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Abstract
A Cognitively Informed and Network Based Investigation of Human Neural
Activities, Behaviors, and Performance in Human-Autonomy Teaming Tasks

Human-autonomy teams are expected to provide solutions in a wide range of

applications, such as human directed search and rescue, hazard containment and

mobilization, and space exploration. These teams consist of autonomous agents that

coordinate their actions with the human partner to achieve common goals. Despite the

advancements of current autonomous systems, it is the human’s ability to engage their

knowledge and expertise that makes human-autonomy teams especially effective in tasks

dominated by dynamic and uncertain conditions. The human and their autonomous

teammate should have shared plans and a similar focus of attention. However, studies

have shown that a human’s miscomprehension of an autonomous system’s state,

decisions, or course of action can result in misuse or disuse of the agent, causing a

reduction in team performance. The aim of this dissertation is to improve

human-autonomy team task proficiency by investigating methods to measure changes in

human cognitive state as reflected in neurophysiological measures using methods derived

from network science. This work is comprised of two primary studies. In the first study,

we examined human behaviors and brain activity acquired via electroencephalography

(EEG) to probe the interactions between cognitive processes, behaviors, and

performance in a human-multiagent team task. We showed that measurable changes in

brain activity indicate a higher burden on the cognitive resources associated with

visual-spatial reasoning required to estimate a more complex kinematic state of robotic

agents. These conclusions were reinforced by complementary behavioral shifts in gaze

and pilot inputs. Next, we showed that EEG inter-channel connectivity network metrics

distinguish gaze behaviors associated with the attention process more effectively than

traditional single-channel features. In the second study we explored the relationship

between neurophysiological features and human trust in an autonomous system while

performing a team task. Trust prediction models were constructed using a variety of

feature types determined from an EEG timeseries. A comparison of model performance
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between traditional EEG signal powers with inter-channel connectivity network metrics

revealed that measures of dynamic changes in synchronous behavior between distant

brain regions can capture cognitive activities that predict a human’s trust in an

autonomous system. We showed that both single-channel powers and network-metrics

defined from brain regions associated with reasoning and attention have the greatest

impact on trust prediction. In a third study, we explore the interaction between

behaviors and performance for subjects of various skills in a manual grinding task. We

show that there were observable and distinguishable sensorimotor behaviors associated

with two distinct techniques utilized by the individual subjects, and that task

performance is affected by these techniques.
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Chapter 1

Introduction

Human-autonomy teams are expected to provide solutions in a wide range of

applications, such as human directed search and rescue [1], hazard containment and

mobilization [2], and space exploration [3]. These teams consist of autonomous agents

that coordinate their actions with the human partner to achieve a common goal.

Despite the advancements of current autonomous systems, it is the human’s ability to

engage their knowledge and expertise, both general and domain specific, that makes

human-autonomy teams especially effective in tasks dominated by dynamic and

uncertain conditions. In many applications, humans are required to be “in-the-loop”,

implying an active, rather than supervisory role. These types of human-autonomy tasks

present a fundamental problem: how can we optimize a natural and effective

collaboration between the autonomy and its human partner? Considering the various

cognitive constraints placed upon the human, this problem can be particularly difficult

to solve. Consequently, a major goal in human-autonomy teaming (HAT) research is to

maximize task performance through a fusion of the autonomous features of the agent(s)

and the cognitive skills of the human.

1.1 Human-Autonomy Teaming
As autonomous systems become more capable of reasoning and decision making in the

presence of uncertainty, the interaction between humans and these systems can be more

accurately described in terms of human-human teaming. Consequently, the human and

their autonomous teammate should have shared plans [4], and a similar focus of

attention [5] in order to maximize team task efficiency. Therefore, a broader
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investigation of human-autonomy interaction requires an examination of human factors

such as workload and situation awareness [6]. It is critical for the human to comprehend

and predict the behaviors of the agent within the context of achieving their shared

goals. Likewise, it is critical for the autonomous agent to understand the cognitive state

of the human in order modulate or communicate their own intentions. Achieving

effective and efficient human-autonomy team task performance can be significantly

augmented if the autonomous agent has direct access to the internal cognitive state of

the human in real-time.

Significant work has examined what information can be effectively passed to the

human operator [7] or how its presentation can affect the team-performance [8]. Other

work has attempted to construct an adaptable teamwork-centered interface by adopting

characteristics of human-to-human teams [9]. Recent research has also examined how

robots can adapt their interactions via an observation of the external actions and

decisions to reason about the mental state of their human partner [10]. Nevertheless,

these efforts do not examine detailed aspects of human cognitive behavior. As

autonomous agents become more sophisticated and independent, it is critical for the

agent to understand behaviors and expected outcomes of the human in order to make

appropriate decisions about their use [11]. Access to the real-time mental state of the

human could be used to modify the behavior of autonomous systems [12]. For example,

adaptable automation could be calibrated to specific individual differences [13].

1.1.1 Human Cognitive State Estimation

Even a seemingly basic scenario, such as controlling a robotic group through direct

teleoperation, can be a challenging task. Successful performance can impose a heavy

burden on a human operator’s cognitive resources [14]. The underlying mental action

and processes related to memory, attention, reasoning, problem-solving, comprehension,

and language organization is known as a person’s cognitive state [15].

1.1.1.1 Electroencephalogram

Extensive research in neuroscience has demonstrated that cortical activation within given

regions increases with cognitive demands [16], and neuroimaging measures of cortical
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activity (Table A.2) can provide an index of cognitive activity. Electroencephalography

(EEG) is a common, noninvasive method for recording brain signals in humans. The

electrical activity of neurons within the neocortex of the brain generate detectable voltages

that can be recorded via electrodes placed directly onto the scalp [16]. Attention, memory

performance, and cognitive workload have been studied using signals acquired via EEG

[17,18]. EEG has also been employed in social human-robot interaction research [19] and

Brain Computer Interface (BCI) implementations [20]. These studies primarily include

the magnitude and spatial distribution of spectral power in the θ (4-8Hz), α (8-12Hz), β

(12-30Hz), and γ (>30Hz) bands. For example, modulations of θ-band power in the frontal

cortex of the brain are thought to be a key mechanism of sustained attention and goal-

related behaviors. Increased θ is a hallmark of improved task performance and sustained

attention, known to reflect the cognitive demands of a given task [21,22]. By comparison,

modulations in α-band oscillations over the entire head occur in all the historic cognitive

domains of perception, attention, and access to working memory [23].

EEG has proven to be an effective tool for estimating certain human cognitive states

such as fatigue, workload, and vigilance in rapid timescales [24, 25]. However, cognitive

function is not necessarily confined to monolithic, self contained regions of the brain. Each

cortical area can perform multiple cognitive functions, and conversely, many cognitive

function are performed by more than one area. It is more accurate to state that perception

and cognition emerge through cooperation of numerous distinct brain regions [23].

1.1.1.2 Network Neuroscience

The human brain is known to have distributed neurophysiological networks consisting of

functionally integrated clusters of synchronized activity with sparse connections between

them [26]. The topology of large scale cortical networks changes dynamically during

cognition, adapting itself to the demands of the task and resource limitations of different

cortical areas [27]. For example, there is evidence demonstrating that cognitive control

networks shift their connectivity in a task dependent manner to dynamically reconfigure

brain networks for goal directed behavior [28]. It is widely believed that the attention

system is controlled by a distributed network of brain regions [29]. In neuroscience,
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descriptive measures of the local and global features of inter-channel network topology

have been widely applied to EEG data. For example, functional long range α-band

interactions between brain regions exert top-down influences to inhibit sensory

susceptibility [30]. These analyses have revealed nonrandom topological aspects, such as

high clustering or short path length [31] and metrics of dynamic functional connectivity

may indicate changes in macroscopic neural activity patterns underlying critical aspects

of cognition and behavior [32].

1.2 This Dissertation
The use of EEG band power analysis in cognitive research is extremely mature.

However, few studies have investigated the use of dynamic EEG functional connectivity

networks to estimate human cognitive state in real time, and fewer still have attempted

to use them in human-autonomy team studies [33]. The incorporation of EEG measures

and methods derived from network science into human-autonomy team applications

remains a relatively open and unexplored field.

A major goal in human-autonomy teaming (HAT) is the development of systems

that can automatically support the operator in executing working tasks. An important

step in achieving that goal is to develop accurate real-time estimates of the changes in

human cognitive state. In this research, I propose to use elements of cognitive

science and the mathematics of network theory to identify and decode

changes in human cognitive activity during human-automation team tasks.

The research conducted for this dissertation consisted of three human subject

experiments.

Experiment 1: An EEG Network Examination of Human Robot Teaming

We explored both behaviors and neurophysiological characteristics of human subjects as

they piloted a team of robots in a target identification and acquisition task. It is the
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difficulty in estimating the kinematic state of the robot group that is the main

experimental factor. In addition to gaze and pilot input, we examine both spectral

powers and metrics of EEG inter-channel functional connectivity networks based on

ensemble averages of performance within each subject. The results of this investigation

have been published in [34], [35], and [36]. The details of this experiment are outlined in

Chapter 2.

Experiment 2: An EEG Network Examination of Human Trust in Autonomy

We explore how a human’s trust in an autonomous system correlates with changes in

neurophysiological characteristics as they perform a collaborative sorting task in concert

with a simulated robotic arm. It is the capability of the robot that is the main

experimental factor used to elicit changes in trust. We examine temporal changes in

both spectral powers and metrics of EEG inter-channel functional connectivity

networks. The results of this experiment have been submitted for publication [37]. The

details of this experiment are outlined in Chapter 3.

Experiment 3: Investigating Human Behaviors in a Manual Grinding Task

We investigated the gaze and motor behaviors that were elicited by humans of different

levels of experience as they perform a manual grinding task. The results of this

investigation have been published in [38], [39], and [40]. The details of this experiment

are outlined in Chapter 4.
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Chapter 2

An EEG Network Examination of Human
Robot Teaming

Preface
Effective human-multiagent teams will incorporate the cognitive skills of the human

with the autonomous capabilities of the multiagent group to maximize task

performance. However, producing a seamless fusion requires a greater understanding of

the human’s cognitive state as it reacts to uncertainties in both the task environment

and agent dynamics. In this chapter we present our experiment regarding human robot

teaming. We present a comprehensive analysis of human-multiagent interaction as

cognition affects behaviors which determine performance, as shown in Figure 2.1.

The major contributions of this chapter are as follows: 1) We show that the decrease

in task performance associated with geometric complexity (GC) is directly reflected in

neurophysiological and behavioral measures. Furthermore, we show that higher

performing subjects engage more actively in the task by utilizing a greater amount of

visual-spatial reasoning and focused attention; 2) We propose a

network-cognitive-scientific approach of analyzing EEG data. We show that a set of

features based on dynamic networks of EEG functional connectivity can be used to

distinguish gaze behaviors associated with attention, thereby establishing a correlation

of cognitive processes with behaviors in real time. As far as we know, this is one of the

first instances such a methodology has been applied to analyze human-multiagent

performance using data obtained from testing in a real, rather than simulated

environments.
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The contents of this chapter have been previously published in [34], [35], and

[36].

Figure 2.1: Performance to behavior loop connecting the cognitive processes that drive
behaviors, which in turn affect the overall task performance. The four measures and the
interrelationships examined by each hypothesis are indicated: H1 and H2 in red, and H3
in blue.

2.1 Introduction
To date, researchers have made key advancements by testing human subjects within

simulated environments [41]. Such methods are justified by the fact that controlled

environments greatly limit the effects of confounding factors. Nevertheless, it has been

observed [42] that given identical tasks, testing in real, rather than simulated

environments can increase the workload [43] and reaction times of the human subjects.

Test scenarios in which human subjects interact with real robots provide the

opportunity to gain insight into how humans handle, not only the complexities of robot

dynamics and variations in environment, but also the inherent uncertainties in the

human-robot interaction.

2.1.1 Present Study

As an essential property of cognitive operation, attention can be roughly divided into

two categories: 1) bottom-up, a stimulus-driven process in which a salient sensory event
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captures focus; and 2) top-down, a voluntary goal-driven process based on tasks, memory,

knowledge, and expectations [44]. Memory, or more specifically working memory, is the

cognitive capacity to maintain and manipulate information for limited periods in the

absence of continuous sensory stimulation [45]. Working memory has been implicated as

the primary factor in the ability to control attention [46]. As mentioned in Chapter 1,

attention, memory performance, and cognitive workload have been studied using signals

acquired via EEG. In addition, a behavioral proxy of attention often used in research

is gaze, the coordinated motion of the eyes and the head. A majority of studies are

concerned with two types of gaze movements: saccades, rapid movements in which the

gaze shifts from one location to another; and fixations, the period during which the gaze

is stationary and useful information is collected from the area of interest [47].

Given the attention-demanding nature of many human-multiagent team tasks, a

natural question arises: Does complexity of the kinematic state of the multiagent team

impact task performance, and if so, is it reflected in the behavioral and

neurophysiological measures? It has been shown [36] that the performance of a

human-multiagent team task will decrease with an increasingly complex spatial

distribution of the agents. A decline in performance would be a natural consequence of

the increase in mental computation [43] necessary to continuously estimate the

kinematic state of the group. Therefore, these cognitive demands should present

themselves in the α and θ band features of EEG. In addition, changes in external

behaviors, such as gaze and pilot input activity, should also be present. These results

would be indicative of the visual-spatial nature of the task. Moreover, changes in both

cognitive activity and gaze that are associated with attention should correlate

dynamically.

2.1.2 Experimental Hypotheses

The levels of geometric complexity in these experiments are embodied by two different

spatial configurations of ground robots: the serpentine (low GC) and rectangle (high

GC). In the remainder of this chapter, levels of GC will be referred to by the type of

configuration. The objective of these human-multiagent team task was to acquire the
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maximum number of randomly appearing targets in a fixed period of time. Consequently,

targets acquired per minute (Tpm) is the metric of task performance that is employed in

this study.

Our first two studies examine the differences in neurophysiological and behavioral

measures grouped by the factors of configuration and task performance. These

relationships, shown in Figure 2.1, are outlined in red. The dependent variables are

listed in Table 2.1.

Our third study examines the dynamic relationship between cognitive processes and

behaviors. Unlike the first two studies, we assume a-priori that cognitive activity and

behaviors are linked through the process of attention. As mentioned in Section 2.1.1,

gaze is a proxy measure for attention. Consequently, the occurrence of saccades

represents shifts in top-down and/or bottom-up attention, both of which are mediated

by a distributed network of brain regions [30]. The continuous changes in cognitive

processes will manifest in dynamics of the topological properties of EEG functional

connectivity networks. Therefore, measures associated with these topological properties

and gaze behavior should correlate. These relationships are outlined in blue in Figure

2.1.

H0.5: Task performance, measured in TP M , will decrease from serpentine to rectangular

configuration. The increase in cognitive resources needed to estimate the state of the

rectangular configuration will result in an increase in target misses, or a slower

target-to-target transit time, both of which will ultimately result in a lower number of

targets per minute.

H1: The greater cognitive resources that are required to pilot the rectangular

configuration (high GC) will present statistically significant differences in

neurophysiological and behavioral measures. More specifically, θ power in the mid and

frontal regions and α power in the occipital regions of the brain should increase. In

addition, long range functional connectivity in the α band would indicate top down

9



control of the visual attention process. These outcomes would imply an increase in

visual-spatial reasoning and cognitive processing, all of which are consistent with

well-established cognitive scientific literature. Furthermore, significant differences in

gaze and pilot input activity should be present. The study was within-subject, and the

single factor Configuration had two levels: serpentine (low GC) and rectangle (high

GC).

H2: The subjects with higher performance have a natural proclivity for this particular

human-robot task. Therefore, they will utilize fewer cognitive resources than those with

lower performance. The lower cognitive demands should be reflected in the average

neurophysiological and behavioral measures, as described in Hypothesis 1. The study

was between-subject, and the single factor Performance had two levels: high and low.

H3: Cognition and gaze behavior are strongly linked during the performance of a

human-multiagent task. Therefore, a properly selected set of features derived from

functional connectivity network-based metrics can distinguish between visual behaviors

associated with attention. Specifically, average values of network metrics at periods

corresponding to each gaze state will differ. The magnitude of the differences will be

unique to each subject, but the specific features will apply to all subjects. This study

was within-subject and the single factor Gaze had two levels: saccade and fixation.

2.2 Methods
In the Present Study, we defined geometric complexity (GC) as the number of agents

required to estimate the kinematic state of the robotic group. In order to determine the

impact of GC on human-multiagent team performance, we conducted a series of human

subject experiments based on a target identification and acquisition task, but with real

ground robots and humans locally embedded in the task space. We utilized an EEG

device to measure changes in both spectral power and functional connectivity in the α
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and θ bands associated with cognitive activity. In addition, a pair of eye-tracking glasses

measured gaze behavior.

2.2.1 Experimental Design

This experiment was conducted in the Cyber-Human-Physical Systems (CHPS) Lab at

the University of California, Davis. The study consisted of a 4.2 m by 5.5 m test arena

surrounded by motion tracking cameras. The test arena will be referred to as the “task

space”. This task space contained ground robots under the control of human subjects. Two

wall mounted projectors displayed interactive targets onto the floor. We have integrated

several modules into a measurement suite to record behavioral, neurophysiological, and

mechanical data. Each module is named for its primary measure: 1) Gaze: a wearable

eye tracking system by SensoMotoric Instruments; 2) EEG: an Emotiv Epoc headset [48]

with an array of 14 electrodes positioned via the International 10-20 system; and 3) 3D

Pose: an Optitrack motion capture system consisting of 12 wall mounted cameras. These

modules are shown in Figure 2.2, along with one of the target-to-target trials in this

chapter.

1. Gaze: a wearable eye tracking system by SensoMotoric Instruments (SMI). Data

was sampled at 60 Hz. The gaze data is presented as the pixel position within a

video image with a resolution of 1280 by 960 pixels.

2. EEG: an Emotiv Epoc headset is an array of 14 electrodes positioned via the

International 10-20 system. Data was sampled at 128 Hz.

3. 3D Pose: a motion capturing system by Optitrack consisting of 12 cameras

circumferentially positioned around the task space. The robots and eye tracking

glasses were fitted with an array of reflective spheres allowing pose estimation

within an accuracy of <1mm. Data was sampled at 30 Hz.

4. We have the joystick inputs from the user (vw, ωc) . These are sampled at 30Hz and

filtered with a first order Butterworth filter at a corner frequency of 3Hz.

The coordinate system established by the Optitrack module will be referred to as the

“world” frame, denoted by W . In addition, each trial was recorded using an overhead
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Figure 2.2: Detail of the human-robot interaction arena with motion tracking cameras and
projectors, as well as a robot group, and a subject outfitted with gaze tracking glasses.
START and FINISH targets are given by the green and red circles respectively. Gaze
distribution in the visual field is represented as a heatmap on the floor of the task space.

camera. Several examples are shown in Figure 2.5b. Piloting commands of linear and

angular velocity (v and ω respectively) from the human subjects were applied with a

Logitech Force 3D Joystick. Command signals were sampled at 30Hz and smoothed with

a first-order Butterworth filter at a corner frequency of 3Hz.

Our test subjects were required to pilot a group of six Pololu m3pi differential drive

vehicles in each of two configurations. Only the input from a single joystick was used

to pilot the group. In order to simplify control, reverse commands were not allowed.

A centralized controller calculated the six independent non-interacting path-following

control laws [49], with simple minimum inter-robot spacing rules to prevent collisions.

Maximum speed limits ensured stability. The control signals were broadcast wirelessly to

each individual robot.

The two multirobot configurations are shown in Figure 2.5a. For the serpentine

configuration, the human subject piloted a lead cart while the five trailing robots would

simply follow the path established by the leader. The rectangular configuration was
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(a) Detail of cart kinematics used for the
configuration controller.

(b) Detail of rigid body kinematics used for
the configuration controller.

Figure 2.3: Details of the coordinate descriptions for the robotic configurations.

maneuvered by piloting the central motion of a virtual rigid body. The six unique

command paths were established by the motion of virtual carts positioned about the

center of a rectangular virtual shape, as seen in Figure 2.3b and Figure 2.4. The

controlled motion of the rectangular configuration deviated from its perfect shape

depending upon the aggressiveness of the human subject’s piloting commands.

Examples of the group motion are shown in Figure 2.5b. Simulations of the movement

can be found at https://youtu.be/QoLUWKFrHWA and

https://youtu.be/TpCnO3kb2jo. The deviation of the carts from a perfect rectangular

shape is also visible in Figure 2.6.

The kinematics of the robotic group can be described mathematically by the motion of

vectors in a given coordinate system. We denote the position of cart i in the world frame

as rW
i . The origin of serpentine configuration oW

srp was defined by the position of the third

robot in the chain: oW
srp = rW

3 . We chose this position to distribute each subject’s focus

over the larger group, rather than the lead robot. In contrast, the origin of the rectangular

configuration was defined as the instantaneous centroid of the six carts: oW
rct = 1

6
∑6

i=1 r
W
i .

Piloting this group required human subjects to estimate the true position of the centroid.

An example of the coordinate system for the rectangular configuration is detailed in Figure

2.3b.
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Figure 2.4: Detail of configuration controller. Command paths are determined by the
control algorithm assuming carts with unicycle kinematics. The true path of the carts
deviates slightly from the command causing a distortion in the shape of the controlled
configuration.

Using the lead robot, a subject could effectively acquire targets with the serpentine

configuration by tracking, at the very least, two robots: the lead cart; and the third

cart. The rectangular configuration however, may require all six robots for adequate

estimation of the origin depending on the distortion of the controlled shape as shown in

Figure 2.6. Consequently, we assigned the serpentine a GC of 2, and the rectangle a

GC of 6. Regardless of how aggressively the subject attempts to pilot the rectangular

configuration, we expect it to be more difficult to perform the task effectively than the

serpentine configuration.

2.2.2 Participants

Ten subjects completed the tests; 9 male and 1 female. All subjects were undergraduate

students between the ages of 18 to 22. Each subject was instructed on both the testing

procedure and proper use of the test equipment. In addition, there were two training

sessions in which subjects would control first a single robot, then all six robots in each

configuration as shown in Figure 2.7. We demonstrated for them how to acquire the target

using each configuration. For all subjects, the test series proceeded as follows: training

to the serpentine trials; and finally to the rectangular trials.
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(a) The Serpentine and Rectangle configurations used in this study.

(b) Overhead screen captures of a single target attempt for the two multirobot configurations
used in this study. The tangential T̂ and normal N̂ directions of the body frame for each
configuration are labeled. The origin for the serpentine configuration OW

srp is defined by position
of the third robot in the chain, whereas the origin of the rectangular configuration OW

rct is defined
by its centroid. Both the position and heading information of the target are displayed. A subject
must pilot the configuration of robots from an initial target (START) to a final target (FINISH).
The distortion of the rectangular configuration is evident.

2.2.3 Task Design

During each trial, subjects were presented with targets projected onto the floor. The first

target of each trial was located in the direct center of the task space. All subsequent

targets were selected from predetermined sequences. Subjects had no a-priori knowledge

of the sequences and consequently, target generation was random from their perspective.
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Figure 2.6: A detail of configuration distortion due to the aggressiveness of the control
input. An aggressive maneuver is combination of high speed and short turn radius that
will cause the robot group, shown in blue, to deviate significantly from its rigid body
shape, in red. A slower and straighter non-aggressive maneuver yields little deviation
from the perfect rigid body.

Figure 2.7: Overhead view of the training sessions for each configuration. Subjects were
instructed to pilot the configurations around the figure-eight path while attempting to
keep the centroid of the configuration on the path.

Each target contained heading information indicated by a line. Subjects were tasked to

pilot the origin of each robotic group from one target to the next as quickly as possible.

New targets were only revealed when both a minimum origin-to-target distance of 15.2 cm

(6 in) and a minimum heading difference of ±15◦were met. Therefore, only two targets,

a start and a finish, were visible to the subjects at any time. A detail of a target pair

is shown in Figure 2.6. All target-to-target paths were designed to be feasible given the

spatial constraints of the task space. Subjects were provided eight minutes to pilot each
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configuration with the explicit task of acquiring as many targets as possible. Depending

on the skill of the human subject, the number of targets acquired ranged from 4 to 12.

There was a five minute rest phase between each trial.

Figure 2.8: An overhead screen capture of a single target attempt. A rectangular
configuration of robots is being guided from the initial target (START) to the final target
(FINISH). The gaze distribution, indicated by a heat map, is noticeably leading the true
centroid

2.3 Measures
In this section we discuss the methods used to prepare our data. The complete set of

measures presented in this chapter is summarized in Table 2.1. For each target attempt,

we examined the arrival phase: the final eight second period during which a subject

attempts the acquisition of a target. It is during this phase when fine piloting

corrections and visual activity, i.e., motor and sensory processes, would be collectively

deployed to successfully acquire the target. The maintenance of sensory information

stored withing working memory requires constant control through the attentional

system [50]. Therefore, access to working memory resources, and the sensory inhibition

of non-relevant stimuli should be greatest during the acquisition phase. We did not

discriminate between successful and an unsuccessful target acquisition. The subjects are

generally unaware of their outcome until after the configuration has passed over the

target point. Therefore, regardless of success or failure, each subject intends to succeed

and behaves in a manner to do so.
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Three primary pipelines were established to generate the measures for our analyses:

1) extraction of the gaze data shown in Figure 2.9A; 2) determination of the joystick

activity shown in Figure 2.9B; and 3) extraction of the EEG spectral powers and dynamic

functional connectivity shown in Figure 2.9C. Data streams were pruned to the 8 seconds

preceding the acquisition of each target, filtered, and temporally aligned for comparison.

Table 2.1: Detail of the Dependent Variables for Hypotheses I and II
Measure Description

Spatial Gaze
Distribution: GM

Gaze distribution in the Middle region of the robotic
configuration.

Joystick Activity: JA Cumulative sum of incremental joystick movement.
EEG Power: P̂α, P̂θ Normalized spectral power in the α and θ bands.
Broadband Functional
Connectivity: Cij

α , C
ij
θ

Phase synchrony between channels i and j in the α and θ
bands.

2.3.1 Gaze Data
2.3.1.1 Rotation to the Body Frame

The Optitrack motion capture system establishes a world frame W within the task space.

A pose estimate of the subject’s head was combined with the gaze, extracted from the

eye tracking glasses (ETG), to synthesize the gaze vector in W as rW
g . The intersection

of this gaze vector with the arena floor created a heatmap of the overall distribution of

gaze points, as shown in Figure 2.10.

All data were transformed into a body centered coordinate system B, determined for

each configuration. In doing so, we performed an analysis independent from the specific

pose of the robotic group. The system B was defined as follows: first, extract the unit

vector T̂ , originating from the rigid body origin oW
c and tangential to the direction of

movement. Next, project a unit vector N̂ perpendicular to T̂ . Finally, translate by oW
c

and multiply by the rotation matrix RB
W from the world frame W to the body frame B

to obtain rB
g = RB

W (rW
g − oW

c ), where rB
g is the gaze in the body frame. We transformed

the cart positions, target positions, and the gaze distributions into the new body frame

B. An example of these transformations for a single target attempt is shown in Figure
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Figure 2.9: A detail of the data reduction methods used to obtain our measures. The
detail of gaze data reduction, including the rotation into the moving body frame, is shown
in (A). Gaze data, shown as a heat map, are projected onto the arena floor. The gaze
regions and their associated histograms are delimited by vertical lines. Average cart
positions are marked as C1 through C6. The group origin (centroid) along with the
30.5 cm diameter threshold region is shown by a black dot and circle, respectively. Note
the deviation of the cart positions from a true rectangular distribution. The methods
for obtaining the spectral data, connectivities, and temporal metrics are outlined in (B).
Each 8 second EEG time trace is transformed via complex morlet wavelets. Connectivity
matrices derived from the phase synchrony calculated over a sliding window are used to
generate the temporal sequence of EEG networks. Network metrics determined at each
time step trace out the evolution of network properties. The methods to extract joystick
activity are shown in (C). Joystick activity is defined as the cumulative sum of incremental
changes in normalized linear and angular joystick commands.

2.9A.

2.3.1.2 Estimating Gaze Distributions

The wider dispersion of carts in the rectangular configuration naturally induces increased

gaze activity in the direction of N̂ . We examined differences in gaze distributions along

the T̂ direction. One area was selected for comparison: the Middle region denoted by M

and defined between ±20.3 cm from the centroid.
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Figure 2.10: Detail of gaze projection onto the floor. The gaze vector from the ETG
device is extrapolated onto the floor of the task space.

The sample probability of gaze within a given region was determined as the sum of

all gaze points rB
g falling in the middle region M divided by the N total gaze samples

contained in each 8 s target period. We denote the estimate of this probability as

GM = 1
N

∑
M

rB
g

where N=240 for a 30 Hz sample rate. One such distribution is also illustrated in Figure

2.9A.

2.3.2 Joystick Activity

We defined a measure of joystick activity (JA) for each 8 second acquisition period. The

JA is a unitless quantity meant to capture the amount of pilot input from each subject

as the cumulative sum of incremental changes in normalized joystick commands for the

linear

∆v̂n = v(tn) − v(tn−1)
vmax

and angular

∆ω̂n = ω(tn) − ω(tn−1)
ωmax
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velocities,

JA =
N∑

n=1

√
∆v̂2

n + ∆ω̂2
n

where again N=240. A greater value of JA implies a larger amount of differential control

inputs as the subjects attempt speed/slow or steer the robotic group.

2.3.3 EEG Spectral Power

EEG data were filtered with a zero lag 4th-order bandpass filter (2-36Hz).

Electromyographic artifacts arising from blinks and lateral eye movements were

identified via an independent component analysis (ICA) [51] using the FastICA

algorithm [52]. No more than two ICA artifacts were removed from any data set. The

14 channel EEG data was reconstructed from the remaining independent components.

Power spectral densities (PSD) of each reconstructed channel i were calculated over

the 8 s target period using a fast Fourier transform. The specific band powers (in units

of µV 2) were determined by numeric integration of the PSD over the frequencies in the θ

(4-8Hz) and α (8-12Hz) band. The powers were then normalized using baseline data by

P̂ i
α = Bi

α − P i
α

Bi
α

and

P̂ i
θ = P i

θ

Bi
θ

where Bi
θ and Bi

α were obtained from the human subject at the start of each test [17].

The full set of EEG data were arranged into a matrix X ∈ R14×176 for the 176 target

observations accumulated by all 10 subjects. The percent of channels that were linearly

correlated (r > 0.5) was 11% and 45% in the θ and α bands respectively. We removed

linear interrelationships by rotating the data into a coordinate frame of principal

components determined via diagonaliztion of the covariance matrix:

Σ = (X − X̄)(X − X̄)T . The 14 unit eigenvectors wi of Σ formed a basis set for the

spatial distribution of spectral power. These principal components were arranged to

form the columns of an orthonormal matrix W ∈ R14×14. Multiplying the mean centered

EEG data by W produced a new, nearly uncorrelated (r < 10−15) data set K, expressed

as K = W (X − X̄).
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Our statistical testing proceeded on the data K. By enumerating the total set of

principal components as W = {1, 2, · · · , 14} and the subset of K whose differences were

statistically significant be given as A ⊆ W, we reconstructed differences in the spatial

distribution of power XB−A between the factors A and B as XB−A = ∑
i∈Awi(k̄B

i − k̄A
i ),

where wi is the principal component, and k̄i is the average value of ki extracted from the

statistical test. Only components with p < 0.05 were selected for comparison.

2.3.4 EEG Functional Connectivity

A wide array of functional connectivity measures are commonly use in EEG analysis

[53]. However, frequency specific phase locking is readily captured using phase synchrony

(PS) [54]. In the remainder of this chapter, references to connectivity between channels

specifically refers to the PS values between them. The determination of inter-channel

PS values is outlined in Figure 2.9B. First, we pruned and filtered the data as described

earlier. Using a surface Laplacian [16], we transformed the data to current source density

in µV/m2. Next, we performed a time-frequency decomposition via convolution with

complex Morlet wavelets to separate the data into 32 discrete frequency bands. Finally,

we calculated the PS value between all channels i and j over moving windows of 250 ms

in duration and 7.8 ms in step size

Connectivity in the α and θ bands (Cα, Cθ) were selected from discrete frequencies

in time-frequency decomposition. These values corresponded to the central frequency of

each band: 6Hz for the θ band, and 10Hz for the α band. Synchronization between brain

regions is indicated by PS values close to unity [55]. Consequently, PS values below a

threshold of 0.80 were disregarded.

2.3.5 Dynamic Networks

The functional connectivity between EEG channels (AF3, F3, FC5, F7, T7, P7, O1, O2,

P8, T8, F8, FC6, F4, AF4) can be represented by a fully connected undirected weighted

graph possessing an adjacency matrix A ∈ R14×14, where Aij is the PS value between

nodes i and j. We can define such graphs from the sequence of PS values. The resulting

temporal sequence of graphs captures the dynamic changes in functional connectivity as
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the task evolves.

We used network metrics [56] to quantify the global topological attributes of

functional connectivity. The six metrics used in this study are listed in Table 2.2. Before

a calculation of each metric, all graphs were reduced to binary unweighted

representations by thresholding the PS values above 0.92. As shown in Figure 2.9, the

six metrics were calculated at each of the 32 frequencies in the time-frequency

decomposition yielding a set of 224 elements.

2.3.5.1 Dynamic Network-Based Features

The temporal features used to discriminate gaze behaviors were defined as the average

value of the network metrics over a period of 250 ms. Therefore, the temporal sequence

of features values were determined by the moving average of the network-based-metrics

over a 250 ms window.

Table 2.2: Detail of Network Metrics
Metric Description
Transitivity The degree to which adjacent nodes are commonly connected

to a third node, revealing the existence of tightly connected
communities.

Efficiency The average inverse shortest path length between any two nodes
in the network.

Density Proportion of total possible edges in the network
Modularity The degree to which network nodes can be segregated into non-

overlapping groups (modules) of dense within-group connections
separated by sparse between-group connections.

Maximum Degree Largest degree of any node in the network.
Component Count Number of disconnected components in the network.

2.4 Statistical Analysis
We performed all statistical tests on the dependent variables outlined in Table 2.1. If

the data passed a one sample Kolmogorov-Smirnov test, a normality assumption was

used and the analysis proceeded with a single factor analysis of variance (ANOVA). The

spectral power and joystick activity data were approximately normally distributed. In

general, both gaze and connectivity distributions were highly skewed and a non-parametric
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Kruskal-Wallis H tests were used for these data. Distributions shapes are illustrated in

Figure 2.12 and Figure 2.13. The skewness of the distributions are clear from inspection.

For tests that reached a significance of p < 0.05, we performed post-hoc paired t-tests

with Bonferroni correction to estimate the differences in the means.

2.4.1 H0.5 Analysis

Our statistical tests for Hypothesis 0.5 group the performance data by the between-subject

factor of geometric configuration (GC). In total, there were 99 targets acquired for the

serpentine configuration and 78 targets acquired for the rectangular configuration for a

total of 177 targets in the data set.

2.4.2 H1 and H2 Analysis

Our statistical tests for Hypothesis 1 group the data by the within-subject factor of

Configuration with levels of serpentine and rectangle. The statistical tests for Hypothesis

2 group the data by between-subject factor of Performance with levels of high and low.

High and low performance values were selected based on the average number of targets per

minute between both configurations as derived from our previous work [36]. A threshold

value of 1.1 targets per minute effectively divided the population into two groups of five

higher, and five lower performing subjects. In total, there were 99 targets acquired for

the serpentine configuration and 78 targets acquired for the rectangular configuration for

a total of 177 targets in the data set. This quantity was divided between high and low

performers with 93 targets acquired by high performers and 84 acquired by low performers.

2.4.3 H3 Analysis

The goal of Hypothesis 3 was to find the minimum set of EEG network-based features

that will discriminate between gaze states under all conditions in this experiment. Due

to the substantial number of eye blinks exhibited by one of our subjects, it became

extremely difficult to sort saccades from blink data. Consequently, the data for this

subject was removed in the H3 analysis, reducing the final number of subjects from 10

to 9. Assuming the different configurations elicit different gaze behaviors, the number of

separate conditions is given by the 9 subjects and 2 configurations for a total of 18. The
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set of 224 features used for this analysis are described in the section on Dynamic

Networks. Therefore, a set of 4,032 statistical tests were performed using the

within-subject factor of Gaze with two levels of fixation and saccade.

Feature values were the average of network-based metrics over a 250 ms window. The

values for saccade were taken over the 250 ms directly preceding each saccade while the

values for fixation were taken at the mid point between two saccades. The number of

saccades varied for each condition (M=28, SD=7.45). However, the number of saccades

and fixations were always equal for any given condition.

2.5 Results and Discussion
The tests for all subjects proceeded as follows: from training; to the serpentine trials; and

finally the rectangular trials. If any transferable learning occurred, it would have been

from the serpentine to the rectangular configuration. The training phase was designed to

provide the subjects with ample experience piloting both configurations. We note that the

absence of counterbalance may be a potential confound that can limit an interpretation

of the results.

In the H1 and H2 analysis that follows, we have chosen to investigate the qualities

of EEG power and connectivity that have been well established in the literature, namely

attention, sensory selection, and working memory access. The Emotiv headset only allows

primary observation of the left and right frontal regions with only two temporal channels

(T7 and T8), two temporal channels (P7 and P8), and two occipital channels (O1 and

O2). EEG locations in the parietal cortex associated with motor control, or decision

making are outside of our range of observation. Furthermore, the role of θ connectivity is

still debated in the literature. We report the θ connectivity results, but do not attempt

to analyze them.

2.5.1 Data Presentation

The results for H1 and H2 are shown in Figure 2.12 and Figure 2.13 respectively. The

power and connectivity results for the α and θ bandwidths are detailed in the subfigures A

and B. Raw data are given in the top panels while the estimated differences in the means
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are shown in the bottom panels. All error bars represent the 95% confidence interval on

the means.

The bar plots of differences in group mean normalized power have been split into

regions representing the left-frontal (LF), right-frontal (RF), and

temporal-parietal-occipital (T-P-O) regions of the head. As mentioned in the section on

EEG Spectral Power, differences in normalized power are reconstructed from significant

values of the data derived from the principal component transformation. Head-maps

illustrate the spatial distribution of the normalized power data presented in the bar

plots.

Channel pairs with significant differences in mean connectivity are also illustrated with

bar plots. Head-maps are used to detail the inter-channel connections: red lines indicate

increases in connectivity values while blue lines indicate decreases. In addition, regions on

the head maps are similarly separated between the frontal (both LF and RF) and T-P-O

using colored areas.

The behavioral data are shown in subfigure C. Raw behavioral data are given in the

horizontal distribution plots while the differences in group means are illustrated with bar

plots.

2.5.2 Hypothesis 0.5: Impact of Geometric Complexity on
Performance

This section presents the statistical test results between the two levels of the between-

subject factor of Configuration. The significant differences in group means are given by

the factor rectangle(Rec) minus the factor serpentine(Srp): ∆ = Rec-Srp. The results are

illustrated in Figure 2.11.

Table 2.3: H 0.5: t-test for Equality of Means
95% CI

t df p (2-tailed) ∆Mean Lower Upper
Targets Per Minute 4.624 8 0.0017 0.634 0.138 0.950
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-
Figure 2.11: Comparing targets acquired per minute (Tpm) between the Rectangular and
Serpentine configurations. **p < 0.002.

2.5.2.1 Discussion

Our results show that GC is statistically different for all subjects in this study. The

remainder of the results rely on the conclusions from H 0.5: that the GC impacts

performance and may therefore be used as a factor in and of itself.

2.5.3 Hypothesis 1: Impact of Geometric Complexity on
Neurophysiological and Behavioral Measures

This section presents the statistical test results between the two levels of the within-

subject factor of Configuration. The significant differences in group means are given by

the factor rectangle(Rec) minus the factor serpentine(Srp): ∆ = Rec-Srp. The results are

illustrated in Figure 2.12. Details of the statistical test results including values of F , χ2,

and p values are given in Table D.1 through Table D.4 in Appendix D.1.

2.5.3.1 Spectral Power

Mean P̂α are given in Table 2.4 and the statistically significant differences presented in

Figure 2.12A are given in the third row of the table. The greatest positive and negative

changes of P̂α occur in the LF region. However, of the 8 channels in the frontal region (LF

and RF combined) only two show decreases in power. More notably, there are increases

in power in the T-P-O region at channels P7, O1, O2, and P8, ranging from 0.59% to

1.12% with only T7 and T8 showing decreases.
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Table 2.4: Mean P̂α for the Factor Configuration
LF T-P-O RF

XXXXXXXXXXXXFactor
Channel AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4

Rectangle 0.644 0.733 0.701 0.755 0.614 0.683 0.716 0.713 0.676 0.640 0.668 0.719 0.677 0.697
Serpentine 0.679 0.681 0.700 0.723 0.635 0.675 0.712 0.692 0.669 0.645 0.664 0.717 0.692 0.693

%∆(Rec-Srp) -5.29 7.73 0.11 4.40 -3.36 1.12 0.59 3.12 1.12 -0.77 0.61 0.30 -2.14 0.47

Mean P̂θ are given in Table 2.5 and the statistically significant differences presented

in Figure 2.12B are given in the third row of the table. Of the 8 channels in the frontal

regions, 7 show increases in P̂θ ranging from 4.72% to 34.72%. The single decrease in

frontal power occurs at AF4. The differences in the T-P-O region are mostly positive

with decreases occurring at T7 and O1.

Table 2.5: Mean P̂θ for the Factor Configuration
LF T-P-O RF

XXXXXXXXXXXXFactor
Channel AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4

Rectangle 4.295 4.932 4.633 4.010 3.163 3.070 3.047 5.519 5.367 6.319 5.757 5.521 7.609 4.776
Serpentine 4.101 4.641 4.210 3.442 3.377 2.873 3.592 4.925 4.877 6.134 5.174 4.098 6.737 5.018

%∆ (Rec-Srp) 4.72 6.27 10.03 16.50 -6.34 6.85 -15.17 12.07 10.05 3.01 11.28 34.72 12.94 -4.83

2.5.3.2 Connectivity

Statistically significant differences in Cα are shown in Figure 2.12A while those in Cθ

are shown in Figure 2.12B. Percent values indicate the percent change in connectivity

from the rectangluar to the serpentine configurations. Positive differences in functional

connectivity indicate greater levels of phase synchrony when subjects pilot the rectangular

configuration while negative differences indicate greater phase synchrony when subjects

pilot the serpentine configuration.

There are 13 significant differences in the α band. The 12 positive differences range

from 0.667% to 1.04% while the single negative difference is -0.481%. Seven of these

connections are between the T-P-O and frontal regions including two from O1 (O1-F3

and O1-FC5). The remaining six connections are within the frontal region with the single

negative value occurring from F4-F8.

There are 11 significant differences in the θ band. Ten of these differences are positive
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and one negative. The 10 positive differences range from 0.726% to 1.04% while the single

negative difference is -0.507%. Six of these connections are between the T-P-O and frontal

regions while the remaining 4 are located within the frontal region. The single negative

connection occurs from FC6-F8.

2.5.3.3 Behavioral Characteristics

In Figure 2.12C. There is a significant effect at the p < .05 level of the configuration on

the joystick activity [F (1, 176)=29.86, p=1.54 × 10−7] between Rec (M=3.84, SD=1.79)

and Srp (M=5.06, SD=1.20), or a 24.1% decrease in joystick activity from Srp to Rec.

There is also a significant effect at the p < .05 level of the configuration on the gaze in the

middle region [χ2=34.11, p=5.20 × 10−9] between Rec (M=0.109, Q1=0.050, Q3=0.212)

and Srp (M=0.035, Q1=0.008, Q3=0.083), or a 211% increase in middle region gaze from

Srp to Rec.

2.5.3.4 Discussion

Examining the differences, we see that piloting the rectangular configuration produced

several key results. Greater P̂θ in the frontal region indicates more access to working

memory resources [21]. Furthermore, the greater P̂α in the occipital region is associated

with the suppression of task irrelevant visual stimuli [57]. Additionally, the increase in Cα

between the occipital and frontal regions, specifically O1-F3 and O1-FC5, is also indicative

of top-down suppression of visual stimuli. This Cα may further imply a greater focus on

internal cognitive processes due to suppression of visual stimuli [30]. Finally, subjects

piloting the rectangular configuration spend more time looking in the middle region, yet

they utilize less pilot input.

We can obtain insight into these results by comparing the methods for piloting the

configurations. Each subject controls the serpentine configuration by piloting only the lead

cart; the remaining robots follow the path established by the leader. Both the reduction

of gaze in the middle region and the greater amount of joystick activity are behaviors that

result from the confident and predictably deterministic control of the single lead robot.

In contrast, subjects maneuver the rectangular configuration by piloting the collective

motion of a virtual rigid body. Rather than a single cart, each subject must comprehend
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Figure 2.12: A comparison of the neurophysiological and behavioral differences associated
with the factor configuration. Power and connectivity in the α band are presented in (A)
while those in the θ band in (B). The serpentine configuration is labeled as Srp and the
rectangular configuration as Rec. Raw data are illustrated with violin plots while the
statistically significant differences are detailed in the bar plots. Behavioral results are
shown in (C).

and predict the relatively fluid motion of all six robots at once. A determination of

the centroid requires constant visual estimation. The focused attention that is necessary

results in larger amount of gaze in the middle region, and the utilization of more working

memory resources. Additionally, the indirect interface may also explain the reduction

in control activity, since the subject’s internal map, from pilot input to configuration

30



motion, requires a greater amount of mental computation to establish a similar degree

of confidence. However, there is also the possibility that gross positioning of the robotic

group may have already occurred and that little positional fine tuning was necessary.

Regardless, the suppression of visual stimuli indicates a larger focus on internal cognitive

processes. From a cognitive perspective, there is simply more internal processing required

to pilot the rectangular configuration. The outcomes are generally slower speeds and more

missed targets. These results are directly consistent with Hypothesis 1.

2.5.4 Hypothesis 2: Characteristics of High/Low Performers

This section presents the statistical test results between the two levels of the between-

subject factor of Performance. The significant differences in group means are given by

the factor high(Hi) minus the factor low(Lo): (∆ = Hi-Lo). The results are illustrated in

Figure 2.13. Details of the statistical test results including values of F , χ2, and p values

are given in Table D.5 through Table D.8 in Appendix D.2.

2.5.4.1 Spectral Power

Mean P̂α are given in Table 2.6 and the statistically significant differences presented in

Figure 2.13A are given in the third row of the table. Changes in P̂α in the frontal region

are mostly positive with only AF3, F3, and F8 showing decreases. In the T-P-O region,

channels P7, O1, O2, and P8 shown positive changes ranging from 1.43% to 5.10% with

decreases occurring at T7 and T8.

Table 2.6: Mean P̂α for the Factor Performance
LF T-P-O RF

XXXXXXXXXXXXFactor
Channel AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4

Hi 0.647 0.711 0.682 0.738 0.622 0.695 0.719 0.710 0.678 0.626 0.674 0.731 0.683 0.708
Lo 0.681 0.696 0.721 0.736 0.630 0.661 0.708 0.692 0.665 0.660 0.657 0.705 0.689 0.681

%∆ (Hi-Lo) -5.03 2.06 -5.39 0.25 -1.35 5.10 1.43 2.55 1.97 -5.18 2.55 3.71 -0.89 3.92

Mean P̂θ are given in Table 2.7 and the statistically significant differences presented

in Figure 2.13B are given in the third row of the table. All channels in the frontal region

show increases in P̂θ from 1.66% to 18.73%. Three of the 6 channels in the T-P-O region

show decreases in power at T7 and P7.
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Table 2.7: Mean P̂θ for the Factor Performance
LF T-P-O RF

XXXXXXXXXXXXFactor
Channel AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4

Hi 4.504 4.916 4.624 3.885 3.273 2.827 3.488 5.681 5.184 6.528 5.872 4.759 7.584 5.239
Lo 3.838 4.608 4.145 3.479 3.295 3.104 3.206 4.643 4.991 5.873 4.946 4.681 6.610 4.554

%∆ (Hi-Lo) 17.34 6.69 11.57 11.66 -0.68 -8.93 8.81 22.35 3.86 11.16 18.73 1.66 14.75 15.05

2.5.4.2 Connectivity

Statistically significant differences in Cα are shown in Figure 2.13A while those in Cθ are

shown in Figure 2.13B. Percent values indicate the percent change in connectivity from

high performers to low performers. Positive differences in functional connectivity indicate

greater levels of phase synchrony in higher performing subjects while negative differences

indicate greater synchrony in lower performing subjects.

There are 8 significant differences in the α band. The 7 positive differences range

from 0.630% to 1.32% while the single negative difference is -0.729%. Five of these

connections are between the T-P-O and frontal regions with two occuring from O1-F4

and O2-FC6. The remaining three are located within the frontal regions with the single

negative connection from F8-T6.

There are 7 significant differences in the θ band. The 6 negative differences range from

-1.19% to -0.691% while the single positive difference is 0.892%. Five of these connections

are between the T-P-O and frontal region while the remaining three are located within

the frontal region. The single positive connection is from FC6-F8.

2.5.4.3 Behavioral Characteristics

In Figure 2.13C. There is a significant effect at the p < .05 level of the performance on

the joystick activity [F (1, 176)=37.16, p=6.52 × 10−9] between Hi (M=5.15, SD=1.52)

and Lo (M=3.82, SD=1.40), or a 34.8% increase in joystick activity from low performers

to high performers. In addition, there is a significant effect at the p < .05 level of the

performance on the gaze in the middle region [χ2=4.38, p=0.036] between Hi (M=0.075,

Q1=0.021, Q3=0.160) and Lo (M=0.058, Q1=0.013, Q3=0.100), or a 29.3% increase in

middle region gaze from low performers to high performers.
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Figure 2.13: A comparison of the neurophysiological and behavioral differences associated
with the factor performance. Power and connectivity in the α band are presented in (A)
while those in the θ band in (B). The High performance group is labeled as HI and the
low performance group is labeled as LO. Raw data are illustrated with violin plots while
the statistically significant differences are detailed in the bar plots. Behavioral results are
shown in (C).

2.5.4.4 Discussion

In this study, we see that the distribution of ∆P̂α in the parietal and occipital channels is

positive for the higher performing subjects, and in fact more so than those elicited between

the different configurations. As before, the greater P̂α in the occipital region indicates
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the suppression of sensory information from task irrelevant visual stimuli. Likewise, the

increase in Cα between the occipital and frontal regions, specifically O1-F4 and O2-FC6,

is also indicative of top-down suppression of visual stimuli and a greater focus on internal

attention. Similarly, the higher performing subjects exhibited more P̂θ in the frontal

region, which indicates a greater utilization of working memory resources. Finally, higher

performing subjects spend more time looking in the middle region, and utilize a greater

amount of pilot input. An important result worthy of note is the negative change in

Cθ between high and low performers. This difference stands in contrast to the previous

analysis in which subjects piloting the rectangular configuration show increases in both

frontal P̂θ and Cθ compared to the serpentine configuration. As mentioned earlier, such

results are generally difficult to interpret, and we will not do so here.

Given these observations, the differences between subject groups conforms to a

predictable pattern. Higher performing subjects drive the configurations faster and miss

fewer targets, but while doing so, they utilize a greater amount of visual-spatial

reasoning and internal processing than lower performers. Additionally, higher performers

spend a greater amount of time looking in the middle region, while simultaneously using

more control input. Nevertheless, these results stand in direct contrast to Hypothesis 2.

Interestingly, higher performing subjects are not naturally more effective with the given

control interface. Our results suggest that high performers use more cognitive resources

to perform at a higher level, indicating that they are more engaged in the task. In fact,

it has been shown that individuals with higher working memory capacity tend to be

more efficient at controlling attention by minimizing the effect of distracting information

via suppression of task irrelevant stimuli [58]. The greater difference in occipital power

associated with sensory suppression may therefore indicate that higher performers may

control their attention more effectively, allowing them to exceed at this particular task.

2.5.5 Hypothesis 3: Minimum Set of Network-Based Features

This section presents the statistical test results between the two levels of the within-

subject factor of Gaze with two levels of fixation and saccade. The results are illustrated

in Figure 2.14.
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2.5.5.1 Feature Selection

In this study, we were not concerned with the specific frequencies at which features

occurred, but rather, the metric type(s) and total number required to distinguish gaze

behaviors. The identification of a potential minimum feature set required a method to

arrange results from the statistical tests. As a means of visualization, each statistical

test with p < 0.05 is assigned a point in the space Pijk = (Mi, Sj, fk) where

j ∈ {1, 2, · · · , 9} is the index of subjects, and i ∈ {1, 2, · · · , 6} and k ∈ {1, 2, · · · , 32} are

the indices of metrics and frequencies respectively. This space is illustrated in Figure

2.14, where serpentine is represented by red circles and rectangle by green squares. Each

feature is assigned a score, from zero to 9, representing the total number of subjects

whose gaze can be discriminated in a particular configuration. Scores are sorted from

highest to lowest first by feature, and then by configuration. We seek to find the set of

N unknown features that will span total population of 18 separate conditions (9

subjects for serpentine, and 9 subjects for rectangle). Efficient features have the highest

scores and posses the greatest amount of overlap, i.e. they will cover the largest number

of subjects and configurations.

For comparison, we performed an identical analysis using features derived from

temporal metrics that have been used in the classification of human cognitive states [59];

specifically, channel power, channel RMS, and channel peak-to-peak. Data from each of

the 14 channels were bandpass filtered into the frequency bands θ (4-8Hz), α (8-12Hz),

and γ (12-32Hz) common in EEG analysis. In addition, narrow-band channel power at

the 32 discrete frequencies extracted from the time-frequency decomposition were also

used. We generated, statistically tested, scored, and sorted single-channel features in the

same manner described above.

2.5.5.2 Discussion

Network metrics cover a range of topological properties relevant to the neural activity

associated with cognitive processes. The brain is known to have distributed

neurophysiological networks consisting of functionally integrated clusters of synchronized

activity with sparse connections between them [26]. Metrics such as transitivity contain
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average local information about the clustering of nodes, while modularity indicates the

complex distribution and connections between these dense clusters. Both metrics are

considered to be measures of the segregation of the network. Efficiency on the other

hand is the inverse mean path length between all nodes in the network and represents a

measure of integration [56]. The remaining metrics of component count, maximum node

degree, and density contain basic information about the mechanical properties of the

network with less regard to structure. The information contained in the metrics can

overlap to varying degrees, but this is not always so. For example, a network with highly

variable modularity may be comprised of a single component, or one with large span of

maximum degrees can maintain a relatively stable modularity.

Our initial assumption for Hypothesis 3 was that if a minimum set existed, it would

be comprised of features from several different network-based metrics. Contrary to this

expectation however, we find that minimum sets exist for each metric independently. The

minimum number of features for each metric Mi is equivalent to the number of rows in

each shaded plane in Figure 2.14. These results are collected in Table 2.8 where each row

contains a specific metric, the minimum number of features generated by that metric,

and the frequencies at which those features occur. Configurations associated with each

feature are included in parentheses. Four of the network-based metric generate minimum

sets of 2 features with maximum degree and component count generating 3 and 4 features

respectively.

Table 2.9 presents the results of our comparative analysis using single-channel features.

The subset of conditions covered by the wide-band metrics are listed in the third column of

the table. Single-channel features defined within the wider θ, α, and γ bands are incapable

of spanning the total population of conditions. Only narrow-band power with its finer

granularity of bandwidth was able to generate a minimum set of 12 features. These 12

features are comprised of data from 7 of the 14 EEG channels: F3 (5 conditions), FC5 (2

conditions), F7 (2 conditions), T7 (1 condition), O1 (1 condition), O2 (1 condition), and

F4 (3 conditions).

Comparing the performance of network-based versus single-channel features reveals
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the power of using network-based methods. Single-channel features do not account for

inter-channel relationships. The random loss of a single channel yields a 50% probability

of losing a single condition. A loss of F3 would result in a 27% reduction of the number

of conditions covered. The most important single-channel features are extracted from

channels located in the frontal lobe. As we have stated, dense clusters of nodes will exist

in the frontal lobe and the single loss of a frontal channel may have little effect on the

final value of transitivity and modularity. Those particular metrics can be affected if

the lost channel represented a network hub providing communication between different

modules. Due to the shear number of statistical tests in this study, we did not examine

the location of network hubs or the nodes within each module. That analysis would

have provided more information about the robustness of these measures to the loss of

specific nodes in the network. Nevertheless, the additional metrics provide a measure

of resilience to channel failure. If for instance we lose a channel containing a network

hub, then modularity could decrease. Component count however, may increase due to

the disconnection of modules, and transitivity may increase due to the larger number of

tightly connected nodes. A selection of several network-based features will guard against

the loss of individual channels. Therefore, single EEG channels do not contain robust

discriminative information, yet the inter-channel relationships captured by network-based

metrics do.

In addition, there exist several network-metric based features for which a prior

knowledge of the particular configuration can reduce the minimum set to a single

feature. These configurations are emboldened and underlined in Table 2.8. For example,

if subjects pilot the serpentine configuration, then we can distinguish gaze states using

transitivity at 24.7 Hz, or maximum degree at 9.2 Hz. Likewise, if subjects pilot the

rectangular configuration, then we can use density at 31.9 Hz. Modularity displays the

unique property of possessing single features for each configuration independently: the

serpentine at 9.2 Hz and the rectangle at 22.6 Hz. The modular structure of the brain is

known to undergo changes in response to external (sensory) and internal (cognitive)

drivers [60]. Dynamic network reconfiguration within the frontal lobe has been
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associated with task demands [61]. Consequently, the configuration specific modularity

based features supports the notion that different cognitive processes occur in relation to

piloting the different configurations. This is a key result that reinforces the conclusions

from H1.

Finally, these network-based features can be calculated in real time as the task

progresses. Five of the metrics are determined directly from the adjacency matrix A.

Only modularity requires estimation using optimization algorithms [56] and may take

longer to calculate depending on the number of nodes and edges in the network.

Accordingly, network-based features could be used to rapidly detect and classify

cognitive states associated with changes in mental workload, situation awareness, or

trust. Our future investigations will utilize an EEG device with a larger channel count.

The increase in channels, particularly in the temporal and occipital regions, would allow

us to observe the larger modular structure know to exist between these regions and will

increase the effectiveness of our network-based methods.

Figure 2.14: A detail of the generation and extraction of relevant features for identification
of gaze states. Features comprised of average metric values during the ∆t=250 ms
preceding a saccades (in red), are compared against those directly between saccades
(fixations, in blue). Statistical tests are performed for all conditions (subjects and
configurations) in this experiment. Statistically significant differences p < 0.05 generate a
point Pijk ∈ (Mi, Sj, fk) in the space of metrics, frequencies, and subjects. The minimum
feature set for each metric are defined by the columns of points in each shaded plane.
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Table 2.8: Minimum Feature Set Using Network Metrics
Metric Type Feature Count Frequency(Configurations)

M1 Transitivity 2 22.6(Rec), 24.7(Srp,Rec)
M2 Efficiency 2 18.5(Srp,Rec), 27.8(Srp,Rec)
M3 Density 2 9.2(Srp), 31.9(Srp,Rec)
M4 Modularity 2 9.2(Srp), 22.6(Rec)
M5 Maximum Degree 3 9.2(Srp), 14.4(Rec), 29.8(Rec)
M6 Component Count 4 4.0(Rec), 11.3(Srp), 22.6(Srp), 29.8(Rec)

Table 2.9: Minimum Feature Set Using Single-Channel Metrics
Metric Type Feature Count Total Conditions Channels

θ, α, γ Power NA 15 out of 18 NA
θ, α, γ RMS NA 15 out of 18 NA
θ, α, γ Peak-to-Peak NA 14 out of 18 NA
Narrow-band Power 12 18 out of 18 F3, FC5, F7, T7, O1,

O2, F4

2.6 Conclusion
In this chapter we examined whether the reduction in human-multiagent team task

performance due to an increase in the geometric complexity of a robotic group is

reflected in average neurophysiological and behavioral measures. Ten subjects were

locally embedded in a task space. Each subject piloted six ground robots in two

geometric configurations: a serpentine (GC = 2); and a rectangle (GC = 6). Our tests

revealed that the use of a higher GC configuration yielded a decrease in task

performance and that this reduction was accompanied by increases in spectral power

and functional connectivity that indicate more internal processing, access to working

memory, and suppression of visual stimuli. Complementary changes in gaze and pilot

input enforce the conclusion that increasing the GC places a greater burden on the

human subject’s cognitive resources that detrimentally affect the outcome of a

human-multiagent team task. In addition, higher performing subjects, regardless of the

GC, tended to engage more actively in the task, utilizing a greater amount of

visual-spatial reasoning to perform more effectively. Finally, we show that features based
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on EEG dynamic-network-metrics distinguish gaze behaviors associated with the

attention process more effectively than traditional single-channel metrics, indicating

that single channels do not contain robust discriminative information, while the

inter-channel relationships do. Network-based metrics capture the natural modular

structure of the human brain as it dynamically reacts to changes in task demands. This

is one of the first studies to utilize a dynamic network analysis to link cognitive

processes with behaviors in a human-multiagent-team task.
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Chapter 3

An EEG Network Examination of Human
Trust in Autonomy

Preface
Autonomous agent teammate-likeness has been described as “the extent to which a

human operator perceives and identifies an autonomous, intelligent agent partner as a

highly altruistic, benevolent, interdependent, emotive, communicative and synchronized

agent and teammate, rather than simply an instrument or tool.” [62]. A key element in

effective human-autonomy teaming is the establishment and maintenance of appropriate

trust [63]. In this chapter, we report our results in measuring human trust in autonomy

both continuously and unobtrusively using interactions between brain regions as

determined from an electroencephalogram (EEG).

The major contributions of this chapter are as follows: 1) We show that human trust

in an autonomous system cab be measured continuously and unobtrusively; 2) Using

analysis techniques which account for interactions among brain regions shows benefits

compared to more traditional methods which use only EEG signal power. To the best of

our knowledge, this is one of the first studies to incorporate network based features in

the prediction of trust in autonomy.

The contents of this chapter have been submitted for publication [37]
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3.1 Introduction
Studies have shown that a human’s miscomprehension of an autonomous system’s state,

decisions, or course of action can result in misuse or disuse of the agent, causing a reduction

in team-task proficiency. This degradation can be mitigated if trust between the human

and autonomous agent [64] is appropriately calibrated [65]. Consequently, the human

and their autonomous teammate should have shared intent [33], and a similar focus of

attention [5] to maximize trust. Achieving effective and efficient human-autonomy team-

task performance can be significantly augmented if the autonomous agent has direct access

to the internal cognitive state of the human both unobtrusively, and in real-time.

3.1.1 Trust

Trust is a complex and multifaceted construct, yet one in which all humans are inherently

familiar and capable of assessing qualitatively. Nevertheless, there is no universally agreed

upon definition of trust [66]. Within the context of a team-task, trust is established and

maintained through the bi-directional interaction between one who evaluates the level of

trust (a trustor) and one who impacts the level of trust (a trustee). As the task proceeds,

each team member re-evaluates their trust in the another. Levels of trust may change

due to variation of task complexity, the transparency of the teammate, or a perception of

their capability [67].

The human-autonomy literature frequently defines trust as “the attitude that an agent

will help achieve an individual’s goals in a situation characterized by uncertainty and

vulnerability” [68]. When a human (the trustor) works with an autonomous system

(the trustee), the bi-directional interaction is effectively severed. Human trust in the

autonomy is initialized by their predisposition to trust, and is continuously impacted by

the perception of competence, level of risk, fatigue, and even the self perception of their

own capabilities [69]. The trustor’s subjective assessment towards the trustee is changed

with the behavior of the autonomous system. When the trust in autonomy is negatively

impacted, it can be difficult for the human to regain it [70]. The trustor’s subjective

assessment towards the trustee is changed with the behavior of the autonomous system.

Trust is commonly conceptualized as a latent variable that cannot be directly observed but
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rather must be inferred. Trust is dependent on the interplay between analytic, analogical,

and affective processes, especially emotional responses to violations or confirmations of

expectations [68]. The evaluation of capabilities, the perception of risk, and thereby the

decision to trust are inherently cognitive in nature. Just as it is critical for the human

to comprehend and predict the behaviors of an autonomous agent, it is equally critical

for the autonomous agent to understand the cognitive state of the human in order to

determine when, or potentially how, to communicate their own intentions or clarify their

behavior.

In a human-autonomy team, the human must be able to adequately trust the

autonomous agent in order to yield the appropriate amount of agency [64]. Low levels of

trust prevent the human from utilizing the autonomy to its full potential while higher

levels of trust encourage the human to relay on the autonomy beyond its capabilities. In

a well integrated human-autonomy team, the human must have an adequate estimate of

the agents capabilities and trust that it will perform optimally. This concept is known

as trust calibration [68]. It is outlined in Figure 3.1.

Figure 3.1: Illustrating the concept of trust calibration. The human must properly
understand the capabilities of the autonomous agent, and trust that it will perform to
the benefit of the shared team goal.

3.1.2 Measuring Trust in Autonomy

As there is no universally agreed upon definition of trust, there is also no universal way of

measuring it. Much like a human-human interaction, it is assumed that the actual state of
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trust the human has in the autonomy is continuous. Trust measures are categorized as self

report, behavioral, and physiological indices [71]. Typical methods of trust measurement

are performed using surveys that are applied at various intervals [72,73]. These methods

cannot adequately capture the continuous nature of trust. The human must remove

themselves from the task and attend to the survey itself. Depending on the specific

scenario, attending to a survey can range from inconvenient to absolutely detrimental to

task performance which in turn can have substantial impacts on trust. Similarly, surveys

administered at the end of the task may only capture the human’s net evaluation of trust

over the length of the interaction. These methods lack the ability to measure trust both

dynamically and unobtrusively. There has also been substantial work to measure trust

continuously or semi-continuously through the use of physiological signals such as skin

conductivity and behaviors such as gaze [74]. Additional studies have also examined EEG

channel power as it relates to changes in trust [75].

3.1.3 EEG and Network Science

Neurophysiological correlates of human cognitive state have been studied using the

electrical signals recorded directly from the surface of the scalp, known as an

electroencephalogram (EEG) [76] EEG is a common, non-invasive measure of brain

activity. An EEG system is comprised of an ensemble of electrodes placed directly onto

the scalp. Voltage measurements, on the order of 100µV , correspond to the average

neural activity in the brain area located directly beneath the electrode. Historical

studies using EEG primarily investigate the magnitude and spatial distribution of signal

power within well established bandwidths θ (4-8Hz), α (8-12Hz), β (12-30Hz), and γ

(>31Hz). However, it is widely believed that cognition manifests through interactions

between brain regions over a variety of spatial scales [29]. Synchronization of brain

oscillations have been proposed as a key concept in neural processes underlying

cognition [77]. Regions of the brain that exhibit statistical interactions in the absence of

established neural pathways are known as “functionally connected regions”. A spatial

distribution of such brain regions along with the statistical correlations establishes a

topological network that can be described succinctly using elements of graph theory.
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Descriptive measures of global features of network topology have been widely applied to

EEG data. These analyses reveal nonrandom topological aspects, such as high clustering

or short path length [78], and metrics of dynamic functional connectivity may indicate

changes in macroscopic neural activity patterns underlying critical aspects of

cognition [79,80].

3.1.4 Experimental Hypotheses

Our study investigates methods to determine dynamic changes in human trust in

autonomy as reflected in EEG measures using methods derived from network science

with the aim to improve human-autonomy interaction in team-task scenarios. We view

the dynamic trust process as event-centric [81], and changes of human trust in

autonomy are decision points that can be elicited through discrete events or actions.

Temporal changes in both EEG power and inter-channel functional connectivity indicate

cognitive activity which may correlate with changes in trust. Our investigation has been

divided into two separate hypotheses.

H1: A properly selected set of global network-metric features derived from EEG

measurements predicts human trust with a higher accuracy than that of single-channel

features. This study analyzed models of trust prediction using features derived from the

full compliment of electrodes in our EEG headset and represents the limit of what our

specific instrument can tell us about the global inter-connectivity of all brain regions.

H2: A properly selected set of local, network-metric features derived from EEG

measurements predicts human trust with a higher accuracy than that of local

single-channel features. In this study, we analyzed models using features derived from

subsets of electrodes located above specific sets of brain lobes. We explore the

inter-connectivities of more granular local regions that may show a stronger tendency to

integrate with changing levels of trust.

To evaluate these hypotheses, we designed an experiment to evoke changes in a
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human’s trust in an autonomous system as they perform a team-task. Participants were

instructed to self report their state of trust whenever they wish. We assume that

changes in the internal state of trust occur when the human self-reports. The self report

of trust allows us to focus on the potential relevant cognitive processes that may occur

during the decision event. This method contrasts with existing studies in three ways: 1)

The participant is allowed to guide us when to look for potential relevant changes in

trust; 2) The participant is not disengaged from the task to fill out specific trust surveys

at discrete times; 3) There is no aggregate evaluation of trust upon completion of the

task.

3.2 Experiment
3.2.1 Participants

This experiment was approved by the University of California, Davis Institutional

Review Board. Informed consent was obtained from 3 participants: all male graduate

students between the ages of 24 to 29 years old. All completed the full experiment of 16

trials as described in Section 3.2.2. Each participant was briefed on the function of the

instrumentation and testing procedure. Prior to the experiment, participants filled out a

demographics survey which included questions regarding previous night’s amount of

sleep, consumption of caffeine, prior experience with robot/autonomous systems, and

video gaming experience.

3.2.2 Task

This experiment investigated how changing levels of human trust in autonomous

systems are reflected in brain activity, specifically, scalp voltages measured with an

electroencephalogram (EEG) headset. We designed our human subject experiment using

a ROS-based simulation shown in Figure 3.2. Our screen based experiment consisted of

a human participant remotely overseeing the placement of stowage onto an equipment

rack by a UR5e robotic arm, ostensibly located on the International Space Station. The

participant worked in collaboration with the robot to ensure the proper placement of

stowage required for the onboard crew to perform the repair/maintenance task.

46



Participants were instructed that the proper placement of stowage onto the rack as

commanded by the offline planner was critical to the effective performance of the

maintenance task.

Within the simulation, specific articles of stowage were represented as colored cubes.

Participants were informed that an automated planner would determine the sequence of

cubes to be placed onto a rack. The sequence was communicated to the participant

through the Placement Request panel. Using a mouse, the participant would sort the

cubes from a Tool Bin by selecting the proper colored cube and placing it into the Robot

Command queue. Once the queue was full, the participant clicked a button to start the

robot placement sequence. The participant was informed that a planning algorithm

decided how the cubes would be picked and placed onto the rack. As a means to elicit

changes in the participant’s trust, the capability of proper stowage placement was

modulated between two levels of placement accuracy: 90% and 30%. These levels were

randomized and unknown to the participant. As the robot performed the placement

task, the participant was instructed to self report their trust in the robot via a

horizontal slider located directly under the On Board Camera panel. High trust was

reported by positioning the slider to the right, whereas low trust was reported by

positioning to the left. Trust values vary from 0 (no trust) to 1 (complete trust). Each

participant was allowed to determine when, and by how much they decided to report

their level of trust. Once the robot was finished placing the 4 cubes, the window was

reset and a new sequence of cubes was displayed in the Placement Request panel.

The following text was read to the participants prior to the experiment.

You are a member of the ground crew in support of a maintenance task

on the International Space Station. An additional support group within the

ground control structure has developed a plan on how the onboard crew will

perform a specific maintenance task. This plan will require tools to be placed

in a specific order onto several shelves of a rack. While the plan is being

reviewed by the crew, you and the robot are responsible for selecting tools from

a stowed package and placing them onto the rack. After the tool placement
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Figure 3.2: A detail of the remote test panel used in this study. Each participant interacts
with the system via the Tool Bin, Placement Request, and Robot Command panels. Cube
placement is viewed through the On Board Camera panel. The participant signals changes
in their level of trust using the Trust Slider.

has occurred, an onboard crew member will be required to pick up the tools

in the requested sequence in order to perform the maintenance task according

to the prescribed plan. When you select the tools, and place them into the

queue, they will monitor the robot to ensure that the tools are placed properly.

In this experiment, we are evaluating several planning algorithms that

are used by the robot controller to place the parts onto the rack. It is

imperative that you and the robot are able to collaborate together effectively

to perform this task. Therefore, we wish to evaluate your trust in the robot

as it performs the part placement. You can signal your trust throughout the

experiment using the horizontal slider that is provided. There is no right or

wrong value of trust—we wish to understand when and how much your trust

changes throughout the performance of the task.
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3.2.3 Apparatus

A detail of the experimental setup is shown in Figure 3.3. Electrophysiological data were

collected from each participant using a EEG recording suite manufactured by g.tec. The

system is comprised of the g.HIamp amplifier and 62 channels of active electrodes mounted

into a single flexible cap. Gaze position and pupil diameter were measured using a Tobii

Nano Pro screen based gaze tracker. The gaze tracker captured pixel position of gaze,

pupil diameter and blinks at a sample rate of 60Hz and is optimized for screen based

experiments. In addition, mouse position and button clicks were recorded. All data were

synchronized and recorded using Lab Streaming Layer at their native sample rates.

Figure 3.3: Detail of the experimental setup. Each participant was seated in front of
a screen displaying the remote interaction panel. Brain activity was measured using an
EEG device. In addition, gaze and mouse clicks were recorded.

3.2.4 Procedure

Prior to an experiment, each participant was outfitted with the 62 channel EEG headset.

The active electrodes were filled with conductive gel and electrode impedance was verified

to be below 10kΩ using the g.tec data acquisition software. Next, the eye tracking device

was calibrated for the particular participant. Participants were instructed on how to

perform the human-robot team task using the interaction panel shown in Fig 3.2. A

complete experiment consisted of 4 GROUPs1 of 4 trials for a total of 16 placement trials
1Capitalization is used to specify a 4 trial section. A GROUP is shown by horizontal bars in Figure

3.5
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as shown in Figure 3.5. After each GROUP, a trust survey was administered and a five

minute rest period was provided. The total experiment lasted approximately one hour.

A short video of a single trial is available at https://www.youtube.com/watch?v=V8t-

Vu7sehw.

Figure 3.4: Detail of human-robot team task for a single trial. Each trial consists of the
sort and placement of 4 cubes.

Figure 3.5: Detail of the trials performed by each participant during the experiment. Each
participant began with 2 surveys then moved through 4 GROUPs of 4 block placements.
After each GROUP, participants filled out a short trust survey and took a 5 minute rest.
The total experiment lasted approximately one hour.
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Figure 3.6: Data conditioning pipeline. EEG data are recorded along with self reported
trust. Features derived from network-metrics and single channel powers are selected as
regressors. Linear models are constructed from the regressor sets and the results are
compared.

3.3 Methods
We tested our hypotheses by comparing the performance of linear models built from

regressors selected from two separate feature types: 1) Single-channel (SC) powers; 2)

Network-metrics (NM). In this section, we describe the methods used to generate our

data and prepare it for analysis. The data analysis pipeline is shown in Figure 3.6.

3.3.1 EEG Features

Our EEG headset recorded 62 channels of scalp voltages (µV ) at a sample rate of 1.1

kHz. The EEG data were filtered with a zero lag 4th-order bandpass filter (2-50Hz). We

performed a time-frequency decomposition using Morlet wavelets [82, 83] over a set Ω of

30 equally spaced frequencies between 3 and 50 Hz. The time-frequency transform yielded

a temporal sequence of complex values given by:

W (t, ωi) = A(t, ωi)ejϕ(t,ωi) (3.1)

where ωi ∈ Ω. We extracted frequency dependent power, P = A2 (µV 2), and phase ϕ

(rad) directly from Equation 3.1 for each of the 62 channels in the EEG headset.
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3.3.1.1 Functional Connectivity

In this study, we used phase synchrony as the measure of interaction between EEG

electrode pairs [84]. We calculated this quantity from the instantaneous phase difference

between electrode pairs l and m as follows:

∆ϕlm = ϕl − ϕm (3.2)

where ϕ is given by Equation 3.1. Two electrodes are considered synchronized over a time

period ∆t = t2 − t1 if |∆ϕlm
t2 − ∆ϕlm

t1 | < C for an angular threshold C. Rather than using

a radian measure of ∆ϕ, we described synchronous behavior using phase synchrony (PS)

ψlm, formally defined as follows:

ψlm = 1
NT

∥∥∥∥∥
N∑

i=1
ej∆ϕlm

i

∥∥∥∥∥ (3.3)

where NT is the number of discrete time points within a period ∆t. PS values vary from

0 to 1.

3.3.1.2 Dynamic Network Metrics

A network is defined as a binary undirected graph G = (V,E) comprised of a set of nodes

V ∈ (1, 2, . . . , NC) with NC total nodes, and an edge set E ⊆
{
(x, y)

∣∣∣ (x, y) ∈ V, x ̸= y
}
.

Each network node is mapped directly to an EEG electrode. For the remained of this

chapter, each electrode/node will be referred to as a channel2. Hence, inter-channel

connectivity refers to the PS values between electrode/node pairs. The network can be

described via a symmetric square adjacency matrix A ∈ RNC×NC . The elements of A are

given as

Alm =


1 ψlm > δP S

0 otherwise

(3.4)

where ψlm is the PS between channels l and m as described in Equation 3.3, and the

parameter δP S encodes the maximum allowable phase difference. PS values between

individual EEG channels were calculated over a sliding temporal window of ∆t=0.4 s [85].
2The term channel is derived from the use of the 10-20 International Standard for EEG electrode

placement and is commonly used for EEG recording systems. The 10-20 International Standard is detailed
in Figure A.2
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PS values were thresholded at δP S = 0.9, yielding the adjacency matrix as shown by

Equation 3.4.

Network metrics of modularity, transitivity, efficiency, density, and assortativity were

calculated using the Brain Connectivity Toolbox [86] in MATLAB. The properties of

each individual metric are outlined in Table 3.1. The resulting time series represented the

dynamic changes in network properties throughout the human-robot team task.

Table 3.1: Regression Features
Network Metrics

Feature Description Range
Modularity
MN

A global measure of how well the network forms separate,
non-overlapping clusters compared to a null network model
with the same connection density.

[0,1]

Transitivity
TN

A measure of the average tendency for nodes to group together
into triangular (or higher order) clusters.

[0,1]

Efficiency EN A measure of the inter-connectivity between different regions
defined as the inverse average distance between nodes in the
network.

[0,1]

Assortativity
AN

Usually taken as a measure of network resiliency [87]. A
positive value of assortativity indicates that the network
generally consists of mutually coupled high degree nodes while
negative assortativity implies that the network has vulnerable
nodes.

[-1,1]

Density DN The number of existing network edges as a fraction of the
total number of possible edges.

[0,1]

Single Channels
Feature Description Range
Power PC Signal power of an individual EEG channel in µV 2. [0,∞)

3.3.1.3 EEG Power

As described in Section 3.3.1, the channel powers were extracted directly from the time-

frequency transform.

3.3.2 Network Sub-Regions

The use of the 62 channel EEG system provided an opportunity to explore complex

interconnections between distant brain regions. However, values of network metrics do
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not have unique one-to-one associations with specific distributions of network edges.

Rather, they capture average properties of the network as a whole. Regional networks

were comprised of channel subsets located over particular brain areas that are know to

functionally interact. In addition to the full 62 channel ensemble, we analyzed six

sub-regions as shown in Figure 3.7. Table 3.2 lists the names of the network sub-regions

detailed in Figure 3.7 along with the abbreviations that will used for the remainder of

this chapter.

3.3.2.1 Feature Counts

Each network sub-region k was comprised of Nk
C channels. With the exception of the full

network, all sub-regions contained less than 62 channels. There were 30 frequencies in the

time-frequency transform as described in Section 3.3.1, and the number of SC features

generated for each sub-region was F k
SC = 30 × Nk

C . In contrast, the NM feature set for

each sub-region k was comprised of the five metrics listed in Table 3.1, also evaluated at 30

frequencies. All sub-regions have F k
NM = 30 × 5 = 150 total NM features. Consequently,

there are large differences in the number of SC versus NM features that are available for

model construction. The ratio of NM to SC features, FCR = 150/F k
SC for each sub-region

k is also given in Table 3.2.

Table 3.2: Network Regions
Network Sub-Region Sub-Region

Acronym
Channel
Count NC

Feature
Count FSC

FCR =
150/FSC

Full none 62 1860 0.08
Frontal-Central FC 25 750 0.20
Central-Parietal-Occipital CPO 38 1140 0.13
Temporal-Parietal-Occipital TPO 23 690 0.22
Frontal-Parietal-Occipital FPO 35 1050 0.14
Frontal-Temporal-Parietal-
Occipital

FTPO 41 1230 0.12

Anterior-Frontal-Central AFC 32 960 0.16
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Figure 3.7: Detail of the seven networks analyzed in this study. The set of electrodes
in the EEG ensemble are denoted with small markers. Network nodes are shown with
larger markers while network edges are indicated by lines. Each headmap represent the
total possible number of edges that can exist in the particular region. Brain lobes are
highlighted using varying shades.

3.3.3 Dynamic Modeling of Trust Using EEG Measures

As outlined in Chapter 1, neural measures can capture variations in cognitive processes

that relate to trust attitude. If successful, a neurological measure of trust would be the

most sensitive, real-time capture possible for this latent variable. However, there is a

lack of work that explores time variations in EEG functional connectivity as it relates
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to changes in trust. In this study, we assume that the actual trust a human has in

the autonomy is a cognitive stance, or an attitude that exists during the interaction

[71]. We can model the dynamic state of trust as the discrete process shown in Figure

3.8. The internal state of trust is shown in the red circles. Observable variables of

external self report of trust and EEG measures are shown in yellow. The blue circles

describe the relationship between human actions, robot (autonomous system) actions, and

situational factors. Situational factors can include changes in risk, increase or decrease of

mental/physical demands, changes in uncertainty, or other external influences that impact

the dynamics of the interaction.

Prior to the interaction each participant comes to the task with an a-priori notion of

an autonomous system’s trustworthiness [88]. This predispositional trust is noted as T in
0 ,

and is the result of antecedent experiences, values, and beliefs. Additionally, the type

of task can impact initial trust since each person may weigh risk and reward differently

for given operational contexts. Once the human-autonomy team task begins, situational

factors (SF ) and human actions (HA) give rise to robot actions (RA), all of which impact

trust, T in. In our experiment, we attempt to elicit changes in T in via robot actions:

specifically by varying the capability of the robot to place blocks onto the shelf.

Let there be an internal state of trust that the human has in the autonomous system

given by T in. The observation, T ex human’s self report of their perceived value of trust.

If we regard the internal state of trust as T in ∈ R, and the external report of trust as

T ex ∈ R, we claim that there is map

φ : T in 7→ T ex.

We may also assume that there is a map from EEG features, x ∈ Rn and the state of

internal trust. We posit that such correlations are due changes is internal cognitive state

of the participant. Therefore, we additionally claim there is a map

γ : x 7→ T in.

Consequently, we can write the relationship between x and T ex as the composition of φ
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Figure 3.8: A graphical model of human trust dynamics throughout the performance of
a human-robot team task.

and γ, which we note as φ ◦ γ = ν

ν(x) = T ex.

In this study, we evaluated the conditional probability

P (T ex | x).

via the construction of a regression model. We assumed that the state of trust was elicited

by the human participant’s perception of the robot’s capability. Furthermore, we assume

that both trust and EEG features were continuous. For our conditional model, we select

a first order, linear approximation of trust as function of EEG features given by

Tmk
est = a0 +

m∑
i=1

aix
k
i + ϵ0 (3.5)

where Tmk
est is the trust estimate using features from the kth sub-region, m is the total

number of regressors, a0 is a bias term, and ai are the coefficients of each regressor xk
i and

ϵ0 is an uncertainty in both the measurement and model. We additionally assumed that

interactions between features were negligible. We generated linear models for each of the

seven sub-regions using both the SC and NM feature sets for a total of 14 models.
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We assume that changes in the internal state of trust occur when the human self-

reports. If there is no report, we cannot assume a link between the internal state and the

EEG signals that may correspond to it. This situation presents two problems: 1) it is

possible that valid changes in trust occur, but are not reported; 2) it is possible that valid

changes in trust occur over periods that are not self-reported. Each of these situations

will increase signal to noise. There is little that we can do to mitigate these issues.

3.3.4 Feature Selection

We performed feature selection using a greedy feed-forward search approach implemented

using the MATLAB function sequentialfs.m with root mean squared (RMS) estimation

error as the loss function [89]. The algorithm begins with a constant term and constructs

models from all remaining available features. Regressors are added sequentially until the

relative reduction in RMS error meets a selected threshold [90]. The final number of

regressors used for all models in this study was 20 as shown in Figure 3.9 for each of the

seven sub-regions.

3.3.5 Participant Trust Levels

A major assumption in this study was that changes in trust occurred over large timescales

such they may be captured by examining average EEG properties at discrete points in

time. Our participants self reported their trust from 0 (no trust) to 1 (complete trust),

Tm ∈ [0, 1]. We use the temporal characteristics of Tm to define a discrete set of time

points tr, from which to build our models. Each participant’s self reported trust over the

entire experiment was collected into a single ensemble. We then selected sample points

as follows:

1. Discretization: The continuous trust is broken into 50 discrete levels between 0 to 1

T p
i = 0.02i, i ∈ {1, 2, . . . , 50}

2. Derivative Threshold: Exclude time points where the trust changes too slowly∣∣∣∣∣∣Tm[n] − Tm[n− 1]
∆t

∣∣∣∣∣∣ ≤ δd.
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Figure 3.9: Detail of feature selection cutoff for each of the seven sub-regions in this study.
The total number of regressors was set to 20.

3. Displacement Threshold: Select time points within a certain distance of the

measured trust Tm ∣∣∣∣Tm[n] − T p
i

∣∣∣∣ ≤ δT .

Finally, we combined the set of time points for each of discrete levels of trust to obtain

the complete of discrete time points tr:

tr =
50⋃

i=1
tpi

3.3.6 Model Generation

Our method of building and testing the performance of linear models was based on N-fold

cross validation. We began by randomly assigning all sampled points to one of ten bins:

S = {s1, s2, s3, . . . , s10}. Each bin contained the same number of elements ±1. We selected

a 10% holdout, Stest, of data for testing while saving 90% Strain for model building. We
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Figure 3.10: Sampling of the continuous trust for model construction. The ensemble of
trust measures was separated into 50 discrete levels. Only points for which the trust was
changing were used regression as described in Section 3.3.3.

built and evaluated each of the 14 models using the set B = {b1, b2, b3, . . . , bn} where

bi = {Si
train, S

i
test}. Once a build and test sequence was completed, the results were

tabulated, we defined a new set of 90% build and 10% test, then ran the process again.

For a trust sample set of m total points, there are n =
(

m
m
10

)
unique elements in B. We

selected a subset of 1000 build and test sequences for our statistical analysis.

Models were built using the MATLAB function fitlm.m, and evaluated using the test

and train sets in B for each of set of regressors. Prior to model construction, all trust

and EEG data were temporally aligned and re-sampled to a frequency of 128 Hz using

timeseries object functions in MATLAB.

3.3.7 Statistical Analysis

We compared model performance between the SC and NM feature types directly by

subtracting the RMS trust prediction errors for each of the six sub-regions. Therefore,

our test distributions were ∆Ek = rmsek
SC − rmsek

NM for each of the sub-regions k. Our

hypothesis tests reduced to

H0 : µ∆Ek = 0

H1 : µ∆Ek ̸= 0.

These hypotheses were evaluated using 2 sided t-tests.
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3.3.8 Null Model Comparison

We created null network models to establish a baseline for comparative network behavior.

The network densities were a direct result of the threshold we selected when binarizing

our phase synchrony values as described in Section 3.3.1.1. Network density is given as

the ratio of existing edges to the total number of possible edges, d = e
emax

. Consequently,

we calculated the number of edges as e = dN(N−1)
2 . We then constructed Erdős-Rényi [91]

random graphs with the same node and edge count. Network metrics were calculated

from the set of null graphs for comparison. Figure 3.11 illustrates such a random graph

construction. Each row of the figure shows the adjacency matrix, approximate degree

distribution, and edge locations on a head plot. The data graph contains clusters of high

degree connections between frontal, parietal, and central regions. By comparison, the

random graph has little noticeable structure, while still maintaining the same density as

the data graph. The metrics calculated from both the data and random graphs are shown

in the bottom plot. We can see the density values are approximately the same, as we

would expect by construction, while the other metrics take on different values for each

graph type.

Therefore, our test distributions were ∆Mk
i = mk

data − mk
null for each of the five metrics

mi and six sub-regions k.

H0 : µ∆Mk
i

= 0

H1 : µ∆Mk
i

̸= 0.

Statistical tests (2 sided t-tests) were performed to determine significance.

3.4 Results
3.4.1 Model Performance

We evaluated model predictive power between the SC and NM feature types using RMS

trust prediction errors. Model parsimony and relative fit were evaluated using the adjusted

R2 [90]. RMS trust prediction errors are shown in Table 3.3. Adjusted R2 values are

shown in Table 3.4. Table 3.4 gives the ∆R2 values for Hypothesis 1 as the R2 of the Full
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Figure 3.11: Generation of the Erdős-Rényi null network from data networks. Adjacency
matrices and degree distributions illustrate the difference in null model topology. Network
metrics determined from the null model diverge from those of the data network.

sub-region SC model minus the R2 of each of the six remaining sub-region NM models.

Therefore, ∆R2
k = R2

F ull SC −R2
k NM for each sub-region k. Details of the statistical tests

are summarized in Tables 3.5 and 3.6. Difference in model error between feature types

were given as ∆Ek = rmsek
SC −rmsek

NM for each of the 7 sub-regions. Therefore, negative

values of ∆Ek indicated larger RMS errors for NM based models. As described in Section

3.3.5, measured trust ranged from 0 (no trust) to 1 (complete trust), Tm ∈ [0, 1].
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3.4.1.1 Adjusted R2

All models using both SC and NM based regressors had adjusted R2 values greater than

0.5 (M = 0.667, SD = 0.071). The largest value of adjusted R2, 0.769, occurred with SC

models built from the Full sub-region feature set. The next largest adjusted R2, 0.735,

was produced with NM features from the FTPO sub-region.

3.4.1.2 H1 RMS Error

Linear models using SC features showed lower RMS errors than models built using NM

features for all seven sub-regions. The TPO sub-region yielded the greatest mean

difference in RMS error with a value of -0.027, whereas the smallest mean difference was

produced by the FTPO sub-region with a value of -0.005.

3.4.1.3 H2 RMS Error

Linear models using SC features generated lower RMS errors than models using NM

features for three of the seven sub-regions investigated. The greatest positive mean

difference in RMS error was produced by the FC sub-region at 0.079, whereas the lowest

mean difference in RMS error was produced by the FTPO sub-region with a value of

0.004. The greatest negative mean difference in RMS error was produced by the TPO

sub-region at -0.0148, whereas the lowest mean difference in RMS error was produced by

the FPO sub-region with a value of -0.006.

Table 3.3: RMS Prediction Errors for Each of the SC and NM Regression Models
Single-Channel Network-Metric

Sub-Region µSC σSC µNM σNM

Full Network 0.086 0.011 0.111 0.013
Frontal-Central 0.121 0.015 0.102 0.013
Central-Parietal-Occipital 0.088 0.011 0.101 0.012
Temporal-Parietal-Occipital 0.098 0.011 0.113 0.012
Frontal-Parietal-Occipital 0.095 0.011 0.101 0.011
Frontal-Temporal-Parietal-Occipital 0.095 0.011 0.091 0.009
Anterior-Frontal-Central 0.112 0.015 0.105 0.013
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Table 3.4: Adjusted R2 for Each of the SC and NM Regression Models
R2 ∆R2

Single-Channel Network-Metric H1 H2
Region
Full Network 0.769 0.607 0 0.162
Frontal-Central 0.530 0.670 0.099 -0.140
Central-Parietal-Occipital 0.753 0.676 0.093 0.078
Temporal-Parietal-Occipital 0.695 0.592 0.177 0.103
Frontal-Parietal-Occipital 0.714 0.671 0.098 0.043
Frontal-Temporal-Parietal-
Occipital

0.714 0.735 0.034 -0.021

Anterior-Frontal-Central 0.566 0.650 0.119 -0.084

(a) ∆RMS Result for Hypothesis 1 (b) ∆RMS Result for Hypothesis 2

Table 3.5: Statistical Results for Hypothesis 1
H1: t-test for Equality of Means

95% CI
Region t df p (2-tailed) ∆Mean Lower Upper
Full -32.80 998 1.10 × 10−160 -0.0226 -0.027 -0.024
Frontal-Central -21.17 998 1.78 × 10−82 -0.016 -0.018 -0.015
Central-Parietal-Occipital -20.51 998 2.78 × 10−78 -0.015 -0.017 -0.014
Temporal-Parietal-Occipital -36.90 998 1.10 × 10−188 -0.027 -0.029 -0.026
Frontal-Parietal-Occipital -21.17 998 2.02 × 10−82 -0.015 -0.016 -0.013
Frontal-Temporal-Parietal-
Occipital

-7.33 998 4.65 × 10−13 -0.005 -0.006 -0.004

Anterior-Frontal-Central -24.16 998 6.29 × 10−102 -0.019 -0.020 -0.017
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Table 3.6: Statistical Results for Hypothesis 2
H2: t-test for Equality of Means

95% CI
Region t df p (2-tailed) ∆Mean Lower Upper
Frontal-Central 21.30 998 2.81 × 10−83 0.079 0.017 0.021
Central-Parietal-Occipital -17.50 998 5.48 × 10−60 -0.0127 -0.0142 -0.0113
Temporal-Parietal-Occipital -19.93 998 1.11 × 10−74 -0.0148 -0.0162 -0.0133
Frontal-Parietal-Occipital -8.125 998 1.31 × 10−15 -0.006 -0.007 -0.004
Frontal-Temporal-Parietal-
Occipital

6.47 998 1.54 × 10−10 0.004 0.003 0.005

Anterior-Frontal-Central 13.01 998 2.77 × 10−36 0.012 0.010 0.013

3.4.2 Feature Details

Figure 3.13 shows the details of all SC and NM features selected for the models in our

studies. The headmaps illustrate the location of channels that generate SC features. Each

plot describes the distribution of the particular features within the θ, α, β and γ frequency

bands. The regions are differentiated by the shade of each bar, while their height indicates

the number of features in the given band.

3.4.2.1 Single-Channel Powers

When selecting from the full compliment of 62 channels, the greatest number of features,

9 of the 20, were derived from channels positioned over the junction between the left

temporal and parietal lobes. In addition, 5 channels were located over the frontal cortex,

2 were over the temporal lobes, one on the right, and the other on the left. There were

3 channels over the parietal lobe and two channels over the occipital lobe. SC features

were distributed relatively evenly about the frequency bands. There were 5 features in

both the θ and α bands. The β and γ bands contained 6 and 4 features respectively.

Channel selection for the remaining sub-regions were constrained to their particular

channel subsets. We see that channels positioned over the right frontal lobe contributed

the greatest number of SC features for the FC and AFC sub-regions. Feature sets for both

the FTPO and FPO sub-regions were identical. Both the TPO and CPO sub-regions had

a balance of channels between the left and right sides of the head. The four sub-regions

that included channels over the frontal lobe had the greatest number of SC features in
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Figure 3.13: Detailed properties of the 20 features selected for our regression models.
The location of single-channels are shown in the headmaps using colored circles. The
distribution of regressors over traditional θ, α, β, and γ EEG analysis bands are located
next to the headmaps for each of the 7 sub-regions.

the β frequency band. The CPO sub-region had the largest number of features located in

the θ band while the TPO sub-region had the greatest number of features in the β band.
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3.4.2.2 Network-Metrics

The frequency distribution of NM features were more uniform, with a tendency for a

greater number of features located in the β band.

3.4.3 Network-Metric Values

The mean values of the 5 network metrics are summarized in Figure 3.14. Unlike Figure

3.13, features are lumped together by metric type. We see that the feature densities were

approximately 0.1, efficiencies were 0.1 to 0.3, transitivities were 0.05 to 0.10, modularities

were 0.4 to 0.6, and assortativities were -0.1 to -0.2. NM features derived from the Full

sub-region had the highest values of efficiency, yet the lowest values of modularity when

compared to the six other sub-regions.

Figure 3.14: Comparison of the mean network-metric value for all seven sub-regions
investigated. Value ranges for each metric type are described in Table 3.1

Details of the null model comparisons are shown in Figure 3.15. For brevity, we

will refer to the networks derived from the EEG data as the data-networks and the

corresponding random models as the null-networks. Each timeseries of data-networks

has a corresponding sequence of null-networks. Network density and modularity are not

included in the figure. By definition, the null-networks have the same number of edges and
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nodes as the data-networks and hence, the same density values. Modularity is calculated

by defining non-overlapping modules whose vertex allegiance differs the most from an

equivalent Erdős-Rényi graph. The values in Figure 3.15 are given as Mnull −Mdata where

the metric M is either efficiency, transitivity, or assortativity. Figure 3.15 shows that

differences in metric values between data and null networks were statistically significant

for all seven sub-regions. Efficiency values were greater for null-networks, whereas the

transitivity and assortativity values were greater for data-networks.

Figure 3.15: Difference in metric data versus null networks. Random networks are Erdős-
Rényi graphs generated using the same node and edge count as the corresponding data
network. Density and modularity are omitted in the comparison.

3.5 Discussion
EEG signal levels are indicative of neural activity. As described in Section 3.3.1.2, graph

edges that form our networks are defined by the PS between channel pairs. Differences

in relative phase that are stable over time is evidence of coherent interaction between

brain regions. Brain regions that share the same power levels may still have random

phase relationships that do not generate phase coherence. In our investigation, we do

not examine the magnitudes of EEG power, but rather their correlation with changes in
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trust. This differs slightly from a bulk of the existing literature that explore the activation

and interaction of brain regions to relatively stable stimuli. Here we examine a dynamic

process and select features based upon their ability to increase prediction in the dynamic

changes in trust.

The network metrics selected for this study are neurophysiologically meaningful.

However, their interpretation will vary based on the general topology of the specific

networks. For example, in densely connected graphs, all nodes are topologically close

and have a high degree of transitive closure. Consequently, the metrics of transitivity

and efficiency become linearly proportional to density beyond a critical threshold [92].

3.5.1 Hypothesis 1

In this study we explore the question: “Are there sub-regions whose NM features contain

more predictive information than all of the available SC features in the 62 channel EEG

ensemble?” To evaluate this, we compare the performance of linear models constructed

using regressors selected from the following feature sets: 1) single-channel powers from

the complete 62 channel EEG headset, and 2) network-metrics defined for each of the

seven sub-regions.

As shown in Table 3.5, models constructed using NM features from all seven

sub-regions cannot outperform the models using SC features. However, our feedforward

feature selection algorithm only adds regressors to the model that minimize the RMS

error of the trust prediction. As described in Section 3.3.3, there are 1860 SC features

but only 150 NM features. As shown in Table 3.2, the full compliment of available NM

features spans only 8% of the SC feature space. The addition or subtraction of an

channel changes the SC feature count by 30, one for each frequency in the

time-frequency transform, yet has no impact on the number of NM features. There are

simply not an adequate amount of NM features to build comparative models.

From Figure 3.13 we see the greatest number of channels are located in the

temporal-parietal junction, a region that has been associated with changes in trust [93].

Additionally, 5 channels are located in the frontal cortex, a region primarily associated

with working memory, executive planning, concentration, and emotion. The distribution
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of the SC features in each frequency band is relatively uniform indicating that the

particular position of the channels is more important that the frequency of the signal.

Of particular note is the FTPO sub-region which shows the lowest difference in RMS

error and the highest adjusted R2 among all NM models. This will be discussed in

following sections.

3.5.2 Hypothesis 2

In this study we explore the question: “Do NM features defined on specific sub-regions

contain more predictive information than SC features within that same sub-region?” To

evaluate this, we compare the performance of linear models constructed using regressors

selected from: 1) single-channel powers from the channels located within the seven sub-

regions, and 2) network-metrics determined from each of those same sub-regions. In

contrast with the previous study, the SC features in this study are only selected from

the channels that make up the specific sub-regions. The number of channels for each

sub-region is given in Table 3.2, and more importantly, the ratio of NM features to SC

features.

There are three sub-regions that show statistically significant decreases in RMS error

when using NM over SC features: FC, FTPO, and AFC. Each of those three sub-regions

contain channels located over the frontal cortex. The FTPO sub-region also contains

channels over the right and left temporal lobes, and the parietal and occipital lobes.

The FPO sub-region contains all of the channels within the FTPO sub-region with

the exception of six additional channels located on the right and left temporal lobes.

FTPO NM models outperform the SC models, whereas the FPO NM models do not,

demonstrating that additional network connections from the temporal lobes to the frontal,

parietal and occipital lobes increases trust prediction. However, the SC features for both

the FPO and FTPO are identical. Therefore, the addition of the extra channels, while

having no impact on their number, generates NM features that have better predictive

power. Similarly, the FC sub-region contains all of the channels within the AFC sub-

region with the exception of seven additional channels located over the anterior-frontal

lobe. Both the AFC and FC NM models outperform SC models. Interactions within the
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frontal lobe are known to contribute to cognitive activity.

3.5.3 Network-Metric Analysis

In Figure 3.14 we can see that the values of density, efficiency, modularity, and

transitivity are relatively consistent between the six sub-regions. The assortativity

values on the other hand show a much wider variation between sub-regions. The Full

sub-region has the highest value of efficiency and assortativity as well as the lowest value

of modularity. However, each of the metric values can be put into a comparative context

when examining Figure 3.15. A comparison with the null-network metrics illustrates two

key points. First, there are statistically significant differences between the metric values

calculated on the data versus those calculated on random graphs for all seven of the

regions in this investigation. Second, the direction of change illustrates how the

topology of the data-networks deviates from that of a null-networks.

From Figure 3.15 we see that the efficiency of the null-networks is substantially higher,

indicating that the mean path length of the data-networks is greater than that of the null-

networks. The transitivity of the null-networks is lower, which indicates that the data-

networks are more clustered than null-networks. The assortativity of the null-networks is

also lower. Nevertheless, the assortativity values are negative in both the null and data

networks. Negative values of assortativity imply that nodes of a low degree are more

likely to connect to nodes with a high degree. This means that high degree nodes do

not have a tendency to connect to other high degree nodes. A network that is relatively

disassortative may or may not be less clustered, however, the removal of a single node is

likely to have a greater impact the network topology.

The efficiency of the Full sub-region is most likely a consequence of the number of

potential connections. A greater number of connections will reduce the mean path length

between nodes substantially.

The greatest difference between the network efficiencies is seen in the FPO and FTPO

sub-regions. This indicates that the mean path length between network nodes is larger.

Both sub-regions have greater transitivity and assortativity than null-networks, but in

relatively equal amounts.
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The AFC sub-region has the smallest difference in efficiency. It also has greater

transitivity and assortativity than the other sub-regions. This indicates that it has a

higher tendency to cluster with a larger number of short connections between clusters.

The FC sub-region on the other hand shows almost the opposite behavior.

3.5.4 The Impact of Feature Selection Method

In Section 3.3.3 we made the assumption that interactions between EEG features were

negligible. Figure 3.16 shows the correlations between features for all of the sub-regions

used in this study. The correlations between NM features for all sub-regions are zero mean

with standard deviations of approximately 0.25 to 0.4. By comparison, SC features are

predominately positively correlated with roughly 33% greater than 0.5, indicating that

the are substantially more correlated than NM features.

Figure 3.16: Detail of correlations between features. Single channel-features are shown to
be significantly more correlated than network-metric features.

We utilized a greedy feedforward feature selection algorithm as mentioned in Section
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3.3.4. This particular type of method yields some of the lowest RMS errors for given

feature sets. However, it can do so at the cost of selecting features that are substantially

parallel (highly correlated) to one another. A linear model with no interaction terms that

is comprised of relatively correlated features can generate very unstable results if one or

more of the features is removed or corrupted with noise. This may imply that NM based

models can be more robust to channel loss.

3.5.5 Summary of Findings

The FTPO sub-region has the lowest change in RMS error among all of the region types.

According to Table 3.4, the FC sub-region has the greatest decrease in adjusted R2. FTPO

adjusted R2 is 0.735, whereas that of the Full sub-region is 0.769. In addition, FTPO

RMS error is 0.091, relatively close to the Full sub-region RMS error of 0.086. Despite

the greater relative performances of the FC and AFC sub-regions, NM features from the

FTPO sub-region predict trust nearly as well as the single-channel features from the Full

sub-region feature set. Again, there are significantly more regressors to choose from when

using SC features, so it is impactful that the two feature types yield similar results. These

results have been highlighted and emphasized in Table 3.7.

In summary, the FC and AFC sub-regions both outperform SC models with 20%

and 16% of the number of potential features respectively, but they do so with different

relative (to null model) values of transitivity, efficiency, and assortativity. The FTPO

(12% feature ratio) also outperforms SC models, whereas the FPO (14% feature ratio)

does not. However, both sub-regions have similar measures of transitivity, efficiency, and

assortativity. These results have been highlighted and emphasized in Figures 3.17 and

3.18.

Whatever the cause of this difference, it is most likely not the quantity of extra channels

but rather their location over the brain. Our results indicate that long range synchronous

activity between the frontal and, occipital and parietal lobes may be indicative of changes

in trust.
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Table 3.7: Summary of Differences in Regional Performance
R2 ∆R2 RMS Error ∆RMS Error

Single-
Channel

Network-
Metric

Single-
Channel

Network-
Metric

Region
Frontal-Central (FC) 0.530 0.670 -0.140 0.121 0.102 0.019
Frontal-Parietal-Occipital
(FPO)

0.714 0.671 0.043 0.094 0.101 -0.006

Frontal-Temporal-Parietal-
Occipital (FTPO)

0.714 0.735 -0.021 0.094 0.091 0.004

Anterior-Frontal-Central (AFC) 0.566 0.650 -0.084 0.116 0.105 0.012

Figure 3.17: Frontal-Central sub-regions and Frontal-Parietal-Occipital sub-regions for
direct comparison of single-channel locations and topological distributions of network
edges.

3.5.6 Implications and Future Work

We have shown that meaningful patterns may be found within the elicited responses of a

small number of participants, and support the proposition that EEG features can capture

cognitive activities that correlate with trust. However, we did not set out to determine

if a specific metric, bandwidth, or combination of metrics would generalize as a robust

trust measure for a wider cohort, which would require a significantly broader study. A

wider investigation could also explore the trade-off between feature stability and model

performance. The removal of certain nodes could have a significant impact on metric

values dependent upon their relative importance within the network topology. This type
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Figure 3.18: Direct comparison of the difference in null centered metrics as previously
shown in Figure 3.15. The values for the Frontal-Central regions, shown in red, are rather
close, while the values for the Frontal-Parietal-Occipital regions, shown in purple, are
rather separate.

of investigation could only be performed by studying the topological significance of specific

nodes using granular measures such as centrality or local efficiency [92].

Our results indicate that the topology of interactions not only within the frontal

network, but also between the frontal, temporal and parietal regions are effective at

predicting trust in autonomy during human-autonomy team tasks. In addition, research

in the field of cognitive neuroscience has found evidence to suggest that cognitive control

capacity may be supported by whole-brain network properties and that dynamic network

features may contribute to differences in goal-directed behavior [29]. Consequently, the

use of network metrics can provide neuroscientific insight into the nature trust in human-

autonomy team tasks.

3.6 Conclusion
In this chapter we describe the results from our experiment in human-autonomy trust.

We elicited changes in human trust in a simulated autonomous system while recording

cognitive activity using an EEG measurement system. Human subjects were instructed

to report changes in trust throughout the experimental trials. We constructed linear
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regression models to predict changes trust using two types of features derived from the

EEG timeseries: 1) Single-electrode signal powers; 2) EEG inter-electrode functional

connectivity network-metrics derived from signal phase synchrony.

Our results indicate that the two types of EEG features can capture cognitive

activities that correlate with trust. A comparison of model performance between single

channel powers versus network metrics, both defined from specific brain regions, shows

that network metrics outperform the single-channel powers for three of the seven

sub-regions investigated. Both single-channel powers and network-metric that

incorporate the frontal, parietal, and occipital lobes of the brain have the greatest

impact on trust prediction.
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Chapter 4

Investigating Human Behaviors in a Manual
Grinding Task

Preface
In this chapter I present our experiment involving human behaviors of skilled practitioners

in a manual grinding task. In Chapter 1 we explained that human’s are required to

be “in-the-loop” for many human-autonomy team tasks because they can apply their

knowledge and expertise. The types of expertise depend entirely on the specific task. This

experiment was performed in concert with Jayanti Das of the UC Davis Manufacturing

and Sustainable Technologies Research (MASTeR) Laboratory overseen by Dr. Barbara

Linke. The study was motivated by the fact that human manual expertise is not well

digitalized for many applications. This particular study examines the behaviors that

differentiate individuals of different skill levels when performing a manual task. When this

experiment was conducted, we did not have access to an EEG device. Consequently, the

variations in human cognitive state associated with task performance were not available

for analysis. Nevertheless, goal directed behavior can be a key measure of cognitive state

as mentioned in Chapters 1 through 3. If EEG data had been recorded, our analysis

would have included the correlation of EEG measures with behaviors and performance:

an excellent prologue study to the experiment presented in Chapter 2. Nevertheless, the

results from this experiment are novel in their own right, and have been included in this

dissertation.

The major contributions of this chapter are as follows: 1) We quantitatively

characterize manual behaviors by comparing joint gaze-motor data. To our knowledge,
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this chapter presents one of the first instances in which visual attention has been studied

in manufacturing scenarios; 2) We examine the relationships between applied grinding

forces and surface integrity with respect to these behaviors, and the experience level of

the practitioner. We are able to show that there are distinct behavioral and performance

differences between subjects of different experience levels. Adept hand eye coordination

is key to the performance of a number of manufacturing processes. Due to the

importance of gaze-motor behavior, our results can be generalized to gain insight into a

wide range of industrial activities such as welding, repairing machinery, grinding and

polishing during abrasive finishing process, or everyday activities like driving.

The contents of this chapter have been previously published in [38], [39], and

[40].

4.1 Introduction
In the age of cyber-manufacturing, research has increasingly focused on establishing

intelligent processes which will enable the effective communication between humans,

machines, and products in complex production environments. Within this new

infrastructure, an understanding of human performance is critical if they are directly

involved in product generation. For example, the quality of manual abrasive finishing

operations such as grinding, polishing, and engraving are heavily dependent upon the

performance of the individual operator. These manual sectors represent a growing

market, from foundry shops to the aerospace industry. The skills involved in these

manual tasks are largely procedural rather than declarative, meaning that they cannot

be easily articulated by the individuals [94]. Furthermore, a lack of understanding of

these manual skills may prolong the transfer of this knowledge from one generation to

the next. It may also impede the development of efficient collaboration between humans

and smart machines [95] which can greatly impact the product outcome [96, 97]. If we

wish to integrate humans into the manufacturing network and effectively train them, we

need to digitalize their behavior/performance. A first step in this process is the
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development of a formal models which capture the process properties, behavioral

characteristics and techniques of the practitioners. Such models would allow the

optimization and integration between person to person, person to machine, and person

to tool within the manufacturing network [98].

A crucial issue for manual grinding operation is a critical understanding of

fundamental cutting mechanisms. Manual grinding operations are effectively force

controlled processes rather than automated path controlled operations. The applied

forces are influenced by several factors, which include the gripping force of the user,

personal skill level, and cutting tool feed rate [99]. Extensive research has focused on

different automated grinding processes and has characterized the influence of process

control parameters such as material removal rate, grinding force, wheel structure

topography, etc. [100, 101]. Unfortunately, very little work has been carried out to

investigate manual grinding operations and process optimization, and to correlate the

experience level of the worker to asses process performance quality. Kyle et al. [102]

described the input-output streams of a manual grinding process, reviewed sustainability

aspects of the energy sources of abrasive power and grinding tools, and discussed

concerns related to the safety and health aspects of manual operations. Along with

other process parameters such as feed rate, cutting speed, and workpiece materials, the

skill level of the practitioner plays a critical role in product performance and process

optimization.

It has been stated that the resultant tangential and normal forces from manual grinding

operations have an impact on process parameters such as material removal rate (MRR),

surface integrity (e.g. average roughness), and control process performance [103]. Thus

the efficiency of manual grinding operations are largely dependent on judicious control of

applied forces and become a function of the experience level of the practitioner, MRR,

average roughness etc. However, little work has been done to investigate the impact

of manual grinding forces on process performance (i.e. in terms of MRR and surface

roughness) based on experience level. We shall explore the performance of manual grinding

operations by examining normal and tangential forces, the experience of the user, material
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removal rate, and surface integrity in addition to visual-attention-motor behavior.

Visual attention is a remarkable human capability of reducing the huge amount of

visual data entering our eyes into a manageable level. It is widely accepted that visual

attention is not decoupled from motor system in natural behavior [104–107]. In the

majority of studies concerned with visual attention and the motor system, actions are

discrete, e.g., “remove the lid of the kettle” and “select a peanut butter jar” [104, 106],

and manually labeled by humans. Such a representation fails to capture the complex

nature of gaze-motor behavior. Data on motor dynamics, such as the changes in forces,

were not collected and subsequently studied. A analysis that captures the dynamic nature

of motor behavior is needed, similar to those developed in [108,109].

4.2 Experiment
In this section, we describe the setup and procedure of our manual grinding experiment.

4.2.1 Setup

For the purpose of studying manual skills involved in grinding tasks, we recruited four

students from the Department of Mechanical and Aerospace Engineering at the University

of California, Davis. All subjects were between 20 to 25 years of age. The subjects were

chosen based on their differing levels of experience. For this study we have subjectively

defined experience as the amount of time each subject has spent with grinding tools. In

the subsequent sections, the “experienced” subject shall be referred to as Subject 1, the

“intermediate” subjects as Subject 2 and Subject 3, and the “novice” subject as Subject

4. Each subject performed ten trials in which they were asked to use an abrasive wheel to

grind a metal sample. As shown in Figure 4.1, three streams of data were collected. First,

we measured the direction of gaze with a head mounted eye tracking system. Second, the

grinding forces were measured with a triaxial load cell mounted beneath the grinding

sample. Lastly, the 6 DOF kinematic state of the grinding tool and the eye tracking

glasses were recorded using an optical motion tracking system.

We measured gaze using a wearable eye tracking system manufactured by

SensoMotoric Instruments (SMI). The SMI ETG 2w system is integrated into a set of
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Figure 4.1: Setup of our grinding experiment. Data were collected from three separate
modules: 1) gaze tracking consisting of SMI eye-tracking glasses and a computer running
iView recording software; 2) force measurement consisting of a triaxial load cell and
a computer running LabVIEW; 3) motion capture system by Optitrack, which can
determine the position and orientation of selected objects. The data collected from these
three modules were synchronized and analyzed using the methods described in Section
4.3.

glasses which can extract binocular gaze, while simultaneously recording a video of the

visual point of view. Pupil images and corneal reflections are used to determine the

vertical and horizontal angular orientation of each individual eye, which in turn are used

to calculate the gaze. True gaze direction requires a vector to describe its full nature. In

our analysis, the gaze data were represented as binocular points of regard (BPOR).

These points describe where the binocular gaze vector pierces the gaze plane, a

hypothetical projection plane located 1450 mm in front of the glasses. The BPOR were

sampled at 60 Hz, and the gaze was presented as their pixel positions within the video

image. Videos were recorded at 60 frames per second at a resolution of 1280 pixels

horizontally and 960 pixels vertically.

The material used in this study was 6061 aluminum in the form of test coupons with

dimensions of 5.0 cm in length, by 2.5 cm in width, by 2.5 cm in height. Each grinding

experiment was conducted with a Dremel 4000 hand held power tool using alumina

sanding bands of 60 grit sizes (mesh number). The power tool was running at a constant
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Figure 4.2: Detail of the grinding sample and force data collection module. Forces in
three directions were measured, tangential (x-axis), normal (z-axis) and axial (y-axis).
The reflective spheres are used by the motion tracking system.

speed of 5000 rpm. All grinding operations were performed under dry cutting

conditions. The grinding force was varied manually which produced force variations in

the tangential, normal, and axial directions as shown in Figure 4.2. A piezo-electric

transducer based load cell (Kistler 9252A) was mounted under the workpiece to measure

these grinding forces during machining. A vise was used to fasten the workpiece to the

sensor. Force data were sampled at 1000 Hz using a National Instruments DAQ and

Labview software.

Finally, we obtained the kinematic data using a motion capture system by Optitrack.

This system consists of twelve cameras mounted circumferentially along the walls of our

lab. These camera modules each contain a ring of infrared (IR) light emitting diodes which

project a cone of IR light into the lab space. The eye tracking glasses, and the grinding

tool were each defined as a rigid body by marking them with a series of reflective spheres

as shown in Figure 4.1 and Figure 4.2. The overlap of the IR cones establish a tracking

volume in which the position of these markers are determined at <1mm accuracy. From

these marker positions, the Optitrack software can extract the 6 DOF pose estimation of

each rigid body. Data was sampled at 120Hz.
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4.2.2 Procedure

The experiment proceeded in the following manner:

1. Before each grinding trial, a calibration step was carried out in order to collect the

particular ocular behaviors of the subject using a method is described in [110].

2. Light touched crosshatched marks were made on top of workpiece surfaces. The

subjects were asked to grind the surfaces until the marks were no longer visible.

3. The gaze, force, and kinematic data were collected and saved separately for each

trial, and each subject.

4. Both the grinding wheel and the grinding sample were replaced after each trial.

5. The mass of the sample was recorded before and after each grinding trial to

determine the amount of mass removed.

6. Average surface roughness was measured and recorded after each grinding trial.

7. Each subject performed ten trials.

4.3 Data Processing Methods
In this section we describe our basic data processing methods.

4.3.1 Time Alignment and Filtering

All data from the three individual streams had to be temporally aligned, buffered, and

filtered for a comparative analysis. The data analysis was performed in Matlab.

The force and kinematic data were post-processed with a 8t h order Butterworth low

pass filter at a corner frequency of 20Hz. Normal and axial force data were particularly

noisy necessitating the use of such an aggressive filter to extract characteristics at the lower

frequencies. Filtering was accomplished using a bidirectional, zero lag implementation of

digital filters.

4.3.2 Scanpath

Gaze can be characterized macroscopically by two unique states: fixation, and

saccade [111]. Visual information is extracted during fixations, which are periods of

relatively small angular movement of the eye. Transitions between fixations take place
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through the rapid eye movements known as a saccades. A scanpath is the trace of eye

movements in space and time [112–116]. It is a locus of fixation points (x, y, t) which

describe when and where the subject attends to a particular visual stimulus. Each

scanpath is a distillation of true eye movement, which is complex and continuous. The

particular choice of presentation of this data varies by the type of analysis. Among these

presentations, the most common consists of plotting the x and y coordinates of each

fixation point onto an image of the visual stimulus [116]. The duration of the fixation is

illustrated using a circle with a diameter proportional to the amount of time. An

example scanpath of one subject and one trial is shown in Figure 4.3.

Figure 4.3: An example scanpath. The centers of fixations are denoted by points. The
durations of fixations are represented by the diameters of the circles. The fixation centers
are connected by straight lines according to their temporal order. Each straight line
corresponds to a saccade.

There are several techniques used to generate the scanpath, each of which depend on

the particular method to identify and label fixations and saccades. Many popular methods

are outlined in [117]. The methods can generally be broken down into two main types;

area/dispersion based methods which rely on the spatial distribution of the BPOR onto
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an image of the visual stimulus, and velocity based methods which utilize the angular

velocity of the eye. Area/dispersion based methods are widely used in print based studies

to compare regions of visual interest, especially in test scenarios in which the subject’s

head is fixed, or nearly fixed. Velocity based methods analyze the distribution of the

angular motion of the eye itself. It is generally accepted that the eyes cannot move faster

than a given speed; usually 900◦ per second. It is also generally accepted that saccades

are defined by shifts that occur above certain speeds. Furthermore, the human attention

system cannot interpret complex visual stimuli lasting for a duration of less than 100-

200ms [116]. This makes the velocity based methods more attractive as they can be made

to adhere to such physiological constraints. In addition, our subjects are free to move

their heads as they chose, making a velocity based method the only viable option.

In order to generate our scanpaths, we extracted fixations from the time history of the

BPOR using a methodology outlined in [118]. We have found this method to be flexible

enough to work well at our sampling rate of 60 Hz, yet robust enough to extract saccades

even in the presence of noise. It estimates a saccade as a peak in the angular velocity of

the eye which occurs above a threshold determined from the statistics of the data. These

data may have measurement noise from periodic occlusions of the pupil, or more often,

may represent eye movements that are naturally more jittery.

Before calculating our scanpaths, we first condition the raw gaze data using a Savitzky-

Golay filter to calculate the angular velocities eye θ̇, and remove points with unusually high

velocity (>900◦/sec). These points are most likely due to the inability of the eye tracking

system to properly image the pupil. Next, we remove any remaining points located at the

origin (as a result of blinks or loss of pupil tracking) and those points located outside the

data window. Approximately 1-5% of the BPOR data must be removed for these reasons.

Finally, we interpolate between the removed points.

We prime the estimation algorithm by choosing some initial peak velocity threshold

θ̇P T
init that is greater than the maximum velocity in the data, and define the set used in the

first estimation as ω1 = {ω ∈ θ̇ | ω < θ̇P T
init}. Next, the estimation process iterates until

the exit threshold is reached (Step 4). The ith iteration is described below.
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1. Calculate the mean and standard deviation of ωi, as µωi and σωi .

2. Define a new peak velocity threshold θ̇P T
i+1 = µωi + 6σωi

3. Define the new set ωi+1 = {ω ∈ θ̇ | ω < θ̇P T
i+1}.

4. If | θ̇P T
i+1 − θ̇P T

i |< 1◦/sec, then the final threshold is θ̇P T
F = θ̇P T

i+1 and the angular

velocity of the onset and offset as θ̇o = µωi+1 + 3σωi+1 , else return to step 1.

Once we have determined the velocity threshold, we extract the peaks in angular velocity

data, which is essentially the set that satisfies ωpeak = {ω ∈ θ̇ | θ̈ = 0}. Saccades are

defined in the angular velocity data as θ̇sac = {ω ∈ θ̇ | ωpeak > θ̇P T
F , ωpeak − θ̇o ≤ ω ≤

ωpeak + θ̇o}. Any part of the signal that is not a saccade is categorized as a fixation.

Depending upon the subject, approximately 5-8% of fixations are less than 100 ms, and

must be discarded. Finally, we calculate the mean value of the position of the eye (in

pixels) for each fixation. The resulting vector tuple is the (x, y, t) elements of the fixation.

The objective comparison of scanpaths depends heavily on both the task, and the

visual stimulus. A detailed review of many of these comparison methods are outlined

in [116]. In our particular study however, the comparison is vastly simplified. We included

the vertical marks on the test sample to force a visual engagement with the workpiece. As

a result, the scanpaths evolve in a manner analogous to a reading task in which the visual

stimuli, the words, are generally examined serially from left to right. We know that a

subject is likely to attend to the words on the page and in a specific order. Similarly, since

our grinding task is limited to the surface of the small test coupon, we can assume that

the subjects are likely to spend the majority of time searching vertically and horizontally.

Therefore, the difference in gaze behavior becomes how often, and at what magnitude

does their gaze shift across the test sample.

4.3.3 Process Parameters

In order to determine process parameters for direct comparison of product performance,

material removal and average surface roughness were measured. A white light

interferometer confocal microscope CSM 700 from Zeiss was used to measure all 2D and

3D surface roughness parameters with a cut-off length of 0.8 mm and an evaluation
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length of 4 mm (in accordance with ISO 4287:1997). A weighing scale was used to

measure mass of workpieces before and after each grinding for each subject.

4.4 Results and Discussion
In this section, we compare the behavioral characteristics between subjects. We examine

the duration of fixations, the variance of fixation positions, the characteristics of the

applied forces, and identify general relationships between the eye movement, grinding

forces, and tool velocity. We then compare process performance variables (MMR) and

part quality (average surface roughness) resulting from the grinding operation. Finally,

we discuss how the differences in gaze-sensorimotor behavior, are related to process

performance and part quality via technique, which is a crucial element of the experience

level of the subject.

As noted earlier, we shall refer to the experienced subject as Subject 1, the

intermediates as Subject 2 and Subject 3, and the novice as Subject 4. Furthermore, for

the purpose of direction consistency, we will refer to the x direction of the gaze as

tangential and the y direction as axial.

4.4.1 Tool Velocity

For this particular study, the addition of the motion tracking system allowed us to directly

measure the position and orientation of the tool. Figure 4.2 provides a detail of the Dremel

tool with the tracking spheres attached. Velocities were calculated by a simple numeric

differentiation of the filtered position measurements. The velocity vector was decomposed

into the relevant axes: tangential (x), normal (z), and axial (y) as shown in Figure 4.2.

In order to directly compare the velocity characteristics of each subject, the absolute

value of the signals were binned and normalized. These results are shown in Figure 4.4.

Despite the fact that this grinding task was primarily tangential in nature, several of the

subjects displayed interesting variations in their axial motion. A close examination of the

curves in Figure 4.4 shows that Subject 2 and Subject 4 show a large tangential response

between .06 to .1 m/s, as we might expect. However, Subjects 1 and 3 have low variance

in both the axial and tangential directions indicating that their hand motions contained

87



(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

Figure 4.4: Normalized histogram of the tangential and axial tool velocities for all subjects.
Contour lines highlight the structure of each distribution.

a fair amount of axial motion. In fact, both of these subjects tended to utilize a swirling

motion over the workpiece rather than a standard back and forth sweeping of the tool.

These differences in technique are embodied in the remainder of the behavior data.

4.4.2 Gaze Analysis

Fixation duration is simply measured as the time lapse, in seconds, between two saccades.

A two sample t-test and a chi-squared test were performed on the fixation data. These

tests both indicate that trials between subjects are statistically different (p < 0.03), while

the data within each subject are not. This is plausible as we may guess that the fixational

characteristics are an inherent property of the individual subjects. As a result, we pooled

the data for each subject across all ten trials.

The pooled distributions as illustrated in Figure 4.5 are highly skewed. A direct

comparison between the subjects shows that Subject 1 and Subject 3 have much shorter
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Figure 4.5: Comparison of fixation distributions between subjects. Whiskers extend out
to the 90th percentiles.

durations than Subject 2 and Subject 4, which indicates that their eyes are moving about

the workpiece more frequently. Furthermore, Subject 1 shows the smallest variance, with

few durations lasting longer than 2 seconds. By comparison, Subject 4 has the largest

variance of the all subjects with some fixations lasting as long as 4 seconds, more than

twice that of Subject 1.

We can invert these fixation duration data in order to obtain a distribution of

fixation frequency as shown in Figure 4.9. This method to effectively display the data

for comparison with the spectral distribution of the tangential forces and velocities.

A typical set of fixations for a single grinding trial are illustrated in Figure 4.6. We

determine the variations as follows: First, the mean for each trial is calculated. The

variation is defined as the square root of the squared difference of the gaze position from

the mean for each fixation. Thus it is not the variance of a distribution, but the absolute

value of the distance of each fixational point of regard from the mean of each particular

trial. These data are presented as pixels in the image frame (1280 horizontal by 960

vertical). These data are binned and the distribution of each subject for each trial is

plotted in Figure 4.7. Since this particular task is performed by moving the tool from

side to side, we would expect that the fixational shifts would be larger in the horizontal

(x) direction than the vertical (y). This appears to be true with Subjects 2 and 4, with
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the novice subject exhibiting the largest horizontal shifts. Interestingly, Subject 1 and

Subject 3 both have tendencies to look vertically more than horizontally corresponding

to a shifts in attention in that direction. This corresponds to the more complex motions

that were exhibited by these subjects.

Figure 4.6: Sample of fixation points for a single subject. Positions are reported in pixels
on the original 1280 by 960 pixel field of view. Notice the asymmetric dispersion of shifts.

Figure 4.7: Distributions of the fixational variations for all the trials. The whiskers extend
to the 90th percentile of the distribution.
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4.4.3 Grinding Forces

Figure 4.8 illustrates the normal versus the tangential forces for a single trial of each of

the four subjects. While the normal forces might be considered those that are directly

applied by the subject, we can see that there is a strong correlation between the tangential

and normal forces (r2 between .65 and 0.85 for all subjects). Furthermore, the tangential

force is an indication of grinding power as the greater the magnitude, the more energy

involved in the material removal [102] and therefore more relevant to process performance.

Finally, the variability in the distributions of the tangential forces between subjects were

large enough to analyze statistically. Therefore, we chose to include the tangential rather

than normal forces in our comparative analysis.

While the different subjects operated in different force regimes, it is clear from Figure

4.8 that the mean value of the forces produced by Subject 2 were the highest, while those

from Subject 1 were the lowest. More importantly however, the mean and variance in

both the normal and tangential forces for both Subject 2 and Subject 4 are very large

compared to the others, indicated a general tendency to push the tool harder into the

workpiece.

Figure 4.8: Plot of normal and tangential forces for all subjects.
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4.4.4 Relationship Between Gaze, Tool Velocity, and Applied
Forces

In this section, we examine the relationships between a subject’s shifts in gaze and the

corresponding changes in applied force and tool velocity. Our experimental setup cannot

measure where in space a force was applied, only its components along the principle axes

of the triaxial load cell. However, we can track how the tangential forces change, and

correspondingly, how the eye movements and tool positions change in the same direction.

As a means of comparing the frequency characteristics of the gaze, tangential force,

and the axial and tangential velocity properties of each subject, we have overlaid the

frequency distributions of the fixations along with the power spectral densities of the

forces and tool velocities onto a single plot. These plots are shown in Figure 4.9. We see

that collective responses of each of the subjects exhibits a modal shape. These modes arise

through the proprioceptive interaction of the human subjects with the natural dynamics

of the mechanical system. We cannot say for certain which regime may predominate

in this particular frequency band. However, the clamped test article is extremely stiff,

and the grinding wheel was rotating at 5000 rpm. Mechanical resonances are most likely

absent at such frequencies. Therefore it is likely that the force response in the 0 to 10Hz

bandwidth is dominated by the characteristics of the gaze-motor system. The modes in

these spectra are located at: Subject 1: 3Hz; Subject 2: 2.1Hz; Subject 3: 3.1Hz; Subject

4: 2.5Hz.

These modes encapsulate the behavioral characteristics of the subject as they perform

the manual grinding task. It is clear that the peaks tool velocities similarly occur with

peaks in tangential forces. These are the applied hand motions and the applied tool

forces respectively. Likewise, Subjects 1, 3, and 4 all display a rolloff in their fixational

response at frequencies corresponding to the force and velocity peaks. Hand motion and

applied force occur together indicating purposeful movement, and similar changes in gaze

behavior indicate a shift in attention corresponding to this movement. The coexistence of

these modes show that, for this manual grinding task, visual attention is coupled to the

motor system in a sensory feedback loop, and that we observe this to be so. The impact
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of this observation will be discussed in Section 4.5.1.

Going further, if we refer back to Figures 4.4 through 4.9, the difference in the behavior

of each of the subjects becomes more clear. Subject 1 and Subject 3 perform the task

in a precise manner by moving the tool in complex paths, both axially and tangentially,

with lower applied forces and velocities, and short fixations. By contrast, Subject 2 and

Subject 4 move the tool primarily tangentially, with higher tangential forces and longer

fixations. There is a clear contrast in the behaviors between these two groups of subjects.

Figure 4.9: Comparison of modal responses in the gaze-motor behavior of all subjects

4.5 Tool Paths
The motion tracking system allowed to measure the position of the tool to track the tool

path. Figure 4.10 shows the basic grinding techniques for all subjects for a single trace

but with only 75% of the trial time period for better visualization purpose. This method
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helped to capture the tacit knowledge of trajectories of a surface finishing tool operated

by different skill leveled operators.

Figure 4.10: Detail of tool paths for all subjects

The x and y-axes represent the tool position over the samples surfaces. All four

subjects have shown unique tool path behavior. Subject 1 and Subject 3 have moved the

tool in the complex path, which was a combination of side-to-side and swirling motion.

Subject 2 and Subject 4 have shown simple side-to-side motion. However, Subject 4 only

covered a certain portion of workpieces while remaining parts are untouched.

We describe our method of analyzing the tool path data with the purpose of examining

motion characteristics that arise from the techniques utilized by the individual subjects.

The Optitrack motion capture system allows us to extract these behaviors directly from

the tool path data. These behaviors can change abruptly or slowly as the task progresses,

so we cannot assume that the time series is stationary over the course of a single grinding

trial. Therefore, it is reasonable to assume that there are minimal changes in their motor
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behaviors over relatively short timescales. Consequently, we have sectioned the time series

data into sequential segments over which we do assume stationarity. Given the spectral

responses, we have defined segment lengths of ∆t = 1 second during which would expect

to see roughly two to three sweeps of the tool.

Each subject has the ability to maneuver the tool in the axial and tangential

directions independently. The separate degrees of freedom are only linked via purposeful

movement, and any detectable coupling between the two would be an indication of a

deliberate technique. In order to capture this relationship, we use a first order,

multivariable autoregressive model, AR(1). The general expression for an AR(1) system

is given by

xi = Axi−1 + b+ ϵi

where xi ∈ RN is a vector of measurements at the ith time step, A ∈ RN×N is the

coefficient matrix for the AR(1) model, b ∈ RN is the intercept vector or bias, and

ϵi ∈ RN are independent identically distributed (iid) gaussian white noise terms N(0, σ2).

If we center each of the segments about its mean, the bias term is effectively zero. Thus,

we can reduce our AR(1) model for our two degree of freedom system toXT
i

XA
i

 =

a11 a12

a21 a22


XT

i−1

XA
i−1

 +

ϵT
i−1

ϵA
i−1


where XT

i is the tangential position and XA
i is the axial position. Given the iid noise

terms, we can approximate the A matrix using stepwise least-squares estimation. Next,

we can solve this system for the current axial position XA
i as a function of the past XA

i−1

and XT
i−1 as

XA
i =

(
a21

a11

)
XT

i−1 + det(A)XA
i−1.

If we let α =
(

a21
a11

)
and β = det(A). we have an expression which captures the joint

nature of the axial and tangential motion in the two parameters α and β for each time

segment of ∆t = 1 second. The parameter α is effectively the coupling constant between

the axial and tangential tool positions. The tool path behavior of each subject can now

be compared by plotting these points in the parameter space.
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Figure 4.11a displays the α and β values for each of the four subjects. We can see

that the data is concentrated tightly about β = 1. The AR model assumes that the

system is causal and stable, comprised of an independent and a dependent variable. In

this framework, we would expect that the current value of the axial position would depend

little upon its past value and a β value of 1 would enforce that notion. In contrast, the α

values indicate how much the current value of the axial position depends on the past value

of the tangential position. In the case of our data, it describes how much counterclockwise

swirling of the tool is present. Large negative values of α correspond to very tall (axial)

oval shaped tool paths where small values correspond to wide (tangentially) ones.

Figure 4.11b plots the normalized histogram of only the α parameter for all four

subjects. This is effectively a probability distribution over α, and a clear indication of

how each of the subjects utilize the swirling technique. From the Figure 8 it is clear

that Subject 2 performs the task primarily with sweeping, tangential motions, and very

slow vertical motions across the sample. By contrast, Subjects 2 and 4 both utilize more

circular motions, each with different eccentricities; Subject 4 exhibiting taller (axial) orbits

than the Subject 4. Finally, while Subject 1 spends much of the time performing motions

very similar to Subject 2, the tail of the distribution moves far to the left indicating the

use of a very wide range of orbital eccentricities, both wide and tall. In fact, Subject 1

displayed an exceptionally wide range of tool motions, from primarily axial, to primarily

tangential, and everything in between. This could not be said of the other three subjects

whose techniques were very clearly dominated by a sweeping tangential motion.

4.5.1 Practical Implications and Impact

From performance analysis, Subject 1 and Subject 3 produced better surface quality

compared to Subject 2 and Subject 4 and there was also a contrast on processing

performance between these two sets of operators. These behavioral differences come

from inherent techniques related to individual operator, which are expected to have a

direct association with product output. We have referred to these sets of behavioral

pattern as the exhibition of technique. For ease of syntax, since Subject 1 and Subject 3

showed a more complex tool path behavior, we have referred this set as Technique A,
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(a) Autoregressive parameters α and β for
each subject over all 10 trials.

(b) Normalized histogram of α for each
subject over all 10 trials.

and Subject 2 and Subject 4 set as Technique B. The behaviors associated with these

techniques have been summarized in Table 4.1. Table 4.1 shows that Subject 1 and

Subject 3 were able to remove more mass while utilizing lower normal and tangential

forces, lower processing time, lower gaze frequency, and lower gaze shifts compared to

Subject 2 and Subject 4. Furthermore, Subject 1 and Subject 3 have greater axial tool

velocity, lower isotropy, which results in higher average surface roughness.

Table 4.1: Summary of Behaviors Exhibited Between the Two Techniques
Behavior Technique A Technique B
Tool Velocity greater axial less axial
Frequency of Gaze Shifts more often less often
Direction of Gaze Shifts more axial more tangential
Tangential Grinding Force lower higher

The quantitative information of these behavioral differences is shown in Table 4.2:

The findings from Table 4.2 can be summarized as follows:

• The tangential RMS tool velocity is lower for Technique A than for Technique B.

• The gaze frequency is higher for Technique A than for Technique B.

• The Axial RMS Gaze Shifts are higher for Technique A than for Technique B.

• The tangential Force is lower for Technique A than for Technique B.

• Machined surface isotropy is lower for Technique A than for Technique B.

• Processing time is lower for Technique A than for Technique B.
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Table 4.2: Quantitative Analysis of Behavioral Difference of the Operators
Behavior Technique A Technique B
Tool Velocity (m/sec) Axial (RMS) Tangential (RMS) Axial (RMS) Tangential (RMS)

0.029 0.071 0.025 0.094
Gaze Shifts (pixels) Axial (RMS) Tangential (RMS) Axial (RMS) Tangential (RMS)

41.808 31.318 33.141 34.637
Gaze Frequency (Hz) mean=1.269 SD=1.309 mean=0.858 SD=0.930
Tangential Force (N) mean=5.174 SD=1.060 mean=7.076 SD=1.365
Processing Time (sec) mean=70.68 SD=7.75 mean=81.50 SD=20.68

We also examined process parameters and discovered that Subject 1 and Subject 3

are able to remove more mass while utilizing lower tangential, and lower normal forces,

indicating a more efficient grinding process. Furthermore, both Subject 1 and Subject 3

have low variation in applied forces and material removed implying a much more consistent

process output. While Subject 1 shows larger average surface roughness than the other

three subjects, the variation in this from trial to trial is extremely low, again indicating

consistency. Of all the subjects, Subject 1 produced a product consistently and efficiently,

followed closely by Subject 3. While Subject 2 was both less consistent and efficient, the

subject does display characteristics of one who has experience with the grinding tool. By

contrast, the performance of Subject 4 is highly random. This subject is able to perform

the task, but shows little ability to produce in a repeatable fashion.

We can now summarize the relationships that we have discovered. Technique A was

comprised of complex tool paths and low forces. This technique was exhibited by Subject

1 and Subject 3. These subjects also produced a more consistent product, more efficiently.

Technique B, which included simple tangential tool paths and higher grinding forces was

exhibited by Subject 2 and Subject 4. It resulted in a less consistent and less efficient

output. Therefore, we have observed a relationship between manual grinding techniques

which are displayed by practitioners of different levels of experience. The sensorimotor

behaviors embedded in these techniques are observable and distinguishable. Finally, these

techniques result in in different product outputs observed in the process parameters.

Therefore, we can conclude that manual operation is not only an experience-based service

but also depends on behavioral techniques of individuals. Because of similar behavioral
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technique, Subject 1 and Subject 3 showed a similar pattern of complex tool path including

processing characteristics. And due to experience impact, Subject 1 produced a product

consistently and efficiently compared to Subject 3. On the contrary, Subject 4 was highly

random, showed little ability to produce the part in a repeatable fashion due to limited

expertise on the task.

In order to digitalize human performance, we would like to be able to join the

behavioral and process parameter properties together in a formal model. The findings

from this study show that this may be viable. Certainly an experiment with a larger

cohort of subjects representing each experience level would be required in future work.

A recognition of sensorimotor behaviors and their effects on the process outputs can be

used to interrogate the manner in which each subject performs the task beyond their

own internal perception. This in turn can be used to inform a personalized teaching

regime. Furthermore, the design of a more thorough experiment could examine the eye

and hand movements for a wider range of tasks (possibly two dimensional grinding) and

how the forces and velocities change between “important” saccades. The possible rule

for quantifying the importance of a saccade can be a function of the experience of the

practitioner.

4.6 Conclusion
In this chapter, we have examined the visual-attention-motor behavioral characteristics

involved in a manual grinding task. Four subjects of various experience levels were used

in this pilot study. We were able to show that there were observable and distinguishable

sensorimotor behaviors associated with two distinct techniques utilized by the individual

subjects, and that task performance is affected by these techniques. Different cutting

forces, and tool velocities are some of the very critical factors among a vast amount

of other considerations, which have a direct impact on machined surface quality and

material removal. Unlike automated processes, we see that in manual operations a user’s

skillset influences the process performance and consistency. Moreover, we can distinguish

between the behavioral characteristics associated with observed techniques which can aid

99



in digitalization of manual performance and inform personalized training regimes. In our

future work, we will continue to analyze product performance associated with processing

parameters and the unique behaviors of the operators.
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Chapter 5

Conclusion

5.1 Summary
In this dissertation, I have explored methods for interrogating human cognitive states

while engaged in team tasks with two different forms of autonomy: a co-located robotic

group of unicycle robots, and a remotely located robotic arm. I use methods from

cognitive science, EEG measurements, and dynamic network theory to investigate

correlations between EEG related neurological features, elicited human behavior, and

self-reported trust in autonomy. This work establishes EEG network techniques as

sound methods for estimating human cognitive state, and can be used to model more

sophisticated interrelationships between humans and autonomous systems. In addition,

I have compared human behaviors exhibited during a manual grinding task to

differentiate behaviors among practitioners of different skill levels. The results of this

work are critical if we wish to join behavioral and process parameter properties together

in a formal model. Finding the right balance between process parameters and product

performance is important for maximizing process efficiency.

The results of each experiment are summarized below.

5.1.1 EEG Network Examination of Human Robot Tasks

This chapter we examined external behaviors in concert with neurophysiological

measures acquired via electroencephalography (EEG), to probe the interactions between

cognitive processes, behaviors, and performance in a human-multiagent team task. We

showed that changes in the α (8-12Hz) and θ (4-8Hz) bands of EEG indicate a higher
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burden on the cognitive resources associated with visual-spatial reasoning required to

estimate a more complex kinematic state of robotic agents. These results were

reinforced by complementary behavioral shifts in gaze and pilot inputs. Additionally,

higher performing subjects tended to engage more actively in the task by utilizing

greater amounts of visual-spatial reasoning. Finally, we showed that features based on

EEG dynamic-network-metrics distinguished gaze behaviors associated with the

attention process more effectively than traditional single-channel metrics, indicating

that single channels do not contain robust discriminative information, while the

inter-channel relationships do.

5.1.2 EEG Network Examination of Human Trust in Autonomy

In this chapter, we ascertained a human’s trust in an autonomous system via

electroencephalogram (EEG) measurements. We showed that trust can be measured

continuously and unobtrusively, and that using analysis techniques which account for

interactions among brain regions shows benefits compared to more traditional methods

which use only EEG signal power. Inter-channel connectivity network metrics, which

measure dynamic changes in synchronous behavior between distant brain regions,

appear to better capture cognitive activities that correlate with a human’s trust in an

autonomous system. Both single-channel powers and network-metrics that incorporate

the frontal, parietal, and occipital lobes of the brain had the greatest impact on trust

prediction.

5.1.3 Human Behaviors in a Manual Grinding Task

In this chapter we presented new techniques to analyze and understand the sensorimotor

characteristics of manual operations such as grinding, and linked their influence on

process performance. A grinding task, though simple, requires the practitioner to

combine elements from the large repertoire of his or her skillset. Based on the joint gaze,

force, and velocity data collected from a series of manual grinding experiments, we

compared operators with different levels of experience and quantitatively described

characteristics of human manual skill and their effects on manufacturing process
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parameters such as material removal rate. For instance, we found that an experienced

subject performed the task in a precise manner by moving the tool in complex paths,

with lower applied forces and velocities, and short fixations compared to a novice. A

detailed understanding of gaze-motor behavior broadens our knowledge of how a manual

task is executed. Our results help to provide this extra insight, and impact future efforts

in workforce training as well as the digitalization of manual expertise, thereby

facilitating the transformation of raw data into product-specific knowledge.

5.2 Future Work
There are several key efforts that would yield valuable insights into some of the research

questions posed in this dissertation. In Chapter 3, we used static linear models to predict

human trust in autonomy. Moving forward, we could use regression models of a higher

order, or state space models to capture the proper dynamics of the human-autonomy

interaction. Second, network metrics could be incorporated into multi-modal models

which include more traditional, unobtrusive psychophisiological measures such as skin

conductance, electrocardiogram, and respiration. Another potential avenue would be to

explore different types of brain activity measures such as those listed in Table A.2. For

example, fMRI can capture neural activity at different timescales than EEG. We can also

use the sub-regions from Chapter 3 as a starting point for a more sophisticated spatial

and temporal investigation using machine learning methods. Such as study could yield

EEG channel subsets that are both highly informative and robust, resulting in a more

effective cognitive state estimation model.

Another important step would be to connect the work from Chapter 4 with the

methods from Chapter 3 to investigate the neurological activity patterns exhibited by

practitioners of different skill levels. Gaze data has already been used for training in

manual tasks, and the use of EEG may be beneficial in focusing training effort so as to

reduce necessary practice among novice learners.
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5.3 Final Thoughts
The use of EEG has been shown be crucial in understanding underlying cognitive

processes. Nevertheless, the implementation of existing high fidelity systems in an

operational setting poses significant challenges. The devices themselves can be rather

uncomfortable to wear for long periods of time, and the electrode impedance can change

substantially as the conductive media, such as saline or gel, begin to dry out. Newer

types of dry electrodes may be used, but these are more expensive alternatives.

Network metrics show great promise, however, it is critical to evaluate the specific

properties they capture in relation to the experimental hypotheses under investigation.

A failure to do so may obfuscate a proper interpretation of the results. It is far too easy

use pre-existing code to generate an array of values that have no basis in the scientific

question under scrutiny. For example, if synchrony between distant brain regions is the

object of an investigation, then clusters of local functional interaction should be

eliminated from the analysis. The use of multi-layered network comprised of integrated

brain regions over different spatial distances may yield better results. Additionally, long

distance synchrony between brain regions can be isolated by exploring the formation

and dissolution of sympletic structures defined by the network edges. In those kinds of

analyses, distance metrics such as network efficiency may be less informative due to the

fact that network structures of interest are groups of mutually connected nodes.

The motivation for the work presented in this dissertation is the development of

systems that can automatically support the operator in executing working tasks during

human-autonomy teaming. An important step in achieving that goal is to develop

accurate real-time estimates of the changes in human cognitive state. It is common in

the literature to reconcile neurological or psychophisiological measures with established

surveys as these have been considered the gold standard for many years. However,

human-autonomy teams will be evaluated by team task effectiveness, and the human’s

role in the team may not necessarily be optimized by adapting the autonomy to

maximize trust, or minimize cognitive load. On the contrary, it is during periods of

heightened stress that humans can excel at synthesizing elements from their past
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experiences into novel solutions to goal directed problems. Consequently, a model that

conforms to survey measures may not generalize well when a closing the loop around a

human-autonomous-system team. Future experiments must be carefully designed to

explore neurological correlates that arise due to the change in human-autonomy-team

task effectiveness.
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Appendix A

Electroencephalography

Electroencephalography (EEG) is a common, noninvasive method for recording brain

signals in humans. The electrical activity of neurons within the neocortex generate

detectable voltages that can be recorded via electrodes placed directly onto the

scalp [16]. Attention, memory performance, and cognitive workload have been studied

using signals acquired via EEG [17, 18]. EEG has also been employed in social

human-robot interaction research [19] and Brain Computer Interface (BCI)

implementations [20, 119]. These studies primarily include the magnitude and spatial

distribution of spectral power in the θ (4-8Hz), α (8-12Hz), β (12-30Hz), and γ (>30Hz)

bands.

Human brain regions and their putative functions are shown in Tables A.1. The

EEG studies in this dissertation compare traditional power based analysis against

functional-connectivity metrics as detailed in Figure A.1a and Figure A.1b. Neural

recording techniques with varying levels of resolution starting from single neurons up

through average activity measured on the surface of the scalp are summarized in Table

A.2. Table A.3lists the EEG frequency bands that are common to studies in neural

activity. The 10-20 International Standard of EEG channel locations on the scalp is

detailed in Figure A.2. Finally, the EEG hardware used for each of the experiments is

shown in Figure A.3a and Figure A.3b.
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Table A.1: Brain Regions and Functions

Lobe Function

Frontal

• Behavior, emotions
• Judgment, planning, problem solving
• Body movement (motor strip)
• Intelligence, concentration, self awareness

Parietal

• Interprets language, words
• Sense of touch, pain, temperature (sensory strip)
• Interprets signals from vision, hear, motor, sensory and memory
• Spatial and visual perception

Occipital • Visual processing, color identification

Temporal
• Memory
• Hearing
• Sequencing and Organization

Table A.2: Neuronal Recording Techniques

Recording Technique Specific Methods

Electrical Recordings

• Electroencephalography (EEG)
• Electrocorticography (ECoG)
• Local field potential (LFP)
• Single-unit recordings (spikes)

Magnetic Recordings • Magnetoencephalography (MEG)

Neuronimaging Recordings
• Functional near-infrared recording (fNIR)
• Functional magnetic resonance imaging (fMRI)
• Positron emission topography (PET)
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(a) Traditional power based methods (b) Network based methods

Table A.3: EEG Frequency Bands
Wave
Type

Brain Location Cognitive Description

θ (4-7Hz) Various Locations • Idling in adult (REM sleep)
• Active when a person attempts to
repress an action or response

α (8-15Hz) Posterior region of the brain,
both sides. Higher in amplitude
on dominant side while the
central sites at rest

• When eyes are closed and
indicative of a relaxed/reflecting
state
• Associated with inhibition control
(with purpose of timing inhibition in
various brain locations)

β (16-31Hz) Frontal lobe to both sides equally • Alert or focused working state
(active thinking or concentrating)

γ > 31Hz
Somato-sensory cortex (Midline
brain sides to the anterior and
posterior regions)

• Sensory processing
• During short-term memory
activities (heighten perception and
problem solving)
• At rest-state motor neurons
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Figure A.2: The International 10-20 channel placement.

(a) Emotiv EPOC EEG headset used in
Experiment 1

(b) g.tec g.HIAMP EEG headset used in
Experiment 2
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Appendix B

Network Theory

In this dissertation we use elements of graph theory to explore the interconnections

between brain regions. Figure B.1 details the lobes of the brain along with a toy

network for clarity.

Figure B.1: Detail of brain lobes with embedded functional connectivity network.

A network is a binary, undirected graph G = (V,E) comprised of a node set V ∈

(1, 2, . . . N) where N is the total number of nodes, and an edge set E ⊆ V × V , where

E is the edge set defined from the vertex set V . It is customary to describe the inter-

connectivity of the network nodes via a symmetric square matrix A ∈ RN×N , known as

the adjacency matrix. The elements of A are defined as

Alm =


1 ψlm > δ

0 otherwise

where ψlm is the phase synchrony between channels l and m. The parameter δ describes

the maximum allowable phase difference. A dynamic network is one such that edges can

form or dissolve as a function of time. Such a situation is known as dynamics of networks
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since the number of nodes remains constant while the edges form and dissolve in time.

Therefore, we can summarize the adjacency matrix as

Alm(t) =


1 ψlm(t) > δ

0 otherwise

Figure B.2a shows a toy example of such a network comprised of 12 nodes. Figure

B.2b shows a dynamic network comprised on the same node set with edges that change

with time.

(a) An binary, undirected
network comprised of 12 nodes.

(b) A dynamic network indexed by
time. Nodes remain in existence, but
network edges can form and dissolve in
time.
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Appendix C

Network Metrics

The following sections list the network measures that have been used in this dissertation.

Each network can be defined by a binary adjacency matrix A as described in Appendix B

C.1 Measures of Structure
Node Degree:

ki =
∑
j∈N

Aij

The number of edges connected to node i

Degree Distribution:

P (k) =
∑
k′≥k

p(k′)

The probability that a node will have a degree that is greater than or equal to k.

Average Neighbor Degree:

knn,i =
∑

j∈N Aijkj

ki

The average degree of the neighbors of node i

Number of Triangles around a node i:

ti = 1
2

∑
j,h∈N

AijAihAjh

For each node i,
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C.2 Measures of Integration
Characteristic Path Length:

L = 1
n

∑
i∈N

Li = 1
n

∑
i∈N

∑
j∈N,j ̸=i dij

n− 1 ,

where Li is the average distance between nodes. The characteristic path length is the

average of all the paths between all of the nodes. The distance dij is infinite for nodes

located in separate disconnected componenets of the network. Consequently, one can

use the inverse of the path length d−1
ij which becomes zero for disconnected components.

This leads to a definition of Global Efficiency

Global Efficiency:

E = 1
n

∑
i∈N

Ei = 1
n

∑
i∈N

∑
j∈N,j ̸=i d

−1
ij

n− 1
is the mean inverse path length between all of the paths between all of the nodes.

Transitivity:

T =
∑

i∈N 2ti∑
i∈N ki(ki − 1)

The transitivity is a global measure the captures the average amount of closed triple

connections divided by the number of all triple connections. It is the measure of how

many of “my friends are friends of each other” in a network.

Clustering Coefficient:

C = 1
n

∑
i∈N

Ci = 1
n

∑
i∈N

2ti
ki(ki − 1)

is a measure of the average number of triangles around a node. Ci is the clustering

coefficient of the given node.

Local Efficiency:

Eloc = 1
n

∑
i∈N

Eloc,i = 1
n

∑
i∈N

∑
j,h∈N,j ̸=i aijaih [djh(Ni)]−1

ki(ki − 1)
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where the djh(Ni) is the length of the shortest path between j and h that contains only

neighbors of i.

Modularity:

Qm = 1
2m

∑
i,j∈M

[Aij − γPij] δ(σi, σj)

where 2m = ∑
ij Aij is the total number of connections in the network, δ(σi, σj) is the

Kronecker delta function, and Pij is a null model. Maximizing Qm requires optimization

algorithms. The resulting modular structure is highly dependent on the density of the

network, the type of null model, and the resolution parameter γ.

C.3 Measure of Resilience
Assortativity:

r =
l−1 ∑

i,j∈L kikj −
[
l−1 ∑

i,j∈L
1
2(ki + kj)

]2

l−1 ∑
i,j∈L

1
2(k2

i + k2
j ) −

[
l−1 ∑

i,j∈L
1
2(ki + kj)

]2

It is a measure of correlation between nodes of high degree to nodes of low degree.

Networks with positive assortativity, on average, poses high degree nodes that connect

to other high degree nodes. Networks with negative assortativity, on average, contain

high degree nodes that connect to low degree nodes.
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Appendix D

Experiment 2: Statistical Tables

D.1 Hypothesis 1 Statistical Tables

Table D.1: Hypothesis 1: α Band Principal Component Statistics for the Factor
Configuration

Principal F (1, 176) p ∆µLB ∆µ ∆µUB

Component
4 5.59 1.92 × 10−2 8.851 × 10−3 5.355 × 10−2 9.825 × 10−2

5 6.46 1.19 × 10−2 1.153 × 10−2 5.159 × 10−2 9.166 × 10−2

8 5.46 2.06 × 10−2 4.589 × 10−3 2.960 × 10−2 5.462 × 10−2

Table D.2: Hypothesis 1: α Band Connectivity Statistics for the Factor Configuration
Connection χ2 p ∆µLB ∆µ ∆µUB

AF3-F3 13.90 1.92 × 10−4 1.645 × 10−3 3.514 × 10−3 5.197 × 10−3

F7-FC5 69.08 1.11 × 10−16 5.880 × 10−3 7.886 × 10−3 1.005 × 10−2

F3-FC5 26.40 2.78 × 10−7 3.035 × 10−3 4.851 × 10−3 6.706 × 10−3

FC5-T7 37.22 1.05 × 10−9 4.371 × 10−3 6.522 × 10−3 8.470 × 10−3

F3-O1 23.06 1.57 × 10−6 3.173 × 10−3 5.469 × 10−3 7.327 × 10−3

FC5-O1 26.67 2.41 × 10−7 3.459 × 10−3 5.802 × 10−3 7.728 × 10−3

T7-O2 22.05 2.66 × 10−6 3.022 × 10−3 4.873 × 10−3 7.253 × 10−3

F3-P8 29.64 5.20 × 10−8 3.526 × 10−3 5.621 × 10−3 7.875 × 10−3

FC5-FC6 19.17 1.19 × 10−5 2.730 × 10−3 4.746 × 10−3 6.973 × 10−3

P8-FC6 21.81 3.01 × 10−6 2.792 × 10−3 4.664 × 10−3 7.150 × 10−3

P8-F8 26.492 2.65 × 10−7 3.206 × 10−3 5.375 × 10−3 7.632 × 10−3

F4-F8 7.17 7.41 × 10−3 −4.420 × 10−3 −2.341 × 10−3 −7.778 × 10−4

T7-AF4 21.94 2.81 × 10−6 2.641 × 10−3 4.763 × 10−3 6.959 × 10−3
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Table D.3: Hypothesis 1: θ Band Principal Component Statistics for the Factor
Configuration

Principal F (1, 176) p ∆µLB ∆µ ∆µUB

Component
1 4.05 4.58 × 10−2 0.029 1.506 2.984
8 37.67 5.41 × 10−9 -1.528 -1.156 -0.784
9 18.29 3.11 × 10−5 0.447 0.831 1.214
12 26.38 7.40 × 10−7 -0.999 -0.722 -0.444

Table D.4: Hypothesis 1: θ Band Connectivity Statistics for the Factor Configuration
Connection χ2 p ∆µLB ∆µ ∆µUB

F3-FC5 42.66 6.51 × 10−11 4.329 × 10−3 6.121 × 10−3 8.011 × 10−3

F3-T7 24.28 8.34 × 10−7 2.924 × 10−3 5.177 × 10−3 7.030 × 10−3

F3-P8 23.49 1.26 × 10−6 3.135 × 10−3 5.536 × 10−3 7.359 × 10−3

P8-T8 14.45 1.44 × 10−4 1.849 × 10−3 3.651 × 10−3 5.450 × 10−3

P8-F8 26.23 3.03 × 10−7 3.521 × 10−3 5.575 × 10−3 7.710 × 10−3

T8-F8 17.06 3.62 × 10−5 2.081 × 10−3 4.351 × 10−3 6.360 × 10−3

FC6-F8 5.64 1.75 × 10−2 −4.214 × 10−3 −2.321 × 10−3 −3.694 × 10−4

F3-AF4 18.04 2.17 × 10−5 2.670 × 10−3 4.920 × 10−3 6.874 × 10−3

T7-AF4 34.90 3.47 × 10−9 4.366 × 10−3 6.519 × 10−3 8.405 × 10−3

F4-AF4 41.67 1.08 × 10−10 4.596 × 10−3 6.596 × 10−3 8.747 × 10−3

F8-AF4 20.97 4.66 × 10−6 2.724 × 10−3 4.780 × 10−3 6.959 × 10−3

D.2 Hypothesis 2 Statistical Tables

Table D.5: Hypothesis 2: α Band Principal Component Statistics for the Factor
Performance

Principal F (1, 176) p ∆µLB ∆µ ∆µUB

Component
4 4.10 4.44 × 10−2 1.154 × 10−3 4.580 × 10−2 9.044 × 10−2

7 16.04 9.14 × 10−5 3.170 × 10−2 6.250 × 10−2 9.330 × 10−2

8 7.18 8.06 × 10−3 8.865 × 10−3 3.363 × 10−2 5.839 × 10−2

12 6.65 1.08 × 10−2 4.912 × 10−3 2.096 × 10−2 3.700 × 10−2
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Table D.6: Hypothesis 2: α Band Connectivity Statistics for the Factor Performance
Connection χ2 p ∆µLB ∆µ ∆µUB

F7-F3 21.84 2.96 × 10−6 2.953 × 10−3 5.102 × 10−3 6.882 × 10−3

F7-FC5 58.76 1.79 × 10−14 5.362 × 10−3 7.182 × 10−3 9.221 × 10−3

FC5-T7 50.94 9.52 × 10−13 5.409 × 10−3 7.449 × 10−3 9.645 × 10−3

O2-FC6 16.46 4.98 × 10−5 2.433 × 10−3 4.633 × 10−3 6.617 × 10−3

O1-F4 12.13 4.96 × 10−4 1.364 × 10−3 3.693 × 10−3 5.811 × 10−3

T8-F8 16.07 6.10 × 10−5 −6.417 × 10−3 −3.970 × 10−3 −2.079 × 10−3

FC6-F8 85.47 0.00 7.356 × 10−3 9.394 × 10−3 1.104 × 10−2

P8-AF4 16.54 4.77 × 10−5 2.167 × 10−3 4.015 × 10−3 6.331 × 10−3

Table D.7: Hypothesis 2: θ Band Principal Component Statistics for the Factor
Performance

Principal F (1, 176) p ∆µLB ∆µ ∆µUB

Component
1 7.35 7.36 × 10−3 0.544 1.999 3.453
10 6.12 1.43 × 10−2 -0.831 -0.462 -0.093
11 13.14 3.79 × 10−4 0.291 0.639 0.987
12 14.49 1.94 × 10−4 0.264 0.548 0.832

Table D.8: Hypothesis 2: θ Band Connectivity Statistics for the Factor Performance
Connection χ2 p ∆µLB ∆µ ∆µUB

F7-T7 59.81 1.04 × 10−14 −1.029 × 10−2 −8.429 × 10−3 −5.957 × 10−3

FC5-P7 25.75 3.88 × 10−7 −7.603 × 10−3 −5.568 × 10−3 −3.287 × 10−3

F3-T8 21.57 3.41 × 10−6 −6.391 × 10−3 −4.470 × 10−3 −2.437 × 10−3

T7-F8 30.22 3.85 × 10−8 −7.130 × 10−3 −5.375 × 10−3 −3.362 × 10−3

P8-F8 15.84 6.90 × 10−5 −6.418 × 10−3 −4.382 × 10−3 −2.132 × 10−3

FC6-F8 21.07 4.43 × 10−6 2.596 × 10−3 4.642 × 10−3 6.491 × 10−3

F7-AF4 20.59 5.69 × 10−6 −6.688 × 10−3 −4.414 × 10−3 −2.713 × 10−3
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Appendix E

Experiment 3: Trust Surveys
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1. When I have a lot to do, it makes sense to delegate a task to automation. 

 
 

2. If life were busy, I would let an automated system handle some tasks for me. 

 
 

3. Automation should be used to ease people’s workload. 

 
 

4. If automation is available to help me with something, it makes sense for me to pay more 
attention to my other tasks. 

 
 

5. Even if an automated aid can help me with a task, I should pay attention to its 
performance. 

 
 

6. Distractions and interruptions are less of a problem for me when I have an automated 
system to cover some of the work. 

 
 

7. Constantly monitoring an automated system’s performance is a waste of time. 
 
 
 
 

8. Even when I have a lot to do, I am likely to watch automation carefully for errors. 

 
 

9. It’s not usually necessary to pay much attention to automation when it is running. 

 

 

10. Carefully watching automation takes time away from more important or interesting 
things. 

Please mark on each line at the point which best describes your feeling or 
impression (1 = disagree/never, 5 = agree/constantly). 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 

1 2 3 4 5 
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Pre-Experiment Demographic Questionnaire 

      Page 1 of 1 
   

Title of research study: Space Habitats Optimized for Missions of Exploration 

Investigator: Dr. Zhaodan Kong 
 

1. Subject Number: ______________________________________________________________ 
 

2. Please state your:   Age ___________ and Sex ___________   
 

3. Please respond to the following statement: I got adequate sleep last night. (circle one) 
 

Strongly Agree Agree  Neutral Disagree Strongly Disagree 
 

4. How many hours of sleep did you get last night? _____________________________________ 
 
5. Have you consumed alcohol in the last 6 hours? (please circle one)  Yes  /   No 

 
6. Have you consumed coffee in the last 6 hours? (please circle one)  Yes  /   No 

 
7. Do you have a known history of seizures? (please circle one)  Yes  /  No 

 
8. What is your handedness/which is your dominant hand? _______________________________ 

 
9. How often do you play video games? (please circle one or fill in one blank) 

 
Never  Monthly ______hrs. Weekly______hrs.  Daily______hrs. 

 
10. Do you use robotic or autonomous systems at least once per week?  Yes  /   No 

 
Please explain _________________________________________________________ 

 
11. Do you use a navigational aid (e.g., Google Maps, Waze, etc.) at least once week?  Yes  /   No 

 
12. What is your approximate level of experience with aerospace or spaceflight relevant 

information displays? (please circle one) 
 

No experience Some experience Moderate experience  Extensive experience 
 

 Please explain ____________________________________________________________ 
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1. The system is deceptive 

 

2. The system behaves in an underhanded manner 

 

3. I am suspicious of the system’s intent, action, or outputs 

 

4. I am wary of the system 

 

5. The system’s actions will have a harmful or injurious outcome 

 

6. I am confident in the system 

 

7. The system provides security 

 

8. The system has integrity 

 

9. The system is dependable 

 

10. The system is reliable 

 

11. I can trust the system 

 

12. I am familiar with the system 

(Note: not at all=1; extremely=7) 
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