
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Enabling Design Technology Co-Optimization of SRAMs through Open-Source Software

Permalink
https://escholarship.org/uc/item/6755868v

Authors
Guthaus, Matthew
Nichols, Hunter
Cirimelli-Low, Jesse
et al.

Publication Date
2020-12-18

DOI
10.1109/iedm13553.2020.9372047

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, available at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6755868v
https://escholarship.org/uc/item/6755868v#author
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

Enabling Design Technology Co-Optimization of

SRAMs through Open-Source Software

Matthew Guthaus, Hunter Nichols, Jesse Cirimelli-Low, Joseph Kunzler, Bin Wu

Computer Science and Engineering, University of California Santa Cruz, Santa Cruz, CA, USA, email: mrg@ucsc.edu

Abstract—OpenRAM is an open-source memory compiler in-
frastructure that can enable Design Technology Co-Optimization
of SRAMs. SRAM DTCO is often plagued by limited access to
robust, featured memory compilers. In particular, each technology
often “reinvents the wheel” whereas using open-source memory
compilation can leverage recurring needs of verification, circuit
implementation, and tool compatibility to give a true insight from
technology all the way to design.

I. INTRODUCTION

In advanced technology nodes, the scaling impact on Static

Random Access Memories (SRAM) is one of the most funda-

mental and challenging issues. SRAM leakage, performance,

and density are all of utmost importance and often have

conflicting requirements.

Memories, however, are very regular structures and can

benefit from automation in a variety of ways. Memory com-

pilers have become an integral part of design flows for fabless

chip designers, foundries, and Integrated Device Manufac-

turers (IDMs). Fabless chip designers typically buy silicon-

proven Intellectual Property (IP) memory designs, often pack-

aged as a memory compiler. Foundries and IDMs, on the other

hand, design or use compilers tightly coupled to the process

to develop customized, high-performance memory macros.

Memory compilers are often a set of technology-specific,

proprietary scripts that perform netlist and physical layout

generation. Some may also perform timing characterization

and create file formats for use in design flows. Commercial

memory IP compilers are typically non-mutable and closed

source while proprietary scripts are usually not distributed,

unsupported, limited to a particular technology, and often lack

advanced features or flexibility.

OpenRAM is an open-source memory compiler that is

freely available under the BSD 3-clause license [1], [2].

System designers are using OpenRAM in open-source de-

signs [3] and for new architectures to measure the impact on

design power, performance and area (PPA) [4], [5]. Device

and technology researchers, on the other hand, can utilize

OpenRAM to quickly prototype and evaluate the effects of

technology. Specifically, they can see system-level results and

quickly iterate with designers for even more insight into design

technology co-optimization (DTCO).

While memory compilers are not new, open-source mem-

ory compilers that are feature rich can enable a new era of

tightly coupled SRAM DTCO. We present OpenRAM which

creates SRAM designs in a variety of technologies, can be

ported to new technologies, and has an array of design,

characterization and compatibility features. The rest of this

paper discusses the OpenRAM framework and how it can be

used for SRAM DTCO.

II. OVERVIEW

OpenRAM currently supports three open-source process

technologies: FreePDK 45nm [6], Skywater/Google Open-

Source PDK 130nm [7], and MOSIS Scalable CMOS (SC-

MOS) 0.35µmo [8] and has been used in a range of other

proprietary technologies. OpenRAM technology input includes

a simplified set of back end of line (BEOL) design rules,

a parameterized transistor and associated front end of line

(FEOL) design rules, and creation of some custom cells as

shown in Fig. 4.

Any cell or module in OpenRAM can be overridden with a

custom one. Some custom cells (e.g., bit cells) necessitate the

use of other custom cells (e.g. custom decoders, sense amps)

due to dimensional requirements or pin alignment.

Some other cells are created through parameterization

and generated on-the-fly in OpenRAM. These use technology

design rules and are constructed from a parameterized tran-

sistor. In general, these cells use restricted, simplified design

rules and may not be optimal for area. But since they are

infrequently used, the overall impact is insignificant. For ex-

ample, the control logic is constructed using the parameterized

gates. On the other hand, parameterized cells allow dynamic

sizing of control drivers, decoders, word line drivers, precharge

circuitry, and other components for improved PPA.

Using software engineering best practices, OpenRAM has

unit tests to verify each module so the composability of custom

cells can be quickly verified and corrected if necessary. Testing

is a key component of the OpenRAM framework and aids

portability. The custom and parameterized cells are combined

hierarchically into arrays, decoders, address ports, data ports,

and control logic as shown in Fig. 1. Together, these implement

banks and multi-bank structures. The global bit cell array

implements an (optional) hierarchical word line using global

and local word line drivers as shown in the schematic in Fig. 3.

OpenRAM supports numerous SRAM features including

multiple ports, types of ports (read, write, read/write), column

muxing, hierarchical decoders, write masking, and replica bit

line timing with configurable guard band. Row and column

redundancy is also available for software-aided testing and self

repair. As with custom cells, any module can be overridden

with custom implementations. OpenRAM output, shown in

Fig. 4, includes logical models (Spice, LVS, Verilog), physical

models (LEF, GDS2), power and timing (Liberty) as well as

data sheets (HTML).

OpenRAM integrates with both commercial and open-

source design tools. This includes a variety of physical design

tools for design rule checking, extraction, verification and log-

ical/circuit simulation. OpenRAM supports spice simulators

through standard spice syntax and measure statements. Using

estimations of technology parameters, OpenRAM provides an-

alytical models for fast system-level design space exploration

without simulation as shown in Fig. 4.

III. SRAM DTCO

Technology affects SRAM design considerations such as

manufacturability, reliability, power, performance, and area.

Open-source memory compilation can be utilized for DTCO

in each of these aspects. In particular, we discuss physical

design and circuit design with issues of lithography, noise,

timing, and characterization.

Since bit cells are the most significant component of

SRAM area, size and manufacturability which are the most

important design consideration. SRAM arrays typically have

periodic strap cells (substrate ties), local word line buffers,

and row and column end caps. These cells and the SRAM bit

cells often include OPC and design rule waivers. OpenRAM

has a default array or a customized array can be implemented.

OpenRAM supports a parameterized bit cell that can be

generated using user design rules, but this obviously is inferior

to a custom cell and is only suggested for quick prototyping.

Reliability due to noise margins and bit line leakage is

a significant technology dependent circuit issue. The perfor-

mance ultimately depends on entire arrays and their imple-

mentation. In particular, the (dynamic) read noise margin is

of critical concern and depends on device models including

leakage and bit line parasitics. The bit line leakage also

impacts read reliability and performance. Each of these can

be evaluated with both focused timing characterization and

pseudo-random functional testing that is available in Open-

RAM. Focused timing characterization can examine worst case

corners whereas functional testing examines data-dependent

cases.

Performance is also highly dependent on technology. In

particular, word line and bit line parasitics, bit line leakage,

and transistor drive current affect read delays. In addition,

word line driver sizing, topology, and placement are dependent

on BEOL parasitics and can greatly improve performance [9],

[10]. Transistor off current directly affects leakage. All of these

can be quickly evaluated with characterization in OpenRAM.

Debug assistance including sense amplifier enable (SAE)

timing margin, process, voltage, temperature (PVT) corner

failure analysis and so on can greatly improve designer pro-

ductivity and aid DTCO. Specifically, OpenRAM instruments

debugging checks for possible errors. For example, the sense

amplifier enable (SAE) timing can affect performance if too

slow or cause read failures if too early. SAE timing is difficult

to predict across multiple corners and memory configurations.

OpenRAM can use simulation to guide design iterations for

improved robustness or performance considering the respective

technology.

IV. RESULTS

Fig. 2 shows an 8 kilobyte, 2 port (1 RW, 1 R), 32-bit data

word, byte-writable SRAM in FreePDK 45nm for a RISC-V

microprocessor [11]. The memory uses an 8-way column mux

and includes two replica bit lines for 258 columns and 258

cells per bit line (66,564 bits total). The hierarchical word

line uses eight 32-bit local arrays with local word line drivers

on both sides for each port. The memory is 242, 605µm2 for

an effective bit area of 3.64µm2/bit. For reference, a D Flip-

Flop in the same technology is 7.08µm2.

A similar memory was created for Skywater process which

is a hybrid 150nm/130nm node with 5 metal layers and 1.8V

nominal supply voltage. That memory is 739, 263µm2 for

an effective bit area of 11.1µm2/bit. For reference, a D-

flip flop in the same technology is 41.3µm2/bit. A smaller

1 kilobyte version is currently being fabricated as part of of

the Google/Skywater OpenPDK project [7].

Table I shows the single- and dual-port bit cell areas in

FreePDK45 and SCMOS as compared to a custom D Flip-

Flop (DFF). The automatically generated parameterized bit

cells have roughly 2x area over the custom bit cells but are

still roughly 3.5x smaller than a DFF.

Fig. 5 shows a read simulation including the precharge and

timing. The timing uses a replica bit line structure for PVT

tracking of the bit line delay while the decoder and word line

delay is matched with a delay line. The replica bit line uses

two pull down cells tied internally to ground to enable the

sense amplifier using s en, but can be altered to utilize either

multiple replica lines or more pull-down cells to adjust the

replica timing. Overall, the SRAM interface is positive-edge

synchronous with a setup/hold times comparable to a flip-flop.

Fig. 6 shows the delays of the word line path and delay

line over multiple PVT corners in a 45nm SRAM. The supply

voltage was varied by 1V ±10%, temperature was either 25◦C

or 125◦C, and slow, typical, and fast process corners were

used. Since technology affects both the process corners and the

voltage dependence, the robustness of technology changes can

be quickly assessed. In this case, the delay line has an average

5.2% greater delay than the word line delay, but the delay line

clearly tracks the delay of the word line over different corners.

Fig. 7 shows a single bank delay trend in 45nm when

we utilize DTCO to insert local word line buffers at optimal

locations with optimal sizes as in the circuit from Fig. 3.

The algorithm uses dynamic programming [10] in a bottom-up

manner while pruning suboptimal sub-solutions. The proposed

DTCO approach reduces the bank delay when the word line

size is large greater than about 512 bits. It also shows that

even distribution of buffers is not optimal for delay, but the

exact distribution is technology dependent due to transistor

drive and BEOL parasitics.

V. CONCLUSION

We have introduced OpenRAM and discussed its uses in

DTCO along with several examples critical to SRAM scaling.

REFERENCES

[1] M. R. Guthaus et al., “OpenRAM: An open-source memory compiler,”
in ICCAD, 2016.

[2] ——, “OpenRAM,” https://github.com/VLSIDA/OpenRAM, 2020.
[3] H. Nichols et al., “Automated synthesis of multi-port memories and

control,” in VLSI-SOC, 2019.
[4] K. Al-Hawaj et al., “Towards a reconfigurable bit-serial/bit-parallel

vector accelerator using in-situ processing-in-sram,” in ISCAS, 2020.
[5] A. de Gennaro et al., “Design and implementation of reconfigurable

asynchronous pipelines,” TVLSI, vol. 28, pp. 1527–1539, March 2020.
[6] J. E. Stine et al., “FreePDK: An open-source variation-aware design

kit,” in MSE, June 2007, pp. 173–174.
[7] Google/Skywater, “SkyWater SKY130 PDK,” https://skywater-pdk.

readthedocs.io.
[8] MOSIS, “MOSIS Scalable CMOS (SCMOS),” https://www.mosis.org.
[9] B. Wu et al., “Fast and area-efficient sram word-line optimization,” in

ISCAS, 2019.
[10] ——, “Bottom-up approach for high speed SRAM word-line buffer

insertion optimization,” in VLSISOC, 2019.
[11] C. Wolf, “PicoRV32 - A Size-Optimized RISC-V CPU,” https://github.

com/cliffordwolf/picorv32, 2020.

Global Bitcell Array

Precharge Array

Column Mux Array

Sense Amp Array

Write Driver Array

Col.

Decode

Control

Logic

Data/Mask In Flops

R
o
w

 A
d
d
r

Col. Addr

R
o
w

 D
ec

o
d
er

G
lo

b
al

 W
o
rd

li
n
e

D
ri

v
er

Addr

Port

Data

Port

L
o
ca

l
W

o
rd

li
n
e

D
ri

v
er

Local

Bitcell

Array

L
o
ca

l
W

o
rd

li
n
e

D
ri

v
er

Local

Bitcell

Array

L
o
ca

l
W

o
rd

li
n
e

D
ri

v
er

Local

Bitcell

Array

Fig. 1: Block diagram for a single-ported SRAM showing

a hierarchical wordline bit cell array along with peripheral

circuitry.

FreePDK45 SCMOS
Area A/Port A/Port Area A/Port A/Port

µm
2

µm
2

µm
2

µm
2

Cust. 6T 0.95 0.95 1.00X 63 63 1.00X
Cust. 1RW/1R 1.97 0.99 1.04X 122 61 0.95X

Cust. DFF 7.08 7.08 7.45X 436 436 6.92X
Auto. 1RW 2.05 2.05 2.16X 134 134 2.12X

Auto. 1RW/1R 3.92 1.96 2.06X 272 136 2.16X

TABLE I: The area of custom bit cells and DFF compared

to automatically generated bit cells.

Fig. 2: An 8 kilobyte, 2 port (1 RW, 1R), 32-bit data word,

byte-writable SRAM in FreePDK 45nm.

Global

Driver

IN

EN

Cell 1 Cell n/k

Local Bitcell Array

(Local Word Line)

Global Bitcell Array (Global Word Line)

A row of n cells is divided into k sub-rows.

Local

Driver

Local Buffer &

Sub-Row

Local Buffer &

Sub-Row

Global Word Line

Fig. 3: Hierarchical word lines are technology dependent due

to driver sizing and wordline parasitics.

Memory Compiler

(Python)

Logical

LEF/GDSII

Liberty (.lib)

Spice/LVS, Verilog

Physical

Simulator

(e.g. ngspice)

Extractor

(e.g. Calibre)

Memory Characterizer

(Python)
Fast Analytical

Estimation

Device Models

Memory Specification

(word size, memory size, aspect ratio, etc.)

Technology Specification

Design Rules

Custom Cells

HTML
Details

Timing/Power

Fig. 4: OpenRAM is an open-source framework that utilizes technology and device data to produce SRAM designs.

40 42 44 46 48 50
Time (ns)

0

1

2

3

4

5

Vo
lta

ge
 (V

)

clock
replica bitline
precharge enable inverse
replica bitline delay line
wordline enable
sense amp enable

Fig. 5: Simulation excerpt showing replica bit line and sense amplifier timing during a read operation. The bit line precharges

on the positive clock half and the sense amplifier is enabled once the inverting replica bit line delay goes high.

('TT', 0.9, 25)
('TT', 0.9, 115)
('TT', 1.0, 25)
('TT', 1.0, 115)
('TT', 1.1, 25)
('TT', 1.1, 115)
('FF', 0.9, 25)
('FF', 0.9, 115)
('FF', 1.0, 25)
('FF', 1.0, 115)
('FF', 1.1, 25)
('FF', 1.1, 115)
('SS', 0.9, 25)
('SS', 0.9, 115)
('SS', 1.0, 25)
('SS', 1.0, 115)
('SS', 1.1, 25)
('SS', 1.1, 115)

Corners (PVT)

0.15

0.20

0.25

0.30

0.35

0.40

De
la

ys
 (n

s)

Decode + Word line
Inv. Delay Line

Fig. 6: Word line path and delay line timing are nearly matched

with a small offset over different PVT corners.

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000 1100

D
el

ay
 (

p
ic

o
se

co
n

d
s)

Word Line Size (bits)

Optimized 128k
Baseline 128k

Optimized 64k
Baseline 64k

Optimized 32k
Baseline 32k

Optimized 16k
Baseline 16k

Fig. 7: Hierarchical word line DTCO can reduce bank delay

when array width is around 512 bits.

