor) that enrich for ASD-linked rare variants (figure 5a), SCZ 

GWAS signal (figure 5b), and that manifest disrupted expression in ASD post mortem 

brain relative to controls (figure 5c-g). We also identify two regional modules, CTX-M3 

(activity-dependent regulation and endocytosis) and CEREB-M1 (mRNA binding), that 

show ASD rare-variant and SCZ GWAS enrichment. Remarkably, both modules show 
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significant preservation in control brain, but not in ASD post mortem brain (figure 5g), 

consistent with the disruption of these modules in ASD.

BW-M4 enriches for GO terms related to membrane organization and ion transport 

consistent with convergence of risk onto synaptic signaling pathways 21,22 (Extended 

Data Fig. 6, Supplementary Note). BW-M1 contains genes and pathways corresponding 

to neurogenesis, differentiation, migration (figure 6a), and RNA splicing (figure 6b,c). 

Genes within BW-M1 are strongly loss-of-function intolerant, and the genes in this module 

are up-regulated in ASD cortex (figure 5d), including the TGF-beta signaling pathway 

(FDR=0.0047, STRING),23 key REST co-repressors CTDSPL and RCOR1, as well as 

differentiation repressors ADH5, TLR3, SOX5, SOX6, PROS1, and SPRED1.24 Module 

trajectories show prenatal upregulation, with continuing postnatal expression into early 

adulthood (figure 6d,e), evidence that one component of ASD may be brain-wide changes 

in neuronal proliferation/differentiation/maturation balance beginning in early development 

and that persist.25,26,27

CTX-M3 and CEREB-M1 also show an enrichment for de novo LoF variants linked 

to ASD, enrichment for SCZ GWAS risk variants, and are disrupted in post mortem 

brain from ASD subjects (figure 5). Both modules show region-specific co-expression 

(Extended Data Fig. 7), enrich for PPI (CEREB-M1 p < 7e − 15, CTX-M3 p < 0.0023), as 

well as LoF-intolerant genes, indicating that they contain essential biological pathways. 

CTX-M3 enriches for RNA processing and mitochondrial complexes28 (figure 6f). Despite 

these broad terms, we confirmed the cortical specificity of the co-expression of CTX-M3 

hub genes in the Allen Human Brain Atlas (figure 6g). The presence of FMR1, ATRX 
and others involved in activity dependent gene regulation in CTX-M3 highlights this 

process in disease pathophysiology.29 Indeed, 10% of activity dependent genes from a 

published study30 fall into CTX-M3 (p = 0.0472, figure 6h, Supplementary Note), as does 

the mitochondrial ribosome (21 genes, p < 1.7e − 10). Other components of this module 

include alternative polyadenylation and alternative splicing, endocytosis regulation, and 

sorting nexins, consistent with their likely role in supporting neuronal activity dependent 

processes that are disrupted in ASD.

Networks and omnigenics in neuropsychiatric disorders

Complex disorders are influenced by large numbers of genetic variants and genes. Gene 

networks from disease-relevant tissues can capture interactions between these genes and 

have been hypothesized to inform disease heritability. We sought to incorporate network 

distance, as defined by brain-wide and regional co-expression networks, into a model of 

genetic architecture, and examine the role that co-expression networks play in the genetic 

architecture of neuropsychiatric disorders.

Motivated by the recently proposed omnigenic model of disease,10 wherein disease risk 

is conferred by the (potentially indirect) disruption of a small number of core genes, we 

construct a model whereby allelic effect size is a function of network distance to simulated 

core genes (network genetic architecture, Methods). We simulated variants to generate a 

frequency-effect-distance distribution (Methods), observing that the resulting effect size 

and heritability distributions resemble those derived from the omnigenic hypothesis (figure 
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7a,b),10 such that high-effect variants fall very near to core genes. We next asked how 

central genes capture a core-periphery structure for two common neuropsychiatric disorders: 

ASD and SCZ. We evaluated whether either: 1) network-central genes or 2) rare-variant 

implicated genes behave as “core” genes under this model (Methods).

We evaluated network-central genes across multiple networks, using whole blood co-

expression as a comparison (Methods). We observed that even the largest observed value 

in blood indicated that only 52% of the likely high-impact genes fall near network core 

genes – below the simulated baseline (figure 7). The largest observed value across cortical 

networks was even lower: 0.44 (figure 7). We do observe a significant enrichment for brain 

(FDR < 0.05, Fisher’s exact test) and blood network distances (table S9), demonstrating that 

the genetic architecture of these diseases reflects network distances, but still does not clearly 

separate core and peripheral genes, as defined by co-expression.

It may be that co-expression networks capture the correct notion of gene-gene distance, but 

network-central genes are not the correct core genes. We therefore used genes implicated 

by major effect size rare variants both to define core gene sets and to compute the test 

statistic (Methods). As in the network-central gene analysis, we find that the core genes 

defined in this manner are not clearly separated from periphery (figure 7d). It also is possible 

that bulk co-expression data fail to capture the appropriate core-periphery relationships. 

Therefore, we utilized the InWeb PPI network from brain, empirical gene regulatory (Tf-

driven) networks (eGRNs) from brain tissue and cell types (Methods),31 and co-expression 

methods based on partial correlation (Supplementary Note), repeating the analyses above 

using high-connectivity genes as central genes. We find that the core/periphery structures 

in these other networks also do not mirror the expectations of our omnigenic-like model 

(Extended Data Fig. 8).

The inability of the co-expression networks to separate a core and periphery according to 

our test may reflect any of several explanations: i) that the disorders assessed do not have 

a core/peripheral gene structure, indicating that the omnigenic model does not explain their 

architecture;32 ii) or that peripheral master regulators are somewhat common among the 

candidate core genes (e.g. de novo LoF genes) tested above, but are not an appropriate 

core set. However, in our analysis, we exclude known transcription factors, DNA binding 

proteins, and RNA binding proteins and non-coding genes, so master regulators present 

among the candidate core genes would need to regulate expression without directly binding 

DNA or RNA (Methods). Finally, it could be that network degree centrality is not the correct 

property for assessing omnigenic architecture. While we cannot definitively assert which of 

these influences our results, it is clear that genetic effects appear to be more continuously 

spread across co-expression, PPI, or transcriptional regulatory networks, most consistent 

with polygenic models, rather than clearly separating “core” genes from a periphery.

Discussion

Gene co-expression networks provide a powerful organizing framework for studying the 

nervous system.33,34,35,36 That gene expression markers for major cell classes can be 

identified from bulk tissue co-expression is now well-established.37,38 However, most 

Hartl et al. Page 7

Nat Neurosci. Author manuscript; available in PMC 2023 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies have not assessed whether such networks were specific to the brain regions studied, 

or more generalizable. Here, we construct a robust resource aimed at establishing common 

and region-specific aspects of gene co-expression within the brain. We identified 11 whole-

brain co-expression modules, corresponding to common cellular components such as major 

neuron and glial types, and regional modules capturing signatures of cell subtypes. We 

demonstrated that: i) the convergence of genetic risk in ASD and SCZ is primarily reflected 

in pathways common across brain regions, rather than specific to a single region; ii) disease 

risk in ASD and SCZ is enriched in down-regulated neuronal and neurogenesis modules; 

several of these modules implicate down-regulation of activity dependent transcriptional 

programs in the cerebral cortex, a broad regional effect; iii) cell-type-specific lncRNA and 

isoform co-regulation are included in networks, and isoform-level analysis is likely essential 

to interpret disease associations; and iv) brain RNA co-expression, PPI, and co-regulatory 

networks do not cleanly capture the dichotomous core/periphery structure proposed by 

the omnigenic model, but rather support a continuous model. We provide a browser, 

HUBgene, to facilitate access to these networks and permit their broader exploration (http://

geschwindlab.org/gclabapps/hubgene/home).

We developed two methods for imputing co-expression networks in new data, and applied 

these to lncRNA and isoform quantification to identify cell-type specific expression from 

bulk tissue measurements. Here, we provide a first generation set of 1,987 cell-type specific 

isoforms for major cell classes in the brain, of which 549 are neuronal, 543 astrocytic, and 

696 oligodendrocytic. Remarkably, several of these isoforms, including 4 ASD risk genes, 

manifest isoform switching between neurons and glia. We showed that synaptic isoforms 

represent a major source of regional transcriptomic diversity among neuronal subtypes, and 

that neuropsychiatric risk genes are expressed at the synapse of multiple neuronal subtypes. 
39

Our findings that ASD-linked dnLoF mutations as well as SCZ GWAS signal enrich in 

brain-wide neuronal and neurogenesis modules underscore previous findings linking both 

common and de novo variation to synaptic genes,40,41 neuronal genes,42,43 developmentally-

expressed genes,44,45 and neurogenesis pathways.46,47 We show that the pattern of 

enrichment in most cases is not region-specific, implying likely widespread effects of these 

genetic risk variants on brain function.

The only region-specific modules with convergent evidence across disease and modality 

were CTX-M3 and CEREB-M1, which appear to reflect activity-dependent transcriptional 

profiles identified in previous studies. VAMP4 – present in CTX-M3 – encodes an 

essential molecule for activity-dependent bulk endocytosis (ADBE),48 and several module 

proteins overlap with the ADBE proteome.49 This suggests a parsimonious explanation 

that this module reflects the maintenance of organelles and proteins required for long-

term neuronal activity, (i.e., mitostasis and ADBE proteostasis), through activity-dependent 

mRNA transcription and neuropil targeting.50

Incorporating gene networks into models of genetic architecture remains a major challenge. 

The omnigenic hypothesis does not specify a concrete network model, but to practically 

use the model to understand the etiology of disease, it would seem useful to connect it to 
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quantifiable relationships between genes. Our approach comes from a unifying hypothesis: 

that there is a relationship between mutational effect size and network distance – with 

omnigenic and polygenic architectures representing the strong and weak extremes of that 

relationship. For the three distinct network types tested we find that the network structures 

do not strongly distinguish peripheral genes from core genes as predicted by an omnigenic 

model. However, there are many other natural network topologies to test, and it will be 

important to further explore cellular-level or other types of gene networks. The model 

underlying our analysis is broadly applicable as it provides a means to relate total effect 

– direct and indirect – to network structure. Future work extending this model provides 

a means of assessing the proportion of heritability explained by network interactions to 

characterize the network architecture of disease.

Finally, we acknowledge limitations, including the need for extending these studies to 

include single-cell, multi-regional and multi-omic data. Based on our observation that 

methods for removing unwanted variance also remove co-expression signal, development 

of novel methods for hidden artifact correction would be useful. Another limitation of 

network algorithms is that they can produce qualitatively different modules. Although we 

compared four distinct approaches to show that our findings are stable across methods, 

we strongly support additional work to benchmark network methods and to develop new 

methods. Capturing the broadest scope of functionally-relevant co-expression relationships 

will definitely require application of a diverse set of network approaches.

Methods

Ethical Statement

As a retroactive re-analysis of data obtained from dbGAP, this study does not require direct 

formal consent.

Statistics & Reproducibility

This study was designed as a retrospective study of bulk RNA expression from human brain. 

As such, no power analysis was performed to determine sample size, nor was any blinding 

or randomization applied. All brain regions were profiled with sufficiently many samples 

for a standard WGCNA analysis (>30), and some subjects were excluded on the basis of 

potentially confounding biological or technical factors (see below).

Data availability

Processed data is available at http://geschwindlab.org/gclabapps/hubgene/home

Code availability

Supporting code for network construction, and network genetic analysis, is available at 

https://github.com/dhglab/multiregional-networks

Expression quantification, QC, and covariate correction

Reads were aligned using STAR51 in standard two-pass fashion. Gencode v25 transcripts 

(hg19/b37) were used as the reference transcriptome and genome for alignment. Transcripts 
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were quantified using RSEM to produce gene and isoform level TPMs. The analyzed TPMs 

are log-transformed log(0.005 + x) resulting in approximate normality. A gene was included 

in the network analysis if it met the following criteria across brain regions:

• The gene must be non-missing in all regions

• The median read count must be >12 in at least one region

• In all regions, 80% of samples must have at least 1 count

• In all regions, the variance of gene expression must be >0

These thresholds resulted in 15,895 genes; of which 929 have a mean TPM < 0.5, as such an 

additional TPM threshold was not applied.

We examined known co-expression artifacts for potential contamination with non-brain 

tissues52 and found that pancreas-specific genes PRSS1 (ENSG00000204983), PNLIP 

(ENSG00000175535), CLPS (ENSG00000137392), and/or CELA3A (ENSG00000142789) 

do not pass our coverage thresholds. Further, the genes KRT4 (ENSG00000170477) and 

GP2 (ENSG00000169347), listed as “inappropriate” for brain, also are not sufficiently 

covered. We therefore regard these specific instances of cross-tissue contamination as 

non-existent in our analyses. While there may be a more general and subtle effect of 

contamination from non-pancreas tissues, it does not appear strong enough to generate 

sample outliers or modules related to non-brain cell types.

Sample and individual-specific covariates were downloaded from the GTEx53 website, 

and supplemented with technical alignment information from the STAR alignment and 

PicardTools QC of the resulting .bams.

Individuals were excluded if they were positive for any of the following 

phenotypes: ‘MHALS’, ‘MHALZDMT’, ‘MHDMNTIA’, ‘MHENCEPHA’, ‘MHFLU’, 

‘MHJAKOB’, ‘MHMS’, ‘MHPRKNSN’, ‘MHREYES’, ‘MHSCHZ’, ‘MHSEPSIS’, 

‘MHDPRSSN’, ‘MHLUPUS’, ‘MHCVD’, ‘MHHIVCT’, ‘MHCANCERC’, ‘MHPNMIAB’, 

‘MHPNMNIA’,’MHABNWBC’, ‘MHFVRU’, ‘MHPSBLDCLT’, ‘MHOPPINF’. The 

individual-specific covariates ‘GENDER’, ‘AGE’, ‘RACE’, ‘ETHNCTY’, ‘TRISCH’, 

‘TRISCHD’, ‘DTHCODD’, ‘SMRIN’, ‘SMNABTCH’, ‘SMGEBTCH’, ‘SMTSISCH’, 

‘SMTSPAX’ were extracted. The `DTHCODD` variable was binned into the following 

categories: ‘UNKNOWN’, ‘0to2h’, ‘2hto10h’, ‘10hto3d’, ‘3dto3w’, ‘3wplus’. Individuals 

were also excluded if they appeared as outliers for expression principal components (if 

the sum of the square of the scaled principal components were less than 6). The final 

sample counts after this process were: Nucleus Accumbens (85), Amygdala (52), Cerebellar 

Hemisphere (78), Cerebellar Cortex (91), Caudate Nucleus (85), Prefrontal Cortex (85), 

Cortex BA24 (60), Cortex BA9 (76), Hippocampus (71), Hypothalamus (67), Putamen (74), 

Substantia Nigra (43). While small, all counts are above the recommended size (30) for 

WGCNA; and in many regions of the brain the GTEx data reflects the largest available 

sample sizes for sequenced data.

STAR alignment metrics and PicardTools QC metrics were subset to non-excluded samples, 

outliers were flagged and removed via a chi-squared test (p < 10−5). The PicardTools metrics 
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were log-scaled, and the top 5 principal components extracted using the PCA class from 

scikit-learn54 (“seq-PC”). The STAR alignment covariates were subset to those with “splice” 

in the feature name, and the top 3 principal components similarly extracted (“STAR-PC”).

Given the gene expression and covariate matrices, features that explain a significant 

proportion of expression variance in a non-trivial subset of genes were extracted 

using a forward-backward regression approach (see next section). This approach 

identified the features “seq_pc1”, “seq_pc2”, “seq_pc3”, “SMRIN”, “SMEXNCRT”, 

“Number_of_splices_GT/AG”, “TRISCHD” and “DTHCODD” (categorical encoding) as 

significant features, with no significant interactions between these features or between any 

of these covariates and tissue type.

While there were no significant cross-terms between tissue and covariate, in our 

comparisons to latent-factor based approaches (see below), we found that hidden factors 

were not (nearly) orthogonal rotations of one another, leading us to run all correction 

methods within each tissue. Following this approach we used a linear model (expr ~ 

covariates − 1) to remove covariate effects from within each region. Because we correct 

for covariates within each brain region, we do not model individual-specific (cross-regional) 

effects.

Tissue hierarchy

The median expression of all genes across a given tissue is taken as the exemplar of said 

tissue. These exemplars (12 in all) are hierarchically clustered into the tissue hierarchy 

observed in figure 1 using Euclidean distance and single-linkage hierarchical clustering.

Module construction

Robust WGCNA: Robust rWGCNA55 was applied to each brain tissue independently. 

Briefly, the power parameter is selected as the smallest power (between 6 and 20) which 

achieves a truncated r^2 of >0.8 and a negative slope. Then, 50 signed co-expression 

networks are generated on 50 independent bootstraps of the samples; each co-expression 

network uses the same estimated power parameter. These 50 topological overlap matrices 

are then combined edge-wise by taking the median of each edge across all bootstraps.

The topological overlap matrices are then clustered hierarchically using average linkage 

hierarchical clustering (using `1 – TOM` as a dis-similarity measure). The boostraps are 

used to determine cut height as follows: multiple cut-heights are considered (0.9 to 0.999, by 

0.005); and for each cut the within-module correlation of TOMs is considered. For the top 

8 modules by size (fewer if fewer modules are produced), the consensus and each bootstrap 

TOM is subset to the genes within each module, and the correlation between bootstrap and 

consensus is computed. The median (within module, across bootstraps) of these consensuses 

is computed, and the mean of these summaries is taken to be a measure of `goodness` for the 

cut. The cut height which maximizes this metric is taken to define the initial modules.

These initial modules are then merged via `mergeCloseModules` in WGCNA, which 

hierarchically re-clusters modules based on the module eigengenes, using the correlation-
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based adjacency as a dis-similarity matrix. Modules with a distance of < 0.35 are merged 

together into a combined module.

Aggregating co-expression: At each merge of the hierarchy, a single round of 

consensus topological overlap is performed. Each pair of genes has two descendent edges, 

and the parent edge is estimated as the 80th percentile between the two (i.e. for x<y; 

p = 0.2 x + 0.8 y)). This process proceeds up the tissue hierarchy until a single network TOM 

remains.

Consensus labeling: After construction of co-expression networks from all tissues and 

splits, modules have been defined for a total of 21 groups (BRNACC-BRNSNA, BROD, 

CTX, CBL, BGA, STR, NS-SCTX, SCTX, NCBL, WHOLE-BRAIN), yielding over 300 

overlapping modules. The overlapping nature of these modules motivates labeling each 

module in terms of a hierarchy group, allowing one to identify (say) BRNHYP-M2 and 

BRNCTX-M7 with the module group WHOLE-BRAIN-M3.

To perform this labeling, similarity matrices are computed. First, the module eigengenes 

for all modules (regardless of origin) are computed within every tissue, and the correlation 

matrix (using `bicor’) is computed for each module for each tissue. This produces an (all 

modules) x (all modules) matrix for each tissue. The consensus eigengene similarity (“E”) 

between two modules is chosen as the component-wise maximum of all of these matrices. 

The second similarity matrix is the standard Jaccard similarity (“J”) between module gene 

lists. These similarities are combined into a dis-similarity matrix D = 1 − E+3 * J /4, which 

is used to hierarchically cluster (average linkage) these modules.

Module groups are defined by cutting the dendrogram at a height of 0.35. This process 

results in a set of module clusters, each of which has a “level” in the brain tissue hierarchy 

(for instance, a cluster of BRNCTXBA9-M4, BRNCTXB24-M2, CTX-M7 would have the 

level “CTX” as the top-level of the tree represented is CTX). The “representative” of the 

module group is taken to be the module at the highest (most rootward) level of the tree 

– and if there are two, the larger of the two. A second round of clustering is performed 

by removing all modules in the group (except for its representative) from the dissimilarity 

matrix, and re-clustering only the group representatives. This process repeats until there 

are no additional merges. Finally, each module is labeled with its group representative; 

for instance “BRNCTXBA9-M4” would receive the label “CTX-M7”, because it shares its 

highest similarity with the consensus cortex module M7.

In addition, we re-named and abbreviated modules: “BW” for brain-wide, “NCBL” for 

non-cerebellar, “NS.SCTX” for non-striatal subcortex, “CEREB” for Cerebellum; and the 

GTEx tissue names were abbreviated to clear region codes: ACC, AMY, B24, BA9, CBH, 

CBL, CDT, HIP, HYP, PFC, PUT, SNA.

Preservation

We consider two module preservation statistics: the classical Z-summary56 and a leave-one-

gene-out neighbor statistic. For the classical Z-summary; module statistics such as the 

mean gene-gene correlation in the module, the correlation-of-correlations across datasets, 
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the variance explained by the first module PC, and other metrics are computed for each 

module (in both the original and comparison dataset); and compared to 100 random (via 

permutation) modules of identical size. Each observed statistic is converted to a Z-score, and 

these are averaged to generate a final summary, for which large Z-scores are indicative of 

replication of the underlying biological signal.

The neighbor statistic (“Z-AUPR”) is strongly influenced by the single-cell statistic 

MetaNeighbor57. Briefly, a k-nearest-neighbor network is built in the comparison dataset 

(we use k = 15), and we impose the module labels from the reference dataset. For each 

gene, we compute the proportion of its neighbors (again, in the comparison dataset) whose 

labels match its own. Note that if this proportion is > 0.5, then this gene would be assigned 

the same label in the comparison dataset as the reference dataset under a neighbor-voting 

scheme. Using these scores, we can compute an AUPR for each module. We repeat this 

approach for 100 permuted modules (and, unlike the WGCNA permutation, we split genes 

into connectivity deciles, and permute only within decile), and use this baseline to convert 

observed AUPR to Z-scores. As with the classical Z-summary, high Z-AUPR is indicative of 

replication of underlying biological signal.

Learning curves

To examine how module identification and specificity changes as a function of the number 

of samples, we combined samples from similar tissues to increase the maximum N: we 

combined the cerebellar samples into one larger group (N = 122), and we also grouped the 

cortical samples (PFC, B24, BA9) together with hippocampal samples into a second group 

(N = 304).

“Reference” modules for these groups were determined by applying rWGCNA to the full 

dataset. We down-sampled the group to a smaller set of samples of size n = 25, 50, …, N and 

performed rWGCNA on the smaller set. We repeated this process 10 times, generating 10 

networks and module assignments for each sub-sampling of the full dataset.

Because two clusterings should be considered identical up to renaming the labels in one or 

the other datasets, we use module co-clustering as a measure for accuracy, precision, and 

recall. Within the reference (whole group) dataset, we extract the top ‘hub’ gene from each 

of the modules, and the list of genes co-clustered with that hub gene (i.e. the other members 

of its module). For a given reference module, within a sub-sampled dataset, we have

Recall = (# ref hub co-clustered genes also co-clustered in subsample)/(# ref hub co-

clustered genes)

Precision = (# ref hub co-clustered genes also co-clustered in subsample)/(# subsample 

co-clustered genes)

In effect, these are precision/recall statistics for the hub gene co-clustering indicators. If two 

reference modules fail to separate in a sub-sample (a typical failure mode), the result is 

slightly higher recall, but far worse precision.
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Regional contrast test

The Regional Contrast Test is a multivariate test of significance for

H0:βi ≤ max β1, …, βi−1, βi+1, …, βn

Ha:βi > max β1, …, βi−1, βi+1, …, βn

This statistic corresponds to a multidimensional integral, with infinite limits on all 

coefficients other than βi, and taking max β1, …, βi−1, βi+1, …, βn < βi < ∞. Because of the large 

numbers of degrees of freedom in this regression, we treat the variance-covariance matrix 

∑β
(ML)  of the β vector as giving the true sampling covariance of these parameters, and 

perform Monte-Carlo integration by drawing 50,000,000 samples from the multivariate 

normal distribution N β, Σβ
(ML)  using the R package fastmvn.

The above statistic works for testing each tissue against all others. A grouped version of the 

test is a simple extension, which considers several β in tandem. For simplicity we assume the 

indexes for the group are the first k coefficients, then the comparison becomes:

H0:min β1, …, βk ≤ max βk+1, …, βn

Ha:min β1, …, βk > max βk+1, …, βn

This only changes the integration limits to (for j≤k) to max βk+1, …, βn < βj < ∞; and we use 

the same Monte-Carlo approach as before.

Western Blot Isoform Analysis

Human iPS cells were differentiated into cortical glutamatergic-pattern neurons (GPiN) 

according to Nehme 2018,58 and samples extracted at days 0, 16, 21, and 31. Human 

astrocytes were used as an outgroup. IP was performed using an ANK2-specific monoclonal 

antibody S105-17.

De-novo variant enrichment

Denovo-DB59 was used to extract lists of genes harboring de novo variation linked to 

ASD and Schizophrenia. The v1.5 of the database was obtained on 02–17-2018, and we 

filter for “PrimaryPhenotype=autism” (or, separately, “PrimaryPhenotype=schizophrenia”) 

and “FunctionClass” as one of “frameshift”, “frameshift-near-splice”, “splice-acceptor”, 

“splice-donor”, “start-lost”, “stop-gained”, “stop-gained-near-splice”, or “stop-lost.”

Module enrichments are calculated via Fisher’s Exact Test, using the contingency table 

formed by cross-tabulating module presence/absence with presence/absence on the denovo-

db gene list.
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As the denovo-db is a broad collection of de novo mutations in affected individuals and does 

not curate these variant lists on the basis of total evidence, we consider two additional data 

sources for alternative enrichment scores. First, we consider the curated list of SFARI genes 

of rank S, 1, 2, or 3; and perform enrichment on the resulting likst. Second, recent work 

from our lab60 computes transmission and de-novo association Bayes Factors for 18,472 

genes. We regress the log Bayes Factor against module presence/absence and look for a 

significant, positive coefficient.

GWAS variant enrichment

Enrichment for GWAS signal was performed through the use of MAGMA61 gene set 

analysis. Briefly, variants were mapped to genes on the basis of genomic distance, while 

taking chromatin contact maps from adult brain Hi-C62 into account. MAGMA was used to 

generate gene scores and LD-based covariances. Subsequently, MAGMA’s gene set analysis 

was used to compare the distribution of gene scores between modules and the background 

set of ‘grey’ genes.

8 GWAS studies were considered in this analysis: The iPsych and PGC cross-disorder 

GWAS studies (accounting for ASD, SCZ, and cross-disorder), Alzheimer’s disease, 

multiple sclerosis, and educational attainment.63,64,65,66,67

Defining genes likely to harbor high-impact rare variants

We identified sets of genes likely to harbor high-impact rare variation for both ASD and 

SCZ by using the top implicated genes from each of three previous rare and de novo studies 

of neuropsychiatric disease: extTADA,68 iHART,69 and NPDenovo70. These studies produce 

Bayes Factors for confidence of association for a particular gene. We use the Bayes Factors 

as a ranking, see empirical core genes, below.

Core/periphery enrichment within networks

Simulation of network genetic architecture

Simulation:  10,000 causal variants are simulated with frequency parameters estimated from 

human populations,71 and distances drawn from a binned Beta distribution:

pi Beta(0.14, 0.7)

di
kdBeta ad, bd

kd

βi ∣ di, pi N 0, σg
2 2pi 1 − pi

γ1 1 + δdi
γ2

σg
2 is arbitrary and set to 1; kd is arbitrary so long as it is greater than about 5, and 

is set to kd = 12; ad, bd, γ1, γ2, and δ are model parameters. Recent results from the UK 

Biobank suggest that a value of γ1 = − 0.4 is reasonable for a polygenic trait (height=−0.45, 
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education=−0.32, blood pressure = −0.39) and is fixed to this value. Architectures were 

simulated on a grid of ad, bd = 1, 1.5, …6; δ = 1, 1.2, …, 2.6; γ2 = − 15, − 10, − 7, − 5, − 2. 

Notably for any values of ad, bd, δ and γ2 can be found such that D1 explains >40% of 

the heritability. Errors-in-distance: Here the above simulation of distance is replaced by a 

normal copula (where 20% error corresponds to r = 0.8 – this is a purposeful under-estimate, 

as r2 = 0.64 so the latent error is more like 36%):

Z N 0, 1 r
r 1

dtrue =
kdΦBeta ad, bd

−1 ΦN(0, 1) Z1

kd

dmeas =
kdΦBeta ad, bd

−1 ΦN(0, 1) Z2

kd

When simulated from a network, first a set of K = 1, …, 10 hub genes are simulated with the 

constraint that no pair can be directly connected by an edge. These form initial communities 

of size 1. For the remaining 40 core genes, a community is selected at random, a community 

member is selected at random, and a neighbor is selected at random and added to the 

community and to the set of core genes. These form the basis of dtrue, which is taken as the 

minimal path distance to any core gene. For dmeas the communities are distorted by removing 

M = 1, …, 10 core genes at random; or by adding K = 5, 10, …, 25 non-core genes at random.

Normalized effect sizes: Identifying the effect size of an empowered 5% frequency 

GWAS variant happens through three steps: (i) Estimating the liability distribution; (ii) 

Mapping case/control frequency differences to effect sizes (iii) Estimating power.

i. Liability Distribution: A 5000×10,000 genotype matrix X is sampled 

independently, with frequencies given by the previously-simulated vector f, 

and 5,000 genetic liabilities are generated by lg = Xβ. These liabilities are used 

to estimate parameters for a T-distribution using ‘fitdist’ from the R package 

‘MASS’; the degrees of freedom are reduced by 25% to account partially for 

rare variants not sampled in this population of 5,000; and these parameters used 

to generate 400,000 genetic liability scores. These are converted to total liability 

scores by adding noise I = Ig + N 0, σe ; with σe chosen so that the heritability is 

0.85.

ii. Frequency-ratio-to-effect: The goal is to estimate the ratio paff/punaff for a variant 

with a frequency pi and effect βi. The genetic liabilities Inew = 1 + xβi with 

x binomial 2, pi  are computed for 400,000 simulated individuals. As 10,000 

variants contribute to I, the addition of xβi is assumed to have a minimal effect 

on heritability. Case/control labels are defined by Inew ≥ quantile Inew, 0 . 95  so that 
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the disease prevalence is 5%, and the empirical frequency mean Xaff /mean Xunaff

is taken as an estimate of the ratio paff/punaff. Fixing pi = 0.05 and varying βi

produces an empirical and invertible map from variant effect to frequency ratio.

iii. Estimating power: Given an effect size βi, the case and control frequencies for 

a p = 0 . 05 variant are obtained from (ii). 5000 case and 5000 control genotypes 

are sampled according to the corresponding frequencies, and a two-sided T-test 

performed by ‘t.test’ in R. 1,000 simulations are performed, and the number of 

times the T-test p-value achieved a Bonferroni-corrected p-value of 0.1/10,000 

(the number of causal variants) was tabulated.

Network construction and computation of d(G)

Co-expression Networks—Within co-expression networks, the raw co-expression 

(cosine) distance is used to define gene-gene distances. In addition, a sparse 

ε = 2.5% + 1 − NN graph is calculated as follows: the cosine distance graph is subset to only 

the 2.5% smallest edges, and any singleton genes are connected to their closest neighbor. 

This graph is treated as unweighted, and not necessarily connected. Cross-component 

distances are treated as 1 + the maximum observed within-component distance. This is 

referred to as “sparse distance.”

Module hub genes are defined as the 2.5% of module genes with largest kWithin values 

(minimum 5). Distances between a gene and a module is computed as (i) 1 – kME; (ii) mean 

cosine distance to a module hub; (iii) minimum cosine distance to a module hub; (iv) mean 

sparse distance to a module hub; (v) minimum sparse distance to a module hub. When using 

arbitrary gene sets as core genes, (ii)-(iv) are be computed with respect to the gene set in 

place of module hubs.

Other network types: See Supplementary Note

Hub genes and empirical core genes

Core gene sets which define distance (“proposal set”) are taken to be either collections of 

network hub genes, or the top 10 or 20 genes (by Bayes factor) from each of the three 

studies (separately). The core gene sets which define the statistic Φ (“evaluation set”) are 

taken to be the top 25, 35, 50, 75, or 100 genes from each of the three studies. To restrict 

attention to directly causal (e.g. non-regulatory) genes, as the omnigenic model suggests, the 

core genes are also filtered to remove known transcription factors,72 DNA-binding proteins, 

RNA-binding proteins, and non-coding RNA. Without this filtering, values of Φ still fall 

below 50% for brain co-expression networks, but achieve 70% for blood co-expression. Φ
statistics are calculated for only for evaluation sets where, after excluding those genes also in 

the proposal set, noncoding genes, DNA-binding proteins, known transcription factors, and 

RNA binding proteins, at least 15 genes remain.
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Extended Data

Extended Data Figure 1: 
(a) Standard boxplot (box: quartiles, whiskers: 1.5xIQR) of expression PC and HCP 

loadings onto canonical cell type genes, showing significant heterogeneity of loadings across 

cell types, N = 114 (Neuron), 79 (Astrocyte), 242 (Microglia), 103 (Oligodendrocyte), 176 

(Endothelial). (b) Standard boxplot (box: quartiles, whiskers: 1.5xIQR) of ePC loadings 

after covariate correction using HCP and LM base correction, showing that cell type 
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heterogeneity of the 1st component of expression is lost after HCP correction. Gene 

set sizes as in a; significance (two-sided T-test) ***: < 0.001. (c) Network-based GO 

prediction accuracy for each brain region. The same gene holdouts are used in 10-fold 

cross validation, generating 10 values for the AUC difference of each GO category, which 

are used to generate a Z-score for the expected AUC difference. (d) Relative improvement 

to the integrated correlation coefficient for BRNHYP genes, for linear model and HCP 

based corrections. (e) Pairwise co-clustering statistics for the 4 algorithms compared in 

figure 1. X-axis denotes which modules are taken as the reference set. (f-h) Pairwise 

module overlaps between 3 of the 4 algorithms compared in figure 1 (GLASSO yielded 

too many modules to visualize here). (i) t-SNE embedding of gene features from whole-

brain tensor decomposition, colored by DBSCAN clusters. (j) As (i), but colored and 

annotated with whole-brain modules. (l,m) Overlap between whole-brain consensus and 

tensor-decomposition + DBSCAN modules. Color scheme as in (f-h). (n) Standard boxplot 

(box: quartiles, whiskers: 1.5xIQR, N = 10 bootstrap re-samplings) of within-module recall 

values for hub-gene co-clustering, demonstrating that at 100 samples, the recall is above 

50% for most modules.
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Extended Data Figure 2: 
(a) Cell-type marker enrichment for brain-wide modules, extended with markers of 

microglial activation and deactivation, and markers of reactive gliosis and A1/A2 reactive 

astrocytes. (b) Plots of the marginal rate (solid: mean, shade: 95% CI of GAM) of LoF-

intolerant (pLI>0.9) genes, as a function of BW-M1 (most enriched) and BW-M2 (most 

depleted) kME. (c) Gene ontology enrichment for BW-M5. (d) Marginal LoF-intolerance 

rates (solid: mean, shade: 95% CI of GAM), by gene kME, for neuronal subtype modules. 

(e,f) Standard boxplots (box: quartiles, whiskers: 1.5xIQR) of module mean topological 
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overlap, and gene expression, for 5 whole-brain modules in ASD cases and matched controls 

(Parikshak 2016). The case/control difference in lncRNA is closely matched by the same 

difference in randomly-selected, matched coding genes. (g) LoF-intolerance enrichment for 

neuronal subtype modules, using pLI and o/e bins as response variables, and a linear model 

correcting for gene GC and length (logit link, p-values: coefficient T-test). All modules 

except BROD-M8 show strong enrichment, and BROD-M8 shows enrichment when using 

soft-membership instead of hard membership.
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Extended Data Figure 3: 
(a) Replicate of main figure 3(b) in astrocytes, showing a strong positive relationship 

between astrocyte module membership, and relative expression in astrocyte cells. (b-e) 

Relationship between module kME and cell type relative expression for transcripts across 4 

neuron/astrocyte isoform switch genes, demonstrating concordance between high kME, and 

high relative expression. (f) Unsigned Fisher’s exact test of the contingency of “assigned 

to module” and “top-ranked cell type marker” for varying kME thresholds for (left) 

oligodendrocytes and (right) astrocytes; for marker rankings based on both absolute and 

relative expression within the cell-sorted data. Thresholds in the range 0.45–0.55 appear to 

balance significance and odds ratio across absolute and relative rankings.

Extended Data Figure 4: 
(left) Unmodified Western Blot corresponding to figure 3 (right) Same blot, annotated with 

source of input material
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Extended Data Figure 5: 
(a-d) Overlaps between published modules and the consensus whole-brain co-expression 

modules identified in this paper, demonstrating that the majority of modules show a high 

overlap, particularly to the neuronal module BW-M4. P-values: signed Fisher’s exact test. 

These modules were selected because of published enrichment for neuropsychiatric disease 

risk genes. (see methods).
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Extended Data Figure 6: 
(a) Signed gene ontology enrichments (logistic regression controlling for gene length and 

GC, p-value from coefficient T-test) for module set BW-M4 across all regions in which 

a BW-M4 module is present. (b) Meta-GSEA scores for significant MAGMA genes in BW-

M4 across all tissues, implicating synaptic transmission and calcium transport as neuronal 

dysfunctions in SCZ.

Hartl et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2023 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 7: 
Nearest-neighbor precision-recall curves for CEREB-M1 labels across all region-level 

co-expression networks; showing significantly higher AUPR for cerebellar regions, but 

substantial AUPR for all remaining regions. Right. Nearest-neighbor precision-recall curves 

for CTX-M3.
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Extended Data Figure 8: 
Plot of Phi statistics for InWeb brain PPI network (“PPI”) and four regulatorycircuits.org 

(“RC”) networks: Hippocampus (“Hippo”), amygdala (“Amy”), NEU+ neurons, astrocytes, 

and neuroprogenitor cells (“NPC”). Vertical breaks represent the study used to calculate 

phi, while the colors represent those studies used to define proposal core genes, or network 

central genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Human whole-brain co-expression atlas. (a) Overview of module construction, annotation 

and downstream analysis (b) Hierarchical merging hierarchy based on median within-region 

expression (c) Module preservation in external datasets, with the area containing weakly 

and not-preserved modules highlighted in red (z < 5) (d) Module evidence across all regions 

of the human brain, for brain-wide and cerebellar module sets. Strong evidence: z > 8, 

Evidence: z > 5, Weak evidence z > 3, No evidence z < 3. (e) Dendrogram from rWGCNA 

in amygdala, showing high degree of overlap between four methods of network construction 

and module identification. Colors under the dendrogram are default WGCNA colors, 

ordered by module size. (f) Precision and recall of co-clustering a gene with the hub gene of 

its true module, as a function of module separability and sample size. Lines: mean, bands: 

95% CI. (g) Example hub gene network of whole-brain modules. The top 6 hub genes by 

module kME are extracted (large circles, labeled) along with 80 randomly-selected genes to 

inform the embedding (small circles, unlabeled). The edges are the topological overlap, and 

the network is embedded using the Fruchterman-Reingold algorithm.
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Figure 2: 
Cell-type heterogeneity relates to co-expression modules, mutation intolerance, and 

evolution. (a) top: Standard boxplot (box: quartiles, whiskers: 1.5xIQR) of absolute value 

of the eigengene of module NCBL.M1 plotted across regions, showing higher variance 

in regions adjacent to or accessible through ventricles. Region sample sizes as specified 

in main text. left: Relationship between NCBL.M1 eigengene and mean expression of 

choroid-plexus marker genes in regions with and without an NCBL-M1 module (solid: 

least-squares fit, band: 95% CI). Right: Marginal probability (via logistic regression) of a 

gene being a choroid plexus marker, as a function of NCBL-M1 soft membership. (b) Brain-

wide modules largely correspond to cell class. WGCNA dendrogram at the whole-brain 

level, labeled by module, and colored by human cell type markers, and mouse cell type 

markers (key: right) (c) Relative expression (y-axis, Methods) of neuronal marker genes 

for modules BW-M4, BROD-M8, CEREB-M2, and STR-M1 within interneurons from 

cortical single-cell sequencing, Purkinje neurons from cerebellar single-cell sequencing, and 

medium spiny neurons from mouse striatal single-cell sequencing, as a function of module 

kME (x-axis, Methods). (d) GSEA enrichment plots for LoF-intolerant genes16 (pLI > 0.9) 

for all whole-brain modules. (e) Factorization-based decomposition of bulk expression from 

aggregated cortical single-cell sequencing (Methods) Pearson correlations between module 
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eigengenes and cell type factors for BW, CTX, and PFC modules come from decomposition 

of DLPFC expression; AMY from decomposition of AMY bulk expression, and BROD 

from decomposition of B24 bulk expression (Methods), blue negatively correlated and red 

positively correlated. (f) Standard boxplot (box: quartiles, whiskers: 1.5xIQR) of lncRNA 

relative expression in single-cell data, grouped by the imputed module in RNAseq data from 

BA9. Overlapping module sizes (number of lncRNA): grey (518), M1 (116), M2 (1), M4 

(68), M5 (46), M6 (16), M7 (17), M8 (4), M9 (13), M10 (1), M11 (4).
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Figure 3: 
Creating a catalogue of cell-specific isoforms (a) Overview of isoform assignment on 

the basis of kME to cell-type modules. Isoforms are correlated with module eigengenes 

to identify cell type specific isoforms. (b) Isoform relative expression (log-FC of TPM) 

in oligodendrocytes plotted against isoform kME to BW-M7 showing significant positive 

relationship (p = 5 × 10−7, linear regression LRT, two-sided). (c) Venn diagram of isoforms 

assigned to neuronal subtypes showing extremely high specificity (d) GO enrichment 

of parent genes of cell subtype-specific isoforms identifies cell type specific pathways. 

Top module-specific terms are shown, followed by terms that are significant across 

multiple subtypes (min p-value shown). (e) Assignment of daughter isoforms of genes 

with membership to a whole-brain cell type module, showing that most daughter isoforms 

are either assigned to the parent gene module, or to the grey (un-clustered) module. (f) 

IGV visualization of the event differentiating the astrocyte and neuron isoforms of ANK2, 

the inclusion of the giant exon, in sorted cell data. (g) Standard boxplot (box: quartiles, 

whiskers: 1.5xIQR) of expression of ANK2 and SCP2 transcripts in sorted-cell data, 

showing isoform switching between neurons and astrocytes. (h) Western blot of ANK2 
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across iPSC differentiation into neurons (first 4 columns), and within astrocytes (column 5), 

demonstrating the presence of two long isoforms specific to neurons (red asterisk).
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Figure 4: 
Region-specific gene up-regulation reflects region-specific cell types and ribosomal 

turnover. (a) Overview of the regional contrast test (Methods): Example of heterogeneous 

data where mean expression within each region differs from the global mean (top panel, 

x-axis: gene expression, y-axis: density; vertical lines correspond to regional means – solid 

– and ± two standard errors – dashed). With only 50 samples, all regions are significantly 

differentially expressed in a global manner (bottom left, line at p=0.01). Visualization 

of the RCT statistic for PFC and CDT (bottom middle panels). The PFC mean (set 

to 0; red vertical bar) overlaps only a small amount of the confidence region for one 

other region, while confidence regions straddle the CDT mean, demonstrating that PFC 

shows extremal expression while CDT does not. The RCT statistic identifies the two most 

distinct tissues (PFC and PUT) as differentially up- and down-expressed compared to all 

other regions (right panel) (b) Count of genes (y-axis) significantly up-regulated within 

brain regions, across four contrast backgrounds (labeled top of each panel) (q > 0.1; FDR-

corrected signed regional contrast test) (c) Cell-type enrichments for the up-regulated genes 

from the corresponding comparisons in (b). (d) Standard boxplot (box: quartiles, whiskers: 

1.5xIQR) of scaled expression (per gene across tissues) for all genes in BW-M2, showing 
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CTX-specific down-regulation of ribosomal subunits. (e) PPI co-expression network (edge: 

gene-expression correlation only for known InWeb interactors, Supplementary Note) for 

genes in WB-M2, embedded by Fuchterman-Reingold. Large squares: genes up-regulated in 

sub-cortical regions compared to cortical regions; colors: ribosomal subunits (blue, black) 

and GO regulation of translation (yellow), showing a sizeable fraction of the module core, a 

substantial fraction RPL and nearly all RPS mRNA are up-regulated in sub-cortical regions.
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Figure 5: 
Gene-level module enrichments for de novo PTVs, GWAS summary statistics, and 

differential expression. (a) FDR values (Fisher’s exact test) for enrichment of de novo 

loss-of-function variants from ASD and SCZ within modules, summarized to module sets. 

Bar height gives geometric mean of FDR, and whiskers the range of significant FDR 

values for modules within the module set. Modules with bold labels on x-axis show 

enrichment from GWAS summary statistics (see b, Methods). Module sets are ordered by 

Jaccard similarity between their index modules. Green region: These modules enrich for 

neuronal markers. Blue region: These modules enrich for fetal neuron, mitotic progenitor, 

or outer radial glia markers. (b) FDR values (MAGMA; Methods) for GWAS summary 

statistics within modules. Method of ordering identical to (a). (c) Standard boxplot (box: 

quartiles, whiskers: 1.5xIQR) of module eigengene expression for BW-M1 and BW-M4 in 

ASD cases and control brains across three regions and associated p-values from a prior 

ASD sequencing study. P-values: T-test (unsided) (d-f). Volcano plots for individual genes 

in modules BW-M1 (NPC), BW-M6 (astrocyte) and BW-M4 (neuron) in a prior ASD 

sequencing study; x-axis: log fold-change, y-axis: p-value (linear mixed model), sign-test 

p-values are inset demonstrating an overabundance of up-regulated genes in BW-M1, BW-
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M6, and down-regulated genes in BW-M4 (Methods) (g) Module preservation statistics for 

ASD and controls calculated separately for cortical and cerebellar modules shows highly 

consistent patterns, except for CTX-M3 and CEREB-M1, which are differentially preserved.
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Figure 6: 
Ontologies, PPI networks, and expression profiles of ASD-associated modules. (a) 

Enrichment p-values (Fisher exact test) for neuron-related ontologies in two ASD-associated 

whole-brain modules. (b) Combined (geometric mean) enrichment p-values of ontologies for 

all modules in module set BW-M1 that showed enrichment for ASD-implicated de novo loss 

of function mutations. (c) Co-expression-PPI network of BW-M1(edge: gene-expression 

correlation only for known InWeb interactors, embedded with Fuchterman-Reingold) 

highlighting de novo loss of function mutations (large nodes) and ontologies (colors). (d) 

Expression of BW-M1 across developmental time-points, sub-clustered into four component 

modules using WGCNA (Supplementary Note) showing a cluster of genes down-regulated 

after conception (teal). The scattered grey module is not shown. (e) Assignment of 

network nodes in (c) to the subclusters in (d) via label propagation, demonstrating that the 

ubiquitination-related component of BW-M1 is maintained into adulthood (yellow), but that 

the bulk of the module is down-regulated (teal). (f) Coexpression-PPI network for CTX-M3, 

colored by enriched gene ontology sets. (g) Expression profile of CTX-M3 hub genes across 

brain regions, demonstrating tight co-regulation in cortical regions (solid lines) by virtue of 

small variance, and highly variable co-expression across non-cortical regions (dashed lines). 
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(h) Enrichment p-values (Fisher exact test) of the CTX-M3 module for gene ontologies, 

including bulk endocytosis genes.
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Figure 7: 
Characterizing core-periphery structure of high-impact neuropsychiatric disease genes 

across multiple networks. (a) Example simulation of network genetic architecture, where 

the variant effect size decays rapidly with distance to core. Left: Cumulative proportion of 

genes (blue) and heritability (pink) along the distance distribution. Dotted line shows the 

cumulative heritability when true distance is replaced by a corrupted (30% error) distance. 

Right: The relationship between core distance and effect size results in high-effect variants 

only appearing very close to core genes as predicted by the omnigenic model. Points 

indicate the mean, and lines extend to the minimum and maximum, simulated distance from 

50 simulations. (b) High-impact genes are defined by the effect-size percentile on the x-axis, 

and the % of genes falling into the core-distance decile (phi) is plotted on the y-axis. This 

plot encompasses 20 simulations. Dotted boxes represent the expected values for Φ when the 

distance is error-free, while solid boxes represents the case where distance is 30% corrupted 

by error. Boxes are standard (box: quartiles, whiskers: 1.5xIQR). (c) Validation of the effect 

size distribution: the effect size of each quantile is normalized to the effect size for which a 

balanced GWAS of 10,000 samples has 80% power; the highest-impact variants are only 20–

50x stronger than empowered variants. (d) All values of Φ across distance metrics, core set 
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size, module definitions, and brain co-expression networks, demonstrating that no value of 

Φ exceeds 50%. (e) top 10 Φ values (per core set) for the GTEx whole-blood co-expression 

network, demonstrating that co-expression networks from brain have similar Φ values to 

non-brain networks, reinforcing the notion that brain co-expression networks fail to reflect 

an omnigenic-like structure.
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