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Abstract—Human brain functional connectivity can be 

reliably studied with the aid of fMRI technology. Brain 

functional network decomposition can be solved by available 

methods such as Independent Component Analysis (ICA) 

with independence constraint, Morphological Component 

Analysis with KSVD dictionary update (MCA-KSVD) with 

sparsity constraint on spatial components, or constraint-free 

method PowerFactorization (PF) that has not been applied 

and known to the fMRI community so far. In the quest for 

finding methods that are effective for analyzing fMRI 

functional networks, this study investigates the effects of 

various constraints used in the ICA, MCA-KSVD and PF 

methods on the resulting decomposed networks. The 

observed mutual effects of independence and extreme 

sparsity constraints experimentally suggest that there is a 

connection between the two constraints. Specifically, the 

sparsity constraint in extreme case yields spatially 

independent components. 

Keywords-ƒMRI; ƒunctional network connectivity; 

Independent Component Analysis; Morphological Component 
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I. INTRODUCTION 

Functional human brain activity has been treated as a 
subject of interest to neuroscience researches. Functional 
Magnetic Resonance Imaging (fMRI) is a neuroimaging 
technique which allows one to measure neuronal activity 
in an indirect manner by studying local changes of blood 
consumption or the blood oxygen level-dependent (BOLD) 
contrast related to a certain synaptic activity due to a 
cognitive process, a motor task, or at resting-state [1–2]. 

With the help of fMRI, brain functional connectivity 
can be assessed by analyzing both the spatial and temporal 
interrelation among set of separate functional regions 
distributed over the cerebral cortex or often known as brain 
functional “networks” [3]. Some of common networks are 
visual, auditory, sensorimotor, salience, Default Mode 
Network (DMN), and Executive Control Network (ECN). 
Investigation of brain activity helps to have an insight into 
disease state of brain affected by disorders such as 
Alzheimer's, schizophrenia, depression or attention- 
deficit/hyperactivity disorder (ADHD) [4–7]. For instance, 

The component sources of ICA are assumed to be 
statistically independence, which means that any pair-wise 
collection of components has its probability equals to the 
product of individual probability [8–9]. 

PowerFactorization (PF) is a signal processing method 
developed to recover a missing data matrix by minimizing 
its rank [10–11]. To our best knowledge, PF has not been 
applied to fMRI. In this work, for the first time, PF is 
applied to decompose fMRI mixed signal into a specific 
quantity of meaningful functional network components 
without enforcing any constraint. Therefore, it could be 
considered as the simplest approach to the problem of 
brain network decomposition. 

A recently developed method MCA-KSVD was 
proposed as an alternative method for investigating brain 
functional connectivity by exploiting sparse 
representations of spatial components. The method is a 
relaxation of the ICA independent-source assumption 
allowing only a certain maximum number of components 
to concurrently reside in a single voxel [12]. 

The link between independence and sparsity 
constraints has been raised in [13]. The study suggested 
that the mathematical design of decomposition tools for 
brain fMRI should emphasize other mathematical 
characteristics instead of independence. In the quest for 
finding methods that are effective for analyzing fMRI 
functional networks, this study aims to compare different 
decomposition methods in terms of effects of different 
regularization constraint used: no constraint, independence 
and sparsity constraint imposing on the spatial distribution 
of network components. Each of the cases is represented 
by specific methods: PF, ICA and MCA-KSVD, 
respectively. In addition, this work also experimentally 
confirms relation between the independence and the 
sparsity constraint that has been studied in [13]. 

II. OVERVIEW OF SELECTED METHODS 

A. PowerFactorization 

The PowerFactorization (PF) method attempts to 

analyze the fMRI data set S(r,t) as [10] 

DMN connectivity is increased with depressed subjects [4] 
and decreased with ones who are affected by Alzheimer's 

S = DX + E, (1) 

[5] or ADHD [6]. In subjects with schizophrenia, 
overactivity of both DMN and ECN connectivity can be 
also observed [7]. 

The data-driven Independent Component Analysis 
(ICA) method is widely used by neuroscientists to discover 
underlying sources of fMRI activations which reveal 
functional connectivity patterns even in presence of noise. 

where D ^mK is a full column rank matrix (with rank 

K ) which contains temporal distributions of K 

decomposed brain networks; X ^Kn is a full row-rank 

matrix which represents spatial distributions of the 
corresponding networks; and E models residual noise 
elements. 
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The problem (1) is then formulated as the following 
optimization problem: 

The second data set was acquired while the subject was 
performing working memory tasks. The third data set was 
acquired while the subject was in resting state. Each 

{D  ̂, X  ̂} = arg min S − DX . 
D, X 

(2) experiment resulted in 31 acquired brain slices whose size 
is 64 × 64 voxels, with TR = 2 sec and TE = 30 ms. 

The PF method solves the problem (2) by alternately 
fixing either matrix D or X and solving a linear least- 
squares problem to find the other matrix. 

An improved version of the PF method, which 
guarantees better outcomes and faster convergence, uses 
the incremented-rank strategy. The incremented-rank PF 
starts with K = 1 , then gradually increases K until a 
desired rank is reached [11]. 

B. Independent Component Analysis 

B. Data Simulation 

To examine the effects of three decomposition 
methods on the acquired data sets in the presence of noise 
at various levels, for each data set, temporal distribution 
of components suspected as brain networks was extracted, 

which resulted in DS [14]. The original fMRI data S was 

then projected on the signal subspace spanned by DS to 

estimate SS as follows: 

The conventional approach to the brain network S = D (DH D )
-1 

DH S. (5) 
decomposition problem is the ICA method that follows 
the same decomposition as (1). ICA requires the non- 

S S S S S 

Gaussianity of analyzed components. In addition, spatial The noise signal SN  was extracted from the data 

ICA assumes that rows xi of X , which imply spatial signal S as 

distributions of brain networks, are statistically 
independent: 

 
K 

 

SN = S − SS . 

 

(6) 

P( x1 , x2 , x3 ,…, xK ) =  P( xi ), 
i =1 

(3) All correlations in the structure of the noise signal 
were further removed by performing the Fourier transform 

of SN and randomly shuffling the phases of the obtained 

where P( xi ) is the probability of i-th functional network 

component, and P( x1 , x2 , x3 ,…, xK )  is the joint 
spectra resulting in shuffled noise data SN . The final 

simulated data set Sˆ was composed as 
probability  of  all  components.  Independence  of 
components decomposed from ICA can be achieved by 
either minimizing mutual information as in Infomax 
algorithm  or  maximizing  non-Gaussianity  among 

S  ̂= S 

 

S +  SN , 

 

(7) 

functional network components as in FastICA algorithm 
[8]. 

C. Morphological Component Analyis using K-Singular 

Value Decomposition 

With an over-complete dictionary D , the problem (1) 
can be solved with sparsity constraint by limiting the 
maximum number L of components simultaneously 
active in a voxel. The problem can be mathematically 
represented as [12] 

where  controls the noise level. 
ICA, MCA-KSVD and PF methods were applied on 

the noisy data sets to examine the effects of different 
regularization constraints. We used the GIFT (Group ICA 
of fMRI Toolbox) [15] with Infomax-based ICA method 
with auto-fill data reduction and values, regular stability 
analysis and serial group ICA to examine the 
independence constraint. To examine the sparsity 
constraint, MCA-KSVD method was used with the 
Orthogonal Matching Pursuit (OMP) algorithm applied in 
sparse encoding stage. In the experiments, for each 

{Dˆ , Xˆ } = arg min S − DX 2 s.t.  x  L, (4) selected method, the number of decomposed components 

D, X F i 0 were varied to analyze the behavior of each method. The 
effects of the sparsity constraint were, in addition, 

which can be solved with the K-SVD algorithm [12]. This 
iterative algorithm consists of two main stages: sparse 
encoding and dictionary updating. In the former stage, an 
over-complete dictionary D is initialized and the matrix 

X is estimated with a pursuit algorithm. In the latter 

stage, each column d k is successively found and updated 

examined by altering the sparsity parameter L . 

IV. EFFECTS OF REGULARIZATION CONSTRAINTS 

A. Common Effects 

With the underlying constraints, some common 
phenomena were observed. The first phenomenon, signal 

by  the  singular  value  decomposition.  The  whole 
procedure is repeated until the convergence is met [12]. 

III. EXPERIMENT SETUP 

A. Data Acquisition 

ICA, MCA-KSVD and PF methods were applied to 
three fMRI data sets. The first data set was acquired by 
stimulating visual and auditory response of the subject. 

splitting, was detected when one meaningful network 
existed in multiple decomposed components. This effect 
was observed with all ICA, MCA-KSVD and PF methods, 
especially when increasing K . The observed results 
imply that for accurate decomposition, the number of 
decomposed components must be chosen to agree with the 
underlying physiological process during the studied 
experiment. Fig. 1 shows some examples of signal 
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splitting found when applying ICA, MCA-KSVD, and PF 

methods on the task-related data set. 

The next phenomenon, signal ambiguity, was 
perceived when another meaningful network was 

observed when changing the sign of the decomposed 
component. This phenomenon occurred regardless of the 
data sets and decomposition method used, and is due to 

the nature of the decomposition task. Namely, changing 
the corresponding signs of both D and X in (1) results 

in the same measured data S . Both suspected salience 

network and DMN were observed when interchanging the 
sign of the seventeenth ICA component, the twentieth 

MCA-KSVD component, and the fourth PF component, 
as shown in Fig. 2. 

The noise tolerance of the imposed constraints was 

investigated, which led to the final observation that none 

of the applied methods showed exceptional ability to 

resist the influence of severe noise. Among the methods, 

PF yielded spatial components with the weakest signal 

energy. This can be explained due to the constraint-free 

nature of the method. 

B. Independence vs. Sparsity Constraints 

Besides the common effects, there were some effects 

specific to a certain regularization constraint. These 

include signal localization, signal leakage, and level of 

correlation among decomposed components. 

Signal localization is an effect which compresses 
weak activations in the extracted networks and therefore, 

localizes the spatial distribution of the networks. Results 
of the MCA-KSVD method were observed to be the most 

localized as compared to the ICA and PF methods (see 
Fig. 3). The localization effect gets enhanced with the 
severeness of the sparsity constraint by decreasing 

parameter L . Fig. 4 shows the percentage of voxels with 

values close to zero obtained by ICA, PF and MCA- 
KSVD methods from the visual and auditory data set. It 

can be clearly seen that MCA-KSVD method with the 

decreased parameter L yielded the larger percentage 

which implied the higher localization effect. Moreover, in 

the specific case of resting-state data set, the sparsity 
constraint yielded the strongest visual network activation 

as compared to the constraints used in ICA and PF 
methods (see Fig. 5). 
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Figure zation: DMN component extracted by MCA- 

KSVD method had the most localized spatial distributions as compared 

to those extracted by ICA and PF. 
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gure 1. Signal splitting effect: Higher visual network was 

observed in two components of ICA, MCA-KSVD, and PF when 

choosing K to be sufficiently large. 
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Figure 2. Signal ambiguity effect: Both DMN and salience (suspected) 

networks were observed when interchanging the signs of ICA, MCA- 

KSVD, and PF components. 
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Figure 6. Signal leakage effect: Primary visual network and auditory 

network were observed in MCA-KSVD component with L = 8 (upper 

row); higher visual network and auditory network were observed in a 

component of PF (lower row). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Signal localization: Percentage of voxels with value close to 

zero in DMN, Higher Visual network and ECN component extracted by 

ICA, MCA-KSVD and PF methods from visual and auditory stimulation 

data set. 
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PF from resting-state data. 
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Glover and Dr. Jingyuan Chen, Radiological Sciences 
Laboratory, Stanford University for providing 
experimental data. 

 

 

 

 

 

 

 

 

 

 
Signal leakage is an undesired effect in which one 

component could contain more than one networks. It was 
observed that this effect occurred with any decomposition 
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Figure 7. Similarity between the identity and correlation matrix 
obtainted from MCA-KSVD as a function of L. 
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