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Abstract 
 
The growth in the availability of longitudinal data—data collected over time on the same 
individuals—as part of program evaluations has opened up exciting possibilities for evaluators to ask 
more nuanced questions about how individuals’ outcomes change over time. However, in order to 
leverage longitudinal data to glean these important insights, evaluators responsible for analyzing 
longitudinal data face a new set of concepts and analytic techniques that may not be part of their 
current methodological toolkit. In this paper, I provide an applied introduction to one method of 
longitudinal data analysis known as multilevel growth modeling. I ground the introductory concepts 
and illustrate the method of multilevel growth modeling in the context of a well-known longitudinal 
evaluation of an early childhood care program, the Carolina Abecedarian Project. 
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Multilevel Growth Modeling: 
An Introductory Approach to Analyzing Longitudinal Data for Evaluators 

 
Introduction 

The growth in the availability of longitudinal data—data collected over time on the same 

individuals—as part of program evaluations has opened up exciting possibilities to ask more 

nuanced questions about program impact. One key question of interest to impact evaluators is how 

changes over time on some outcome differ based on program participation. However, in order to 

leverage longitudinal data to understand differences over time on outcomes between program 

participants versus non participants, evaluation analysts responsible for analyzing longitudinal data 

face a new set of concepts and analytic techniques that may not be part of their current 

methodological toolkit. In this paper, I provide an applied introduction to one method of 

longitudinal data analysis, known as multilevel growth modeling1. The content and focus of this 

paper is inspired by and synthesizes prior work that provides detailed and comprehensive 

explanations of the methodological and analytical approaches that underlie multilevel growth 

modeling, including the influential works of Singer & Willett (2003) (Applied Longitudinal Data 

Analysis) and Raudenbush & Bryk (2002) (Hierarchical Linear Models: Applications and Data Analysis).  

Given a wealth of prior works devoted to explaining multilevel growth modeling, what is the 

impetus behind this methodological primer? The purpose and rationale for this introductory piece is 

threefold. First, though the technique of multilevel growth modeling has been in existence for over 

20 years with seminal texts devoted to the method (Fitzmaurice, Laird, & Ware, 2004; Hedeker & 

Gibbons, 2006; Raudenbush & Bryk, 2002; Singer & Willett, 2003; Snijders & Bosker, 1999), 

currently, the published evaluation literature is limited in providing a concise and accessible “how-

to” approach to multilevel growth modeling that speaks to the needs of both evaluation analysts and 

                                                      
1 Readers should note that multilevel growth models may also be referred to as: mixed-effects regression models; growth curve models; 
hierarchical linear models; growth models; linear mixed effects models; random coefficient models, random-effects models, and mixed 
models. 
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consumers of the evaluation literature.2  Second, evaluators who are educated through degree and 

certificate granting academic programs in evaluation, particularly at the Master’s level3, often do not 

receive training in longitudinal methods. Thus, though evaluators may have the statistical 

foundations to conduct basic descriptive analyses of longitudinal data, they may lack knowledge of 

how to analyze data using more sophisticated longitudinal methods. Finally, given the 

interdisciplinary nature of the field of evaluation—spanning fields as diverse as education, 

psychology, management studies, public health and economics—methodological traditions vary in 

evaluation. Therefore, evaluators may not have been exposed to the method of multilevel growth 

modeling as it may lie outside the methodological conventions of their own disciplinary 

backgrounds. Accordingly, three potential audiences may find this introduction to multilevel growth 

modeling of particular interest and value: (1) evaluation analysts who are interested in carrying out 

longitudinal analyses but need a starting point to do so; (2) consumers of the evaluation literature 

who want to understand studies that employ such methods; and (3) evaluators who are trained in 

longitudinal methods from other disciplinary areas, such as econometrics, and want to understand 

evaluation studies and conduct analyses using multilevel growth modeling. 

Throughout this paper, I ground the introductory concepts and illustrate the method of 

multilevel growth modeling in the context of a well-known longitudinal evaluation of an early 

childhood care program, the Carolina Abecedarian Project (hereafter referred to as the Abecedarian 

Project). The multilevel growth modeling concepts and procedures I introduce through this example 

can be applied more generally to the analysis of evaluations that are designed to track participants on 

some pre-specified continuous measure over time. There are numerous examples of such 

evaluations from a variety of substantive fields including social policy, education and public health. 

                                                      
2 A search was conducted of key peer reviewed evaluation journals including the American Journal of Evaluation; Evaluation Review: 
A Journal of Applied Social Research; Evaluation: The International Journal of Applied Social Research; and Evaluation and Program 
Planning. 
3 A comprehensive list can be found on the American Evaluation Association website: http://www.eval.org/p/cm/ld/fid=43 

http://www.eval.org/p/cm/ld/fid=43
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For example, there are job training programs that track wage information; educational interventions 

that capture educational test scores; smoking cessation programs that document reduction in 

smoking behaviors (the number of cigarettes smoked); and obesity prevention programs that track 

body mass index. 

I begin this paper with a brief overview of the Abecedarian Project, including its overall 

evaluation design and data. Then I guide the reader through the following topics: 

1. Data requirements for multilevel growth models 

2. Visualizing change over time 

3. Specifying multilevel growth models 

4. Interpreting and displaying the results of multilevel growth models 

Readers should note that the last two topics do require familiarity with statistical concepts 

underlying ordinary least squares (OLS) regression analysis. 

The Carolina Abecedarian Project & Dataset 

The Carolina Abecedarian Project was a longitudinal study which began in 1972 and tracked the 

developmental outcomes of 111 children in North Carolina who, at infancy, were randomly assigned 

to either a child centered preschool program (treatment group) or no preschool (control group). A 

majority of the participating children were African-American and all were from economically 

disadvantaged households. Children participating in the project have been followed into adulthood 

to determine the long-term consequences of providing high quality early childhood care. Readers 

further interested in the substantive background and details of the study design, including the design 

of the intervention as well as key findings, should refer to Campbell & Ramey (1995).  
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In this paper, I illustrate how multilevel growth modeling can be applied to the Abecedarian 

Project data4 to examine how infants’ growth in cognitive and linguistic functioning differs by 

treatment status. I use infants’ Mental Development Index (MDI) scores on the Bayley Scales of 

Infant Development (BSID) as a measure of their cognitive and linguistic functioning. I compare 

MDI scores between control and treatment group infants across three distinct time points—at 6, 12 

and 18 months of age. 

Data for Multilevel Growth Modeling 

Data Collection and Organization. To carry out multilevel growth modeling, you first need data on a 

continuous outcome5 that is measured and collected at multiple time points for a sample of 

individuals. Also, the outcome should capture the same underlying construct (e.g., cognitive and 

linguistic functioning) on a consistent scale across each time point.6 Once data are collected, they 

can be arranged in cross-sectional format with one row of data per individual in the dataset. Data 

can also be organized in a panel format so that each individual has multiple rows, one for each 

measurement occasion. Often, analysts enter, clean and store data in cross-sectional format. They 

then arrange their data into panel format in preparation for analysis. Several widely used statistical 

software programs such as Stata, SPSS, and SAS have data manipulation routines and commands 

that automate the process of transforming data from cross-sectional to panel formats (and vice 

versa).7  

                                                      
4 I use the public-use version of data from the Abecedarian Project available through the Inter-university Consortium for Political and 
Social Research (ICPSR) (Ramey et al., 2004). 
5 Outcomes can also be dichotomous, ordinal, nominal or count data as well (Hedeker & Gibbons, 2006), however, the multilevel 
modeling procedures are more complex and beyond the scope of this paper. Readers should consult the work of Hedeker and 
Gibbons (2006) for further details on multilevel growth models with non-continuous outcomes. 
6 For this example, I have used only the observations from the Abecedarian Project dataset that were collected on a consistent and 
regularly spaced (6 month) schedule. Multilevel growth modeling can also accommodate irregularly spaced collection schedules for 
each individual (see Singer & Willet (2003) pp. 139-46).  
7 The Institute for Digital Research and Education (IDRE) at the University of California, Los Angeles has excellent step-by-step 
tutorials on how transform data from cross sectional to panel format. Readers should refer to the following commands and 
accompanying online tutorials for their selected statistical software package (the links provided are applicable at the time of the writing 
of this article):  For Stata users, the reshape command:  http://www.ats.ucla.edu/stat/stata/modules/reshapel.htm. For SPSS users, 
the vartocases command:  http://www.ats.ucla.edu/stat/spss/modules/reshapel115.htm.  For SAS users, the proc transpose 
statement:  http://www.ats.ucla.edu/stat/sas/modules/wtol_transpose.htm. 

http://www.ats.ucla.edu/stat/stata/modules/reshapel.htm
http://www.ats.ucla.edu/stat/spss/modules/reshapel115.htm
http://www.ats.ucla.edu/stat/sas/modules/wtol_transpose.htm
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<<insert Table 1 here>> 

<<insert Table 2 here>> 

Tables 1 and 2 display data for four sample infants from the Abecedarian Project in cross-

sectional and panel formats, respectively. In Table 1, there are several variables to note: (1) the 

identification number (IDNO) uniquely identifying each infant (e.g., 5110); (2) a dichotomous 

variable (TREAT) indicating whether or not the infant was assigned to the treatment (TREAT=1) 

or control (TREAT=0) group; and (3) the outcome variables (MDI6, MDI12 and MDI18) recording 

infants’ MDI scores at 6, 12 and 18 months of age. In Table 2, there are three features to note for 

the data in panel format: (1) each infant has three rows of data, one for each measurement occasion; 

(2) the variable MDI (column 3) is a single variable, having lost its numerical suffixes (6, 12 or 18) 

that existed in cross-sectional format. These suffixes are now recorded in a new variable labeled 

MONTH (column 4) and document the age, in months, at which each infant’s MDI score was 

measured; (3) finally, the arrangement of data in panel format illustrates the multilevel nature of the 

data—there are three MDI scores that are “nested” within each individual infant. Table 3 presents 

average MDI scores at each measurement occasion for the full sample (n=111) of infants by 

treatment status.  

<<insert Table 3 here>> 

Visualizing Change Over Time 

With data collected and organized in either cross-sectional or panel format, you might be 

inclined to immediately begin fitting multilevel growth models. Rather, you should consider 

visualizing your data to determine how your outcomes are changing over time. One powerful way to 

visualize your data is to create and display a set of empirical growth trajectories (Singer & Willett, 

2003, p. 28). These trajectories consist of a set of ordinary least squares (OLS) regression lines fit 
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through your outcomes for each individual.8  Importantly, creating and displaying empirical growth 

trajectories for separate groups (e.g., program participants versus non-program participants) helps 

you gauge whether there are potential differences, on average, in growth trajectories.9 

Figure 1 displays a set of empirical growth trajectories for infants in the Abecedarian Project 

study sample. The upper panel of Figure 1 is for all infants, irrespective of their treatment status. 

The lower panel displays two side-by-side plots. Plot A is for treatment group infants, while Plot B is 

for control group infants. Note that a linear relationship is fit through these points given only three 

time points. More complex non-linear trajectories could be specified with additional time points. In 

each of these panels, the thickest line represents the average of those trajectories. 

<<insert Figure 1 here>> 

The upper panel of Figure 1 shows substantial variation across infants in their MDI scores. Each 

infant starts10out with a different MDI score at 6 months of age and has a different MDI trajectory. 

For example, some infants start out relatively low and rapidly advance while others start out high 

and decline. In the lower panel of Figure 1, the side-by-side plots of these trajectories provide 

important visual cues foreshadowing how MDI scores might differ over time by treatment status. In 

Plot A, the average trajectory of MDI scores among treatment group infants remains relatively flat. 

Yet, in Plot B, the average trajectory of MDI scores for control group infants declines. These plots 

potentially signal that growth in MDI scores differ by treatment group. Given these visual 

guideposts, the next section describes how multilevel growth models are formally specified. 

 

 

                                                      
8 These are also referred to as time plots (Fitzmaurice et al., 2004, p. 62). 
9 Producing these empirical growth plots with longitudinal data can be accomplished in several popular software packages including 
Stata, SPSS and SAS. Examples of how to create these plots can be found on the Statistical Computing site of the Institute for Digital 
Research and Education (IDRE) website: http://www.ats.ucla.edu/stat/ 
10 In the actual Abecedarian Project, MDI measurements were initially taken when infants were 3 months old, but for illustrative 
purposes, I have chosen to use infants’ MDI scores at 6 months as a starting point. 
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Specifying Multilevel Growth Models 

To evaluate the impact of the Abecedarian child care program on differences in infants’ MDI 

scores over time, we specify two models: (1) a level-1 model that addresses how each infant changes 

over time; and (2) a level-2 model that addresses how growth in MDI scores differs between 

individual infants by treatment group. The level-1 model is often referred to as a within-person model 

since it models changes over time in the outcome within each individual. The level-2 model is often 

referred to as a person-level (or between-person) model since it examines how these individual changes 

over time vary between individuals. These models are specified in Table 4. 

<<insert Table 4 here>> 

The Level-1 Model.  The level-1 model posits that a given infant i’s MDI score on each occasion j (

) is a linear function of the month ( ) at which infant i was assessed plus individual 

error ( ij ). In this model, there are two individual growth parameters (Singer & Willett, 2003, p. 51). The 

first growth parameter ( i0 ) represents a given infant’s initial MDI score at baseline when 

MONTH=011. The second growth parameter ( i1 ) represents the monthly rate of change in MDI 

scores for infant i. 12 Finally, the error term ij  represents all of factors other than time influencing 

infant i’s MDI score on occasion j. By convention, we assume these errors are normally distributed 

and have a mean of zero with a constant variance 2

 .  Constant variance, or homoscedasticity, means 

that the variability of this error term remains constant at each level of the predictor in the model. 

Figure 2 illustrates the level-1 error term for a given infant i. 

<<insert Figure 2 here>> 

                                                      
11 To more easily interpret the first growth parameter, initial status, the values of the predictor MONTH could be centered so that 
initial status is an individual’s true MDI score at 6 months old rather that at 0 months old. To center the predictor MONTH, 6 is 
subtracted from the values of the variable MONTH (thus, MONTH would be recorded as 0, 6 and 12); however, for illustrative 
purposes, I have chosen to leave the value of MONTH in its original uncentered form. For more information about centering see 
Raudenbush & Bryk (2002) pp. 33-35. 
12 The subscript 0 and 1 index each of the parameters. 

ijMDI ijMONTH
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Given that this level-1 model focuses on individual growth, it provides only one part of the story 

about growth in infants’ cognitive and linguistic development. Looking across infants, we know that 

infants will have different individual initial statuses ( i0 ) as well as individual growth rates ( i1 ). 

Thus, we want to model how each of these individual growth parameters: (1) vary across individual 

infants; and (2) are predicted by characteristics, such as their treatment status, that vary from infant 

to infant but are constant across time. To accomplish this, we need to specify a level-2 model. 

The Level-2 Model. For the level-2 model, we specify as many equations as there are level-1 

individual growth parameters. Given two individual growth parameters ( i0 and i1 ) at level-1, we 

posit two separate equations for the level-2 model. Importantly, as shown by the boxes and arrows 

overlaying equations (1), (2a) and (2b) in Table 4, the level-1 individual growth parameters, i0 and

i1 , serve as outcome variables in the level-2 model. 

The first equation (2a) of the level-2 model expresses the relationship between the first growth 

parameter (initial status, i0 ) and treatment status. Parameters  and  (commonly referred to 

as fixed effects) represent the mean initial MDI score for control group infants (when =0) and 

the effect of on mean initial MDI score, respectively. Finally, the error term in equation (2), 

i0  (known as a random effect), represents infant i’s deviation from after controlling for 

assignment into the Abecedarian Program. Figure 3 shows i0 for a given infant i in the control 

group as an example. Technically, we want to estimate the variance of i0  (often denoted as 00 ). 

The variance of i0 captures the spread of these initial statuses and indicates how much each 

individual infant varies from each other on their initial statuses. 

<<insert Figure 3 here>> 

00 01

iTREAT

iTREAT

00
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The second equation of the level-2 model (2b) is of primary importance as it determines whether 

the second growth parameter (growth rate, i1 ) varies by treatment status. In this equation,  is 

the average rate of change in MDI scores for control group infants. Importantly, captures the 

relationship, on average, between an infant’s growth rate ( i1 ) and treatment status (indicated by 

iTREAT )—this parameter will help answer our main impact evaluation question since it 

distinguishes how growth rates differ, on average, by treatment group. Visually, recall the empirical 

growth plots in the 2 lower panels of Figure 1 (Panels A and B) for control and treatment groups. 

You can think of  as capturing the difference, on average, in the slopes of these trajectories by 

treatment status. 

Finally, i1 , captures infant i’s deviation from their population average growth trajectory, 

controlling for random assignment into child centered care. Figure 3 shows i1 for a given infant i in 

the control group. When fitting this model to data, we are interested in estimating the variance of 

i1 , often denoted as 11 . The variance tells us the extent of the dispersion of growth trajectories 

around an average population growth trajectory, conditional on assignment into the Abecedarian 

Program. 

We also assume that both level-2 error terms, i0  and i1 , are bivariate normally distributed 

with a mean of 0 with constant variance. Importantly, we allow these two terms to covary. The 

covariance, often denoted as 01 , allows us to determine the relationship between initial statuses and 

growth rates, conditional on assignment into the Abecedarian child care program. For example, we 

may think that infants who have relatively low initial MDI scores have higher rates of growth versus 

infants with higher initial MDI scores. A positive 01 suggests that infants with relatively high initial 

MDI scores have more rapid growth rates while a negative 01 suggests that infants starting with 

10

11

11
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lower MDI scores have more rapid growth rates. 01 can also be expressed as a correlation: 

1100

01





. 

Model Assumptions. There are two key assumptions of the multilevel model error terms mentioned 

above that are important to highlight. First, we assume that the level-1 and level-2 error terms ( ij ,

i0  and i1 ) are normally distributed. Second, we assume that the variances of these error terms are 

homoscedastic. Violations to these assumptions may cast doubt on the validity of our findings. For 

example, if the level-1 error term is not normally distributed, standard errors can be biased at both 

levels (Raudenbush & Bryk, 2002, p. 266). This could lead to incorrect inferences about the 

statistical significance of program impact. As addressed in West, et al., (2007) and Singer and Willett 

(2003, pp. 127-132), there are ways to visually determine whether these assumptions hold true by 

producing plots that display estimates of these errors terms, known as residuals. 

Summary: Specifying Multilevel Models 

To recap, establishing a basic linear multilevel growth model with repeated observations (three 

or more) on some continuous measure collected over time on individuals requires you to posit two 

models: (1) a level-1 within-person model; and (2) a level-2 person-level model.13 

The Level-1 Model (Within-Person). The level-1 model (Table 4; equation (1)) hypothesizes, for an 

individual, the relationship between each individual’s outcome on each measurement occasion and 

the passage of time plus unobserved error. This relationship is specified using an equation 

comprised of two individual growth parameters: (1) initial status (the value of an individual’s 

outcome at baseline); and (2) the effect of time on the outcome, representing an individual’s growth 

                                                      
13 If individuals were nested in higher order units such as patients in hospitals, employees in office sites, or students in classrooms, we 
would need to posit a three-level model. For an example of a 3-level multilevel growth model see Raudenbush and Bryk (2002, pp. 
237-245). 
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over time. Finally, we include an unobserved individual level error term that varies across each 

measurement occasion. 

The Level-2 Model (Person-Level). Given that there may be variability across individuals in their initial 

statuses and growth rates and, most importantly, we want to evaluate what determines that 

variability, we posit a level-2 model. This model consists of as many equations as there are level-1 

growth parameters. If growth is linear, there are two growth parameters at level-1: initial status and 

rate of growth. Thus, we posit two equations each having one of the growth parameters as an 

outcome (Table 4; equations (2a) and (2b)). To assess how each growth parameter differs by 

particular characteristics, such as program participation, we include key predictors in each equation. 

Specifying the second equation of the level-2 model is of primary importance as it allows us to 

model how average growth trajectories differ according to characteristics such as treatment group 

assignment. 

Table 5 summarizes the key parameters of the level-1 and -2 models. 

<<insert Table 5 here>> 

Specifying Two Diagnostic Models 

Before fitting a full multilevel growth model to data, you should specify and fit two preliminary 

models: (1) an unconditional means model (also referred to as a null model (Garson, 2013)); and (2) an 

unconditional growth model (Singer & Willett, 2003, p. 92). Results of these unconditional models 

provide important quantitative information that serve as guideposts signaling whether it is viable to 

proceed further in your analyses. 

Unconditional Means Model 

The unconditional means model allows you to understand (1) the extent to which there is 

significant variation within individuals (do their outcomes actually change over time?); and (2) 
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whether there is significant variation between individuals in outcomes over time, thus establishing 

the feasibility of including predictors to help explain this variation. 

As shown in Table 6, the model is specified without any predictors, only intercept terms at each 

level. In this model, we are mainly interested the fixed effect parameter 00
 
and the variance 

parameters for i0  and ij ( 00  and 
2

  respectively). 00
 
represents the overall mean MDI score 

across all measurement occasions and infants. 00  represents the degree to which there is variation 

in MDI scores between infants, while 2

  captures the degree to which there is variation in MDI 

scores within infants. Together, the between and within variation is the total variation ( 00 + 2

 ) in 

the outcome. If estimates of both 00 and 
2

 statistically significantly differ from zero, we can 

conclude that there is significant variability between and within infants in their MDI scores. This 

variability is important because it establishes the feasibility of including predictors in our subsequent 

level-1 and 2 models. For example, if there was no variability in MDI scores within infants—

hypothetically imagine that infants did not differ in their MDI scores on each occasion—then it 

would be impossible to include any additional predictors in the level-1 equation since there would be 

no variation to predict. 

Estimates of 00 and 
2

 from the unconditional means model can also be used to calculate the 

proportion of the total variation in MDI scores that exists between infants. This magnitude is 

known as the Intraclass Correlation Coefficient (ICC)14 and is often denoted by the Greek symbol  

(rho) (Killip, Mahfoud, & Pearce, 2004). The ICC is the ratio of the variation in MDI scores that lies 

between infants, 00 , to the total variation in MDI scores ( 00 plus 
2

 ):
2

00

00






. The ICC ranges 

from 0 to 1, with values closer to 1 indicating that a higher proportion of the total variation in the 

                                                      
14 Technically, this is known as an unconditional intraclass correlation (Rabe-Hesketh & Skrondal, 2008, p. 97) since there are no 
predictors included in the model.  
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outcome is attributable to differences between individuals. The ICC can also be interpreted in 

percentage form. For example, an ICC of .25 means that 25% of the total variation in a particular 

outcome lies between individuals, while the remaining 75% lies within individuals. 

Unconditional Growth Model  

A subsequent diagnostic model, the unconditional growth model, establishes whether 

MONTH is related to infants’ MDI scores. This model is specified without any predictors at level-2 

as shown in Table 7. In this model, 00  is the average MDI score for all infants at the beginning of 

the study (when MONTH=0) while 10 is the average monthly rate of change in MDI across all 

infants. Importantly, we interested in the estimates and statistical significance of the variance 

parameters for i0 and i1  ( 00 and 11  respectively). Estimates of 00 and 11  indicate whether 

there is variability in both infants’ overall initial status in MDI scores and, most importantly, change 

over time in MDI scores. If there is significant variability especially in MDI growth rates, then 

including predictors at level-2 may help predict this variation. 

<<insert Table 7 here>> 

 

Results of Multilevel Growth Models 

Software for Fitting Multilevel Growth Models 

There are several statistical software packages that can fit multilevel growth models including 

HLM, MLWiN, Mplus, R, SAS, SPSS and Stata. Each software program has its own unique syntax 

as well as data handling and preparation requirements. In addition, there are numerous guides and 

reference books written specifically for each software package. A selected list of references is in 

Table 8. 

<<insert Table 8 here>> 

Diagnostic Models Results 
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<<insert Table 9 here>> 

Unconditional Means Model (column 1, Table 9) 

The fixed effect estimate15. The overall mean MDI score across all three measurement occasions and 

infants is =104.2 points and we can conclude that infants’ cognitive and linguistic functioning 

from 6 to 18 months differs from zero.  

The random effect estimates. Estimates of the variance parameters for the infant specific residual ( 2ˆ


=137.90) and mean MDI score ( =104.86) both differ from zero16. This tells us that infants do 

have different MDI scores across time and that infants differ from each other. The ICC, calculated 

as 431.0
90.13786.104

86.104



, indicates that approximately 43% of the variation in MDI scores is due 

to between infant differences. This also suggests that including predictors in our level-2 model that 

differentiate one infant to another infant might be helpful in predicting this variation.  

Unconditional Growth Model  (column 2, Table 9) 

The fixed effect estimates.  tells us that infants initially have a mean MDI score of 109.20.  is 

-0.44 indicating that infants’ MDI scores significantly decline by about 0.44 points per month 

irrespective of their treatment status. Figure 4 displays this fitted linear growth trajectory.  

The random effect estimates. The variance of mean initial status ( =160.95) tells us that infants 

significantly vary on their initial MDI scores. However, the variance of the rate of change ( = 

0.37) indicates that infants growth rates do not significantly vary. Despite this, adding in a predictor 

                                                      
15 By convention, the symbol “^” (called a hat) is placed above the model parameter to indicate that the parameter has been estimated 
from sample data. 
16 The statistical significance of the random effects was assessed using a single parameter test (Raudenbush & Bryk, 2002, p. 
63; Singer & Willett, 2003, p. 73) by dividing the estimate by its standard error to obtain a z-statistic. However, given 
general disagreement over the appropriateness of this test, readers should also consider using deviance statistics to examine 
the statistical significance of the random effects as illustrated in Singer & Willett (2003, pp. 116-122). 

00̂

00̂

00̂ 10̂

00̂

11̂
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at level-2 (e.g. random assignment) could still be helpful in predicting infants’ MDI growth rates.17 

Finally, the estimated covariance =-4.26 (expressed as a correlation,

55.0
37.095.160

26.4 


 ) is negative indicating that children with low initial MDI scores 

tend to have faster growth rates; however, it is not statistically significant. 

<<insert Figure 4 here>> 

Full Model Results (column 3, Table 9)  

The fixed effect estimates. The mean initial MDI score ( ) is 110 points and a non-significant  

tells us that these initial scores do not differ by treatment status. This is what we would expect given 

that random assignment has created a treatment and a control group that are initially equivalent in 

expectation.  is -.89 indicating that MDI scores for control group infants declined by 0.89 points 

per month. Finally, the primary estimate of interest in the full model, , tells us that the MDI 

growth rate between the treatment and control group significantly differs, on average, by 0.90 points 

per month. 

The random effect estimates. Note that the estimated variance of the mean rate of change ( ) is 

lower in the full model versus the unconditional growth model (0.15 versus 0.37, a decline of 

approximately 60%). Though we cannot reject the null that  is zero, this decline is what we would 

expect given that  helps predict variation in MDI growth trajectories. 

Interpreting and Displaying the Full Model Results 

                                                      
17 Technically, we could specify a model with a nonrandomly varying slope (Raudenbush & Bryk, 2002, p. 28) since we would omit 

i1 in the second equation of the level-2 model. Also, despite finding no slope variation, adding in level-2 predictors can enhance the 

statistical power to detect differences in the slope variation (Muthén, 2013).  

10̂

00̂ 01̂

10̂

11̂

11̂

11̂

iTREAT
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To interpret the full model, we can derive equations describing the control and treatment group 

growth trajectories. First, we substitute estimates from column 3 of Table 4 into the level-2 

equations: 

)(44.199.109ˆ
0 ii TREAT  (1) 

)(90.089.0ˆ
1 ii TREAT  (2) 

Given that the individual growth parameters, i0 and i1 , are the intercept and slope of the level-1 

model, we substitute equations (1) and (2) into those terms respectively and simplify: 

 (3) 

Then, we develop a fitted model for the treatment group by setting =1 in equation (3) 

which simplifies to: 

 (4)  

Similarly, we derive a fitted model for control group infants by setting =0 in equation (3): 

  (5)  

In equations (4) and (5), the slope coefficients on the variable , .01 and -.89, are the 

estimated changes in MDI scores per month for treatment and control group infants, respectively. 

Treatment group infants gain .01 points per month, while control group infants decline .89 points 

per month. The difference (.01-(-.89)) is .90 points per month. To display predicted growth 

trajectories for the control and treatment groups, you can insert values for the months at which 

MDI scores were measured (6, 12 and 18) into equations (4) and (5) and then plot these values in a 

program such as Microsoft Excel. Table 10 summarizes the predicted average MDI scores at 

months 6, 12 and 18 separately for control and treatment group infants. Figure 5 displays these two 

)(90.)(89.)(44.199.109
^

ijiijiij MONTHTREATMONTHTREATMDI 

iTREAT

)(01.55.108
^

ijij MONTHMDI 

iTREAT

)(89.99.109
^

ijij MONTHMDI 

ijMONTH
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trajectories. Note the clear distinction between MDI growth rates in the control group (a noticeable 

decline) versus in the treated group (a slightly upward tilting trajectory). 

<<insert Table 10 here>> 

<<insert Figure 5 here>> 

Thus, we now have an answer to our primary impact evaluation question. By fitting a multilevel 

growth model to the Abecedarian Project data, we find that random assignment into child centered 

care causes cognitive and linguistic growth rates to differ, on average, by .90 points per month.18 

From age 6 to 18 months, infants randomly assigned into child centered care gained .01 points per 

month in their cognitive and linguistic functioning (as measured by MDI scores), while control 

group infants declined by .89 points every month.  

Testing the Model Assumptions: Normality and Homoscedasticity 

After fitting the full model, it is important to check for normality and homoscedasticity in the 

level-1 and -2 error terms. We do this by visually inspecting the estimates of these error terms, or 

residuals, which are derived from the final fitted model. 

Level-1 Residuals.  To test for normality of our level-1 residuals (the observed values of our 

outcome minus the predicted values), we can produce a Quantile-Quantile (Q-Q) plot as shown in 

Figure 6. In these plots, we determine how well the points, which represent the model’s residuals, 

line up against a normal distribution line. If the points deviate from the normal distribution line, this 

suggests a departure from the normality assumption. Figure 6 shows that the points closely line up 

with the normal distribution line. This visually signals that the assumption of normality is satisfied. 

To visually test for the assumption of homoscedasticity, we can plot the model’s residuals versus the 

model’s predicted values of the outcome and examine whether the vertical spread of the residuals at 

each predicted value remains consistent. This plot, shown in Figure 7, shows no discernible pattern; 

                                                      
18 Note that technically we are estimating what is known as the intent to treat (ITT) effect of child-centered care which is the impact 
of a randomized offer to participate in the program, not actual participation in program itself.  
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it resembles a random point cloud and therefore, we can conclude that the level-1 residuals are 

homoscedastic.  

<<insert Figure 6 here>> 

<<insert Figure 7 here>> 

Level-2 Residuals. Figure 8 shows the Q-Q plots for each of the level-2 residuals.19 As shown, 

though the some of the residuals align fairly closely with the normal distribution line, the points 

begin to trail off the normal distribution line particularly at the extreme ends.20 Thus, there is some 

evidence that the normality assumption for both these errors may not necessarily hold. However, as 

noted by Raudenbush & Bryk (2002, p. 274) departures from normality for the level-2 residuals will 

not necessarily bias the fixed effects—importantly, this will not bias our main impact estimate . 

To test for homoscedasticity, we can examine the vertical spread of each of the level-2 residuals 

against values of the level-2 predictor in our model, . Figure 9 shows the plot of each level-2 

residual versus . As shown, there is reasonable similarity in the distribution of the residuals 

at each value of with a slightly wider range when  takes on the value of 1 versus 0. 

Based on this visual evidence, we do conclude that the level-2 error terms are homoscedastic. 

<<insert Figure 8 here>> 

<<insert Figure 9 here>> 

 

Conclusion 

The increasing popularity of longitudinal evaluations that are designed to track outcomes over 

time presents program evaluators with new opportunities to move beyond evaluations that focus 

                                                      
19 Technically, these are the empirical best linear unbiased predictors (EBLUPs) for each of the level-2 random effects. 
20 In addition, also note that residuals that deviate from the ends of the normal distribution line indicate that we should check for the 
possible influence of outliers in our data and consider conducting sensitivity analyses by refitting our models with these outliers 
removed. 

11̂

iTREAT

iTREAT

iTREAT iTREAT
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solely on a single endpoint in time. Longitudinal designs enhance evaluators’ ability to understand 

how outcomes change over time as well as how this change can differ for particular groups (e.g., 

those who participated in a program versus those who did not). However, the methodological tools 

to analyze longitudinal data may not be part of an evaluator’s current methodological toolkit. To 

help evaluators make use of longitudinal data to understand changes over time and to help readers 

of the evaluation literature to become more critical consumers of longitudinal studies, I have 

provided an applied introduction to one increasingly popular method of analyzing longitudinal data 

known as multilevel level growth modeling. Specifically, I have illustrated how to organize and visually 

display data on growth over time; how to specify multilevel growth models; and finally, how to 

interpret and display the results. Readers seeking a deeper understanding of multilevel methods 

beyond the introductory material covered in this paper should seek out the works listed in references 

of this paper to more thoroughly understand and realize the power and potential of multilevel 

growth modeling in their own evaluation work. 
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Tables and Figures 
 

 

Table 1.  Data for four sample infants from the Abecedarian Project displayed in cross-sectional 
format. Two infants (IDNO=5110 and IDNO=5111) were randomly assigned into the control 
group (TREAT=0), while the remaining two (IDNO=5401 and IDNO=5402) were randomized 
into the treatment group (TREAT=1). 
 

IDNO TREAT MDI6 MDI12 MDI18 

5110 0 100 115 88 

5111 0 116 134 132 

5401 1 94 100 100 

5402 1 110 134 123 
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Table 2.  Data for four sample infants from the Abecedarian Project displayed in panel format 
 

IDNO TREAT MDI MONTH 

5110 0 100 6 

5110 0 115 12 

5110 0 88 18 

5111 0 116 6 

5111 0 134 12 

5111 0 132 18 

5401 1 94 6 

5401 1 100 12 

5401 1 100 18 

5402 1 110 6 

5402 1 134 12 

5402 1 123 18 
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Table 3. Descriptive statistics of Mental Development Index (MDI) scores for infants from the 
Abecedarian Project (n=111) 
 

Variable Description 

Control Group  Treatment Group 
 

N Mean  N Mean  

MDI6 
 
 

Scores on the Mental 
Development Index (MDI) of the 

Bayley Scales of Infant Development  
(the numbered suffix denotes 

month of measurement) 

 
53 
 

101.34 
(14.70) 

 
 

53 
 

107.43 
(15.48) 

 

MDI12 
 

53 
 

105.83 
(14.47) 

  
51 

 

111.59 
(14.33) 

 

MDI18 
 

49 
 

89.98 
(11.70) 

  
51 

107.51 
(13.98) 

 

Note: Standard deviation in parentheses. 

 
Table 4. A 2-level multilevel growth model describing the hypothesized change in MDI scores over 
time for infants in the Abecedarian Project by treatment status. Note that the level-1 growth 

parameters ( i0 and i1 ) are outcomes at level-2. 

 

Model 
 
Equation 
 

 
 

 
Level-1 Model  
(Within-Person) 
 

 

ijijiiij MONTHMDI   )(10  

  
(1) 

Level-2 Model  
(Person- Level) 

 

 

iii TREAT 001000 )(    

iii TREAT 111101 )(    

(2a) 

(2b) 
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Table 5. Explanation and interpretation of population parameters in a 2-level multilevel growth model (i indexes infant; j indexes occasion) 

Model Parameter Explanation & Interpretation 

 
Level-1 Model (Within-Person) 
 

  

ijijiiij MONTHMDI   )(10  

 
 

i0  The first individual growth parameter representing a given infant i’s initial MDI 
score at baseline when MONTH=0. 

 

i1  

 
The second individual growth parameter representing the monthly rate of change in 
MDI scores for infant i. 

 

ij  
 
All factors besides the effect of time that influence infant i’s MDI score on occasion 

j. The variance of ij , is often denoted as 
2

 . 

 

 
Level-2 Model (Person- Level) 
 

  

iii TREAT 001000 )(    

 

 The mean initial MDI score for control group infants (when =0). Often 

referred to as a “fixed effect”. 
 

 

 

The effect of on mean initial MDI score. Often referred to as a “fixed 

effect”. 
 

i0  

 
The unexplained portion of infants’ initial statuses that remains after accounting for 
their assignment into the Abecedarian Program. Often referred to as a “random 

effect”. The variance of i0  is often denoted as 00 . 

 

iii TREAT 111101 )(    

 

 

 
The average rate of change in MDI scores for control group infants. Often referred 
to as a “fixed effect”. 

 

 

 

The relationship, on average, between an infant’s growth rate ( i1 ) and treatment 

status (indicated by iTREAT ). Often referred to as a “fixed effect”. 

 

i1  

 
The portion of the individual growth rate unique to each individual infant that 
remains unexplained after accounting for random assignment into the Abecedarian 
Program. Often referred to as a “random effect”. The variance of this error term is 

often denoted as 11 . 

00 iTREAT

01 iTREAT

10

11
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Table 6. A 2-level unconditional means model 
 

Model 
 
Equation 
 

 
 

 
Level-1 Model  
(Within-Person) 
 

 

ijiijMDI   0  

  
(1) 

Level-2 Model  
(Person- Level) 

 

 
ii 0000    (2a) 

 

 
Table 7. A 2-level unconditional growth model 

 

Model 
 
Equation 
 

 
 

 
Level-1 Model  
(Within-Person) 
 

 

ijijiiij MONTHMDI   )(10  

  
(1) 

Level-2 Model  
(Person- Level) 

 

 

ii 0000    

ii 1101    

(2a) 

(2b) 
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Table 8.  Software and recommended references for fitting multilevel growth models 
 

Software Package Reference 

HLM  

 
Raudenbush, S. W. (2004). HLM 6: Hierarchical linear and nonlinear 
modeling. Lincolnwood, Ill: Scientific Software International. 
 

MLwiN  

 
Rasbash, J., Browne, W., Goldstein, H., Yang, M., Plewis, I., Healy, M., 
. . . Lewis, T. (2000). A user’s guide to MLwiN. London: University of 
London, Institute of Education, Centre for Multilevel Modelling. 
 

Mplus 

 
Muthén, L.K. and Muthén, B.O. (1998-2012). Mplus user’s guide,  
seventh edition. Los Angeles, CA: Muthén & Muthén. 
 

R 

 
Bliese, P. (2013). Multilevel modeling in R (2.5). Retrieved from 
http://cran.r-project.org/doc/contrib/Bliese_Multilevel.pdf 
 

SAS 

 
Singer, J. D. (2002). Fitting individual growth models using SAS PROC 
MIXED. In D.S. Moskowitz & S. L. Hershberger (Eds.) Modeling 
intraindividual variability with repeated measures data: methods and applications 
(pp. 122-153). Mahwah, NJ: L. Erlbaum Associates. 
 

SPSS 

 
Heck, R. H., Thomas, S. L., & Tabata, L. N. (2013). Multilevel and 
longitudinal modeling with IBM SPSS. New York, NY: Routledge. 
 

Stata 

 
Rabe-Hesketh, S., & Skrondal, A. (2012). Multilevel and longitudinal 
modeling using Stata. College Station, TX: Stata Press. 
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Table 9. Results of fitting multilevel growth models to the Abecedarian Project data (n=111) 

Key:  ~p<.10; *p<.05; **p<.01; ***p<.001; =.05 
Notes: Models fit using Stata’s xtmixed command; Statistical significance of the random effects not reported 
because the standard tests of significance (e.g., Wald statistics) for such effects are not entirely reliable (see 
Hedeker & Gibbons (2006, p. 52)). 

 

 (1) (2) (3) 

 Unconditional Means Unconditional Growth Full 

Fixed Effects    

Initial Status ( ) 
104.02*** 

(1.20) 
109.20*** 

(2.04) 

 
109.99*** 

(2.90) 
 

Treatment ( ) 

Effect of treatment on 
initial status 

  
-1.44 
(4.09) 

    

Month (Rate of Change)  

( ) 
 

-0.44** 
(0.14) 

-0.89*** 
(0.19) 

 

Treatment ( ) 

Effect of treatment on 
rate of change 

  
0.90*** 

(0.27) 

    

Random Effects    

Level-1 (within infant) 
 

   

Temporal Variation  

(
2ˆ
 ) 

137.90 
(13.62) 

117.74 
(16.51) 

119.80 
(16.84) 

 
Level-2 (between infant) 

 
   

Infant Mean Initial 
Status 

( ) 

104.86 
(21.27) 

160.95 
(71.34) 

160.08 
(72.21) 

 
Infant Mean Rate of 

Change 

( ) 

 
0.37 

(0.36) 
0.15 

(0.35) 

 
Covariance 

( ) 
 

-4.26 
(4.63) 

-3.95 
(4.58) 

    

00̂

01̂

10̂

11̂

00̂

11̂

01̂
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Table 10.  Predicted Mental Development Index (MDI) scores by month for control group and 
treatment group infants from the Abecedarian Project. Predicted scores are based on a fitted 
multilevel (2-level) growth model (column 3 of Table 9) (n=111) 
 

Month Control Treatment 

6 104.65 108.61 

12 99.31 108.67 

18 93.97 108.73 
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Figure 1.  Empirical growth trajectories of Mental Development Index (MDI) scores for infants 
from the Abecedarian Project. The thickest line represents the average of the trajectories. (n=111) 
 

Overall Trajectories 

 
 

 
(A) 

Control Group Trajectories 
 

 
 
 

 
(B) 

Treatment Group Trajectories 
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Figure 2. Illustration of the level-1 model error term, ij . ij is the vertical deviation between infant 

i’s observed MDI score on each occasion j and his/her MDI growth trajectory. i0  is the infant’s 

initial status and i1  is the growth rate. 
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Figure 3. Illustration of the level-2 model error terms ( i0  and i1 ) for a given control group infant i (TREAT=0). The thicker line is the population 

average trajectory for all control group infants, while the thinner line is the trajectory for infant i.  and 10  are the population average initial status 

and population average growth trajectory for all control group infants, respectively. i0 is infant i’s deviation from  and i1  is the deviation from 

10 . ij represents the vertical deviations between observed MDI scores on each occasion j and infant i’s growth trajectory. 
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Figure 4. Predicted mean growth rate in Mental Development Index (MDI) scores for infants from 
the Abecedarian Project. (n=111) 

 

 
 
 
Figure 5. Predicted mean growth rates in Mental Development Index (MDI) scores for infants from 
the Abecedarian Project by control and treatment status. (n=111) 
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Figure 6. Q-Q plot for the level-1 residuals 
 

 

Figure 7. Plot of the level-1 residuals against the model’s predicted values of the outcome (fitted 
MDI scores) 
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Figure 8. Q-Q plot for the level-2 residuals (estimates of i0  appear in the upper panel while 

estimates of i1  appear in the lower panel) 
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Figure 9. Plot of the level-2 residuals against values of the level-2 predictor, TREAT (estimates of

i0  appear in the upper panel while estimates of i1  appear in the lower panel) 
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