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Network Hamiltonian Models for Unstructured Protein 
Aggregates, w/Application to γD-Crystallin

Elizabeth M. Diessner†, J. Alfredo Freites†, Douglas J. Tobias†, Carter T. Butts‡

†Department of Chemistry, University of California, Irvine, CA 92697

‡Departments of Sociology, Statistics, Computer Science, and EECS,University of California, 
Irvine, CA 92697

Abstract

Network Hamiltonian models (NHMs) are a framework for topological coarse-graining of protein-

protein interactions, in which each node corresponds to a protein, and edges are drawn between 

nodes representing proteins that are non-covalently bound. Here, this framework is applied to 

aggregates of γD-crystallin, a structural protein of the eye lens implicated in cataract disease. 

The NHMs in this study are generated from atomistic simulations of equilibrium distributions of 

wild-type and the cataract-causing variant W42R in solution, performed by Wong, E. K.; Prytkova, 

V.; Freites, J. A.; Butts, C. T.; Tobias, D. J. Molecular Mechanism of Aggregation of the Cataract-

Related γD-Crystallin W42R Variant from Multiscale Atomistic Simulations. Biochemistry 2019, 

58 (35), 3691–3699. Network models are shown to successfully reproduce the aggregate size and 

structure observed in the atomistic simulation, and provide information about the transient protein-

protein interactions therein. The system size is scaled from the original 375 monomers to a system 

of 10000 monomers, revealing a lowering of the upper tail of the aggregate size distribution of the 

W42R variant. Extrapolation to higher and lower concentrations is also performed. These results 

provide an example of the utility of NHMs for coarse-grained simulation of protein systems, as 

well as their ability to scale to large system sizes and high concentrations, reducing computational 

costs while retaining topological information about the system.
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Introduction

Protein aggregation is implicated in a wide range of diseases, including Alzheimer’s, 

Parkinson’s, type II diabetes, and cataract.1,2 Aggregation can occur in a variety of 

biological environments, and in systems varying from intrinsically disordered proteins 

(IDPs) to proteins whose function depends on maintaining the stability of their native 

structure over the length of a human life-time (e.g., the structural crystallins of the human 

eye lens). The structures of the aggregates that result from this diverse set of proteins also 

vary, from the highly ordered amyloid fibrils associated with Alzheimers,3 to the amorphous 

aggregates of crystallin that form cataracts.4

Molecular simulations of protein aggregation are important tools, along with experimental 

measurement, for probing the mechanics and interactions between proteins that lead to the 

formation of aggregates.5,6 Monte Carlo (MC) simulations in particular have been used for 

studies of aggregation.7,8 In regards to proteins, the convention is to simulate protein-protein 

interactions between rigid-body proteins with a single conformation.9,10 To introduce some 

conformational flexibility, Wong et al.11 studied the aggregation of γD-crystallin (γ-Dc) 

using the multiconformation Monte Carlo (mcMC) algorithm,12,13 which employs a library 

of structures using conformations of the γ-Dc protein generated using single-protein and 

two-protein MD simulation trajectories. MC trial moves then are chosen among rigid-body 

translations, rotations, and conformation changes from the library of γ-Dc structures.

However, these simulations are still limited by the computational cost of modeling each 

conformation as part of an all-atom simulation. Coarse-graining these models in turn allows 

for simulation of longer time-scales, as well as increased complexity in terms of the 

number of molecules being observed in one simulation.6 A wide range of coarse-graining 

approaches have been proposed for studying protein structure, dynamics, and interaction.14

Alternatively, models aimed at protein-protein interaction sometimes take a more radical 

approach. For instance, patchy sphere models represent an entire protein as a single sphere, 

with “patches” on the sphere surface that have unique interactions properties.15 Patchy 

particles have been used for simulating self-assembly,15,16 as well as protein phase behavior 

such as in the case of γ-Dc.17–20

While all of the above schemes work by modeling the physics of aggregate objects (chains, 

beads, etc.) within an explicit, Euclidean space, it is also possible to treat molecular 

systems topologically, representing systems in terms of patterns of interactions among 

subunits. For instance, Benson and Daggett21 represent proteins as graphs whose nodes 

represent chemical moieties, and whose edges represent spatially defined contacts; this 

representation has been used for e.g. comparative analysis of conformational ensembles22 

or protein classes.23 Further coarsening can be employed to represent entire residues 

with a single node, which has been used for e.g. identification of active sites,24 studying 

transient structure in IDPs,25 and analysis of protein dynamics.26 While most applications 

of topological coarse-graining have been descriptive, it is also possible to directly model 

protein structure and/or interaction via its graph representation (see e.g.25,27–29). We employ 

this latter strategy in the context of modeling protein aggregation.
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In prior work, topological coarse-graining has been used to model the formation of amyloid 

fibrils, by defining a free energy landscape (and a corresponding kinetic model) on the 

set of possible aggregate structures.28,30 Aggregates in this approach are represented by 

aggregation graphs, where each node corresponds to a protein monomer, and edges join 

nodes whose respective proteins are non-covalently bound. Models of this type have been 

able to recapitulate the topology of experimentally determined fibril structures, while being 

efficient enough to simulate entire aggregation processes (from monomers to mature fibrils) 

in minutes on consumer hardware. This high degree of computational efficiency is obtained 

by implicitly integrating over spatial degrees of freedom, working only with binding and 

unbinding events; this allows both fibril topology and the structure of intermediate and 

transition states to be probed, for much larger systems and at longer timescales than would 

be accessible to conventional approaches. The specific approach employed for such models 

(here referred to as network Hamiltonian models (NHM)) borrows from a large body 

of computational and statistical theory on exponential family models of random graphs, 

originally developed to model social networks (see e.g.31–33).

While network Hamiltonian models have been used to model the structure of highly ordered 

aggregates, they have not to date been used to capture disordered aggregates of the type 

involved in cataract disease. Here, we consider a case involving unstructured aggregates, 

specifically transient aggregation states of γ-Dc as observed in atomistic simulations under 

physiologically relevant conditions by Wong et al.11. We show that a low-dimensional NHM 

can reproduce the topological structure of aggregates from both WT and W42R γ-Dc. We 

also show how these models can be used to produce equilibrium draws from much larger 

systems, facilitating the scaling-up of more detailed simulations to the bulk regime; as we 

show, this provides both confirmation in this case that many aspects of the small-scale 

model generalize to large systems, and insights into a specific system size effect in γ-Dc 

simulations with hundreds of monomers or fewer.

Interaction and Aggregation in γ-Dc

γ-Dc is a structural protein in the human eye lens that is composed of two double-Greek 

key domains.34 γ-Dc is expressed in the fiber cells of the eye lens, along with other 

crystallins from the α, β and γ families, during embryonic development.35 In order to 

ensure the transparency of the lens required for sight, other organelles such as the 

nucleus and rybosomes are removed from the fiber cells as the eye matures, leaving 

differential concentrations of the water soluble crystallins in each cell. The crystallins must 

maintain short-range interactions with each other to minimize light scattering while at high 

concentration (exceeding 400 g/L in humans), resulting in a dense liquid with transient local 

interactions among monomers.36

The high structural stability and weak interaction propensity among structural crystallins, 

along with the presence of α-crystallins to act as holdase chaperones for unfolded β and 

γ-crystallins prevent irreversible aggregation from occurring between WT γ-Dc for much 

of a human life-time.37 However, as the number of α-crystallins available to chaperone β
and γ-crystallins decreases with time, cataract are more likely to form. These cataract are 

the result of aggregation of (in this case) γ-Dc monomers, arising from e.g. damage from 

Diessner et al. Page 3

J Phys Chem B. Author manuscript; available in PMC 2023 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



attack by reactive oxygen species (e.g., hydroxyl radicals generated from UV exposure) or 

from random interactions occurring when hydrophobic surfaces are exposed due to natural 

fluctuations away from the native state of γ-Dc.34

In the case of the congenital cataract-causing γ-Dc variant W42R, the point-mutation of a 

buried tryptophan residue in the N-terminal domain (NTD) results in the protein possessing 

a locally stable conformation that exposes the hydrophobic surfaces of the NTD, making 

W42R more susceptible to NTD-NTD interactions with other monomers.11,38 Otherwise, 

similar structures are found in both crystals and solution for both the WT and W42R 

variant.39 We exploit this similarity between the WT and W42R variant structures in 

the process of coarse-graining - the functional difference between the two structures can 

be approximated in terms of their rates of aggregation-forming interactions with other 

monomers, which we recapitulate using network Hamiltonian models.

Network Hamiltonian Models and Aggregation Graphs

An aggregation graph, G = V , E , is a network whose vertices V  represent protein 

monomers, and whose edges E  are drawn between pairs of monomers that are non-

covalently bound.28 An aggregation graph can be seen as a form of topological coarse-
graining,40 which flexibly and succinctly represents the structure of connections among 

proteins while abstracting away other aspects of structure; aggregation graphs have been 

employed in prior work to model the structure and kinetics of amyloid fibrils,28,30,41 and 

related topological representations have also been used to study structure and dynamics in 

both folded22,42–44 and intrinsically disordered25,40 protein systems.

While the aggregation graphs of amyloid fibrils are highly ordered, this is not true of 

all aggregates; indeed, here we are specifically interested in unstructured aggregates. Fig. 

1 shows an aggregation graph derived from atomistic simulations of γ-Dc from Wong et 

al.11, indicating the relationship between individual monomers and the resulting topology. 

While such aggregates are highly disordered, they nevertheless have numerous statistical 

regularities, which may be used both to gain insights into the aggregation process and model 

their formation.

Following Grazioli et al.28, we may model the equilibrium behavior of G via a network 
Hamiltonian that operates on the topological degrees of freedom of the system (i.e., the 

patterns of bound interactions among protein monomers). Specifically, in equilibrium we 

model the probability of observing some specific graph microstate g as

Pr   G = g ∣ ϕ, T = exp   −ℋ g / kBT ℎ g /Z ϕ, T (1)

= exp   − ϕT t g + kBTte g / kBT −te g log   N − log   Z ϕ, T , (2)

where ℋ is the graph or network Hamiltonian, expressed in terms of topological degrees of 

freedom t and energy parameters ϕ; N is the particle number; ℎ g  is a reference measure 

accounting for the entropic contribution of unmodeled degrees of freedom; Z is the partition 

function; and T  is the temperature. te, in particular, counts the edges of G. Here, we use the 
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contact-formation measure ℎ g = N−te g , and the bond vibration term kBTte g  suggested 

by Grazioli et al.,28 which correct for (respectively) spatial limitations on edge formation 

and motional degrees of freedom that are coupled to the graph topology. Models based on 

Eq. 1 have been shown to be able to reproduce the structure of amyloid fibrils,28,30 and 

can be extended to reproduce fibrillization kinetics. Here, we adapt these to the unstructured 

case.

Inference and model selection.—In practice, we do not know a priori which 

topological degrees of freedom will prove critical for our system of interest, nor do we know 

ϕ - rather, we observe random equilibrium draws from G, and seek to infer a Hamiltonian 

that reproduces the distribution of aggregation graphs. To this end, it is useful to observe that 

the model of Eq. 1 is equivalent to an exponential family random graph model (ERGM), a 

widely studied formalism for network modeling in the social and statistical sciences (see, 

e.g.,32,33). The ERGM parameterization of the model of Eq. 1 is given by

Pr   G = g ∣ θ = exp   θTt g + log   ℎ g − log   Z θ ,

where t, ℎ, and Z are as before, and θ is a real vector of model parameters. Model selection 

and inference for ERGMs are well-studied,33 allowing us to infer θ and t (and hence ℋ) 

from the realized aggregation graphs. Specifically, we obtain ϕ from θ under the family of 

Eq. 2 via

−ℋ g / kBT + log   ℎ g = θT t g − ϕT t g / kBT − te g − telog   N = θT t g
ϕe = − kBT θe + 1 + log   N , ϕs ≠ e = − kBTθs ≠ e . (3)

Given a proposed set of model terms (i.e., choice of t), we perform parametric inference 

for θ using the pooled maximum likelihood (MLE) method of Yin and Butts29, from 

which we can then infer ϕ using the relations of Eq. 3. As our goal here is to reproduce 

the distribution of aggregate sizes - corresponding to component sizes in the aggregation 

graph representation - we perform model selection by finding a term set that optimizes 

fit to the observed component distribution. Specifically, we first posit a set of candidate 

terms based on prior work and first principles, and then select models sequentially by 

minimizing distance between the simulated component size distribution under the model 

and the observed distribution (L2 norm of the log relative distribution). (See Methods for 

details.)

Model terms.—The terms in ℋ reflect multi-body interactions, as reflected in the 

topological degrees of freedom of the aggregation graph. A large body of work exists 

on such terms in an ERGM context, including derivation from dependence constraints 

(i.e., Hammersley-Clifford45),46,47 corrections for diminishing marginal effects,48 and 

consequences for equilibrium behavior.49–52 In the context of aggregation graphs, work 

on amyloid fibrils28 has identified a number of terms that may be useful for capturing 

protein aggregation states per se; these include the null shared partner statistics (NSPs) and 

edgewise shared partner statistics (ESPs),53 as well as cycle and star statistics. In the case 
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of γ-Dc, the highly skewed distribution of aggregate sizes also suggests terms specifically 

related to component sizes. These include monomer and dimer counts, as well as terms 

reflecting general tendencies that enhance or inhibit the formation of large aggregates. 

Specifically, we here introduce a term for this last effect based on non-central moments of 

the component size distribution. This term, which we refer to as compsizesum, has the form

tC g =
i = 1

N
S g

i

iγ, (4)

where S g i is the count of components of size i within g, and γ is a fixed parameter 

governing the behavior of the statistic. We observe that γ = 1 simply returns the number of 

vertices, and is hence uninteresting; however, γ = 2 yields the sum of squared component 

sizes, and thus influences the variance of the component size distribution. Mechanistically, 

we also observe that the change in tC associated with merging two components of sizes a and 

b is equal to 2ab, and thus tC directly reflects the impact of component size on the favorability 

of coalescence or dissolution: when the associated ϕ parameter is negative, this implies that 

contacts between larger aggregates are increasingly favored, while a positive ϕ indicates that 

such mergers become increasingly unfavorable as aggregate size increases.

For our analyses, we employ a subset of computationally scalable terms with relevance to 

the unstructured case; as we show, these terms are sufficient to produce models that can 

reproduce the observed distribution of γ-Dc aggregate sizes, along with other topological 

properties. The terms used are the following. The edge count (edges) parameterizes the 

base dissolution energy of a single edge28 and is included in all models. The tendency 

to form extended versus “kinked” linear structures is influenced by open two-paths, as 

captured by null (i.e., unbonded) pairs bound to a single shared partner, or NSP 1  s. 

Biases towards monomers and dimers are plausible, and captured by counts of the same 

(i.e., components of size 1 or 2, respectively). Closed triadic structures can be extremely 

stable, motivating consideration of counts of bound pairs (edges) with one ESP 1 s  or 

two ESP 2 s  shared partners. Higher-ordered edgewise shared partners must be handled 

carefully, as forces favoring excessively high shared partner counts easily lead to sharp 

transitions to extremely dense solid states that are not realistic for this system;54,55 we 

thus employ the geometrically weighted edgewise shared partner (GWESP) statistic for 

higher-order triadic closure effects,48,56 which constrains contributions of high-order ESPs 

to have geometrically declining marginal effects. The structures represented by these terms 

are represented schematically in Fig. 2.

Although all of these terms were considered in model evaluation, not all were ultimately 

selected for the final model. Our model selection procedure is described below.

Methods

Atomistic Simulation and Network Generation

Wong et al.11 performed atomistic simulation of equilibrium distributions of WT and 

W42R γ-Dc using multi-conformation Monte Carlo (mcMC) methods;12 here, we use the 
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network representation of aggregates generated from this study. mcMC simulations were 

performed for N = 375 proteins at 310K and 200g/K under periodic boundary conditions, 

using conformation libraries obtained from explicit solvent MD simulations under the 

CHARMM36 forcefield57 in TIP3P water.58 From these simulations, 14,000 and 16,000 

frames were obtained for WT and W42R (respectively). Further details regarding the 

original simulation study can be found in Wong et al.11.

Wong et al.11 define aggregation graphs from the atomistic γ-Dc simulations as follows. 

Each vertex is associated with a single protein monomer, with one graph per frame; 

within a given network, two vertices are tied if they have respective domains whose 

centers of mass are within 31Å of each other. (This cutoff reflects the distance required 

for direct contact, as revealed by analysis of domain-domain radial distribution functions 

across simulation frames; see Wong et al.,11 figure S3.) This resulted in 14,000 WT and 

16,000 W42R aggregation graphs, which are employed for our present analysis. Network 

visualization and analysis was performed using the statnet library59 for the R statistical 

computing system,60 with the network61 and sna62 libraries used to compute descriptives 

and graphical layouts.

Component/Aggregate Size Distribution Estimation and Comparison

Component sizes for all networks were computed using the sna library. The component 

size distribution (the probability distribution for the size of a randomly chosen 

component) was estimated using a non-parametric Bayesian procedure, as follows. For 

an arbitrary graph of order N, the component size Z has support on ZN = 1, …, N . 

We model this as Z Categorical   ψ , where ψi = Pr   Z = i . We place a minimally 

informative Jeffreys prior on ψ, leading to p ψ = Dirichlet   0.5 , where the latter is 

the homogeneous N-dimensional Dirichlet distribution with concentration parameter 0.5. 

Given multiple observations of Z, z = z1, …, Zm , the corresponding posterior distribution 

is p ψ ∣ Z = z = Dirichlet   S + 0.5 , where Si = ∑j = 1
m I zj = i  is the observed count of 

components having size i. (This is an example of the well-known Dirichlet-multinomial 

model.63) Other posterior quantities are then easily calculated from the properties of the 

Dirichlet distribution; in particular, Eψi = Si + 0.5 / m + N /2 , and the posterior marginals of 

ψi are given by ψi Beta   Si + 0.5, m − Si + N − 1 /2 .

For model selection (as discussed below), we seek to compare the component size 

distributions arising from the network Hamiltonian model to the component size 

distributions obtained from atomistic simulations. Because we are particularly interested 

in tail events (i.e., the distribution of relatively rare, large aggregates), we use the L2 norm of 

the logged relative distribution64 as our measure of discrepancy between distributions. I.e., 

given fixed distributions f, g over component sizes ZN, our discrepancy measure is

D f, g = ∥ log   f /g ∥ =
i = 1

N
log   f i − log   g i

2
, (5)
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where the informal notation f /g denotes the relative distribution over ZN. In our 

case, we are interested in D fobs, fsim , where fobs  is the observed or target component 

distribution and fsim is the (simulated) distribution from our network model. However, 

neither distribution is known exactly. Thus, we instead minimize the posterior quantity 

ED fobs, fsim ∣ zobs, zsim, where fobs Dirichlet Sobs + 0.5  and fsim Dirichlet Ssim + 0.5  (with Sobs

and Ssim the respective component count distributions from the atomistic and network 

Hamiltonian simulations, respectively). Although this has no closed form solution, we can 

calculate it straightforwardly by Monte Carlo quadrature,65 exploiting the ease of taking 

draws from the Dirichlet distribution. (Note that our choice of prior ensures that D fobs, fsim

has a finite expectation.) This approach allows us to automatically account for posterior 

uncertainty in component size distributions when making comparisons.

Model Selection and Parameter Estimation

Models were fit by maximum likelihood estimation (MLE), using the pooling method of Yin 

and Butts;29 estimation was performed using the ergm package,66 version 4.1.2, using the 

stochastic approximation method with respective base burn-in and thinning intervals of 5 × 

104 and 2 × 104. For each candidate model, separate pooled MLEs were obtained for the 

respective collections of WT and W42R networks. Selection of the GWESP decay parameter 

was performed by grid search. Change statistics for the dimer count and summed component 

size terms were implemented via the ergm.userterms library.67

Models were chosen by forward selection, with the objective being minimization of the total 

expected L2 norm of the log relative distribution of the observed versus model-generated 

component distributions for WT and W42R. Specifically, for each fitted model we generate 

5000 graph draws by Markov Chain Monte Carlo (MCMC) using the ergm library N2

respective burn-in and thinning iterations for each trajectory, Tie-No-Tie sampler), obtaining 

the estimated posterior distribution of component sizes as described above. This was used 

to obtain ED fobs, fsim ∣ zobs, zsim as described above for both WT and W42R, and the sum 

of the respective expected errors was taken as the figure of merit for the specified model. 

Terms were chosen to minimize this total error. Model search began with the base null 

model (edge-only); at each iteration, each currently non-incorporated term was added one 

at a time, and the addition providing the greatest total error reduction was kept for the 

next iteration. Model selection terminated when no term improved fit to the component size 

distribution. Table 1 shows the complete model selection trace, along with the errors at each 

step. In addition to the terms selected for the final model, terms for monomer count, dimer 

count, and ESP(2) counts were also evaluated; these were not found to improve fit to the 

component distributions, and were not selected. Parameter estimates (MLEs) and standard 

errors for the final models are shown in Table 2.

Extrapolative Simulation

Extrapolative simulation was performed by MCMC using the ergm library, using the default 

Tie-No-Tie sampler. Systematic pilot simulations using the final fitted models (not shown) 

indicated that, for graphs of order N, burn-in and thinning parameters of 250N provided 
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good convergence and mixing properties over a wide size range (with mixing improving 

with size). These settings were hence employed for all extrapolative simulations. Model 

parameters in ERGM (i.e., θ) space for the extrapolated models were obtained from the ϕ
representation of Eq.1, with N adjustments as specified. Component size distributions and 

other metrics for the extrapolated network simulations were computed as described for the 

other simulations.

To extrapolate across concentration, it is necessary to add an additional adjustment to Eq. 2, 

to account for changes in the effective collision rate. Following Eq. 14 of Butts,68 the first-

order effect on the aggregation graph distribution of changing from baseline concentration C

to extrapolated concentration C′ is to shift the reference measure by a factor of C′
C

te g
; this 

leads to the distribution

Pr G = g ∣ ϕ, T = exp − ϕTt g + kBTte g / kBT − te g logN − logC′
C − logZ ϕ, T .

Intuitively, multiplying the concentration by a factor α has the effect of shifting the edge 

parameter (in its θ representation) by log   α, which is easily implemented. Thus, increasing 

the concentration will tend to increase the expected number of contacts per monomer, while 

decreasing concentration will reduce it. The net impact of concentration changes on the 

aggregation graph depends, however, on the full model. To examine the potential impact of 

concentration on aggregation in the γ-Dc models, we simulate 1000 graph draws for a large 

system N = 10000  at concentrations of 100, 200, 300, and 400 g/L (with the original model 

having been calibrated based on mcMC simulations at 200 g/L).

Geometry Imputation

Although the aggregation graph is purely topological (i.e., it contains only information on 

bound interactions among monomers, and is not spatially explicit), we here perform an 

approximate geometry imputation to examine possible trends in aggregate shape driven 

by the underlying topology. Specifically, we map the topology of realized aggregates to a 

three-dimensional structure that is compatible with monomer size and bound interactions, 

and that conforms to a very simple but physically plausible model. Specifically, we proceed 

as follows. Given an aggregation graph, g, we first segment the aggregation graph into 

connected components (i.e., distinct aggregates) g 1 , …, g m . (Component segmentation 

and other analyses performed using the sna62 package.) For each component, g i , three-

dimensional coordinates are then assigned by a two-phase process. First, we employ a 

modified three-dimensional Kamada-Kawai69 algorithm (KK) to obtain an initial layout, 

using the square root of the geodesic distance between vertices, scaled by twice the 

monomer radius, as the objective. The KK procedure attempts to find an assignment of 

coordinates to the vertex set that minimizes the sum of squared errors between the Euclidean 

distances among vertex coordinates and a target distance matrix; here, our choice of distance 

target approximates the expected distance under a random polymer model. Given the initial 

layout, we refine it to correct for overlapping vertices, ensure that bonded vertices are 
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in contact, and to prevent non-bonded vertices from being in contact. This is done via a 

simulated annealing procedure, minimizing a simple objective given by

j, k
Erep 2r/djk

12 + Ebondgjk
i 2r − djk

2 ,

where Erep = 1 and Ebond = 10 are parameters governing repulsion and bonded interaction 

(respectively), r is the effective monomer radius, djk is the Euclidean distance between the 

coordinates of vertices j and k, gjk
i = 1 if j is bound to k (else 0), and the sum is over all 

vertex pairs within the component. (Procedure implemented using Rcpp.70) The resulting 

coordinates reflect a plausible low-energy conformation for the aggregate, assuming that 

interactions among monomers are not angularly restricted beyond constraints induced by 

crowding and bound interactions. For an effective monomer radius, the geometric mean of 

their projected monomer lengths along their respective principle gyration axes were used; 

these were computed using the bio3d package,71 based on PDB structures 1HK072 and 

4GR739. The resulting radii were 19.55Å  for WT, and 20.05Å for W42R.

To probe possible relationships between geometry and size (in the sense of numbers 

of monomers per aggregate), we simulate 100 aggregation graph realizations from our 

estimated models for WT and W42R, extrapolating to a system with N = 104 monomers. 

Coordinates were obtained for each aggregate in each graph, using the above procedure. For 

each aggregate, the radius of gyration was computed (approximating each monomer by a 

sphere of its effective radius), and was scaled by the monomer radius of gyration to obtain 

the dimensionless statistic Rg/rg (where rg is the monomer radius of gyration). Using the 

above structures and libraries, the monomer rg values were calculated to be 16.63 Å for WT 

and 16.72Å for W42R. We also examine geometry using an elongation factor, defined here 

as L1/L3, where Li is the width of the aggregate when projected along its ith principal axis 

of gyration. Intuitively, an elongation factor of 1 indicates a spherical aggregate, with higher 

values indicating greater departures from sphericity. Likewise, Rg/rg would be expected to 

scale as N 1/3  as N becomes large, for spherical aggregates.

Results

Topology of γ-Dc Aggregates

γ-Dc WT, W42R aggregates have skewed size distributions, with truncated 

upper tails.—Fig. 3 (top right) shows posterior means and 95% intervals for the aggregate 

size distributions; we observe monotone distributions in both cases, with sizes that scale as 

approximately 1/n2 for small aggregates. Size frequency in WT begins to drop off rapidly 

beyond approximately 10 monomers, with aggregates greater than 100 monomers being 

extremely rare. By contrast, W42R shows a much longer upper tail, with sizes becoming 

truncated only near the 200–250 range. Although this truncation point is still considerably 

smaller than the system size (375 monomers), it would be reasonable to suspect that it could 

be a finite-system artifact; as we show below, however, this does not appear to be the case.
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Larger γ-Dc aggregates are dendritic, with locally kinked structure.—Fig. 

3 (bottom) shows two representative topological γ-Dc aggregation graphs for WT and 

W42R (each selected by having the minimum discrepancy versus the overall component 

distribution), with vertices colored by component size. As can be seen, complex components 

found in either variant are relatively “loose,” with extensive tree-like structures marked by 

continuous and occasionally branching paths, combined with local “kinks” resulting from 

triangulation. Although triangles are common relative to the sparsity of the graph, we see an 

absence of both large cliques and the highly regular linear structures seen in fibril formation. 

Qualitatively, WT and W42R appear to produce very similar types of aggregates (net of 

size); there are, however, statistical differences between them, as we show below.

Network Hamiltonian Modeling of γ-Dc Aggregates

Model parameters reveal topological drivers of aggregate structure.—
Examination of reduction in prediction error for the component size distribution as a 

function of model terms (Table 1) shows that the key drivers of aggregate structure 

(in descending order of importance) are: the suppression of closed, chain-like structures 

(as evidenced by the positive NSP(1) energies (Table 2)); enhanced triadic closure 

(negative GWESP energies); and suppression of mergers between large aggregates (positive 

compsizesum energies). We also see an additional minor ESP(1) correction, which adjusts 

the closure pattern generated by GWESP but does not change the qualitative tendency 

towards local triangulation.

Quantitatively, we note that the base dissociation energy for a bond between two otherwise 

isolated monomers is low; although all such energies for coarse-grained models are 

necessarily approximate, we observe an effective net dissociation energy for such bonds 

of approximately 1 kcal/mol for WT, and 1.8 kcal/mol for W42R. To give some context 

for the nature of the interactions, this is roughly comparable to a weak hydrogen bond. 

While this may seem low, it is compatible with the observation that γ-Dc is overwhelmingly 

monomeric, and higher-order interactions are generally transient. As another point of 

comparison, Mills-Henry et al.74 estimate the free energy of the γ-Dc domain interface 

- which would be expected to be a much stronger interaction than transient interactions 

between otherwise independent monomers - at approximately 4 kcal/mol. We observe that 

dissociation energies for W42R start off roughly 80% higher than WT, reflecting a greater 

net propensity for interaction.

While the qualitative behaviors of the WT and W42R energy functions are similar, we 

see further quantitative differences between the two. Extended conformations are less 

favorable for W42R than WT (as seen from the higher NSP(1) energy), though this 

must also be weighed against the higher baseline propensity of W42R to form contacts. 

Combining the ESP(1) and GWESP terms to examine the net energies associated with 

ESP(k) configurations, we find that ESP(1)s are overall much more favored in WT than 

W42R (−0.32 vs. 0.05 kcal/mol), and while this gap closes somewhat for ESP(2)s, it is still 

higher (−0.59 vs. −0.38 kcal/mol). This gap gradually narrows for higher order ESPs (−0.69 

vs. −0.48 kcal/mol for ESP(3)s, and −0.74 vs. −0.56 kcal/mol for ESP(4)s), though it is 

still present. This suggests that, prima facie, triadic closure in WT is driven more by the 
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additional stability of triangulated structures, while the combination of enhanced interaction 

and instability/unfavorability of extended structures plays a larger role in W42R. Finally, 

while the compsizesum energy appears fairly small at first blush, we see that it is about 

an order of magnitude larger for WT and W42R. To put this term in perspective, it is 

helpful to consider the minimum component size such that a merger of two such components 

would produce a change in the compsizesum energy that exactly offsets the energy of a 

single baseline edge. For WT, this size is approximately 22 monomers, versus approximately 

67 for W42R. Thus, self-inhibition is much weaker for the mutant than for wild type, 

plausibly playing a significant role in the ability of the latter to form larger components. 

Moreover, since the change in energy scales with the product of component sizes, we would 

expect to see growth in medium to large WT aggregates to be much more dependent upon 

incorporation of monomers of very small oligomers than W42R. This may provide more 

viable pathways to the formation of larger aggregates in the latter, with corresponding 

impact on aggregation kinetics.

Network Hamiltonian models recapitulate aggregate size and structure.—Fig. 

4 shows predicted properties of aggregates from the network Hamiltonian models (based 

on MCMC simulation), versus the observed aggregation graphs. Despite the simplicity 

of the network models, we find that they do an excellent job of recapitulating both 

large-scale structure (component size distributions) and local structure (degree and ESP 

distributions) for both mutant and WT. In particular, both models recapitulate the 1/n2

small-aggregate scaling, and differences in tail weight. It should be noted that the ESP and 

degree statistics match well not only on means, but also on variances (as shown by 95% 

simulation intervals), demonstrating that they recapitulate variability in aggregate structure 

across realizations as well as overall tendencies.

Extrapolative Simulation of γ-Dc Aggregates

Larger systems at constant concentration yield similar aggregate sizes.—An 

obvious concern when simulating aggregation processes using atomistic methods is that 

we are restricted to relatively small system sizes; this both restricts the upper tail of the 

aggregation size distribution and creates artificial dependence in aggregate sizes. The latter 

arises from exhaustion: if, e.g., a system contains an aggregate of size M, then it must be 

the case that only N − M monomers remain to form other aggregates. It is thus impossible to 

observe interactions among multiple aggregates of size > N /2, and every large aggregate is 

necessarily surrounded by much smaller aggregates (a condition that need not occur in bulk). 

While the truncation effect can only artificially reduce aggregate sizes, this last effect could 

either enhance or suppress the formation of larger aggregates (depending on the favorability 

of interactions between aggregates as a function of size).

In general, it is thus hard to know how system size effects will impact aggregate size, unless 

the maximum observed size is small compared to the number of monomers in the system. 

Here, however, the relative computational efficiency of the network Hamiltonian models 

allows us to simulate draws from much larger systems than are accessible via mcMC, 

permitting us to directly observe the impact of increasing system size on aggregation. In 
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particular, we here take draws from systems as large as 104 monomers, an increase of almost 

two orders of magnitude from our base case of N = 375.

Figure 5 shows the resulting posterior means and 95% intervals for aggregate size 

distributions, by variant and system size. Overall, we find that the size distributions 

seen in smaller systems remain similar as one approaches the bulk limit. We do not, in 

particular, see evidence of truncation effects (particularly for the W42R variant, where 

they might have been expected), suggesting that observed sizes are in fact due to the 

self-limiting properties of aggregate assembly and disassembly, and not to a lack of available 

monomers. Interestingly, we in fact see some sharpening and lowering of the upper tail of 

the size distribution as system size increases. This may result from mid-sized and smaller 

components competing with large components to recruit small components (since mergers 

become increasingly unfavorable with size), “starving” large components of monomers 

that they might otherwise recruit for further growth. Such competition is limited in the 

small-N case by the exhaustion mechanism described above, thus potentially allowing some 

components to grow slightly larger than would be possible in a bulk system. By being able 

to evaluate systems that are much larger than the largest components, we thus get a more 

realistic picture of bulk behavior.

Increasing concentration increases aggregate size.—Probing the high-

concentration regime is another challenge for conventional Monte Carlo simulation methods, 

as close packing of proteins makes it difficult to propose moves without an extremely 

high clash (and hence rejection) rate. A potential asset of network Hamiltonian models is 

the ability to explore potential effects of concentration by simulating aggregation graphs 

from concentration-adjusted models, which do not suffer from this difficulty. For γ-Dc, 

Figure 6 shows posterior means and 95% intervals for aggregate size distributions, based 

on simulations with N = 104 and concentrations of 100, 200, 300, and 400 g/L (with 200 

g/L being the concentration of the original system to which the models were fit). As 

expected, increasing concentration increases the mean aggregate size for both WT and 

W42R, although we do not observe a marked increase in the size of the very largest 

aggregates obtained for concentrations above 200 g/L. We do, however, see large aggregates 

occurring with higher frequency, particularly for W42R (where we see a marked flattening 

of the frequency distribution above ≈50 monomers at 400 g/L). We also see a larger mean 

shift for W42R versus WT, with the mean aggregate size at 400 g/L being 67% higher 

than the size at 200 g/L for WT (13.5 vs. 8.1) and 84% higher for W42R (33.8 vs. 

18.3). Although reduced concentration lowers aggregate size, this is also more notable for 

WT than W42R (mean size 5.5 versus 10.1 , with a marked difference in the size of the 

largest aggregates). These results suggest that, beyond simply forming a small number of 

distinctively large aggregates, W42R at high concentration sustains larger populations of 

medium-to-large transient aggregates, which may place more monomers in locally crowded 

settings in which transient conformational changes (e.g., partial unfolding) potentially lead 

to irreversible aggregation.

Larger aggregates may be more compact, but slightly oblate.—Although our 

approach does not directly predict the three-dimensional structure of γ-Dc aggregates, 
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the aggregation graph may provide evidence regarding likely conformations. Using the 

procedure described above, we examine imputed geometric properties for all aggregates 

from samples of 100 draws from the WT and W42R models (respectively), with a system 

size of N = 104 monomers. Figure 7 shows the resulting relationships of scaled radius 

of gyration and elongation factors with aggregate size. While there is some deviation for 

small aggregates, medium to large aggregates (10 or more monomers) are predicted to 

have have nearly spherical Rg scaling; a linear fit of the log   Rg/rg ratios to log sizes for 

aggregates above this minimum lead to estimated scaling of Rg/rg ∝ N0.333 ± 0.002 for WT 

(with N here being the aggregate size), and Rg/rg ∝ N0.313 ± 0.001 for W42R. The elongation 

metric shows a slight deviation from spherical behavior, with large aggregates (100 or more 

monomers) tending towards an average of approximately 1.2 (i.e., the longest axis being 

20% longer than the shortest). Although the Rg scaling coefficients are significantly different 

z = 15.52, p ≪ 0.0001 , we would caution against drawing strong interpretations from such a 

small difference from a highly simplified geometric model. We would, however, suggest that 

the analysis shows that the topology of the aggregates does not constrain them to be far from 

spherical, nor does it constrain WT and W42R to produce aggregates that differ greatly in 

overall shape. Although tentative, the predicted trend in obliquity would seem to be a fruitful 

target for experimental examination.

Conclusion

Here we employed Exponential-family Random Graph Models to fit network Hamiltonian 

models to atomistic simulations of WT and W42R γ-Dc, allowing us to identify topological 

degrees of freedom that govern the formation of unstructured aggregates. The transient 

nature of the protein-protein interactions in the resulting models reflect the properties of the 

original mcMC simulation,11 and are thus distinct from the highly durable intermolecular 

interactions seen in fibril formation. However, these transient interactions plausibly provide 

opportunities for damaged or partially unfolded γ-Dc to form longer-lived structures75 (or, 

likewise to support more subtle surface interactions that have also been argued to promote 

aggregation76) and may hence provide insights into the process of cataract initiation. In 

keeping with this view, we see that the cataract-prone W42R mutant behaves in a manner 

much more conducive to structure formation, both in terms of the favorability of overall 

interaction and the tendency to form lower energy triadic structures. Given atomistic models 

or experimental data on durable aggregates, the same strategies followed here can also be 

used to model them.

Combining network analysis with mcMC simulations also offers the possibility of 

examining the relationships between conformational states and structural position within 

the aggregation graph. We did not pursue this avenue here, because preliminary examination 

of of the conformational states suggested that they did not show enough variation for such 

an analysis to be fruitful. However, in systems with greater variation in monomeric states, 

this approach would seem to be a useful direction. In particular, while our analysis implicitly 

marginalizes over monomeric states (their impacts on aggregation being indirectly reflected 

via the terms of the network Hamiltonian), it may in some cases be possible impute states 
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from simulated aggregation graphs, by training a model to predict the former from the latter 

using mcMC draws. This too would seem to be a useful direction for further work.

The scalability of network Hamiltonian models allows simulation of large systems, 

providing additional information on the impact of the system size on aggregation. For 

WT γ-Dc, the component size distribution did not change substantially from what was 

seen in the smaller, atomistic simulation, while the W42R variant system sees a decrease 

in observations of the largest aggregates (lighter upper tail) as system size increases. 

Our results suggest that this may arise from competition between mid-sized and large 

aggregates for monomers to incorporate, a phenomenon that is artificially suppressed in 

small simulations. Extrapolation to higher concentrations does show an increased population 

of large aggregates, particularly for W42R. Although we cannot directly determine geometry 

from these simulations, we can approximate it using simple spatial models. Applying that 

approach here suggests that we cannot immediately constrain the aggregates to being non-

spheroidal in solution, though there is some evidence of obliquity. Better models for moving 

from topology to geometry for aggregation graphs (as has been explored at the atomistic 

scale for residue-level networks40) could further refine such predictions, and would be 

particularly valuable for providing better targets for e.g. light scattering experiments.

One interesting observation from the present models is the apparent self-limiting behavior 

of growing γ-Dc aggregates. This appears necessary to reproduce the results of the mcMC 

models, which even for W42R do not show aggregates that approach the limit of the system 

size N = 375 , and which manifests within the network Hamiltonian model by an inhibition 

for mergers between large aggregates. Such self-limiting behavior could be compatible with 

the formation of spherical structure, if more favorable attachment sites end up being buried 

as the aggregate grows, and one could conjecture that such a mechanism, if present, helps 

prevent pathological aggregation in the eye lens. However, we also reiterate that some 

modes of aggregation were not accessible to the mcMC model (e.g., those based on partial 

unfolding or refolding of monomers or disulfide bond formation38,75), and thus are not 

incorporated here; we therefore view this prediction as tentative. Formally, we observe that 

the essentially quadratic penalty for component mergers used in the models fitted here may 

be too sharp in some settings, and a softer function may be needed. Investigations with 

underlying models based on a wider range of systems would be fruitful in clarifying this 

issue.

Network Hamiltonian models provide a flexible framework for describing interactions 

between proteins and the resulting structures, whether transient in nature as in the case 

of the present study, or the more durable structure of amyloid fibrils. Combined with 

experimental data or atomistic models, network Hamiltonian models can be used to 

extrapolate simulations of systems that are orders of magnitude larger than atomistic models, 

providing a convenient method for examining the underlying structure of large protein 

aggregates. Additionally, given the ability of network Hamiltonian models to determine 

distributions of aggregate sizes, these models may provide insight into the transient 

interactions which guide phenomena such as liquid-liquid phase separation and phase 

transitions.
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Figure 1: 
Example of an aggregation graph of the type studied here. Individual γ-Dc monomers are 

considered adjacent when they have respective domains whose centers of mass are within 

31Å of each other in the atomistic model(see Methods). 2D graph representation shows 

underlying topology of the aggregate, without regard to spatial positions of the monomers.
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Figure 2: 
Schematic representation of candidate model terms for the γ-Dc network Hamiltonian. Black 

lines indicate edges that must be present in the specified configuration, while red dotted 

lines indicate edges that must not be present. Blue outline indicates terms selected in the 

final γ-Dc model. See text for details.
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Figure 3: 
Aggregate sizes and topologies, from atomistic simulations by Wong et al. (2019). Top left: 

structures of WT (PDB 1HK072) and W42R (PDB 4GR773) monomers, with residue W42 

highlighted. Trp to Arg substitution disrupts the N-terminal domain, increasing exposed 

hydrophobic surface area. Top right: WT and W42R size distributions are similar for small 

aggregates, but W42R produces more large structures. Bottom: Representative examples of 

WT and W42R aggregation graphs illustrate typical differences in topology; vertex colors 

indicate component size, from red (free monomers) to blue (largest components).

Diessner et al. Page 22

J Phys Chem B. Author manuscript; available in PMC 2023 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Model adequacy checks for the network Hamiltonian models. Top panels compare observed 

(black) to simulated (colored) aggregate size distributions (center line indicates posterior 

mean, shaded area 95% posterior intervals). Bottom panels compare observed (black) 

versus simulated (colored) distributions of local structural properties, specifically degree 

and edgewise shared partner counts; dots indicate means, whiskers indicate 95% intervals. 

For both WT and W42R, the selected models successfully approximate the behavior of the 

atomistic simulations.
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Figure 5: 
Predicted aggregate size distributions, by system size and variant. Center lines indicate 

posterior means; shaded areas indicate 95% posterior intervals. While distributions remain 

similar, maximum aggregate sizes decline more sharply when system sizes become large 

compared to the size of the largest aggregates.
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Figure 6: 

Predicted aggregate size distributions, by concentration and variant, at N = 104. Center 

lines indicate posterior means; shaded areas indicate 95% posterior intervals. Increased 

concentration favors growth of larger aggregates, particularly increasing the large-aggregate 

population in W42R.
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Figure 7: 
(A) Projected aggregate Rg over monomer radius of gyration rg  by aggregate size. For large 

aggregates (≥ 10 monomers), scaling is close to N1/3, though slightly below for W42R. 

(B) Elongation factor (largest axis over shortest axis) by aggregate size; smoothing splines 

shown to indicate mean behavior. Larger aggregates approach a limiting elongation factor of 

approximately 1.2.
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Table 1:

Selected models for γ-Dc aggregates, by selection stage. Columns 1–5 indicate included terms; terms selected 

by steepest descent, and no other terms were found to improve fit. Error for observed fobs  versus model-

predicted fsim  aggregate size distributions given for WT, W42R, and combined cases. Relative gain shows 

fraction of total error reduction versus the baseline (edge-only) model.

Model Terms Error(∥log(fobs/fsim)∥) Rel. Gain

edges NSP(1) GWESP(decay=α) compsizesum(power=2) ESP(1) WT W42R Total

TRUE FALSE FALSE FALSE FALSE 0.67 1.17 1.84 –

TRUE TRUE FALSE FALSE FALSE 0.37 0.68 1.05 43%

TRUE TRUE TRUE FALSE FALSE 0.29 0.26 0.55 27%

TRUE TRUE TRUE TRUE FALSE 0.24 0.17 0.41 8%

TRUE TRUE TRUE TRUE TRUE 0.24 0.15 0.38 2%
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Table 2:

Estimated model coefficients for γ-Dc aggregate models; θ specifies ERGM form at simulated temperature and 

N, ϕ indicates equivalent Hamiltonian representation. All coefficients significant at p < 1 × 10−4; apparent zero 

standard errors indicate SE< 1 × 10−4.

WT W42R

Term θ Std. Err. ϕ (kcal/mol) θ Std. Err. ϕ (kcal/mol)

edges −5.2546 0.0061 −1.0302 −3.9911 0.0066 −1.8085

NSP(1) −0.2163 0.0034 0.1332 −0.4036 0.0025 0.2486

GWESP(α) 1.2855 0.0132 −0.7919 1.1983 0.0090 −0.7382

α 0.5 0.3

compsizesum(power=2) −0.0016 0.0001 0.0010 −0.0003 0.0000 0.0002

ESP(1) −0.1165 0.0144 0.0718 −0.2197 0.0098 0.1353
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