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ABSTRACT OF THE DISSERTATION

Wrist-Worn Systems for Activity State Recognition:
Evaluation of Challenges and Benefits

by

Ebrahim Nematihosseinabadi

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2017

Professor Majid Sarrafzadeh, Chair

This dissertation investigates the limitation and challenges of wrist-worn sensing in

activity state recognition including posture and gait quality inference. In spite of all

the benefits that come with wrist-worn sensing systems, there are many challenges in

inferring activities using them. The most important challenge is the high rate of false

positive due to unwanted hand motion when the system is worn on the wrist. Another

important challenge is the limitation on the power budget and processing capabilities

of a wrist-worn device. Being far from the Center of Mass (COM), inferring posture

and gait seem to be a very challenging problem using wrist data. This dissertation

tries to provide a deep investigation on these challenges and propose ways to mitigate

them. Different time series analysis methods are employed to serve for improvement in

both accuracy and power consumption of activity state recognition. Along the way, we

introduce some of the systems and algorithms that were built around these ideas and

how they can be helpful in tackling the challenges of wrist-worn sensing systems, when

it comes to activity state recognition.
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CHAPTER 1

Introduction

1.1 Remote Health Monitoring

Classic method of disease treatment has always been fulfilled by patients sensing the

symptoms of a disease and then seeking cure for it in the next step. Today’s patient-

clinician interaction goes beyond this, involving patients in very early stages of sensing

symptoms and in many cases even before getting sick. With improvement in transis-

tor and sensor fabrication, light low-profile unobtrusive sensing systems are produced

which provides a great deal of information for clinicians about the patient’s health sta-

tus. This opened up a brand new horizon in medicine, which is called remote health

monitoring (RHM), helping clinicians predict and diagnose disease in early stages and

quickly provide treatment based upon that.

Although it might not be reasonable to remotely monitor all the populations for

their health status all the time, being selective for a certain group of society and for a

certain span of their lifetime can result into reduction of healthcare cost considerably.

This selection requires knowing some prior information about the subjects. However,

this information often does not exist or is not cheap to acquire. A lot of times even some

simple insight about the patients, such as sex, age or their medical records is enough

to pick a group of people for some sort of remote health monitoring systems (RHMS)

that leads to maximum health care cost reduction. A group of people who is growing

rather quickly over the past few decades in United States [1], that can benefit a lot

from RHMS is elderly population. Another population in need, is patients with chronic
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disease. More than half of all Americans had one or more chronic health issues in 2014

and 86% of healthcare spending is for patients with one or more chronic disease [2].

Centers for Disease Control and Prevention (CDC) identifies Cardiovascular disease

(CVD) to be the most responsible cause of death in 2016 [3]. Cancer is the second

cause of death which often stays with the patients in their whole life. However, it could

be completely cured depending on the condition of the patients and type of the cancer

[4]. RHM can play a tremendous role in both stages of before and after diagnosis for

this categories of patients. Preventive medicine, utilizes RHMS to observe, educate and

interfere when the needs come.

Advancement in technology has enabled the implementation of various forms of

RHMSs including camera-based, RFID based and WiFi-based positioning systems [5,

6, 7]. However, these systems require high initial setup cost and substantial system

installation efforts. In addition, individuals may be unreceptive to these systems due

to privacy and security concerns. By contrast, wearable systems usually do not impose

these issues. However, it is hard to camouflage them in the daily life of patients and

that imposes inconvenience and sometime intolerance among certain populations.

Wearable-based RHMSs, which is the focus of this dissertation, have wide variety of

applications. These applications range from tracking activity [8, 9] to heart failure [10,

11], weight training [12], exercise intensity measure [13], fall detection [14], etc. with

the mission to reduce healthcare costs and improve quality of care. These systems can

not only enable an early prevention care model but also provide an unceasing tracker

of risky patients especially within categories of chronic, elderly and frail (Frailty is a

common geriatric syndrome that embodies an elevated risk of catastrophic declines in

health and function among older adults).
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1.2 Smartphone vs. Wrist-Worn Sensing

Providing continuous tracking of patients requires wearables that are unnoticeable and

super comfortable to be capable of being unobtrusively integrated to people’s daily life

when it comes to frail and elderly patients. Enforcing wearing a new wearable which

a person normally does not carry is too much of a burden for these populations. How-

ever, taking advantage of the wearables they already carry seems to be very reasonable.

Smartphones, as an inseparable part of human life, has been utilized by researchers as

a stand-alone RHMS for the past decade to investigate the amount of information that

could be captured. People carry it all the time, they are easy and familiar to work with

and they provide many sorts of human interaction interfaces to take advantage of. Not

to mention that they are now equipped with a wide variety of sensors. With all these

advantages though, still many patients in the categories of frail and elderly (from our

experience with them) are against continuously wearing and interacting with it . Smart-

phones seem heavy to carry for these patients and they are preferred not to be worn in

the night. They also seem complicated to work with from the point of view of these

populations. Moreover, naturally people tend to carry their Smartphones in different

orientations and locations (hand, pocket, bag, etc.). This makes inference very erro-

neous. Wrist-worn device, on the other hand, seem to put less amount of burdens on

these populations. They can be very light and they can be un-seemingly worn for a long

time in the same location. This makes them ideal choice for chronic, elderly and frail

patients. Moreover, for a lot of (Activities of Daily Living) ADLs which involve hand

motions, they provide a better inference capability compared to Smartphones. In addi-

tion to all these advantages, when it comes to research potentials, another fact makes

wrist-worn sensing very interesting. Wrist-worn sensing has been around for much less

time compared to phone-based sensing and this makes the investigation of their chal-

lenges and benefits more exciting and at the same time more rewarding in comparison.
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1.3 Activity State

Among all applications of wearable sensing, this dissertation focuses on activity recog-

nition which by itself is a window toward a lot of health insight. Information about

ADLs is a significant piece of data well suited for determining the general well-being

of a patients. The amount of ADL a person is able to fulfill on a daily basis is corre-

lated with the stage and severity of chronic disease he or she is in [15]. The type and

extent of exercise regime a person is going through can be an important indicator of his

relative risk (RR) of non-insulin-dependent diabetes mellitus (NIDDM) [16]. Cancer

patients’ chemotherapy prescription is determined by a metric called ECOG in which

ADL plays a significant role [17]. A list of important ADLs to look for in chronic pa-

tients is provided in many articles, but the time a person is spending sitting, standing,

lying and moving and his ability to perform bathing and using the appliances at home

are amongst the most important ones [18]. From the ADLs that can be detected using a

wrist-worn device, we are interested in sit, stand and lie positions (posture) as well as

the gait quality in this dissertation. The reason for this is two-fold. First, the informa-

tion about the posture and gait provides an incredible insight about patients’ capability

in following their daily routines to address their basic needs (how up and about they

are). For example, the percentage of the time during the day that a patient is bed-bound

or sitting still is a significant indicator for clinicians to determine how severe a chronic

disease is [19]. Secondly, there are many serious challenges in detecting these ADLs

when it comes to wrist-worn sensing systems especially when posture and gait quality

is targeted, which makes the problem rather complicated but interesting as a PhD dis-

sertation. We will talk about these challenges in the next Chapter but just to get a sense

of the extent of the challenge, you can imagine the range of different noise activities

(not to be detected) that can be done using hands while performing these ADLs. This

confuses the inference machine and increases false positive rate.

The combination of the aforementioned ADLs (stand, sit, lie and walking) is what
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we call "Activity State" in this dissertation. The word "state" is used considering the

fact that at each single timestamp, a person is either in standing, sitting, lying or moving

states. Moving state includes walking, jogging, running, etc. Having this concept in

mind, the content of this dissertation is divided into two main parts in terms of types of

activities. In the first part we look into Posture (including sitting, standing and lying)

and the second part investigates gait analysis. An important step toward analyzing

detection of these ADLs is to look into their significance in different applications of

health.

1.4 Why Posture and Gait

We talked about the importance of the amount of ADL a person is capable of per-

forming in previous section. There are various, sometimes contradictory arguments on

determining which ADLs are more important. At the end of the day, the application and

population selection determines which ADLs to look for. A number of recent articles

on detecting ADLs for different health applications will be provided later in this Chap-

ter. An interesting observation from these works is that, detecting main three postures

(sit, stand, lie) together with walking is common in most of them. This indicates the

significance of these four activities in assessment of general well-being of patients and

even healthy subjects.

Quality of gait is another piece of information that gives a great insight about the

wellness of risky and vulnerable patients: Applications include geriatrics, Alzheimer

patients and patients with neurological disorders [20, 21], etc. A very common tool

to assess cardiopulmonary patients is called 6-minute walking test (6MWT- measuring

the distance taken in 6 minutes) [22] which is a standard test to detect the functional

exercise capacity of elderly patients. Similarly, the average walking velocity in 30-

minute walking test (30-mWT) is a reliable tool to assess the functionality of chronic

obstructive pulmonary disease (COPD) patients [23]. Gait symmetry is another signif-
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icant gait parameter which is increasingly being reported for people with neurological

disorders, particularly after stroke. In addition, gait symmetry is a strong indicator of

some negative clinical health issues such as risk of musculoskeletal injury, loss of bone

mass density and spinal cord disorders. Patterson et al. in [24] has provided a detailed

comparison of the current methods for gait symmetry evaluation. Gait velocity is also

another key human metric which is a substantial indicator of health status of the peo-

ple. An extensive study shows that there is a strong correlation between walking speed

and 10 year survival rate [25]. They observed that 70 years olds with 1.4m/s walking

speed aged 6 years more than 70 years olds with 1.0m/s walking speed on average. A

similar study with the goal of predicting survival rate showed that, from the list of all

the metrics they investigated, only "increase in usual gait speed" over a 1-year period

was significantly associated with subsequent mortality [26]. In a totally different study

in terms of subject scale, it was shown that there is high correlation between GDP of a

country and the average walking speed of its people [27].

1.5 Purpose of the Study

With all that we mentioned about preference of wrist-worn sensing over phone-based

in activity recognition, there needs to happen a deep investigation of the benefits and

challenges come with them to evaluate their applicability for activity recognition. This

dissertation is an endeavor to provide this information. In the second chapter, we will

go more into details of these benefits and challenges and we will provide a thorough

overview of the recent related works. Chapter III introduces a proof of concept wrist-

worn sensing system, built in our lab to show the feasibility of posture tracking using

wrist data and provide a comparison with the peer phone-based sensing system. Al-

though in the proposed system, wrist-worn sensing is shown to be feasible for posture

recognition, the accuracy is very susceptible to unwanted hand motions when it comes

to in-field experimenting of the system. This leads to high rate of false-positives and
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false-negatives which limits the accuracy. Context information is employed in Chapter

IV as a mean to improve this limitation in accuracy as well as the limitation in battery

lifetime of the wrist-worn sensing systems. In chapter V, we will investigate the viabil-

ity of wrist-worn sensing in gait assessment. The issues and challenges of wrist-worn

devices in gait quality assessment will be discussed and solutions to mitigate them will

be provided. Post-processing of the classified activity states is proposed as a technique

to boost the yet-to-be-improved accuracy values of the mentioned four activities in

Chapter VI. Chapter VII provides investigation of wrist-worn sensing systems beyond

activity state recognition application and eventually the summary of contributions of

the work as well as the future directions will be given in Chapter VIII.
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CHAPTER 2

Wrist Worn Activity Recognition

2.1 Why Wrist-Worn Sensing

Healthcare systems have been struggling with aging populations and wide expansion

of chronic disease worldwide. Therefore researchers have been actively pursuing new

solutions to accurately and unobtrusively monitor these populations for the purpose of

prediction and intervention. With miniaturization of integrated circuits and advance-

ments in fabrication of sensors and their analog front-end circuits, wearable devices

have shown to be decent candidates for non-invasive monitoring of health metrics. A

wearable medical device can be described as an autonomous, non-invasive system that

performs a specific medical function such as monitoring,educating, intervention and

support [28]. Wearable devices have been used for a wide range of health applications.

Non-invasive ECG sensors have been employed to continuously monitor patients with

cardiac abnormalities [29]. Foot-worn accelerometers have been used to assess gait

quality of patients with neurological disorders and to give hint about their progress in

post-surgery rehab [30]. Belt-worn devices have given a profound knowledge about the

general activity level of patients and consequently their overall well-being [31]. An in-

clusive survey on wearable sensor-based systems for health monitoring and prognosis

is given in [32].

Among all the different devices that can be worn by human, perhaps the one with

the most penetration within all different populations is Smartphone. Smartphone has

been the dominant wearable device for health tracking over the past decade due to its
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prevalence among all the different layers of society. Market penetration of Smartphones

in United States has risen from 20 in 2010 to 68.9 percent in 2017 [33]. Moreover, stud-

ies have shown that Smartphone users spend about 90% of their time in close proximity

of their phones [34]. With Smartphones consistently improving in computing, network-

ing and battery performance, it is no surprise that their applications cover a dominant

portion of our lives. In addition, considering how integrated Smartphones are in the life

of human being and how essential being unobtrusive and unnoticeable is for a wearable

device, Smartphones can easily be considered as the single perfect candidate. A key

aspect of Smartphone which made it one of the leaders in the area of health tracking, is

the advancement of sensing, both, in variety and precision of sensors. Smartphones are

now equipped with abundant variety of sensors including inertial sensors, barometer,

heart rate sensor, humidity and temperature sensors and even in some Cases SpO2 and

UV sensors. This has enabled their employment for many remote health monitoring

applications such as cardiovascular and cancer disease management, elderly care, sleep

and stress assessment, etc. Nemati et. al in [35] provides a precise survey on different

sensing modalities of Smartphones and their applications in health and environmental

tracking.

Although smartphones are becoming more and more predominant, they suffer from

a couple of limitations when it comes to clinical tracking. Although they seem to be

very much integrated in human daily life, they are not the most convenient wearable to

carry all the time. They can be bulky and noticeable, especially when elderly and frail

patients are targeted. Also, Smartphones are barely worn by their users in the night

time. Moreover, even though Smartphone is the most prevalent wearable, users don’t

necessarily carry it in the same way and the same location all the time. Smartphones

can be in a pocket or purse, on a table or mounted in a car. While phones present

ample opportunity to track users, studies have shown that, while close to the user, the

Smartphone often is not actually worn by the user [19]. This puts a big question mark

on all the works that try to utilize Smartphones for continuous remote activity or health
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tracking. Another limitation with Smartphone is that, it is fundamentally not built for

continuous sensing of vital signs such as heart rate. The front and back camera of the

phones have been used to predict the heart-rate and SpO2 [36], but at best they provide

information only when participation from the user is involved.

Wrist-worn devices are relatively young compared to the other wearables and they

still occupy a much smaller portion of the consumer electronics market compared to

Smartphones. The number of people who own Smartwatch in United States has grown

from 3% in 2015 to 12% in 2016, and fitness band owners have grown from 12% to

22% for these years [market]. With advancement in technology, more and more sensors

are embedded in wrist-worn devices. Moreover, they are now able to provide fairly high

processing power and battery lifetime. In addition to inertial measurement unit (IMU),

wrist-worn devices are now equipped with heart rate, PPG, light and pressure sensors

and sometimes SpO2 and galvanic skin response sensing modalities. Therefore, wrist-

worn devices are capable of continuously monitoring a wide range of vital signs without

interfering the daily life of the wearer due to their proximity to the skin (Reeder et al.

has provided a good review of these applications [37]).

In addition to providing this opportunistic sensing platform, wrist-worn devices are

being worn in a standard location by the user, which perhaps is the most important

factor differentiating them from Smartphones in the stand point of activity recognition.

They are more comfortable to wear and they are worn by the user most of the time,

even in the night-time while sleeping. They don’t need to be carried like Smartphones,

therefore intense activities and sports can be done while wearing them which is a huge

benefit when it comes to sport analytics applications. From all the applications of

wrist-worn devices, this dissertation focuses on the activity state recognition with the

zooming lens being put on elderly and chronic populations. We will go over some of

the wrist-worn sensing systems designed for activity recognition in Section 2.2 of this

Chapter and then some of the limitations of wrist sensing are provided in 2.3.
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2.2 A Survey on Wrist-Worn Sensing Systems for Activity Recog-

nition

With advancement in technology, Smartwatches and smart bands are now capable of

combining sensory information such as accelerometers, gyroscopes, compasses, and

heart rate, with global positioning satellite (GPS) data. This is particularly promising in

applications that require continuous physical activity monitoring to identify unexpected

changes in activity patterns and provide alarm upon the given localized area. Alarms

and messages can also be more easily observed than those sent to Smartphones, as

phones are not worn all the time while individuals can receive and observe vibrations,

text, and sounds all the time on a wrist-worn platform.

2.2.1 Wrist-Worn Devices in mHealth

Emergence of wrist-worn devices started the era of wrist-based health monitoring.

However, what triggered the exponential growth in health applications was when they

got equipped with vital sign sensors. Applications of wrist sensing nowadays covers

a wide range of health monitoring. A big portion of these applications are related to

activity sensing (will be covered in details later in this Section). Chronic disease self-

management is another big investment in the area of wrist sensing. Intervention in

Parkinson patient’s daily life has been done by Lopez et al. using auditory signals to

help improving patient’s gait [38]. Sharma et al. employed a Smartwatch to sense fa-

cial tremors, dysfunctional speech, and limb dyskinesia in addition to gait abnormalities

[39]. Epilepsy was intervened by detecting tonic-clonic seizures using Smartwatch in a

hospital setting while video surveillance and electroencephalogram (EEG) monitoring

took place [40, 41]. Kalantarian et al. utilized Smartwatch for weight management by

detecting chews and swallows using the built-in microphone of the watch to tackle the

obesity [42]. Diabetes management was done using an app on the watch by Arsand

et al., but they required participation from the user in terms of manually importing all
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sorts of information including insulin, blood glucose, physical activity type and car-

bohydrates taken [43]. In another similar work, inertial sensors of the watch are used

to detect the gestures of eating while camera of the watch detects the type of the food

[44]. In Hosseini et al., a smartwatch application provided pediatrics suffering from

asthma with risk levels of having an asthma attack through various physiological and

environmental sensors including the heart rate sensor, accelerometer, gyroscope, and

GPS to assess physical activity and location [41]. In cardiac management, Micallef et

al used smartwatch as an exercise reminder for post-stroke therapy [45].

Wrist-worn devices have also been used in home or nursing care setup. Researchers

evaluated sleep quality, patient’s visits, mobility and activity level to provide beneficial

intervention for patients with dementia [46, 41]. In healthcare education, Jeong et al.

employed Smartwatch platform to teach and evaluate cardio-pulmonary resuscitations

to healthcare professionals. In medication adherence, one study utilized the built-in

accelerometer of the watch to detect opening up the pill [47] and another study proposed

detection of the rise of the hand’s palm as an indication of getting medication to the

mouth [48]. Speech therapy has been done using the microphone of the Smartwatch

proving that recordings were comparable to traditional recordings for primary speech

quality metrics (SQMs) of loudness and fundamental frequency [49]. In another very

interesting work, a Smartwatch-based system was used to estimate mental health by

detecting the activity, motion, light, and heart rate of the subject as well as the user

interactions from a web-based application [50].

2.2.2 Wrist-Worn Devices for Activity Recognition

Inertial sensors have been the core of activity recognition for decades, although they

have been used in different platforms and architectures. Wrist-worn devices are in-

troduced to the market mainly with the goal of activity tracking using these sensors.

Inertial sensors being mounted on the wrist has enabled detection of a lot of activities

and gestures that involves hand motions. And in a lot of these activities the final goal
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was not the physical activity itself. For example, hand gestures were used to deter-

mine the eating events [44], smoking sessions [51], medication adherence [47, 48], fall

detection [52] and many more health-related applications. In this dissertation, we are

interested mainly in the physical activities that a person is doing or should be doing on

a daily basis. Perhaps the closest term to this concept is ADL. This includes sitting,

standing, walking, washing the dishes, vacuuming, cleaning, etc. As we discussed in

the previous chapter, detecting the type, intensity and duration of these activities carries

significant information about the general well-being of the patients. Recently, there has

been numerous research efforts to use wrist-worn devices for detecting ADLs, most of

which with the hope of fulfilling the dream of having a completely unobtrusive activity

tracking system.

2.2.2.1 Literature on ADL and Posture Recognition

Medical scientists have been trying to find correlations between ADL and different

health metrics. These metrics for example can be how much a chronic disease has been

advanced in a patient or what is the effect of a drug/therapy on a patient’s treatment

journey. With wrist-worn devices there comes a lot of challenges in sensing many

activities. Hand-motion based activities could perhaps be easily detected while other

activities like sitting that does not involve hand motion might be more difficult to detect.

Duclos et al in [53] uses a wrist-worn device for distinguishing between sedentary and

active behavior and provides an energy expenditure estimation. In a similar work by

ahanathapilla et al. activity level and step count is detected from the amplitude of

ACC signal and the peak in ACC’s FFT signal respectively [54]. In [55] by Jovanov

et al., the built-in sensors of the Smartwatch was evaluated by comparing them to two

standard monitors, Zephyr bioharness and polysmnographic monitor SOMNOscreen+

during sleep. It was shown in this work that Smartwatch technology provides sufficient

information for longitudinal monitoring of these health metrics [55].

There have been some studies comparing the results of activity sensing in Smart-
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watch and other body sensors. Trost et al. compared the results of activity recog-

nition of seven ADLs with a wrist-worn and a hip-worn sensor using logistic regres-

sion [56]. It turned out that wrist have high potentials for activity detection when it

is compared to hip-worn inertial sensors. In a similar study, 9 activities including sit-

ting, standing, walking, running, cycling and stair and elevator assent and descent were

compared between a Smartphone and Smartwatch which showed that results are com-

parable [57]. Similar comparison of Smartphone and Smartwatch is done by weiss et

al. which proved that Smartwatch is very efficient in detecting some of the activities

which are hand-based while not very efficient for other activities [58]. For example,

"drinking" activity was detected with 93% accuracy with Smartwatch while it was 77%

with Smartphone.

In all of these comparison studies, no fusion of sensors were done to show how

combination of Smartwatch and other sensors will improve the results. This was done

by Haescher et al. in which three sensor nodes were incorporated: Head, using a smart

glasses, wrist, using a Smartwatch and hip, using a Smartphone [59]. Majority vot-

ing was used to fuse the result of the classification of each of the sensors which re-

sulted into descent classification between activities of resting, being active, walking,

running, jumping, cycling and office work. Similarly faye et al. showed that adding

a Smartwatch to a phone-based system improves the accuracy of ADL classification

using multimodal metrics as advanced feature sets for SVM model [60]. ADL classifi-

cation was also done by solely relying on the wrist data, presenting promising results

within the scope of activity recognition for a variety of ADLs including sit, stand, walk,

run, cycling, sleeping, etc [61, 62].

2.2.2.2 Literature on Gait Assessment

Most of the previous works on gait assessment have focused on implementing algo-

rithms for either foot, chest or back-mounted sensors. None of these works are really

applicable for long-term ambulatory remote health monitoring. This is because a lot
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of these sensing systems require bulky and uncomfortable devices being attached to

the user and that imposes a lot of inconvenience. This eventually results into non-

compliance causing user rejection, data loss and eventually patient drop. This is es-

pecially true for patients within the categories of elderly and frail. Smartphone has

provided a more convenient platform for gait assessment, as the subjects would nor-

mally carry it. Therefore, Smartphone-based gait quality estimation systems have been

recently under a lot of attention. With all that, still a lot of elderly and frail subjects

are not willing to wear a bulky phone all the time. These patients unfortunately hap-

pen to be the category with the most need for monitoring. With the emergence of

Smartwatches with inertial sensors embedded in them in the past decade, a great deal

of attention and effort has been put in building up wrist-worn gait assessment systems

to addresses sensing for these categories of patients. In most of them, a correlation

between stride length and some features of the inertial sensors is detected. Vertical dis-

placement was used in [63] and an empirical relation between that and step length was

identifies. [64] included the step duration, range of vertical acceleration and number

of sample in each step in designing their step length estimator as well to improve the

accuracy. Most of the hand-mounted gait assessment systems though, have been focus-

ing on dominant step frequency as the most correlated feature. The correlation between

hand frequency and step frequency has been estimated in [65] and then step length and

velocity is estimated from there. This required having different models for different po-

sitions of the sensor (in-pocket, in-hand and carrying in bag). Accuracy was improved

in a similar system in [66] by including GPS calibration while the subject is outdoor.

Step length has also been estimated using the abstraction model generated from hand

motion frequency and height of subjects in [67]. They showed an error of 5% for short

range but this work offers a hand-held system (not hand-mounted).
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2.2.3 In-Lab vs. In-Field Activity Recognition

In all of the aforementioned ADL classification works, the results are coming from the

testing of in-lab data (not in-field data). In all of these works, a classification among

some specific activities is done. Even though the results of the classification for those

in-lab measured activities can be high, the story could be dramatically different when

the system is introduced to an activity which is not seen by the classifier in the in-lab

training session. Even if the observed in-field activity is among the activities of in-lab

training, it might not be detected properly due to changes in the condition, user and

context. There is no research on the challenges that the wrist-worn sensing system

might face when it is used outside the lab environment or when the system is recording

some activities which were not initially in the training set. We are going to talk about

these issues and challenges of wrist-worn sensing in Section 2.3. As a quick preview, a

major issue in wrist sensing is unwanted hand motion that makes the recognition rather

difficult if not impossible. This issue intensely imposes itself when it comes to in-field,

not-very-clean data. This drastically degrades the accuracy of the activity inference. In

a similar vision for most of the aforementioned gait assessment works using hand-held

or wrist-worn systems, the biggest challenge comes from the fact that arm swing causes

addition of the noise in distance and velocity estimation which causes under-counting

or over-counting of steps. This concept seems to be not investigated thoroughly in the

previous related works. We will talk about the issue of unwanted hand noise and other

issues of wrist-worn sensing in the next section of this chapter. Rest of the chapters are

efforts in introducing methods to tackle these issues and to provide accuracy and power

performance improvement techniques.
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2.3 Challenges and Limitation of Wrist-Worn Sensing in Activity

Recognition

Wrist-worn devices have recently been introduced to the market. Therefore, there has

not been enough investigation on their capabilities for different applications. Espe-

cially when it comes to health applications, there is not enough evidence of comparison

of their performance to clinical measures. So the disadvantages of using wrist-worn

sensing systems are not quite clear yet. Although during past few years of working on

these systems, we came to know some of these disadvantageous and challenges for the

purpose of activity recognition.

The main challenge in wrist-worn activity tracking systems is the poor accuracy.

Some of the activities and movements to be detected do not involve any hand motion.

This makes them impossible to capture, if only inertial sensors on the wrist are to be

employed. Even for the activities that contain hand motion, the motion from other body

parts cannot be captured. This is in general true for any system with limited location

sensors such as in a phone-based sensing system. However, Smartphone is worn closer

to the center of mass which makes the inference of many activities easier. The problem

with wrist-worn activity sensing is even worse than this. Even when the motion to be

detected is purely a hand-based motion, the accuracy can be still low due to the fact that

people generally tend to use their hand for a lot of other things. A lot of these unwanted

motions could be captured as the targeted activity which causes false positive. Also,

when a person is doing an activity, a sudden unwanted hand motion can interfere the

inference of that activity. For example while standing, a person might use his hand for

something else and this might be inferred as walking which causes false negative.

Another limitation of a wrist-worn device compared to a Smartphone is its small

screen size which restricts the feasibility of the system when user intervention is part of

the procedure of activity detection. Online learning, active learning and opportunistic

learning are some of these methods. Not to mention that having s smaller screen size
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limits wrist-based systems in functionality as well. Giving feedback to patients from

clinicians, and asking for participation from the user are some of these functionalities.

In addition to accuracy, battery lifetime is another limitation that wrist-worn devices

are dealing with due to small fill-factor that is designed for battery placement. However,

this is more of an issue in Smartwatches. Smart bands such as Fitbit and Jabone often do

not provide screen and complicated entertainment capabilities (which are power hun-

gry) and are essentially designed to record contextual data and transmit them, rather

than interaction-based functionalities. Smartwatches are more power-hungry and sus-

tain power only less than a day at best for a normal wearer. This power issue becomes

more critical when part of the data processing and learning needs to be done on the

watch (when a cloud or communication to cloud is not provided).

Processing and memory capacity of watches is also lower than Smartphones but

this is only an issue in applications where a huge load of data has to be stored on the

watch or complex data processing algorithms need to be run on them. In the modern

RHM models, where cloud is an essential part of the system (as mentioned in Chapter

I), wrist-worn device is only and purely a data collection and transmission module

with some very preliminary data processing algorithms (such as a low-pass filters or a

down-sampler). Therefore, the limitation in processing and memory capabilities of the

wrist-worn devices is usually irrelevant [68].

This dissertation realizes these challenges in wrist-worn activity sensing systems

and tries to provide different techniques to resolve them. A novel system is proposed

in Chapter III, which act as a proof of feasibility of posture tracking for wrist-worn

systems. In Chapter IV, contextual information is utilized to improve the accuracy of the

recognition and battery performance of the system for posture tracking. Chapter V goes

over the main limitations in the recognition of gait parameter which takes place due to

unwanted hand motion and chapter VI provides a two-level classification architecture

using "Random Forest" and "Majority Voting" to improve the precision of "Activity

State" recognition when it comes to in-field data collection.
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CHAPTER 3

Posture Recognition using Wrist-Worn Devices

3.1 Introduction

As previously mentioned in Chapter II, Smartwatches have many constraints that may

limit their effectiveness, including screen size, weaker hardware for sensing and com-

puting and limited battery and storage capacity. This work investigates whether the

Smartwatch can effectively track user activity and posture without the aid of a Smart-

phone, to then potentially serve as the base platform for a remote health monitoring

system for elderly oncology patients.

Elderly patients with cancer are a group that stand to benefit tremendously from re-

mote sensing: they are prone to unwitnessed decline and hospitalization between clinic

visits, resulting in high morbidity, mortality and cost. According to the most recent

American Cancer Society statistics, 60% of cancers and 70% of cancer deaths occur in

adults aged 65 and over. Physicians must make ”snap” decisions regarding treatment

intensity and follow-up, but the tools physicians currently use to classify elderly pa-

tients as ”frail” or ”robust” are faulty at best; more than 20% of elderly patients’

cancer doctors classified as fit for therapy are classified as ”frail” by geriatric special-

ists [25]. A full assessment for frailty in an elderly subject can require 45 min or more,

which is an impractical time requirement for busy cancer clinics. However, to fully

track the posture of these patients, the sensing technology must first be developed and

validated for the necessary tracking, on any individuals, before any systems can be

developed for actual clinical trials.
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This work will investigate the ability of Smartwatches to provide the necessary

tools to assist in wrist-worn posture tracking in a laboratory setting, as a proof-of-

concept study for the use of such a system for clinical assessment. The system will

need to track and record the necessary activities and activity levels of users from the

wrist rather than the traditional hip locations. In particular, being up and about, sitting

or lying in bed is very important for identifying posture and activity in each posture

state. However, where Smartphones have an advantage of tracking such posture from

the hip, a Smartwatch should see significant activity in all three phases of posture as a

user might move her/his arm while sitting. This Chapter develops such a Smartwatch

system, to test whether Smartwatches can replace Smartphones for posture tracking,

rather than simply augment them. This system will need to record activity all day (a

goal of about 18 h of battery life) and accurately report patient activity levels. Prior

analysis in [26] showed energy consumption in continuous sensing and trade-offs with

model accuracy. Indeed, by reducing the sampling rate, storing results on the watch and

transferring via USB cable rather than via a wireless network and computing results

on a host computer, improved battery life should be achievable. The work in [69] then

presents the challenge of using Smartwatches, after turning off wireless communication

and other processes, as the challenge of reducing the sampling rate while maintaining

accuracy.

We will analyze the classification accuracy of such a system and provide evidence

that a Smartwatch, alone, can properly identify the necessary movements to identify

human posture without needing a Smartphone or other such hip-worn sensor and at a

low enough sampling rate to last without needing constant battery recharges or data

uploads that might hamper the use of this platform.
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3.2 Smartwatch-Based Activity Tracking Systems

Activity monitoring with Smartphones and devices with these phones have been well

studied. Monitoring activities of daily living through wearable sensors or Smartphones

seem to be fairly accurate [9, 70]. In particular, the work in [71] looks at activity

tracking for a clinical environment and how to guarantee that users are performing the

desired activity. This work intends to follow the same model of activity recognition

presented there. In particular, by identifying the transitions between sitting, standing

and lying and appropriately identifying (and ignoring) all other wrist movements, this

work approaches the classification of user posture similarly to the anti-cheating devel-

oped in [72]. By showing the same levels of accuracy, this Chapter will show that

Smartwatches are capable of replacing Smartphones.

This Chapter extends the methods presented in [29, 73], by first finding the appro-

priate features for proper posture tracking of users with a Smartwatch and, second, by

doing so with reduced sensing rates to extend the battery life, if possible. The work

in [74] presents methods by which continuous measurement on Smartwatches can be

performed in an energy-efficient manner. While this work does not intend to do an

intensive energy-expenditure calculation such as the one done in [74], the selection of

data and the context of the current state of the user could be used in a similar fashion.

For this reason, it is believed that the method presented, along with the reduced sam-

pling rate, would result in the improved battery life of the device. Further analysis of

energy expenditure, such as in [74], is left for the limitations and future work discussion

in Section 5.2.

3.2.1 Methodology

The system developed here was a pervasive sensing system that could be worn by the

user at all times, tracking the activity while also prompting questions as needed, seen

in Figure 3.1. The goal of the system was to accurately track activity levels, as well as
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Figure 3.1: User wearing the Smartwatch on the left hand.

to provide an interface for important questions necessary for future assessment status,

though the interface. This system needed to be able to record and track data for large

periods of time in order to provide a more informed classification of a user’s entire day.

Further, by identifying the three key posture states of sitting, standing and lying, a clas-

sification algorithm is presented that can appropriately identify transition movements

of these postures versus other activity movements.

3.2.2 Hardware Platform and Data Collection

The Samsung Galaxy Gear Smartwatch was used for experimentation, as it employed a

±2 g triaxle accelerometer and a 300◦ per second gyroscope sensors, while further pro-

viding a software environment for interactive applications and 4 GB of internal storage.

Given that the movements recorded are for posture tracking only and the transitions

between states tend not to be violent actions, the 2-g accelerometer was not considered

a limitation. Data were stored on the Smartwatch in internal memory, which provided

ample storage for the duration of the collection desired. All extraneous applications and
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wireless communication are turned off, and the screen timeout was set to the shortest

time possible. Further, the data are uploaded to the host computer via a wired USB

cable at the end of each day, and this computer communicates and computes, as nec-

essary. When looking at the watch on the left wrist, the y-axis points to the hand, the

x-axis directly up, while the z-axis comes out orthogonal to the watch face. In order

to appropriately compare against smartphones, a Samsung Galaxy S4 was used, worn

in the pants pocket of the user on the same side that the watch was worn (left) during

data collection to simulate hip-worn sensors. The Galaxy S4 smartphone came with a

±2-g triaxial accelerometer and ±300◦ per second gyroscope sensors, as well, and 2

GB of internal storage data were collected from a group of 20 volunteers within the age

bracket of 19 to 30 years in a supervised study, in order to validate the ability of such

a watch to accurately identify such movements. The age group was selected as part of

an Institutional Review Board (IRB) approved pilot trial (UCLA IRB #14-000176) to

demonstrate the feasibility of such a sensor system. Each of the participants performed

multiple activities while wearing a Smartwatch placed on the participant’s left wrist

and Smartphone in their left pocket (though data can easily be transformed to use the

right hand, if needed). Data were sampled at a rate of 100 Hz. The data collection

application was developed to annotate the data while collecting it, as seen in Figure

3.2. In order to assist the users and to prevent unrealistic motions of moving the watch

to press the buttons, one of the authors supervised the data collection trial and pushed

the appropriate buttons for annotation while the users were conducting the collection

trial. This was done in an effort to minimize error in the annotation times, as well as

to prevent excess movement by the users to begin and end annotations of movements.

The annotations were then applied to the Smartphone data, as well.

Each subject was then asked to perform a set routine of activities meant to train an

algorithm to classify sitting, standing and lying. For each activity, users were asked to

repeat each action 10 times. Table 3.1 shows the list of movements captured. The data

were captured in three phases. The first labeled transitions, tracked transitions between
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Figure 3.2: Screenshot of the data-recording application running on the Smartwatch.

sitting in a chair, standing up and lying on a bed (of varying heights depending on

the location of the data collection) with little to no extraneous movement. These were

the clean movements that the system needed to identify. However, potential trouble in

identifying the transitions from a wrist-mounted sensor include the similarity between

certain transition movements and certain activities of daily living that can look similar

to these transitions. As a result, the second phase of data collection, shown in Table 3.1

as activities of daily living, was run. Finally, the third phase was run to identify steps

for a pedometer-like application. After the data collection was run, the system recorded

the user removing the device and plugging it in to the charging environment to properly

mark the start and end of a day of recording. Since the movements were annotated, a

start and end point for each transition was determined and the mean window size across

all users and all moves selected (5 s or 500 points at 100 Hz). Data were saved in the

internal storage of both the Smartwatch and Smartphone. At the end of each day of the

trial, data were uploaded manually to a desktop computer for the recognition algorithm,

via a USB cable.

3.2.3 Feature Extraction and Selection

The data collected and annotated were then processed for feature extraction. The first

step was to low-pass filter the data for noise. For filtering purposes and to potentially

coincide with a future real-time recognition system, a moving average window was
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Table 3.1: Movements Captured

Phase Movement State Activity Description

Transitions

Sit - Stand

Minimal Movement Transition

Stand - Sit

Sit - Lie

Lie - Sit

Stand - Lie

Lie - Stand

Activities of Daily Living

Standing

Using Phone (10 sec)

Brushing Teeth (10 sec)

Lifting Cup (10 times)

Swinging Arms(10 times)

Walk (10 sec)

Open Door (10 times)

Look at Watch (10 times)

Clean with broom (10 sec)

Sitting

Typing (10 sec)

Reading Book (10 sec)

Brushing Teeth (10 sec)

Look at Watch (10 times)

Bicep Curl (10 times)

Use TV Remote (10 sec)

Lying

Adjust Pillow (10 sec)

Text with phone (10 sec)

Adjust in Bed (10 sec)

Reading Book (10 sec)

Adjust blanket (10 sec)

Walk
Step Forward 10 times

Step Backward 10 times
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used. Since the average movement length was 5 s, a movement window of 1 s (100

points) was used, found heuristically to be the best filter. Next, the feature extraction

was run. While there are several features that are common in smartphone platforms,

including max, min, mean, sum, standard deviation, kurtosis, skewness and energy

over a window, because this work incorporated a gyroscope and a different position on

the body, a wider range of features were developed from which to be selected. The 25

features, listed in Table 3.2, were collected for each axis, as well as for the magnitude

of acceleration, resulting in 175 total features. These features were selected due to their

strengths in various recognition techniques, including activity monitoring, handwriting

recognition and wrist-worn tracking [16, 17, 34–36] [8, 9, 75, 76, 77].

Once the features were extracted, a selection algorithm was run using Weka’s [78]

Information Gain Feature Selection algorithm, with a ranker to provide the top 30 fea-

tures. The top 30 features were selected to avoid overfitting the model to the training

set. In fact, [79] stated that linear support vector machines (SVM) should only have a

ratio of 10:1 for features to data samples. In the case of this work, 20 users repeated

each of seven actions (six transitions and a no-movement class). Each repetition of

these movements would pollute the 10:1 ratio, so they were not considered in the cal-

culation. As a result, 140 unique data samples were considered, which indicated that

14 features should be the maximum in a linear setting. As this work employed a more

advanced kernel, double those features were considered to adhere to the same prin-

cipal, while accounting for a more advanced kernel and multiclass setting. Once the

subset of features was selected, the model was tested in cross-validation for its pre-

diction strength. In particular, it was important to achieve high precision and recall to

appropriately identify the transitions between states when performing activities and to

avoid identifying false transitions.
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Table 3.2: Features Extracted per Axis

Feature Description (domain)

Minimum Minimum value obtained over the movement window (time)

Maximum Maximum value obtained over the movement window (time)

Sum Sum of values obtained over the movement window (time)

Mean Mean value obtained over the movement window (time)

Standard Deviation Standard Deviation of values obtained over the movement window (time)

Kurtosis Peakedness of the distribution (time)

Skewness Asymmetry of the distribution (time)

Energy Calculation of the energy (sum of the absolute value of the fft components) (frequency)

Variance Variance of values obtained over the movement window (time)

Median Median value obtained over the movement window (time)

Root Mean Square (RMS) Root mean square of values over the movement window (time)

Average Difference Average difference of values (pairwise) in window (time)

Interquartile Range Dispersion of data and elimination of outlier points (time)

Zero Crossing Rate Rate of sign changes in signal (time)

Mean Crossing Rate Rate of crossing the mean value of signal (time)

Eigenvalues of Dominant Directions Corresponds to dominant direction of movement (time)

CAGH Correlation coefficient of acceleration between gravity and heading directions (time)

Average Mean Intensity Mean Intensity of Signal (time)

Average Rotation Angles Calculates rotation based upon gravity (time)

Dominant Frequency Dominant frequency in transform (frequency)

Peak Difference Peak difference of frequencies (frequency)

Peak RMS Root Mean Square of peak frequencies (frequency)

Root Sum of Squares root sum squares of frequencies (frequency)

First Peak (Energy) First peak found in energy (frequency)

Second Peak (Energy) Second peak found in energy (frequency)
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3.2.4 Training the Algorithm

In order to classify the motions accurately, Weka’s implementation of a support vector

machine (SVM) was used, using the Pearson Universal Kernel (PUK), which is based

on the Pearson VII function adapted to a universal kernel. As explained in [80], this

kernel function has a remarkable ability to model data well represented by each other

commonly found SVM kernel and, as a result, can be considered a universal kernel for

learning algorithms. In particular, with enough data, the PUK kernel can be modified,

through its optimization of hyperparameters, to look like any other kernel for SVM.

The work in [81] applied this kernel to activity recognition, showing higher accuracy

than more commonly-used kernels and methods. The parameters were left as default,

with the exception of the complexity, which is raised to a value of 100, to further penal-

ize mistakes of the classifier in its optimization routine. The SVM was supplied with

training data labeled with eight labels, the labels being the six transition movements,

one label for no movement and one encompassing label for all other movements to re-

duce false positives of the first six labels. The model was tested at 100 Hz, 50 Hz and

10 Hz and compared to the phone in the pocket, as well as combined with the phone to

determine the strongest results.

3.2.5 Testing the Algorithm

The recognition algorithm was then validated to ensure the proper development of a

system to accurately track the posture of users. While the activity level was presented

as a general magnitude of acceleration, the state of the user provided context to the

level of activity achieved and the duration of those activities. As a result, the algorithm

needed to be strongest at determining the posture of a user. A leave-one-subject-out

cross-validation (LOSOCV) was used to determine the model’s effectiveness over user

populations. This was chosen over a commonly-used 10-fold cross-validation because

of the potential for the pollution of the results in training and testing on the same user.
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In this manner, it became possible to interpret results as they extend to new users not in

the training system. Each move of the test subject was feature extracted and tested. For

each movement, a label is known for the ground truth transition state. If the algorithm

appropriately classifies the movement with the appropriate class, then this is considered

a true positive result. If not, it is considered a false negative result. For example,

if the user is standing and sits in a chair, this should be a stand-to-sit transition. If

this movement is appropriately classified as a stand-to-sit, it is considered a match

and a true positive. If, however, the system calculates this movement as stand-to-lie,

then this movement counts as a false negative for stand-to-sit and a false positive for

stand-to-lie. From these true positive, true negative, false positive and false negative

results, precision and recall are derived, per class. We then average these results for the

precision and recall of the system. This micro-averaging result does not bias toward

a specific movement, since the quantities of each label are equal. Further explanation

of this can be found in [82]. The results for this study were presented by reporting the

F-score of each test subject and then averaging those F-scores. The F-score, sometimes

referred to as the micro f1 score, is:

F = 2× P×R
P+R

(3.1)

where P is the precision of the system and R is the recall (also known as the sen-

sitivity). Thus, the F-score is an indication of how well the system can identify the

transition movements. The F-score is used as a measurement to better indicate the abil-

ity of an algorithm to detect all movements and to reduce false positives at the same

time, often a more reliable measurement of performance than accuracy.

3.3 Results

A leave-one-subject-out cross-validation was run on all subjects in the training set. The

first step was the feature extraction, then the validation that the Smartwatch can ac-
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curately classify the movements necessary at only 10 Hz. Then, these results were

compared to 50 Hz and 100 Hz in order to compare the differences, along with com-

paring the phone in the pocket, and using both datasets together. Further, battery usage

was compared, as well. In order to compare the battery life of each system, the data

collection platform was run until the watch died, with timestamps of the outputted data

providing durations. The 10-Hz Smartwatch collected, on average, about 19 h of data,

while the 50-Hz version lasted only 9 h and the 100-Hz version only about four hours.

The large discrepancy is due likely not only to the sensor usage, but power associated

with the storage of larger files of more data points. Data were logged and stored on the

Smartwatch and were under the 4 GB of internal storage per day. For the purposes of

this work, this validates the use of only 10-Hz data and that it can provide the neces-

sary duration and store the necessary data for offline communication and computation.

Further energy analysis in actual use is left for future work. The PUK kernel was also

compared against a radial basis function (RBF) kernel, which was more commonly

found in activity recognition systems, to validate the selection of the chosen kernel, as

well as a commonly-used method with that kernel used for recognition of activities of

daily living (ADL) [8, 9].

Figure 3.3 shows a summary view of the data collected by the system over six days

for one of the user’s from the collected IRB trial. Figure 3.3a show the daily breakdown,

while Figure 3.3b shows the total for a week. The accuracy of this view is dependent

on the accuracy of each individual movement recognized, discussed below.

3.3.1 Feature Selection Results

The top features for the method run at 10 Hz are presented in Table 3.3. The reason

only 10 Hz is shown is because of its success at saving battery life and accurately

determining the user state, though, for the watch, the 50-Hz and 100-Hz methods result

in similar feature sets. Incidentally, the comparison to the Smartwatch and smartphone

data used shows that the combination uses primarily watch features (only four phone
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(a) Daily state information of a user from the trial (b) summary of the week

Figure 3.3: Clinician summary view of weekly activity of a user from the trial

features at 10 Hz).

3.3.2 Cross-Validation Results

The cross-validation was run in three cases, using data from the watch only, using data

from the phone only and using the data from both the watch and phone together, and

at the three sampling rates, as discussed: 10, 50 and 100 Hz. Results are plotted in

Figure 3.5. For the 10-Hz case, the algorithm using only data from the watch achieves

a mean F-score of 0.93, using data only from the phone a mean F-score of 0.82 and

using data from the watch and phone a mean F-score of 0.94. For the 50-Hz case, the

algorithm using only data from the watch achieves a mean F-score of 0.93, using data

only from the phone a mean F-score of 0.80 and using data from the watch and phone

a mean F-score of 0.94. For the 100-Hz case, the algorithm using only data from the

watch achieves a mean F-score of 0.93, using data only from the phone a mean F-score

of 0.80 and using data from the watch and phone a mean F-score of 0.94. Finally, when

selecting a subset of features by rank, Figure 3.4 showed a high mean F-score with

only the top 15 features.
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Table 3.3: Top 30 Features Selected for Smartwach at 10Hz (and axis)

Features 1-10 11-20 21-30

Average Difference (ax) Mean (gy) Mean (ax)

Average Difference (az) Sum (gy) Sum (ax)

Median of Intensity of Gyroscope (‖g‖) Eigenvalues (ax) Dominant Frequency (gx)

Mean (gz) Root Mean Square (ax) Energy (gx)

Sum (gz) Energy (ax) Root Mean Square(gx)

Dominant Frequency (gz) Root Sum of Squares (ax) Root Sum of Squares (gx)

Energy (gz) Standard Deviation (gz) Peak Difference (gy)

Root Sum of Squares (gz) Variance (gz) Peak Difference (gx)

Root Mean Square (gz) Variance (gx) Dominant Frequency (gy)

Peak Difference (gz) Standard Deviation (gx) First Peak (gz)

3.3.3 Method Comparison

The algorithm, using data sampled at 10 Hz, was compared against the same method

using an RBF kernel instead, as well as the ADL algorithm using an RBF kernel. The

ADL algorithm used the three-axis accelerometer attached to the hip and extracted

features over a 5-s window of the mean, standard deviation, energy and correlation of

each axis of the accelerometer [9]. This same algorithm was also extended to use the

gyroscope. The phone version was labeled pADL and was also run on the watch data,

labeled wADL. Results for all of the methods are in Table 3.4.

3.4 Discussion and Conclusion

The results of the experiments show promise in using the Smartwatch as the platform

of choice for future remote health monitoring applications. The first important finding

is that the watch, on its own, can accurately detect posture and transitions between pos-

tures. The watch alone provides strong results, with an F-score of 0.930 at only 10 Hz

compared to 0.932 at 100 Hz. This indicates that the system can, in fact, provide strong
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Figure 3.4: F-score Per Features used for Smartwatch at 10Hz with SVM with a PUK

Kernel

classifications of the transition movements and, as a result, determine the state of the

user at all times, while also using minimal internal storage and minimal battery life.

Further, the watch, in fact, outperforms the phone in this particular method. The rea-

soning for this seems to be because the phone does a poor job at identifying the general

activities, since the hip is relatively still during those, and versus no movement at all. In

regards to the 10-Hz watch method, the sensor is particularly suited for this application.

Referring once again to Table 3.3, notice the strength of the gyroscope features, indi-

cating its importance in such systems. Further, the response to the algorithm and the

features is shown in Figure 3.4. The maximum comes at 30 features, but if the strict 14

features of the linear SVM are desired, the system still produces an F-score of 0.925.

Finally, such platforms must come with independent machine learning algorithms tai-

lored to their usage. When examining the results in Table 3.4, it becomes clear that

generally, strong methods of recognition for activities of daily living do not perform as

well when tailored to specific applications. Note, in fact, that the ADL algorithm was

extended to the watch and with the gyroscope and provides an F-score of 0.91, which is
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Figure 3.5: F-Scores at three sampling rates for watch, phone, and watch + phone

quite good, but can be improved when picking specific features trained for the specific

dataset and movements required.

In summary, this work introduced a Smartwatch-based system to assist in tracking

the posture of users wearing a wrist-worn platform instead of a hip-worn platform. In

this Chapter, we investigated the feasibility of developing such a system to be worn

all day (removed only for charging at night). A platform was developed based on the

Samsung Galaxy Gear, which allows activity tracking and the execution of custom

Android applications. This system allowed for the collection of a week of activity to

track the posture of the user. In fact, the recognition results of an F-score of 0.930

for the watch running at only 10 Hz is a promising result for a watch-only system

to monitor human posture. Further, the features selected were presented to guide the

future development of Smartwatch applications, an emerging field with the advent of

ever-increasingly powerful wrist-wearable devices. The work presented shows the ca-

pabilities of such a device in tracking human posture, enabling future development and

trials in more complex environments and with varied user populations.
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Table 3.4: F-Scores of SVM with PUK, SVM with RBF, Activity of Daily Living

(ADL) Algorithm, with and without gyroscope (all at 10 Hz) (phone then watch)

Algorithm F-Score

SVM (PUK) .930

SVM (RBF) .812

pADL (Accel Only) .702

pADL (Accel + Gyro) .783

wADL (Accel Only) .814

wADL (Accel + Gyro) .908
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CHAPTER 4

Wrist-Worn Context-Aware Posture Tracking

4.1 Why Context Information

Although RHMS have shown promises in reducing healthcare costs and improving

quality of care, effective analysis of the data collected by these systems and the po-

tential benefits of utilizing such analysis is by large an open problem. One of the key

demands in such an assistive environment is to promptly and accurately determine the

state and activities of an inhabitant subject. There have been a number of studies on

utilizing machine learning algorithms to monitor the activities of daily living such as

[83] and [84] but most of these works have been ignorant or insufficient in analyzing

and addressing the challenges that are mentioned in Chapter II, both in accuracy and

power performance. In this Chapter, we propose a novel context-aware data analyt-

ics framework to classify the physical activity based on the signals received from a

wearable sensor (e.g. SmartWatch) and the contextual information including the ”loca-

tion” of the subject and its ”current state” using advanced machine learning algorithms.

The location of a patient can provide important prior information that can be used to

better classify the physical activity. We hypothesize that the location information of

the human subject can get involved in classifier decision making as a prior probability

distribution to improve the accuracy of activity recognition. In other word, we take

into account the location of the subject as contextual information to improve the accu-

racy of the activity classification. A similar effort is also done employing the ”current

state” contextual information. The results demonstrate improvements in accuracy and

performance of the classifier when applying the proposed method compared to typical
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classifications. In addition to improving the accuracy, a dynamic switching algorithm

is proposed to switch in between data sources to increase the battery lifetime of the

wrist-worn device.

4.2 Context-Aware Framework

The context-aware framework is feeding from two main sources. These sources are

signals received from embedded accelerometer and gyroscope of a SmartWatch and the

contextual information received from other external devices or systems. This contex-

tual information can be anything such as location, time, temperature, etc. Although this

chapter provides a general solution which works for any type of context, the context ex-

amples that are used as proofs of concept are location and current state. In this manner,

we propose a context-aware technique by taking into account the location or current

state as prior contextual information that can modify the classifier model, and conse-

quently provide more accurate results for activity recognition. The activity recognition

module includes feature extraction, feature selection, and context-aware classification

submodules as described in the following. The activities to be recognized and the wrist-

worn data collection module is exactly the same as in Chapter III. The data collection

protocol is also the same as in Chapter III. Aside from the classification algorithm, the

only differences in this chapter are first the presence of another data source (to provide

contextual information) and second the selected feature set.

4.2.1 Feature Extraction and Feature Selection

A total number of 150 features are extracted from accelerometer and gyroscope signals.

Statistical and morphological features are the most common features used for data ana-

lytics. Theses features are extracted for each one of the three axes of the accelerometer

and gyroscope. A complete list of implemented features can be found in Table 3.2.

Once the features are extracted, a dimensionality reduction algorithm is applied to
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select the most prominent features and reduce the redundancy. The conventional fea-

ture selection algorithms usually focus on specific metrics to quantify the relevance and

redundancy of each feature with the goal of finding the smallest subset of features that

provides the maximum amount of useful information for prediction. Thus, the main

goal of feature selection algorithms is to eliminate redundant or irrelevant features in a

given feature set. Applying an effective feature selection algorithm not only decreases

the computational complexity of the system by reducing the dimensionality and elimi-

nating the redundancy, but also increases the performance of the classifier by removing

irrelevant features. In this Chapter, we tried both wrapper and filter methods; the two

well-known feature selection categories. Wrapper methods usually utilize a classifier

to evaluate feature subsets in an iterative manner according to their predictive power.

A new feature subset is used to train a predictive model that will later be evaluated on

a testing dataset to assess the relative usefulness of subsets of features [85]. Figure

4.1 (a) provides an illustration of the wrapper feature selection method. Filter methods

use a specific metric to score each individual feature (or a subset of features together).

The most popular metrics used in filter methods include correlation coefficient, mutual

information, Fisher score, chi-square parameters, entropy and consistency. Filter meth-

ods are very popular (especially for large datasets) since they are usually very fast and

much less computationally intensive than wrapper methods. Figure 4.1 (b) illustrates

the steps involved in the filter feature selection method.

In this study, after trying several filter and wrapper methods, we finally chose only 5

features to keep the computational complexity low on the device. The selected features

includes: minimum of acceleration axis x (min ax), average acceleration axis z (avg

az), eigenvalue acceleration axis z (eigen az), correlation between acceleration axis x

and y (cor axy), sum gyro axis z (sum gz).
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Figure 4.1: Feature Selection: (a) Wrapper method, (b) Filter method.

4.2.2 Conventional Classification

Once the subset of features is selected, a machine learning based classifier is applied

to classify the motions. In this research, we tried various classification algorithms such

as SVM, Random Forest, BayesNet, and Artificial Neural Net (ANN) as the predictor.

According to our results, a Random Forest classifier with 100 trees provided fast and

accurate prediction results for our dataset. Random Forest is an ensemble learning

classification method comprising of a collection of decision tree predictors operating

based on i.i.d random vectors. In this process, each tree casts a unit vote for the most

popular class [86]. The classifier was supplied with training data labeled with 6 labels

being the six transition movements (sit_to_lie, sit_to_stand, stand_to_sit, stand_to_lie,

lie_to_sit, lie_to_stand). The recognition algorithm must then be validated to ensure

the proper development of a system to accurately track the state of subjects.
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4.2.3 Context-Awareness

As we mentioned before, context information can be anything, but for simplicity, with-

out sacrificing on the generality of the problem, let’s consider the indoor location as the

context. The indoor location of a patient (received from indoor localization and tracking

module) can provide significant prior information about the possible physical activity.

For example, when we know that the patient is in the kitchen, the probability of stand-

ing is much higher than lying, consequently, the labels are not uniformly distributed

anymore. Thus, by knowing the approximate position of the patient, we will have bet-

ter understanding about the possible activities that the patient can have. We hypothesize

that the location information can get involved in classifier decision making as a prior

probability distribution to help improve the accuracy of activity recognition module.

Assume that F1, ...,FN are the classifier input features and C represents the classifier

labels. Then, the classifier probability model can be expressed as a conditional proba-

bility p(C|F1, ...,FN) (known as Posterior Probability) that can be formulated using the

Bayes’ Theorem as following [87].

p(C|F1, ...,FN) =
p(C,F1, ...,FN)

p(F1, ...,FN)
(4.1)

The joint probability in the numerator can be reformulated as:

(4.2)
p(C,F1, ...,FN) = p(C)p(F1, ...,FN |C)

= p(C)p(F1|C)p(F2, ...,FN |C,F1)
= p(C)p(F1|C)p(F2|C,F1)...p(FN |C,F1, ...,FN)

A "Maximum A Posteriori" (MAP) decision making rule can be applied as follow-

ing to pick the most probable class label:

classi f y( f1, ..., fN) = argmax
c

p(C = c)p( f1, ..., fN |C = c) (4.3)
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The term p(F1, ...,FN |C) (called likelihood) is usually determined in the training

stage. For the case of simplicity (e.g. in Naive Bayes classifier), the features can be as-

sumed to be conditionally independent. In this case, the equation 4.3 can be simplified

to:

classi f y( f1, ..., fN) = argmax
c

p(C = c)
N

∏
i=1

p(Fi = fi|C = c) (4.4)

In traditional classification, a uniform distribution is used for Prior Probability p(C).

However, in our approach, we hypothesize that the patient’s position can provide some

information about the distribution of the prior probability p(C). Thus, we can write

p(C) as:

p(C = c) = ∑
i

p(C = c,L = 1i) = ∑
i

p(L = li)p(C = c|L = li) (4.5)

where p(C,L) is the joint probability distribution of location and activity label.

Thus, when the location is known, the uniformly distributed Prior Probability p(C) will

be replaced by the conditional probability p(C|L = li) and consequently, the equation

4.4 provides more accurate model for activity recognition.

An equation similar to 4.5 can be written for any other contextual information, such

as current state:

p(C = c) =
M

∑
j=1

p(C = c,S = s j) =
M

∑
j=1

p(S = s j)p(C = c|S = s j) (4.6)

where M is the number of states.

4.3 Activity Recognition Accuracy Improvement

The improvement in the accuracy is due employment of contextual data in the prior

probability of the classification algorithm. This novel technique is tested using both lo-
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cation and current state information. The collected inertial sensor data and the protocol

is exactly the same as the ones mentioned in Chapter III (data of the transition between

sit, lie and stand states).

4.3.1 Location as the context

Table 4.1 shows the F-Score results for the activity recognition using only 5 features

in two different cases:

• Using conventional classification without considering the location information

• Context-aware activity recognition knowing and taking into account the location

information

As we see, for example in the kitchen, we achieve 7% improvement (using 5 fea-

tures) since knowing the location of the subject provides significant information about

the activity. However, in the living room, we achieve 3% improvement, and it totally

makes sense, because the likelihoods of sitting, lying, and standing in the living room

are almost similar, and consequently the prior probability distribution is closer to the

uniform distribution which is the pre-assumption for conventional activity recognition

too.

Figure 4.2 and 4.3 shows the F-Score versus the number of selected features for

conventional and context-aware analytics in the kitchen and living room. Again, as

we expected, the accuracy improvement by using context-aware approach is higher in

the kitchen compared to the living room because the probability distribution of various

activities in the living room is closer to uniform distribution.

4.3.2 Current State as the Context

To investigate the possibility of activity classification accuracy improvement using cur-

rent state, we analyzed the precision of classification for both smartphone and smart-
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Figure 4.2: F-Score versus the number of selected features for conventional and

context-aware activity recognition in kitchen.

Figure 4.3: F-Score versus the number of selected features for conventional and

context-aware activity recognition in the living room..
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Table 4.1: F-Score For Regular And Context-Aware Analytics Using Only 5 Features

Location Conventional Classification Context-Aware Classification

Kitchen 0.81 0.88

Living Room 0.82 0.85

Bedroom 0.80 0.84

Table 4.2: Detailed Classification Precision Results

watch and for all the different combinations of ”current states” and ”next states”. Table

4.2 shows the result for this using PUK kernel of SVM algorithm (which we had previ-

ously shown to have the best result) in WEKA and by employing the top 5 features.

As can be seen from Table 4.2, the average precision of sit-to-stand and sit-to-lie

transitions is better if the phone is picked as the data collection module rather than

watch. In that case using phone instead even improves the overall precision. On the

other hand, when the current state is ”lie”, watch seems to be the better option to go

with. As can be seen from Table 4.2, in the ”stand” state, the difference is not that

significant, so the approach in this ”current state” would be to keep the either of the

phone or watch that was employed in the previous state as the data collection module.
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This method of using current state involves switching data source in between smart-

phone and smartwatch, which means the data should be collected using both of these

devices. This might appear to be contradictory to the main purpose of this work: ”re-

placing phone with watch for convenience and the fact that the targeted patients are

not very inclined to carry the phone all the time”. However, this dynamic switching of

the data source will only be enabled when the phone is worn by the subjects and only

if the ”current state” predicts the phone to be the more accurate device for classifica-

tion. So with no enforcement of carrying the phone, we show that battery lifetime and

classification accuracy can be improved.

Using equation 4.7 and the values of Table 4.2, improved precision based on the

current state information can be calculated:

Precimp j = PCP[P(S j = sit).(Precphone|sit−Precwatch|sit)

+P(S j = stand|S j−1 = sit).(Precphone|stand−Precwatch|stand)] (4.7)

This means that depending on the ”current state” information the model will be

changes and so the precision for classification and the improved precision will be the

precision overhead based on this model switching. Assuming the phone is worn by the

subjects 50% of the time:

Precimp j = 0.5× [1/3× (69.7−46.1)+1/6× (86−78)] = 4.35 (4.8)

In general, it has been shown that 90% of the time people are in close proximity

(same room) of their phone [88].

4.4 Battery Lifetime Improvement

The power saving due to turning off the wrist-worn device can be large depending on

the percentage of the time in which the phone is a better source for classification (which
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can be found from Table 4.2). As a result, the probability that the data collection on the

watch is OFF (PDO) can be estimated:

PDO = PPW .[p(S j = sit)+ p(S j = stand|S j−1 = sit)] (4.9)

PPW is the percentage of the time in which the phone is being worn by the subject.

S j represents the current state and S j−1 is the previous state. Therefore, the data collec-

tion on the watch becomes OFF only when the phone is worn by the subject and also

when the ”current state” is ”sit” in which the phone has better prediction capability.

Also when the current state is ”stand”, if the previous state is ”sit” then the phone has

already been selected in previous state and therefore stays as the data collector module.

Improved battery life can be found from this probability:

Text = PDO× (TDO−TDC) (4.10)

Where Text is the extended time and TDO and TDC are respectively the battery life

time when data collection is OFF and ON. That means the total battery lifetime after

the improvement is:

Text = TDC +Text (4.11)

Using the same assumption we had in Section 4.2 (phone is worn 50% of the time),

PDO can be found from equation 4.12:

PDO = 0.5× (1/3+1/2×1/3) = 0.25 (4.12)

and this leads to:

Text = 0.25× (TDO−TDC) (4.13)
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Figure 4.4: Watch battery discharge profile.

TDO and TDC can is found by looking the watch power profile for both situation of

data collection being ON and OFF, Figure 4.4 shows this measured power profile for

Samsung Galaxy Gear (which was used in the data collection).

As can be seen from Figure 4.4, the measurement values are 33 and 13 hours for

TDO and TDC, which leads to 5 hours if we use equation 4.13.

4.5 Discussion and Conclusion

In this chapter, the same data from the pilot trial in Chapter III was used which con-

tains 1200 data samples collected from 20 subjects. Unlike conventional classification,

a context-aware classification is proposed in this Chapter. In the proposed method,

context information is used to adjust the prior probability by giving different costs to

each class based on the ”location” and the ”current state”. Table 4.1 shows the F-Score

results for the activity classification using only 5 features for 3 different locations. As

can be seen, for example in the kitchen, we achieve 7% improvement. This is because

knowing the location of the subject provides significant information about the activ-
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ity. However, in the living room, we achieve 3% improvement, and it totally makes

sense, because the likelihoods of sitting, lying, and standing in the living room are al-

most similar, and consequently the prior probability distribution is closer to the uniform

distribution which is the pre-assumption for conventional activity recognition too.

In a similar manner, improvement in the classification of accuracy was achieved

using the ”current state” as the contextual information. The dynamic source selection

algorithm was proposed which puts some of the burden of data collection on the phone

but only if that does not penalize the overall precision of the classification. In fact, it

was shown in this chapter that for some particular activities and states, the phone can

be the superior module in terms of classification accuracy compared to the watch. We

have shown in this work that this novel scheme can improve the overall classification

precision by 5% and extends the battery lifetime of the Smartwatch by almost 5 hours

or 40%. Future work can be conducted to test the algorithm in long-term situations and

on real patients.
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CHAPTER 5

Robust Gait Assessment for Wrist-Worn Devices

5.1 Introduction

Due to high level of comfort that Smartwatch delivers, frail patients are able to use

Smartwatches as a mobile wearable technology to remotely log their health status met-

rics. These metrics range from physical activity [68], heart health [29], blood pressure

[89], etc. One very significant health-related metric that has a great potential to be revis-

ited by this technology is human gait. We have talked about the different applications

of human gait in Chapter I and the significant research works in this area in Chapter II.

In this chapter, we try to provide an overview of different gait monitoring techniques

through wearable devices, ruling out any expensive, high-tech or high-burden systems.

Then we introduce our novel gait assessment tool, which is an effort to overcome the

accuracy challenge of wrist-worn sensing (which we discussed in Chapter II). The pro-

posed method will be backed up with the experiment results and system verification and

eventually we will provide conclusion and future directions at the end of this chapter.

5.2 Gait Measurement Techniques

Step detection and walking analysis using inertial sensors has been done through many

different techniques. Usually these techniques are very dependent on the location of

the inertial sensor on the body. Walking can be sensed by mounting inertial sensors on

almost any locations of the body, however two locations among all seem to be giving

the most promising accuracy results: waist (which is close to center of mass-COM)
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and foot which is the most involved organ in walking. One simple approach for both

foot-mounted and waist-mounted sensors is to detect the walking distance through de-

termining the number of peaks or zeros in the vertical component of the accelerometer

signal over the walking period. After detecting number of steps, the distance is calcu-

lated by multiplying it to a constant. That constant needs to be estimated based on the

subject physical parameters such as height. This method for walking distance estima-

tion is simple and low-cost, although it has two major issues. First is that, the length of

the step varies over time and over different people which enforces frequent calibration.

In addition, over-counting and under-counting of one single step results into a big noise

estimating the distance as well as velocity. Another very common method in measur-

ing the gait distance and velocity is to apply a Fast Fourier Transform (FFT) on the

accelerometer signal and find the dominant frequency component of it. This frequency

is shown to be highly correlated to the step length [67, 71]. This correlation can be de-

termined using both analytical and data-driven methods [90]. The same approach was

applied for a sensor carried in the pocket as well [71]. This approach provides relatively

high accuracy if the subject goes through calibration phases before testing (resulting in

a user-tailored model).

Mostly used in foot or ankle-mounted sensors systems, one can calculate the stride

velocity and length by single and double integrating the horizontal acceleration respec-

tively [91]. The issue in this approach is error accumulation due to integration, which is

called ”sensor drift”. ”Error zeroing” has been used to resolve this issue by periodically

zeroing the accumulated error when the foot touches the ground (detected using the an-

gular velocity data [92]). This methods is has been known to be called ”zero velocity

updating” (ZVU) technique. Double integration has also been used for chest and waist-

mounted sensors as well but on the vertical acceleration. This vertical displacement

does not give the estimated stride length but it is correlated with it. [93] and [73] have

designed estimators to calculate the step length from both the vertical displacement as

well as physiological parameters such as height and weight of the subjects.
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Another popular technique is finding the gait parameters based on the physical mod-

eling of the movement of the center of mass (COM) as the inverted pendulum [94].

When one leg is on the stance mode, the other one swings like an inverse pendulum.

Using the properties of isosceles triangle where each leg was modeled as one single

segment [95] has modeled the gait movement. This was done taking into account the

fact that at heel strike, legs and the distance between them form an isosceles triangle.

Using this biomechanical modeling as well as machine learning techniques horizontal

displacement of the COM can be estimated based on the change in the orientation of

the sensor and horizontal displacement.

With the advancement in machine learning and data mining tools and algorithms,

another gait assessment technique that has been recently widely used is data-driven

gait modeling. In this method, by collecting the training walking data from a set of

subjects and by including their sensory data as well as their physiological data in the

training, gait model is generated in data-driven manner. These parameters can include

their height, accelerometer and gyro min, max and mean, etc. as well as the frequency

domain parameters. Dominant frequency component of accelerometer data is shown to

be highly correlated with the stride length and the gait distance and velocity [67].

While most of the previous works have been focused on implementing algorithms

for either foot, chest or back-mounted sensors, none were much applicable in ambula-

tory remote health monitoring. This is because a lot of these sensing systems require

bulky and uncomfortable devices attached to the user which imposes a lot of inconve-

nience for the subject. This eventually results into non-compliance in long-term which

causes user rejection and data loss. This is especially true for patients within the cate-

gories of elderly and frail.

Smartphone has provided a more convenient platform for gait assessment, as the

subject would normally carry it. Therefore, Smartphone-based walking speed and dis-

tance estimation systems have been recently under a lot of attention. Still, from our

experience, a lot of elderly and risk subjects are not willing to carry a bulky phone all
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the time. These patients unfortunately happen to be the category which is in the most

need for monitoring. With the emergence of Smartwatches with inertial sensors em-

bedded in them in the past decade, a great deal of attention and effort has been put in

building up wrist-worn gait assessment systems which definitely addresses those cate-

gories of patients. In most of these works, a correlation between stride length and some

features of the inertial sensors is detected. Vertical displacement was used in [63] and

an empirical relation between that and step length was identified. [64] included the step

duration, range of vertical acceleration and number of sample in each step in designing

their step length estimator as well, to improve the accuracy. Most of the hand-mounted

gait assessment systems though, have been focusing on dominant step frequency as the

most correlated feature. The correlation between hand frequency and step frequency

has been estimated in [65] and then step length and velocity is estimated from there.

This required having different models for different positions of the sensor (in-pocket,

in-hand and carrying in bag). Accuracy was improved in a similar system in [66] by

including GPS calibration while the subject is outdoor. Step length has also been esti-

mated using the abstraction model generated from hand motion frequency and height

of subjects in [67]. They showed an error of 5% for short range but this work offers a

handheld-based system (not hand-mounted).

In most of these handheld or wrist-worn systems, the biggest challenge comes from

the fact that arm swing causes addition to the noise in distance and velocity estimation

which causes undercounting or over-counting of steps. This concept seems to be not

investigated thoroughly in the previous related works. We have introduced this issue

and proposed a solution to address it in [96] and [97]. This work is a follow-up on those

works that provides a detailed investigation of this challenge while a more comprehen-

sive analysis is provided. Next section will introduce the methodology that is proposed

which contains the novel peak detection algorithm that accurately detects the steps by

applying sensible constraints between times and values of the consecutive peaks. Then

the idea of using Kalman filter to recover the missing peaks due arm swing is thor-

52



oughly investigated. Then, significant gait parameters such as distance, velocity and

symmetry are estimated using the linear regression while self-calibration methods are

used to improve the estimation accuracy.

5.3 Methodology

Human walking is a complicated motion involving several body parts. These motions

affect output of an inertial sensor unit on the wrist. In this section, major motions

affecting the inertial sensor output are described, which is derived based on a simplified

walking model. This relationship between walking and sensor output helps to identify

walking steps from the sensor output. In this section we will first describe the inertial

sensors’ signals of the wrist-worn device while walking in sub-section 5.3.1. The rest

of this section will be on the proposed algorithm to detect the walking behavior. Figure

5.1 shows the block diagram of the whole system with all the algorithm modules.

5.3.1 Inertial Sensors During Walking

Two coordinate frames are used for the explanation (see Figure 5.2). One is the refer-

ence coordinate frame, which is fixed on the earth. The z axis of the reference coordi-

nate frame is assumed to coincide with the local gravity direction (upward direction).

The choice of x and y axes is not important. The other coordinate frame is the sensor

coordinate system, where the three axes coincide with the three axes inertial sensor

unit. We use a symbol [p]R or [p]S to denote that a vector p ∈ R3 is expressed in the

reference or sensor coordinate frame.

Firstly, we investigate the accelerometer output during walking. There are mainly

three acceleration sources during walking: Earth’s gravity, inverted pendulum motion

of a stance leg and arm swing. Earth’s gravity is in the direction of reference coordinate

frame z axis:
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Figure 5.1: Block diagram of the proposed gait assessment algorithm

Figure 5.2: Two coordinate frames: Reference coordinate systems (left), Sensor coor-

dinate system (right).
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[
ya,gravity

]
R
=


0

0

g

 (5.1)

where g is the magnitude of the local gravitational acceleration. The measured

gravity is an quantity expressed in the sensor coordinate frame. For example, suppose

a person is standing still while the x axis of the sensor coordinate frame is in the same

direction of−z axis of the reference coordinate frame (see Figure 5.2). Then the output

of accelerometer is given by:

[
ya,gravity

]
S
=


−g

0

0

 (5.2)

Two other major motions generating acceleration is leg movement and arm swing.

To focus on the leg movement first, suppose a person is walking without arm swing in

the direction of x axis (reference coordinate frame). If we assume a person is walking

with constant speed, the x axis acceleration (in the reference coordinate frame) is 0.

Since there is no motion in the y axis, the y axis acceleration is also 0. Thus during

walking without arm swing, z axis acceleration (in the reference coordinate frame) is

dominant.

There are many mathematical models describing walking motion [98, 99]. One of

the simplest model is an inverted pendulum motion of a stance leg [98]. In Figure 5.3,

during the interval (a) - (c), the right leg can be modeled as an inverted pendulum. The

z axis position (reference coordinate frame) of a upper body is the highest at (b) period

and lowest at (a) and (c) periods. Similarly, the left leg can be modeled as an inverted

pendulum during the interval (c) - (e), where the highest z position is at (d) period. Thus

during walking, z position value is almost sinusoidal. By taking double derivatives of

z position value, we can see z axis acceleration is also almost sinusoidal in Figure 5.3.
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In summary, the acceleration due to leg motion is almost sinusoidal when there is no

arm swing and thus can be modeled as follows:

[
ya,leg

]
R
=


0

0

A1 cos(2π

T t)

 (5.3)

where T is one step walking time and A1 is a parameter depending mainly on the

leg length. Now suppose a person is walking with arm swing. If we model arm swing

as a pendulum motion around the z axis of the sensor coordinate frame, the acceleration

due to arm swing is given by:

[
ya,arm

]
S
=


−A2θ̇ 2

A2θ̈

0

 (5.4)

where A2 is a parameter depending on the arm length. The first element is related

to centripetal acceleration and the second element is related to Coriolis acceleration

[100]. Unlike ya,gravity and ya,leg, this acceleration is represented in the sensor coor-

dinate frame. Let [ya]S be the acceleration measured by an accelerometer during arm

swing walking. Since ya,gravity and ya,leg are given in the reference coordinate frame,

they should be transformed to the sensor coordinate frame. Let θ be the angle between

the reference and sensor coordinate frames (see Figure 5.4 for the θ angle definition),

then the rotation matrix from the reference coordinate frame to the sensor coordinate

frame is given by:

CS
R(θ) =


0 sinθ −cosθ

0 cosθ sinθ

1 0 0

 (5.5)

Using this rotation matrix, [ya]S is given by:

56



[
ya

]
S
=
[
ya,arm

]
S
+CS

R(θ)
([

ya,gravity

]
R
+
[
ya,leg

]
R

)
(5.6)

During walking, arm swing frequency is the same as walking frequency and the arm

swing angular velocity can be modeled as:

θ̇(t) = A3 sin(
π

T
(t +φ)) (5.7)

where A3 is a parameter depending on maximum forward and backward arm swing

angles and φ is phase difference between leg movement and arm swing. Let θ f and θb

be the absolute maximum angles of arm forward swing and backward swing, respec-

tively. Then from the relationship:

∫ T

0
θ̇(r)dr = θ f +θb (5.8)

We have:

A3 =
π

2T
(θ f +θb) (5.9)

In Figure 5.5 (no arm swing) and Figure 5.6 (with arm swing), simulated ac-

celerometer and gyroscope norm plots during walking are given. In Figure 5.6, the

data are generated with θ f = 40◦, θb = ang15 and φ = 0.05. When there is no arm

swing (Figure 5.5), walking step can be easily identified using the maximum peaks of

the accelerometer norm. We denote the maximum peak occurrence time by pa,i. When

there is arm swing, the accelerometer norm plot is different but walking step can be

still identified using pa,i. The walking step also can be identified using gyroscope norm

minimum peak time, which are denoted by pg,i. Note that pa,i and pg,i are not the peak

values but the peak occurrence times.

The accelerometer norm plot with arm swing can be significantly different depend-

ing on parameters (θ f , θb and φ ). For example, the simulated accelerometer and
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Figure 5.3: Gait cycles and reference frame z-axis acceleration
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Figure 5.4: Rotation between reference and sensor coordinate frames.

gyroscope norm plots with θ f = 40◦, thetab = 20◦ and φ = 0.02 is given in Figure 5.7.

It can be seen that the accelerometer plot is quite different even with the slight change

of parameters. Also, in this case, less conspicuous peaks (pa,1 and pa,3) may not be

detected if there is small nose or other terms in the accelerometer output.

5.3.2 Preliminary peak detection algorithm

The first step after high-frequency noise removal using a low-pass filter is a preliminary

peak detection of the inertial sensors’ signals to identify the step events. This initial step

event detection algorithm is simply a 5 data points peak detection algorithm. Let yi ∈ R

be a signal (either the norm of accelerometer output or the norm of gyroscope output)

and i be the discrete time index. yi is the low-pass filtered output of yi:

yi = α1yi−1 +(1−2α1)yi +α1yi+1 (5.10)

where α1 is the weighting factor for the low pass filter. Then after this low-pass

filtering the signal is searched for significant maximum or minimum peaks using these

three conditions:
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Figure 5.5: Simulated accelerometer norm during walking without arm swing.

(a) : (ȳi−2 < ȳi) and (ȳi−1 < ȳi) and (ȳi > ȳi+1) and (ȳi > ȳi+2) and

(ȳi−max(ȳi−2, ȳi−1, ȳi+1, ȳi+2)> α2)

(b) : (ȳi−3 < ȳi−2) and (ȳi−2 < ȳi−1) and (ȳi−1 < ȳi) and (ȳi > ȳi+1) and

(ȳi−max(ȳi−3, ȳi−2, ȳi−1, ȳi+1)> α2)

(c) : (ȳi−1 < ȳi) and (ȳi > ȳi+1) and (ȳi+1 > ȳi+2) and (ȳi+2 > ȳi+3) and

(ȳi−max(ȳi−1, ȳi+1, ȳi+2, ȳi+3)> α2) (5.11)

where α2 is a parameter that defines the selectiveness of the peak detection algo-

rithm. If α2 is chosen to be a big value, only conspicuous peaks are detected and any

small peaks are ignored. Although, this increases the probability of missing a real peak.

This can be observed in Figure 5.8 where only 3 peaks are detected with α2 = 1 and

2nd peak is ignored. Each detected peak satisfies at least one of the three conditions

in (2): peak 1 (a,b,c), peak 2 (a,c) and peak 3 (a,c). The condition 5.11 can be easily

60



Figure 5.6: Simulated accelerometer norm during walking with arm swing (θ f =

40◦,θb = 15◦,φ = 0.05).
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Figure 5.7: Simulated accelerometer norm during walking with arm swing (θ f =

40◦,θb = 20◦,φ = 0.02).
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Figure 5.8: Maximum Peak detection using condition (2).

modified to detect the minimum peaks.

5.3.3 Walking mode detection

As we mentioned earlier, even with small values of α2 there happened to be some true

step event peaks which are not detected. These missing peaks can be detected using

a Kalman Filter. We are taking advantage of the fact that walking is happening if the

detected peaks occur periodically. A scalar variable mk is used to represent whether a

person is walking or not. mk can take only 0, 0.5 and 1 values. If mk = 0, it means

a person is not walking. If mk = 1, it means walking is happening and if mk = 0.5, a

person is considered to be walking if mk+1 = 1 and not to be walking if mk+1 = 0. This

is best represented by the state diagram in Figure 5.9.

Defined by the state diagram in Figure 5.9, suppose mk = 0 and we encounter a
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Figure 5.9: Walking/Not Walking state diagram.

peak za,i. Since there is no way to know this is due to walking or other actions, we wait

until za,i + α3 time to determine whether the peak occurrence is periodic: that is, the

interval [za,i, zp,i + α3] data are used to check periodicity. If the parameter α3 is large,

we can determine periodicity more robustly. However, short walking events could be

ignored.

The initial periodicity check is done as follows. Let za,i, ...,za,i+1 be the peak times

belonging to the interval [za,i , za,i +α3]. Let Tinit, j(1≤ j ≤ l) be defined by:

Tinit, j , zp,i+ j− zp,i+ j−1 (5.12)

If peaks are almost periodic, Tinit, j values should be similar except for the first walk-

ing step time Tinit,1, which could be quite different from other steps since the walking

speed is slower in the beginning of walking. To reflect this fact, we compute a weighted

average value of Tinit, j by minimizing:
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J(T ), α4(Tinit,1−T )2 +
l

∑
j=2

(Tinit, j−T )2 (5.13)

where α4 < 1 is a weighting factor to allow large deviation of T from Tinit,1. Let Tave

be the minimizing solution to 5.13. From [101], Tave is given by:

Tave =
1

α4 +(l−1)
(α4Tinit,1 +

l

∑
j=2

Tinit, j) (5.14)

We determine Tinit, j is almost periodic if:

J(Tave)

l
< α5 (5.15)

If we chose very small value of parameter α5, all Tinit, j should be the same to pass

the periodicity test. If larger α5 is used, more variance of Tinit, j is allowed. As an

additional fail-safe measure, the three axes accelerometer value at the peak time is

also investigated. During walking, the acceleration direction at the peak time is almost

similar. Let Uinit, j be defined by:

Uinit, j =
y′a,zp,i+ j

ya,zp,i+ j−1∥∥ya,zp,i+ j

∥∥∥∥ya,zp,i+ j−1

∥∥ (5.16)

where ya,i ∈ R3 is three axes accelerometer sensor value at the discrete time i. The

angle between the accelerometer vectors at the two consecutive peaks is cos1Uinit, j.

We determine the acceleration directions at the peaks are similar if the following is

satisfied:

∑
l
j=1Uinit, j

l
> α6 (5.17)

If conditions 5.15 and 5.17 are satisfied, mk is changed to 1.
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5.3.4 Walking step time detection using Kalman Filter

Now while the state of the subject is walking (measured by the previous sub-section or

mk = 1), Kalman Filter will be used to estimate the walking step time. The state of a

Kalman filter is defined by:

xk =

 pk

Tk


where Pk is the accelerometer norm peak time and Tk is the walking step time. The

state dynamic equation is given by:

xk+1 = Axk +wk (5.18)

The noise term wk is a zero-mean Gaussian noise used to represent the step-to-step

variation of walking step time. Matrix A and the covariance of the noise are defined as:

A ,

 1 1

0 1



E
{

wkw′k
}
=

 0 0

0 q

 ∈ R2×2 (5.19)

The variance q represents step-to-step variation of step time.

The detected accelerometer norm peak time za,i is used as a measurement in the

Kalman filter. Since the measurement equation za,i and the dynamic equation 5.18 are

not synchronized, we use a simple method to match za,i and xk. Let x̂k−1 be the poste-

rior Kalman filter estimated value of x(k−1) and P(k−1) be the corresponding estimation

error covariance. From the standard Kalman filter equation [102], the prior (before

measurement) estimated value x̂k and corresponding estimation error covariance Pk at

the step k can be computed as:
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x̂k̄ = Ax̂k−1

Pk̄ = APk−1A′+Q (5.20)

Since the peak time is almost periodic during normal walking, a peak should be

near Hax̂k where Ha = [10]. If za,i is near Hax̂k, a standard measurement update is

done. If a peak is not near Hax̂k, there are two possibilities. One case is that a peak is

not detected due to arm swing. In this case, Tk can be measured from the arm swing

period (gyroscope norm minimum peak time difference). The other case is that a per-

son stops walking. In this case, no measurement update is done. In both cases, mk

value is decreased by 0.5. If two consecutive peaks are missing, the walking mode is

changed to 0 (not waking mode). The above explained measurement update equations

are summarized as follows:

• If there is a za,i satisfying the following condition:

|za,i−Hx̂k̄|< α7

√
Pk̄ (1,1) (5.21)

za,i is used as the measurement update where: za,i = Haxk + va,i.

• If there is no za,i satisfying 5.21 but there is one satisfying the following condi-

tion:

zg,i ≤ Hax̂k̄ < zg,i+1

zg,i+1− zg,i < α8

√
Pk̄(2,2) (5.22)

zg,i is used in the measurement update where: za,i = Hgxk + vg,i and Hg = [ 0 1 ].

Also mk is decreased by 0.5.
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Table 5.1: Parameters for Kalman Filter

Symbol Value Purpose

α1,a 0.2 low pass filter parameter for the accelerometer (1)

α1,g 0.2 low pass filter for the gyroscope (1)

α2,a 1 significant accelerometer peak detection (2)

α2,g 0.3 significant gyroscope peak detection (2)

α3 4 initial periodicity check

α4 0.2 initial periodicity check (3)

α4 1.52 initial periodicity check (5)

α4 0.9 initial periodicity check (7)

α4 1 next peak time estimation (11)

α4 1 next peak time estimation (12)

q 1.52 process noise covariance (9)

Ra 22 measurement noise covariance of va,i

Rg 22 measurement noise covariance of vg,i

• If none of the above conditions are satisfied, then again, mk is decreased by 0.5:

Where Pk(i, i) is the (i,i)th element of the matrix. In this way, Kalman filter com-

pensates for the missing accelerometer peaks due to arm swing. The parameters used

in the Kalman Filter are given in Table 5.1.

5.3.5 Distance and Velocity Models

Let Lk be one step walking length for the k− th walking step. If we can estimate one

step walking length, the walking distance can be computed by summing up Lk. It is

known that walking length is inversely proportional to walking step time during normal

walking. When we walk fast, the walking step time tends to be small and the walking

length tends to be large. Thus the estimated walking length L̂k is given by:
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L̂k = a
1
Tk

+b (5.23)

where a and b are person-dependent parameters, which should be calibrated from

experiments. As walking length is inversely proportional to walking step time, it could

be inferred that walking velocity (speed) is inversely proportional to the square of Tk.

Thus the estimated walking velocity V̂k is given by:

V̂k = c
1

T 2
k
+d

1
Tk

(5.24)

During normal walking, walking speed is almost constant or slightly changing. To

reflect this fact, the estimated velocity V̂k is low pass filtered. The low pass filtered

speed is denoted by V k.

5.3.6 Symmetry Models

We talked about the importance of gait symmetry as a key health indicator in numerous

applications. There are many different models for gait symmetry such as these four:

Ratio Index (RI), Symmetry Index (SI), Gait Asymmetry (GA) and Symmetry Angle

(SA). Each of these models provide a comparison between some parameters of right

and left leg. This parameter could be step length, step duration, stance phase, etc.

The work in [103] has provided a great comparison between all the different symmetry

models and verified that SI is perhaps the best of the four. Symmetry index of gait is

defined as:

SI =
|XL−XR|

0.5(XL +XR)
(5.25)

XR and XL could be any parameters belonging to right and left foot respectively. In

this work, we will use the step duration (which is estimated using the Kalman filter) for

left and right legs as the parameters to form the SI. So the estimated symmetry in this
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work will be:

SI =
|T̄L− T̄R|

0.5(T̄L + T̄R)
(5.26)

where TL and TR are the average of the step duration (TK) for all the left and right

steps respectively.

5.3.7 Parameter Calibration

The calibration of model parameters is similar for both distance and velocity parameters

estimation. For example, for the calibration of a and b (distance parameters), a person

needs to walk M times (straight line with known distance D). For each walking (index i

is used), let Ni be the number of walking steps and T(i, j)(1≤ i≤M,1≤ j ≤ Ni) be one

step walking time. For i-th walking, we have the following equation:

D =
Ni

∑
j=1

(
a

1
Ti, j

+b
)
= a

Ni

∑
j=1

(
1

Ti, j

)
+bNi (5.27)

In the matrix form, 5.27 can be re-written as Bp = b, where:

B =


∑

N1
j=1

(
1

T1, j

)
N1

...
...

∑
NM
j=1

(
1

TM, j

)
NM

 ∈ RM×2, p =

 a

b

 ∈ R2×1, b =


D
...

D

 ∈ RM×1 (5.28)

The solution for p which is the parameter matrix is the solution to the following

minimization problem:

min
p

∥∥Bp−b
∥∥2

2 (5.29)

which is given by:

70



Figure 5.10: Constrained a and b relationship.

p =
(
B′B
)−1 B′b (5.30)

Since the number of parameters is 2 (that is, a and b), at least two sets of walking

data are required to solve 5.30 (that is, M should be equal to or larger than 2). However,

when M is small, the optimization problem becomes sensitive to noises and thus the

estimated parameters may not be accurate. From experiments, we have found that

possible combinations of a and b are rather constrained. We have found that a and b

combinations can only exist inside the quadrilateral region in Figure 5.10, where k1 to

k4 are parameters computed from experiments. The constraint in Figure 5.10 can be

stated in the following equations:

amin ≤ a≤ amax

k1a+ k2− k4 ≤ b≤ k1a+ k2 + k3 (5.31)
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Figure 5.11: Boundaries of the linear relationship in 5.23 (red line) and example of a

linear relationship violating it (black line).

The constraint in 5.10 makes the linear relationship 5.23 only exists inside two

boundaries which is shown as the red lines of Figure 5.11. The black line shows an

example of a linear relationship which does not satisfy the constraint imposed by the

red lines. This kind of linear relationship should be rejected during the calibration pro-

cess. We propose a constrained optimization problem for the calibration by minimizing

5.29 subject to the constraint 5.31. This problem is a standard constrained quadratic

optimization problem and can be solved easily [101].

5.4 Experiments

To experiment the gait quality using the proposed algorithm, the Samsung Galaxy Gear

Smartwatch was used as the hardware platform (same system that was utilized in Sec-

tion III). The watch was worn on the left hand of the subjects. Similar to Chapter
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Table 5.2: 25 Subjects’ Information

Age Weight Height(cm)

Range 18−40 46−100 153−186

Mean 26 65.1 168.1

Standard Deviation 4 12.4 7.5

III, data was sampled at a rate of 100 Hz to make sure no high frequency information

on the gait is lost. Although, low-pass filter is used later in the algorithm to remove

the unwanted noise. The data was manually annotated by a supervisor during training

collection process.

5.4.1 Experiment Design

The experiment designed based on the gait performance of 25 participants. The infor-

mation about the subjects which included 4 females and 21 males are given in Table

5.2. Each subject was asked to walk a fixed distance of 50 meters with a self-paced

constant velocity. The velocity information and the start and stop times are recorded.

At the same time, one Xsens inertial sensor is attached on the left foot with sampling

frequency of 100 Hz which estimates the walking distance information with high ac-

curacy (centimeter level error) using the inertial navigation algorithm [104, 105]. The

experiment was conducted with six different types of walking with different modes and

velocities which can be observed in 5.3. The modes include: four times of normal

speed walking, one time of slow speed walking and one time of fast speed walking.

Among six walking data collections, a hand-held briefcase is carried for two of the

times, which has an effect of suppressing arm swing.
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Table 5.3: 6 Walking Patterns For Participants

Walking ID Speed Arm Swing)

1 Normal Arm is naturally swinging

2 Slow Arm is naturally swinging

3 Fast Arm is naturally swinging

4 Normal Arm is naturally swinging

5 Normal Carrying a briefcase

6 Normal Carrying a briefcase

5.4.2 Preliminary peak detection performance

The first step in the proposed algorithm is the preliminary 5-point peak detection which

is described by 5.11. After low-pass filter is applied minimum and maximum peaks

are detected. Figure 5.12 shows the detected peaks annotated by ’o’ symbol for three

different modes of walking: slow, normal and fast. In the first graph (person id = 1,

walking id = 3), the gyroscope peaks are periodic, which means periodic arm swing.

Still the accelerometer norm peaks are almost sinusoidal and thus we can easily deter-

mine walking step time from accelerometer peaks. Although, in the last two graphs, the

arm swing is more dominant (see the magnitude of gyroscope norm). In normal arm

swing, it can be observed that one accelerometer peak is missed at 11.5 seconds and

in the extreme case (large arm swing), there are four peaks which have been missed if

only the preliminary peak detection algorithm is used.

5.4.3 Kalman Filter peak recovery performance

The preliminary peak detection algorithm might suffice to detect the step events when

foot-worn inertial sensors are used. But in the case of wrist-worn sensors, arm swing

leads to large deviations in the accelerometer signal which results into missing some of

the peaks. The Kalman filter that is described in 5.3.4 is used to recover those missing
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(a) slow arm swing

(b) medium arm swing

(c) large arm swing

Figure 5.12: Preliminary peak detection algorithm applied to low-pass filtered gyro and

accelerometer norm signals.
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Table 5.4: Estimated person-independent parameters

a b c d

Values 0.1569 0.3769 0.1572 0.3761

peaks which happen due to large arm swings. Figure 5.13 shows how Kalman filter

recovers those peaks. The vertical lines in the figure represent the walking step times.

It can be seen that the peaks are detected even if they are missed by the preliminary

detection algorithm.

5.4.4 Distance and Velocity Estimation

The Kalman filter outputs the peak times during walking. These peak times are then

used to estimate the distance and velocity using the models that is introduced in Sec-

tions 5.3.5 and 5.3.6. Using the training data collected from the 25 subjects (each

walked 6 times), we generated 150 data sets for both velocity and distance. Each of

the data sets includes N data point where N is the number of steps in each of the trials

(Equation 5.25). Then the model parameters (a,b,c,d) were estimated using Equation

5.30. Walking distance for each step is measured using the foot-worn inertial sensors.

We computed the person-independent parameters from all the 25 subject walking

data based on the step length (L), step duration (T ) and measured average velocity for

each trial. Figure 5.14 shows the correlation between L and inverse of T for all the

collected data points. As mentioned in the methodology of this Chapter, the walking

velocity has a correlation with the inverse of the step duration which is given by 5.24.

Figure 5.15 shows this correlation for the given measured data points. For person-

dependent parameter estimation, we will have a unique model for each of the subjects

in which only the data from that subject is used to estimate a and b. Table 5.4 shows

calculated person-independent parameters for both distance and velocity.

Using person-dependent and person-independent parameters, the walking distance
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Figure 5.13: Walking step time estimation by the Kalman filter (vertical lines): the

missing peaks are restored by the filter in large arm swings.
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Figure 5.14: step length (L) and inverse of walking time (1/T ) relationship: The curve

parameters a and b are estimated to be 0.1569 and 0.3769 using the least square method.
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Figure 5.15: Walking velocity (V ) and inverse of walking time (1/T ) relationship: The

curve parameters c and d are estimated to be 0.1572 and 0.3761 using the least square

method.
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Table 5.5: Walking Distance Estimation for all Walking Modes

for all the subjects in different walking modes (given in Table 5.3) is estimated and

given in Table ‘5.5. As you can see the standard deviation reduces from 3.9 to 1.9 over

a 50 meter distance when we use the person-dependent parameters. Similar estima-

tion was done for velocity using Equation 5.24 in which the person-independent and

person-dependent walking velocity standard deviations are calculated to be 0.1009 and

0.0630m/s respectively.

The model was generated based on the training data collected from the 20 subjects.

For the testing, we asked 10 subjects outside the training set to perform a velocity test.

The subjects are first asked to walk a 66 meters distance with their normal (preferred)

speed uniformly. Then they were asked to walk with a speed that they consider slow

and on the third run with a fast pace. Table 5.6 shows the results for the estimated

velocity and the precision for each of the speed scenarios. The reported velocity values

are the average over all the subjects for each speed scenarios, estimated and actual. As

can be seen the average precision for all the scenarios is 91.7%.
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Table 5.6: Walking Velocity Estimation Results

Walking Mode Actual Velocity(m/s) Estimated Velocity(m/s) Precision

1-Normal 1.222 1.216 91.25

2-Fast 1.323 1.284 90.79

3-Slow 1.060 1.017 93.11

Table 5.7: Gait Symmetry Estimation Results

Walking ID Mean Standard Deviation Min Max

1 0.85 0.74 0.049 2.9

2 1.26 1.05 0.029 4.5

3 1.38 1.29 0.007 5.98

4 0.73 0.56 0.053 1.82

5 0.98 0.89 0.026 3.76

6 0.89 1.22 0.020 5.61

total 0.89 0.96 0.03 4.1

5.4.5 Gait Symmetry Estimation

As mentioned in part 5.4.6, symmetry index is calculated based on the step duration for

left and right legs using Equation 5.26. Table 5.7 provides the symmetry estimation

results for all the 6 different walking types over the 25 subjects.

As can be observed from Table 5.7, the symmetry index numbers are very small

for all the different walking modes which is expected due to the fact that all subjects

are healthy. However, the index is larger for slow and fast walking modes compared to

the normal walking mode which accommodates with the fact that people are expected

to walk more symmetric when they walk in their preferred walking speed. In addition,

one can observe that walking symmetry is worse when the subject caries a briefcase

(walking modes 5 and 6).

81



Table 5.8: Walking distance estimation using person-dependent parameters (Uncon-

strained Least Square)

5.4.6 Constrained Person-Independent Calibration

Since each person has different walking characteristics, it is not surprising to expect

that person dependent parameters a and b would give more accurate walking distance

estimation. For each person, a and b are estimated using the unconstrained least squares

(Equation 5.29). In the calibration process, a and b are estimated for each person using

some of walking data other than walking id 6. Then the calibrated person dependent

a and b are tested on the walking id 6 data. The result is given in Table 5.8. The

last column shows walking data used in the calibration process. In the second row,

[1 2 3 4 5] means that walking data 1, 2, 3, 4 and 5 are used in the calibration of a

and b. The standard deviation 1.9 is significantly lower than 3.2 (person-independent

results in Table 5.5), which shows person dependent parameters give more accurate

walking distance estimation. In Table 5.8, we can see inaccurate parameter estimation

when too few walking data are used in the calibration. For example, in the calibration

using walking data 1 and 4 (last row), the standard deviation of the walking distance

estimation is 8.7m, which means a and b are not accurately calibrated.

To avoid inaccurate parameter estimation, we applied the constrained quadratic op-
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Figure 5.16: Person dependent a and b for 25 subjects computed using foot inertial

sensor data.

timization (Equations 5.29 and 5.31) to find a and b. This algorithm is based on the ob-

servation that (a,b) pair can only exists inside the quadrilateral region in Figure 5.10.

To show this, person dependent (a,b) parameters are computed using foot inertial sen-

sor data for 25 subjects. The (a,b) pair for 25 subjects are plotted in Figure 5.16. We

can see that (a,b) pair exists in the region defined by 5.31, where:

k1 =−1.9512,k2 = 0.6932,k3 = 0.5,k4 = 0.3,amin = 0.05,amax = 0.5.

The walking distance estimation result using the constrained quadratic optimization

is given in Table 5.9. When five or four data are used for the parameter calibration,

there is no improvement in the estimation accuracy. However, there is large improve-

ment in the accuracy when fewer data are used. For example, the standard deviation is

2.1 for the last row while the standard deviation in Table 5.8 is 8.7.

In Figure 5.17, walking data used for the calibration are plotted, where each ’*’

symbol is walking data 1 to 5 obtained from a person with person id 23. The red circled

83



Table 5.9: Walking distance estimation using person-dependent parameters (con-

strained Least Square)

’*’ symbols represent walking data 1 and 4. If we try to obtain a and b using the

unconstrained least squares, the estimated parameters are not accurate as can be seen in

Figure 5.17. With this parameter, the estimated walking distance (walking id) is 82.8m,

which is the worst case in the last row of Table 5.8. When the constrained least squares

method is applied, the estimated line is more accurate as indicated in Figure 5.17. With

this parameter, the estimated walking distance (walking id) is 50.7m. Thus we can

clearly see the benefit of the constrained optimization when the number of walking

data is small.

Finally, the walking distance estimation results using person dependent parameters

(constrained least squares) are given in Table 5.10. For each walking mode, the param-

eters are computed using the remaining data.

For example, walking id 2, 3, 4, 5, 6 data are used to compute the parameter and the

distance estimation is tested on walking id 1 data. The total standard deviation is 1.9,

which is significantly smaller than 3.9 (the person independent result in Table 5.5).
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Figure 5.17: Calibration results of unconstrained and constrained optimization (persond

id = 23, calibration data [1,4]).
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Table 5.10: Walking distance estimation using person-dependent parameters (con-

strained)

Walking ID Mean Standard Deviation Min Max

1 50.7 1.7 47.2 54.0

2 50.7 2.8 44.7 49.5

3 48.5 1.7 43.7 51.4

4 50.1 1.1 47.3 52.2

5 49.9 1.5 46.2 52.5

6 49.7 1.9 42.7 52.6

total 49.9 1.9 42.7 59.5

5.5 Conclusion

This Chapter presents a robust gait quality estimation algorithm for wrist-worn plat-

form. The algorithm analyzes the inertial sensor data (accelerometer and gyroscope) of

a Smartwatch to determine the gait parameters from the complicated patterns of walk-

ing signal. A complete description of this complex pattern (which is due to combination

of arm swing and leg movement) is given in this Chapter. The main contribution of the

Chapter though, is the robust peak detection algorithm that identifies each step event

and the step duration for each event. A combination of 5-point peak detection algo-

rithm and a Kalman-filter-based peak restoring algorithm is employed to estimate the

step duration. The Kalman filter performs based on the output of the defined state dia-

gram which stores the current state of the mode of the walking. Gait parameters such

as the gait distance, walking velocity and gait symmetry are then estimated based on

their relationship with step duration. To identify this relationship, we collected walking

data from 25 subjects, each performing 6 times of 50-meters walking tests for different

walking modes and used least square error minimization algorithm. Unconstrained op-

timization resulted into promising distance estimation with standard deviation of 3.9m
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and 1.9m for person-independent and person-independent calibration. These numbers

are found to be 0.1009m/s and 0.063m/s for velocity estimation. Walking symmetry

is calculated for all the different walking modes using a symmetry index which found

to the most informative. It was observed that walking symmetry is better in preferred

walking speed mode compared to slow and fast walking. Moreover, the symmetry is

poorer when a briefcase is carried. Constrained quadratic optimization was also used

as well to minimize the walking distance estimation error. When the number of walk-

ing data is small, it is shown that the constrained optimization gives significantly better

results (the estimation error standard deviation is less than a quarter of that of uncon-

strained optimization). It is interesting for the next step to apply the parallel asyn-

chronous HMM or energy-based approaches to our raw sensor inputs and observe the

accuracy results [106].
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CHAPTER 6

Post Processing to Improve Activity State Recognition

6.1 Introduction

In Chapter III, we introduced a smartwatch-based system for tracking cancer and frail

patients in order to prove the feasibility of this system for posture tracking published

in [68]. There, we explained the power of a wrist-worn device in detecting the sit,

stand and lie ADLs. As we discussed in Chapter I, another significant ADL is gait

(including walking, running, jogging etc.) which was the focus of this dissertation

in Chapter V. There we proposed using kalman filter to mitigate the arm swing noise

issue. In Chapter IV, we investigated the usage of contextual information to improve

the accuracy of posture detection. This chapter serves as another effort to improve the

recognition accuracy of wrist-worn systems for both gait and posture when it comes to

issue of unwanted hand motion.

In this chapter, we persuade using a two-layer classification. We intend to show the

second level of algorithm can be effective to improve inference for long-duration activ-

ities such as sitting, standing, lying and moving which we named as activity state in this

dissertation. Detecting these long-duration activities using classic machine learning al-

gorithms is proven to depict a better results when longer sliding window size is selected.

However, using large window size is not suitable when a mix of both short-duration and

long-duration activities is to be considered. Shoaib et al tried to analyze 13 activities

including repetitive ones (e.g. walking) and non-repetitive ones (e.g. smoking) and

realized different activities require different window sizes in the sliding window algo-
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rithm for optimal detection [107]. For example, for long-duration moves such as sit,

stand and walk, F-score results were 90, 95 and 95% respectively using window size of

30 seconds. However, the score declines to 79%, 88% and 76% when a window size

with 5 seconds duration is used. In a similar effort, Dey et al used logistic regression to

infer sit, stand, lie, walk, run and dance activities and reported 88.4% overall accuracy

for 10 second window size [56]. Similarly, in a recent work by Weiss et al, 10 second

window size was picked and 85%, 96% and 80% accuracies for sit, stand and walk

activities were achieved [58]. However, for short-duration activities, accuracy results

were relatively poor and the overall accuracy was 70% for 18 activities. It is inferred

that; long-duration activities will be better detected when a bigger sliding window size

is used, but at the cost of reduced accuracy in detecting short-duration moves such as

pointing, grabbing and transition moves. Having a dynamic window-size can resolve

this challenge although this adds to the complexity of the system as the system needs

to constantly search for a signature based upon which the window-size should change.

Another issue that makes the aforementioned results somewhat unreliable in prac-

tical situations is the fact that out-of-the-lab situations, usually bring a high amount of

unwanted hand motions to the picture. These hand motions lead to misclassification

of activities and degrade the accuracy when the model is only based on in-lab training

data. In our previous work, where we investigated the feasibility of posture tracking

(sit/stand/lie states) using Smartwatch, this issue was clearly observed [68]. The model

was built using transition moves between the states. Model was generated from the in-

lab collected data which led to 93% F-measure in cross-validation. However, the results

were considerably worse when the model was tested in the field due to unwanted hand

motions. This work uses [68] as baseline and tries to mitigate this issue by making the

activity detection model robust for in-field testing using the same window-size as was

used in [68] while applying a post-classification algorithm to improve the results.

89



Figure 6.1: Unwanted hand motion effect on accelerometer data.

6.2 The Proposed Two-Level Algorithm

Hand orientation is very much possible to know using the acceleration vectors of a

wrist-worn device. This is because acceleration signals carry the gravity information.

So while standing or sitting still, the accelerometer data is good enough to distinguish

the two. But when hand motion is added, accelerometer value changes dramatically,

making sit versus stand distinction very hard. This is explained in Figure 6.1, where

in the first 20 seconds, the subject is sitting still and then standing still in the next 20

seconds (top). In the bottom figure, subject does the same, but he uses his hand to

perform motions that typically can happen while sitting and standing.
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6.2.1 Two Level Algorithm Idea

The aforementioned issue makes the detection of these classes very challenging. A per-

son who is sitting can produce the same hand motion as to when standing. Although in

a larger time scale, the average orientation of the hand should be different for sitting and

standing (unwanted hand motions could be ignored). Following this train of thought,

we propose looking at the data in a longer period of time. However, this should not

be done through increasing the window size as mentioned before. Instead we propose

a two-level activity recognition scheme where we apply the classic machine learning

algorithm on short duration windowed data in the first step. Then, we apply a second

algorithm to correct for the misclassification occurred due to unwanted hand motions

in the first layer.

6.2.2 Data Collection and System Design

In order to verify the proposed algorithm, we collected data from 20 healthy subjects.

Samsung Gear S3 Smartwatche was used to collect the wrist Accelerometer and Gyro-

scope data with the sampling rate of 100 Hz. Subjects were asked to wear the Smart-

watch on their left hand for consistency. The data collection protocol is as follows: 8

minutes of "Sitting", 8 minutes of "Standing", 8 minutes of "Moving" (including walk-

ing, ascending and descending stairs), 10 times of "Sit to Lie" and 10 times of "Lie

to Sit" transitions. The transitions were collected to replace the state of "Lying". This

is due to the fact that hand orientation in lying is subject to dramatic change based on

subject’s sleeping habits. At very best, lying data will look very similar to sitting data.

A very important fact in our data collection that distinguishes this work and our

previous work in [68] (and so many other similar studies) is this: In this study, the

subjects are suggested to use their hand occasionally to imitate all the hand motions

that can happen in real-life situations while being in sit, stand and moving states. As we

defined earlier in the first Chapter of this thesis, these activities are considered "activity
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Figure 6.2: Samsung Gear S3 and Galaxy S6 for Data Collection and Annotation Re-

spectively.

states" because they represent the state the person is in while other activities could take

place within that state. For example, some of our subjects were moving their hand

while talking in sit or stand modes while others occasionally used their phones. This

provides us with a dataset which looks very similar to in-field data. A phone app was

made for Samsung Galaxy S6 to annotate the start and end timestamps of each state.

Figure 6.2 shows the phone and watch app user interface.

6.2.3 Data Pre-Processing

Accelerometer and gyroscope data are passed through a low-pass filter to remove high-

frequency noise. A sliding window algorithm with window size of 4 seconds generates

chunks of data to be processed. This window size was chosen to facilitate the transition

moves which were 4 seconds on average. A total of 108 features were implemented for

accelerometer and gyroscope data including both time and frequency domain features.

More details on the features can be found in [68]. The features for all the data chunks
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Table 6.1: Confusion Matrix for Unbalanced Data

Actual/Predicted Sit Stand Move Sit to Lie Lie to Sit

Sit 4829 151 81 14 16

Stand 374 4193 222 2 6

Move 18 81 4540 0 1

Sit to Lie 61 19 30 85 10

Lie to Sit 42 19 37 14 95

are generated by the sliding window, forming a feature table that is imported to the

learning machine to generate the model.

6.2.4 Random Forest as the First Level

Our data for transition moves is limited to 200 instances for each transition. But, the ac-

tivity states’ dataset can be considerably larger depending on how frequently we sample

in the sliding window over the 8 minutes for each subject. For example, applying win-

dow size of 4 seconds with 50% overlap in the sliding window led to 14540 data points

for sit, stand and move states. Applying random forest algorithm on this unbalanced

dataset results into 91.8% overall precision for classification. Although this seems to be

amazingly high, by looking at the confusion matrix (Table 6.1) we see that the overall

precision is only high because of the high number of samples in activity states classes.

So the model is biased toward those classes, resulting in low recall values for transition

classes (41 and 46%) which is not desirable.

In order to make the model reliable, we applied random down-sampling which ran-

domly samples down the data for sit, stand and move labels to make the dataset bal-

anced for all the labels. Table 6.2 show the result of applying different machine learn-

ing algorithms on the balanced data. The classification algorithms were applied to the

dataset after applying correlation-based feature selection algorithm (CFS) that was used
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Table 6.2: Classification Results for Balanced Data From Selected Algorithm

Precision Recall F-measure ROC Area

Random Forest 86.7 86.4 86.5 97.7

SVM-PUK 86.1 85.7 85.5 94.3

Neural Net 82.8 82.7 82 95.8

Logistic Regression 82.8 82.7 82.8 96.5

Table 6.3: Confusion Matrix for Unbalanced Data

Actual/Predicted Sit Stand Move Sit to Lie Lie to Sit

Sit 257 11 2 17 12

Stand 24 230 12 8 8

Move 0 4 259 6 7

Sit to Lie 13 1 1 177 13

Lie to Sit 10 3 6 14 174

to avoid overfitting. Total of 35 features were selected eventually to feed the algorithm.

As can be seen from this table, random forest provides us with the best result,

although the precision is about 6% lower than for unbalanced dataset. Table 6.3 shows

the confusion matrix for the balanced data. As it appears, the recall values for transition

moves improved considerably (86.3 and 84.1%) which means the model is much more

reliable, although the overall precision is worse comparing to unbalanced data.

6.2.5 Majority Voting as the Second Level

Although the results of the first level of the algorithm seems promising, it can still be

misleading when the in-field data is used for testing. The activity state classes can carry

a lot of unwanted hand motion noise which degrades the results. In order to avoid this

decline, we propose applying a second level of algorithm to post-process the predicted
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Figure 6.3: Majority Voting to recover misclassified labels.

labels generated by the first level. The theory behind the 2nd level can be seen in Figure

6.3. If the first sequence in Figure 3 is the output of the level-one algorithm and the

samples are not far apart (less than a second), then it is natural to consider the first two

"stand" labels as misclassification due to hand motion. However, this cannot be said for

the rest of the "stand" labels in the first sequence because perhaps the person stood up.

6.3 Recognition Improvement Due to Second Level Algorithm

To apply this concept, we implemented a sliding window that goes through the labels

generated by the first algorithm and applies a majority vote on the labels within that

window, only for activity state classes (the transition classes are not subject to modify).

To verify this algorithm, we used the balanced-data model as training and a portion of

data from activity state classes that is unseen by the model as test. This is because this

idea of 2nd level is only reasonable for long-duration activities. Window size of 13

(consecetive instances) found to be optimal. Figure 6.4 shows the result of this post-

processing. As can be seen, a lot of the glitches that happen because of misclassification

due to unwanted hand motion can be suppressed. The numbers in y-axis represent sit,

stand, move, sit-to-lie and lie-to-sit states respectively. Table 6.4 concludes the result

of applying 2nd level algorithm on the data. Clearly classification results improve for

sit, stand and move classes by applying the 2nd level (8% improvement in correctly

classified samples). And this does not have any effect on the classification rates of
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Table 6.4: Confusion Matrix for Unbalanced Data

Precision Accuracy F-Score

Before Applying 92.7 86.7 89.9

After Applying 96 95.6 95.7

transition classes as they are not subjects for modification in the second layer.

6.4 Conclusion

General well-being of patients is a significant piece of information for clinicians dealing

with elderly, cancer and frail patients. Amount of time they spend sitting, standing, ly-

ing and moving was assessed in this work to help provide that information. Smartwatch

as the data collection module, provides convenience and robustness. Although, the task

of inference is very challenging when it comes to in-field data due to unwanted hand

motions issue. This work proposes a two-level classification architecture to resolve this

issue. We show that using random forest combined with majority vote classifiers, the

accuracy value improves from 87.6% to 95.6% (an 8% improvement) for the "activity

state" classes (which are "sit", "stand" and "move" in this Chapter). This seems to be

a reasonable solution to resolve low accuracy results of in-field data for a wrist-worn

system in which data is polluted with unwanted hand motion.

96



Figure 6.4: Predicted labels, before applying the second level (up) and after that (bot-

tom).
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CHAPTER 7

Beyond Activity State Recognition

With day-to-day advancement in fabrication technology, new sensors are added to the

Smartwatch platform other than inertial sensors. This variety opens wrist-worn devices

to be used for variety of applications, Also it enables improvement in learning from

its data (due to increase in modalities of contextual information). In this chapter, we

go over two of the important applications of Smartwatch: Medication Adherence and

Blood Pressure estimation. Presence of inertial sensors on the wrist has enabled captur-

ing hand motions which made researches thinking about implementing novel medica-

tion adherence algorithms. In first section of this chapter, we propose a novel adherence

algorithm using the inertial sensors of the watch. Photoplethysmography (PPG) sensor

of the watch has added a new piece of information to data that can be captured from

them, enabling researchers to fantasize about predicting different vital signs from it. In

the second part of this chapter, we propose a method to predict the continuous arterial

blood pressure from the PPG data using deep recurrent neural network.

7.1 A Smartwatch-Based Medication Adherence System

7.1.1 Introduction

It is well established that poor adherence to prescription medication can limit the bene-

fits of medical care and compromise assessments of treatment effectiveness. It has been

estimated that lack of adherence causes approximately 125,000 deaths in the United

States, and costs the health care system been $100 and $289 billion pear year [108].
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A significant body of research has been conducted to improve adherence to pre-

scription medications through various interventions. These techniques vary tremen-

dously from reminder-based systems, simplified pill packaging, positive reinforcement,

financial incentives, and counseling. However, these systems typically suffer from high

complexity, user burden, and inaccurate estimations of adherence [109]. One survey

of major interventions concluded that less than half of evaluated interventions were

associated with statistically significant increases in adherence [110].

In recent years, a greater emphasis has been placed on the role of technology in

detecting non-adherence to medications. However, these digital system suffer from

several substantial limitations. Though they employ sensors to perform activity recog-

nition, it is not always possible to accurately estimate adherence by recognizing a single

action such as opening a pill bottle, or removing a capsule.

Recently, Smartwatches have become widely available on the commercial market.

These devices contain a multitude of sensors including but not limited to: a microphone,

camera, accelerometer, and gyroscope. Due to the ubiquity of watches, this technology

can be used for various wireless health-monitoring applications discretely, with low

user burden. Furthermore, from a user-acceptance standpoint, these systems have a

clear advantage over other proposed solutions based on custom hardware such as the

wrist-worn accelerometry proposed by Chen et al. in [111] or audio-based ingestion

monitoring systems proposed by Sazonov et al. and Amft et al. in [112][113].

In this Section of this Chapter, we propose a system that estimates adherence of a

user to gel-capsule-based medication using a custom Android application running on a

Samsung Smartwatch. The activities that are detected are shown in Figure 7.2. Using

on-board sensors, we can determine when a bottle is opened and a pill is retrieved.

This is achieved through a combination of on-board peripherals including the tri-axial

accelerometer and gyroscope. By employing several sensors to detect different actions,

such as a system has the potential for higher accuracy than existing schemes, with no

compromises on comfort and practicality. Furthermore, the proposed system can be
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Bottle Opened       Gesture  Pill Swallowed 

Caregiver Notified     Cloud Integration 

Figure 7.1: This figure shows the various ways in which a SmartWatch or similar wrist-

worn device can be employed to detect medication intake and alert clinicians of low

adherence.

used with any standard twist-cap prescription bottle, without requiring that each bottle

to be equipped with sensors and wireless connectivity as in the case of the Vitality

Glowcap [114].

This work is organized as follows. Section 7.1.2 outlines related work in electronic

detection of adherence. Section 7.1.3 describes the major components of our proposed

system. Section 7.1.4 describes the proposed algorithms. Section 7.1.5 presents the

experimental setup, followed by results in Section 7.1.6 and concluding remarks in

Section 7.1.7.

7.1.2 Related Work

7.1.2.1 Mobile-Phone Solutions

Several SmartPhone applications such as MyMedSchedule, MyMeds, and RxmindMe,

provide advanced functionality for medication reminders. These applications issue re-

minders, allow users to manually enter their dosage information, and record when they
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A. 

B. 

Figure 7.2: This figure shows the two motions associated with medication intake that

are detected using the proposed SmartWatch-based system. In (A), the wrist motion

necessary to twist the bottle cap open is detected using a tri-axial accelerometer. In (B),

the act of turning the palm upward to pour medicine from the bottle is detected using a

gyroscope.

have taken their medication[115]. Other works propose cell phone reminders and in-

home technology to transmit reminder messages, but results are mixed [116].

7.1.2.2 Hardware Approaches

The work described in [109] describes a portable, wireless-enabled pillbox suitable for

elderly and those suffering from dementia. Similar approaches for electronic detection

and smart pill boxes have also been proposed [117][118][119]. These devices generally

suffer from the same shortcoming: they cannot determine if the medication is ingested

or simply removed and discarded. In another work, Valin et al. successfully identified

medication adherence using a series of images and associated image processing algo-

rithms [120]. Other works such as that by Huynh et al. [121] as well as Bilodeau et al.

[122] propose camera-based systems for detecting medication adherence, with strong

results. Very recent work by Chen et al. in [111] describes a system in which inertial

sensors worn on the wrist are used for detection of gestures associated with medical
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intake, based on a Dynamic Time Warping (DTW) algorithm.

The Vitality Glowcap is a wireless-enabled pill bottle that can report when medi-

cation is removed [114] using a cellular network, while a recent product from Amiko

[123] is one of the few systems that can monitor the ingestion of medication directly,

based on a smart-inhaler technology. Other notable technologies include the Smart

Blister from Information Mediary Corporation [124], which can detect when medica-

tion is removed from a blister-packet. Lastly, our prior work in [125] explored the

possibility of using inertial sensors on a necklace platform to detect medication swal-

lows based on the movement in the lower throat during a swallow.

7.1.3 System Architecture

The SmartWatch application is capable of predicting if a pill has been swallowed using

the on-board inertial sensors available on the Android SmartPhone. The application

runs as a background service: data is collected and processed even while the user is

interacting with other applications on the watch.

The hardware platform used is the Samsung Galaxy Gear SmartWatch running An-

droid 4.2.1. Though the sample rate of the on-board sensors can be configured, a rate of

16.66 Hz was determined to be sufficient for activity recognition through experimenta-

tion.

7.1.4 Algorithm Design

In this section, we describe the algorithms running on the Android Service, which pre-

dict if medication has been ingested based on the recognition of two activities: (1)

The bottle being opened while the SmartWatch is worn on the wrist by detecting the

twisting motion of the bottle cap, and (2) the wrist being rotated for the palm to face

upwards, in order to pour medicine capsules from the bottle into the secondary hand.

Unless both of these actions are not detected within several seconds of each other, the
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system considers that the medication has not been ingested. All results are based on

data acquired from tri-axial accelerometer and gyroscope samples acquired at 16 MHz.

Figure 7.2 shows the actions the proposed system was designed to identify.

7.1.4.1 Bottle Opening: Data Transformation

Figure 7.3 shows the waveforms acquired from the SmartWatch accelerometer for the

X, Y, and Z-axis, which correspond with a bottle being opened nine times. Each bottle-

opening event corresponds with a different peak, as shown in the figure. Successful

identification of the event is dependent on analysis of the features of each peak in all

three dimensions. Therefore, the data must be transformed to decouple the perturba-

tions of the signal from the offset, and limit the effects of drift and noise. This new

waveform, shown in Figure 7.5, provides a more objective representation of the fea-

tures of a bottle opening event.

This signal transform is first achieved by generating a new waveform using a sliding-

window average of the original data. The relevant equations for each axis are shown

in Equation 7.1, in which β is defined as the window size. It was determined that 70

is an appropriate value of β , as significantly smaller values are too sensitive to minor

fluctuations.

∀D ∈ {X ,Y,Z} ,

∀ j ∈ D,

D̄( j) =
1
β

j

∑
i= j−β

D( j)

(7.1)

After the moving-average representation of the data is generated, each point is then

assigned a numerical value with respect to the average value in the previous window.

This essentially removes the offset from the data and combats the effect of drift, while

preserving the critical features of the original waveform. This is shown in Equation 7.2.
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Figure 7.3: In Phase (1), the X, Y, and Z axis data is extracted from the accelerometer.

This figure shows the accelerometer data that corresponds with an individual opening

the pill bottle nine times, smoothed with a window size of 3 samples.
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Figure 7.4: In Phase (2), the data corresponding with each axis of the accelerometer is

converted to a sliding window representation, in which each point is the average of the

35 points that came before and after it. This step is necessary to remove the offset from

the data and show relative changes in sensor data.
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∀k ∈ D,

D́(k) = |D(k)− D̄(k)|
(7.2)

The next transformation simply separates the continuous data into different peaks

separated by spans in which the data is zero, based on a simple thresholding technique.

This allows different instances to be more easily identified. The relevant equation is

shown in Equation 7.3, and the corresponding waveform (with additional smoothing)

is shown in Figure 7.6. The constant α refers to a predefined threshold for separating

the different peaks. It was experimentally determined that an α value 0.5 g/m2 of

visually preserved the critical features of the waveform while removing noise during

periods of inactivity.

∀n ∈ D́,

D̃(n) =


0, D́(n)< α

D́(n), D́(n)≥ α

(7.3)

Subsequently, features from individual ’pulses’ can be extracted, which each cor-

respond with a different bottle opening episode. This is shown in Figure 7.7, which

shows one individual pulse in the X axis. By performing a summation of each pulse,

which is delimited by a value of zero as described in equation 7.3 as a result of the

thresholding technique, a distinguishing feature can be extracted from each axis. The

width of the pulse, once again delimited by zero, is a secondary feature that can used to

improve classification accuracy.

7.1.4.2 Bottle Opening: Detection

Based on the previously collected features, we apply various constraints for the classi-

fication of each pulse, as shown in Equations 7.4. Figure 7.8 shows the distribution of

105



 
 

 

 

  

 

 

 

 

 

 

 

-2

-1

0

1

2

3 X-Axis  

-6

-3

0

3

6 Y-Axis  

6

8

10

12

0 500 1000 1500 2000

A
cl

 (
g/

m
2
) 

  

Time (Sample Number) 

Z-Axis  

-4

-2

0

2

4

6

8

10

12

1 301 601 901 1201 1501 1801

A
cl

 (
g/

m
2
) 

Time (Sample Number) 

Sliding Average 

XDEV_AVG

YDEV_AVG

ZDEV_AVG

0

1

2

3

4 AVGX

0

2

4

6
AVGY

0

1

2

3

1 301 601 901 1201 1501 1801

Time (Samples) 

AVGZ

0

2

4

6 DEVX

0

3

6

9
DEVY

0

3

6

9

A
cl

 (
g/

m
2
) 

Time (Samples) 

DEVZ

A
cl

 (
g/

m
2
) 

Figure 7.5: In Phase (3), the results from Phase (1) and Phase (2) are combined. The

new waveforms show the variance of each data point relative to the sliding-window av-

erage obtained in Phase (2). This preserves the key features from the original waveform

while removing the offset.

feature values such as pulse width for all three axes, and well as the area under the curve

of each pulse, as users twisted the bottle cap during the initial phase of data collection.

The observations that are made from the feature distribution associated with this activ-

ity are used to formulate the constraints for classifying an action as the opening of a

bottle cap. Visually, it can be inferred that the data from the Y-axis of the accelerometer

is weakly coupled with the act of twisting the bottle. However, the standard deviation

of the X and Z axis data appears to show significantly less variation.

As Equation 7.4 shows, the first requirement is that the standard deviation of indices

of the first nonzero values of the accelerometer data in each axis to be less than three, to

reduce the effects of noise and drift. The remaining constraints are the widths of the X,

Y, and Z pulses, which correspond with the overall duration of the bottle cap opening

event. The bounds on the integral of acceleration (velocity) constrain the intensity of

the motion based on what is typical for the action.
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Figure 7.6: In Phase (4), data from Phase (3) is filtered to remove high frequency

noise. Furthermore, values below a certain threshold are zeroed. This allows each bottle

opening action to be a separate ’pulse’, the width of which is a key feature indicative of

the action being performed.

30 <WidthX < 75

0 <WidthY < 80

10 <WidthZ < 80

60 < SumX < 1800

0 < SumY < 1200

20 < SumZ < 1600

(7.4)

Once it has been determined that the bottle has been opened with a high probability,

the system makes a record of this event and begins detection of pill extraction.
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Figure 7.7: The output pulses from phase 4 can be analyzed based on several different

features for activity recognition and classification.

7.1.4.3 Medicine Removal: Data Transformation

In the case of most twist-cap medication bottles, it is not possible to reach inside to

retrieve the medication. Typically, once the bottle is opened, it is turned upside down

and a medication capsule is emptied on the secondary hand. This requires that the indi-

vidual turns their hand upside-down with their palm facing upwards for a brief period,

as shown in Figure 7.2(B). If the SmartWatch is worn on the wrist of the secondary

hand, this motion can be detected.

Data is acquired from the SmartWatch’s built-in triaxial gyroscope at a rate of

16 Hz, which represent angular speed around the X, Y, and Z-axis in units of radi-

ans/second. The Android API provides output with built-in drift compensation algo-

rithms, though raw data is also available. The gyroscope data can be integrated along

each axis to provide an estimation of rotation in a given unit of time.

As in the case of the accelerometer processing used to estimate if the bottle cap is

removed, the gyroscope data must be transformed for effective activity identification.

Equation 7.5 shows the simple summation of the last β values acquired from the gy-

roscope. In this equation, xn corresponds with the nth sample of acquired data, and

the same convention used for the Y and Z axis. The chosen value of β is 12 samples,
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Figure 7.8: This figure shows the distribution of the collected features (pulse widths

and area under the curve), based on collected data (twisting the bottle cap). An analysis

of the clustering patterns for different features can be used to assign threshold values,

in order to identify the action in question. The error bars correspond with one standard

deviation. Larger standard deviations are typically associated with weaker features.

which corresponds with 750 ms of data at a 16 Hz sample rate. These values are se-

lected based on the observation that most individuals will perform the hand motion in

significantly under one second; longer sample rates would distort gyroscope data with

extraneous movements and produce false positives.
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∀Samplei ∈ {Bu f f er} ,

xsum =
i

∑
k=i−β

xk

ysum =
i

∑
k=i−β

yk

zsum =
i

∑
k=i−β

zk

(7.5)

7.1.4.4 Removing the Medicine: Detection

Detecting that an individual has poured the medicine into his secondary hand is rel-

atively simple, after the preprocessing shown in Equation 7.5. The detection of this

movement does not imply that any medication was removed- simply that the palm

was turned to face upward. The constraints on which this movement is detected are

shown in Equation 7.6. First, some delta of time ∆T must have elapsed since the last

recorded event, to prevent duplicate records of the same event. The absolute value of

the movement in the y and z directions must also be less than some arbitrary threshold,

to ensure that random hand movements are not considered. Lastly, xsum, the movement

around the x axis over the last 12 samples (16 Hz) in radians/second, must be less than

the threshold of -28, or greater than 28, depending on which arm the watch is worn.

Experimentally, it was determined that lower threshold values could not differentiate

relatively minor turns of the wrist to the full action of turning the palm upward that is

required to pour medication from the bottle into the hand.
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∆T > 1s

|ysum|< 5

|zsum|< 5

xsum :


<−28, Le f tHanded

> 28, Right Handed

(7.6)

7.1.5 Experimental Procedure

Training data was collected from five subjects between the ages of 21 and 25, all of

which were left handed. The subjects wore the watch on their left hand in their preferred

configuration, and were asked to open the pill bottle using the hand on which the watch

is worn. The results were used to formulate the algorithm constraints, which were then

tested on the remaining subjects.

7.1.5.1 Gesture Recognition

Twelve subjects were asked to perform several activities while wearing the SmartWatch

including walking, opening a medicine bottle, and opening a bottle of water.

The data collection occurred in two separate sessions to increase the diversity in

motion patterns. The medicine bottle used was a standard prescription variety contain-

ing empty gel capsules (Size 00). As in the case of most standard prescription bottles,

opening the lid requires the application of downward pressure while twisting the cap

in the counter-clockwise direction. However, the subjects used in the study were not

given any instruction on how the bottle was to be opened, in order to avoid influencing

activity patterns. After opening the pill cap, the subjects were asked to pause briefly for

a period of three seconds, before pouring the medicine out of the bottle.
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7.1.5.2 Survey of Habits

In order to design an appropriate activity recognition scheme, it is necessary to validate

various assumptions about how people take their medication, as well as their opinion on

Smartwatch devices. An online survey was conducted with a total of 221 responses, in

which various questions were posed with respect to how individuals feel about wearing

a Smartwatch, on what hand they would typically wear it, and how they retrieve and

ingest a medication capsule.

7.1.6 Results

7.1.6.1 Gesture Recognition Results

The classification results are shown in Table 7.1 and 7.2. The results indicate that while

accuracy of wrist rotation detection is very high as a result of the algorithm simplicity

of the data processing, the false-positive rate of pill cap opening detection is very high.

This design trade off is necessary to ensure that nearly all real pill opening events are

detected; false positives will be filtered out in the second stage of the algorithm. Table

7.1 shows that despite very low precision across categories, the recall for the action of

’medicine bottle opened’ is very high. The remaining false positives are filtered out in

the next stage of the algorithm shown in Table 7.2 in which the precision of the ’other’

category, which comprises the other four listed actions, is 100%.

7.1.6.2 Patterns in Medication Ingestion: Survey Results

From the survey based on responses from 221 individuals, 86% claimed to be right

handed. A total of 76% of individuals claimed that they generally would wear a watch

on their left hand, with an additional 19% who preferred to wear the watch on their

right hand. The remaining 5% of those surveyed expressed no preference.

The next question in the survey asked subjects how they felt about watches in gen-
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Steady bottle with primary hand, twisting with secondary.      32% 
Steady bottle with secondary hand, twisting with primary. 63% 

Unsure 4% 
 

Pour medication into same hand that twisted cap. 57% 
Pour medication into hand that originally held the bottle. 36% 

Pour medication onto another surface (napkin, table, etc). 3% 
Unsure or N/A 4% 
 

What would you typically do after removing the cap of the bottle? 

How would you open a typical twist-cap bottle? 

 

 

 

 

 

 

 

Maybe 

 

 

Yes 

No 

Another surface 
Unsure 

Hand that 
held bottle 

Hand that 
twisted cap 

Twist with 
primary 

Twist with 
secondary 

Unsure 

Maybe 40% 

Yes 32% 

No 28% 
 

Would you be willing to wear a watch or similar wrist-worn 
device on the opposite hand to which you are accustomed? 

In what way would you open a medicine bottle? 

Hold the bottle steady while twisting the cap. 91% 
Hold the cap steady while twisting the bottle. 11% 

Unsure or N/A 4% 
 

Twist the cap 

Twist bottle 
N/A 

Figure 7.9: Partial survey results are shown above.
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Table 7.1: Confusion Matrix using Accelerometer Data

Predicted

Actual Med. Bottle Opened Other Recall

Med. bottle 21 3 87.5%

Raise Arm 14 6 30%

Walk 1 23 4.1%

Open door 14 10 41.6%

Water bottle 20 4 16.6%

Precision 30% 6.5%

Table 7.2: Confusion Matrix using Gyroscope Data

Predicted

Actual Palm Up Other Recall

Palm Up 24 0 100%

Raise Arm 2 22 91.6%

Walk 1 23 95.8%

Open door 2 22 91.6%

Water bottle 0 24 100%

Precision 82.7% 100%

eral. 72% of responses were positive, as 38% claimed they always wear a watch, 14%

preferred wearing a watch, and 53% stated that they would not mind. Subjects were

then asked to estimate what percentage of the time they would remove medicine from

the bottle and not consume the pill within the next minute. 12% answered that this

would occur occasionally, 6% often, and 1% always. 76% of individuals stated that

this would happen very rarely.

Figure 7.9 shows other relevant survey questions. The first question reveals that

though most individuals open a bottle by twisting the bottle with the primary hand,

a significant percentage (32%) preferred to steady the bottle with their primary hand,

and twist with the secondary hand. Therefore, the bottle cap would more frequently

be twisted by the opposite hand on which the watch is worn. This is confirmed by

114



another survey question, which established that only 11% of subjects opened the bottle

by twisting the bottle base, rather than the cap.

The next question evaluated what happens after individuals open the pill bottle.

As hypothesized, most individual’s poured the medicine into the palm of their hand,

as opposed to another surface such as a napkin or table. However, there was little

homogeneity in responses, with 57% who stated that they would pour the medicine

into the hand that twisted the cap, and 36% that originally held the bottle.

Generally speaking, the results suggest that some individuals will need to adapt

their watch usage in order to recognize the motions suggested in this work. This can

be partially mitigated by developing detection strategies for a broader range of motions

and applying template matching, though this is left to a future work.

7.1.7 Conclusion

In this Section, a survey was conducted to understand how individuals take their medi-

cations from standard-sized twist-cap pill bottles in a normal environment. The results

suggest that it is possible to use the Smartwatch as a platform for detection of medica-

tion adherence for many individuals. Using the tri-axial accelerometer and gyroscope

on the Samsung Smartwatch, we are able to detect (1) the act of twisting the cap of a

medicine bottle open, and (2) the removal of a tablet or pill by pouring the pill into the

palm of the hand. Though the proposed system imposes some restrictions on how sub-

jects should remove the pill bottle for successful recognition, the system nevertheless

has much less human involvement compared to manual record keeping or phone calls

from nurses and other forms of adherence detection. Future research will explore the

integration fo the Smartwatch with existing smart-health systems, as well as detection

of medication adherence with other forms of medication packaging.
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7.2 Building Continuous Arterial Blood Pressure Prediction Mod-

els Using Recurrent Networks

This Section presents a methodology for developing highly-accurate, continuous Ar-

terial Blood Pressure (ABP) models using only PPG. In contrast to prior approaches,

we develop a system that exhibits dynamic temporal behavior which leads to increased

accuracy in modeling ABP. We validate our approach using data from patients in the

intensive care unit (ICU). We show that it is possible to build highly accurate, contin-

uous blood pressure models using only finger work pulse oximeters. Our methodol-

ogy achieves accurate systolic blood pressure estimation with a root mean square error

2.58± 1.23 across the patient sample used. Furthermore, the continuous ABP signal

is estimated with a root mean square error of 6.042± 3.26 and correlation coefficient

of 0.95±0.045. Our method enables designing robust Remote Health Monitoring Sys-

tems (RHMS) for Heart Failure patients without requiring traditional blood pressure

monitors.

7.2.1 Introduction

Cardiovascular Disease (CVD) has been the leading cause of death in the United States

over the last few decades. Statistics from the American Heart Association demonstrate

that over 2,150 Americans die each day due to CVD [126]. In fact, in 2009 CVD

was responsible for 31.3% of the total deaths in the U.S. CVD is also prevalent in

Europe, and statistics in the European Heart Journal [127] report almost 4.1 million

deaths per year due to CVD. Among all types of heart failure, blood pressure and heart

rate changes are among the most significant non-invasive indicators of a change in a

patient’s condition [128].

Remote Health Monitoring Systems (RHMS) have shown great promise in manag-

ing and preventing CVD. RHMS are clinical information systems designed to monitor

individuals outside of traditional healthcare environments. Data from sensors are col-
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lected (usually by the patient himself) and transmitted wirelessly to a remote server for

analysis. Clinicians and automated algorithms process the data to identify abnormal

patterns. A schematic of such a system can be seen in Figure 7.10. RHMS systems,

however, rely on robust collection of heart rate and blood pressure signals to produce

high quality risk predictions. In recent years, continuous heart rate monitoring has been

made significantly easier with wireless pulse oximeters where the subject only has to

wear a small device on his/her fingertip. Blood pressure monitoring is less convenient

due to the complexity of cuff-based monitoring devices. For RHMS scenarios, collect-

ing reliable blood pressure measurements is associated with several major challenges:

Figure 7.10: Standard architecture of an RHMS. Data collected from the patient is

transmitted to a cloud server. The server analyzes and presents the data to clinicians

and provides feedback to patients.

• Patient Condition: Older patients, or those with severe disabilities may have
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difficulty properly collecting blood pressure data. They often forget or are too

weak to capture the data themselves.

• Patient Compliance: Continuous blood pressure monitoring is challenging out-

side of a patient’s domicile as blood pressure devices are large and visible. Pa-

tients often are not motivated or even embarrassed to comply with RHMS data

collection protocols.

• Lack of training: Finally, even when such data is captured, poor cuff placement

and other measuring errors can lead to noisy data. This is a less of an issue with

pulse oximeters as they are easier to place and wear.

In this Section, we focus our efforts on developing a methodology that will benefit

patients in RHMS by facilitating blood pressure collection. To achieve this, we propose

a novel methodology to train accurate, continuous models for inferring blood pressure

continuously through pulse oximeters using deep recurrent neural networks. Our work

relies on the dynamic temporal behavior of the recurrent networks to learn long and

short term characteristics of patient’s Photoplethysmography (PPG) data. As a result

our system is able to produce high quality approximations of arterial blood pressure

signals using input from a finger pulse oximeter.

This work is organized as follows. Section 7.2.2 discusses background and related

works. Section 7.2.3 describes our methodology. Section 7.2.4 provides the results and

limitations. Finally, we provide concluding remarks in Section 7.2.5.

7.2.2 Background & Related Works

7.2.2.1 Cuffless Blood Pressure monitoring

Cuffless blood pressure monitoring has received a lot of attention in the last decade due

to its potential to facilitate blood pressure data collection. This is rendered possible

by the fact that blood pressure is highly related with pulse transit time, i.e. the time it
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takes the heart beat pulse to propagate from the heart to the peripheral arteries [129].

Most such methods rely on electrocardiograph (ECG) and PPG data to capture the

pulse transit time. Such methods include those of Kachuee et al. [130] and Wang et

al. [131]. Their results are promising, but ECG data collection is not without chal-

lenges as electrodes have to be attached to several parts of the patient’s body. Other

researchers attempted to model systolic and diastolic blood pressure using only PPG

data. Ruiz-Rodriguez et al. [132] used deep networks without temporal behavior and

reported promising results albeit with high variance in accuracy. Samria et al. [133] do

not report the actual prediction error but rather correlation with measurements. Our pro-

posed system explicitly models the time dependency in the PPG signal which leads to

increased accuracy in modeling arterial blood pressure. Furthermore, previous method-

ologies are limited to predicting only specific metrics of the blood pressure waveform

(systolic, diastolic) while our proposed system can reliably output a continuous ABP

signal.

7.2.2.2 Remote Health Monitoring Systems

In the last decade, early successes coupled with advances in sensors have evolved Heart

Failure RHMS systems from very basic forms (phone interaction, written reports) to ad-

vanced end-to-end systems [134]. Among successful applications of RHMS, the sys-

tem designed by Antonicelli et al. [135] both reduced mortality as well as readmission

rates for congestive heart failure patients in RHMS. Another RHMS study carried out

by Morguet et al.[136] concluded that a 50% reduction in hospital admissions (38 ver-

sus 77/100 patient years, P = 0.034) and a 54% reduction in hospital length of stay is

achievable for congestive heart failure patients with RHMS. A few representative solu-

tions are presented to demonstrate the evolution of RHMS systems. An early study by

Chaudhry et al. [137] required participants to make daily phone calls to an automated

telemonitoring system for a period of 6 months. Each call played a prerecorded voice

message that consisted of a series of questions about symptoms and weight for which
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the participants had to provide answers using the keypad on the phone. The responses

were then downloaded from the telemonitoring system to an Internet website for daily

review by clinicians. Another heart failure study conducted by Soran [138, 139] in-

cluded an electronic scale and an individualized symptom response system connected

to a computer database via a standard phone line. Patients were instructed to weigh

themselves and answer a series of questions daily. Nurses reviewed the transmitted

data on a daily basis and immediately contacted patients whenever the data fell out of

a healthy range.

As later studies and systems evolved [140, 134], they employed more sophisticated

data collection methodologies as well as data analysis algorithms. In contrast with con-

ventional RHMS, these analytics-based RHMS employ machine learning algorithms to

predict the risk of an adverse medical event. It can be concluded from the evidence [87]

that analytics-based RHMS work better than threshold-based ones and can help further

reduce treatment costs.

Regardless of the algorithms used in a RHMS, accuracy is limited by the data qual-

ity. Achieving high-quality blood pressure measurements will enable more reliable

monitoring of CVD patients outside of the hospital.

7.2.3 Methodology

7.2.3.1 Data

To validate our approach, we collected data from the MIMIC database [141]. The

database was collected from patients in the intensive care unit (ICU). As a result, the

dataset contains highly varied blood pressure measurements as the patients are undergo-

ing treatment and receiving drugs. As such, it is a good benchmark for our algorithm’s

accuracy. We examined signals from 200 patients in the dataset. After excluding short

signals and signals with unacceptable blood pressure values (due to being collected in

the ICU), we trained and validated regression models for 42 patients. The extracted
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data contain two signals per patient. The PPG from the fingertip and invasive arterial

blood pressure (mmHg). Both signals are recorded at 125 Hz frequency.

Figure 7.11: A depiction of the training and test sets used

7.2.3.2 Long-Short Term Memory Neural Networks

Deep (or multilayer) neural networks research originates in the 1980s with the seminal

papers of Hornik et al. [142] as well as that of Hinton et al. [143]. A neural network is

a model loosely based on biological neural networks represented by a set of “neurons”

connected with edges with numerical weights. While artificial neural networks initially

received a lot of attention from researchers, there were technological and algorithmic

limitations that prohibited training very deep networks.

The research field was revived around 2006 with the work of Hinton et al. [144]. In

the recent years, advancements in distributed and parallel computing and a new set of

training algorithms led to a proliferation of new approaches and applications with state

of the art performance in many prediction and classification tasks. For a more thorough

understanding of deep neural networks we refer the reader to the book of Bengio et

al. [145] and the review papers of Arel et al. [146] and Bengio et al. [147].

Our work relates closely to a variation of deep neural networks, called recurrent
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neural networks. In this class of artificial neural networks, the connections between the

“neurons” form a directed cycle. This enables them to learn patterns in time-dependent

sequences. In fact, they have been applied successfully in handwriting [148] and speech

recognition [149] among others. The variation of recurrent networks we utilized are

the Long Short-Term Memory (LSTM) models [150]. These models have the ability

to learn long term dependencies without the issues that affect traditional recurrent net-

works. The complete network we used consists of an input layer of nodes, an LSTM

and a fully connected output layer with one output node. The complete network is

shown in Figure 7.12.

Figure 7.12: The input of the network is the processed, windowed PPG signal and the

output is the ABP value at the current time step.

For each patient, we trained a single recurrent neural network. Performing per pa-

tient training allows achieving high quality results, as the blood pressure signal depends

on the specific properties of the peripheral system of each patient. In an RHMS, cali-

bration does not pose an issue as it can be done when the patient enrolls in the RHMS

(usually done at the hospital). Alternatively, a non-invasive, continuous blood pressure
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signal can be used. It has been shown to correlate well [151] with invasive arterial

blood pressure measurements.

The slow drift component in each signal (PPG and ABP) was removed by subtract-

ing the result of a linear, least-squares fit from the data. Subsequently, each patient

record was split into training, validation and test parts using an 80% - 10% - 10%

non-overlapping split across time (Figure 7.11). For each of these sets, we extracted

overlapping signal windows from the PPG signal. As output, we used the value of the

ABP signal that corresponds to the last datapoint in each window.

7.2.4 Results

7.2.4.1 Arterial Blood Pressure Estimation

The network was optimized using the RMSprop algorithm [152] and mean square error

as its objective. To prevent over-fitting, Dropout [153] was used during training. With

this technique, network nodes and their connections are randomly dropped to mini-

mize learned feature dependencies (co-adaptation). From the estimated arterial blood

pressure signal, we compute the systolic and diastolic blood pressure values as the lo-

cal maxima and minima respectively. Over successive epochs, we update the trained

model if the current systolic blood pressure validation error is less than the current best

(Algorithm 1).
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while maxepochs > current epoch do
network optimization over the MSE of the ABP

compute validation MSE of SBP

if MSE of SBP < current best then
update model

else
continue

end

end
Algorithm 1: Training algorithm
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Figure 7.13: Systolic and diastolic blood pressure validation mean square error over

training epochs (single patient)
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Figure 7.14: Systolic, diastolic and arterial blood pressure test mean square error over

successive model updates (single patient)

The full signal MSE or the diastolic blood pressure MSE can also be used as targets

depending on the application. Training is stopped after a predetermined number of

epochs. Figures 7.13 and 7.14 demonstrate the evolution of the validation and test

mean square error during the training of the network. The validation error decreases

epoch after epoch up to a certain limit and fluctuates thereafter.

Detailed regression results for each of the examined patients are presented in Tables

7.3, 7.4. The results presented are for the continuous arterial blood pressure signal.

Overall, we were able to achieve high quality predicted blood pressure signals with

an RMSE of 6.042± 3.26. The largest reconstruction errors are observed in the big

slope regions of the blood pressure signal (Figure 7.18). These regions are usually

less important than local maxima and minima, which correspond to the systolic and

diastolic blood pressure.

Finally, Figures 7.17 and 7.18 show the output of the network on the test dataset

in the beginning and the end of training respectively. It can be seen that the predicted

signal closely follows the actual arterial blood pressure signal.
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Table 7.3: Regression Results

patient root mean square error correlation error σ avg. error

SBP DBP ABP ABP

1 1.753 2.806 7.140 0.951 6.980 1.504

2 3.945 1.865 6.671 0.953 6.668 -0.194

3 2.607 2.218 5.217 0.964 5.216 0.064

4 1.324 1.605 3.708 0.985 3.518 1.173

5 2.242 2.908 5.089 0.969 5.065 -0.496

6 2.584 1.465 4.294 0.971 4.284 -0.303

7 2.022 0.988 3.665 0.979 3.660 0.206

8 4.071 1.891 3.429 0.984 3.429 0.030

9 3.392 1.629 3.521 0.984 3.521 0.006

10 1.989 1.360 5.432 0.970 5.349 0.943

11 3.493 1.528 4.216 0.985 4.183 0.525

12 2.736 5.986 5.856 0.909 5.780 0.939

13 3.009 3.251 7.174 0.944 7.172 -0.183

14 6.187 2.422 7.847 0.930 7.846 0.099

15 3.151 1.773 22.850 0.791 22.843 0.541

16 1.250 1.663 5.903 0.973 5.784 -1.181

17 1.041 0.925 3.491 0.991 3.424 -0.682

18 1.554 3.214 9.435 0.926 9.427 0.388

19 0.892 0.990 9.536 0.849 9.536 -0.124

20 1.095 1.792 9.236 0.816 9.217 0.586
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Table 7.4: Regression Results (continued)

patient root mean square error correlation error σ avg. error

SBP DBP ABP ABP

21 2.453 0.655 3.735 0.964 3.508 -1.282

22 3.097 2.177 5.380 0.961 5.069 -1.804

23 4.394 3.340 5.134 0.958 5.054 -0.901

24 1.859 1.087 4.175 0.976 4.142 -0.523

25 1.752 1.107 5.100 0.947 4.867 1.524

26 1.857 1.740 4.185 0.904 4.145 -0.580

27 5.835 0.960 6.476 0.951 6.463 -0.405

28 2.113 0.489 7.170 0.930 7.170 0.091

29 4.640 2.164 7.793 0.927 7.753 -0.791

30 1.344 1.798 6.374 0.978 6.235 -1.324

31 2.150 3.828 6.854 0.975 6.800 -0.858

32 2.409 3.666 5.455 0.985 5.210 -1.619

33 3.914 1.775 4.430 0.984 4.425 0.204

34 2.317 2.714 9.070 0.917 8.870 -1.896

35 2.710 3.284 6.192 0.958 6.181 -0.366

36 2.930 2.065 9.105 0.900 9.102 -0.235

37 1.076 1.441 4.187 0.977 4.179 -0.262

38 0.784 0.658 3.764 0.984 3.760 -0.158

39 1.396 1.578 4.748 0.977 4.648 -0.968

40 2.300 1.027 2.993 0.965 2.991 -0.118

41 4.120 1.740 2.448 0.977 2.448 -0.026

42 2.376 1.458 5.268 0.982 5.240 -0.542
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7.2.4.2 Comparison with Linear Regression

To evaluate the learning ability of our deep learning network, we compared it against

linear regression. As shown in Figures 7.15 and 7.16, both systolic and diastolic root

mean square error is significantly larger in linear regression than our proposed method-

ology. Some extreme values for the error of linear regression are omitted from the

graphs for readability.
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Figure 7.15: Systolic Blood Pressure RMSE in linear regression vs our proposed

methodology
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Figure 7.16: Diastolic Blood Pressure RMSE in linear regression vs our proposed

methodology

7.2.4.3 Limitations

The methodology and results we presented correspond to data collected from ICU pa-

tients. Tuning the network and the learning parameters may be necessary to generalize

to patients outside the ICU. In addition, the dataset used did not contain age or other

contextual information that could improve output accuracy. Finally, optimizing the

window size, the number of hidden nodes and the network architecture was beyond

the scope of this work. Our experiments indicate that further gains can be made by

exploring those parameters as well.
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Figure 7.17: Arterial blood pressure signal prediction (mean subtracted) at the begin-

ning of the training (subject 7)
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Figure 7.18: Arterial blood pressure signal prediction (mean subtracted) at the end of

the training (subject 7)

7.2.5 Conclusions

We have presented a methodology for developing highly-accurate continuous models

for inferring arterial blood pressure from finger photoplethysmography. The presented

methodology enables continuous blood pressure monitoring for patients in RHMS with-

out the inconvenience of a blood pressure cuff or the ECG sensor. Such a system has the

potential to increase patient compliance and provide more accurate risk classification

and prediction. In turn, this can lead to better management of heart failure.
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CHAPTER 8

Conclusion and Future Works

This dissertation is trying to provide new methodologies in time series analysis of wrist-

worn systems’ data. Wrist-worn systems have provided a new horizon in remote health

monitoring systems. Many activity sensing module are now built for wearing on wrist.

A lot of companies such as Fitbit, Apple, Samsung are investing on health tracking

based upon the wrist data by implementing new sensors and algorithms on their sys-

tems. Being comfortably tightened to the skin provides high sensing capabilities for

many vital signs including heart rate, PPG and Spo2 compared to many other health

tracking systems. Although, wrist-worn sensing has become very popular in the past

few years due to all these advantages, there has been many limitations and challenges

introduced when it comes to taking full advantage of them. Chapter II of this dis-

sertation provides a full summary of these challenges specifically focusing on activity

recognition. This manuscript is an effort to tackle these challenges and provide meth-

ods and techniques to mitigate the these limitations of wrist-worn sensing systems to

improve the baseline for both accuracy and battery performance.

Chapter III of this work is proposing the idea of using wrist-worn devices for activ-

ity classification. A proof of concept system has been designed and tested for activity

state detection. We have shown that smartwatches are as capable as smartphones, if not

better, in detecting transitions between sit, stand and lie states. Although this achieve-

ment seemed very exciting, it all came from in-lab data collection. The story is very

different when wrist-worn systems are tested in-field. Unwanted hand motions confuses

classification models by generating false positive and negatives when it comes to activ-
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ity recognition. Chapter IV proposed looking to the context information to mitigate this

issue and eventually boost both precision of classification and battery performance. We

proposed the idea of using the "location" probability distribution information as a con-

text to predict the activity of a person by adjusting the prior probability in the statistical

model and showed improvement of up to 7% in the total accuracy of activity classifica-

tion. We have also shown that "current state" can be used as a context to switch between

different sensing modules in order to provide better accuracy and dynamically improve

battery lifetime of modules in which power recourse are scarce. An improvement of 5%

in accuracy and 7 hours in smartwatch battery lifetime was proved to be achievable. As

another effort to deal with unwanted hand noise, we investigated the extent of its effect

on gait quality of a person when wearing a smartwatch. Noticing the phenomena of

over and under-counting of steps while walking with a wrist device, we realized com-

plex time series analysis methods are necessary. We took advantage of Kalman Filter to

estimate the timing information of each step. Then we used this information to correct

for the missing peaks taken place due to hand motion noise. We have shown huge im-

provement in detecting walking steps while proposing models to estimate gait distance,

velocity and symmetry. In Chapter VI, a two-layer classification scheme is proposed

to further improve of accuracy of activity state recognition. We have used combination

of "Random Forest" and "Majority Voting" algorithms to reduce the false positives for

the classification of activities with long duration. This idea is proposed to replace using

large window size in time series analysis (recalling that using large window size makes

detection of short-duration activities more troublesome. An 8% improvement in detec-

tion accuracy was observed using this technique which seems very promising when it

comes to classification between a combination of short and long-duration activities.

Although this work has tried to identify some of the limitations and challenges of

wrist-worn sensing systems in activity recognition, there are still a lot of work could

be done. More applications, in addition to activity recognition could be targeted to

investigate. With more sensors being embedded in wrist devices. More contextual
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information could be used to further improve the inference accuracy. More time series

analysis could be applied and tested based upon the targeted application to resolve the

challenges to come. Perhaps comparing different analysis techniques and proposing a

combination of different time series methods could be a good potential for investigation.

Although this dissertation is not claiming to provide a thorough and clear picture of

wrist-sensing for activity recognition which tackles all the issues in hand, it serves as a

starting point in the new horizon of wrist-based sensing. And with more dominance of

these modules in both commercial and clinical settings, there seems to be an enormous

demand for better characterization and utilization of wrist-worn sensing systems.

Another big direction for the future work is to investigate and re-evaluate the de-

signed systems and implemented algorithms to involve real patients. Perhaps investing

in collecting a new set of data from real patients for the system in Chapter III and

tweaking the model including the new dataset is one step. Or perhaps the information

regarding prediction capability of Smartphone and Smartwatch based on the "current

state" context could be a matter of change in Chapter IV, when the patient data is used.

Maybe implementing a new inference architecture which includes a calibration phase

before testing, in generating the model (tuned to every subject), would be substantial

in improving gait quality estimation when patients (and specially elderly patients) are

under assessment in Chapter V. And eventually some key assumptions from elderly pa-

tients could be determinant in adjusting some parameters in the 2nd layer of algorithm

in Chapter VI (for example the window size in majority voting algorithm).
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