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ABSTRACT OF THE DISSERTATION

Improving the Representation of Fresh Wildfire Smoke Plumes in Air Quality Forecasts

by

Laura Hughes Thapa

Doctor of Philosophy in Atmospheric and Oceanic Sciences

University of California, Los Angeles, 2024

Professor Pablo Saide Peralta, Chair

Wildfires are increasing in size and frequency in the Western US due to a complex

interplay between climate change and landscape-scale fire exclusion practices. The smoke from

these fires is degrading air quality across much of the Continental US. Chemical transport

models are vital for warning the public about smoky periods, but uncertainties related to fresh

smoke plumes can propagate through these models and cause errors in the resulting air quality

forecasts.

We address model uncertainty related to smoke plume vertical extent and total emissions.

First, we use aircraft observations obtained during the 2019 Western US wildfires (FIREX-AQ)

to evaluate and constrain a commonly used smoke plume rise parameterization in two smoke

models (WRF-Chem and HRRR-Smoke). Observations show that free tropospheric smoke layers

occur in 35% of observed plumes and up to 95% of modeled plumes. False free tropospheric

smoke injections were primarily associated with models overestimating fire heat flux by up to a

factor of 25. Next, we present data-driven methods for predicting day-to-day changes in smoke

emissions. Our top-performing model (random forest) explains 48% of the variance in observed
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daily emissions and outperforms the current operational assumption that emissions will remain

constant over a forecast period (persistence, R2=0.02). This model primarily relies on fire

weather data to inform its predictions. Finally, we show preliminary results from WRF-Chem

simulations which include random forest-derived emissions and updated heat flux values. We

find that in the vicinity of large wildfires in 2020 under less severe fire weather, the random

forest-derived emissions can produce better predictions of aerosol optical depth (AOD) and fine

particulate matter (PM2.5) than the persistence fire emissions. However, in most cases,

persistence and random forest-derived emissions yield very similar AOD and PM2.5 predictions,

and that the random forest-derived emissions can both improve and degrade AOD and PM2.5

forecasts. Overall, this work demonstrates the utility of incorporating fire observations to

quantify and address uncertainties in our state-of-the-art air quality modeling systems.
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To Mom
(if that’s even your real name)

“What is fire? It’s a mystery.
Scientists give us gobbledegook
about friction and molecules.
But they don’t really know.”

-Ray Bradbury (Fahrenheit 451)
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LIST OF FIGURES

Figure 2.1: Selected transects with their corresponding injection behavior identified, and

decision tree for classifying injections. Vertical profiles of a DIAL-HSRL backscatter, b

HRRR-Smoke PM2.5, and c WRF-Chem PM2.5 for the Shady Fire on 2019-07-26

01:25-01:35 UTC. Vertical profiles of d DIAL-HSRL backscatter, e HRRR-Smoke

PM2.5, and f WRF-Chem PM2.5 for the North Hills Fire on 2019-07-29 22:40-22:55

UTC. g The decision tree that is used to classify each case. In the terminal nodes (red and

green boxes) representative cases for each path ending at that terminal node are given in

parentheses. Open circles in (a) and (d) denote out of plume boundary layer height, and

filled circles denote plume top heights. Light gray solid lines and short dashed gray lines

in (b, c) and (e, f) denote the modeled PBLH and mixed layer heights derived from

vertical PM2.5 gradients, respectively. For WRF-Chem, the mixed layer height at 4PM LT,

the time when the mixed layer is thickest, is shown the long dashed dark gray line. 5 min

of flight time corresponds to 50–70 km.

Figure 2.2: Box and whisker plots of model parameters and observations grouped by

WRF-Chem and HRRR-Smoke injection behavior. a, e Comparison of modeled transect

median PBLH with observed transect median PBLH, b, f average FRE flux, c, g savanna

and grassland fraction, and d, h terrain height. Red horizontal line denotes medians, blue

boxes denote the interquartile ranges, and whiskers denote the 1.5x interquartile range.

TP, FP, and FN are defined as in Table 2 caption. a–d Refer to the WRF-Chem model and

e–h refer to the HRRR-Smoke model.

Figure 2.3: Comparison of observed FRE flux and assumed FRE fluxes for WRF-Chem and

HRRR-Smoke. a Scatter plot of total FRP and flaming and saturated fire area from
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MASTER for each fire overpass (colored diamonds, stars, triangles). Black line is a linear

fit to the MASTER points of the form y = mx. Colored bars represent the ranges of FRE

flux based on models’ assumptions for convective heat flux and uncertainty in converting

between convective and radiant heat flux (see “Methods”). FRE flux increases toward the

upper left. Shapes represent the campaign fuel category. Colors of diamonds, stars, and

triangles, represent the fractional contribution of flaming combustion (including saturated

pixels) to total FRP. Other panels show box and whisker plots of b observed FRP and c

observed fraction of FRP due to flaming combustion, grouped by observed injection

behavior. Box and whisker elements are as in Fig. 2 caption

Figure 3.1. Workflow example for the 2020 August Complex Fire. a) the process used to build

two days of fire polygons for August Complex and b) the final August Complex polygon

at daily resolution (light orange for mid-August 2020 through dark red for mid-October

2020). Time series of c) FRE (black) and near surface fire weather indices (HWP—blue,

HDW—orange, HRRR VPD—green) extracted using the daily polygons, and d) observed

(black) and forecasted FRE using persistence (red) scaled weather (HWP—blue,

HDW—orange, HRRR VPD—green) and random forest model trained on all predictors

(magenta dashed).

Figure 3.2. Comparison of persistence, scaled, and random forest methods. Performance of the a,

f) persistence, b,g) VPD (HRRR), c,h) HD0W0, d, i)HWP, e,j) random forest method on

their ability to forecast fire growth category, F=0.67-1.5 is slight change and greater (less)

than that value is an increase (decrease). R2 and SSRMSE and SSMAD are shown for FRE for

all 1-day k) and 2-day m) predictions in blue, yellow, and green dots respectively. F1 for

all 1-day l) and 2-day n) predictions with increases in red, decreases
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in blue and slight changes in tan. Rows are labeled according to the forecasting method,

with scaled methods labeled with a “” preceding the name of the scaled variable. Vertical

dashed lines denote performance of persistence.

Figure 3.3. Random forest evaluation metrics by state (a-f) and by fire severity (g-j) for the 1-

day RF and persistence predictions. a) SSMAD and SSRMSE for the RF model; b) R2 for the

persistence and RF models; c) MAD for the persistence and RF models; d) F1slight_change for

the persistence and RF models; e) RMSE for the persistence and RF models; f) F1increase

and F1decrease for the RF model; g) RMSE (yellow) and MAD (teal) for the persistence

(dotted) and RF (solid) models split by 20th-percentiles of FWI; h) as in f but split by

20th-percentiles of FRE. i) SSMAD (teal), SSRMSE (yellow), F1increase (red), F1decrease (blue),

and F1slight_change (tan) for the RF models with F1slight_change (tan dotted) for the persistence

model split by 20th percentiles of FWI. j) as in i but split by 20th percentiles of FRE.

Figure 3.4. Performance of the random forest model for different sensitivity tests (row names).

a) shows SSRMSE in yellow SSMAD in green, and R2 in blue, and b) shows F1decrease in light

blue, F1increase in red, and F1slight_change in tan. Black horizontal lines delineate different

groups of features for which sensitivity is tested, and these categories are also labeled in

text to the left. Feature subsets for which no variables of the given category are used have

their points outlined in black. The variable following “only” in the variable name is the

sole variable of the given category used in training.

Figure 3.5. Performance of the random forest trained on subsets of the data. a) shows subsets of

features selected to optimize performance. R2 and SSRMSE and SSMAD are shown for FRE

for all 1-day b) and 2-day d) predictions in blue, yellow, and green dots respectively. F1
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scores for all for all 1-day c) and 2-day e) predictions with increases in red, decreases in

blue and slight changes in tan.

Figure 4.1. Black carbon (BC) emissions from August Complex Fire from the a) RAVE

emissions inventory for September 2nd-September 22nd, 2020. Reference emissions are

plotted in blue, and 1-day persistence and random forest emissions are plotted in green

and purple respectively. Note that the persistence assumption dictates that the amount of

emissions one day (green bar) is the same as the emissions amount the day before

(previous day blue bar).

Figure 4.2. An example of per-polygon model evaluation. a)-f) show AOD from a) MAIAC, and

WRF-Chem b) reference, c) 1-day persistence, d) 1-day random forest, e) 2-day

persistence, and f) 2-day random forest emissions for September 2nd, 2020 in the vicinity

of the August Complex fire (red polygon encircled by black dashed line). Also shown are

the Red Salmon Complex (N of August Complex), North Complex (E of August

Complex), and the W-5 Cold Springs fires (NE of August Complex on CA/NV border)

(red polygons). 50 km (black dotted), 150km, and 300km (gray dotted) buffers around the

August Complex fire are shown. g) shows a time series of AOD selected over the 50km

buffer for the MAIAC observations (red), and the reference (blue), 1-day persistence

(green) and the 1-day random forest (purple). Figures h-j) show model mean bias,

normalized mean bias, and pearson correlation over the August complex fire. Colors are

as in g), with dotted lines representing the 2-day persistence and random forest forecasts.

The green box highlights September 2nd in the time series and the purple box highlights

a day where FRP (black and gray lines in g)-j)) is high and model performance is good.
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Figure 4.3. Filtering AOD and PM25 measurements over merged polygons. a-b),d-e) show the

150km merged polygons plotted on top of AOD (a,b) and PM2.5 (d,e) for the August

Complex Fire on September 2nd (a,d) and the Marion-MRO fire (b,e). Surrounding fires

are plotted in red. Unfiltered data is shown in even-numeral plots, and filtered data is

shown in the odd-numeral plots. c) and f) show time series of the 10th (blue), 20th

(orange) and 30th (green) percentiles of the observed AOD (c) and PM2.5 (f), and

threshold percentiles are shown in the black dotted lines.

Figure 4.4. Comparison of RAVEblack carbon (kg) with one day (a-b) and two day (c0d)

persistence (a,c, green) and random forest (b,d purple) predictions. The black dotted line

is the 1:1 line and points in the red shaded region are predictions within a factor of 2 of

the observed value.

Figure 4.5. Time series and comparison of daily, domain-averaged AOD (a-d) and PM2.5 (e-h).

Red refers to observations, blue to the reference WRF-Chem model, green to the

persistence emissions WRF-Chem model, and purple with the random forest emissions

WRF-Chem model.

Figure 4.6. Comparison of the distribution of the median (stars* and triangles^) and spread

(bars) of AOD error metrics for a) all fire-days, b) days with low-mod-high FWI, and c)

days with very high-extreme FWI. Error metrics plotted include i) mean bias, ii)

root-mean-squared error, iii) normalized mean bias, iv) normalized mean error, v)

pearson correlation, and vi) ratio. Shaded boxes show the ratio between the change in the

persistence (*) and random forest (^) medians when RF is better than P and the change in

the persistence (*) and random forest (^) medians when RF is worse than P. Blue means

xiv



RF increases overall forecast skill in terms of the metric, and red means RF decreases

skill in terms of the metric.

Figure 4.7. As in Figure 6 for PM2.5

Figure A1. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from

HRRR-Smoke (b) and WRF-Chem (c) for the Sheep Fire on 2019-07-24 21:35-21:45

UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top

heights. In panels b and c, the modeled PBL height is shown as the light gray line, and

the smoke top height is shown as the dotted dark gray line. In panel c, the dark gray

dashed line shows the PBL top at 4pm local time, assumed to be the time when the PBL

height is at its maximum.

Figure A2-A51. As in Figure A1 for the A2 Sheep Fire on 2019-07-24 21:50-22:05 UTC, A3

Sheep Fire on 2019-07-24 22:40-23:00 UTC, A4 Shady Fire 2019-07-24 23:40-23:53

UTC, A5 Shady Fire 2019-07-24 23:55 - 2019-07-25 00:07 UTC, A6 Shady Fire

2019-07-25 00:03-00:10 UTC, A7 Shady Fire 2019-07-25 00:10-00:20 UTC, A8 Shady

Fire on 2019-07-25 22:30-22:45 UTC, A9 Shady Fire on 2019-07-26 01:25-01:35 UTC,

A10 North Hills Fire on 2019-07-29 22:40-22:55 UTC, A11 North Hills Fire on

2019-07-29 23:00-23:15 UTC, A12 Tucker Fire on 2019-07-30 02:10-02:35 UTC, A13

Tucker Fire on 2019-07-30 04:00-04:20 UTC, A14 Tucker Fire on 2019-07-30

04:15-04:40 UTC, A15 Left Hand Fire on 2019-07-31 00:35-00:55 UTC, A16 Left Hand

Fire on 2019-07-31 00:55-01:15 UTC, A17 Ridge Top Fire 2019-08-02 22:10-22:25

UTC, A18 Ridge Top Fire on 2019-08-02 23:40-23:50 UTC, A19 Mica/Lick Creek Fire

2019-08-03 00:35-00:55 UTC, A20 Mica/Lick Creek Fire 2019-08-03 02:20-02:40 UTC,

A21 Mica Creek Fire 2019-08-03 21:30-21:40 UTC, A22. As in Figure A1 for the A22
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Williams Flats Fire on 2019-08-03 21:40-22:00 UTC, A23 Williams Flats Fire on

2019-08-04 00:05-00:25 UTC, A24 Williams Flats Fire on 2019-08-04 02:30-02:55

UTC, A25 Williams Flats Fire 2019-08-06 18:40-19:00 UTC, A26 Williams Flats Fire

2019-08-06 20:30-20:40 UTC, A27 Williams Flats Fire 2019-08-06 21:45-22:00 UTC,

A28 Snow Creek Fire 2019-08-06 22:25-22:35 UTC, A29 Horsefly Fire 2019-08-06

22:45-23:00 UTC, A30 Horsefly Fire 2019-08-07 00:25-00:55 UTC, A31 Sheep Fire on

2019-08-07 23:00-23:20 UTC, A32 Williams Flats Fire on 2019-08-08 00:45-01:05

UTC, A33 Williams Flats Fire on 2019-08-08 02:20-02:40 UTC, A34 Williams Flats Fire

on 2019-08-09 02:00-02:15 UTC, A35 Williams Flats Fire on 2019-08-09 02:15-02:30

UTC, A36 Springs Fire 2019-08-12 22:10-22:20 UTC, A37 Springs Fire 2019-08-12

22:25-22:30 UTC, A38 Castle Fire 2019-08-12 23:19-23:30 UTC, A39 Castle Fire

2019-08-12 23:30-23:50 UTC, A40 Castle Fire 2019-08-13 22:30-22:45 UTC, A41

Castle Fire on 2019-08-13 22:40-22:55 UTC, A42 Sheridan Fire on 2019-08-16

00:25-00:40 UTC, A43 Sheridan Fire on 2019-08-16 00:40-00:50 UTC, A44 Sheridan

Fire on 2019-08-16 01:00-01:15 UTC, A45 Sheridan Fire on 2019-08-16 01:15-01:30

UTC, A46 Saber Fire 2019-08-16 01:45-01:55 UTC, A47 Boulin Fire 2019-08-16

01:55-02:00 UTC, A48 Sheridan Fire 2019-08-16 02:05-02:20 UTC, A49 Ikes Fire

2019-08-16 04:10-04:25 UTC, A50 Sheridan Fire 2019-08-17 00:00-00:15 UTC, A51

Sheridan Fire 2019-08-17 00:15-00:30 UTC

Figure A52. Comparison of observed (green) and modeled (red) planetary boundary layer height

(in m above sea level) distributions for the WRF-Chem (a) and HRRR-Smoke (b)

models. Cases for which these plots were generated are the WRF-Chem false positives
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Figure A53. Plume top heights from the 1D Freitas forced by 1D WRF-Chem meteorology (blue

bars), and 1D Freitas forced by 1D HRRR-Smoke meteorology (red bars) for cases where

WRF-Chem underpredicted the PBLH and HRRR-Smoke accurately captured the PBLH.

PBLHs associated with each meteorology configuration are overlaid as box and whisker

plots over their corresponding bar, and the PBLH derived from the DIAL-HSRL is given

as a dotted line. Selected fires include a) Shady, b) Mica Creek, c) Williams Flats, d-e)

Spring, f) Castle, g-h) Sheridan

Figure A54. Box and whisker plots of (a) HRRR-Smoke time of day, (b) HRRR-Smoke terrain

variability (standard deviation in 3x3 grid box around fire), (c) FT Brunt-Vaisala

Frequency, (d) PBL Brunt-Vaisala Frequency (e) FT bulk Richardson number, (f) PBL

bulk Richardson number. Red line denotes medians, blue box denotes the interquartile

range, and whiskers denote the 1.5x interquartile range. TP, FP, and FN are defined as in

Table 2.2 caption.

Figure A55. Box and whisker plots of (a) WRF-Chem time of day, (b) WRF-Chem terrain

variability (standard deviation in 3x3 grid box around fire), (c) FT Brunt-Vaisala

Frequency, (d) PBL Brunt-Vaisala Frequency (e) FT bulk Richardson number, (f) PBL

bulk Richardson number. Red line denotes medians, blue box denotes the interquartile

range, and whiskers denote the 1.5x interquartile range. TP, FP, and FN are defined as in

Table 2.2 caption

Figure A56. Analogous to Fig. 2.3, but for different combustion phases: (a) total FRP and total

area, (b) flaming/saturated FRP and total area, and (c) flaming/saturated FRP and

flaming/saturated area
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Figure A57. MASTER FRP vs (a) VIIRS FRP and (b) MODIS FRP determined using VIIRS

and MODIS overpasses within +/- 2hrs from MASTER overpasses. MASTER values

tend to be higher than MODIS values and lower than VIIRS values. Red dashed lines are

95% confidence bounds on the best fit line.

Figure A58. Comparison of campaign fuels and model fuels covering three broad fuel categories

for the 51 test cases in this study: grassland, savanna, and forest. Entries along the main

diagonal represent cases where the model and the campaign fuel type agreed, and off

diagonals represent cases where the model and campaign fuel type disagreed.

Figure A59. Illustration of the spatial shifting algorithm for the Castle fire, observed on

8/12/2019 23:20 20-23:30 UTC. (a) Observed backscatter profiles from the DIAL

-HSRL. (b) Modeled PM2.5 curtain plot without shifting applied. (c) Modeled PM2.5

curtain plot with shifting applied. (d) Spatial aerosol optical depth (AOD) plot overlaid

with unshifted (black) and shifted (red) flight flight track.

Figure A60. Illustration of time shift for the Shady Fire, observed 7/29/2019 00:00-00:38 UTC.

(a) spatial emissions plot and (b) vertical curtain of PM2.5 sampled at the model time

matching the observed time. Note how emissions are not present in the spatial or the

vertical plot. (c) spatial emissions plot and (d) vertical curtain plot sampled at the model

time shifted to one hour after the observed time. Emissions are now present in the spatial

plot and vertical plume structure is developed.

Figure B1. Time series of FRE (black), hourly wildfire potential (blue), hot-dry-windy index

(orange), Canadian Fire Weather Index (green), US Burning Index (red) for the August

Complex fire.
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Figure B2. Example of the impact of grid resolution on polygon-averaged fuel density (a-b) and

slope (c-d). a) and c) show a time series of FRP (black) and fuel density/slope at different

grid resolutions (colored lines) for the Bobcat Fire. b) and d) show pearson correlation for

fuel density/slope at different grid resolutions

Figure B3. Distributions of a) total daily FRE, b) log(FRE), and c) FRE, and d) log( FRE) forδ δ

the training years, 2019 and 2021. a) and c) use a log scale for the y axis, c) and d) use a

linear scale. Outliers which lie more than 1.5 interquartile ranges from the median of the

log of FRE are removed.δ

Figure B4. Density plots of observed and modeled FRE as predicted by a,f) persistence, b,g)

scaled VPD from HRRR, c,h) scaled HD0W0, d,i) scaled HWP, e,j) the random forest

trained on all variables. The red line is the best fit to the log of the data and the black line

is the 1:1 line. The best fit equation, R2, RMSE, and MAD are also provided for each

model. The top row is for the 1-day forecast and the bottom row is for the 2-day forecast.

Figure B5. Density plots of observed and modeled scaling factors as predicted by a,f)

persistence, b,g) scaled VPD from HRRR, c,h) scaled HD0W0, d,i) scaled HWP, e,j) the

random forest trained on all variables. The red line is the best fit to the log of the data and

the black line is the 1:1 line. The best fit equation, R2, RMSE, and MAD are also

provided for each model. The top row is for the 1-day forecast and the bottom row is for

the 2-day forecast.

Figure B6. Random forest evaluation metrics by state (a-f) and by fire severity (g-j) for the

2-day RF and persistence predictions. a) SSMAD and SSRMSE for the RF model; b) R2 for

the persistence and RF models; c) MAD for the persistence and RF models; d) F1slight_change

for the persistence and RF models; e) RMSE for the persistence and RF
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models; f) F1increase and F1decrease for the RF model; g) RMSE (yellow) and MAD (teal) for

the persistence (dotted) and RF (solid) models split by 20th-percentiles of FWI; h) as in f

but split by 20th-percentiles of FRE. i) SSMAD (teal), SSRMSE (yellow), F1increase (red),

F1decrease (blue), and F1slight_change (tan) for the RF models with F1slight_change (tan dotted) for

the persistence model split by 20th percentiles of FWI. j) as in i but split by 20th

percentiles of FRE.

Figure B7. Scatter plots of average error vs average values of predictor by state for the 1-day

random forest predictions. Shown are the top 3 predictors whose state-averaged values

had the highest person correlation (r2) with each error type. The metrics presented

(y-axes) include a) SSMAD , b) SSRMSE , c) MAD, d) RMSE, e) R2, f) F1no change , g) F1increase,

and h) F1decrease. The x-axes are labeled with the predictor whose average values are

plotted.

Figure B8. Pearson correlation (r2) and correlation strength (absolute value of r2, shading,

annotated numbers) between error metrics and state-average random forest input

variables (row labels) for the 1-day forecasts. Pearson correlations are shown for a)

SSMAD, b) SSRMSE, c) MAD, d) RMSE, e) R2, f) F1decrease, g) F1increase, h) F1no change

Figure B9. Scatter plots of average error vs average values of predictor by state for the 2-day

random forest predictions. Shown are the top 3 predictors whose state-averaged values

had the highest person correlation (r2) with each error type.The metrics presented (y-axes)

include a) SSMAD , b) SSRMSE , c) MAD, d) RMSE, e) R2, f) F1no change , g) F1increase, and h)

F1decrease. The x-axes are labeled with the predictor whose average values are plotted.

Figure B10. Pearson correlation (r2) and correlation strength (absolute value of r2, shading,

annotated numbers) between error metrics and state-average random forest input
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variables (row labels) for the 2-day forecasts. Pearson correlations are shown for a)

SSMAD, b) SSRMSE, c) MAD, d) RMSE, e) R2, f) F1decrease, g) F1increase, h) F1no change

Figure B11. Time series of total FRE (black line, left axis) and model 1-day forecast error (teal

and gold lines) for the 2020 fire season. a) shows daily total FRE over the western US

(black) along with RMSE (gold, right axis) and MAD (green, right axis) for the random

forest (solid) and persistence (dashed) forecast methods. b) shows daily total FRE over

the western US along with the SSRMSE(gold) and SSMAD (teal) compared with persistence.

The dashed black line is at 0 on the skill score axis; points above this line are days where

the random forest improves on persistence on average and points below this line are days

where the random forest is worse than persistence on average. In a) and b) the size of the

stars is proportional to the number of fires burning in the Western US domain on that day.

Figure B12. Time series of total FRE (black line, left axis) and model 2-day forecast error (teal

and gold lines) for the 2020 fire season. a) shows daily total FRE over the western US

(black) along with RMSE (gold, right axis) and MAD (green, right axis) for the random

forest (solid) and persistence (dashed) forecast methods. b) shows daily total FRE over

the western US along with the SSRMSE(gold) and SSMAD (teal) compared with persistence.

The dashed black line is at 0 on the skill score axis; points above this line are days where

the random forest improves on persistence on average and points below this line are days

where the random forest is worse than persistence on average. In a) and b) the size of the

stars is proportional to the number of fires burning in the Western US domain on that day.

Figure B13. Correlation heatmap for near-surface weather variables. Scaled weather variables

are not shown.

Figure B14 Correlation heatmap for a) stability, b) fuel loading, and c) terrain variables.
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Figure B15. Correlation heatmap for moisture variables.

Figure B16. Correlation heatmap for human variables.

Figure C1. Black carbon (BC) emissions from August Complex Fire from the a) RAVE and b)

QFED emissions inventories for September 2nd-September 22nd, 2020. Reference

emissions are plotted in blue, and 2-day persistence and random forest emissions are

plotted in green and purple respectively. Note that the persistence assumption dictates

that the amount of emissions one day (green bar) is the same as the emissions amount the

day before (previous day blue bar).

Figure C2. Map of fires burning in September 2020, with colored shading representing the day

of burning, defined as 12Z on the labeled calendar day to 12Z on the following calendar

day. Certain fires are noted by name if mentioned in the text or figures.

Figure C3. Time series of the number of AOD grid cells which are counted once (blue line) and

more than once (other colored lines) for 50 km (a-b) and 150 km (c-d) buffers. a,c) show

the number of multi-counts for polygons based on individual fires and b,d) show the

number of multi counts for merged polygons.

Figure C4. Time series of the number of PM2.5 stations which are counted once (blue line) and

more than once (other colored lines) for 150 km (a-b) and 300 km (c-d) buffers. a,c) show

the number of multi-counts for polygons based on individual fires and b,d) show the

number of multi counts for merged polygons.

Figure C5. Time series of the number of AOD grid cells (a,b) and PM2.5 stations (c,d) which

are counted once (blue line) and more than once (other colored lines) for merged

polygons. a,c) show the number of multi-counts for unfiltered data and b,d) show the

number of multi counts for filtered data.
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Figure C6. August Complex Fire time series of AOD (a,c,e,g) and PM2.5 (b,d,f,h) predictions,

observations and error metrics. a,b) are a time series of observed AOD (a)/PM2.5 (b)

(red), reference model (blue), 1-day persistence (green), and 1-day random forest (purple)

distributions. The other time series show mean bias (c,d), normalized mean bias (e,f) and

pearson correlation (g,h) for one day (line with filled circle markers) and two day (line

with star markers) predictions. (a,c,e,g) is a repeat of Figure 2 g-j)

Figure C7-C15. As in S6 for the C7 SCU Lightning Complex fire in CA, C8 Creek fire in CA,

C9 North Complex fire in CA, C10 Pearl Hill fire in WA, C11 Cold Springs fire in WA,

C12 Lionshead fire in OR, C13 Beachie Creek fire in OR, C14 Cameron Peak fire in CO,

C15 Mullen fire in WY

Figure C16. Distributions of the value which compares the distances of the persistence and

random forest of AOD (e.g.) from its ideal value. If the random forest gets the statistic

closer to its ideal value, this number is positive, and if the random forest gets the statistic

further from its ideal value this number is negative. This value was computed for a) mean

bias, b) root-mean-squared error, c) normalized mean bias, d) normalized mean error, e)

pearson correlation, and f) ratio. The black dotted lines are a +/- 0.025, representing the

cutoffs for the 3 categories of model performance: RF better than P, RF about the same as

P, and RF worse than P. The values plotted here are an example computed from the

filtered AOD over merged 50 km buffer polygons.

Figure C17. Sample maps of r2 and mean bias in AOD over the WRF Chem model domain. a)

and b) show the two metrics for the whole reference model period, with the comparison

done at daily resolution. In a) red means a positive correlation in time and blue means a

negative correlation in time. In b) red corresponds to overestimated AOD blue
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corresponds to underestimated AOD. c-f) show the difference in mean bias between the

reference simulation and the c) 1-day persistence, d) 1-day random forest, e) 2-day

persistence, and f) 2-day random forest predictions. In c-f) red means that higher AOD

than the reference simulation is predicted, and blue means that lower AOD than the

reference simulation is predicted.

Figure C18. Comparison of median error metrics for AOD in smoky regions downstream of

fires for a) all fire days, b) the subset of fire days showing low, moderate, or high fire

weather index (FWI) values, and c) the subset of fire days showing very high or high

extreme FWI values. Numbers in the grid cells are the distance between the median of the

error distribution and the ideal value for the metric (1 for rat and pc, 0 for all others). The

boxes are shaded blue if the random forest emissions get the median AOD much closer to

the ideal value than persistence, and red if vice versa.

Figure C19. As in Figure C18 for filtered PM2.5 data in smoky regions downstream of fires.

Figure C20. Comparison of the distribution of the median (stars* and triangles^) and spread

(bars) of AOD error metrics for a) all fire-days, b) days with low-mod-high FWI, and c)

days with very high-extreme FWI. AOD statistics were computed over merged polygons

and included smoke and non-smoke values. Error metrics plotted include i) mean bias, ii)

root-mean-squared error, iii) normalized mean bias, iv) normalized mean error, v)

pearson correlation, and vi) ratio. Shaded boxes show the ratio between the change in the

persistence (*) and random forest (^) medians when RF is better than P and the change in

the persistence (*) and random forest (^) medians when RF is worse than P. Blue means

RF increases overall forecast skill in terms of the metric, and red means RF decreases

skill in terms of the metric.
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Figure C21. As in Figure C18 for unfiltered AOD statistics computed over merged polygons

Figure C22. As in Figure C20 for unfiltered PM2.5 computed over merged polygons

Figure C23. As in Figure C18 for unfiltered PM2.5 statistics computed over merged polygons

Figure C24. As in C20 for unfiltered AOD computed over single polygons

Figure C25. As in Figure C18 for unfiltered AOD statistics computed over single polygons

Figure C26. As in C20 for unfiltered PM2.5 computed over single polygons

Figure C27. As in Figure C18 for unfiltered PM2.5 statistics computed over single polygons
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Chapter 1

Introduction

Intensifying wildfires in the Western US due to anthropogenic climate change

(Westerling et al., 2006; Zhuang et al., 2021) are undoing decades of regulatory progress on

harmful pollutants such as surface level fine particulate matter (PM2.5) and ozone (Burke et al.,

2021, 2023; Larsen et al., 2018). Wildfire plume rise has also become more aggressive, with

smoke plumes being injected higher in the atmosphere due to increased fire energy and plume

buoyancy (Wilmot et al., 2022). In a recent extreme example, the summer of 2020 was a period

in which 1 in 7 Americans were exposed to at least one day of unhealthy air due to smoke by the

end of September (Carlsen, 2020). During this period, the National Ambient Air Quality

Standard (NAAQS) for PM2.5 was exceeded over 3000 times, and smoke contributed 40-80% of

observed PM2.5 in the Western US on September 14th, 2020 (Y. Li et al., 2021). Smoke from

these fires contributed to adverse health outcomes over many US counties (Cromar et al., 2024)

and reduced solar energy generation over California and Washington (Bertoletti et al., 2022;

Juliano et al., 2022).

Wildfire smoke is also a complex climate forcing agent, since smoke particles can scatter

and absorb solar radiation and act as cloud condensation nuclei (CCN). In the vicinity of large

fires, smoke has been shown to block solar radiation via both scattering and absorption and cool

the surface (Yu et al., 2016; Kochanski et al., 2019). However, the total smoke direct effect

remains uncertain and dependent on modeling choices like emissions inventory and

aerosol-radiation interaction parameterization, resulting in some studies computing a cooling

direct effect (e.g. Carter et al., 2020) and other studies computing a warming direct effect (e.g.

Jiang et al., 2016; Wilcox 2012) due to smoke. Smoke particles may also act as CCN (Petters et
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al., 2019), enhancing the albedo and lifetimes of clouds, and exerting a cooling effect on the

climate (e.g. Jiang et al., 2016). Finally, the vertical placement of smoke with respect to clouds

may also generate a climate forcing. When smoke is placed within clouds, the clouds may burn

off more quickly, offsetting cloud albedo and lifetime effects (Wilcox, 2012). However, smoke

above clouds may increase stability and cloudiness, and a more persistent cloud deck may cancel

out the direct warming from above-cloud smoke (Wilcox, 2012; Allen et al., 2019). Generally

speaking, smoke radiative effects are highly non uniform in space due to the sporadic nature of

fires and the short lifetime of smoke aerosols.

Chemical transport models (CTMs) are vital for warning the public about episodes of

poor air quality and for quantifying the climate impacts of wildfire smoke, but uncertainty in

smoke emissions and vertical structure can propagate through these predictions and cause large

errors (Carter et al., 2020; Ye et al., 2021). Including smoke emissions substantially improves

model estimates of PM2.5, ozone, and CO compared to no-smoke model simulations (Baker et

al., 2016; Roy et al., 2007; Tao et al., 2020; Pavlovic et al., 2016), but CTMs are sensitive to the

amount, timing, and vertical distribution of smoke emissions (Garcia-Menendez et al., 2014;

Herron-Thorpe et al., 2014; Rooney et al., 2020; Shi et al., 2019). These sources of uncertainty

affect air quality-relevant variables, such as PM2.5 and aerosol optical depth (AOD). PM2.5 may

be underestimated or overestimated (Herron-Thorpe et al., 2014; Rooney et al., 2020), both in

bulk model evaluation and on a station or regional basis. AOD tends to be underestimated

(Herron-Thorpe et al., 2014; Shi et al., 2019).

1.1 Model Uncertainty Due to Plume Rise

Plume rise refers to the vertical transport of hot smoke gasses and particles through the

atmosphere. This process may result in plume injections, where smoke reaches the free
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troposphere or lower stratosphere, or in plume non-injections, where smoke remains confined

within the planetary boundary layer (PBL). Plume rise occurs on scales much smaller than most

CTMs are able to simulate. Therefore, a range of methods exists for predicting plume heights,

with some models assuming even dispersion of smoke throughout the boundary layer (e.g.

Collow et al., 2024) and other models deriving plume height through physics based

parameterizations (e.g. (Ahmadov et al., 2017; Thapa et al., 2022). When comparing multiple

models, as done in Ye et al., (2021), there is a large spread in plume heights when multiple

models simulate the same fire event. The widely used physics-based plume rise model described

in Freitas et al., (2007) tends to outperform models that assign emissions to a single level or a

fixed vertical distribution (Mallia et al., 2018; Roy et al., 2018; Sessions et al., 2011). However, a

major challenge in deploying the Freitas model is obtaining accurate estimates of fire size and

heat flux to use as inputs to the model (Freitas et al., 2007). Previous studies have highlighted the

Freitas model’s sensitivity to these inputs and have also pointed to issues with the Freitas model

itself, such as the representation of entrainment, as causes for uncertainties like the

overprediction of free tropospheric injection and the limited range of predicted plume heights

(Val Martin et al., 2012; Ye et al., 2021). Therefore, even the best available plume rise models

remain somewhat unconstrained.

1.2 Model Uncertainty Due to Emissions

In CTMs, fire emissions are an essential model input, but there remains uncertainty

regarding the best way to compute and predict these emissions. Emissions are commonly

estimated using the burned area-based conventional approach (Seiler & Crutzen, 1980) or the

FRP-based method (Ichoku et al., 2008; Wooster et al., 2005). Computing emissions starts with a

satellite detection of burned area or fire radiative power (FRP), which is then converted to an
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amount of fuel burned using an empirically derived constant called the emission coefficient. A

second conversion factor, called an emission factor, is then used to compute the emissions of a

given species. Historically, emissions were computed using observations from polar orbiting

satellites (Darmenov and da Silva, 2015; Kaiser et al., 2012; Wiedinmyer et al., 2011), but in

recent years geostationary measurements have been used to create hourly emissions (Darmenov

and da Silva, 2015; Li et al., 2022), an improvement on the daily/twice-daily resolution of older

inventories. Emissions inventories have their own ways of dealing with obscured fires, usually

assuming that the fire continues in some form even while covered with heavy smoke or clouds

(Darmenov and da Silva, 2015; Li et al., 2022). Generally speaking, FRP-based methods tend to

predict higher emissions values than burned area-based methods (Pan et al., 2020; Ye et al.,

2021).

In forecasting mode, many air quality models persist the most recent daily

satellite-derived emissions throughout the forecast period. Sub daily emissions are forecasted

using a prescribed climatological diurnal cycle, which assumes a peak in fire intensity in the

local afternoon (e.g., Ahmadov et al., 2017). A recent study (Ye et al., 2021) has shown that

persistence can result in over- or underpredicted emissions in wildfires when daily changes in

fire activity are large using twelve forecast systems deployed in the Fire Influence on Regional to

Global Environments and Air Quality (FIREX-AQ) field campaign. Persistence may delay the

onset or extend the lifetime of fires within the forecast window (Di Giuseppe et al., 2018; Thapa

et al., 2022), which is useful for regions of the world like Southern Africa or the Southeast US

where intentional burning is a regular human practice (Earl and Simmonds 2018). In spite of

advances such as inverse modeling of emissions (e.g., Saide et al., 2015) and statistical methods

to forecast fire evolution (Di Giuseppe et al., 2018; Graff et al., 2020; D. Peterson et al., 2013;
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Preisler & Westerling, 2007; Huot et al., 2022; Wang et al., 2022) operational smoke forecasts

rely primarily on persistence to forecast daily emissions totals. Precipitation is simplistically

included in some of the models (Ahmadov et al., 2017).

1.3 Outline of the Thesis

This thesis focuses on how we can address issues with plume rise and the persistence

assumption in the WRF-Chem modeling framework for Western US wildfires.

In chapter 2 we evaluate the Freitas plume rise parameterization using field data and

suggest observationally-constrained improvements to Freitas model inputs (Thapa et al., 2022;

Warneke et al., 2023). We compare observed and modeled plume profiles from two regional

CTMs and determine that the frequency of injection into the free troposphere is overpredicted in

the models. This is in a large part due to modeled plumes being artificially buoyant as a result of

heat flux assumptions made when implementing the Freitas model. To a second order, the

accuracy of predicting injections into the free troposphere is also influenced by the model

representation of the planetary boundary layer (PBL), as the height of the PBL is the boundary

we use to determine if an injection occurs. Finally, we show that when we place an observational

constraint on the heat flux, the frequency of injected plumes is much more accurately predicted.

In chapter 3, we address the persistence assumption using weather indices alone and

random forest (RF) machine learning trained on weather indices, land surface, and firefighting

data to forecast daily changes in fire behavior (Thapa et al., accepted). In particular, we are

interested in forecasting the daily change in fire radiative energy rather than the ignition of new

fires (FRE, the time-integrated FRP), so this result is of particular importance to emissions

inventory which are based on FRP. We show that the RF method leads to the biggest

improvement over persistence, but that using weather indices alone also leads to substantial

5



improvement. The RF gains the most forecast skill by incorporating weather and FRE

information, and can be trained on a subset of the full training set and achieve comparable

performance.

In chapter 4, we discuss a WRF-Chem modeling study to test the impact of analysis,

persistence, and RF-derived wildfire emissions on air quality relevant variables like AOD and

PM2.5. We find that WRF-Chem mainly underpredicts AOD and PM2.5, and that the model is

not sensitive in bulk to the emissions scheme used. When we zoom in on smoke plumes directly

downwind of fires or groups of fires, we find that model error is a little more sensitive to

emissions schemes and on some days for some fires, the RF derived fire emissions lead to much

lower model error. However, the results are not enough to determine definitively if using RF

emissions in the current configuration of WRF-Chem represents a significant advantage over

persistence. Therefore, the main advancement of this chapter is a flexible pipeline to evaluate

models downstream of fires.
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Chapter 2

Heat flux assumptions contribute to overestimation of wildfire smoke injection into the free

troposphere

An edited version of this paper was published in Nature Communications Earth and

Environment. Copyright (2022) Laura Hughes Thapa.

Abstract

Injections of wildfire smoke plumes into the free troposphere impact air quality, yet

model forecasts of injections are poor. Here, we use aircraft observations obtained during the

2019 western US wildfires (FIREX-AQ) to evaluate a commonly used smoke plume rise

parameterization in two atmospheric chemistry-transport models (WRF-Chem and

HRRR-Smoke). Observations show that smoke injections into the free troposphere occur in 35%

of plumes, whereas the models forecast 59–95% indicating false injections in the simulations.

False injections were associated with both models overestimating fire heat flux and terrain

height, and with WRF-Chem underestimating planetary boundary layer height. We estimate that

the radiant fraction of heat flux is 0.5 to 25 times larger in models than in observations,

depending on fuel type. Model performance was substantially improved by using observed heat

flux and boundary layer heights, confirming that models need accurate heat fluxes and boundary

layer heights to correctly forecast plume injections.
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2.1 Introduction

Previous studies have shown that smoke plumes injected above the planetary boundary

layer (PBL) and into the free troposphere (FT) tend to occupy layers of ambient stability and that

plume injections are associated with high fire radiative power (FRP), and favorable fire weather

(Kahn et al., 2007; Soja et al., 2021; Val Martin et al., 2010). Observations from the Multi-angle

Imaging Spectroradiometer (MISR) indicate that injection into the FT occurs in 4–12% of North

American smoke plume tops (Kahn et al., 2007, 2008; Val Martin et al., 2010, 2018), and the

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data indicate that injection of the

total smoke column into the free troposphere occurs in 78% of North American smoke plumes

(A. Soja et al., 2021). However, the MISR percentage may be biased low due to satellite

overpasses occurring in the morning (~10:30 AM LT for MISR), when plumes have not fully

developed (Kahn et al., 2008). Injected plumes can be advected downwind with little dilution

(Schum et al., 2018) and thus tend to have more regional impacts. In very extreme cases,

stratospheric smoke injections may self-loft due to the absorbing component of smoke, further

enhancing smoke lifetimes (Das et al., 2021). On the other hand, non-injected plumes tend to

have more local impacts due to more efficient downward mixing by ambient PBL turbulence.

The Freitas plume rise parameterization is a 1-dimensional cloud-resolving model. It is

typically embedded in a 3-dimensional host model that specifies the ambient environment

(Freitas et al., 2007). This model represents fires as surface buoyancy fluxes that depend on

instantaneous fire size, and convective heat flux, and fuel type. Proposed causes of the Freitas

model’s shortcomings include uncertainties in lateral entrainment and in input parameters.

Entrainment is dependent on fire size, so versions of the Freitas model allowing variable fire

sizes can improve the modeled range of plume heights (Sessions et al., 2011; Val Martin et al.,
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2012). In addition, explicitly adding entrainment to a later version of the model improved

performance (Freitas et al., 2010; Walter et al., 2016). Uncertainty in the input parameters,

notably fire size and FRP, may be caused by the plume masking FRP retrievals, incorrect fire

shape or size, variability of burning with vegetation type, or uncertainty in converting between

radiant and convective heat fluxes (Paugam et al., 2016; Val Martin et al., 2012; Freeborn et al.,

2008).

Here, we use aircraft and model data from the NASA-NOAA Fire Influence on Regional

to Global Environments and Air Quality (FIREX-AQ) field campaign to evaluate the Freitas

model in developed plumes. We show that the Freitas model, implemented in the Weather

Research and Forecasting Coupled with Chemistry (WRF-Chem) model and the High Resolution

Rapid Refresh Smoke (HRRR-Smoke) model, overpredicts injection in comparison with

airborne lidar measurements. Injection occurs in 35% of observed plumes and in 80% and 95%

of WRF-Chem and HRRR-Smoke plumes, respectively. When the observed boundary layer

height is used to evaluate injection in the both models, injection occurs in 59% of the

WRF-Chem plumes and 72% of the HRRR-Smoke plumes. Comparing the fire radiant energy

flux (FRE flux, 2.2.7) observed by the Moderate Resolution Imaging Spectroradiometer

(MODIS)-Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

airborne simulator (MASTER) instrument with those assumed by WRF-Chem and

HRRR-Smoke shows that the models overestimate FRE fluxes by up to a factor of 25

(0.55 kWm−2 in the observations and 0.29–13.86 kWm−2 in the models). When WRF-Chem total

heat fluxes were reduced so radiant fractions matched observed FRE fluxes, the occurrence of

false positives became less common, and further improvement was achieved when the

WRF-Chem sensitivity simulations were evaluated using the observed PBL as the injection
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boundary. This effect was strongest for forest fires, which are assumed by the WRF-Chem

implementation of the Freitas model to have the highest heat fluxes (Freitas et al., 2007).

2.2 Data and Methods

2.2.1 Campaign data

The FIREX-AQ field campaign targeted smoke plumes using the DC-8 airborne

laboratory. This dataset contains high-resolution measurements of plume backscatter, FRP, fire

area, and fuels burned for each fire. In addition, WRF-Chem and HRRR-Smoke simulations

implement slightly different versions of the Freitas parameterization. WRF-Chem was run in

near-real time to support flight planning efforts and HRRR-Smoke is a NOAA operational

system.

An airborne Differential Absorption Lidar-High Spectral Resolution Lidar (DIAL-HSRL,

Hair et al., 2008) provided aerosol backscatter coefficient at 532 nm (vertical resolution = 30 m,

horizontal resolution = 10 s) to evaluate the plume injection height. FRP, area burned, and fire

phase measurements (flaming, smoldering, or saturated) were taken using the MASTER

multispectral imager (Hook et al., 2001). For each fire, the campaign fuel category was

determined as the dominant fuel category according to the Fuels Characteristic Classification

System (FCCS), a high-resolution dataset built using remote sensing and in-situ measurements of

land cover and fuel loading. In this study, FCCS fuel categories were mapped to the fuel

categories assumed by the MODIS-International Geosphere Biosphere Programme (IGBP,

Prichard et al., 2013; Strahler et al., 1999). A comparison of the WRF-Chem modeled and

observed fuels for FIREX-AQ fires (Figure A58) shows that the WRF-Chem model uses the

correct fuel type in 47% of the cases. Since the fuel type in a WRF-Chem grid cell prescribes the

Freitas model input heat flux, errors in model fuel can lead to the heat flux being over or
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underestimated with respect to heat flux that would be assumed had the observed fuel been used

to determine the heat flux. A majority of the errors (present in 39% of the cases) lead to a lower

prescribed heat flux than would be prescribed if the observed fuels had been used. In spite of this

heat flux estimates are still too high.

2.2.2 MASTER algorithm and pixel saturation

In this study, FRP retrievals and combustion phase classes from the MASTER instrument

are used to evaluate the models’ assumptions of fire heat flux. MASTER pixels can vary in

horizontal resolution based on the aircraft distance from the surface, and resolution varied

between 10-30m during FIREX-AQ. with Fire detection from MASTER is based on the

contextual algorithm concept originally developed for the MODIS instruments aboard the Terra

and Aqua satellites (Giglio et al., 2003). Regarding the retrieval of FRP, previous studies indicate

that 98% of the variance in fire radiative energy is explained by variations in the emitted

mid-infrared (MIR) spectral radiance at ~4 μm (Wooster et al., 2003). Thus, retrieval of FRP

from MASTER observations is based on the MIR radiance approach (Wooster et al., 2005) using

the MASTER 3.91 μm spectral band (hereafter 4 µm). To classify MASTER-detected fire pixels

by combustion phase (i.e., flaming and smoldering), efforts to derive and apply constant

thresholds were unsuccessful, as the range of values representing these phases varied widely

from scene to scene, partly because of differences in the fire regimes and variations of pixel

fractions with different fire phases, and partly because of complex instrument radiometric

calibration dynamics beyond the scope of this discussion. Thus, an approach similar to the

contextual fire detection algorithm (Giglio et al., 2003) is used to accomplish this classification,

with thresholds empirically derived from each scene of the MASTER imagery. Flaming pixels

were determined as fire pixels for which the 4 µm brightness temperature is higher than 3
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standard deviations above the background mean 4 µm brightness temperature and for which the

difference between the 4 and 11 µm brightness temperatures exceeds 100 K. Smoldering pixels

were determined as fire pixels for which the 4 µm brightness temperature is higher than 2

standard deviations above the background mean 4 µm brightness temperature and for which the

11 µm brightness temperature is higher than 1 standard deviation above the mean background

11 µm brightness temperature. Since some of the more intense fire pixels were found to be

saturated due to the limited dynamic range of the MASTER 4 µm fire channel relative to the high

temperatures that can be attained by pixels which are fully covered by flames (up to 1500 K),

saturated pixels were determined using the 4 µm radiance values. Given the scene with 20%

valid background pixels, these pixels with 4 µm radiance values >99.5% of max value are

flagged as saturated. These maximum values may vary from scene to scene and even scan line to

scan line, but in a given scan line, they are generally equal (within 0.005%). When saturation

occurs, clusters of pixels around saturated pixels tend to have the same 4 µm radiance value.

These pixels are also flagged as saturated, which is a limitation of this method.

Preliminary analysis (Figure A57) showed that MASTER FRP is comparable to FRP

from MODIS, VIIRS, and the Geostationary Operational Environmental Satellite-Advanced

Baseline Imager (GOES-ABI). MASTER tends to underpredict VIIRS FRP measurements

(bias = −66.11 MW), and overpredict MODIS (bias = 379.6 MW). In the MODIS plot, the strong

association (R2 = 0.97) is driven in large part by the outlier, but removing the outlier still results

in MASTER overpredicting MODIS (R2 = 0.72, bias = 190,215.3 MW, slope = 1.39). See Figure

A55 for the full comparison. Note that not all cases where we have plumes have associated

MASTER data.

2.2.3 Modeling systems
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In this study, we compared the Freitas plume rise parameterization in WRF-Chem and

HRRR-Smoke, the details of each are listed in Table 2.1. The relevant differences for this

research are in the way each model deals with heat flux and fire size. WRF-Chem assumes a

constant fire size of 0.25 km2 per model grid cell and fuel-dependent total heat fluxes that range

from 4.4 kWm−2 for grass fires to 80 kWm−2 for forest fires. HRRR-Smoke, on the other hand,

assumes fuel-dependent FRE fluxes which range from 3.44−4.76 kWm−2 for all fuel types and

uses these constants along with measurements of FRP to estimate fire size. Since HRRR-Smoke

assumes FRE fluxes, it does an internal conversion to total heat flux (including radiant,

convective, and conductive) using a factor of 1.6 (Paugam et al., 2015, McCarter & Broido,

1965). In both models, convective energy is computed using prescribed or calculated total heat

flux based on the fuel category and assuming that convective energy is 55% of the total heat flux

(McCarter & Broido, 1965). Both models assume that only flaming emissions undergo plume

rise and assume a fixed fraction of emissions are flaming. The remaining fraction of the

emissions are released at the surface (Table 2.1, “Flamig Fraction of Emissions Assumption”).

The plume rise module is run every 30 min of model time.
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Table 2.1 Summary of model details. The first column lists model details for WRF-Chem,
the second feature lists model details for HRRR-Smoke, and the third column lists model
features for the 1D Freitas plume rise model. References point to those in (Thapa et al., 2022).

The Quick Fire Emissions Dataset (QFED) emissions used in WRF-Chem were regridded

to the model resolution by assigning emissions to the closest grid cell. The QFED daily

emissions were regridded to hourly resolution by assigning a percentage of the daily emissions to

each hour, with the peak of the diurnal cycle occurring at 16:00 LT and containing 17% of the

daily emissions. In addition, this diurnal cycle assumes that a majority of the emissions are

released during daytime hours (around 10:00–19:00 LT) and less than 1% of the daily emissions

are released per hour during nighttime hours (Western Regional Air Partnership, 2002).

2.2.4 Sampling method
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Figure A1–A51 show the 51 transects that were selected for analysis in this work.

Observations were taken during transects wherein the aircraft flew over the fire source and

upwind or downwind along the longest axis of the plume. Modeled columns of particulate matter

less than 2.5 microns in diameter (PM2.5) concentration were extracted along the flight path,

considering fires that were slightly shifted in space and time in WRF-Chem relative to

observations (Figure A59–A60). All cross sections are shown in Figure A1–A51 and Tables

A1–A2 indicate injection behavior of all samples. Terminal nodes of the classification (Figure

2.1g) are used to determine which PBL to evaluate injection against and to compare with the

DIAL-HSRL PBLH.

In a few cases, the aircraft observed fires which are not present in the emissions inventory

driving the HRRR-Smoke model. HRRR-smoke does not interpolate fires with missing satellite

detections, which means that FRP was not ingested into the model and thus fire emissions and

plume height are never computed for those fires. This issue impacted the Shady fire (observed

July 24, 2019) and the Tucker Fire (observed July 29, 2019). These missing detections are likely

due to clouds in the area, which could lead to missed satellite FRP retrievals (Tucker), or

persistent clouds dampening fire behavior and leading to missed detections even after the clouds

cleared (Shady). These missing HRRR-Smoke cases are present in the WRF-Chem dataset,

because the QFED emissions inventory has the capability to estimate emissions for

cloud-covered regions (Darmenov and da Silva, 2015). Because these cases have WRF-Chem

curtain plots available, they are present in our analysis, but for the HRRR-Smoke samples, the

injection behavior has been labeled as not a number (nan, Table A1–A2).
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Figure 2.1: Selected transects with their corresponding injection behavior identified, and
decision tree for classifying injections. Vertical profiles of a DIAL-HSRL backscatter, b
HRRR-Smoke PM2.5, and c WRF-Chem PM2.5 for the Shady Fire on 2019-07-26
01:25-01:35 UTC. Vertical profiles of d DIAL-HSRL backscatter, e HRRR-Smoke PM2.5, and
f WRF-Chem PM2.5 for the North Hills Fire on 2019-07-29 22:40-22:55 UTC. g The decision
tree that is used to classify each case. In the terminal nodes (red and green boxes)
representative cases for each path ending at that terminal node are given in parentheses. Open
circles in (a) and (d) denote out of plume boundary layer height, and filled circles denote
plume top heights. Light gray solid lines and short dashed gray lines in (b, c) and (e, f) denote
the modeled PBLH and mixed layer heights derived from vertical PM2.5 gradients, respectively.
For WRF-Chem, the mixed layer height at 4PM LT, the time when the mixed layer is thickest,
is shown the long dashed dark gray line. 5 min of flight time corresponds to 50–70 km.

In about half of the WRF-Chem cases, modeled fires appear shifted with respect to

observations. When sampling the model in the location of the flight, this appears as missing

portions of the plume (Figure A59a) and only capturing the plume edge (Figure A59d). This
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apparent shift is a result of the resolution differences between the WRF-Chem model (4 km) and

the QFED emissions inventory (0.1-degree, ~12 km). As each QFED sample is regridded to a

single WRF-Chem grid cell, a shift in fire location can result. HRRR-Smoke is not subject to this

issue because it is run at 3 km resolution and ingests 375 m VIIRS FRP to calculate and spatially

allocate fire emissions, area, and plume rise (Ahmadov et al., 2017).

Rather than exclude these cases and lose half our sample size in the analysis, we

implemented spatial shifts in the sampling algorithm to assure the model was sampled over the

densest part of the plume. The shift distance is defined as the distance between the flight’s

closest approach to the modeled fire location and the modeled fire location itself, which is

defined as the center of mass of the emissions in a 9 × 9 set of grid boxes around the observed

fire location (FIREX-AQ data repository). The shift distance is then used to translate the flight

track in space, and the model is sampled at these new locations. This assumes that the shifts are

small enough that model meteorology and plume rise drivers do not change over the relatively

small spatial range of the shifts (shifts are often a fraction of a degree). This substantially

increased the number of comparisons between the model and the observations. However, it is

acknowledged that shifting may result in higher error when the fuel type changes over the

distance shifted, as this impacts the plume rise calculation (Freitas et al., 2007). Figure A59c, d

(red line) shows how shifting allows us to sample the model in the location where plume rise

occurs and how this impacts model performance.

In two cases, poor model-observation agreement was found for a different reason. In

Figure A60b, the fire plume is not evident in the WRF-Chem vertical profile of PM2.5, and

Figure A60a shows that this is due to QFED emissions not being present in the model at the

sampled time. As noted above, QFED daily emissions are assigned hourly values based on UTC
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time and each day (at 01 UTC) a new set of emissions is imported to QFED which tends to be

around 5–6 pm local time for the FIREX-AQ domain. This leads to discontinuities in the

emissions diurnal cycle which typically coincided with the DC-8 observing the fire plume.

Therefore, a time shift was also implemented for the two cases where this occurred. In these

cases, the model was sampled at a timestep one hour later than the time the DC-8 overpassed the

plume. Similar to the spatial shift, the time shift assumes no change in meteorology (i.e., wind

direction) from one timestep to the next. Although in reality meteorology can change drastically

over the course of an hour, the timing of the overpasses (within 20 or 30 min of the next hour) we

are able to neglect some of this variability. Figure A60c–d shows how sampling the WRF-Chem

model one hour later brings us to a time where model emissions are present, and plume rise

behavior can be evaluated.

2.2.5 Classifying injection by visual inspection

We define injection as a stratified layer of smoke above the PBL or residual layer above

the fire whose stratified shape is maintained for at least five minutes (50–70 km based on aircraft

groundspeed) of downwind transport. This definition is motivated by the differences between

injected and non-injected smoke and the tendency of injected smoke to aggregate in free

tropospheric stable layers. With this definition, injections are independent of the presence of PBL

smoke. Examples of injection are shown in Figure 2.1a–c, e, and examples of non-injection are

shown in Figure 2.1d, f.

In the DIAL-HSRL curtains (Figure 2.1a, d), backscatter values of 1–56 Mm−1 sr−1

(yellow-dark red, black filled circles) represent smoke, and values of 0.18–0.56 Mm−1 sr−1 (dark

green-light green, black open circles) represent the out-of-plume aerosol mixed layer. During the

day, this aerosol mixed layer is roughly coincident with the PBL, and after sunset the aerosol
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mixed layer retains the day’s maximum PBL height. Since the presence of fire influences the

mixed layer height observed by the DIAL-HSRL, upwind and downwind locations where the

PBLH remained relatively stable were chosen as the out of plume region (black open circles in

1a–3f). In both models (Figure 2.1b–c, e–f), PM2.5 values of 5.6–1000 µg m−3 (light blue-dark

red) are assumed to be smoke. Determining the modeled out-of-plume PBL height is more

complex due to the fact that WRF-Chem simulates background aerosols and HRRR-Smoke does

not. Therefore, across all model cases, we use the out-of-plume modeled PBL height or the

potential temperature-derived mixed layer height (following Ye et al., 2021) at 4PM local time

(light gray solid or dark gray dashed lines in Figure 2.1b–c, e–f in the location of black open

circles) to classify injection depending on if injection is computed with respect to a daytime

PBLH or a nighttime residual layer (Figure 2.1g). This methodology evaluates modeled injection

with respect to the observed and modeled PBL and observed injection with respect to the

observed PBL. This is different from previous studies that use modeled PBL heights only as the

standard to judge injection (Kahn et al., 2008). Comparing lidar backscatter curtains with

modeled PM2.5 curtains is sufficient for our purposes because smoky regions and non-smoky

regions are visually distinct from each other and have a satisfactory degree of spatial coincidence

in both the backscatter and the PM2.5 curtains.

Figure 2.1g shows the decision tree-style process that was applied to all cases to

determine whether or not injection occurred. The first split in the tree (node A) asks what

fraction of the topmost layer of smoke is above the out-of-plume PBLH. Node A identifies cases

where smoke remains well-mixed throughout the local PBL (Figure 2.1d) and is especially useful

for evaluating the models (i.e., Figure 2.1f) as the Freitas model injects flaming emissions at the

height where the simulated plume stops rising but for a range of user-prescribed heat fluxes
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(Freitas et al., 2007), allowing the possibility for plumes to be injected into multiple vertical

levels that could be below the PBLH.

For cases where a majority of the lofted plume resides in the free troposphere, node B1

indicates that downwind behavior will play a role in whether or not plumes will be classified as

injections. If plumes maintain their stratified shape (i.e., in all panels of Figure 2.1a), then they

are considered injections. This comes with the caveat (node F1) that smoke in the residual layer,

although it may appear stratified in shape, is not considered to be an injection in this work. These

cases occur when fires were observed after dark, so the daytime convective PBL had been

replaced with a less turbulent residual layer, leading to the stratified structure that likely will

have more localized air quality impacts the day after if similar PBLH is reached. Cases where the

plume mixes with the PBL within 5 min flight time are then considered to be non-injections

(nodes C2, E2). If mixing occurs after 5 min of flight time, the case is considered an injection

(node E1).

2.2.6 Bootstrapping

Some fires were observed multiple times in a single day, which can bias the data towards

those fires. To mitigate such a bias, a bootstrapping approach was used that generates box and

whisker plots by subsampling the dataset such that only one aircraft overpass per fire was

selected per day. Final boxplots (Figure 2.2 and Figure A50–A52) were generated using the

average statistics of all box plots from 2000 such iterations. The false non-injection category did

not contain enough cases to include meaningful statistics for either model. HRRR-Smoke did not

have enough true non-injection cases to generate statistics, but the true and false injection

distributions are similar to the corresponding WRF-Chem distributions (i.e., Figure 2.2).
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2.2.7 FRE flux computation

Fire radiative energy (FRE) flux (units of kJ/m2/s) was chosen as the standard quantity

with which to compare heat fluxes across the models and observations, and it is derived from the

measurements as follows. First, the FRP is summed over all the MASTER pixels present in a

single scene and all master pixels are counted, yielding the total FRP and the number of pixels in

the scene. Next, the sizes of the MASTER pixels are derived from the altitude of the aircraft

above the terrain using a linear relationship (MASTER flight planning), and a fire area is

computed as the product of the per-pixel fire area and the total number of pixels. FRE flux is

then the slope of the linear fit FRP = m·AREA, which in the main text is calculated on the entire

dataset as well as subsets. This analysis can be done using smoldering pixels, flaming and

saturated pixels, or all pixels.

HRRR-Smoke reports heat fluxes as area-to-FRP ratios which are reported as

fuel-dependent climatological values, so we take their inverse to translate them into FRE fluxes.

WRF-Chem uses the default convective heat fluxes assumed by the Freitas model, which are

assumed to be 0.55 of the total heat fluxes (McCarter and Broido, 1965; Freitas et al., 2007). The

resulting convective heat flux is turned into a FRE flux using measured radiant and convective

fractions (Freeborn et al., 2008). These radiant and convective fractions were measured at

~3.9 µm, which is similar to wavelengths used by MASTER to measure FRP. The conversion

factor is as follows: radiant fraction/convective fraction = 0.12/0.51 = 0.24 (Freeborn et al.,

2008). Radiant and convective fraction measurements contain considerable uncertainty, and two

instruments were used to measure the radiant fraction (Freeborn et al., 2008). In order to produce

the WRF-Chem ranges in Figure 2.3, error propagation calculations were performed and the

range including the errors from both radiant fraction measurements are plotted. We can also use
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error propagation to get a range of the radiant fraction/convective fraction ratio, which yields

0.239 ± 0.076 and 0.234 ± 0.07 when the different instruments are used to estimate the radiant

fraction (Freeborn et al., 2008). The inverse of these calculations can be done to obtain total heat

fluxes from measured FRE fluxes. This produces analogous results to the ones described above

(“Results”, Assessing heat flux assumptions).

2.3 Results

2.3.1 Model performance on smoke injection

Table 2.2 shows the injection behavior of modeled and observed smoke plume profiles

using the observed planetary boundary layer height (PBLH) to classify the observations and the

modeled PBLH to classify the models (see “Methods”, Figure A1–A51, Table A1–A3).

Injections occur in 35% of observed cases, 80% of WRF-Chem cases, and 95% of HRRR-Smoke

cases. WRF-Chem and HRRR-Smoke have accuracies of 0.51 and 0.44, respectively. Both

models tend to capture observed injections well, with WRF-Chem and HRRR-Smoke having

true positive rates of 0.94 and 1.0, respectively. However, WRF-Chem and HRRR-Smoke also

exhibit false positive rates of 0.73 and 0.92, respectively. For WRF-Chem, in cases where the

plumes are within the uncertainty range of the modeled PBLH (i.e., cases which exhibit different

injection behavior when the modeled and observed PBLHs are used to evaluate injection, see

next section), are excluded from the analysis, then accuracy is 0.67, the true positive rate is 1.0,

and the false positive rate is 0.61. This only slightly improves on the error achieved by

WRF-Chem when all cases are used. These statistics indicate that overprediction of injection

leads to the high true positive rate, low accuracy error type present in both models, consistent

with previous work which quantified uncertainty in the Freitas model (Sessions et al., 2011; Val

Martin et al., 2012).
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Table 2.2 Confusion matrices for comparing observed and modeled injection behavior
counts. Counts of injection behavior are shown for HRRR-Smoke using the HRRR-Smoke
PBL height to evaluate injection, HRRR-Smoke using the DIAL-HSRL PBL height to
evaluate injection, WRF-Chem using the WRF-Chem PBL height to evaluate injection, and
WRF-Chem when the DIAL-HSRL PBL height is used to evaluate injection. Columns are
labeled with forecasted plume behavior and rows are labeled with observed plume behavior.
TN stands for true negative, where non-injection was forecasted and observed. Similarly, TP
stands for true positive. FN stands for false negative, where injection was not forecast but did
occur. FP stands for false positive, where injection was forecast but did not occur.
HRRR-Smoke has fewer total cases than WRF-Chem due to certain fires missing in the model
(see “Methods”, Sampling Method).

2.3.2 Assessing modeled planetary boundary layer height
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Underestimation of the PBLH is a known problem with the WRF-Chem model (X.-M.

Hu et al., 2010; Shin et al., 2012) that may cause plumes placed at the correct height to be

misidentified as injections into the free troposphere. Figure 2.2a and e shows the bias on the

modeled PBLH for the WRF-Chem and HRRR-Smoke models, respectively. For the false

positive cases, WRF-Chem tends to underpredict the PBLH by 500–1000 m, and HRRR-Smoke

tends to underpredict the PBLH by <500 m. Both models show large spread and even contain

cases where the models overpredict PBLH and false injection still occurs. In addition, the

WRF-Chem model correctly captures non-injections for generally the most underpredicted

PBLHs.

Next, we re-classify injection behavior for WRF-Chem and HRRR-Smoke using the

observed PBLH (Table 2). There are 12 cases that get reassigned to the true negative category,

two that get reassigned to false positive, and one that gets reassigned to false negative. For this

evaluation, injection occurs in 59% of cases, resulting in an accuracy of 0.70, a true positive rate

of 0.89, and a false positive rate of 0.39, indicating better model performance. When the

observed PBLH was used to evaluate the injection behavior of HRRR-Smoke, the injection rate

was 59%, the accuracy was 0.53, the true positive rate was 0.82, and the false positive rate was

0.65. Therefore, we conclude that for WRF-Chem, uncertainties in the boundary layer likely do

contribute to the overprediction of injection. However, this comes with the caveat that if

WRF-Chem could correctly predict PBLH, then it is possible that plume heights might change

(Figure A52). We ran a standalone version of the Freitas plume rise scheme based on simulated

meteorology for cases where WRF-Chem underpredicted the PBLH and HRRR-Smoke

accurately captured it as determined by overlap in the interquartile ranges of the observed and

modeled PBLH distributions (Table 1, Figure A52). It was found that plume height and plume
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injection behavior have little sensitivity to variations in PBLH present in the WRF-Chem and

HRRR-Smoke meteorology used to drive the 1-d model for the same fire cases (Figure A53, note

percent error on plume heights do not exceed 8.8%). For HRRR-Smoke, which runs an newer

PBL scheme (Table 1), uncertainties in the boundary layer are likely smaller and play less of a

role in generating false injections.

Figure 2.2: Box and whisker plots of model parameters and observations grouped by
WRF-Chem and HRRR-Smoke injection behavior. a, e Comparison of modeled transect
median PBLH with observed transect median PBLH, b, f average FRE flux, c, g savanna and
grassland fraction, and d, h terrain height. Red horizontal line denotes medians, blue boxes
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denote the interquartile ranges, and whiskers denote the 1.5x interquartile range. TP, FP, and
FN are defined as in Table 2.2 caption. a–d Refer to the WRF-Chem model and e–h refer to
the HRRR-Smoke model.

2.3.3 Associating model performance with additional fire characteristics

Figure 2.2 shows distributions of three additional variables that can help explain the

injection behavior of the WRF-Chem and HRRR-Smoke models: average of the model’s

assumed FRE fluxes (see “Methods”, 2b, 2f), model fuel type (2c, 2g), and terrain height (2d,

2h). Since FRE flux is assumed to depend on fuel type in the model, assumed FRE flux and fuel

type are strongly correlated with each other. Other variables showing strong correlations with

each other include free tropospheric and boundary layer stability, and terrain complexity and heat

flux in the HRR-Smoke model (Figure A54–A55). The rest of the variables are at most

moderately correlated with each other (r2 < 0.46). Box plots were generated using bootstrapping

to avoid sampling bias towards any single fire (“Methods”).

Figure 2.2b and f imply that modeled FRE fluxes are likely a strong contributing factor to

the overprediction of injection by both models. WRF-Chem captures non-injections correctly

when a lower FRE flux is prescribed and either overpredicts or captures injections for larger FRE

fluxes. In fact, the difference in FRE flux between correct non-injection and false injection cases

(which in the observations are showing the same non-injection behavior) is statistically

significant (p-value = 0.042). While HRRR-Smoke did not contain enough correct non-injection

cases for a meaningful comparison, HRRR-Smoke assumes similar FRE fluxes for all fuel types,

and these values are comparable with what WRF-Chem assumes for cases where false injection

is forecasted. Therefore, we may infer that these high heat fluxes contribute to HRRR-Smoke

overpredicting injections as well.
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Capturing non-injections correctly tends to occur in WRF-Chem for larger fractions of

savanna and grasslands (Figure 2.2c), which is consistent as WRF-Chem prescribes lower heat

fluxes for savanna and grassland than for forests (Section 2.2.7). Similarly, there is no clear

relationship for HRRR-Smoke regarding fuel type as FRE fluxes assumed for all fuels are similar

and within the range that WRF-Chem assumes for forest. This indicates that the fuel-dependent

heat fluxes assumed by the models (Section 2.2.7) , specifically those corresponding to forest

fuels in WRF-Chem and all fuels in HRRR-Smoke, could be high and lead to an overprediction

of injection. Other variables such as time of day, static stability, and terrain complexity were

investigated on their role on modeled injection behavior but none resulted in being a clear

explanatory variable (Figure A54–A55).

Figure 2.2d and h shows that false injections occur at higher terrain elevation than correct

injections and that this difference is statistically significant across both models (p-values = 0.031

and 0.015). In addition, Figure 2.2d shows that false injections occur at higher elevations than

correct non-injections. Likely, this means that the plume rise scheme’s input heat fluxes or

meteorology are more uncertain in areas of higher (Figure 2.2d, h) and more complex (Figure

A54b, A55b) terrain. The Freitas model is also limited in that it is 1-dimensional and thus cannot

simulate interactions between neighboring model columns.

2.3.4 Assessing heat flux assumptions

Figure 2.3a provides an observational constraint on the FRE flux. Scatter points show

observations of total FRP versus flaming fire area from the MASTER instrument for each

transect and shapes denote the campaign fuel category for each MASTER overpass. Colored

regions denote the FRE flux assumptions made by the models. Active fire area is computed for

flaming and saturated pixels only, assuming that these fire phases primarily contribute to plume
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injection (Freitas et al., 2007). FRP is computed for all categories, as this is what satellites

observe. Plots showing fire size and FRP for different combustion phases show similar

qualitative results (Figure A56). MASTER, WRF-Chem, and HRRR-Smoke all track heat fluxes

slightly differently, so for ease of comparison all have been converted into FRE flux (see

“Methods”).

Figure 2.3a shows that the best fit for the observed FRE flux (0.55 kWm−2) is within the

range of the WRF-Chem savanna (0.40–3.09 kWm−2) and grassland (0.29–0.57 kWm−2) FRE

fluxes and is not within the range the WRF-Chem forest FRE flux (2.69–13.86 kWm−2) or any

assumed HRRR-Smoke FRE fluxes (3.44–4.76 kWm−2). Put another way, WRF-Chem and

HRRR-Smoke assume FRE fluxes equal to 0.5–25 and 6–9 times the average observed FRE flux,

respectively. This is consistent with the general lack of overlap between the scatter points and the

yellow and orange colored bars in Figure 2.3a. Thus, this provides observational evidence for the

hypothesis that the assumed heat fluxes that get used in the Freitas model, specially for forest

fuels, are likely too large. Since these heat fluxes are directly used to calculate initial plume

buoyancy, this leads to simulated plumes which are more easily lofted into the free troposphere.

A caveat of this finding is that a fraction of the flaming pixels retrieved by MASTER are

flagged as saturated, and thus FRP could be underpredicted, affecting our conclusions.

Comparing MASTER to satellite observations (which are less prone to saturation due to larger

pixel footprint) shows that MASTER tends to provide FRP estimates in between both MODIS

(slope = 1.65) and the Visible Infrared Imaging Radiometer Suite (VIIRS, slope = 0.79) (Figure

A57). If we assume that VIIRS retrievals are closer to reality, we can use the slope of the scatter

plot to correct MASTER retrievals, yielding an average observed FRE flux of 0.7 kWm−2 which
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does not change our findings. Therefore, we do not expect saturation of MASTER to influence

our final result to a large degree.

Figure 2.3: Comparison of observed FRE flux and assumed FRE fluxes for WRF-Chem
and HRRR-Smoke. a Scatter plot of total FRP and flaming and saturated fire area from
MASTER for each fire overpass (colored diamonds, stars, triangles). Black line is a linear fit
to the MASTER points of the form y = mx. Colored bars represent the ranges of FRE flux
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based on models’ assumptions for convective heat flux and uncertainty in converting between
convective and radiant heat flux (see “Methods”). FRE flux increases toward the upper left.
Shapes represent the campaign fuel category. Colors of diamonds, stars, and triangles,
represent the fractional contribution of flaming combustion (including saturated pixels) to total
FRP. Other panels show box and whisker plots of b observed FRP and c observed fraction of
FRP due to flaming combustion, grouped by observed injection behavior. Box and whisker
elements are as in Figure 2.2 caption

To investigate drivers of variability of FRE flux, FRE flux was calculated for MASTER

points grouped by the dominant campaign fuel category (see “Methods”) and by the flaming

fraction of FRP. This resulted in FRE flux of 0.55 kWm−2 for forest fires, 0.51 kWm−2 for

savanna fires, 0.59 kWm−2 for grassland fires, 0.56 kWm−2 for >85% flaming fraction, and

0.36 kWm−2 for <85% flaming fraction. FRE flux is generally constant across fuel type and

appears to vary more with fire combustion phase. In other words, given the right spread and fuel

consumption conditions, forest and grass fires may burn with the same intensity, which is

consistent with previous studies (Stocks & Kauffman, 1997). Thus, heat fluxes used to drive the

Fretias model should be small, relatively constant across fuel types, and perhaps more closely

associated with fire weather.

Figure 2.3a supports the idea that model heat flux assumptions assign too much buoyant

energy per unit area, which is likely the primary contributor to injection overprediction. The

overprediction occurs even when a small fire size is assumed in WRF-Chem (0.25 km2 per grid

cell), further supporting the idea that the models assume too much fire energy per unit area. In

addition, WRF-Chem tends to correctly identify non-injection events in grass and

savanna-dominated fires (Figure 2.2b), as these fires have the lowest modeled heat flux (Freitas

et al., 2007). FRE flux used in HRRR-Smoke for all fuel types are generally in the range of FRE

fluxes for forest specified in Freitas et al., (2007), consistent with HRRR-Smoke showing a high

rate of false injection regardless of fuel type (Table 2). HRRR-Smoke’s internal calculation of
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total heat flux from FRE flux (see “Methods”), likely keeps plume top heights from being

unphysically high. Thus, heat fluxes used to drive the Freitas model should be updated to be

consistent with the smaller observed FRE fluxes. The linear relationship between FRP and

burned area (black solid line) is consistent across several orders of magnitude which can be used

to update the HRRR-Smoke scheme where active fire area is a function of FRP.

Figure 2.3b shows observed injection behavior as a function of observed FRP showing a

near-significant trend (p-value = 0.063) of injections happening at higher FRP. Thus, even though

the heat fluxes need to be updated in HRRR-Smoke, there is value in driving plume injection

with observed FRP, as is already implemented in HRRR-Smoke (Section 2.2.3) and other

systems (e.g., Sofiev et al., 2012). MASTER FRP is highly correlated to burned area (R2 = 0.96),

and thus approaches using observed burned area to drive plume rise would also be appropriate.

On the other hand, Figure 2.3c shows that observed injection behavior has little association with

the flaming fraction of MASTER pixels. However, flaming fraction does play an indirect role, as

higher flaming fractions are associated with higher FRE fluxes, and thus heat flux could be

implemented as a function of flaming fraction if this is available from observations.

2.3.5 Sensitivity analysis

The final step in this analysis was to re-run the WRF-Chem model for selected cases with

an adjusted heat flux based on the observed average FRE flux of 0.55 kWm−2 (total heat flux of

3.4–5.3 kWm−2). The sensitivity test was run on the WRF-Chem false injections, and a total of 24

of the 51 cases were re-evaluated. These cases are shown as a fourth panel in the relevant

transects in Figure A1–A51. WRF-Chem model setup for the sensitivity simulations is as shown

in Table 2.1, and HRRR-Smoke is not included in the sensitivity analysis as it was being run in

only as a real-time forecast product for the FIREX-AQ period.
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Of the 24 cases which were re-run with updated heat fluxes, 18 remained false injections

and 6 were re-classified correctly as non-injections. This yields an improved false positive rate of

0.75, given that the initial false positive rate of this subset was 1. If injection behavior is

evaluated using the observed PBLH as the injection boundary, then 7 cases remain false positive

and 17 cases become correctly re-classified as non-injections for a false positive rate of the

subset equal to 0.29. The sensitivity analysis shows that both an accurate boundary layer and an

accurate heat flux are needed to correctly model injection behavior.

On average across these 24 cases, in-plume median mixed layer height (a proxy for

smoke top height, Ye et al., 2021) decreased by 455 m with the inclusion of more realistic heat

fluxes. Grouped by model fuel category, this corresponds to a 687 m decrease for extratropical

forest fires (14 cases), a 141 m decrease for savanna fires (7 cases), a 20 m decrease for grass

fires (3 cases). Of the six cases that were re-classified as non-injections with respect to the

WRF-Chem PBLH, 5 had extratropical forest as their dominant model fuel category and 1 was a

savanna fire. All but one saw a reduction in the median in-plume smoke top height (average

decrease of 506 m across the 6 cases). Of the 18 cases which remained injections, 9 were

extratropical forest-dominated, 6 were savanna-dominated, and 3 were grassland-dominated.

Using heat fluxes and boundary layers that are in line with observed values reduces the

occurrence of false positives and reduces mean smoke top height for the WRF-Chem model.

This effect is consistent with other studies which have shown that modeled plume top heights

decrease in proportion to decreasing heat flux values (Val Martin et al., 2012), with the fact that

the Freitas model assumes the highest heat flux values for forest fires (Freitas et al., 2007), and

with studies that have looked at the underprediction of the PBLH by WRF-Chem (X.-M. Hu et

al., 2010; Shin et al., 2012). While we note that classifying injection behavior with respect to the
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observed boundary layer does improve model performance, further improvements on

WRF-Chem PBLH are expected by using more recent versions of the model (the one used here

dates to 2014) which are more consistent with the HRRR-Smoke model’s reduced biases in

PBLH.

2.4. Discussion

We compared smoke injection behavior in the WRF-Chem and HRRR-Smoke models

against airborne lidar observations and found that both models tend to overpredict injection

behavior. Unrealistically high heat fluxes used to drive buoyancy of plumes is identified as a

likely contributor to the high rate of false injections in both models, and underprediction of

PBLH is identified as a second contributor to the high rate of false injections in the WRF-Chem

model. Observations of FRP and fire area from the MASTER instrument provide an

observational constraint on heat flux, which we used to determine that the assumed FRE fluxes

in WRF-Chem (HRRR-Smoke) are generally higher than observed by a factor of 0.5–25 (6–9).

The observations mainly fell within the ranges of FRE flux assumed in WRF-Chem for grassland

and savanna fires (average FRE flux = 0.55 kWm−2), consistent with WRF-Chem correctly

predicting non-injections for high fractions of grassland and with HRRR-Smoke predicting a

high rate of false positives. FRE flux was shown to vary weakly with fuel type and more strongly

with fraction of FRP due to flaming combustion. Adjusting the heat fluxes used in WRF-Chem

based on field data partially improves the overprediction behavior that dominated the error in this

model, and further improvement is achieved when the model injection behavior is evaluated

using the observed PBLH as the injection boundary. Sensitivity tests for HRRR-Smoke were not

performed, but we hypothesize that reducing heat fluxes will improve injection representation,
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although this effect may be somewhat damped by HRRR-Smoke’s internal calculation of total

heat flux.

The FIREX-AQ dataset we used is limited in that it targets only Western United States

wildfires during the relatively normal 2019 fire season. In addition, due to the nature of

observing wildfire smoke with an aircraft, more intense and lofted plumes were preferred by the

flight planners. In spite of these limitations, the western FIREX-AQ dataset contains a range of

fire sizes, injection behaviors, and fuel types (Fig. 2.3a). In addition, these results are consistent

with studies which used satellites to evaluate plume rise (Sessions et al., 2011; Val Martin et al.,

2012). However, due to the limited spatial domain and its limited ecoregions and meteorological

regimes and (e.g. lack of tropical vegetation and deep PBLs), these results are most relevant for

North American wildfires.

Our results also show that heat fluxes may not be dependent on fuel in the way the Freitas

model assumes. The Freitas plume rise parameterization was originally developed for tropical

forest fires (Freitas et al., 2007; Val Martin et al., 2012), so it is possible that these constants are

tuned to this region and thus not wholly applicable to Western US wildfires.

Past studies have identified shortcomings with the Freitas model, including

underpredicting the injection height range and misidentifying injections (Val Martin et al., 2012;

Ye et al., 2021). The data available from FIREX-AQ have allowed us to pinpoint the assumed

heat fluxes and boundary layer uncertainty contributors to the known issues with the

performance of the Freitas model. We expect our results will improve smoke modeling across a

variety of disciplines, including air quality and visibility forecasting, wildfire-climate

interactions, and health impact studies.
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Chapter 3

Forecasting daily fire radiative energy using data driven methods and machine learning

techniques

An edited version of this manuscript has been accepted for publication in the Journal of

Geophysical Research-Atmospheres. Copyright (2024) Laura Hughes Thapa.

Abstract

Increasing impacts of wildfires on Western US air quality highlights the need for

forecasts of smoke emissions based on dynamic modeled wildfires. This work utilizes

knowledge of weather, fuels, topography, and firefighting, combined with machine learning and

other statistical methods, to generate 1- and 2-day forecasts of fire radiative energy (FRE) for

existing fires. The models are trained on data covering 2019 and 2021 and evaluated on data for

2020. For the 1-day (2-day) forecasts, the random forest model shows the most skill, explaining

48% (25%) of the variance in observed daily FRE when trained on all available predictors

compared to the 2% (<0%) of variance explained by persistence for the extreme fire year of

2020. The random forest model also shows improved skill in forecasting day-to-day increases

and decreases in FRE, with 28% (39%) of observed increase (decrease) days predicted, and

increase (decrease) days are identified with 62% (60%) accuracy. Error in the random forest

increases with FRE, and the random forest tends towards persistence under severe fire weather.

Sensitivity analysis shows that near-surface weather and the latest observed FRE contribute the

most to the skill of the model. When the random forest model was trained on subsets of the

training data produced by agencies (e.g. the Canadian or US Forest Services), comparable if not

better performance was achieved (1-day R2=0.39-0.48, 2-day R2=0.13-0.34). FRE is used to
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compute emissions, so these results demonstrate potential for improved fire emissions forecasts

for air quality models.

3.1 Introduction

In this work, we seek to predict fire radiative energy (FRE) for already-burning fires in a

more skillful way than assuming persistence. Although predicting ignition is an important piece

of this problem, particularly for long-term air quality forecasts, recent work has shown that

human related variables such as gross domestic product and the presence of human settlement

and cropland are key drivers for fire ignition (Mukunga et al., 2003; De Vasconcelos et al.,

2001). However, in the Western US, prescribed and agricultural burning has lagged behind the

Southeast (Burke et al., 2020), so predicting fire evolution and predicting ignition are two

somewhat decoupled problems.

In order to make FRE predictions that are more skillful than persistence, we must

understand the drivers of wildfire spread and intensity. These variables are governed by the

interactions between three sides of “the fire behavior triangle”: weather, topography, and fuel

(Countryman, 1972). First, the atmosphere can drive fire via low humidity, high temperature and

wind speed, and vertical instability (Rothermel, 1991; Srock et al., 2018). Second, fires spread

more easily in an uphill direction (Rothermel, 1972), as a steep slope allows for preheating of

fuels, but complex flows in mountainous regions may confound this relationship (Viegas, 2004).

Finally, fuel type, moisture, and loading are key components of determining the intensity of a fire

(Rothermel, 1972). The moisture of dead fuels and organic soils respond over the course of a day

to changing weather conditions (Wagner, 1987), while the moisture content of living fuels and
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organic soils can hold a 1-2 month memory of previous moisture conditions (Krueger et al.,

2022). The latter has been shown to be a good indicator of fire intensity (Sazib et al., 2022).

Currently, wildfire indices are used to inform wildfire behavior predictions, plan

firefighting strategies, and forecast fire intensity. These indices may represent one aspect of the

fire behavior triangle, such as the hot-dry-windy index (HDW) or the continuous Haines index

(CHI) which represent the effect of meteorology on wildfire (Srock et al., 2018; Pinto et al.,

2020). These indices may represent multiple aspects, such as the Canadian Forest Fire Danger

Rating System (CFFDRS), the National Fire Danger Rating System (NFDRS), or the National

Oceanic and Atmospheric Administration (NOAA) hourly wildfire potential (HWP) which

represents fuel and weather effects on wildfire (Bradshaw et al., 1984; Wagner, 1987; Text B1).

To the best of our knowledge, wildfire indices which include all aspects of the fire triangle are

rare. However, wildfire indices such as the CFFDRS Fire Weather Index (Di Giuseppe et al.,

2018; Di Giuseppe et al., 2017) and vapor pressure deficit, and/or wind speed have been used to

successfully modulate persistence-based forecasts (Graff et al., 2020) forecasts or to derive

conditional probability estimates of FRP exceedances (Hernandez et al., 2015). Additionally,

components of the NFDRS, notably the Energy Release Component, have served as inputs to

machine learning frameworks which have predicted monthly PM2.5 and daily fire perimeters

(Huot et al., 2022; Wang et al., 2022). Other fire weather indices not covered in this paper, such

as the Grassland Fire Danger Index, have shown promise for modulating climatological

predictions of fire occurrence in regions such as Sub-Saharan Africa which have a regular

burning season (Partanen & Sofiev, 2022).

In addition to the natural fire behavior triangle, firefighting may also shape the evolution

of a wildfire. Naturally occurring wildfires may be managed or suppressed to thin fuels or protect
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life and property (Young et al., 2019), and this may affect the final burned area (Hu & Ntaimo,

2009). Since burned area is correlated with both FRP and emissions (e.g., Thapa et al., 2022;

Wiedinmyer et al., 2011), we would expect containment to impact these quantities as well.

However, much of the study of firefighting as it pertains to intensity and burned area has focused

on including containment in fire spread modeling (Hu & Ntaimo, 2009), planning the most

effective containment strategies (Rodrigues et al., 2020), and understanding containment

successes and failures (Arienti et al., 2006). Only recent studies have connected containment

efforts, fire spread, and FRP (Jolly et al., 2019; Turney et al., 2023). While these studies

underscore the importance of including containment in fire spread forecasts, they also highlight

that containment efforts can be hindered by severe fire weather and the inaccessibility of some

fires (Arienti et al., 2006; Rodrigues et al., 2020).

Machine learning techniques are a subset of empirical-statistical models which can learn

underlying relationships in systems with many predictive variables. The random forest machine

algorithm has been applied successfully to multiple areas within the wildfire problem including

understanding drivers of fire severity in mediterranean pine forests (García-Llamas et al., 2019),

modeling containment probability using land surface variables (Rodrigues et al., 2020), and

detecting fires from geostationary satellites over South Korea (Jang et al., 2019). More broadly,

statistical models have been applied to predict fire evolution using meteorological quantities, fire

weather and moisture indices, and land cover datasets. In Graff et al. (2020), the authors train a

poisson regression on reanalysis data from the European Center for Medium-range Weather

Forecasts (ERA-Interim) and MODIS land cover and are able to predict fire counts with more

skill than persistence out to five days. Peterson et al. (2013) used a maximum likelihood

classification method to predict the daily change in fire counts based on CFFDRS fire indices,
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convective available potential energy, moisture, and synoptic weather, and achieved better results

than persistence. Finally, Pinto et al. (2020) compare the utility of the CFFDRS fire weather

index alone and the CFFDRS fire weather index and the continuous Haines index, and they find

that using both surface and stability information allows for a more skillful forecast of FRP

exceedance probabilities. Generally statistical forecasts which have beaten persistence have

tended to focus on two of the three legs of the fire behavior triangle. However, Huot et al.,

(2022) and Wang et al., (2022) successfully trained various machine learning algorithms on

weather, topography, and fuel to generate gridded maps of burned area and monthly PM2.5. In

these studies, some human influence variables were included (population density, GDP), but

predictors relating to firefighting were not included.

In this work, we use weather indices and random forest machine learning as tools to

forecast daily changes in fire radiative energy (FRE, the time-integrated form of FRP) in the

Western US with the goal of improving upon the persistence assumption and maintaining

computational efficiency. Unlike previous work (e.g., Huot et al., 2022; Wang et al., 2022) we

compute changes in FRE on a fire-by-fire basis, making this work directly applicable for

emissions inventories which use fire energy to compute emissions. Although we evaluate FRE

only in this work, we can assume since emissions are proportional to FRE, any changes in FRE

dictated by our models would translate to the same change in emissions. For the machine

learning approaches, the training dataset consists of variables describing near-surface weather,

atmospheric stability, fuel density and water stress, fuel moisture, and firefighting efforts, and

our target variable is based on a blended geostationary/polar orbiting emissions product (Li et al.,

2022). All algorithms were trained on data from the 2019 and 2021 fire seasons and tested on

comparable data from the 2020 fire season. In this work we look at July-December, as these were
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the months which contained significant fire activity from both summertime and wind-driven fire

events. The methods tested represent varying levels of computational complexity, from daily

changes in weather being assumed to be proportional to daily changes in fire intensity, to random

forest machine learning.

3.2. Data

This study focuses on wildfires which occurred between July and December in

2019-2021 in the Western Continental US (Lat: 31N – 49N, Lon: 125W – 101W). Features were

extracted (Section 3.3.2) for each day of each fire, totalling 1238 training samples (2019 and

2021) and 1293 1-day (1160 2-day) testing samples (2020). Table 3.1 lists the availability,

resolution, aggregation method, and primary reference for each dataset used in this study.

GFWED, NCAR Fuel Moisture, and final MTBS perimeters, are only available for portions of

the Jan 1st 2019- Dec. 31st 2021 period. RAVE data are not available before Jan. 1st 2019. At

the time of analysis, MTBS perimeters for the 2021 fires were considered provisional. For

further description of the datasets used, see Text B1.

Dataset
(Type of
data)

Available
Dates in
2019-2020

Resolution Variables
Extracted

Aggregatio
n Method

Reference (date of
access)

VIIRS (fire
location)

SNPP:
1/1/2019-
12/31/202
1
NOAA-20
: 1/1/2020-
12/31/202
1

375m,
twice daily

Lat/lon of
detection

Aggregate
detections
into
polygons
(Section
3.3.1)

Schroeder et al., 2014
(accessed 9/13/2021,
10/20/2022,
4/5/2023)
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MTBS (fire
location)

All
2019-2020
, partial
2021.
2021 filled
with
MTBS
provisiona
l
perimeters
.

Total burn
perimeter,
one per
fire

Final fire
perimeter

N/A Eidenshink et al.,
2007
(MTBS Apr. 2023
and Provisional May
2023)

RAVE (fire
intensity)

1/1/2019-
12/31/202
1

3km
hourly

Fire
Radiative
Energy (FRE)

Summed
over day
and polygon

Li et al., 2022
(March 2023)

GridMET
(fire
weather,
fuel
moisture)

1/1/2019-
12/31/202
1

4km daily Vapor
pressure
deficit
(VPD); wind
speed (WS);
max and min
temperature
(Tmax, Tmax);
NFDRS
Burning
Index (BI)
and Energy
Release
Component
(ERC); 100hr
and 1000hr
fuel moisture

Averaged
over day
and polygon

Abatzoglou, 2013
(Aug. 2023)

HRRR (fire
weather, soil
moisture)

1/1/2019-
12/31/202
1

3km,
hourly

VPD, WS,
hot-dry-
windy index
(HDW);
hourly
wildfire
potential
(HWP);
continuous
Haines index
(CHI);

Averaged
over day
and polygon

Dowell et al., 2022
(Mar.-Apr. 2023)
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pyroCb
firepower
threshold
(PFT);
surface, 1cm,
4cm, 10cm,
30cm soil
moisture

GFWED
(fire
weather)

1/1/2019-
9/30/2021

0.1deg,
daily

CFFDRS fire
weather
index (FWI);
buildup index
(BUI); fine
fuel moisture
code (FFMC)

Averaged
over day
and polygon

Field et al., 2015
(Apr. 2023)

NOAA Soil
Moisture
(moisture)

1/1/2019-
12/31/202
1

0.25deg,
daily

Surface soil
moisture
(Blended_SM
)

Averaged
over day
and polygon

Liu et al., 2016
(Mar.-Apr. 2023)

NCAR Fuel
Moisture
(moisture)

8/1/2019-
11/26/202
1

1km, daily Dead fuel
moisture
(FMCG2D);
live fuel
moisture
(FMCGLH2
D)

Averaged
over day
and polygon

McCandless et al.,
2020
(Sep.-Oct. 2021)

Evaporative
Stress Index
(ESI)
(moisture)

1/1/2019-
12/31/202
1

5km,
weekly

ESI Averaged
over day
and polygon

Anderson et al., 2011
(Apr. 2023)

Plant Water
Sensitivity
(PWS)
(moisture)

Assumed
static for
2019-2021
period

4km, static PWS Static map
copied to
daily,
averaged
over day
and polygon

Rao et al., 2022
(Aug 2023)

Fuel
Loading

Assumed
static for
2019-2021
period

900m,
static

Low_N,
Moderate_N,
High_N,

Static maps
copied to
daily,
averaged

Peterson et al., 2022;
Soja et al., 2004
(Feb. 2023)
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VeryHigh_N,
Extreme_N

over day
and polygon

Terrain Assumed
static for
2019-2021
period

900m,
static

Slope,
elevation
(mean and
stdev)

Static map
copied to
daily,
averaged
over day
and polygon

Landfire,
https://www.landfire.
gov/version_downloa
d.php
(Aug. 2023)

SIT-209
(firefighting
)

1/1/2019-
12/31/202
1

N/A,
~daily

Containment
(%),
structures,
crews,
engines,
aircraft,
construction,
overhead

N/A Jamieson, 2005a,b
(2022)

Population
Density

Assumed
static for
2019-2021
period

2.5 arcmin,
static

Population
density

Static map
copied to
daily,
averaged
over day
and polygon

CIESIN (2018)

Table 3.1. Summary of data used in this work, including temporal coverage, temporal and spatial
resolution, aggregation method, and primary reference.

3.3 Methods

3.3.1 Building Polygons

Previous work has tracked sub-daily to daily wildfire movement by aggregating VIIRS 375m fire

detections into polygons (Berman et al., 2023; McClure et al., 2023). In this work, a similar

approach is taken:

1. For each overpass and each active fire, all VIIRS detections potentially corresponding to

each fire are selected. Corresponding points are identified as points within a 0.25-degree

radius of the previous day’s polygon (gray shaded region in Figure 3.1a, Step 2). If it’s

the first day of the fire, the “previous day’s polygon” is the ignition location from the
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SIT-209. The radius is increased by 0.25 degrees incrementally and the search repeats

recursively until no new points are added, with the 0.25-degree buffer chosen to reduce

computing time. This process is shown graphically in Figure 3.1a for the first two days of

the 2020 August Complex fire.

2. The per-overpass polygon is built by aggregating all fire detections, each of which have

been buffered to a circle with a diameter matching the area of VIIRS pixels at nadir

(375m x 375m), using the Python Shapely module’s multipolygon datatype (Gillies et al.,

2007).

3. Sub-daily polygons are aggregated to daily resolution and clipped using the final burn

perimeters from MTBS. Clipping with final MTBS perimeters confirms that the sub-daily

polygons generated in Step 2 are associated with the correct fire event. Figure 3.1b shows

the final polygon for August Complex.

This method evaluates well against the method developed by McClure et al. (2023) for the

August Complex Fire (not shown).

3.3.2 Extracting Data Using Polygons

Due to the variable resolutions of training variable datasets, the polygons discussed above

are used to extract only the portions of the training data which directly impact each fire on each

day (Figure 3.1c, B1). This method has several advantages. First, it allows us to track the

movement of the fire as a whole and the factors affecting the fire (including firefighting, which is

reported per-fire) on a daily basis. Second, it is flexible for fires of different sizes. Finally, this

method is capable of preserving high resolution information in cases where the feature grid may

be finer resolution than the polygon size (Figure B2). A polygon representing a fire on a single

day (e.g., Figure 3.1a) may be used to extract data as follows:
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1. Grid cells falling in a bounding box defined by the polygon are determined, and each grid

cell is transformed into a polygon using the shapely python library (Gillies et al., 2007).

2. The intersection area of each grid cell with the polygon is calculated (Gillies et al., 2007),

and the fraction of the fire polygon which intersects each grid cell is saved.

3. Most variables are extracted as a weighted average over all the grid cells which intersect

the polygon, with the weights being the results of step 2. FRP is an exception as it is

extracted as the unweighted sum of all grid cells which intersect the polygon.

4. Values of the variables are aggregated (averaged or summed, Table 3.1) to daily

resolution, with the day beginning at 12Z. 12Z was chosen to preserve the midafternoon

peak in fire intensity, which occurs around 0Z.
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Figure 3.1. Workflow example for the 2020 August Complex Fire. a) the process used to build
two days of fire polygons for August Complex and b) the final August Complex polygon at
daily resolution (light orange for mid-August 2020 through dark red for mid-October 2020).
Time series of c) FRE (black) and near surface fire weather indices (HWP—blue,
HDW—orange, HRRR VPD—green) extracted using the daily polygons, and d) observed
(black) and forecasted FRE using persistence (red) scaled weather (HWP—blue,
HDW—orange, HRRR VPD—green) and random forest model trained on all predictors
(magenta dashed).
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3.3.3 Predicting FRE with Scaled Fire Indices and Random Forest

Daily FRE values span around six orders of magnitude (Figure B3a-B3b), owing to the

extreme nature of the chosen wildfire seasons. Therefore, we introduce the scaling operator

(Equation 3.1) which represents the daily change in a variable X over a fire polygon from one

day to the next (Figure 3.1d).

(3.1) , where t is the valid time of the forecast, and t-1 is the previous day.δ𝑋  =
𝑋

𝑡

𝑋
𝑡−1

Applying the scaling operator to FRE ( FRE) gives the right-skewed distribution inδ

Figure B3c. To deal with skew, the machine learning models are trained to predict the log of

FRE (Figure B3d) so as to give equal weight to large increases ( FRE>>1) and large decreasesδ

( FRE<<1). Applying the scaling operator as well as the log transformation of FRE helps theδ

model to deal with how different aspects of the fire behavior triangle affect the evolution of

wildfires at any size. Working with a scaling factor allows us to further simplify the persistence

model, as persistence would predict a scaling factor of 1 for all cases. We removed scaling

factors which lie more than 1.5 interquartile ranges from the median, since our goal is to predict

the evolution of existing wildfires, rather than how fires start or end. To minimize the impact of

temporal covariance, 2019 and 2021 were chosen as the training periods and 2020 was chosen as

the testing period. Scaled methods are evaluated for 2020 only so that the comparison is

consistent.

In a strategy similar to that presented in Graff et al., (2020), Equation 3.1 can be applied

to FRE and rearranged to obtain an FRE prediction (Equation 3.2, Figure 3.1d). The latest FRE

observation is derived from RAVE as a daily (12Z-12Z) sum of hourly FRE. Equation 3.2 can
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also be used to perform multiple steps of integration in time (Equation 3.3). The following

paragraphs discuss two methods for how how is derived.δ
𝑝𝑟𝑒𝑑, 𝑡 

(3.2) 𝐹𝑅𝐸
𝑝𝑟𝑒𝑑, 𝑡

= δ
𝑝𝑟𝑒𝑑, 𝑡 

* 𝐹𝑅𝐸
𝑜𝑏𝑠, 𝑡−1

(3.3) 𝐹𝑅𝐸
𝑝𝑟𝑒𝑑, 𝑡+1

= δ
𝑝𝑟𝑒𝑑, 𝑡+1 

* 𝐹𝑅𝐸
𝑝𝑟𝑒𝑑, 𝑡

The scaled fire index (SFI) method applies the scaling operator (Equation 3.1) to daily-

and polygon- averaged values of fire indices to generate a value with which to modulate

persistence. To do this, HRRR wind speed and VPD, GridMET wind speed and VPD, HDW,

HWP, FWI, and BI are plugged into Equation 3.1. The lagged version of the HDW (HDmW0,

Text B1)was also tested as a scaled variable. In subsequent discussion and figures, SFIs are

denoted as Index, for instance HWP for the scaling operator applied to the Hourly Wildfire

Potential. SFIs are included to be a simpler alternative to the random forest that does not require

training a machine learning algorithm.

We exclude cases where a SFI gives outliers that are further than 1.5 times the

interquartile range away from the median. In total 9 (51) 1-day (2-day) forecast fire days

contained a scaled index which was considered an outlier. 38 of the 2-day SFIS were zero values,

primarily from zeros in the NFDRS BI and CFFDRS FWI. The remaining outliers were from

HWP and BI, which contained unphysically large or small values (Table B1-B4). This filtering

was done in addition to filtering outliers from the observed FRE. This filtering was applied

before the random forest was trained, resulting in 1296 training fire-days for 2019 and 2021 (382

decreases, 435 slight changes, and 479 increases) and 1293 (1160) 1-day (2-day) fire-days to

evaluate for 2020.
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Random forests (RF) are a machine learning technique that use ensembles of decision

trees which split the training dataset into homogeneous subgroups and average predictions across

trees in the forest (Breiman, 2001). During exploratory research, we tested the RF, support vector

machine, multilayer perceptron neural network, and XGBoost, and the RF model performed the

best and had a relatively shorter computing time. In this work, the scikit-learn implementation is

used, with the default values used for all but two hyperparameters. We found that

min_samples_leaf=20, the parameter controlling the number of sample points needed for a leaf

node to be created, and max_depth =15, the parameter for controlling the depth of the trees in the

forest, were best for minimizing overfitting. The random_state variable, which controls the

bootstrapped subsampling of the feature sets used to train the trees in the forest, was set to 42 to

ensure that models were trained on the same data points across feature configurations.

Our RF is trained on the full set of training variables (Table 1), including SFIs (Section

3.3.1) as well as subsets (Section 3.4.2-3.4.5). The RF was trained to predict the log of FRE toδ

allow the model to learn both the large increases and the large decreases (Figure B3d). The RF

was trained on data extracted over observed polygons, assuming that, since these fires were past,

conditions on the day of the prediction could be known. On the other hand, the random forest

was tested using data extracted over the latest observed polygons to model real case scenarios

where the location of the fire into the forecast window is unknown. Forecasted weather variables

were used to make the 1- and 2- day predictions of fire growth and decay, and for other variables

(fuel, topography, firefighting, moisture, FRE) the day 0 values over the latest observed polygon

were persisted.

The 1-day RF prediction was made following Equation 3.2, where was derivedδ
𝑝𝑟𝑒𝑑, 𝑡 

from the RF which was given day 1 and day 0 weather inputs and day 0 fuel, topography,
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firefighting, moisture, and FRE inputs. The 2-day RF prediction was derived following Equation

3.3 where was derived from the RF which was given day 2 and day 1 weather inputs δ
𝑝𝑟𝑒𝑑, 𝑡+1 

and day 0 fuel, topography, firefighting, moisture inputs, and predicted day 1 FRE values.

3.3.4 Evaluation metrics for predicting categories, scaling factors, and FRE

The SFIs and the RF model were evaluated on their ability to represent the daily change

in fire behavior (increase, decrease, slight change) and FRE magnitude. Predicted scaling factors

and FRE values ( pred and FREpred) were compared with observed scaling factors and FRE valuesδ

( obs and FREobs) for the testing period.δ

Whether FRE for a given fire increased, decreased, or remained constant on a day-to-day

basis is based on thresholds of the FRE, where FRE=0.67-1.5 (33% decrease-50% increase)

represents slight change and anything above (below) that range is an increase (decrease). The

ability of the model to forecast the daily change category is assessed using 3-by-3 tables and the

associated F1 statistic (Figure 3.2). The F1 statistic (Equation 3.6) is derived from the harmonic

mean of the precision (Equation 3.4) and recall (Equation 3.5), and higher values of F1 indicate

both a higher proportion of true category instances modeled (recall) and a higher proportion of

correct predictions of a given category (precision, Powers, 2008).

(3.4) where k = increase, decrease, and slight change𝑃
𝑘
 = 𝑇𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘

𝐴𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘

(3.5) where k = increase, decrease, and slight change𝑅
𝑘
 = 𝑇𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘

𝐴𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑘

(3.6) where k = increase, decrease, and slight change𝐹1
𝑘
 = 2

𝑃
𝑘
*𝑅

𝑘

𝑃
𝑘
+𝑅

𝑘

Predicted scaling factor and FRE magnitude are assessed using R2, mean absolute deviation

(MAD), and root-mean-squared error (RMSE). RMSE and MAD are defined as in Willmot and
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Matsuura (2005), and R2 is the coefficient of determination. The adjusted R2 (Equation 3.7) is

also computed and can be interpreted as the percent of the variance explained by the model,

adjusted for the number of predictors used to train the model. Adjusted R2and R2yield very

similar results, indicating that more than additional model features are responsible for improved

model performance (Table B5).

(3.7) where R is the coefficient of determination, n is the𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 =  1 − (1−𝑅2)*(𝑛−1)
(𝑛−𝑘−1)

number of observations, and k is the number of predictors.

We report the unitless skill score (SS), the relative change in performance metric for a

model with respect to a reference model. Skill scores are calculated for RMSE and MAD (SSRMSE

and SSMAD) using persistence as the reference model (Graff et al., 2020; D. Peterson et al., 2013).

R2 and SSRMSE are sensitive to large values, so these statistics will see larger improvements when

large increases are correctly forecasted.

  3.4. Results

3.4.1 Comparison of Two Modeling Approaches with Persistence

Figure 3.2 compares the performance of the persistence model, the SFI method (Index,

Section 3.3.1), and the RF trained on the entire set of training variables (Table 3.1) over two days

for the 2020 fire season. Fig. 3.2a-e (3.2f-j) show modeled and observed growth categories

(Section 3.3.4) for selected forecasts of FRE. Fig 3.2k-n summarize error metrics for all

methods, with Figures 3.2k, 3.2m showing performance of the FRE forecasts (R2, SSRMSE, SSMAD)

and Figures 3.2l, 3.2n showing performance of the forecasted categories (F1decrease and F1increase).

Overall, Figure 3.2 shows that the random forest is the top method tested and also that

there is utility in using SFIs to predict FRE. In both the 1- and 2-day forecasts, the RF is the most

skillful method (Figure 3.2e, 3.2j, 3.2k-3.2n) except for in R2 in the 2-day forecast (Figure 3.2m),
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where it is beat only by scaled HWP. In the 1-day forecast, skill at predicting FRE or growth

category increases as the SFIs get more complex or the RF is used (Figure 3.2k). For the 2-day

forecasts (Figure 3.2m, n) the SFIs using simpler fire weather indices or raw meteorological

variables (HDW, HWP, VPD) can show comparable FRE prediction skill to the RF. All methods

tend to do better than persistence at forecasting FRE, and they all forecast increases and

decreases at roughly the same rate.

Certain models (persistence, VPD (HRRR), HD0W0, HWP, and random forest) areδ δ δ

highlighted to illustrate common error types (Figures 3.2a-f, B4a-j, B5a-j). Figure 3.2a and 3.2f

show, as expected, that the persistence model is only capable of forecasting slight changes in

FRE. The “persistence” rows of Figures 3.2l and 3.2n show the F1 score of the increases and

decreases is zero, indicating an inability for persistence to capture increases (decreases) of >50%

(<33%) over the latest FRE measurement. In spite of this limitation, persistence gives a slightly

capable 1-day FRE forecast (Figure 3.2k, R2=0.02) and a severely limited 2-day FRE forecast

(Figure 3.2m, R2=-0.62) for 2020 fires.

Figures 3.2b-c and 3.2g-h show that assuming that daily changes in FRE are driven by

daily changes in VPD ( VPD (HRRR)), HD0W0 ( HD0W0), and HWP ( HWP) adds skillδ δ δ

when compared with the persistence forecast. These forecasts are relatively low risk in that they

boost performance on FRE (R2 =0.345,0.437, and 0.418 for the three methods respectively vs.

0.02 for persistence, Figure 3.2k, 3.2l), while not straying too far from the categories persistence

would predict (Figure 3.2l, 3.2n). Across both the 1-day and 2-day forecasts, derived indices δ

HD0W0 and HWP are more skilled than raw variables VPD and WS (Figure 3.2k-n).δ δ δ

However, some of the more complex SFIs (BI and FWI) struggle to reliably capture fire growth
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or decay (Figure 3.2l, 3.2n) so perhaps index complexity is not always an indicator of ability to

capture fire growth.

Figures 3.2e and 3.2j show that the random forest trained on the entire set of training

variables is the top performer of all methods tested. The 1-day (2-day) random forest has R2

=0.48 (R2 =0.25) and gives SSRMSE =0.27 and SSMAD =0.28 (SSRMSE =0.32 and SSMAD =0.33) with

respect to persistence (Figure 3.2k, 3.2m). The random forest also shows the strongest ability to

forecast increases and decreases with little bias, with the F1 score being 0.38 and 0.48 (0.50 and

0.57), respectively (Figure 3.2l, 3.2n). The following results sections will focus exclusively on

the random forest model, with Section 3.4.2 evaluating the random forest over space, time, and

fire severity levels, 3.4.3 determining which predictors add the most skill to the model, and

section 3.4.4 and 3.4.5 discussing which subsets of the feature space lead to optimal model

performance.
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Figure 3.2. Comparison of persistence, scaled, and random forest methods. Performance of the
a, f) persistence, b,g) VPD (HRRR), c,h) HD0W0, d, i)HWP, e,j) random forest method on
their ability to forecast fire growth category, F=0.67-1.5 is slight change and greater (less) than
that value is an increase (decrease). R2 and SSRMSE and SSMAD are shown for FRE for all 1-day
k) and 2-day m) predictions in blue, yellow, and green dots respectively. F1 for all 1-day l) and
2-day n) predictions with increases in red, decreases in blue and slight changes in tan. Rows
are labeled according to the forecasting method, with scaled methods labeled with a “”
preceding the name of the scaled variable. Vertical dashed lines denote performance of
persistence.

3.4.2 Evaluation of the random forest in space, across fire severity levels, and in time

We also evaluate the performance of the random forest by state, by two indicators of fire

severity (FRE and FWI), and by day of the fire season. Across all states, using the RF model

results in a more skilled or a very slightly less skilled FRE forecast than persistence (Figure 3.3a,
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B6a), as shown by the SSRMSE and SSMAD being positive or slightly negative. Generally speaking,

the SSRMSE and SSMAD tend to be higher for the 2-day forecast than for the 1-day forecast (Figure

3.3a, B6a), except in UT and CO. More specifically, the RF model gives the largest

improvements in CO for the 1-day forecast and the largest improvements in NV for the 2-day

forecast. In WY, MAD and RMSE remain high on both days (Figure 3.3c,e, B6c,e). Using the

RF also improves R2 in most states in the 1- and 2-day forecasts. Except for NM (Figure 3.3b),

all states show R2 either changing sign or becoming more positive/less negative (Figure 3.3b,

B6b). In the 1- and 2-day forecasts, the pattern of FRE error (RMSE, MAD) is driven mainly by

FRE, with higher FRE states having higher error (Figure B7-B10, panels c-d). The remaining

FRE error metrics (SSRMSE, SSMAD, and R2) are driven by weather and moisture variables on day

1, with model skill reducing under more extreme fire weather conditions and increasing for more

moist fuels (Figure B7-B8 panels a,b,e). On Day 2, the SSRMSE, SSMAD, and R2 spatial patterns are

consistent with patterns in firefighting resources and moisture, with higher skill being achieved

for fires in drier fuels with more resources applied (Fig. B9-B10 panels a,b,e).

Across states, the RF maintains the ability to predict days with little change (Figure 3.3d,

B6d) while also forecasting increases and decreases with skill (Figure 3.3f, B6f). In the 1- and

2-day forecasts, there is a slight decrease (never more than 0.2) in the F1slight change score between

the persistence and RF forecasts (Figure 3.3d, B6d). In certain states (e.g. MT, ID) increases are

forecasted more skillfully than decreases and in other states (e.g. NV) decreases are forecasted

more skillfully than increases. Generally speaking, F1 scores for increases and decreases are

higher on day 2 than day 1 (Figure 3.3f, B6f). On day 1, the spatial pattern in the F1 scores is

driven by fuel moisture, terrain, and weather variables (Figure B7-B8 panels f-h) and on day 2
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the spatial pattern in the F1 scores is driven by fuel moisture, firefighting, and weather variables

(Figure B9-B10 panels f-h).
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Figure 3.3. Random forest evaluation metrics by state (a-f) and by fire severity (g-j) for the 1-
day RF and persistence predictions. a) SSMAD and SSRMSE for the RF model; b) R2 for the
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persistence and RF models; c) MAD for the persistence and RF models; d) F1slight_change for the
persistence and RF models; e) RMSE for the persistence and RF models; f) F1increase and
F1decrease for the RF model; g) RMSE (yellow) and MAD (teal) for the persistence (dotted) and
RF (solid) models split by 20th-percentiles of FWI; h) as in f but split by 20th-percentiles of
FRE. i) SSMAD (teal), SSRMSE (yellow), F1increase (red), F1decrease (blue), and F1slight_change (tan) for
the RF models with F1slight_change (tan dotted) for the persistence model split by 20th percentiles
of FWI. j) as in i but split by 20th percentiles of FRE.

Figure 3.3g-l (B6g-l) shows error for the 1-day forecasts grouped into 20th-percentile

bins of FWI (Figure 3.3g,i,k; B6g,i,k; a RF input) and FRE (Figure 3.3h,j,l; B6g,i,l; a RF output).

In both the 1- and 2-day forecasts, the RF predictions tend towards persistence at extreme FWI,

as shown by the decrease in SSMAD and SSRMSE (Figure 3.3g,i, B6g,i). Extreme FWI may

correspond to a large range of fire behaviors (including cases of no fire, e.g. Field et al., 2020a).

Also, it appears that persistence is a more capable forecast at higher FWI values than lower FWI

values (Figure 3.3k; B6k). Therefore, it is possible that the RF model cannot make the

distinctions between persistence and non-persistence fire days at higher values of FWI (see F1

scores in the Extreme class, Figure 3.3i, B6i). We also see RMSE and MAD increasing with FRE

(Figure 3.3h, B6h) and normalized mean error (NME, Figure 3.3l; B6l) decreasing with FRE in

both the 1- and 2-day forecasts. However, for the 1-day forecast (Figure 3.3j) the SSMAD and

SSRMSE tend to increase then plateau after the moderate FRE category, and for the 2-day forecast

(Fig. B6j), the SSMAD and SSRMSE tend to increase as the FRE categories intensify. This implies

that we are helping more with the upper end of FRE in the 2-day forecast and making

improvements across most categories in the 1-day forecast. This is consistent with the spatial

analysis, which showed that the model tends to under-perform for more extreme fires and more

severe fire weather (Figure B-B10).

Throughout the 2020 fire season, there are some days where the RF performs worse than

persistence and some days where it performs better (Figure B11-B12). The days when the RF is
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worse than persistence tend to be at the beginning and end of the fire season, but on these days

the sample size is very low (<5 active fires per day). In spite of this, the RF beats persistence for

a majority of the 1-day (2-day) forecasted days in the 2020 fire season, with SSRMSE exceeding

zero in 61% (63%) of days and SSMAD exceeding zero in 67% (69%) of the 114 (113) days

containing active fires. If the evaluation is restricted to days where there were at least 10 fires

burning, SSRMSE exceeds zero in 75% (73%) of days and SSMAD exceeds zero in 80% (78%) of the

51 (48) days containing active fires.

3.4.3 Sensitivity Results

We performed sensitivity tests to evaluate each training variable’s contribution to the

overall forecast skill of the random forest (Figure 3.4). Many variables represent similar wildfire

drivers (e.g. HWP, HD0W0, FWI, and BI all represent near surface meteorology) and so were

grouped together (Figure 3.4, thick black lines and text). To test the random forest sensitivity to

different feature groups, all variables in a certain feature group were dropped (Figure 3.4 black

outlined points) as done in previous work (Huot et al., 2022). Additional sensitivities are

performed where one variable in the group was used at a time, allowing for testing, re-training,

and re-testing of the random forest model at each step (Figure 3.4, non-outlined points). This is

slightly different from traditional random forest feature importance (Breiman, 2001), which is

known to misrepresent the importance of correlated features (Nicodemus & Malley, 2009).

Figure 3.4 shows that groups of features generally fall into two tiers, one that includes

feature groups that strongly influence the random forest, and one that includes the rest of the

feature groups with less influence. The amount of influence a group of features exerts on the

random forest is defined by the change in performance of the random forest when that group of

features is excluded from the training dataset (Figure 3.4, black outlined points) with respect to
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the performance of the random forest trained on all available features (Figure 3.4, vertical lines).

For reference, the metrics for the full random forest are R2=0.48, SSMAD=0.28, SSRMSE=0.27

F1increase=0.38, and F1decrease=0.48. The feature groups fall into the tiers as follows:

● Tier 1: This tier of features contributes a large amount of skill to the random forest across

metrics. Two feature groups fall into this category, last day FRE and near-surface weather.

Without these feature groups we see large drops in performance across all metrics (R2 =0.30

without surface weather and R2 =0.45without last day FRE).The model trained including a single

one of the simpler fire indices (HDW, HWP) are the top performers, sometimes outperforming

the full RF in terms of F1 score and recovering much lost FRE skill when removing surface

weatherFinally, the model trained usingHWP as the only weather variable( Figure 3.4

features_only_hwp) indices has comparable R2, SSRMSE, and SSMAD to the model trained on all

variables (Figure 3.4 features_all row).

● Tier 2: This tier of features includes those feature groups that moderately influenced the

random forest model compared to Tier 1. Tier 2’s feature groups include stability, living and dead

fuel moisture, PWS, ESI, terrain, fuel loading, and human variables. When feature groups in this

tier are left out, performance metrics change less and may be better or worse with respect to the

full random forest’s performance metrics (e.g. R2=0.47-0.48, F1increase=0.37-0.40,

F1decrease=0.41-0.48).

Often, variables within the feature groups of Figure 3.4 are highly correlated. These

correlations may be strongly positive, as in the case of different fire weather indices developed

by different agencies capturing the same periods of favorable fire weather (Figure B13), fuel

loading under different fire weather scenarios which is based on a fraction of the total biomass

(Figure B14b) or terrain variables where steeper slopes tend to occur in more variable elevations
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(Figure B14c). Sometimes strong negative correlations exist between variables in a feature

group. One such case is fuel moisture, which is defined by some methodologies as codes which

increase with increasing dryness (CFFDRS) and by others as fractional water content which

decreases with increasing dryness (Figure B15). The high degree of correlations between

variables within feature groups motivates training different versions of the random forest model

subsets of the data to derive simpler models that could behave similarly to the model using all

variables.

3.4.4 Selecting Optimal Subsets of Features

Random forest models were trained on subsets of the data which kept agency data (i.e.

near-surface weather and dead fuel moisture from HRRR, GridMET, CFFDRS and NFDRS)

separate where applicable, considered features which can be operationally forecasted, and chose

at most one feature or weather index system from each group to maximize FRE performance and

F1 scores (Figure 3.4, non-outlined points). Figure 3.5a summarizes the subset of features that

were tested. The subsets are as follows: “features_nfdrs” is based on NFDRS near-surface

weather and moisture indices; “features_cffdrs'' is based on CFFDRS near-surface weather and

moisture indices; “features_gridmet” is based on GridMET VPD and WS and NFDRS moisture

indices; “features_hrrrmet” is based on HRRR VPD,WS, and soil moisture predictions;

“features_hwp” is based on HRRR HWP and soil moisture predictions; and “features_hd0w0” is

based on HRRR HD0W0 and soil moisture predictions. There are two additional subsets

“features_hrrrmet_plus_hwp” and “features_hrrrmet_plus_hd0w0”, which are trained on HRRR

VPD, WS, and HWP and HD0W0 respectively. These subsets were included to exploit potential

nonlinear interactions between the raw (VPD, WS) and derived (HWP, HD0W0) weather

variables that are available from HRRR. In this study we used the HRRR model as a reanalysis
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product and CFFDRS values from the GFWED version based on MERRA-2 (Text B1), but the

HRRR and GEOS-5 models also produce forecasts of these same variables operationally. On the

other hand, NFDRS indices, VPD, and WS from GridMET (Text B1) are based on near real time

observations only and do not have a forecasting component in GridMET. Therefore, any

configuration based on GFWED or HRRR may be used on both forecast- and reanalysis-based

meteorology to predict FRE.

Figure 3.5a also shows that the feature categories including population, containment

percentage, day of year, NCAR live fuel moisture, and ESI were excluded from the subsets.

These categories contained only one feature, and when this feature was dropped from the random

forest, FRE scores increased slightly. Alternatively, persistence FRE and PWS are feature

categories containing one variable which benefits model performance. When these variables

were dropped, FRE and F1 skill decreased from R2=0.48 in the full model to R2=0.45-0.47.

Therefore, persistence FRE and PWS are important contributors to good model performance,

while population, containment percentage, day of year, NCAR live fuel moisture, and ESI have

little impact or slightly hinder model skill.

The variables listed for the stability (Figure B14a), dead moisture (Figure B15), fuel

loading (Figure B14b), terrain (Figure B14c), and human (Figure B16) categories in Figure 3.5a

may co-vary within these categoriesand were all chosen to maximize FRE performance and

minimize the impact of correlated features. When certain feature groups (i.e. dead fuel moisture,

Figure 3.4, “features_no_dead_moisture”) are left out, FRE performance metrics donot change.,

We attribute this behavior to the random forest learning compensating errors between less

correlated features (e.g. Figure B15, NCAR dead moisture NFDRS 1000hr moisture) within the

feature groups or by interaction terms between feature groups.
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Figure 3.4. Performance of the random forest model for different sensitivity tests (row
names). a) shows SSRMSE in yellow SSMAD in green, and R2 in blue, and b) shows F1decrease in
light blue, F1increase in red, and F1slight_change in tan. Black horizontal lines delineate different
groups of features for which sensitivity is tested, and these categories are also labeled in text to
the left. Feature subsets for which no variables of the given category are used have their points
outlined in black. The variable following “only” in the variable name is the sole variable of the
given category used in training.

3.4.5 Performance of Optimal Subsets of Features
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Figures 3.5a-d show the performance of random forest models which were trained using

the subsets of features in Figure 3.5a. This analysis shows that subsets of the full feature set can

be used to train random forest models and obtain performance comparable to or better than the

random forest model trained on the full feature set (e.g. for the 1-day forecast R2=0.39-0.48,

SSRMSE=0.21-0.28, SSMAD=0.22-0.28, F1increase =0.39-0.49 and F1decrease=0.39-0.49). Both the 1-

and 2-day forecasts are similar to the SFI methods, in that RFs trained on more complex fire

weather indices (Figure 3.5b, d “features_cffdrs”) have better skill at forecasting FRE than RFs

trained on raw meteorological inputs (Figure 3.5b,d “features_hrrrmet”). Also like the SFI

methods, the RFs trained on the simpler fire indices (Figure 3.5b, d “features_hwp”) show better

performance than the RFs trained on more complex fire indices (Figure 3.5b,d

“features_cffdrs”). Further, the models trained on derived indices (HWP, HD0W0) and raw

weather variables (VPD, WS) perform better across most metrics than the models trained on

either raw weather variables or derived indices (Figures 3.5b, d “features_hrrrmet”,

“features_hwp”, “features_hrrrmet_plus_hwp”). An ensemble forecasting method, defined as the

average of the predictions from the 8 RF models in Figure 3.5a also shows comparable skill. All

random forest-based models shown in Figure 3.5 have greater forecast skill than the scaled and

persistence methods shown in Figure 3.3.

Overall, these results illustrate that the fire weather and fuel moisture indices developed

by each agency independently represent important predictors of wildfire evolution and can be

combined using machine learning methods to create forecasts that outperform persistence.

Random forests trained on subsets of the predictors show similar behavior to both the ensemble

method and the random forest trained on the full set of predictors, further highlighting the
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redundancy of including all available fire weather and fuel moisture indices in a single random

forest model.

Figure 3.5. Performance of the random forest trained on subsets of the data. a) shows subsets
of features selected to optimize performance. R2 and SSRMSE and SSMAD are shown for FRE for
all 1-day b) and 2-day d) predictions in blue, yellow, and green dots respectively. F1 scores for
all for all 1-day c) and 2-day e) predictions with increases in red, decreases in blue and slight
changes in tan.
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3.5. Discussion

3.5.1 Comparison with previous studies

The skill gained with respect to persistence is consistent with previous work which has beaten

persistence. Graff et al., (2020) and Peterson et al., (2013) (G20 and P13 respectively) paired

weather data with maximum likelihood classification and Poisson regression, respectively, to

predict fire counts in Alaska. SSRMSE ranging from 5-25% are reported in both papers, with the

best performance occurring for decreases in fire count (P13) and 1- and 2-day forecasts with

Poisson regression (G20). It is notable that, like this work, G20 also scales weather indices to

forecast fire counts. In the 1-day forecast, the G20 scaled method is a less skillful forecast than

persistence and the Poisson hurdle model, and in the 2-day forecast the G20 scaled method is

more skillful than persistence but less skillful than the poison hurdle model. The results of this

study are also consistent with work by Garcia-Llamas (2019), which explains up to 42% of

variance in fire severity using random forest models trained on vegetation indices, rainfall, and

time since last burn for Mediterranean pine forests in Spain. The most important variables

reported in this study (i.e. near-surface fire weather) are also consistent with those reported in

Gray et al., (2018).

This study can also be compared to Huot et al., (2022, H22) and Wang et al., (2022,

W22), two studies which used machine learning to predict a next-day fire mask and monthly

PM2.5, respectively. H22 uses gridded fuel, weather, topography, and human data to produce

gridded next-day predictions of fire location. Similar to our work, H22 finds that the previous

day’s fire location (persistence information) is key to giving a reliable forecast of next-day fire

spread. Unlike our work, they have topography-related variables as another key feature, which

66



lends credence to the idea that spatially resolved land surface features contain more useful

information than area-averaged land surface features. In W22, the authors predict monthly

PM2.5 from GFED (Kaiser et al., 2012) using fuel, weather, topography, and human variables.

They achieve higher correlation with observations spatially than our work, and we attribute that

to our daily data being noisier than their monthly data. In their feature importance ranking,

weather is the most important predictor. We may conclude that our work is comparable to the

machine learning models present in H22 and W22, and that most differences are attributable to

methodological differences and different output variables. Between our work and the work of

H22 and W22, a consensus seems to be emerging about the high importance of weather and

persistence information for forecasting fire and emissions progression using machine learning.

3.5.2 Uncertainties and Limitations

Since the random forest method is applied as a post-processing step, uncertainties in the

input data propagate through to the final model output. These uncertainties can be associated

with measurements, such as gap-filling (Li et al., 2022) or missing (Schroeder et al., 2014)

smoke- or cloud-obscured fire detections or the best estimates of resources applied to a fire event

(Text B1). Additionally, other models were used to generate the training data. For instance, the

operational HRRR model was used here, which has a longer record but did not include smoke

radiative feedbacks until the end of 2020 (Ahmadov et al., 2017; Dowell et al., 2022).

Additionally, model biases such as those for relative humidity in MERRA-2 which are used to

calculate FWI and components (Field, 2020), and the outsize impact of temperature on some of

the fuel moisture estimates (McCandless et al., 2020) could contribute to uncertainty in these

variables and how they behave in the random forest. Finally, population density, PWS, fuel
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loading, and terrain slope and elevation were assumed to be static over the 2019-2021 period,

which does not consider how either past burns or fuel treatments have altered the landscape.

Future work to improve this modeling technique could consider adding georeferenced

firefighting information, such as the location of firelines, as such information has proven useful

in fire spread modeling (Turney et al., 2023).

Many variables used in this study are not available outside of the 2019-2021 period

(Table 1), so the specific trained models evaluated may not be directly applicable to beating

persistence for other fire seasons. However, our sensitivity analysis showed that the random

forest can utilize wildfire drivers that were identified as far back as the 1970s (Countryman,

1972). We also show that subsets of the predictors can be used to beat persistence. This means

that the model is likely learning real relationships between fire weather, fuels, topography, and

firefighting, and that this technique is robust to the datasets chosen to represent different sides of

the fire behavior triangle. Training the model on subsets of the data could allow future studies to

investigate years beyond 2019-2021, because such models would not be limited by datasets

which only exist for this limited period. Likely this would lead to improved model performance

due to a training dataset which samples the input space more fully. Finally, the configuration here

requires a priori knowledge of fire location to extract predictors in the relevant location and

generate future forecasts. This work was also limited by the fact that we had no multi-day

predictions of fire location over which to extract predictors. This may explain why some

features, such as fuel loading, moisture, population, and terrain did not show predictive power,

since they may be spatially heterogeneous, and their variability is not captured through persisting

polygon-averaged values throughout the forecast window. Therefore, we recommend for future
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study coupling the random forest technique with fire spread modeling (Bakhshaii & Johnson,

2019) and extending this methodology to predict hourly evolution of fires.

3.6. Conclusions

We described the development of data-driven fire radiative energy (FRE) forecasting

products that can be used as inputs for predicting wildfire emissions. We test the skill of several

models at making forecasts of daily wildfire FRE using data extracted over the area affected by

the wildfire. Scaled fire indices (SFI), and random forest (RF)-based model predictions were

evaluated with respect to the persistence forecast. Overall, the RF showed the largest increase in

skill in the 1-day (2-day) forecasts, with an R2=0.48 (R2=0.25) compared to 0.02 (-0.62) for

persistence, SSRMSE =0.27 (SSRMSE =0.32), and SSMAD =0.28 (SSMAD =0.33) when all variables

were used to train the model. The random forest was also the most skilled in forecasting whether

day-to-day changes in fire behavior would occur, with F1decrease=0.26 (F1decrease=0.44) and F1increase

= 0.48 (F1increase = 0.57). We find that the random forest reduces error compared to persistence

across all states, for a majority of the days in Summer 2020, and for all severity categories. Error

in both the random forest model and in the persistence model tends to increase as FRE increases.

Additionally, the random forest model tends towards a persistence forecast at extreme FWI and

for low-FRE fires.

The sensitivity analysis confirmed that most forecast skill came from including

reanalysis-derived surface weather variables and persistence FRE as features. Other variables

such as vertical atmospheric stability, fuel moisture, human influence, fuel loading, and plant

water sensitivity, seem to be most useful for fine tuning the predictions. Comparable skill was

achieved by training several random forests on subsets of these variables based on data available

to certain agencies. Therefore, there is significant value in using the random forest over a
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persistence or scaled fire index approach, and we recommend random forests be applied to scale

emissions in future work.

We showed that machine learning plus knowledge of the human and natural drivers of

wildfire can dramatically improve upon the current persistence assumption, with the biggest

gains made via predicting increases or decreases in FRE. Our work also shows that the daily

change in weather indices (HWP, HDW) can be very useful in predicting changes in FRE. FRE is

proportional to emissions, so this method may be used to predict daily changes in FRP-based

emissions inventories (Darmenov and da Silva, 2015; Kaiser et al., 2012; Li et al., 2022). Many

regional models (HRRR-Smoke, Ahmadov et al., 2017) use these FRP-based inventories, and so

are poised to take advantage of the methodology presented here. While the methodology outlined

here is most suitable for forecasting FRE and computing emissions, coupled chemical transport

model-machine learning frameworks have been shown to work (e.g. Kelp et al., 2022) and are a

promising future application of this work. Thus, data-driven derived approaches for scaling

wildfire emissions should be considered in the next generation of air quality and atmospheric

composition forecasting.
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Chapter 4

Air quality model sensitivity to machine learning-derived fire emissions

Abstract

Forecasts using chemical transport models are vital for warning the public about poor air

quality due to wildfire smoke, but uncertainties related to persistence of smoke emissions can

propagate through these models and cause errors in the resulting air quality forecasts. In this

work, we present a pipeline for implementing machine learning-derived wildfire emissions in the

Weather Research and Forecasting with Coupled Chemistry (WRF-Chem) and test this pipeline

for September 2020. We examine the sensitivity of the models to different emissions schemes

including analysis, persistence, and machine learning emissions, and we propose an automated

way to evaluate forecasts of AOD and PM2.5 in smoke-impacted regions downstream of fires.

WRF-Chem is driven by the Regional Advanced Baseline Imager (ABI) and Visible Infrared

Imaging Radiometer Suite (VIIRS) Emissions (RAVE).

Preliminary results show that, although the machine learning-derived emissions improve

on the persistence emissions, WRF-Chem with analysis RAVE emissions tends to underestimate

AOD and both under- and overestimate PM2.5. On average, WRF-Chem is not very sensitive to

the chosen emissions. On a per-fire basis, WRF-Chem is more sensitive to the emissions scheme,

with random forest emissions measurably impacting some AOD (PM2.5) skill metrics in up to

50% (60%) of fire days. However, persistence and machine learning predictions lead to almost

no difference a majority of the fire days in many metrics. In the best case scenario, using random

forest emissions improves the median AOD error for some fires and degrades the median AOD
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error for other fires, and the improvement is a factor of four higher than the degradation.

Therefore, it is likely that the current version of WRF-Chem with RAVE emissions contains too

many internal uncertainties to fully benefit from machine learning derived emissions.

4.1. Introduction

When it comes to forecasting air quality in real time, chemical transport models (CTMs)

rely on persistence to predict smoke emissions (Jaffe et al., 2020; Ye et al., 2021). Persisting

emissions can cause delayed onset or extended burning of fires (Di Giuseppe et al., 2018; Thapa

et al., 2022), leading to errors in downstream estimations of aerosol optical depth (AOD) or fine

particulate matter (PM2.5) (Ye et al., 2021). Real time air quality forecasts are capable of

identifying days of degraded air quality due to smoke (Hung et al., 2020), but prediction skill of

AOD and PM2.5 could be improved. For instance, Yao et al., (2013) compared BlueSky PM2.5

forecasts with monitors in British Columbia in the summer of 2010 and found moderate skill in

replicating the temporal distribution of surface PM2.5 but underestimation overall across the

domain (pearson r=0.4, NMB=-0.45). Similarly, Pavlovic et al., (2016) forecasted air quality

over the US and Canada using the smoke-allowing FireWork model for the 2015 fire season and

compared it to the non smoke-allowing Regional Air Quality Deterministic Prediction System

(RAQDPS). While FireWork improved on RAQDPS, skill for predicting surface PM2.5 was

lowest (pearson r=0.42-0.49 and MB ~ -2ug/m3) for the western part of the domain which

contained the most fire activity. Finally, Ye et al., (2021) compared PM2.5 and AOD outputs

from twelve air quality predictions (all using persistence emissions) for the Williams Flats Fire,

an August 2019 Washington state wildfire that was heavily observed during the NASA-NOAA

Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ; Warneke et al.,

2023) campaign. AOD was underpredicted across all models, and AOD pearson correlation
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never exceeded 0.5 across the forecast period. PM2.5 was under- and over-predicted (depending

on the model), and PM2.5 pearson correlation never exceeded 0.35.

Persistence of smoke emissions is a dominant source of error in operational air quality

forecasting, and several methods including ensemble forecasting, coupled large eddy simulation

(LES)-fire spread modeling, and machine learning have been proposed to fill this gap. Recently,

ensemble air quality forecasting using models which employ persistence for fire emissions has

been used to address forecast error, and across multiple error metrics model ensembles

outperformed single models for predicting AOD and PM2.5 in 2020 and PM2.5 in 2022 (Y. Li et

al., 2024; Makkaroon et al., 2023). LES-fire spread models fully resolve complex flows and

represent the coupling between weather, fuel, topography, and fire spread (Coen et al., 2013;

Kochanski et al., 2013; Turney et al., 2023). These LES-fire spread models were coupled to air

quality forecasts (Kochanski et al., 2021; Mandel et al., 2019), and a recent study showed that

this technique improved forecasts of exceedance for the daily PM2.5 NAAQS against a

traditional emissions inventory (Lassman et al., 2023; persistence emissions were not tested).

There have been recent papers relating to using statistical and machine learning techniques to

predict the evolution of wildfire activity on a daily basis, either in terms of burned area (Huot et

al., 2022), FRP (Thapa et al., accepted; Pinto et al., 2020), fire counts (Graff et al., 2020;

Peterson et al., 2013), or smoke plume heights (Yao et al., 2018). These models have been shown

to be more accurate than the persisting burned area, FRE, or fire counts, but to our knowledge

these predictions have not been coupled to an air quality forecast like the LES-fire spread models

or evaluated like the LES-fire spread models and ensemble forecasts. Machine learning has also

been used to directly predict air quality or interpolate between station measurements, but these

studies tend to be retrospective and related to health impact assessment rather than addressing
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forecasting problems (e.g., Reid et al., 2015; Watson et al., 2019; Zou et al., 2019; Mirzaei et al.,

2018).

In the literature, standard techniques are used to evaluate model performance. One

common technique is calculating bulk statistics (correlation, bias, error, spatial alignment of

plumes) for quantities like AOD and PM2.5 over a region or for a monitoring station during a

given time period (e.g., Makkaroon et al., 2023; Pavlovic et al., 2016; Rooney et al., 2020; Shi et

al., 2019; Yao et al., 2013; Ye et al., 2021). Since PM2.5 is a regulated air pollutant, it is also

common to classify modeled and observed days as attaining or exceeding the PM2.5 NAAQS.

Binary classification metrics can then be applied to determine model performance (e.g., Lassman

et al., 2023; Y. Li et al., 2024; Makkaroon et al., 2023; Pavlovic et al., 2016). Spatial variability

is evaluated primarily through the use of maps and comparisons across multiple stations, with

stations split into near source and downwind groups (Rooney et al., 2020; Shi et al., 2019). Many

studies also evaluate specific test case fires using hand selected boxes or stations (Kochanski et

al., 2015, 2021; Mallia et al., 2020; Rooney et al., 2020; Shi et al., 2019; Ye et al., 2021),

indicating that there is not yet a good automated way to evaluate fires.

In this study, we present a modeling pipeline (recipe) to generate machine

learning-derived fire emissions on a per-fire basis based on scaling the emissions input files for

the WRF-Chem and GEOS models. The scaling method is based on previous work by Thapa et

al., (accepted). We also present an automated method to evaluate air quality (AOD and surface

PM2.5) in regions around actively burning fires. This method is flexible; it can be applied in

multiple models and for multiple inventories. This method primarily relies on daily wildfire

polygons, and so it can be done using the many fire tracking algorithms developed in recent

years (Y. Chen et al., 2022; Liu et al., 2023; McClure et al., 2023; Thapa et al., accepted).
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4.2. Data

4.2.1 Input emissions

Li et al., (2022) blends FRP measurements from the Geostationary Operational

Environmental Satellite-Advanced Baseline Imager (GOES-ABI) FRP measurements from the

Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) to create

the Regional ABI and VIIRS Emissions (RAVE) dataset. Within RAVE, FRP measurements are

binned into 5 minute intervals and aggregated to 3 km horizontal resolution, with VIIRS

measurements used where available and GOES measurements used elsewhere. Gaps in the FRP

time series are filled using an interpolation procedure which considers the length of the gap,

climatological burning conditions, and fire residence times in different fuel types (F. Li et al.,

2022). RAVE uses emission factors from Akagi et al. (2011) and Anderae (Andreae, 2019) and

the dry matter conversion factor from Wooster et al. (Wooster et al., 2005). Hourly RAVE

emissions are based on hourly fire radiative energy (FRE), the hourly sum of FRP. In order to

match observed AOD, RAVE emissions were scaled by fuel-dependent values following the

work of (Darmenov and da Silva, 2015).

4.2.2 Evaluation Data: AOD, PM2.5, and polygons

Aerosol optical depth (AOD), computed as the vertical integral of aerosol extinction, is

an extensive aerosol property related to total column aerosol loading. Model AOD will be

validated using AOD from the Multi-Angle Implementation of Atmospheric Correction

(MAIAC) algorithm applied to the Moderate-resolution Imaging Spectroradiometers (MODIS)

on board the Terra and Aqua satellites (Lyapustin et al., 2018). We will use version 6.1 of

MAIAC for MODIS Aqua, which has specifically adjusted parameters of the retrieval to capture

AOD enhancements from smoke, resulting in improved performance compared with AERONET
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AOD (Ye et al., 2022a) particularly for thick smoke that other AOD products may exclude.

MAIAC AOD values based on Aqua are provided roughly twice daily at 1 km resolution.

Surface PM2.5 data come from the near-real time AirNow reference monitors, the data

for which is available from OpenAQ (https://explore.openaq.org/ ). The PM2.5 monitor data are

available at roughly hourly resolution. We assembled data from stations which measured PM2.5

at any point during the simulation period.

Wildfire polygons are necessary to derive the persistence and machine learning emissions

estimates and to evaluate the forecasts daily on a fire-by-fire basis. For this study, we use the

wildfire polygons developed by Thapa et al., (accepted). These polygons are based on Visible

Infrared Imaging Radiometer Suite (VIIRS) 375m fire detections which were aggregated to daily

resolution based on S-NPP and NOAA-20 overpasses occurring in 24 hour periods beginning at

12Z. Each polygon is assigned to the day where the 24 hour period begins, e.g. the September

2nd, 2020 polygons cover all detections made between September 2nd, 12Z and September 3rd,

12Z.

4.3. Methods

In this work, we simulate wildfire smoke over the Western US (WUS; Lat: 30N – 51N,

Lon: -139W – -97W) during the September 1st-24th 2020 period. We use three fire emissions

scenarios, persistence, machine learning, and reference, to drive the regional Weather Research

and Forecasting coupled with Chemistry (WRF-Chem) model. In this section, we present details

on WRF-Chem, describe the three fire emissions scenarios, and discuss methods with which to

evaluate predictions of AOD and PM2.5.
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4.3.1 Chemical transport models

The WRF-Chem configuration is based on WRF-Chem v4.4.2 and will produce output at

4km, hourly resolution. The model is run in a “full chemistry” configuration, with the Regional

Atmospheric Chemistry Mechanism (RACM) for gas phase chemistry (Stockwell et al., 1997),

and the Modal Aerosol Dynamics model for Europe-Volatility Basis Set (MADE-VBS,

Ackermann et al., 1998; Ahmadov et al., 2012) for aerosols and heterogeneous reactions. The

Kinetic PreProcessor (KPP) tool is used to set up the numerical integration of chemical species

to be as fast and efficient as possible. Chemical initial and boundary conditions come from the

Copernicus Atmospheric Monitoring Service (CAMS) global chemical reanalysis product

(EAC4, Inness et al., 2019), and meteorological initial and boundary conditions come from the

National Center for Environmental Prediction’s North American Regional Reanalysis (NCEP

NARR, Mesinger et al., 2006). WRF-Chem requires biogenic and anthropogenic emissions;

biogenic emissions will come from the Model of Emissions of Gases and Aerosols from Nature

(MEGAN, Guenther et al., 2006), and anthropogenic emissions will come from the

Environmental Protection Agency National Emissions Inventory (EPA NEI, Mason, 2017)

estimates. The WRF-Chem configuration will include online calculations of plume rise from the

Freitas model with updated heat flux constants (Freitas et al., 2007; Thapa et al., 2022). Table 4.1

summarizes the relevant meteorological parameterizations the WRF-Chem model will use. One

thing to note is that this configuration of WRF-Chem updates the PBL scheme based on the

results of Thapa et al. (2022) showing that WRF-Chem required a more accurate PBL to show

proper plume injection behavior.
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Parametrization WRF-Chem Reference

Planetary Boundary
Layer (PBL)

5=Mellor-Yamada-Nakanishi-Niino scheme (Nakanishi & Niino, 2004)

Radiation (longwave
and shortwave)

4= RRTMG scheme (Iacono et al., 2008)
2= Goddard Shortwave (Suarez, 1999)

Land Surface Model 2= Noah Land Surface Model (F. Chen & Dudhia, 2001)

Cloud Microphysics 10= Morrison double-moment scheme (Morrison et al., 2009)

Cumulus
Parameterization

3= Grell-Freitas Cumulus Parameterization (Grell & Freitas, 2014)

Radiative Feedbacks Subgrid cloud-radiation interactions (Alapaty et al., 2012) and direct
aerosol-radiation interactions

Table 4.1. Summary of important WRF-Chem model meteorological parameterizations. In the
WRF-Chem references column, numbers refer to the WRF-Chem namelist option.

4.3.2 Emissions scenarios

We run a reference simulation of WRF-Chem driven by RAVE emissions. Emissions

from RAVE are based on FRE observations and so are the closest we can get to a perfect

forecast, although not one free from uncertainty (F. Li et al., 2022). Figure 4.1 and C1 (blue bars)

show RAVE daily total black carbon (BC) emissions summed over the August Complex fire

area. Note that in order to produce realistic AOD with the RAVE emissions inventory, reference

RAVE emissions (and thus persistence and machine learning emissions) were scaled by the

fuel-dependent scaling factors used in (Darmenov and da Silva, 2015).

In addition to the reference emissions, our study tests model sensitivity to two fire

emissions prediction techniques, persistence and machine learning, each of which is applied for

each day and for each active fire (on a per fire-day basis) based on fire location polygons

(Section 4.2.2). The persistence and machine learning-based methods of emissions calculation
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are based on scaling initial emissions values. Initial emissions values are based on gridded RAVE

emissions at the most recent locations of daily fire polygons at the time of forecast initializations,

based on the intersection method presented in Thapa et al., (accepted). Persistence and machine

learning preserve the diurnal cycles from RAVE. Persistence- and machine learning-derived

scaling factors are calculated out to two days, as follows:

● Persistence. Persistence is a common forecasting assumption wherein emissions values

from the initialization day are replicated throughout the forecast period. Therefore, initial

emissions values per fire are multiplied by 1 to get the values of emissions on day 1

(Figure 4.1, green bars) and day 2 of the forecast (Figure C1, green bars).

● Machine learning. The machine learning method for predicting emissions is based on

multiplying persistence emissions for a given fire based on machine learning-derived

scaling factors (Thapa et al., accepted). These scaling factors are a nonlinear function of

FRE, weather, soil moisture, fuel water stress and loading, structures threatened in the

vicinity of the fire, and number of aircraft used to suppress the fire. Previous research

(Thapa et al., accepted) determined that this was the set of features with the highest

predictive capability for estimating emissions scaling factors. Initial emissions values will

be multiplied by the day 1 scaling factor to produce day 1 emissions values (Figure 4.1,

purple bars), and day 1 emissions values will be multiplied by the day 2 scaling factors to

produce day 2 emissions values (Figure C1, purple values). This is done for every RAVE

grid cell which intersects a fire polygon on a given day. The presence of 2-day forecasts

leads to the model evaluation time period to be restricted to the September 2nd-22nd time

period.
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Figure 4.1. Black carbon (BC) emissions from August Complex Fire from the a) RAVE
emissions inventory for September 2nd-September 22nd, 2020. Reference emissions are
plotted in blue, and 1-day persistence and random forest emissions are plotted in green and
purple respectively. Note that the persistence assumption dictates that the amount of emissions
one day (green bar) is the same as the emissions amount the day before (previous day blue
bar).

4.3.3 Forecast Restarts

The WRF-Chem persistence and machine learning simulations will be initialized daily

based on the restart files and will run for two days at a time. Restart files contain the model state

at a given timestep. Our reference configuration of WRF-Chem saved restart files daily at the

12Z timestep. In WRF-Chem, the persistence and updated emissions simulations are initialized

with the restart files, so we expect in this case that the meteorology will be roughly consistent

between the different fire emissions scenarios. Meteorology between the different emissions

scenarios may vary slightly due to the presence of cloud and aerosol direct radiative feedbacks

(Table 4.1). Some of this variability will be accounted for by the WRF-Chem simulations

performing nudging towards the NCEP NARR reanalysis every 6 hours.

4.3.4 Matching models and observations

The MAIAC 1 km granules are regridded to the WRF-Chem WUS domain. The

regridding results in MAIAC swaths split by overpass time (1:30 PM local time for Aqua) which

must be aggregated to a single map representing AOD at 1:30 PM local time. To do this, the day
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is set to cover the period from 12Z on day d to 12Z on day d+1 (12Z-12Z day). All MAIAC and

model time slices from each 12Z-12Z day are collected, and the final output contains the map

over all points where the model and MAIAC have AOD values that are less than 5. Since model

output files are continuous, this step primarily filters the model to the grid cells where MAIAC

data is present. MAIAC and model values from the MAIAC overpass time are stored in netCDF

files for use in later analysis.

OpenAQ station PM2.5 observations are matched to model values by nearest neighbor

interpolation in time and space. In cases where more than one station falls within a model grid

cell, the same model value is used for comparison with each station. This is done for each model

configuration: reference, persistence, and ML, with 1 and 2 day forecasts selected for the

persistence and ML. AOD and PM2.5 performance are evaluated on the station basis, and

averaged to the 12Z-12Z day in order to make comparisons (section 4.4).

In this paper we present bulk model evaluations. For the bulk model evaluation,

performance statistics including mean bias (MB), root mean squared error (RMSE), normalized

mean bias (NMB), normalized mean error (NME), pearson correlation (PC), and ratio (RAT) are

computed following Ye et al., (2021) on a daily and per grid cell or station basis. The bulk model

evaluations allow us to diagnose uncertainties in the RAVE emissions and in the WRF-Chem

model.

4.3.5 Per-polygon model evaluation

To zoom in on the effects of the different fire emissions configurations, we evaluate the

models on a fire-by-fire basis. The models are evaluated in the vicinity of the daily burned area

(Thapa et al., accepted, Figure 4.2 a-f red polygons), with the vicinity defined as a buffered

radius around the burned area polygon (Figure 4.2 a-f gray and black dashed lines). One day
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forecasts are evaluated on the near buffer, defined as 50 km for AOD (Figure 4.2a-f black dashed

line) and 150 km for PM2.5 (Figure 4.2a-f, inner concentric gray dotted line). Two day forecasts

are evaluated on the far buffer, defined as 150 km for AOD (Figure 4.21a-f, inner concentric

gray dotted line) and 300 km for PM2.5 (Figure 4.2a-f, outer concentric gray dotted line).

Depending on the chosen buffer and forecast timestep, AOD and PM2.5 grid cells or station

values falling within that buffer are extracted. Values within the buffer are then considered as a

daily distribution (Figure 4.2g), and performance statistics including mean bias (MB), root mean

squared error (RMSE), normalized mean bias (NMB), normalized mean error (NME), pearson

correlation (PC), and ratio (RAT) are extracted following Ye et al., (2021) (Figure 4.2h-j).

Due to the severe nature of the 2020 wildfire season, multiple fires may occur in the same

buffered region. For instance, the 150 km buffer for the August Complex Fire (e.g. Figure 4.2a,

inner concentric gray dotted line) contains the polygons for the Red Salmon Complex and North

Complex Fires (Figure C2). Therefore, certain points near these fires are likely to be double

counted, with the same point(s) included in the statistics for multiple fires. Indeed, for AOD

(PM2.5) on the large buffer there are grid cells (stations) which get counted up to 9 (20) times

(Figure C3a,c; Ca,c) .
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Figure 4.2. An example of per-polygon model evaluation. a)-f) show AOD from a) MAIAC,
and WRF-Chem b) reference, c) 1-day persistence, d) 1-day random forest, e) 2-day
persistence, and f) 2-day random forest emissions for September 2nd, 2020 in the vicinity of
the August Complex fire (red polygon encircled by black dashed line). Also shown are the Red
Salmon Complex (N of August Complex), North Complex (E of August Complex), and the
W-5 Cold Springs fires (NE of August Complex on CA/NV border) (red polygons). 50 km
(black dotted), 150km, and 300km (gray dotted) buffers around the August Complex fire are
shown. g) shows a time series of AOD selected over the 50km buffer for the MAIAC
observations (red), and the reference (blue), 1-day persistence (green) and the 1-day random
forest (purple). Figures h-j) show model mean bias, normalized mean bias, and pearson
correlation over the August complex fire. Colors are as in g), with dotted lines representing the
2-day persistence and random forest forecasts. The green box highlights September 2nd in the
time series and the purple box highlights a day where FRP (black and gray lines in g)-j)) is
high and model performance is good.

In order to address the issue of stations and grid cells being counted more than once, we

introduce polygon merging. First, this involves determining which buffered polygons intersect

each other, for all buffer sizes. Then, intersecting buffered polygons for which the intersection

area makes up more than 30% of the area of either polygon are combined and statistics are

extracted as above. Figure 4.3a, and d illustrate merged 150 km buffer polygons built out of the
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150 km polygons for the August Complex, Red Salmon, and North Complex fires. This

dramatically reduces the number of stations or grid cells being counted more than once. Across

all buffer sizes, points are mainly counted once, with a small fraction counted twice and a

negligible fraction counted three times (Figure C3b,d; C4b,d). Using the merged buffered

polygons reduces the occurrence of double counting, but it can introduce background

(non-smoky) AOD or PM2.5 values into computed statistics (e.g Figure 4.3a,b lighter colors in

the even numeral plots).

Figure 4.3. Filtering AOD and PM25 measurements over merged polygons. a-b),d-e) show the
150km merged polygons plotted on top of AOD (a,b) and PM2.5 (d,e) for the August Complex
Fire on September 2nd (a,d) and the Marion-MRO fire (b,e). Surrounding fires are plotted in
red. Unfiltered data is shown in even-numeral plots, and filtered data is shown in the
odd-numeral plots. c) and f) show time series of the 10th (blue), 20th (orange) and 30th (green)
percentiles of the observed AOD (c) and PM2.5 (f), and threshold percentiles are shown in the
black dotted lines.

Therefore, we apply a domain- and time period-wide single threshold to AOD and PM2.5

and only calculate statistics using values above these thresholds (Figure 4.3c, f, dotted line). Note

84



how 10th and 20th, percentiles (orange and blue lines) are below/near the threshold for the

beginning of the time series and above the threshold towards the end of the time series. This

threshold was selected to remove background values from the relatively cleaner beginning of

September while preserving smoke enhancement throughout the time series. The thresholds

shown in Figure 4.3 are based on the observations and correspond to 0.01 for AOD and 7 ug/m3

for PM2.5. The corresponding percentiles were selected for the models, and the values are 0.02

for WRF-Chem AOD and 6 for WRF-Chem PM2.5 Filtering out AOD and PM2.5 values below

these thresholds reduces the number of points included in the statistics, and minimally affects the

number of points counted more than once (Figure C5). Figure 4.3a,b,d,e, even numeral plots

show how smoke enhancements are preserved in the region around the fires.

Per-polygon model evaluations allow us to determine when and where the machine

learning derived emissions improve on persistence emissions. For the per-polygon model

evaluation performance statistics (see above) are computed on the filtered data for each 1- and

2-day persistence (P) emission- and random forest (RF) emission-derived prediction of AOD and

PM2.5. The distance between each performance statistic and its ideal value (1 for PC and RAT, 0

for all other statistics) is then determined for each polygon and each statistic.

Generally speaking, the reference WRF-Chem model tends to underpredict AOD and

over and underpredict PM2.5, with the best model performance occurring for the first 10 or so

days of the simulation period for the western states and reasonable model performance occurring

throughout the simulation period for the intermountain west states (see section 4.4.1). Figures

C6-C15 show model evaluation over the top ten fires by size that burned during September 2020.

Due to the fact that the reference model has the most reliable emissions of the different emissions

configurations, we restrict our comparison of P and RF emissions to days where the reference
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model performs well. Good reference performance days first filtered by FRP>0, PC>0 for AOD

and PM2.5 to ensure fires are active and there is reasonable spatial alignment of plumes. Then

we further restrict the analysis to days where the reference model has |MB|<0.5 (|MB|<50) for

AOD (PM2.5) and |NMB|<0.5 for AOD and PM2.5. For an example of a good reference model

performance, see Figure 4.2, purple box.

Once good reference model days are selected, statistics are then separated into 3

categories depending on their distances from the ideal values: RF better than P, RF similar to (~)

P, and RF worse than P (Figure C16). The distribution of statistics in each category is then

compared and conclusions are drawn about the degree to which RF emissions improve on P

emissions for predicting air quality.

4.4. Results

4.4.1 Comparison of daily average black carbon emissions rates

Figure 4.4 compares 1- and 2-day persistence- and random forest-based (Thapa et al.,

accepted) predictions of the daily average emission rate of black carbon (BC) as estimated by the

RAVE) emissions inventory respectively. RAVE BC emissions show improvement with the

application of the random forest, most notably in terms of R2  score in both the 1 day (a,b) and 2

day (c,d) forecasts. An improved R2  score indicates that the rando, forest improves on both the

timing and the magnitude of the emissions and thus is a more reliable prediction than persistence.
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Figure 4.4. Comparison of RAVEblack carbon (kg) with one day (a-b) and two day (c0d)
persistence (a,c, green) and random forest (b,d purple) predictions. The black dotted line is the
1:1 line and points in the red shaded region are predictions within a factor of 2 of the observed
value.

4.4.2 Bulk evaluation of AOD and PM2.5

Figure 4.5 shows the domain averaged AOD (5a-5d) and PM2.5 (5e-5h) domain average

over station locations at times where satellite AOD measurements are available for each day of

the simulation period. Model PM2.5 and AOD from the 1-day persistence emissions predictions

(green), 1-day random forest emissions predictions (purple), and reference emissions (blue) are

compared with observed PM2.5 and AOD (red). All model simulations capture the temporal

pattern of AOD and PM2.5 reasonably well (5a,e; r~0.8 for AOD and PM2.5), but all model
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simulations tend to underestimate surface and column aerosol loading (NMB=-53.19%- -51.64%

for AOD, NMB=-45.65%- -44.66% for PM2.5). Generally speaking, model underestimation is a

result of the smokiest days’ (e.g., Sept 10th-18th) AOD and PM2.5 being underpredicted.

However, missing data also plays a role here, particularly on Sept 9th where many fires peaked

in emissions and AOD was not well-retrieved spatially (e.g., Figure C6). There are a few days at

the beginning of the simulation period (Sept 5th-10th) where surface PM2.5 is overestimated

across the models and one day at the beginning of the simulation period (Sept. 6th) where AOD

is overestimated. In the observations, the peak in AOD beginning September 6th is not matched

in the PM2.5 indicating a plume which was perhaps more lofted. Here the model overestimates

PM2.5 and AOD, indicating perhaps a missing injection or the wrong fraction of the smoke

lofted.

In the domain average, it is difficult to see the impact of random forest-derived emissions

on PM2.5 and AOD (Figure 4.5c,d, 4.5g,h). Because persistence and random forest emissions are

based on the reference emissions, these two emissions scenarios do not seem to address the

overall model biases in PM2.5 and AOD (5b, 5f). Maps of evaluation metrics over the whole

simulation period, which leverage the complete spatial coverage of the satellite data show that

while the temporal evolution of the smoke remains well represented across the domain (Figure

C17a), underestimation is most severe in the Western states of CA and OR (Figure C17b) and

present across the domain. The differences in AOD between the persistence and random forest

simulations are most pronounced in regions in the immediate vicinity of burning fires (Figure

C17c-f).This analysis motivates the main methodological advancement of this paper: automated

evaluation of models on a fire-by-fire basis.
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Figure 4.5. Time series and comparison of daily, domain-averaged AOD (a-d) and PM2.5
(e-h). Red refers to observations, blue to the reference WRF-Chem model, green to the
persistence emissions WRF-Chem model, and purple with the random forest emissions
WRF-Chem model.

4.3 Per-fire model evaluation

In this section we examine how the models represent AOD (Figure 4.6) and PM2.5

(Figure 4.7) on a fire-by-fire basis. These figures compare the distributions of the metrics for P

and RF for all fire days (Figure 4.6a,4.7a), days with low, moderate, and high Fire Weather Index

(FWI; Wagner, 1987; Figure 6b,7b) and days with very high and extreme FWI (Figure 4.6c,4.7c).

Evaluation metrics were calculated over the merged polygons using the filtered data (section

4.3.5), and the day 1 (day 2) forecasts are evaluated on the near (far) buffers. For AOD, a

majority of the cases (50-90% depending on the metric), show the random forest and the

persistence methods having comparable skill (Figure 4.6, RF~P). For PM2.5, there are a few

metrics where RF and P are very similar in less than <50% of the cases (MB, RMSE, Fig
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4.7ai,aii), but in most metrics a majority of the cases show RF and P having similar skill.

Therefore, we consider the random forest to improve upon persistence in terms of AOD or

PM2.5 if the median of the metric distribution (Figure C18,C19) moves further toward the ideal

value in the “RF better than P” cases than it does away from the ideal value in the “RF worse

than P” cases. Improvement (degradation) to forecast skill is represented by blue (red) shading,

with the darkest blue (red) indicating the largest improvements (degradations).

Choosing to use RF emissions instead of P emissions can move us closer to correctly

predicting AOD enhancements due to smoke in both 1 and 2 day forecasts (1D, 2D). Across all

fire days (Figure 4.6a), the random forest shows mixed success. Generally speaking, 20-50% of

the fire days see large changes in error metrics due to the use of RF emissions, and usually a

higher percentage of fire-days are classified as “RF worse than P” than “RF better than P”.

However, RF1D (RF2D) shows improvements on NME, PC, and RAT (RMSE and MB), with

these improvements being up to a factor of 4 in the case of RMSE (Figure 4.6aii) and RAT

(Figure 4.6avi). It is also notable that even in cases where the median of the distribution is

degraded by the implementation of the random forest emissions (e.g., NMB 4.6aiii), the spread

of error may still be narrowed, indicating that large, outlier errors have been removed. The RF1D

is more skillful than the P1D at predicting the magnitude and timing of AOD enhancements due

to smoke, whereas RF2D is more skillful than P1D at predicting magnitude of AOD

enhancements due to smoke. For low-moderate-high FWI, RF1D and RF2D tend to be more

skillful than P1D and P2D at predicting AOD, with the RMSE, NME, and PC metrics improved

by a factor of 4 (Figure 4.6bii, 4.6bvi, 4.6bv). For very high-extreme FWI, RF1D and RF2D are

more and less skillful than P1D and P2D respectively, with multiple metrics degraded by a factor

of 4 (Figure 4.6ciii, 4.6civ, 4.6cv). This means that AOD is more predictable with RF emissions
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than with P emissions under low fire danger conditions, consistent with previous work (Thapa et

al., accepted). This trend holds true whether or not merged polygons are used or filtering is

applied (Figure C20-C27).

PM2.5 predictions can also see improvement through the implementation of RF

emissions. Like AOD, PM2.5 RF can improve or not improve upon P depending on the metric

when all fire days are considered (Figure 4.7a). However, for certain metrics 50-60% of the fire

days can see large changes in error metrics due to the RF emissions (Figure 4.7ai, 4.7av, 4.7avi).

RF1D (RF2D) shows improvements for RMSE, NME, PC, and RAT (RMSE and NME)

indicating that 1 day predictions of PM2.5 show improved magnitude and timing and 2 day

predictions of PM2.5 show improved magnitude. RF1D-based PM2.5 predictions also tend to be

better than P1D-based predictions of PM2.5 for low fire danger than for high fire danger with

NME, PC, and RAT (Figure 4.7biv, 4.7bv,4.7bvi) being improved by up to a factor of 4 for

low-moderate-high fire days and RMSE being degraded by a factor of 4 across both forecast

days (Figure 4.7cii). This is consistent with our AOD predictions and previous work, although

PM2.5 forecasts do tend more generally to be improved whereas AOD forecasts are more mixed.

Notably, RF2D out-performs P2D for all high fire danger day cases, which is why no data points

are present for the RF2D worse than P2D category.

Generally speaking, the RF models tend to improve on error and correlation metrics for

AOD and error, correlation, and some bias metrics for PM2.5. We interpret this to mean that the

RF emissions help enhance the timing of emissions while not always addressing issues with

forecast magnitude and the consistent underprediction of AOD and PM2.5 exhibited by

WRF-Chem. It is also important to note that the random forest model is trained to predict

changes in the FRE observed by GOES and VIIRS (RAVE input), and so is trained to a dataset
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which comes with its own set of uncertainties. Additionally, underlying uncertainties with the

WRF-Chem model could also be responsible for the underprediction issues.

Figure 4.6. Comparison of the distribution of the median (stars* and triangles^) and spread
(bars) of AOD error metrics for a) all fire-days, b) days with low-mod-high FWI, and c) days
with very high-extreme FWI. Error metrics plotted include i) mean bias, ii) root-mean-squared
error, iii) normalized mean bias, iv) normalized mean error, v) pearson correlation, and vi)
ratio. Shaded boxes show the ratio between the change in the persistence (*) and random forest
(^) medians when RF is better than P and the change in the persistence (*) and random forest
(^) medians when RF is worse than P. Blue means RF increases overall forecast skill in terms
of the metric, and red means RF decreases skill in terms of the metric.

92



Figure 4.7. As in Figure 4.6 for PM2.5

4.5. Conclusions

Here we investigated a random forest (RF)-based update to the current persistence (P)

assumption used for predicting smoke emissions and quantified how the machine learning-based

emissions impact air quality predictions. The machine learning model was applied to the

Regional ABI and VIIRS Emission (RAVE) dataset and the WRF-Chem model was used to

make air quality predictions.

We showed that although the machine learning model substantially improved emissions

over persistence, the gains in terms of air quality forecast skill in WRF-Chem were relatively

smaller. Indeed, in the domain-average, the WRF-Chem model does not appear to be very

sensitive to the emission prediction scheme used. This is likely due to the fact that smoke plumes

are relatively small features in most cases and changes in emissions are likely smeared out in the

domain average. Therefore, we introduced an automated method to select the region around a

given fire or set of nearby fires and evaluate smoke enhancements in AOD or PM2.5 in those
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regions. This analysis showed that WRF-Chem is sensitive to the emissions configuration and

WRF-Chem AOD and PM2.5 predictions can be improved by using RF emissions instead of P

emissions. However, uncertainties in both the emissions and the WRF-Chem model make it

difficult to definitively state whether the random forest emissions are an improvement to the

current configuration of WRF-Chem with RAVE emissions.

Our results are primarily limited by uncertainties in the baseline emissions and model

uncertainty in WRF-Chem. With baseline emissions, WRF-Chem underpredicts AOD, even after

RAVE emissions had been scaled following Darmenov (2015). Although RAVE is based on

polar orbiting and geostationary satellites and is expected to provide continuous hourly

emissions, certain fires, such as those obscured by clouds and thick smoke, could be missing or

their emissions underestimated. Internal uncertainty, such as plume rise or the representation of

smoke optical properties (Saide et al., 2022) could also impact the way AOD and PM2.5 are

represented. Finally, this work carries forward the same errors from the random forest described

in Thapa et al., (accepted), most notably is that the random forests tends to default to a

persistence forecast during days of severe fire weather as was seen throughout much of

September 2020.
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Chapter 5

Thesis Conclusions

5.1 Research Summary

This work focused on improving the way fresh smoke plumes are represented in chemical

transport models (CTMs). In particular, my work examines uncertainties with the Freitas plume

rise model (Freitas et al., 2007) and the persistence assumption for predicting the vertical extent

and amount of fresh smoke.

In chapter 2, we learned that both the WRF-Chem and HRRR-Smoke implementations of

the Firetas model overestimate the frequency of injection as a result of assumed model heat

fluxes being much too high. Indeed, when we compare the model and aircraft-derived heat

fluxes, we find that overprediction can be up to a factor of 25 (9) in the worst WRF-Chem

(HRRR-Smoke) cases. The observations suggest a heat flux of 0.55 kWm−2, consistent with what

WRF-Chem uses as the heat flux for grass and savanna fires and explaining why the baseline

WRF-Chem model was a bit more accurate than the baseline HRRR-Smoke model. Finally, we

adjusted heat fluxes in WRF-Chem to better match the observed value and found a decrease in

the rate of false injections. However, in order to get the best performance out of the WRF-Chem

model, the observed planetary boundary layer (PBL) height needed to be used, pointing to the

need for using the most recent PBL scheme available in WRF-Chem going forward.

In chapter 3 I describe a method to use machine learning and domain specific knowledge

of the drivers of fire to predict the daily changes in fire intensity. I tested scaled weather indices

and a random forest (RF) trained on data representing fuel, weather, topography, and firefighting.

Although both the scaled and RF methods beat persistence, the RF method showed the most
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skill, explaining up to 50% of the variance in observed fire radiative energy (FRE) for the 1 day

forecast. The RF maintained its high skill level out to two days of forecast lead time, but RF

predictions tended back towards persistence predictions for days of very high and extreme fire

weather index (FWI, Van Wagner, 1974). Finally, sensitivity analysis showed that the RF was

learning the most from weather and current fire size, and that a pared-down version of the input

features performed just as well as the full feature set. Therefore, we recommend further testing

machine learning based smoke emissions in air quality prediction frameworks.

In chapter 4 the main takeaway is that uncertainties underlying the Regional Advanced

Baseline Imager (ABI) and VIIRS Visible Infrared Imaging Radiometer Suite (VIIRS) Emissions

(RAVE) and the Weather Research and Forecasting with coupled Chemistry (WRF-Chem) need

to be addressed before we may state with confidence whether random forest (RF) based

emissions are an improvement over the current persistence (P) assumption. At this point, the RF

emissions do not make much of a difference with respect to P emissions in bulk evaluations of

AOD and PM2.5 and over many of the fire days, but it is clear that the RF emissions can

improve AOD and PM2.5 in the vicinity of large wildfires on certain days for certain fires.

Granted, the improvements on some fire days come at the expense of degradation of forecast

skill on other fire days, but for some forecast error metrics RF emissions improve skill much

more than they degrade skill. When these improvements do occur, the RF improves the timing

and magnitude of AOD and PM2.5 on the 1-day forecasts and improves the magnitude of AOD

and PM2.5 on the 2-day forecasts.

Another key result of chapter 4 is the modeling and model evaluation pipeline that I

derived. Emissions from any FRP-based inventory can be scaled on a per-fire basis and then

those emissions fed into their respective models. I also developed an automated way to find the
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regions around fires, combine buffer zones when multiple fires are near each other, and extract

the smoke portion of the AOD and PM2.5 signals.

5.2 What does it all mean?

The research and tools presented in this thesis have some important impacts and

implications which need to be mentioned. First of all, Chapter 2 indicates that a major change

should be made to the Freitas model inputs when modeling Western US fires. The Freitas model

is commonly used in regional smoke simulations, including operational models used by NOAA

(Ye et al., 2021), so this work has the potential for broad impact in the community.

While it is very clear that machine learning is a promising way to predict the evolution of

smoke emissions (Chapter 3), some uncertainty remains as to the best way to use these tools

moving forward. Using input data available at daily resolution and hourly emissions summed to

daily resolution, we were able to modify some but not all of the persistence predictions to predict

increases or decreases instead. Therefore, one way that these machine learning tools could be

improved would be to incorporate some idea of sub-daily fire spread into the machine learning

models. This could be accomplished by training the model to predict a scaling factor on hourly

resolution using hourly polygons (i.e. those developed by Y. Chen et al., 2022), a similar method

to what was used here, or by predicting the shape parameters of the diurnal cycle curve.

Predicting hourly emissions would be a great place to leverage simple fire spread models like

FARSITE (Finney et al., 1998), as these could predict fire growth on a sub-daily basis and

provide polygons over which to extract fire driver data. However, fire spread modeling is

challenging in that it requires detailed knowledge of the landscape and geolocated firefighting

efforts (Turney et al., 2023).
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In Chapter 4 we saw that the forecast skill improvements made with machine learning

emissions get smudged out in the output air quality forecasts. Since there is a lot of variability

between different model setups, the first thing this points to is to repeat the WRF-Chem analysis

with a different model and emissions inventory combination. Specifically, with WRF-Chem we

noticed that the model tended to underpredict AOD and under and overpredict PM2.5. This

points us toward a few places to explore further. AOD being underpredicted indicates that

emissions could be too low, and recent work has shown that scaling emissions based on radar

data (Saide et al., 2023) can lead to less underestimations of AOD (Howes, 2024). However, the

fact that PM2.5 can be overpredicted suggests that simply scaling emissions may not entirely fix

the problem. Therefore, it is important to also make sure we are correctly modeling the vertical

distribution of smoke as well as the smoke optical properties (Ye et al., 2022b; Saide et al, 2022),

as these parameters control the amount of coupling between smoke column loading (AOD) and

smoke surface impacts (PM2.5).

The tools developed in my research also have an important role to play in research in the

Saide Group and beyond. In Chapter 3 I developed a method to build wildfire polygons out of

satellite fire detections. This work was used to select fires for which to build radar-based FRP

estimations (Saide et al., 2023). In Chapter 4, I describe a pipeline for scaling emissions based on

machine learning derived scaling factors. This tool was used to scale emissions based on

radar-derived FRP Howes (2024), and in the future this tool can be used to scale emissions for

use in any other model. Chapter 4 also describes using buffered satellite-derived polygons to

look at AOD and PM2.5 in the regions around fires. Following the work of Krishna et al.,

(2024), which used weather radar to create gridded plume heights, the buffered polygons may
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also be used to evaluate plume rise as well as AOD and PM2.5 spatially in the vicinity around a

fire.

5.3 Closing Thoughts

This work took steps toward addressing two sources of uncertainty in fresh smoke plume

modeling: plume rise and the persistence of emissions. Smoke modeling is just one challenge in

the broader, climate-driven wildfire crisis (Zhuang et al., 2021), but being able to predict smoky

days is key to keeping people safe in a world with more fire. Learning to live with fire will be a

group effort, and it has been a pleasure to contribute research to the community.
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Appendix A: Heat flux assumptions contribute to overestimation of wildfire smoke
injection into the free troposphere

Contents of this file
Figures A1 to A60
Table A1 to A3
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Figure A1. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Sheep Fire on 2019-07-24 21:35-21:45 UTC. In
panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A2. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Sheep Fire on 2019-07-24 21:50-22:05 UTC. In
panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A3. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Sheep Fire on 2019-07-24 22:40-23:00 UTC. In
panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A4. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Shady Fire 2019-07-24 23:40-23:53 UTC. In panel a, open circles show
the top of the PBL and filled circles are the smoke top heights. In panels b and c, the modeled
PBL height is shown as the light gray line, and the smoke top height is shown as the dotted
dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local time,
assumed to be the time when the PBL height is at its maximum.
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Figure A5. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Shady Fire 2019-07-24 23:55-2019-07-25 00:07 UTC. In panel a, open
circles show the top of the PBL and filled circles are the smoke top heights. In panels b and c,
the modeled PBL height is shown as the light gray line, and the smoke top height is shown as
the dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A6. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Shady Fire 2019-07-25 00:03-00:10 UTC. In panel a, open circles show
the top of the PBL and filled circles are the smoke top heights. In panels b and c, the modeled
PBL height is shown as the light gray line, and the smoke top height is shown as the dotted
dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local time,
assumed to be the time when the PBL height is at its maximum.
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Figure A7. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Shady Fire 2019-07-25 00:10-00:20 UTC. In panel a, open circles show
the top of the PBL and filled circles are the smoke top heights. In panels b and c, the modeled
PBL height is shown as the light gray line, and the smoke top height is shown as the dotted
dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local time,
assumed to be the time when the PBL height is at its maximum.

107



Figure A8. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Shady Fire on 2019-07-25 22:30-22:45 UTC. In
panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A9. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Shady Fire on 2019-07-26 01:25-01:35 UTC. In
panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.

109



Figure A10. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the North Hills Fire on 2019-07-29 22:40-22:55
UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top
heights. In panels b and c, the modeled PBL height is shown as the light gray line, and the
smoke top height is shown as the dotted dark gray line. In panel c, the dark gray dashed line
shows the PBL top at 4pm local time, assumed to be the time when the PBL height is at its
maximum.
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Figure A11. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the North Hills Fire on 2019-07-29 23:00-23:15
UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top
heights. In panels b and c, the modeled PBL height is shown as the light gray line, and the
smoke top height is shown as the dotted dark gray line. In panel c, the dark gray dashed line
shows the PBL top at 4pm local time, assumed to be the time when the PBL height is at its
maximum.
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Figure A12. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Tucker Fire on 2019-07-30 02:10-02:35 UTC. In
panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A13. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Tucker Fire on 2019-07-30 04:00-04:20 UTC. In
panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A14. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Tucker Fire on 2019-07-30 04:15-04:40 UTC. In
panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A15. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Left Hand Fire on 2019-07-31 00:35-00:55
UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top
heights. In panels b and c, the modeled PBL height is shown as the light gray line, and the
smoke top height is shown as the dotted dark gray line. In panel c, the dark gray dashed line
shows the PBL top at 4pm local time, assumed to be the time when the PBL height is at its
maximum.
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Figure A16. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Left Hand Fire on 2019-07-31 00:55-01:15
UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top
heights. In panels b and c, the modeled PBL height is shown as the light gray line, and the
smoke top height is shown as the dotted dark gray line. In panel c, the dark gray dashed line
shows the PBL top at 4pm local time, assumed to be the time when the PBL height is at its
maximum.
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Figure A17. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Ridge Top Fire 2019-08-02 22:10-22:25 UTC. In panel a, open circles
show the top of the PBL and filled circles are the smoke top heights. In panels b and c, the
modeled PBL height is shown as the light gray line, and the smoke top height is shown as the
dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A18. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Ridge Top Fire on 2019-08-02 23:40-23:50
UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top
heights. In panels b and c, the modeled PBL height is shown as the light gray line, and the
smoke top height is shown as the dotted dark gray line. In panel c, the dark gray dashed line
shows the PBL top at 4pm local time, assumed to be the time when the PBL height is at its
maximum.
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Figure A19. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Mica/Lick Creek Fire 2019-08-03 00:35-00:55 UTC. In panel a, open
circles show the top of the PBL and filled circles are the smoke top heights. In panels b and c,
the modeled PBL height is shown as the light gray line, and the smoke top height is shown as
the dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A20. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Mica/Lick Creek Fire 2019-08-03 02:20-02:40 UTC. In panel a, open
circles show the top of the PBL and filled circles are the smoke top heights. In panels b and c,
the modeled PBL height is shown as the light gray line, and the smoke top height is shown as
the dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A21. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Mica Creek Fire 2019-08-03 21:30-21:40 UTC. In panel a, open circles
show the top of the PBL and filled circles are the smoke top heights. In panels b and c, the
modeled PBL height is shown as the light gray line, and the smoke top height is shown as the
dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A22. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Williams Flats Fire on 2019-08-03 21:40-22:00
UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top
heights. In panels b and c, the modeled PBL height is shown as the light gray line, and the
smoke top height is shown as the dotted dark gray line. In panel c, the dark gray dashed line
shows the PBL top at 4pm local time, assumed to be the time when the PBL height is at its
maximum.
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Figure A23. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Williams Flats Fire on 2019-08-04 00:05-00:25
UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top
heights. In panels b and c, the modeled PBL height is shown as the light gray line, and the
smoke top height is shown as the dotted dark gray line. In panel c, the dark gray dashed line
shows the PBL top at 4pm local time, assumed to be the time when the PBL height is at its
maximum.
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Figure A24. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Williams Flats Fire on 2019-08-04 02:30-02:55
UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top
heights. In panels b and c, the modeled PBL height is shown as the light gray line, and the
smoke top height is shown as the dotted dark gray line. In panel c, the dark gray dashed line
shows the PBL top at 4pm local time, assumed to be the time when the PBL height is at its
maximum.
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Figure A25. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Williams Flats Fire 2019-08-06 18:40-19:00 UTC. In panel a, open
circles show the top of the PBL and filled circles are the smoke top heights. In panels b and c,
the modeled PBL height is shown as the light gray line, and the smoke top height is shown as
the dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.

125



Figure A26. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Williams Flats Fire 2019-08-06 20:30-20:40 UTC. In panel a, open
circles show the top of the PBL and filled circles are the smoke top heights. In panels b and c,
the modeled PBL height is shown as the light gray line, and the smoke top height is shown as
the dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A27. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Williams Flats Fire 2019-08-06 21:45-22:00 UTC. In panel a, open
circles show the top of the PBL and filled circles are the smoke top heights. In panels b and c,
the modeled PBL height is shown as the light gray line, and the smoke top height is shown as
the dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A28. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Snow Creek Fire 2019-08-06 22:25-22:35 UTC. In panel a, open circles
show the top of the PBL and filled circles are the smoke top heights. In panels b and c, the
modeled PBL height is shown as the light gray line, and the smoke top height is shown as the
dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A29. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Horsefly Fire 2019-08-06 22:45-23:00 UTC. In panel a, open circles
show the top of the PBL and filled circles are the smoke top heights. In panels b and c, the
modeled PBL height is shown as the light gray line, and the smoke top height is shown as the
dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A30. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Horsefly Fire 2019-08-07 00:25-00:55 UTC. In panel a, open circles
show the top of the PBL and filled circles are the smoke top heights. In panels b and c, the
modeled PBL height is shown as the light gray line, and the smoke top height is shown as the
dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A31. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Sheep Fire on 2019-08-07 23:00-23:20 UTC. In
panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure
A32. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from HRRR-Smoke
(b) and WRF-Chem (c) for the Williams Flats Fire on 2019-08-08 00:45-01:05 UTC. In panel
a, open circles show the top of the PBL and filled circles are the smoke top heights. In panels b
and c, the modeled PBL height is shown as the light gray line, and the smoke top height is
shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at
4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A33.Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Williams Flats Fire on 2019-08-08 02:20-02:40
UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top
heights. In panels b and c, the modeled PBL height is shown as the light gray line, and the
smoke top height is shown as the dotted dark gray line. In panel c, the dark gray dashed line
shows the PBL top at 4pm local time, assumed to be the time when the PBL height is at its
maximum.
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Figure A34.Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Williams Flats Fire on 2019-08-09 02:00-02:15
UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top
heights. In panels b and c, the modeled PBL height is shown as the light gray line, and the
smoke top height is shown as the dotted dark gray line. In panel c, the dark gray dashed line
shows the PBL top at 4pm local time, assumed to be the time when the PBL height is at its
maximum.
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Figure A35.Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Williams Flats Fire on 2019-08-09 02:15-02:30
UTC. In panel a, open circles show the top of the PBL and filled circles are the smoke top
heights. In panels b and c, the modeled PBL height is shown as the light gray line, and the
smoke top height is shown as the dotted dark gray line. In panel c, the dark gray dashed line
shows the PBL top at 4pm local time, assumed to be the time when the PBL height is at its
maximum.
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Figure A36. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Springs Fire 2019-08-12 22:10-22:20 UTC. In panel a, open circles
show the top of the PBL and filled circles are the smoke top heights. In panels b and c, the
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modeled PBL height is shown as the light gray line, and the smoke top height is shown as the
dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.

Figure A37. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Springs Fire 2019-08-12 22:25-22:30 UTC. In panel a, open circles
show the top of the PBL and filled circles are the smoke top heights. In panels b and c, the
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modeled PBL height is shown as the light gray line, and the smoke top height is shown as the
dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.

Figure A38.Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Castle Fire 2019-08-12 23:19-23:30 UTC. In panel a, open circles show
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the top of the PBL and filled circles are the smoke top heights. In panels b and c, the modeled
PBL height is shown as the light gray line, and the smoke top height is shown as the dotted
dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local time,
assumed to be the time when the PBL height is at its maximum.

Figure A39.Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
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heat fluxes (d) for the Castle Fire 2019-08-12 23:30-23:50 UTC. In panel a, open circles show
the top of the PBL and filled circles are the smoke top heights. In panels b and c, the modeled
PBL height is shown as the light gray line, and the smoke top height is shown as the dotted
dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local time,
assumed to be the time when the PBL height is at its maximum.
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Figure A40.Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Castle Fire 2019-08-13 22:30-22:45 UTC. In panel a, open circles show
the top of the PBL and filled circles are the smoke top heights. In panels b and c, the modeled
PBL height is shown as the light gray line, and the smoke top height is shown as the dotted
dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local time,
assumed to be the time when the PBL height is at its maximum.
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Figure A41.Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Castle Fire on 2019-08-13 22:40-22:55 UTC. In
panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A42. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Sheridan Fire on 2019-08-16 00:25-00:40 UTC.
In panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A43. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Sheridan Fire on 2019-08-16 00:40-00:50 UTC.
In panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A44. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Sheridan Fire on 2019-08-16 01:00-01:15 UTC.
In panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.
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Figure A45. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b) and WRF-Chem (c) for the Sheridan Fire on 2019-08-16 01:15-01:30 UTC.
In panel a, open circles show the top of the PBL and filled circles are the smoke top heights. In
panels b and c, the modeled PBL height is shown as the light gray line, and the smoke top
height is shown as the dotted dark gray line. In panel c, the dark gray dashed line shows the
PBL top at 4pm local time, assumed to be the time when the PBL height is at its maximum.

146



Figure A46. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Saber Fire 2019-08-16 01:45-01:55 UTC. In panel a, open circles show
the top of the PBL and filled circles are the smoke top heights. In panels b and c, the modeled
PBL height is shown as the light gray line, and the smoke top height is shown as the dotted
dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local time,
assumed to be the time when the PBL height is at its maximum.
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Figure A47. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Boulin Fire 2019-08-16 01:55-02:00 UTC. In panel a, open circles show
the top of the PBL and filled circles are the smoke top heights. In panels b and c, the modeled
PBL height is shown as the light gray line, and the smoke top height is shown as the dotted
dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local time,
assumed to be the time when the PBL height is at its maximum.
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Figure A48. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Sheridan Fire 2019-08-16 02:05-02:20 UTC. In panel a, open circles
show the top of the PBL and filled circles are the smoke top heights. In panels b and c, the
modeled PBL height is shown as the light gray line, and the smoke top height is shown as the
dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A49. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Ikes Fire 2019-08-16 04:10-04:25 UTC. In panel a, open circles show
the top of the PBL and filled circles are the smoke top heights. In panels b and c, the modeled
PBL height is shown as the light gray line, and the smoke top height is shown as the dotted
dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local time,
assumed to be the time when the PBL height is at its maximum.
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Figure A50. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Sheridan Fire 2019-08-17 00:00-00:15 UTC. In panel a, open circles
show the top of the PBL and filled circles are the smoke top heights. In panels b and c, the
modeled PBL height is shown as the light gray line, and the smoke top height is shown as the
dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A51. Vertical profiles of backscatter from the DIAL-HSRL (a) and PM2.5 from
HRRR-Smoke (b), WRF-Chem with default heat fluxes (c), and WRF-Chem with adjusted
heat fluxes (d) for the Sheridan Fire 2019-08-17 00:15-00:30 UTC. In panel a, open circles
show the top of the PBL and filled circles are the smoke top heights. In panels b and c, the
modeled PBL height is shown as the light gray line, and the smoke top height is shown as the
dotted dark gray line. In panel c, the dark gray dashed line shows the PBL top at 4pm local
time, assumed to be the time when the PBL height is at its maximum.
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Figure A52. Comparison of observed (green) and modeled (red) planetary boundary layer
height (in m above sea level) distributions for the WRF-Chem (a) and HRRR-Smoke (b)
models. Cases for which these plots were generated are the WRF-Chem false positives
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Figure A53. Plume top heights from the 1D Freitas forced by 1D WRF-Chem meteorology
(blue bars), and 1D Freitas forced by 1D HRRR-Smoke meteorology (red bars) for cases
where WRF-Chem underpredicted the PBLH and HRRR-Smoke accurately captured the
PBLH. PBLHs associated with each meteorology configuration are overlaid as box and
whisker plots over their corresponding bar, and the PBLH derived from the DIAL-HSRL is
given as a dotted line. Selected fires include a) Shady, b) Mica Creek, c) Williams Flats, d-e)
Spring, f) Castle, g-h) Sheridan

154



Figure A54. Box and whisker plots of (a) HRRR-Smoke time of day, (b) HRRR-Smoke
terrain variability (standard deviation in 3x3 grid box around fire), (c) FT Brunt-Vaisala
Frequency, (d) PBL Brunt-Vaisala Frequency (e) FT bulk Richardson number, (f) PBL bulk
Richardson number. Red line denotes medians, blue box denotes the interquartile range, and
whiskers denote the 1.5x interquartile range. TP, FP, and FN are defined as in Table 2.2
caption.
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Figure A55. Box and whisker plots of (a) WRF-Chem time of day, (b) WRF-Chem terrain
variability (standard deviation in 3x3 grid box around fire), (c) FT Brunt-Vaisala Frequency,
(d) PBL Brunt-Vaisala Frequency (e) FT bulk Richardson number, (f) PBL bulk Richardson
number. Red line denotes medians, blue box denotes the interquartile range, and whiskers
denote the 1.5x interquartile range. TP, FP, and FN are defined as in Table 2.2 caption
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Figure A56. Analogous to Fig. 2.3, but for different combustion phases: (a) total FRP and total
area, (b) flaming/saturated FRP and total area, and (c) flaming/saturated FRP and
flaming/saturated area
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Figure A57.MASTER FRP vs (a) VIIRS FRP and (b) MODIS FRP determined using VIIRS
and MODIS overpasses within +/- 2hrs from MASTER overpasses. MASTER values tend to
be higher than MODIS values and lower than VIIRS values. Red dashed lines are 95%
confidence bounds on the best fit line.
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Figure A58. Comparison of campaign fuels and model fuels covering three broad fuel
categories for the 51 test cases in this study: grassland, savanna, and forest. Entries along the
main diagonal represent cases where the model and the campaign fuel type agreed, and off
diagonals represent cases where the model and campaign fuel type disagreed.
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Figure A59. Illustration of the spatial shifting algorithm for the Castle fire, observed on
8/12/2019 23:20 20-23:30 UTC. (a) Observed backscatter profiles from the DIAL -HSRL. (b)
Modeled PM2.5 curtain plot without shifting applied. (c) Modeled PM2.5 curtain plot with
shifting applied. (d) Spatial aerosol optical depth (AOD) plot overlaid with unshifted (black)
and shifted (red) flight flight track.
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Figure A60. Illustration of time shift for the Shady Fire, observed 7/29/2019
00:00-00:38 UTC. (a) spatial emissions plot and (b) vertical curtain of PM2.5
sampled at the model time matching the observed time. Note how emissions are not
present in the spatial or the vertical plot. (c) spatial emissions plot and (d) vertical
curtain plot sampled at the model time shifted to one hour after the observed time.
Emissions are now present in the spatial plot and vertical plume structure is
developed.
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Table A1. Details for each case, including the figure number, fire name, date, and time of the
measurements, WRF-Chem modeled and observed injection behavior (0=non-injection, 1=injection),
and terminal node of the decision tree that results in each classification. Not-a-Number (Nan) means
that the model missed the fire and therefore the injection behavior could not be evaluated.
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Table A2. Details for each case, including the figure number, fire name, date, and time of the
measurements, HRRR-Smoke modeled and observed injection behavior (0=non-injection, 1=injection),
and terminal node of the decision tree that results in each classification. Not-a-Number (Nan) means
that the model missed the fire and therefore the injection behavior could not be evaluated.
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Table A3. Assumptions for selecting the out-of-plume observed PBLH.
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Appendix B: Forecasting daily fire radiative energy using data driven methods and
machine learning techniques

Contents of this file
Text B1
Tables B1 to B5
Figures B1 to B16

Text B1

B1.1 Fire Location

While not directly used as an input to the machine learning or other statistical methods, fire
location data allows for the tracking of wildfires in space and time and for the extraction of
gridded data in only regions relevant to the wildfire.

● Active Fire Detections. Fire detections from the Visible Infrared Imaging Radiometer
Suite (VIIRS) instruments aboard the Suomi National Polar-orbiting Partnership (SNPP)
and NOAA-20 satellites (Schroeder et al., 2014) are used to track daily fire evolution.

● Final Fire Perimeters.Monitoring Trends in Burn Severity (MTBS) provides
Landsat-based detailed final burn perimeters for fires exceeding 1000 acres in the
continental US (Eidenshink et al., 2007). Some fires may take over a year to be fully
processed, and in such cases MTBS provides a provisional initial assessment, which was
used here to fill the gaps in the 2021 dataset. Use of the MTBS data limits our training
dataset to fires larger than 1000 acres.

B1.2 Fire Intensity
● RAVE Data. Fire intensity measurements are obtained from the Regional ABI and

VIIRS Emissions product (RAVE, Li et al., 2022). RAVE aggregates FRP retrievals from
the Geostationary Operational Environmental Satellites-Advanced Baseline Imager
(GOES-ABI) and the Joint Polar Satellite System (JPSS) Visible Infrared Imaging
Radiometer Suite (VIIRS). RAVE also fills gaps in the FRP record (i.e. those due to
cloud cover or heavy smoke (Schmidt et al., 2012) using grid cell specific climatological
diurnal cycles produced for land cover and ecoregion (Li et al., 2022). Time-integrated
RAVE FRP, also known as fire radiative energy (FRE), data is used as the target variable
and as a feature in the random forest model (persistence FRE from the previous day).
RAVE is only processed as far back as 2019, so use of this data limits our training dataset
to fires occurring after 2019. FRE for all quality flags was used in this analysis.
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B1.3 Fire Weather

GridMET is a climatological product derived from the high temporal North American Land Data
Assimilation System Phase 2 (NLDAS-2; Mitchell et al., 2004), and the high spatial resolution
Parameter-elevation Regressions on Independent Slopes Model (PRISM; Daly et al., 2008).
GridMET covers the period between 1979 and present day (Abatzoglou, 2013). In this work we
extract the following GridMET variables:

● GridMET meteorology and heatwaves. We extract vapor pressure deficit (VPD), wind
speed (WS), and daily minimum and maximum temperatures (Tmin and Tmax).
Temperature data are processed to define 90th percentiles of temperature following
Perkins et al., (2012). We track the number of days a fire exceeds the historical
(1979-2010) 90th percentile of only Tmax and both Tmax and Tmin.

● GridMET National Fire Danger Rating System. The National Fire Danger Rating
System (NFDRS) is the system used by the US Forest Service to anticipate fire risk and
behavior (Bradshaw et al., 1984). The NFDRS uses weather and topography information
along with predetermined fuel models to predict fire intensity (Burning Index (BI)) and
burnable fuel (Energy Release Component (ERC)). The NFDRS also produces class
ratings, which range from low to extreme and describe likely fire behaviors given ignition
under various weather conditions. GridMET calculates the above NFDRS components,
assuming a conifer forest fuel model for the BI and the ERC.

The High Resolution Rapid Refresh (HRRR) model is a regional cloud-resolving model that has
been operational since 2014 (Dowell et al., 2022). HRRR forecasts are initiated every hour and
cover 18-48 hours. At each restart, HRRR performs data assimilation of weather observations
and 3D radar reflectivity, which make the HRRR 0-hour forecasts comparable to a
meteorological reanalysis. For this work we pull operational HRRR
(https://rapidrefresh.noaa.gov/hrrr/) 0-hour forecasts and calculate the following fire weather
indices, which track the influence of surface conditions and vertical stability on fire growth:

● HRRR meteorology. We extract temperature, relative humidity, and WS from the lowest
500m HRRR model. Temperature and relative humidity are used to calculate VPD for the
HRRR model. The max VPD and WS over the lowest 500m of the HRRR model are
provided as inputs to the models tested.

● Hot-Dry-Windy. Defined as the product of the maximum VPD and WS over the lowest
500m of the atmosphere, the hot-dry-windy index (HDW) is an indicator of the effect of
local meteorology on wildfire behavior that can be calculated in any location and from
any meteorological dataset that tracks relative humidity and wind speed (Srock et al.,
2018). We developed a version of HDW based on HRRR that puts a lag of up to 3 days
on the VPD used to calculate the HDW. This version is denoted HDmW0, where m is a
number denoting the lag applied to the VPD. If m=0 then VPD and wind from the same
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day were used. Fuels take time to dry out, and the lag was used to investigate the impact
of enhanced VPD on fuel curing.

● Hourly Wildfire Potential. Hourly Wildfire Potential (HWP) is a new diagnostic
product developed for the HRRR model which uses surface air temperature, humidity,
wind gust potential, and soil moisture model output and is tuned to be an indicator of
wildfire intensity in a given region, given a source of ignition. HWP is calculated
following the formulation developed by Eric James (Equation 1).

(1) 𝐻𝑊𝑃 = 0. 237 * 𝑉 * 𝐺1.11 * 𝐷0.92 *  𝑀6.95 * 𝑆 

Where V=binary vegetation term (0 for urban, barren, snow/ice, water land cover, 1 for
all other land covers); G=10-m gust maximum term (maximum of [3m/s, HRRR surface
wind gust output]); D=dewpoint depression term (maximum of [15K, HRRR 2m
dewpoint depression]); M=moisture availability term (fraction of maximum surface soil
moisture 0.01*(100-HRRR surface moisture)); S=binary snow cover term (1 when
HRRR snow water equivalent is greater than 25mm, 0 otherwise).

● Continuous Haines Index. The Continuous Haines Index (CHI) quantifies the impact of
vertical changes in moisture and temperature on atmospheric stability (Dowdy & Pepler,
2018; Pinto et al., 2020). It was developed to extend the Haines Index, which was known
to saturate for large wildfires (Jenkins, 2002; Potter, 2018; Potter, 2005). CHI is
calculated using HRRRv4 temperature at 850 and 700 mb as well as dewpoint depression
at 850mb following Pinto et al., (2020).

● Pyrocumulonimbus Firepower Threshold. Also a measure of atmospheric stability on
wildfire behavior, the pyrocumulonimbus (pyroCb) firepower threshold (PFT) is a
measure of the fire energy (in GW) needed to generate a pyroCb in a given
thermodynamic environment (Tory & Kepert, 2021). The Tory & Kepert (2021)
formulation is based on the Briggs equations of plume rise, which allows PFT to be
calculated as a function of free convection height, wind speed, and potential temperature.
These quantities may all be derived from a sounding, which is assembled using HRRRv4
columns of temperature, dewpoint, specific humidity, and u- and v-winds, and grid cell
values of terrain and boundary layer height.

The Global Fire WEather Database (GFWED) is a global implementation of the widely-used
Canadian Forest Fire Danger Rating System (CFFDRS, Wagner, 1987).

● CFFDRS Components. For this work, we pull Field’s (2015) formulation of the system,
which uses MERRA-2 renalysis and IMERG precipitation (Field, 2020a, 2020b) to
calculate indices describing fire intensity. The buildup index (BUI) describes heat release
from large fuel, and the fire weather index (FWI) describes fire intensity with influence
from fine fuels and weather conditions. Calculating CFFDRS components from
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reanalysis data allows greater spatial and temporal coverage than the original formulation
based on in situ observations, but biases in MERRA-2 temperature and relative humidity
have been shown to introduce bias into final FWI calculations (Field, 2020a) .

B1.4 Moisture Products

● GridMET fuel moisture. The NFDRS also tracks the moisture of various time lagged
fuels. Fuels with a 100hr timelag are 1-3in thick or ¾-4in deep. Fuels with a 1000hr
timelag are 3-8in thick or 4in deep (Bradshaw et al., 1984). GridMET derives the
moisture values for fuel model G (conifer forest)

● GFWED Fuel Moisture. The CFFDRS tracks the moisture of fuels at various depths as
moisture codes, where higher values mean drier fuels. The fine fuel moisture code
(FFMC) represents the top 1 cm of organic litter and is equivalent to fuels with a 16 hour
timelag. The duff moisture code (DMC) represents the top 7cm of organic litter and is
equivalent to fuels with a 360 hour timelag. Finally, drought code (DC) represents the
top 18cm of organic litter and is equivalent to fuels with a 1272 hour timelag.

● NOAA Soil Moisture Operational Products System. The NOAA Soil Moisture
Operational Products System (SMOPS) is a multi-instrument soil moisture retrieval based
on microwave brightness temperature from seven satellite sensors which gives the
volume percentage of water in the top 1-5 cm of soil (Liu et al., 2016). This work utilizes
the Blended_SM variable from the SMOPS version 3 product, which has been shown to
have very good agreement with in-situ soil moisture measurements (Yin et al., 2020).

● NCAR Fuel Moisture. These are machine learning-derived estimates of living and dead
fuel moisture based on MODIS reflectances, WRF-Hydro model outputs, and terrain
information (McCandless et al., 2020). In this dataset, dead fuel moisture (FMCG2D)
corresponds to the 10 hr fuel moisture, which represents fractional moisture of fuels
0.25-1 inches thick or below the surface. Living moisture from this dataset
(FMCGLH2D) represents the fractional moisture of living plants.

● HRRR Soil Moisture. Soil moisture at depths of the surface, 1cm, 4cm, 10cm and 30m
are extracted from the HRRR model.

● Plant Water Sensitivity. The plant water sensitivity (PWS) indicates the degree to which
living plant ecosystems are buffered against climate-driven changes in water availability,
with high values of PWS indicating that living plants rapidly respond to changes in water
availability and low values of PWS indicating a water-retaining ecosystem (Rao et al.,
2022). Rao (2022) shows that high PWS values are associated with greater wildfire
burned area during dry periods than low PWS values.

● Evaporative Stress Index. The evaporative stress index (ESI, Anderson et al., 2011)
uses geostationary land surface temperature data from GOES to quantify anomalies in the
ratio of actual to potential evapotranspiration, an indicator of drought. Positive values of
ESI indicate above normal water usage and negative values of ESI indicate below normal
water usage.
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B1.5 Fuel Loading

Even though vegetative fuels are necessary for fire, this does not guarantee their predictive
potential for large fires that continue to burn, because these fires are already fueled by dry
vegetation. Here, we use the mass of fuels and the amount that could burn (under low to extreme
fire weather) to test their predictive potential. Fuel mass was derived using the 30 m Fuel
Characteristic Classification System (FCCS) that represents the structure and composition of
wildland fuels to support a wide range of fire behavior (surface, crown, smoldering, flaming,
residual) using the six horizontal fuel layers (strata) including the canopy, shrubs, nonwoody,
woody, litter-lichen-moss, and duff (Ottmar et al., 2007). Then we calculate the potential for the
fuelbeds in each strata to burn based on the 5 classes of NFDRS fire danger classifications (low,
moderate, high, very high and extreme). Fuel maps were established at 30 meters across the
contiguous United States for every fire danger classification, based on previous work (Soja et al.,
2004), for the FIREX-AQ field campaign (Peterson et al., 2022; Warneke et al., 2023).

B1.6 Slope and Elevation

Land surface slope in degrees and elevation in meters was obtained at 30m resolution
(LANDFIRE, 2016) and averaged to 990m resolution to allow for faster processing. Standard
deviations of both slope and elevation were extracted to track terrain.

B1.7 Firefighting Reports

The SIT-209 system aggregates national situation (SIT)- and incident-level (ICS-209) wildfire
management information including fire location, start and end dates, and containment and
resources applied to fires through their lifetimes (Jamieson, 2005). In this work, SIT-209 time,
location, and incident type data are used to define the wildfire incidents and provide a starting
point to define fire polygons. Containment percentage, numbers of resource types deployed,
personnel assigned to each resource type, and affected structures are provided at roughly daily
resolution and are used as predictors. Resource types considered include: crews, engines, aircraft,
construction, and overhead (unassigned floater personnel). Structures affected are split as:
structures damaged, structures destroyed, and structures threatened in the next 72 hours. The
numbers of resources and affected structures are at times best estimates by incident management
and dispatch teams.

B1.8 Population

One key objective of fire management agencies is to protect life and property, so it is reasonable
to assume that proximity to population centers would be a predictor of fire suppression activities
and thus total wildfire heat output. For this work, Gridded Population of the World, version 4
(GPWv4) population density was pulled (CIESIN-Columbia University, 2018).
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Date irwinID BI (1-day)δ

2020-08-26 00:00:00 2B8959C3-D33F-4B9E-9433-ADB64A57E3E9 0.007206

2020-07-22 00:00:00 795DCBB1-F228-4F7B-9C92-14999DC4B397 24.448432

2020-08-21 00:00:00 7FFA8FCA-1A10-42A6-AB5C-C4CF78119F7D 0.000829

2020-09-12 00:00:00 BCE8E7E2-9777-4C55-837E-A5404927E420 0.003473

2020-09-13 00:00:00 BCE8E7E2-9777-4C55-837E-A5404927E420 36.997390

2020-09-08 00:00:00 C8AD0C86-8BBA-4259-B993-A07DB688C3E1 0.029320

2020-08-24 00:00:00 D4175FA1-8BB6-4E9E-9A8E-C737957CBF67 0.022953

Table B1. BI Outliers. Values of BI used to generate the 1-day forecast from day 0 FREδ δ
which are related to unphysical increases or decreases in fire behavior.

Date irwinID BI (2-day)δ

2020-11-04 00:00:00 33CBB9DC-6983-4F47-B821-9C9A6CAC381D 0.038242

2020-07-22 00:00:00 795DCBB1-F228-4F7B-9C92-14999DC4B397 22.683319

2020-11-03 00:00:00 843FC86F-D6D2-4E49-93EA-96F6B0720C3D 0.030518

2020-09-13 00:00:00 BCE8E7E2-9777-4C55-837E-A5404927E420 29.801551

2020-08-21 00:00:00 DD23418F-7040-439F-8024-1441931BA3F0 0.004292

Table B2. BI Outliers. Values of BI used to generate the 2-day forecast from day 0 FREδ δ
which are related to unphysical increases or decreases in fire behavior.

Date irwinID δHWP (one
day)

2020-09-10 00:00:00 ECE62D4A-E790-496E-8C53-991E9E7028D5 0.031978

2020-09-11 00:00:00 ECE62D4A-E790-496E-8C53-991E9E7028D5 28.748383
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Table B3. HWP Outliers. Values of HWP used to generate the 1-day forecast from day 0δ δ
FRE which are related to unphysical increases or decreases in fire behavior.

Date irwinID δHWP (two
day)

2020-09-11 00:00:00 ECE62D4A-E790-496E-8C53-991E9E7028D5 75.092339

Table B4. HWP Outliers. Values of HWP used to generate the 2-day forecast from day 0δ δ
FRE which are related to unphysical increases or decreases in fire behavior.

Table B5. Comparison of R2 and R2
adj for a) sensitivity analysis, b) 1-day optimal subsets, c)

2-day optimal subsets, d) 1-day RF (all features) and e) 2-day RF (all features)

171



Figure B1. Time series of FRE (black), hourly wildfire potential (blue), hot-dry-windy index
(orange), Canadian Fire Weather Index (green), US Burning Index (red) for the August
Complex fire.

Figure B2. Example of the impact of grid resolution on polygon-averaged fuel density (a-b)
and slope (c-d). a) and c) show a time series of FRP (black) and fuel density/slope at different
grid resolutions (colored lines) for the Bobcat Fire. b) and d) show pearson correlation for fuel
density/slope at different grid resolutions.
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Figure B3. Distributions of a) total daily FRE, b) log(FRE), and c)
FRE, and d) log( FRE) for the training years, 2019 and 2021. a) and c) use a log scale for theδ δ
y axis, c) and d) use a linear scale. Outliers which lie more than 1.5 interquartile ranges from
the median of the log of FRE are removed.δ
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Figure B4. Density plots of observed and modeled FRE as predicted by a,f) persistence, b,g)
scaled VPD from HRRR, c,h) scaled HD0W0, d,i) scaled HWP, e,j) the random forest trained
on all variables. The red line is the best fit to the log of the data and the black line is the 1:1
line. The best fit equation, R2, RMSE, and MAD are also provided for each model. The top
row is for the 1-day forecast and the bottom row is for the 2-day forecast.
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Figure B5. Density plots of observed and modeled scaling factors as predicted by a,f)
persistence, b,g) scaled VPD from HRRR, c,h) scaled HD0W0, d,i) scaled HWP, e,j) the
random forest trained on all variables. The red line is the best fit to the log of the data and the
black line is the 1:1 line. The best fit equation, R2, RMSE, and MAD are also provided for
each model. The top row is for the 1-day forecast and the bottom row is for the 2-day forecast.



Figure B6. Random forest evaluation metrics by state (a-f) and by fire severity (g-j) for the
2-day RF and persistence predictions. a) SSMAD and SSRMSE for the RF model; b) R2 for the
persistence and RF models; c) MAD for the persistence and RF models; d) F1slight_change for the
persistence and RF models; e) RMSE for the persistence and RF models; f) F1increase and
F1decrease for the RF model; g) RMSE (yellow) and MAD (teal) for the persistence (dotted) and
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RF (solid) models split by 20th-percentiles of FWI; h) as in f but split by 20th-percentiles of
FRE. i) SSMAD (teal), SSRMSE (yellow), F1increase (red), F1decrease (blue), and F1slight_change (tan) for
the RF models with F1slight_change (tan dotted) for the persistence model split by 20th percentiles
of FWI. j) as in i but split by 20th percentiles of FRE.

Figure B7. Scatter plots of average error vs average values of predictor by state for the 1-day
random forest predictions. Shown are the top 3 predictors whose state-averaged values had the
highest person correlation (r2) with each error type. The metrics presented (y-axes) include a)
SSMAD , b) SSRMSE , c) MAD, d) RMSE, e) R2, f) F1no change , g) F1increase, and h) F1decrease. The
x-axes are labeled with the predictor whose average values are plotted.
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Figure B8. Pearson correlation (r2) and correlation strength (absolute value of r2, shading,
annotated numbers) between error metrics and state-average random forest input variables
(row labels) for the 1-day forecasts. Pearson correlations are shown for a) SSMAD, b) SSRMSE, c)
MAD, d) RMSE, e) R2, f) F1decrease, g) F1increase, h) F1no change

177



Figure B9. Scatter plots of average error vs average values of predictor by state for the 2-day
random forest predictions. Shown are the top 3 predictors whose state-averaged values had the
highest person correlation (r2) with each error type.The metrics presented (y-axes) include a)
SSMAD , b) SSRMSE , c) MAD, d) RMSE, e) R2, f) F1no change , g) F1increase, and h) F1decrease. The
x-axes are labeled with the predictor whose average values are plotted.

178



Figure B10. Pearson correlation (r2) and correlation strength (absolute value of r2, shading,
annotated numbers) between error metrics and state-average random forest input variables
(row labels) for the 2-day forecasts. Pearson correlations are shown for a) SSMAD, b) SSRMSE, c)
MAD, d) RMSE, e) R2, f) F1decrease, g) F1increase, h) F1no change
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Figure B11. Time series of total FRE (black line, left axis) and model 1-day forecast error (teal
and gold lines) for the 2020 fire season. a) shows daily total FRE over the western US (black)
along with RMSE (gold, right axis) and MAD (green, right axis) for the random forest (solid)
and persistence (dashed) forecast methods. b) shows daily total FRE over the western US
along with the SSRMSE(gold) and SSMAD (teal) compared with persistence. The dashed black
line is at 0 on the skill score axis; points above this line are days where the random forest
improves on persistence on average and points below this line are days where the random
forest is worse than persistence on average. In a) and b) the size of the stars is proportional to
the number of fires burning in the Western US domain on that day.
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Figure B12. Time series of total FRE (black line, left axis) and model 2-day forecast error
(teal and gold lines) for the 2020 fire season. a) shows daily total FRE over the western US
(black) along with RMSE (gold, right axis) and MAD (green, right axis) for the random forest
(solid) and persistence (dashed) forecast methods. b) shows daily total FRE over the western
US along with the SSRMSE(gold) and SSMAD (teal) compared with persistence. The dashed black
line is at 0 on the skill score axis; points above this line are days where the random forest
improves on persistence on average and points below this line are days where the random
forest is worse than persistence on average. In a) and b) the size of the stars is proportional to
the number of fires burning in the Western US domain on that day.
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Figure B13. Correlation heatmap for near-surface weather variables. Scaled weather variables
are not shown.
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Figure B14 Correlation heatmap for a) stability, b) fuel loading, and c) terrain variables.
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Figure B15. Correlation heatmap for moisture variables.
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Figure B16. Correlation heatmap for human variables.
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Appendix C: Air quality model sensitivity to machine learning-derived fire emissions

Contents of this file
Figures C1 to C27

Figure C1. Black carbon (BC) emissions from August Complex Fire from the a) RAVE and b)
QFED emissions inventories for September 2nd-September 22nd, 2020. Reference emissions
are plotted in blue, and 2-day persistence and random forest emissions are plotted in green and
purple respectively. Note that the persistence assumption dictates that the amount of emissions
one day (green bar) is the same as the emissions amount the day before (previous day blue
bar).
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Figure C2.Map of fires burning in September 2020, with colored shading representing the
day of burning, defined as 12Z on the labeled calendar day to 12Z on the following calendar
day. Certain fires are noted by name if mentioned in the text or figures.
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Figure C3. Time series of the number of AOD grid cells which are counted once (blue line)
and more than once (other colored lines) for 50 km (a-b) and 150 km (c-d) buffers. a,c) show
the number of multi-counts for polygons based on individual fires and b,d) show the number of
multi counts for merged polygons.

Figure C4. Time series of the number of PM2.5 stations which are counted once (blue line)
and more than once (other colored lines) for 150 km (a-b) and 300 km (c-d) buffers. a,c) show
the number of multi-counts for polygons based on individual fires and b,d) show the number of
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multi counts for merged polygons.

Figure C5. Time series of the number of AOD grid cells (a,b) and PM2.5 stations (c,d) which
are counted once (blue line) and more than once (other colored lines) for merged polygons.
a,c) show the number of multi-counts for unfiltered data and b,d) show the number of multi
counts for filtered data.
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Figure C6. August Complex Fire time series of AOD (a,c,e,g) and PM2.5 (b,d,f,h) predictions,
observations and error metrics. a,b) are a time series of observed AOD (a)/PM2.5 (b) (red),
reference model (blue), 1-day persistence (green), and 1-day random forest (purple)
distributions. The other time series show mean bias (c,d), normalized mean bias (e,f) and
pearson correlation (g,h) for one day (line with filled circle markers) and two day (line with
star markers) predictions. (a,c,e,g) is a repeat of Figure 2 g-j)

Figure C7. As in S6 for the SCU Lightning Complex fire in CA
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Figure C8. As in S6 for the Creek fire in CA

Figure C9. As in S6 for the North Complex fire in CA
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Figure C10. As in S6 for the Pearl Hill fire in WA

Figure C11. As in S6 for the Cold Springs fire in WA
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Figure C12. As in S6 for the Lionshead fire in OR

Figure C13. As in S6 for the Beachie Creek fire in OR
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Figure C14. As in S6 for the Cameron Peak fire in CO

Figure C15. As in S6 for the Mullen fire in WY
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Figure C16. Distributions of the value which compares the distances of the persistence and
random forest of AOD (e.g.) from its ideal value. If the random forest gets the statistic closer
to its ideal value, this number is positive, and if the random forest gets the statistic further from
its ideal value this number is negative. This value was computed for a) mean bias, b)
root-mean-squared error, c) normalized mean bias, d) normalized mean error, e) pearson
correlation, and f) ratio. The black dotted lines are a +/- 0.025, representing the cutoffs for the
3 categories of model performance: RF better than P, RF about the same as P, and RF worse
than P. The values plotted here are an example computed from the filtered AOD over merged
50 km buffer polygons.

195



Figure C17. Sample maps of r2 and mean bias in AOD over the WRF Chem model domain. a)
and b) show the two metrics for the whole reference model period, with the comparison done
at daily resolution. In a) red means a positive correlation in time and blue means a negative
correlation in time. In b) red corresponds to overestimated AOD blue corresponds to
underestimated AOD. c-f) show the difference in mean bias between the reference simulation
and the c) 1-day persistence, d) 1-day random forest, e) 2-day persistence, and f) 2-day random
forest predictions. In c-f) red means that higher AOD than the reference simulation is
predicted, and blue means that lower AOD than the reference simulation is predicted.
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Figure C18. Comparison of median error metrics for AOD in smoky regions downstream of
fires for a) all fire days, b) the subset of fire days showing low, moderate, or high fire weather
index (FWI) values, and c) the subset of fire days showing very high or high extreme FWI
values. Numbers in the grid cells are the distance between the median of the error distribution
and the ideal value for the metric (1 for rat and pc, 0 for all others). The boxes are shaded blue
if the random forest emissions get the median AOD much closer to the ideal value than
persistence, and red if vice versa.
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Figure C19. As in Figure C18 for PM2.5 data in smoky regions downstream of fires.
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Figure C20. Comparison of the distribution of the median (stars* and triangles^) and spread
(bars) of AOD error metrics for a) all fire-days, b) days with low-mod-high FWI, and c) days
with very high-extreme FWI. AOD statistics were computed over merged polygons and
included smoke and non-smoke values. Error metrics plotted include i) mean bias, ii)
root-mean-squared error, iii) normalized mean bias, iv) normalized mean error, v) pearson
correlation, and vi) ratio. Shaded boxes show the ratio between the change in the persistence
(*) and random forest (^) medians when RF is better than P and the change in the persistence
(*) and random forest (^) medians when RF is worse than P. Blue means RF increases overall
forecast skill in terms of the metric, and red means RF decreases skill in terms of the metric.
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Figure C21. As in Figure C18 for AOD statistics computed over merged polygons, smoke and
non-smoke values
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Figure C22. As in Figure C20 for PM2.5 computed over merged polygons, smoke and
non-smoke AOD values included

Figure C23. As in Figure C18 for PM2.5 statistics computed over merged polygons, smoke
and non-smoke values
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Figure C24. As in C20 for AOD computed over single polygons, smoke and non-smoke
included

Figure C25. As in Figure C18 for AOD statistics computed over single polygons, smoke and
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non-smoke values

Figure C26. As in C20 for PM2.5 computed over single polygons, smoke and non-smoke
included
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Figure C27. As in Figure C18 for PM2.5 statistics computed over single polygons, smoke and
non-smoke values
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