
Lawrence Berkeley National Laboratory
LBL Publications

Title
Managing Materialized Views in Distributed Database Systems

Permalink
https://escholarship.org/uc/item/6771q3kb

Author
Segev, A

Publication Date
1989-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6771q3kb
https://escholarship.org
http://www.cdlib.org/

LBL-26992

ITt1l Lawrence Berkeley Laboratory
~ UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing
Sciences Division

Managing Materialized Views in
Distributed Database Systems

A. Segev

July 1989

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

-nn
o r
:: ;; 0

f) :D
f(l c z

.......
~ !11 ("')
m<+o
11) I'[! 1J
A"l.l!-<
1/1

IJ:I
a.

l,[J .
C!i
e
r
1-'·

cr n 0 ' !)J 1J
;; '<
'< . f(l

r
IJj
r
I

D)
iJ'
oJ)
oJ)

f(t

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

•

,­
J ' ;-··

LBL-26992

MANAGING MATERIALIZED VIEWS
IN DISTRIBUTED DATABASE SYSTEMS

Arie Segev

School of Business Administration
University of California, Berkeley

and

Computing Science Research & Development
Information & Computing Sciences Division

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, California 94720

July1989

This work was supported by the Director, Office of Energy Research, Applied Mathematical
Sciences Research Program, of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.

•

•

LBL-26992

MANAGING MATERIALIZED VIEWS IN DISTRIBUTED OAT ABASE SYSTEMS

Arie Segev

School of Business Administration
University of California at Berkeley

and
Computer Science Research Department

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, California, 94720

Abstract
Materialized database views are a form of derived data. In a distributed environments

they constitute a compromise between single copies of data and consistent multiple copies. In
this paper we- first motivate the support of materialized views by a database management sys­
tem. We discuss why this capabality is important to the organization. to end-users and to data­
base administrators. Next, we show that the concept can be_ generalized to inter-organization
exchange of data. and address some managerial and technical issues in that context. Finally, we
outline an analysis of policies for maintaining distributed materialized views. determinging
optimal policies for updating distributed materialized views. We define the concept of materi­
alized view currency and allow a query to specify its currency requirement. We also allow a
materialized view to be updated from either a base relation or another materialized view. This
flexibility provides an opportunity for further reduction in the cost of maintaining distributed
materialized view. We model the problem of optimal update policies to capture currency and
policy constraints, replicated data. and various view update policies. The optimization incor­
porates a minimum-cost objective function as well as user's response time constraints .

MANAGING MATERIALIZED VIEWS IN DISTRffiUTED DATABASE SYSTEMS.

ABSTRACT

Materialized database views are a fonn of derived data. In a dis­
tributed environments they constitute a compromise between single
copies of data and consistent multiple copies. In this paper we first
motivate the support of materialized views by a database management
system. We discuss why this capability is important to the organization,
to end-users and to database administrators. Next, we show that the
concept can be generalized to inter-organization exchange of data, and
address some managerial and technical issues in that context. Finally,
we outline an analysis of policies for maintaining distributed material­
ized views.

1. INTRODUCTION

Distributed computing is appropriate for many organization [KING83]. The software to support

it is a distributed database management system [CERI84]. Replicating data is attractive in many

instances, but guaranteeing consistency is a very expensive proposition in the presence of updates. The

decision does not have to be "all" or "nothing". Materialized database views are a fonn of derived

data which is stored explicitly. The strategy of maintaining materialized views in a distributed data-

base system is a compromise between fully synchronized (consistent) replicated data and single copies

of files. It is an attractive choice in many environments because it significantly decreases (relative to

the case of synchronized replicated data) the cost of processing transactions while increasing (relative

to the case of a single copy) the availability of the data and the perfonnance of ad-hoc queries in

remote sites.

Materialized views require that an update strategy be devised [BUNE79, ADIB80, BLAK86,

LIND86, ROUS86, BLAK88, SEGE89a]. An obvious solution is to rematerialize the view after each

update to the base data used to define the view, but nonnally a differential update procedure (e.g.,

[LIND86]) is superior. Since it is possible that modified base data is irrelevant to the view, screening

test procedures to detennine its relevance have been devised [BUNE79, BLAK86]. Three general

approaches to the timing of materialized view updates have been considered in previous research. The

first approach is to update the view immediately after each update to the base tables [BLAK86], the

1

second one defers the updates until issuing a query to the view [ROUS86, HANS87], and the third is

to refresh the view periodically [ADIB80, LIND86, SEGE89a]. The tradeoff involved in choosing an

approach is the currency of the materialized view versus the cost of updating it. In [SEGE89b], an

analytical analysis of view update policies is presented.

The paper is organized as follows. Section 2 introduces the concept of database views in a rela­

tional DBMS. In Section 3, we extend the concept to a distributed environment. To illustrate the gen­

erality of materialized views, Section 4 presents their application to the case of inter-organization data

acquisition. Update policies for distributed materialized views are discussed in Section 5, and the

paper is concluded in Section 6.

2. DATABASE VIEWS

A relational database management system (DBMS) stores data in base relations (or tables) such

as the one shown in Figure 1.

E:MPLOYEE E:MP# NAME SALARY DEPI'#

El JIM 35k Dl

E2 MAKE 30k 01

E3 DAVE 35k D2

E4 ELLEN 40k D2

ES RON 30k Dl

E6 RUTH 25k D2

Fig. 1: A Relational Representation of an Employee Data

The figure presents the rows (or tuples) of the relation E:MPLOYEE. We will denote the schema (or

attributes) of a relation by a relation name followed by the list of attributes in parentheses, e.g.,

E:MPLOYEE(E:MP#, NAME, SALARY, DEPI'#). A view is a virtual relation defined by expressing a

query on base relation(s). For example, if a user is interested only in employees who earn more than

2

•

•

-
30k, the following SQL query can be used to defined a view representing the data of these employees

("' indicates that all attributes are to be selected):

DEFINE VIEW HIGH_E:MP (E:MP#, NAME, SALARY, DEPT#)

SELECT"'

FROM EMPLOYEE

WHERE SALARY > 30000

Figure 2 illustrates the data associated with this view.

HIGH EMP EMP# NAME SALARY DEPT#

El JIM 35k Dl

E3 DAVE 35k D2

E4 ELLEN 40k D2

Fig. 2: The HIGH_ EMP Data

The HIGH_E:MP table does not exist, and is represented in the DBMS by its definition query. From

the user's point of view this table exists and can be manipulated by queries. For example, the follow-

ing query retrieves the name and salary of employees in department D2 from the (virtual) HIGH EMP

table:

SELECT (NAME< SALARY)

FROM HIGH EMP

WHERE DEPT# = 'D2'

The data is retrieved by modifying [STON75] the user's query into a query on the base table that was

used to defined the view, that is, the actual query to be executed after modification is

3

SELECf (NAME< SALARY)

FROM EMPLOYEE

WHERE DEPT#= 'D2' AND SALARY> 30000

A materialized view is a relation that stores the result of executing the view definition query. In

the case of the employee data, the relation of Figure 2 will actually be stored. A materialized view,

therefore, is a copy of the base data, but rather than replicating relations, an arbitrary subset of the data

is replicated; that subset is detennined by the view definition query. The advantage of a materialized

view is that its definition query does not have to be executed on each reference to the view. If ·updates

are done to a base table used to defined the materialized view, it is possible that the materialized data

become inconsistent with the base data, and consequently, an update to the materialized view is

required.

The foregoing discussion indicates that a tradeoff is involved in deciding whether to materialize a

view. On one hand, queries that reference the view benefit by having the view data materialized, but

on the other hand, updates to the base data may effect the materialized data and thus increase the

overall cost of updates. A third factor, though less important for most systems, is the additional

storage cost incurred by materializing a view. In a distributed environment, materialized views are a

compromise between fully synchronized replicated data and single copies of data. Unlike synchronized

replicated data, update transactions to the base data do not update the materialized data. After a base

data transaction is committed, update transaction(s) to the materialized view(s) may be generated. The

decoupling of base data transactions from updating materialized views raises two questions; the first is

when to update a materialized view and the second is how to perfonn the update. In this paper we are

primarily concerned with the first question. •

4

3. DISTRIBUTED MATERIALIZED VIEWS

In a centralized DBMS, the decision whether or not to materialized database views is based on

the following trade-offs. The benefit from materialized views is a better response time to queries on

the view, while the cost is the additional storage requirements and the updates of the materialized view

to reflect updates to the base data. An analysis of materialized views vs. query modification in a cen­

tralized DBMS can be found in [HANS87].

In a distributed environment, the concept of materialized views is more important because of the

added complexity. Ideally, every user in a geographically dispersed organization. should have a local

copy of the most up-to-date data. In reality, however, there are many situations where users are

prevented from accessing a transaction database containing the current data. The reason is simple; in

large organizations (e.g., banking, utilities, reservation systems), the operational transactions stre~ch the

capacity of computer systems to the limit. Enabling decision support analysis to be done on the tran­

saction-databases will clog the system and deteriorate the response time of customer's transaction to an

unacceptable level. Consequently, a common practice is to periodically dump the contents of a tran­

saction database to a decision support database residing on another computer. The data that is used for

analysis, then, lags behind the current data. This particular practice is a form of materialized. view

maintenance.

The notion of distributed materialized views is a compromise between single copies of data and

fully synchronized (consistent) replicated data. Figure 3 illustrates the architecture of such ~ system.

Transactions are processed against a transaction database (it is possible that the transaction database is

itself distributed). Users in remote sites have their own processors and databases. The data in those

databases is extracted from the transaction database(s) (the broken lines indicate logical relationships).

After the transactions update the base data, the remote materialized views are updated. The issues of

"when" and "how" to preform the view updates are discussed in Section 5. Having a distributed

DBMS support materialized views is important to the organization, to end-users, and to database

administrators.

5

.. ~ .

REMOTE
COMPUTER

Transect 1 ons

Transect 1 on
DBMS

'

REMOTE
COMPUTER

Fig. 3: Distributed Materialized Views

' ' ' '

The organization. Distributed computing is appropriate for many organization [KING83]. The

software to support it is a distributed DBMS [CERI84]. Replicating data is attractive in many

instances, but guaranteeing consistency is a very expensive proposition in the presence of

updates. The decision does not have to be "all" or "nothing". Materialized views offer the

compromise, and provide increased functionality at reduced costs (relative to consistent multiple

copies).

The end-users. From a user's point of view, the concepts of materialized views, and currency

and response time constraints (discussed in Section 5) offer a powerful mechanism to control the

currency versus cost trade-off associated with the derivation of data. The view concept is also

more powerful than snapshots [ADIB80], because the selection power of view definition equals to

that of the query language. used.

6

II

..

The Database Administrators. If materialized views are supported by a distributed DBMS, it

facilitates the design tasks facing the database administrator. For example, it is possible that a

form of a materialized view has to be supported, and the only way to achieve that is by writing

special·purpose_application programs.

4. THE INFORMATION PROVIDER CASE

Organizational data can be broadly classified into two types -- internal and external. Internal data

is captured by the organization and describe organizational entities, attributes and events, e.g.,

employee ~ata and product data. External data describe entities, attributes and events associated with

the environment in which the organization operates. In recent years, we have been witnessing a proli­

feration of on-line databases storing external data, e.g., economic, financial, and medical data. We

refer to a company that collects, maintains, and sells such data as an information provider .

These are two basic ways for users to get data from an information provider. The first way is to

access a remote on-line database via telecommunication lines (normally dial-up), and the second is to

receive,. either on a one-time or periodical basis, a tape or an optical disk from the information pro­

vider. The first way is beneficial when the data of interest is dynamic and/or requested on an ad-hoc·

basis. The off-line distribution of data is advantageous when the requested data is static, e.g.,

economic data related to a given period of time, and the user can afford the delay between the time of

data request and the time that it becomes available on the user's computer. It is the first case, of on­

line distribution of data, that is of interest to us in this paper.

In the case of on-line information retrieved from a public database, the subset of the 'information

provider's data which is of interest to a user can be considered as a database view. A typical access to

the data is through a terminal or a personal computer, where the latter enables the storage of the

retrieved data for further manipulation. A common pricing of such a service is based on connect time

and the processing cost at the database site. The price of the connect time is also dependent on the

transmission speed (the baud rate of the modem). Applying the materialized view concepts to such an

environment is dependent on the following factors:

7

(1) The type of data. In order to benefit from the materialized view approach the data has to be of

state variable type, e.g., the price of a stock. In this case the materialized view data has to be

updated to reflect more current states.

(2) The user. The way that the user manipulates the data is an important consideration. A large

company with multiple local users can benefit substantially by creating a local materialized view.

(3) The infonnation provider. The main reason to support materialized views is to gain a competi­

tive edge in tenns of customer's satisfaction. In fact the infonnation provider can provide the

software to be run on the customer's computer and thus augmenting the data retrieval service by

a data management component.

(4) The pricing. The way that the service is priced may affect the procedures used to maintain the

materialized views. For example, if the price is a function of the volume of the view data, the

infonnation provider has an incentive to maintain it in the most cost-effective way. On the other

hand, if the price is a function of the update cOst, the provider does not have an incentive to do it

in the most efficient way, unless there is a competitive pressure to reduce the price.

In Figure 4, we show four major alternatives of providing data to customers. Figure 4(a) shows

the traditional way, where each customer is accessing the provider's database through telecommunica­

tion lines. The customer may be using a tenninal or a personal computer. What happens at the

customer's site is transparent to the infonnation provider and vice versa. In this case the concept of

materialized views is not applicable. Figure 4(b) illustrates the case where materialized views are

stored at the customer's computers. Those views are defined on the provider's centralized database (cf.

the broken lines in the figure). In this case the materialized views have to be updated, and the way

that this is done is dependent on the customer's currency and the particular software. In a homogene­

ous systems it is easier to implement the view maintenance procedures than in a heterogeneous

environment In both cases, it is likely that the infonnation provider will be responsible for the

required software. Note that in this case customers do not interact, and the only way to update a

materialized view is from the provider's database.

8

..

•

SITE

CUSTOMER
SITE 1-

PROVIDER'S
COMPUTER

• • •

PROVIDERS
COMPUTER

1~ ~

CUSTOMER
SITEn

(a)

(b)

I
I

I
I

I

SITE
n

Fig. 4: The Information Provider Cases

9

.... "\

PROVIDER'S
DISTRIBUTED
DATABASES

PROVIDER'S
DISTRIBUTED
DATABASES

TELECOM LINES

COv1PUTER ~
SITE 1 • • • SITE2

....
.... .,

..... .,
.....

., .,,,,
SITE CUSTCMER

1 C0\1PUTER • • •

~ ~· ~ ~
(c)

TELECOM LINES

• • •

SITE CUSTCM:R
1 ~PUTER

SITE

{d)

Fig. 4: The Information Provider Cases {Continued)

10

I
I t/

I
I

SITE
n

..

•

•-J

A more complex case is shown in Figure 4(c). Here, the provider's data is stored in a distributed

database (data may also be replicated). The main difference from the previous case is that the

provider's design and implementation tasks are more difficult. In particular, the maintenance of distri­

buted materialized views become much more complex if views are defined on data that spans multiple

sites and if data is replicated. From the customer's point of view, the fact that the data is distributed_

should be transparent to him.

The most complex case is shown in Figure 4(d). The infonnation provider's data is distributed

as well as the materialized views. In this case, it is possible that a customer's materialized view is

updated from another customer's data. Since this configuration requires cooperation between custo-

mers, several intersting questions arise (these questions would also be valid if the provider's database

is centralized):

(1) who develops the software?

(2) who pays for a customer's resources which are used to update other customer's data?

(3) who pays for the data communication links?

(4) what objective function is used in updating the distributed materialized views?

(5) how does the provider price the service?

The advantage this configuration offers is reduced overall cost and increased availability. The

problem, of course, is that an overall system's objective is not necessarily compatible with the objec-

tive of individual users. Consequently, the infonnation provider has to price its service such that users

will gain from cooperation, and also satisfy perfonnance constraints imposed by individual users. It
J

should be noted that the connectivity problem is likely to be more severe in this case since it is

unlikely that all customers will have compatible systems.

The foregoing discussion described four main cases, but many hybrid cases are also possible .

. The concept of materialized views can be the basis of a competitive product and reduce users cost in

purchasing external infonnation. The questions of "when" and "how" to update distributed material-

ized views have to be considered by the infonnation provider when deciding how to price the service.

11

S. VIEW UPDATE POLICIES

Let R be a base relation schema and R 1o • • • , Rm be fully synchronized stored copies of R.

Assume that copy j is stored at base site j (bsj). If R is not replicated then m = 1. Assume that l

materializedt views MV = {Vi}, i = 1, · · · , l, are defined over R. View Vi is stored at view site i

(vsi). Without loss of generality, we will assume {bsi} n {vsi} = 0 and vsi ~ vs1c fori ~ k. Occa-

sionally, we will use v to mean Vv; it will be clear from the context. A view update policy is con-

cemed with the timing of the updates. Once the update times are determined, specific update pro-

cedures can be used (e.g., [SEGE89a]). We are interested in finding an optimal view update policy for

some V 0 e MV. The optimal policy is defined to be the one that minimizes the view update cost sub-

ject to a currency constraint and possibly a response time constraint.

Currency constraints may be value-based or time-based. As an example of a value-based con-

straint, consider the manipulation of an aggregate view (e.g., averages of base table data). The currency

constraint at a given time point may specify that the view averages should be within 2% of the current

average, that is, the average that would have resulted if the base data was use to derive it at that time

point. Value-based constraints are more difficult to implement than time-based constraints. In many

instances, however, value-based constraints can be mapped to time-based constraints if the frequency

and pattern of base table transactions are known. In this paper we address time-based currency only.

5.1. View Currency

Let {State8 (ti)} be a description of the base table states at time points ti. We assume that ti are

expressed as integers and represent the lowest time granularity of interest. Similarly, let { Statev (ti)}

be the state description of view v. We require that Statev(ti) e {State8 (tj) I ti ~ td, that is, the view

state at time ti was a state of the base table at some time ti ~ ti. The view currency at time ti is •

defined as

t Unless stated otherwise, we will use the term 'view' to mean 'materialized view' in the remainder of
this paper.

12

<r·> I T, • = ti -max {t State,(ti) = State8 (t)}.
t!;J;

In practice one does not know that State, (ti) = State8 (t) except for states that were reflected at view

update times. Consequently, if the last update of the view was at time tw S ti and that update reflected

the base table state at time ti S tw, then the working definition of view currency is r,<r;) = ti - ti.

Informally, this definition means that the view data is at most ti - ti time units 'old'. A currency con­

straint may be associated with a view and/or a query. Associating the constraint with the view implies

that the view data has to satisfy it at all times. Associating the constraint with a .query implies that

data retrieved by the query has to satisfy it. In this work, we assume that the currency constraint is

associated with queries (we denote it by T Q).

5.2. Query Processing and View Update Constraints

When a query is to be processed at time ti, Ta is satisfied by the view· data if r,<ri) s TQ. We

also assume that a query is answered from the view only, that is, if TQ is satisfied, the query is pro­

cessed against the current state of the view; otherwise, the view is updated such that the new currency,

Since the view data is not synchronized with the base relations at the transaction level, T Q = a or

T, = 0 should be interpreted as o+, that is, the state of the view changes according to an immediate

update policy (e.g. [BLAK86]).

Let SV c MV be such that for each v e SV, View_ Predicate(V 0) = View_ Predicate(v) or

View_Predicate(V0) => View_Predicate(v), and T, :S TQ. The set SV represents a set of views that

can be used to update V 0 such that the new currency of V 0 will satisfy T Q. There are two advantages

to having the option of updating V 0 from other views. First, it may be cheaper than using a base rela-

tion, and second, it frees the base relation processor (if the views are stored at other sites) from a por-

tion of the view maintenance activity.

13

5.3. Update Policies

The foregoing discussion implies the following constraint on a view update policy: prior to pro­

cessing a query Q , the currency of the view has to satisfy T Q • Subject to this constraint there are

several possible policies of timing the view update. These policies can be classified as follows:

Pl: Periodical updates - view updates are done on a pre-determined cyclical basis.

P2: On-Demand- view updates are done only at query processing time.

P3: Random Updates - view updates are done at random times.

P4: Hybrids - view updates are done according to combinations of the first three policies.

Most previous works have dealt with a single view, TQ = 0, and wither Pl or P2. [SRIV88] deals

with a single view, T Q = 0, and a combination of P2 and P3; the random updates are generated from a

Poisson process. In our work we are interested in two hybrid policies (Pl and P2 are special cases of

these two policies). To explain these policies, we assume that V0 is to be updated by some v e SV.

The first policy is Periodic Or Demand (POD) - an update to V 0 is triggered by either of the following

two events: (1) A query arrives and the currency of V0 is unsatisfactory; (2) The time from the last

update is s. This policy provides a mechanism to balance the system's objective with the user's objec­

tive. In this policy, there are two types of updates; the first update type is triggered by a query, while

the second type is clock-triggered when a cycle time elapsed. Note that the cycle time is restarted after

each update (either a query-triggered or a clock-triggered). By changing the cycle times one can con­

trol the cost of query-triggered updates.

Figure Sa illustrates the POD policy. Note that the view currency is measured in time units rela­

tive to the states of the base table(s); Therefore, a higher currency value means that the view data is

older. In the figure, we assumed that initially V 0 is generated from the base table, and subsequently, is

updated from v where Tv is a constant. The figure shows three updates; the first two updates are trig­

gered by queries 3 and 5, and the third update is clock-triggered because s time units elapsed from the

second update. Queries that find the currency value below T Q do not trigger updates.

14

...

Currency
ofVo

Currency
ofVo

~~------~--------~------------~------Tv ~---------T----------~------------~------~Time

x.s
(a) Periodic Or Demand Policy

~------~~--------~~--~~----~~-~---To
I
I
I

~~------.-_.~----------~------~~Tv ,.._ ____,_....._ ______________ -:---~Time

X

s s

(b) Periodic And Demand Polley

~ Arrival of query I

~ Query arrival that triggers a view update

X Time between update initiations

To Query currency requirement

Tv Currency of update source

Fig. 5: View Update Policies

15

The second policy is Periodic And Demand (PAD) - in this case we have two types of updates as

in the first policy, but the clock-triggered updates are independent of the query-triggered updates, that

is, an update to V 0 is initiated every s time units regardless of the time of the last query-triggered

update. This policy models real-life situations where we have slack capacity at a cenain time of the

day, and by updating the view at that time the cost of subsequent updates is reduced; for example s "

may be 24 hours from midnight. The effect of this policy on the view currency is shown in Figure Sb

for the same query arrivals as in Figure Sa. Note that query 5 does not trigger an update (as it did

under the POD policy) because the first clock-triggered update caused the currency value to be below

T Q when query 5 arrived. Query 7, however, triggers an update under the PAD policy because the

lack of update at the time of query 5 caused the currency to be above T Q when query 7 arrived.

In the analytical· analysis of the POD and PAD policies (presented in Sections 5 and 6 respec-

tively), our goal is to derive the following results.

(1) Choose a v e SV u {R; }, and s such that lim updating cost in [O, t] is minimized.
'-- # of query arrivals in [0, t]

The above expression represents the average view update cost per query, and its minimiza-

tion is a system's objective.

(2) We would like to minimize the expression in (1) subject to a user's response time con-

straint. The constraint is given as follows. let UT(/ be the view update time for a query-

triggered update (it is a function of v and s). We require that Pr { UTa.s > H 1} s H 2,

where H 1 and H 2 are user-provided threshold values.

The details of an analytical analysis of both policies can be found in [SEGE89b].

6. CONCLUSION

This paper has addressed issues related to distributed materialized views. Replicating data in a

distributed computer system provides higher availability and better response to local users. However,

keeping replicated data consistent in the presence of updates is very expensive. Distributed material-

ized views constitute a compromise between single copies of data and consistent replicated data

16

·•

Although introduced in the context of a distributed relational DBMS, the concept of materialized views

is much more general and applies to situations where one set of data is derived from another set of

data; as an example we have introduced the case of the information provider.

If materialized views are supported, two important problems have to be solved. The first is when

to update a materialized view, and the second is how to update it An intelligent DBMS should allow

the user to define currency and response time constraints (it is possible that the database administrator

will do that on behalf of the end-users). In this context we have presented two general update policies.

Finally, many managerial and technical issues have to be resolved, such as balancing of users'

demands, pricing of services, implementing value-based currency constraints, and devising efficient

update procedures.

7. REFERENCES

[ADIB80] Adiba, M. E. and B. G. Lindsay, "Database Snapshots," in Proceedings· of the Interna­

tional Conference on Very Large Data Bases, October 1980, pp. 86-91.

[BLAK86] Blakeley, J. A., P. Larson and F. W. Tompa, "Effici~ntly Updating Materialized Views,"

in Proc. of the ACM-SIGMOD Conf on Management of Data, WashingtOn DC, May

1986, pp. 61-71.

[BUNE79] Buneman, 0. P. and E. K. Qemons, "Efficiently Monitoring Relational Databases," in

ACM Transactions on Database Systems, vol. 4, no. 3, September 1979, pp. 368-382.

[CERI84] Ceri, S. and G. Pelagatti, in "Distributed Databases -- Principles and Systems,"

McGraw-Hill, Inc., 1984.

[HANS87] Hanson, E. R., "A Performance Analysis of View Materialization Strategies," in

Proceedings of the ACM-SIGMOD International Conference on Management of Data,

May 1987, pp. 440-453.

[KING83] King J.L., "Centralized versus Decentralized Computing: Organizational Considerations

and Management Options," in ACM Computing Surveys, vol. 15, no. 4, December 1983,

17

pp. 319-349.

[LIND86] Lindsay, B. G., L. Haas, C. Mohan, H. Pirahesh, and P. Wilms, "A Snapshot Differential

Refresh Algorithm," in Proceedings of the ACM-SIGMOD International Conference on

Management of Data, June 1986, pp. 53-60.

[MADN88] Madnick, S. and Y.R. Wang, "Evolution Towards Strategic Applications of Databases

through Composite Infonnation Systems," in Journal of MIS, vol. 5, no. 2, Fall 1988, pp.

5-22.

[ROUS86] Roussopoulos, N. and H. Kang, "Principles and Techniques in the Design of ADMS+/-,"

in COMPUTER, December, 1986, pp 19-25.

[SEGE89a] Segev, A. and J. Park, "Updating Distributed Materialized Views," in IEEE Trans. on

Knowledge and Data Engineering, (forthcoming).

[SEGE89b] Segev, A. and W. Fang, "Optimal Update Policies for Distributed Materialized ~iews,"

in Lawrence Berkeley Laboratory Technical Report LBL-26104.

[SRIV88] Srivastava, J. and D. Rotem, "Analytical Modeling of Materialized View Maintenance

Algorithms," in Proc. of the 7th Annual Symposium on Principles of Database Systems,

Austin, Texas, 1988.

[STON75] Stonebraker, M., ''Implementation of Integrity Constraints and Views by Query

Modification," in Proceedings of the ACM-SIGMOD lnternatiorial Corrference on

Management of Data, San Jose, May 1975, pp. 65-78.

18

•

~' -··· ..II;

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

of;',_._-";'"'

