Title

Interannual differences in larval haddock survival: hypothesis testing with a 3D biophysical model of Georges Bank

Permalink

https://escholarship.org/uc/item/6781d3cn

Journal

Fisheries Oceanography, 23(6)
ISSN
1054-6006

Authors

Petrik, Colleen M
Ji, Rubao
Davis, Cabell S

Publication Date

2014-11-01
DOI
10.1111/fog. 12087

Peer reviewed

Interannual differences in larval haddock survival: hypothesis testing with a 3D biophysical model of Georges Bank
\section*{COLLEEN M. PETRIK*, ${ }^{1}$, RUBAO JI, CABELL S. DAVIS}
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
*corresponding author: cpetrik@ucsc.edu
${ }^{1}$ Present affiliation: Institute of Marine Sciences, University of California Santa Cruz. Present address: NOAA NMFS Southwest Fisheries Science Center, 110 Shaffer Rd.
Santa Cruz, CA 95060

Abstract

The ultimate goal of early life studies of fish over the past century has been to better understand recruitment variability. As evident in the Georges Bank haddock (Melanogrammus aeglefinus) population, there is a strong relationship between recruitment success and processes occurring during the planktonic larval stage. This research sought new insights into the mechanisms controlling the recruitment process in fish populations by using biological-physical modeling methods together with laboratory and field data sets. We created the first three-dimensional model of larval haddock on Georges Bank by coupling models of hydrodynamics, lower trophic levels, a single copepod species, and larval haddock. Interactions between feeding, metabolism, growth, vertical behavior, advection, predation, and the physical environment of larval haddock were quantitatively investigated using the coupled models. Particularly, the model was used to compare survival over the larval period and the sources of mortality in 1995 and 1998, two years of disparate haddock recruitment. The results of model simulations suggest that the increased egg hatching rates and higher food availability, which reduced starvation and predation, in 1998 contributed to its larger year-class. Additionally, the inclusion of temperature-dependent predation rates produced model results that better agreed with observations of the mean hatch date of survivors. The results from this biophysical model imply that food-limitation and its related losses to starvation and predation, especially from hatch to 7 mm , may be responsible for interannual variability in recruitment and larval survival outside of the years studied.

Keywords: larval fish, individual-based model, recruitment, GLOBEC

INTRODUCTION

The annual variation in year-class size of a fish population can greatly influence the biomass of the population that can be fished (Trippel \& Chambers, 1997). Despite its importance, the causes of recruitment variability are not clear, and understanding recruitment variability has long been a goal to aid in the management of fisheries. Since Hjort's (1914) hypothesis that the size of a year-class is determined during the early life stage of fish, much emphasis has been placed on survival from the egg to the early juvenile stage. The haddock, Melanogrammus aeglefinus, population on Georges Bank (Fig. 1) has the classic dependence on intense but sparse recruitment years and also is known to have a strong relationship between recruitment and processes occurring during the larval stage (Mountain et al., 2008).

Larval haddock had greater survival when mismatched (phase-shifted) to the copepod populations for the years 1995-1999 (Buckley \& Durbin, 2006). By hatching before the spring bloom, haddock maximized size at time of year rather than size at age (Lapolla \& Buckley, 2005; Buckley \& Durbin, 2006; Buckley et al., 2010). Though hatching early results in slower growth from lower temperatures, less food, and less light available for visual feeding compared to later in the year, it leads to less predation as well (Lapolla \& Buckley, 2005; Buckley \& Durbin, 2006; Buckley et al., 2010). These findings appear to contradict the larval fish paradigms about size and survival, specifically that individuals with higher growth rates will spend less time as vulnerable larvae, particularly small larvae, with high mortality rates (Leggett \& Deblois, 1994). However, if changing climate conditions lead to higher prey availability earlier in the year (Ji et al., 2008), survival of early-spawned larvae could be further enhanced. In
addition to seasonal prey availability and predation risk, advection could be important in regulating the recruitment of haddock. Advective loss of larvae or their planktonic copepod prey could occur early in the spawning period before the gyre has strengthened with seasonal stratification (Butman \& Beardsley, 1987), as well as from Gulf Stream rings (Butman et al., 1982; Flierl \& Wroblewski, 1985), and strong wind events (Chase, 1955; Lewis et al., 1994, 2001).

Spatially-explicit coupled biological-physical individual-based models (IBMs) are ideal for studying the processes of feeding, growth, predation, and advection during the larval stage. Such models act as laboratories where simulation experiments can be conducted to disentangle these factors, determine their relative importance, and reveal how they are affected by environmental variability. We seek to gain insights into the recruitment variability of Georges Bank haddock by using a spatially-explicit coupled biological-physical IBM to examine two disparate years sampled during the U.S. GLOBEC Northwest Atlantic/Georges Bank (GLOBEC GB) program during 1995-1999 (GLOBEC, 1992; Wiebe et al., 2002). The 1998 haddock year-class was the largest of the study period and the largest since 1978, until the record 2003 year-class (Brodziak \& Traver, 2006) that outsized the previous record 1963 year-class. The 1998 year-class had a broad spawning period, low egg production, and the highest egg and larval survival rates of the five GLOBEC study years (Buckley \& Durbin, 2006; Mountain et al., 2008). On the other hand, 1995 was a year of low recruitment with low prey biomasses (Buckley \& Durbin, 2006) resulting in food-limited growth and the condition of some first feeding haddock larvae indicative of starvation (Buckley et al., 2006). In addition to recruitment,
both recruitment per hatched egg (Mountain \& Kane, 2010) and larval abundance at 15 days post hatch (Mountain et al., 2008) were higher in 1998 than 1995.

We coupled a hydrodynamics model, a nutrient-phytoplankton-zooplanktondetritus (NPZD) model, a stage-based copepod population model, and a larval haddock IBM to simulate the processes on Georges Bank during the larval period of haddock. The model was used to compare survival over the larval period and the sources of mortality in 1995 and 1998. As stated above, there are generally three hypothesized sources of larval mortality: advection, predation, and starvation. These hypotheses were tested to see if any accounted for the observed differences between 1995 and 1998. Specifically, we tested the role of hatch location and abundance, the physical environment, prey density, vertical swimming behavior, seasonal predation, spatial predation, and interannually-varying predation.

METHODS

Physical model

The hydrodynamics were provided by the Finite Volume Coastal Ocean Model (FVCOM). FVCOM is a prognostic, unstructured-grid, finite-volume, free-surface, threedimensional (3D), primitive equation coastal ocean circulation model (Chen et al., 2003). FVCOM receives input from an atmospheric model (Fifth-Generation Penn State/NCAR Mesoscale Model, MM5), is driven by realistic surface and boundary forcing, and assimilates satellite and buoy data. There is a Lagrangian particle-tracking routine for FVCOM, which can be used to couple individual-based biological models (Chen et al., 2006; Ji et al., 2012). The particle-tracking routine was run offline with FVCOM output saved every hour as the physical forcing. Preliminary tests demonstrated that daily output was too coarse and resulted in different trajectories compared to hourly, which captured the important tidal circulation on Georges Bank. Chen (1992) estimated the autocorrelation time scale of currents on Georges Bank as one hour, using 5 min ADCP data recorded in the Great South Channel. Thus, velocities at time scales shorter than one hour are coherent, and there was no need to use FVCOM flow output at a higher temporal resolution than hourly. Additionally, hourly output of FVCOM results have been applied to the Gulf of Maine and Georges Bank region (Huret et al., 2007; Churchill et al., 2011) and the resulting trajectories captured the general transport patterns well.

The saved velocities were used to calculate Lagrangian pathways by linear interpolation in space and time, with an explicit fourth order Runge-Kutta scheme and a time step of 30 s . A random walk model was applied to simulate vertical diffusion by applying the method of Visser (1997) using the FVCOM-saved vertical velocity and
vertical eddy diffusivity that was calculated with the Mellor and Yamada (1982) level 2.5 turbulence closure model. This random walk model is sensitive to the time step, thus a smaller time step of 0.2 s was necessary for the random walk process to prevent specious particle accumulation in areas of low diffusivity. In addition to velocity and diffusivity, temperature, light, and bottom depth from FVCOM were also stored and used in the biological submodels.

Prey field

Many IBMs use size-based feeding models, however it has been shown that larval fish prey selection is not purely size-based (Petrik et al., 2009). Copepod prey of similar size are ingested in amounts disproportionate to their abundance in the environment (Kane, 1984; Heath \& Lough, 2007). In addition to its size, the behavioral properties of the copepod Pseudocalanus spp. make it the most preferred prey item of larval haddock (Petrik et al., 2009). It is the majority of the prey biomass consumed (Kane, 1984, Lough et al., 2005; Heath \& Lough, 2007) and its biomass is highly correlated to larval haddock growth rate (Buckley \& Durbin, 2006). As a simplification, Pseudocalanus spp. was used as the sole prey source to larval haddock in the coupled model. The Pseudocalanus spp. density was modeled with a 4-stage (eggs-nauplii-copepodite-adult) concentration-based population model (Hu et al., 2008; Ji et al., 2009), excluding the eggs as a prey source. The FVCOM hydrodynamics model was coupled to a NPZD model, with the flow fields, temperature, and phytoplankton serving as inputs to the copepod population model (Ji et al., 2009). These runs were completed prior to the haddock IBM simulations, with the
resulting Pseudocalanus spp. concentrations stored every hour and used as offline prey inputs.

Larval haddock IBM

The following descriptions are all components in the IBM of larval haddock within the offline FVCOM particle tracking routine. These processes occurred with a time step of 15 min. For complete equations and parameterizations, see the Appendix.

Super-individuals

To simulate realistic numbers of individuals and prevent significant variation from being lost from the population, super-individuals (Scheffer et al., 1995) were used to represent larvae. The number of individuals, n, within each super-individual was determined from estimated egg hatching rates calculated for the years 1995 and 1998 on Georges Bank (Mountain et al., 2003, 2008). Daily estimates of egg hatching rates were spatially interpolated to a regular grid covering the sampling area (Mountain et al., 2003, 2008), with roughly 1955 grid nodes within the 200 m isobath used to define Georges Bank in this study. Egg hatching rates in units of no. $10 \mathrm{~m}^{-2} \mathrm{~d}^{-1}$ were converted to total number of individuals hatched per month by multiplying the rate by the area covered by that grid box and the total number of days in that month. Depending on cohort and year, this method resulted in hatching at 890-1874 of the grid cells with various numbers of individuals. The center of each grid box was the location each super-individual was released at hatch. The number of super-individuals necessary to produce stable results was tested by releasing 1, 2 , or 3 super-individuals at each grid node with estimated egg
hatching. For each test case, the reference model (see Simulations section below) was run and summary metrics (see Analyses section below) were calculated. Data for untested numbers of particles was added to these graphs by randomly subsampling the model output with 3 super-individuals per node 100 times for each number that was not simulated. The minimum number of particles needed was equivalent to the asymptotes of the graphs of metric as a function of particle number. Asymptotes were defined as when the mean of 100 subsamples fell within one standard deviation of the results with the greatest number of particles subsampled. The simulated results and the mean results of random subsamples converged when particles >2250. The final numbers used in all simulations were $2.67 \times 10^{3}-5.63 \times 10^{3}$ super-individuals with $6.43 \times 10^{5}-2.42 \times 10^{10}$ individuals per super-individual (Table 1). These amounts are similar to the numbers of particles simulated by Huret et al. (2007) with FVCOM in the Gulf of Maine, who independently performed a stability analysis.

Foraging submodel

The foraging submodel (Appendix eqs. 1-16) was based on the larval fish feeding models of Caparroy et al. (2000) and Fiksen and MacKenzie (2002), adapted for cod by Kristiansen et al. (2007) and parameterized for larval haddock and Pseudocalanus spp. by Petrik et al. (2009). Ingestion was the product of encounter rate and the probability of successful capture. Encounter rate was a function of prey density, prey swimming speed, turbulent velocity, larval fish pause duration and frequency, and larval perception distance (dependent on light and larval size). The probability of successful capture was an empirical function of copepod species (Pseudocalanus spp.) and developmental stage
length parameterized from mechanistic simulations of species-specific copepod escape behaviors, including the deformation rate threshold, escape jump speed, and escape jump angle. The species-specific prey characteristics were also size-specific, however size was not a state variable in the copepod population model. As a first approach, the length, width, and biomass of a grouped developmental stage (e.g. nauplii) was set as the mean of all stages within that group (e.g. mean of NI-NVI) using the lengths, widths, and biomasses in Davis (1984, 1987). This empirical function was used to reduce computing time instead of simulating $10^{2}-10^{5}$ iterations of each larva trying to capture each prey item at each time step to calculate the probability of successful capture as was done in Petrik et al. (2009).

Bioenergetics submodel

The bioenergetics submodel (Appendix eqs. 17-33) was the same as that used in Petrik et al. (2009) for larval haddock, which was based on Kristiansen et al. (2007) for larval cod. The energy derived from the amount of biomass ingested in the foraging submodel was apportioned to metabolism and growth, both of which were temperatureand larval size-dependent. Metabolism was increased a constant amount during light hours to account for the swimming activity of feeding fish. The light threshold was updated to reflect the findings of Vollset et al. (2011) of active feeding at low light intensities. The light threshold changed from $1.0 \times 10^{-3} \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for all sizes, to $5.0 \times 10^{-3} \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for larvae $<7.5 \mathrm{~mm}$ and $5.0 \times 10^{-4} \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for larvae $\geq 7.5 \mathrm{~mm}$.

Predation submodel

Interactions with individual predators were not modeled, but both visual and nonvisual predators were represented by predation rates (Appendix eqs. 34-39). Nonvisual predation, representative of ambush or tactile invertebrate predators, was assumed to be a decreasing function of larval fish (their prey) size. The nonvisual predation rate was found using a size-dependent model adapted from Peterson and Wroblewski (1984) and was constant spatially and temporally for a given size.

Visual predators were simulated by following the visual predation models of Aksnes and Giske (1993), Aksnes and Utne (1997), and Fiksen \& Jørgensen (2011). Visual predator density was assumed to decrease with increasing larval size since the size of the predator must increase, and larger animals tend to have lower densities than smaller ones (Sheldon et al., 1972; Jennings \& Mackinson, 2003). The visual predation rate decreased with larval size and depth, but was constant horizontally and in time.

The total base predation rate was the sum of nonvisual and visual predation rates. The visual predation rate was parameterized such that the total base predation rate was approximately $0.1 \mathrm{~d}^{-1}$ for a 5 mm larva (Bailey \& Houde, 1989). Similar to the visual predation rate, the total predation rate decreased with larval size and depth, and was constant horizontally and in time.

Mortality
Mortality of larvae resulted from starvation, advection, or predation. Entire superindividuals were removed from the population if they starved or were lost to advection. A larva was considered to have starved to death if its mass fell below 70% of the mass that it would have at that length under unlimited food conditions (Kristiansen et al., 2009;

Appendix eq. 33). Since all individuals within a super-individual were identical biologically, starvation of a super-individual resulted in loss of all of its individuals. Similarly, if a super-individual was lost to advection, then all of its individuals were lost because they all have the same location in time and space. Super-individuals were deemed lost by advection when they crossed the 200 m isobath (Fig. 1). The 200 m isobath has been used to define the edge of Georges Bank in other studies that estimated bank residence times (Colton \& Anderson, 1983; Page et al., 1999) and retention of larval fish (Lough et al., 2006). Advective loss served as a proxy for the combination of starvation that would occur as the larvae left the rich prey environment of the bank, predation by mesopelagic fishes off the slope of the bank, and the inability to find suitable juvenile settlement habitat.

As argued by Scheffer et al. (1995), losses of individuals within a superindividual via predation were modeled by drawing a random number from a binomial distribution (Appendix eqs. 51-55). The probability of predation, p, for a super-individual was calculated from an exponential probability distribution from the total predation rate. This probability was used with an exact binomial probability density function when $n \leq 20$. To reduce computation time, approximations for the binomial distribution were used when $n>20$. When $n>20$ and $n p \leq 50$, the Poisson approximation for a binomial distribution with small p was used. The Poisson distribution was further approximated by a normal distribution when $n>20$ and $n p>50$. At each time step, n was reduced by the number drawn from the binomial or binomial approximated probability distribution.

Simulations

Two contrasting years in haddock recruitment, 1995 and 1998, as observed during the GLOBEC GB field study, were chosen for this modeling study. Super-individuals were initialized as newly-hatched 5 mm larvae in the number and location specified from the egg hatching rate estimates of each year. Hatch locations were determined from observations of egg abundance (Sibunka et al., 2006) projected forward using estimated egg mortality rates and spatially integrated using kriging as described in Mountain et al. (2003, 2008). Initial depth was random from surface to bottom to approximate the uniform distribution of eggs from wind and tidal mixing (R. G. Lough, NOAA NMFS NEFSC, USA, pers. comm.). Three different cohorts were simulated each year, which hatched on the midpoint of February, March, and April. Simulations were run until midJune, the last month sampled by the GLOBEC GB surveys in 1995. Thus, the run time of the April cohort was 55 d . For equality, each cohort was analyzed until 55 days post hatch (dph). Analyses were made at 55 dph or at the time when larvae reached 12 mm , the average length at the transition to pelagic juveniles, if that occurred before 55 dph . It was assumed that the model no longer applied to juveniles because they have different metabolisms, are less vulnerable to predation, and have greater swimming abilities. The model timespan of 55 dph was deemed an adequate representation of the larval period since the time of transition from pelagic juveniles to demersal juveniles (which occurs after the transition from larvae to pelagic juveniles) has been estimated as 2 months (Page et al., 1999; Mountain et al., 2003). Because the mortality calculations include individuals that survived the first 55 dph , but did not reach 12 mm , the analyses represent the processes acting during the majority of the larval period, and not up until the exact time of juvenile transition.

A total of 19 different simulations were run, 9 for 1995 and 10 for 1998 (Table 2). The reference case used the model in its simplest form to contrast larval survival in 1995 and 1998. The additional simulations can be considered as hypothesis tests or sensitivity analyses. They were performed to test whether additional information was necessary to replicate the hatch dates of survivors and the survival differences between 1995 and 1998.

Reference case (R)

As a reference case, super-individuals were modeled as passive (neutrally buoyant) particles. All other model components were as described above.

Opposite environment (O)

To distinguish the effect of the environment during transport from that of hatch locations and abundance, the locations and numbers of one year were used in conjunction with the physical (velocity, temperature, light) and biological (prey density) environment of the other year.

Low prey (L)

The spatial and temporal patterns in Pseudocalanus spp. abundance from the population model match climatological observations (Ji et al., 2009). The tempo-spatial patterns from a preliminary model run for Pseudocalanus from 1995-1999 also agreed with yearly observations, but the absolute abundances for 1998 were lower than observed. The observed abundance of Pseudocalanus in 1998 was 2-3 times higher than
that in 1995 (Ji et al., 2012). To account for this, the 1998 copepod model concentration was increased by a factor of 5 to result in mean abundances 2-3 times higher than the 1995 output from the copepod model in the reference case and all other cases. In the "low-prey" simulation the 1998 densities were only increased by a factor of 2.5 to approximate the 1995 prey densities and to test if prey density was the cause of differential survival.

Swimming behavior (DVM)

Since the mechanism responsible for larval haddock depth selection has not been resolved, a simple vertical behavior was simulated to test its effect on survival. Lough and Potter (1993) observed a diel difference in vertical distribution of larvae 9 mm and larger. The diel vertical migration (DVM) behavior simulations imposed preferred daytime and nighttime depths of 40 m and 20 m , respectively, for larvae $>9 \mathrm{~mm}$ following observations. Daytime was regarded as when surface light (from the physical model) was $>1.0 \times 10^{-3} \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$. Vertical swimming velocity was implemented as a tangential function that directed larvae towards the preferred depth (Appendix eqs. 5657). The swimming speed was symmetric about the preferred depth. Above it the velocity was negative so that larvae swam down; below it the velocity was positive so that larvae swam up. Speed decreased as a super-individual neared the preferred depth.

Temperature-dependent predation (TP)

Following Houde (1989), the temperature-dependent predation rate increased 0.01 d^{-1} per $1^{\circ} \mathrm{C}$ increase in temperature (Appendix eqs. 40-42). The base temperature was set
as $6.5^{\circ} \mathrm{C}$, the temperature associated with the predation rate of $0.1 \mathrm{~d}^{-1}$ for a 5 mm larva (Jones, 1973; Bailey \& Houde, 1989; Houde, 1989). A second temperature-dependent predation simulation was run with a lower base temperature $\left(5.5^{\circ} \mathrm{C}\right)$, which caused even greater predation rates during warmer months. Both forms were used to test if higher predation rates in the late spring would result in more survivors from the early hatch dates as observed.

Spatially-dependent predation (CP, FP)

The distribution of potential predators of larval haddock on Georges Bank (e.g. chaetognaths, predatory copepods, amphipods, mysid shrimps, decapod shrimps, euphausiids, hydroids, hydromedusae, scyphomedusae, siphonophores, herring, mackerel) falls into two groups, those that are more abundant on the shallow, well-mixed crest region (shoalward of the 60 m isobath; C in Fig. 1), and those that are more abundant on the seasonally stratified flanks that are in waters deeper than 60 m (e.g. NF and SF in Fig. 1). The predators are more diverse and abundant on the crest (Sullivan \& Meise, 1996), however this does not necessarily equate to higher predation rates because of possible differences in consumption rates. Two different simulations were run to test the effect of spatially-dependent predation, one where predation was three times as high on the crest compared to the flanks, and a second where predation was higher on the flanks (Appendix eqs. 43-46). Predation rates were offset from the base predation rate by $\pm 50 \%$ to keep predation losses comparable to simulations that did not have spatiallydependent rates.

Interannually varying predation (95P+, 95P-)
We varied the predation rates in 1995 and 1998 to investigate the hypothesis of dissimilar rates from any combination of different predator communities, abundances, and consumption rates between the two years. The base predation rate was altered by $\pm 10 \%$ in one year and by $\pm 10 \%$ in the opposite direction in the other (Appendix eqs. 4750). The results presented are as the variation made to the 1995 simulations (e.g. $95 \mathrm{P}+$ or $\mathrm{P}+$ is 10% higher in 1995 and 10% lower in 1998).

Analyses

Starvation, predation, and advection fatalities were calculated as the fraction of individuals hatched in each cohort that were lost to that source of mortality before 55 dph or upon reaching 12 mm . Similarly, percent survival was assessed as the number of individuals hatched in each cohort that were alive at 55 dph or upon reaching 12 mm . To better discriminate the sources of mortality affecting larval survival in the model simulations, percent loss to different sources was analyzed in a systematic way to isolate the impact of each. This approach allowed distinguishing between whether loss to one source of mortality was reduced/increased because of its driving factors (i.e. prey abundance, predation rate, etc.) or because the other sources of mortality were increased/reduced.

In addition to the fractions of each cohort that survived or were lost to different sources of mortality, hatch distributions, cohort contributions, and survival per hatch were also calculated from model results. The hatch distribution of each year was the fraction of individuals hatched in each month out of the total hatched that year. The
contribution of each cohort to survivors represented the percent of survivors from each hatch date out of the total number of survivors from all hatch dates in one year combined. Hatch distribution and cohort contribution analyses were repeated for larvae that hatched on the western and eastern sides of Georges Bank separately. Cohort contributions were compared to the estimated hatch dates of juvenile survivors collected in the field (Lapolla \& Buckley, 2005; Mountain et al., 2008). The total annual percent survival was the total number of survivors from all hatch dates out of the total number of individuals hatched in that year, and is termed "survival per hatch." The survival per hatch ratio compared the survival per hatch value of 1998 to that of 1995 for each simulation. Model survival per hatch was compared to recruits per hatch estimated from observations (Mountain \& Kane, 2010).

Cohort and year means were calculated for each simulation for the following properties: time to 12 mm , specific growth rate, depth, temperature experienced, and prey concentration experienced. Mean depth was calculated for all individuals and those that survived to 12 mm , whereas means of time to 12 mm , specific growth rate, temperature, and prey concentration were only calculated for individuals that survived to 12 mm . Means of growth rate, temperature, and prey concentration accounted for the time from hatch until each individual reached 12 mm . All results were analyzed at the level of individuals within the super-individuals. A weighted mean, the mean of the superindividuals weighted by the number of live individuals within each super-individual, was used since these properties were shared by all individuals within a super-individual.

RESULTS

Reference case

Larval distributions

Distributions of larvae at hatch differed between months and years in the passive, reference simulations (Fig. 2a-c, 3a-c). In February of 1995, larvae hatched on both the eastern and western sides of the bank, with none in the middle (Fig. 2a). In March 1995, larvae were missing from the very center crest and center Southern Flank (SF; Fig. 2b), whereas hatching in April was restricted to the east side and along the SF (Fig. 2c). The majority of larvae hatched in February 1998 were on the eastern side of the bank, with some on the NW side (Fig. 3a). March 1998 hatch distributions surrounded the perimeter of the bank, but were not in the very center of the bank (Fig. 3b), while in April, larvae hatched all over the bank (Fig. 3c).

The final distributions of all individuals, dead or alive, at the mean time that cohort reached 12 mm (Table 3) varied between months and years because of disparities in initial locations and advection (Fig. 2d-f, 3d-f). In 1995, larvae of all cohorts were absent from the Northern Flank (NF; Fig. 2d-f). In contrast, larvae in 1998 were more abundant and widespread in the Mid-Atlantic Bight (MAB), demonstrative of stronger advection (Fig. 3d-f). This advection to the southwest through the Great South Channel (GSC) increased with hatch date in both years (Fig. 2d-f, 3d-f).

The distributions of 12 mm survivors (Fig. 2g-i, 3g-i) indicated the final locations of individuals that were transported through favorable environments, and were small fractions of the areas covered by the final distributions of all larvae. In 1995, survivors of all cohorts were confined to the bank crest, and the area occupied increased with hatch
date (Fig. 2g-i). The February and March 1998 cohorts followed this pattern, but the April cohort was located in the MAB and in most areas on the bank except the SF (Fig. $3 g-i)$. The area spanned by survivors from the 1998 cohorts exceeded that of the corresponding 1995 cohorts (Fig. 2g-i, 3g-i).

Mortality

When only advective loss was considered (no starvation, no predation), advection resulted in 3-13\% of losses in 1995 and 6-27\% in 1998 (Table 4). Losses to advection were greatest for the March cohort in 1995 and the April cohort 1998, but the contribution of these cohorts to total survival in each year was still the highest (Table 4) because of their large numbers of larvae (Table 1). Survival per hatch was higher in 1995 than 1998 (Table 4).

When larvae were allowed to starve to death, the fraction of larvae lost to advection did not change for any cohort or year (Table 4). Starvation greatly affected survival, reducing it from $87-97 \%$ to $8-45 \%$ in 1995 , and from $73-94 \%$ to $12-41 \%$ in 1998 (Table 4). Adding starvation resulted in a positive relationship between percent survival and hatch date, and altered the contribution of each cohort to total survivors such that later hatch dates contributed more (Table 4). Starvation losses reversed the survival per hatch pattern between years to be greater in 1998 than in 1995 (Table 4).

When predation mortality was taken into account, percent survived, advected, and starved all decreased (Table 4). In general, predation was a greater source of mortality to larvae that would have starved than to larvae that would have been lost to advection. The patterns of the greater survival per hatch in 1998 and of increasing cohort contribution
with hatch date in both years remained unchanged, and the contributions of the April cohorts were intensified (Table 4). Survival per hatch decreased from 23-29\% due to advection and starvation only, to $1-2 \%$ with the addition of predation mortality (Table 4).

Cohort survival

A greater number of larvae hatched in all months of 1998 compared to 1995 (Table 1). In 1998, the April cohort made up the largest proportion of larvae hatching and surviving, and the February cohort the least (Fig. 4 right). Conversely, the majority of larvae hatching in 1995 came from the March cohort, but the proportion of survivors that originated in the April cohort was greater than the proportion of all hatched larvae derived from that cohort (Fig. 4 left).

Percent survival increased with cohort hatch date in both 1995 and 1998 (Table 4). Percent survival of all the 1995 cohorts was lower than the respective 1998 cohorts (Table 4). The 1998 April cohort had the highest percent survival (Table 4) and the greatest number of surviving individuals (Table 5). Starvation losses decreased with hatch date for both years, while advection losses increased (Table 4). In 1995, predation losses were highest and equal for the March and April hatch dates, whereas loss to predation increased with hatch date in 1998 (Table 4).

Growth rates

The weighted mean time to 12 mm (d) decreased with increasing cohort hatch date for both years, however weighted mean specific growth rates $\left(\mathrm{d}^{-1}\right)$ of 12 mm survivors did not increase with hatch date (Table 3). Mean time included individuals that
reached 12 mm after the 55 d larval period, but mean growth did not. The March cohort had the fastest growth rates in 1995 and the slowest in 1998, when the April cohort had the highest (Table 3). The mean time was shorter and mean growth rate faster for the February and April cohorts in 1998 compared to the corresponding cohorts from 1995, but the March cohorts had equivalent mean times and growth rates (Table 3). Since the mean temperatures experienced by the surviving larvae of the February and April cohorts in 1998 were similar to those experienced in 1995 (Table 6), the faster growth rates in 1998 can be attributed to higher prey concentrations experienced by these larvae (Table 7). The mean temperatures experienced by the April cohorts were near the optimal temperature for larval haddock growth under food-limited conditions $\left(7^{\circ} \mathrm{C}\right.$; Buckley et al., 2004), while the other cohorts were below optimal (Table 6). Despite the lower temperatures (Table 6) and prey concentrations (Table 7) experienced by the March 1995 cohort, the mean growth rate was higher than that of the April cohort, suggesting selection pressure from predation, possibly from the shallower distribution of the cohort in the water column (discussed in Alternate hypotheses-Mean depth section below).

Alternate hypotheses

Mean depth
Weighted mean depths were used to compare depth distributions between passive (reference case, R) and vertically migrating (DVM case) larvae, between years, and between all individuals and only those that survived to 12 mm . The weighted mean depth of the largest fraction of all larvae was between 30 and 40 m , regardless of passive or diel vertical behavior, for all hatch dates and years (Fig. 5a,c,e,g). The depth distributions of
all passive larvae and all larvae with behavior were very similar with slight differences by cohort (Fig. 5a,c,e,g). Of the larvae that survived to 12 mm , the weighted mean depth of the largest fraction, either 20 or 30 m , was higher in the water column than all larvae. The passive and DVM surviving larvae from 1995 showed similar depth distributions for the April cohorts, but the February and March cohorts differed (Fig. 5b,d). The passive larvae from February and March 1995 had sharp maxima at 30 m while the larvae with DVM had broader maxima between 20 and 30 m (Fig. 5b,d). Regardless of passive or DVM, the 1995 February and March cohorts had greater fractions higher in the water column than the April cohort. In 1998, survivors of the March and April cohorts had similar depth distributions with or without DVM (Fig. 5f,h), and in contrast to the 1995 population, the passive February cohort was slightly more broadly distributed than the individuals from February with DVM (Fig. 5f,h). The proportion of surviving individuals at depth gradually increased with hatch date with or without vertical swimming behavior in 1998 (Fig. 5f,h).

Comparing between years, the 1995 February and March cohorts had greater proportions of all larvae with and without DVM around 30 m compared to 1998, while the 1995 April cohort had fewer proportions near this depth than in 1998 (Fig. 5a,c,e,g). The passive and behaving larvae that survived to 12 mm from the February cohort were in higher proportion at 30 m in 1995, whereas there was a higher proportion at 20 m in 1998 (Fig. 5b,d,f,h). The DVM larvae that survived to 12 mm from the March cohort were in greater abundance higher in the water column in 1995 compared to 1998 (Fig. 5d,h). Conversely, the April cohort survivors from 1995 were deeper than the 1998 cohort, both passive and with behavior (Fig. 5b,d,f,h).

The greatest differences in depth distributions were between all larvae and only those that survived to 12 mm . The 12 mm survivors from all cohorts were generally more abundant above 50 m (Fig. 5b,d,f,h), while all larvae had greater fractions below 50 m (Fig. 5a,c,e,g). In all comparisons, there was a steep decrease in survivors below 50 m that contrasted with the more gradual decrease of all individuals (Fig. 5). Copepod prey concentrations were highest in the surface layer with maximum concentrations generally between 0 to 35 m in 1995 and 0 to 65 m in 1998. Thus the majority of larvae in all cases were at depths with high prey availability. There was a sharp decline in prey density between 50 and 100 m coincident with the decreased abundance of surviving larvae (Fig. 5b,d,f,h).

Hatch distribution effect on survival and sources of mortality
The cross-initialization case demonstrated that both hatch locations and the environment affected survival. The environment had the greatest influence on starvation, with increased starvation in the 1995 environment, whereas advection losses depended more strongly on hatch location, which were greater with the 1998 hatch locations (Table 8, Fig. 6). Larvae hatched in the 1995 February and March locations had greater percent survival than those hatched in the 1998 locations under both environments. Cohorts hatched in the 1995 locations experienced increased survival when in the 1998 environment (Table 8, Fig. 6a,b), while cohorts hatched in the 1998 locations experienced a decrease in survival when in the 1995 environment (Table 8, Fig. 6c,d). With the exception of the February cohorts in the 1995 environment, predation caused the plurality of losses in all simulations (Table 8, Fig. 6).

Since hatch location and time influenced survival patterns, the fractions of individuals hatched west or east of $67.5^{\circ} \mathrm{W}$ (midpoint of GB) that survived or were lost to different sources of mortality were calculated for each cohort and year (Fig. 7). The greatest differences in morality occurred in 1995. The dominant source of mortality of larvae hatched in February 1995 was predation for those hatched west of $67.5^{\circ} \mathrm{W}$ (Fig. 7a) and starvation for those hatched to the east (Fig. 7b). The fate of larvae hatched to the east in April 1995 (Fig. 7b) mimicked the pattern of all larvae (Fig. 6a). In contrast, larvae hatched in April 1995 west of $67.5^{\circ} \mathrm{W}$ were predominantly lost to advection (Fig. 7a). Total advection losses were greater for cohorts hatched to the west of $67.5^{\circ} \mathrm{W}(66 \%$ vs. 31%; Fig. $7 \mathrm{a}, \mathrm{b}$) in 1995 and to the east of $67.5^{\circ} \mathrm{W}$ in 1998 (35% vs. 15%; Fig. $7 \mathrm{c}, \mathrm{d}$).

As a result of all losses, the greatest fraction of survivors in 1995 were from individuals hatched east of $67.5^{\circ} \mathrm{W}$ in the April cohort, followed by the eastern March cohort, and then the western March cohort (Fig. 8 top left). The 1998 April cohort hatched east of $67.5^{\circ} \mathrm{W}$ also contributed the most to the total number of survivors, but was followed by the western April and the eastern March cohorts (Fig. 8 top right). Of all the larvae in 1995, roughly 90% of those hatched and those that survived were hatched east of $67.5^{\circ} \mathrm{W}$ (Fig. 8 bottom left). A greater fraction of larvae hatched on the western side of the bank in 1998 (Fig. 8 bottom right). In both years, larvae hatched to the west contributed more to survivors than to the total numbers hatched. In 19956.3% hatched to the west, but 11.1% of survivors came from the west, with particular increases in the February and March cohorts (Fig. 8 left). The amount hatched to the west of $67.5^{\circ} \mathrm{W}$ in 1998 was 27% of all larvae hatched and 34% of the survivors, mainly due to the April cohort (Fig. 8 right).

Survival in the alternate hypotheses simulations
The fraction of individuals that survived out of those that hatched was greater in 1998 than 1995 for all cases (Fig. 9a). Temperature-dependent predation with a base temperature of $5.5^{\circ} \mathrm{C}$ (TP5) resulted in the lowest survival per hatch in both years, while DVM and temperature-dependent predation with a base temperature of $6.5^{\circ} \mathrm{C}(\mathrm{TP} 6)$ also decreased survival from the reference for both years (Fig. 9a). Spatially-dependent predation with increased rates on the crest and decreased rates on the flanks (CP) resulted in the highest survival in both years, while increased flank predation (FP) also increased survival rates (Fig. 9a). Though this seems counterintuitive, there was an asymmetry in the losses to predation, advection, and starvation in these two cases such that the number of survivors from reduced predation losses (CP; Fig. 10b) and reduced advection and starvation losses (FP; Fig. 10a, c) outweighed the increased losses from the other mortality sources in those simulations. Surprisingly, both increasing (95P+) and decreasing (95P-) the total predation by 10% resulted in a greater number of survivors in 1995 (Fig. 9a). Again this was the result of an asymmetry in mortality where the increased losses to predation and advection with 95P+ (Fig. 10a, c) were overcompensated by decreased starvation (Fig. 10b). 1998 produced the expected response of a 10% predation reduction $(95 \mathrm{P}+$) improving survival and a 10% increase (95P-) lessening it (Fig 9a). In addition to the increases and decreases mentioned above, the opposite environment (O) enhanced survival in 1995 but reduced it in 1998, which also experienced survival decreases with the low prey (L) case (Fig. 9a).

The greater survival per hatch of all 1998 cases resulted in a ratio of survivors per hatch in 1998 to 1995 greater than one (Fig. 9b). Mountain and Kane (2010) calculated the number of recruits per hatched larva for the GLOBEC GB years. Comparing the number of recruits per hatch in 1998 to 1995 yields a ratio of 1.17 (dashed line in Fig. $9 b)$. The opposite environment simulation (O) produced the survivor per hatch ratio (1.24) most similar to the recruits per hatch ratio of Mountain and Kane (2010). Of the cases that simulated processes that could have realistically affected those years, the next closest ratio of 1.32 occurred with interannually-varying predation that was greater in 1995 (95P+; Fig. 9b). Other comparable ratios were a result of reduced predation in 1995 (95P-), and spatially-varying flank predation (FP; Fig. 9b). All simulations lowered the ratio below that of the reference case (2.45), which was most dissimilar from the Mountain and Kane ratio (Fig. 9b).

The effect of alternate hypotheses on the sources of mortality
The fraction of larvae lost to advection was low compared to other mortality sources, with greater loss in 1998 than 1995 for all cases (Fig. 10a). DVM, CP, and 95P + increased advection losses in both years, with 95P-additionally increasing advection losses in 1995 (Fig. 10a). Alternatively, FP, TP6, and TP5 lessened advective losses in both years, with 95P- and L also reducing advective loss in 1998 (Fig. 10a). As noted previously, 1995 hatch locations in the opposite environment suffered lower advection losses, while 1998 hatch locations underwent the reverse effect (Fig. 10a). Percentages of hatched larvae lost to predation were greater in 1995 than 1998 for all cases (Fig. 10b). Starvation mortality in 1995 exceeded that in 1998 for 6 of the 10 cases. The 1995
cohorts suffered fewer starvation losses with the O, FP, 95P+, and L simulations (Fig. 10c). For both years, FP resulted in the greatest predation losses while CP led to the least (Fig. 10b). These cases had the contrasting effect on starvation losses, the most from CP and the least from FP (Fig. 10c). In all cases and years, the plurality of larvae (>0.4) were lost to predation (Fig. 10).

Changes in cohort contribution from the reference
In 1995, the percent of total survivors from the February cohort was low across all simulations. The contribution of this cohort was increased from the reference case by all cases except DVM and CP (Fig. 11a). The results of the February 1998 cohort were similar, except that O reduced the contribution and CP increased it (Fig. 11d). The contributions of the March and April cohorts to all the surviving larvae in 1995 and 1998 tended to vary reciprocally (Fig. 11b,c,e,f). In 1995, all cases increased the contribution of the March cohort and diminished that of the April cohort (Fig. 11b,c). In 1998, the CP, FP, 95P+, TP6, and TP5 cases all increased the contribution of the March cohort and decreased that of the April cohort (Fig. 11e,f). The variations in the contribution to survivors by the different cohorts were smaller in 1998 with the largest changes occurring for the 1995 March and April cohorts.

Growth rate
In comparison to 1995, the 1998 simulations had survivors with faster mean specific growth rates $\left(\mathrm{d}^{-1}\right)$ from hatch until survival to 12 mm in all cases (Fig. 12). Relative to the reference, 1995 growth rates were amplified by all cases except TP6 and

TP5 (Fig. 12). Both of these cases reduced growth rates in 1998, with the addition of cases O, DVM, 95P-, and L (Fig. 12). In the O, DVM, and L simulations, the fraction of larvae in 1998 lost to starvation was higher than the reference case (Fig. 10c), suggesting that poor feeding gave rise to slower growth rates. Despite experiencing lower prey concentrations than the reference with the O and L cases, growth rates of the 1998 simulations still exceeded those of 1995 . With the exception of the February cohort, L prey densities were greater than those experienced in 1995, even though they were lowered to be comparable (Table 7). Mean prey availability was less for 1998 compared to 1995 in the O case, thus the higher mean growth rates of 1998 must be accounted for by spatially-dependent differences of the larvae with 1998 hatch locations, perhaps in predation selecting for faster growth rates. Larvae in the 95P- case had a deeper weighted mean depth than the reference case, thus lower temperatures, irradiance, and prey densities could have reduced growth rates.

DISCUSSION

Coupled biological-physical modeling simulations revealed disparities in the processes occurring during the larval period of haddock on Georges Bank between the years of differing recruitment, 1995 and 1998. The overall model results suggest that increased initial numbers of hatched larvae and higher food availability (which reduced starvation and predation) in 1998 contributed to its larger year-class.

Vertical behavior

Diel vertical migration (DVM) of larvae greater than 9 mm reduced survival per hatch in both years and the mean growth rate in 1998. In general, lower survival stemmed from increased advection in both years and starvation in 1998. The increased starvation and lower growth rates can be attributed to the greater proportions of larvae deeper in the water column where temperatures, prey densities, and light intensities were lower. By comparing all larvae to those that survived to 12 mm , regardless of vertical behavior, it can be seen that depths above 30 m benefitted the February cohort, likely from higher prey concentrations and more light for feeding. On the other hand, more survivors from the March and April cohorts were found deeper than the February survivors. These cohorts experienced higher depth-integrated prey concentrations compared to larvae hatched in February, so did not need to be as shallow in the water column. These cohorts benefitted from deeper depths where visual predation rates were reduced. Though these larvae survived by avoiding predation, their growth rates were lower in 1998 than if they had been shallower. Moreover, the 20 m nighttime depth could have been detrimental to all cohorts by increasing near-surface advection loss.

The vertical behavior used in the DVM simulation was an inadequate representation for larval haddock on Georges Bank, as behavior should not decrease survival. Observations of the vertical distribution of larval haddock and their prey (Lough, 1984; Buckley \& Lough, 1987; Lough \& Potter, 1993) suggest that the larvae have a prey-seeking vertical migration behavior. Conversely, larvae may have a preferred depth unrelated to prey that prevents advection off the bank. The modeling results of Werner et al. $(1993,1996)$ suggest that larvae must stay below 30 m to remain on the bank, despite observations of larvae above this depth. Regardless of whether the vertical behavior of larval haddock is aimed at finding prey, avoiding predation, or avoiding advection, the mechanism governing the behavior has not been determined and is an important area for future research.

Hatch date of survivors

Lapolla and Buckley (2005) back-calculated the hatch date of young-of-year juvenile haddock and found that the hatch date frequency of the surviving juveniles peaked between February and mid-March, with 1998 having a significantly later peak hatch date than 1995. More larvae hatched in April and May of 1998 survived than the 1995-1999 average, but the highest survival was still from the early hatch dates (Lapolla \& Buckley, 2005). Mountain et al. (2008) also found that the peak contribution of each cohort occurred in March of 1995 and 1998 by back calculating hatch dates from larval abundances and estimated mortality rates. The contributions to total survival from the modeled February and March cohorts were low in the reference simulation, but both temperature-dependent predation cases increased their contributions in both years.

The temperature-dependent predation rate was used to test the hypothesis that early-hatched haddock are the dominant survivors because they reach an invulnerable size before their predators become abundant (Lapolla \& Buckley, 2005; Buckley \& Durbin, 2006; Buckley et al., 2010). Temperature-dependent predation increased the February and March cohort contributions while decreasing that of the April cohort even though it failed to increase the fraction of survivors above that from April. Part of the discrepancy between our results and theirs could be that we measured survival at the end of the larval period rather than during the juvenile stage. Nevertheless, a different parameterization of temperature-dependent predation may result in cohort contributions that agree better with observations of the mean hatch date of survivors. The predation rate could be further improved by representing temperature-related increases in consumption rates and seasonal increases in predator abundances.

Observations from 1976-1987 (Lough et al., 2006) and 1995-1999 (Mountain et al., 2008) show peak haddock spawning between March and April. Evolutionarily, the peak in spawning and subsequent hatching should be timed to result in the highest survival of eggs and larvae. During the 1976-1987 period, the large and moderate yearclasses of haddock were spawned in April and benefitted from high hatching rates, high physical retention, high prey concentrations in May, and a late seasonal temperaturedependent growth optimum (Lough et al., 2006). In contrast, observations from the 19951999 GLOBEC GB study period demonstrate a mismatch between the time of peak hatching and time when most survivors hatched (Lapolla \& Buckley, 2005; Mountain et al., 2008). For example, 1998 peak spawning occurred between February and March
(days 45-85) followed by peak hatching in April (day 115), but the peak hatch time of survivors was in early March (day 65; Mountain et al., 2008).

Following the seasonal predation hypothesis (Lapolla \& Buckley, 2005; Buckley \& Durbin, 2006; Buckley et al., 2010), there could have been a decadal shift in the predator community on Georges Bank that resulted in higher predation rates in April and May for 1995-1999 compared to 1976-1987 and thus the earlier hatch dates of survivors. This shift in the predator community could be related to the increased zooplankton abundance on Georges Bank that occurred in the 1990s (Mountain \& Kane, 2010). Similarly, bottom-up biological processes in 1995-1999 could have caused prey concentrations in February and March that were high enough to support growth to a size invulnerable to predators. A potential mechanism responsible for this hypothesis is increased stratification from the input of low salinity water into the Gulf of Maine and Georges Bank from the Arctic, which could produce an earlier spring bloom and earlier development of larval haddock prey populations (Ji et al., 2008). Regardless of the cause of the mismatch in peak hatching time of all eggs and just those that survived, if this state persists, one might expect the adult haddock population to shift its peak spawning time to coincide with the ideal conditions.

Alternatively, the time of peak spawning may be controlled by the age structure of the adult population. Age-2 females of the North Sea haddock population spawned 27-36 days later than older females in 1994, 1996, and 1999 (Wright \& Gibb, 2005). Similar to the 1995-1999 observations from the Georges Bank population, the timing of peak spawn date of surviving North Sea juveniles was earlier than the peak in egg production in 1996 and 1999 (Wright \& Gibb, 2005). Wright and Gibb (2005) suggested that the negative
selection on late spawning dates was the result of less viable eggs and larvae produced by the age- 2 females. This hypothesis is supported by the fact that older haddock females produce larger eggs (Hislop 1988) from which larger larvae hatch (Rideout et al., 2005). Larger larvae have more advanced morphological characteristics that could confer survival advantages during the first few days after hatch (Rideout et al., 2005). In addition, haddock are batch spawners and egg size decreases with each batch spawned (Rideout et al., 2005). Thus, the early hatch date of surviving haddock in the Georges Bank population could be the product of high mortality of the many small eggs spawned late in the year as last batches and/or from young females, and it merits further study.

Advection

Larvae followed the general clockwise circulation pattern of Georges Bank. Advection only losses of 3-24\% of a cohort were congruent with Georges Bank studies of modeled retention rates between 20 and 65\% (Lewis et al., 2001; Lough et al., 2006), and residence times of $<10 \mathrm{~d}$ to 70 d estimated from drouged drifters (Colton \& Anderson, 1983) and a particle-tracking model (Page et al., 1999). The 1998 egg hatching patterns resulted in larvae developing all over the bank, while the 1995 cohorts were absent from the Northern Flank. Advective losses were greater in 1998 despite this year having lower off-bank wind stress (Mountain et al., 2008). In general, these higher losses in the 1998 model runs were due to hatch locations that made larvae more susceptible to advective loss, and not the result of between-year differences in the physical circulation. If advection had been the only source of mortality for larvae, haddock in 1995 would have had higher survival per hatch than in 1998.

Chase (1955) examined haddock recruitment from 1928 to 1951 in relation to wind-driven advection on Georges Bank. Weighted "damage units" to recruitment were assigned to the number of days with a continuous pressure difference between Nantucket, Massachusetts and Yarmouth, Nova Scotia, a proxy for the component of geostrophic wind that drives current perpendicular to the southern edge of Georges Bank. Chase (1955) found a significant correlation between year-class strength and the damage total from spawning (defined as when the rate of change of surface temperature lessens) until May 1. Similarly, Mountain et al. (2008) found a strong correlation between recruitment of haddock during the GLOBEC GB period of 1995-1999 and the estimated number of hatched eggs, with interannual variability in egg mortality related to wind-driven transport off the Southern Flank of Georges Bank. The correlation between recruitment and the number of larvae reaching 15 dph was almost as high as the recruitment correlation with egg hatching, however, there was no relationship between larval mortality rates and wind-driven transport (Mountain et al., 2008). Combined, their results and ours suggest that the influence of advection losses on recruitment spanned the entire early life period (spawn to May 1) for 1928-1951, and shifted to only during the egg stage for 1995-1999.

As mentioned in the Methods section, advection past the 200 m isobath was a proxy for starvation from leaving the rich prey environment of Georges Bank, heavy predation off the slope of the bank, and the inability to find suitable juvenile settlement habitat. Alternatively, each of these processes could be modeled. Super-individuals and individuals were followed for the entire duration of the simulation, such that information on starvation, predation, and location were available after a larva left the region denoted
by the 200 m isobath as long as it remained in the model domain. Many of these individuals starved and/or were eaten after advective loss in the model simulations. Though potential prey would be advected off the bank in the same mass of water that contained the larvae being advected, starvation would occur from spatial and temporal mismatch of the larvae and prey. If larvae swam out of the layer of water that was advected, they would immediately experience the lower prey densities off the continental slope. Also, prey concentration would decrease as both the prey and their resources were diluted in the deep-ocean environment and as the prey were eaten by many of the same slope-water predators that would consume the larval fish. As with all predation, it is difficult to determine how to parameterize the off-bank predation rates to simulate the losses to mesopelagic fish and other predators. Finally, it is possible for larvae to be advected back onto the bank before experiencing either starvation or predation, thus true advective loss should be determined from individuals that are not near the favorable pebble-gravel settlement habitats on Georges Bank (Lough et al., 1989) at the time of the demersal transition. As this transition from a pelagic to demersal lifestyle happens during the juvenile stage, it could not be simulated in the present study because the physiological and behavioral models do not hold for juvenile haddock.

Predation

Predation accounted for the most losses in all simulations. Percent loss to predation increased with hatch date, which is contrary to the hypothesis that larvae with faster growth rates (March 1995, April 1998) would be exposed to predation for less. However, like the larval fish, the visual predators benefited from longer photoperiods and greater
light intensities later in the season, which increased predation rates. Furthermore, starvation losses decreased with hatch date, which left more live larvae available for predators to eat. Total predation losses were higher in 1995, suggesting that the smaller, slower growing larvae were more susceptible to predation. This conclusion is further supported by the systematic addition of mortality sources. When predation was added as a source in addition to advection and starvation, it claimed a greater fraction of larvae that would have eventually starved.

Altering the predation rate was the only way to increase the contributions of early hatch dates to the surviving juveniles as observed. All temperature-dependent predation and some spatially dependent predation cases increased the contributions of the February and March cohorts and decreased those of April. It can be inferred that a predation rate that increased with temperature most likely contributed to the observations of early hatch dates of survivors, while a spatial predation component may have also played a role.

There are many types of potential invertebrate predators of fish larvae such as chaetognaths (Kuhlmann, 1977), copepods (e.g. Euchaeta norvegica; Bailey, 1984; Yen, 1987), amphipods (e.g. Parathemisto spp.; Sheader \& Evans, 1975; Yamashita et al., 1985), mysids (Bailey, 1984), decapod shrimps (e.g. Crangon septemspinosa; Wilcox \& Jeffries, 1974), euphausiids (Bailey, 1984), hydroids (Madin et al., 1996), medusae (Bailey, 1984; Purcell, 1985), and siphonophores (Purcell, 1985), as well as vertebrate predators like Atlantic herring (Clupea harengus) and mackerel (Scomber scombrus; Garrison et al., 2000). Most of these predators are opportunistic such that the prey items found in their guts reflect the natural abundances of the plankton. Since fish larvae are rather dilute (0-2.5 m^{-3}; Lough, 1984), it is doubtful that they make up a significant
portion of any opportunistic predator's diet. Even though predation of fish larvae may be incidental, there may be considerable loss of larvae if predator abundances and consumption rates are high.

Chaetognaths are probably not significant predators on larval haddock since they can only eat larvae within a narrow time period after hatch (4 dph) because of size limitations (Kuhlmann, 1977). Similarly, the copepod E. norvegica cannot consume larvae $>7 \mathrm{~mm}$ (Bailey, 1984). In addition, its consumption rate of larval fish is low in comparison to medusae and euphausiids (Bailey, 1984) and it is the least abundant of all potential invertebrate predators on Georges Bank (Sullivan \& Meise, 1996), thus negating it as a dominant predator. Though the filtering rates of mackerel could lead to high predation losses, their lack of spatial and temporal overlap on Georges Bank with haddock larvae discounts them as important predators (Garrison et al., 2000). Suspended hydroid colonies can be another significant predator of fish larvae on the crest of Georges Bank (Madin et al., 1996), unfortunately, these and other gelatinous predators are difficult to sample.

Consequently, we examined the potentially significant predators for which there was abundance data from the GLOBEC GB cruises (amphipods, mysids, C. septemspinosa, euphausiids, siphonophores, and herring). We assessed these data for interannual differences that could substantiate the survivor per hatch ratios of the simulations with interannually varying predation and higher flank predation, and for seasonal differences that increased the contributions of the February and March cohorts in several simulations. Herring stock estimates indicate that the population was greater in 1998 (DFO, 2003), while some invertebrate predators were more abundant in 1995 (Fig.
13). Neither the presence of euphausiids $(p=0.71)$, mysids $(p=0.50)$, and C.
septemspinosa ($p=1.00$), nor their abundance when found ($p=0.13, p=0.38, p=0.81$, respectively) was significantly different in 1995 and 1998. In contrast, there was a greater chance of collecting siphonophores ($p<0.01$) and hyperiid amphipods ($p=0.02$) in 1995, and the abundances of these predators were significantly higher in 1995 ($p<0.01$ and $p=0$, respectively; Fig. 13).

It is very possible that the greater abundances of siphonophores and hyperiid amphipods in 1995 compared to 1998 resulted in greater predation rates in 1995 and the observed differences in survival rate. Unlike the other invertebrate predators that eat fish larvae incidentally, larvae can comprise $90-100 \%$ of the diets of cystonect siphonophores and are frequently consumed by physonect siphonores (Purcell, 1981; 1985). The many gastrozooids of siphonophores allow them to ingest more than one larva at a time (Purcell, 1985). Hyperiid amphipods can also have a detrimental effect on larval fish populations depending on densities of predator and prey, and on their spatial and temporal overlap. For example, predation by the hyperiid amphipod Parathemisto japonica resulted in daily predation losses up to 45.2% of sand-eel larvae (Yamashita et al., 1985).

The importance of siphonophores and hyperiid amphipods as predators on haddock larvae is further supported by their lowest abundances occurring in March (Fig. 13), which could lead to an increase in the contribution of larvae hatched during this month as observed (Lapolla \& Buckley, 2005; Mountain et al., 2008). The climatological distributions of siphonophores and hyperiids indicate greater abundances outside the 60 m isobath (Sullivan \& Meise, 1996), which lends credence to model
predictions of a survival per hatch ratio similar to the Mountain and Kane (2010) ratio and increased contributions of the February and March cohorts with the higher flank predation simulation.

Conversely, mysids and C. septemspinosa are more abundant on the crest region inside 60 m (Davis, 1987; Sullivan \& Meise, 1996). The mysid abundance was also lowest in March (Fig. 13). An increase in crest predation rates raised early cohort contributions for 3 of the 4 February and March cohorts, but not as much as increased flank predation rates. Similarly, high crest predation reduced the survivor per hatch ratio, but the ratio of the high flank predation case was more similar to the Mountain \& Kane (2010) ratio. Thus, the fact that mysids and C. septemspinosa were not significantly more abundant in 1995 might be irrelevant if predation in this region is not important in driving interannual variability in larval survival. Additionally, the warm water intrusions in 1995 could have advected slope water predators onto Georges Bank (Brown et al., 2005), thereby increasing overall predation rates, as well as rates on the flank.

Neither the interannual nor the spatial pattern in predation rates on Georges Bank is fully resolved, and neither can be used to reject or accept the simulations of increased predation rates in 1995, decreased predation in 1995, and increased flank predation that each produced modeled survival per hatch ratios approximating the recruits per hatch ratio of Mountain and Kane (2010), and in the case of flank predation, enhanced the contribution of the February and March cohort contributions to survivors. However, the high larval fish ingestion rates and the seasonal abundance pattern of mysids, siphonophores, and hyperiid amphipods suggest these taxa are important predators of larval haddock. This analysis was a small effort to understand the spatially and
temporally dependent predation rates on Georges Bank. Further work is required in the form of horizontal and vertical distributions of predators and consumption rates on larval fish since predation mortality is the most uncertain component in larval fish models, and one that can have substantial effects.

Starvation and growth

Though starvation was not responsible for the largest fraction of larval mortality, foodlimitation determined the interannual variability in survival of haddock larvae in 1995 and 1998. When advection was considered the only source of loss, survival per hatch was greater in 1995 than 1998. By adding starvation as a mortality source, percent survival became greater in 1998 compared to 1995. The high survival rates of 1998 ought to have been a direct result of higher growth rates and lower starvation losses from the greater Pseudocalanus spp. concentrations. Buckley et al. (2006) report very low incidence of starvation in 5-12 mm larvae of haddock, however direct starvation of larvae is difficult to observe since malnourished larvae are smaller and have higher predation rates. This likely explains why modeled losses to predation were higher in 1995 and lower in 1998. Not only did fewer larvae in 1998 starve to death, but faster growth from higher prey in 1998 could have led to larvae that were vulnerable to predation for less time (Davis et al., 1991). Slow growing larvae in 1995 would have been exposed to predators for a longer amount of time, and would have experienced higher predation rates by being smaller at a given time and less able to avoid capture.

Starvation decreased with hatch date because as the season progressed, both photoperiod and copepod prey concentrations increased, allowing for the consumption of
more biomass. These seasonal increases were somewhat reflected in the modeled growth rates and mean times to 12 mm . The growth rate of the 1998 April cohort was high from the dramatic increase in the copepod population later in the season such that food was not limiting. The higher growth rates later in the season may have skewed the mean growth rates of all cohorts and mitigated the effect of prey availability on total survivorship.

The growth rate of haddock larvae is strongly correlated with the Pseudocalanus spp. biomass with a Michaelis-Menten type response (Buckley \& Durbin, 2006). The modeled weighted mean growth rates of surviving 5-7 mm larvae were much lower than the curve derived from RNA:DNA measurements (Buckley and Durbin 2006; Fig. 14a), potentially indicating a higher half-saturation biomass concentration, lower maximum growth rate, and/or a non-zero concentration needed for positive growth. The disagreement between the $5-7 \mathrm{~mm}$ model results and the empirical curve could be accounted for by differing temperatures that larvae were exposed to in the model and in 1992-1994 when Buckley and Durbin (2006) sampled. If temperature was not the cause, then either the model did not correctly represent some aspect of the growth of 5-7 mm larvae, or the model failed to kill slower growing larvae that died in the ocean and were not sampled by Buckley and Durbin (2006). Potential sources of error in the growth model include modeled Pseudocalanus spp. concentrations without sufficient resolution in the vertical dimension, possibly by not representing micropatchiness (Davis et al., 1991), and mischaracterization of consumption rates from aggregating the copepod stages and using mean parameter values across the stages. Alternatively, the starvation threshold in the model may be too low, which could account for the divergent growth rates if slower growing larvae die in the ocean but not in the model. Despite the discrepancy for
$5-7 \mathrm{~mm}$ larvae, the simulated $7-12 \mathrm{~mm}$ survivors had growth rates that correspond well with the maximum growth rate calculated by Buckley and Durbin (2006; Fig. 14b). Since these growth rates were at the maximum, it must have been growth and starvation during the early larval period (hatch to 7 mm) that was most important to interannual variability in survival.

Survival

The percent of hatched larvae that survived was greater in 1998, in agreement with estimates of percent of hatched larvae that survived to 15 dph (Mountain et al., 2008) and that recruited (Mountain \& Kane, 2010). The overestimation of the modeled survivor per hatch ratio compared to the recruit per hatch ratio of Mountain and Kane (2010) could be for several reasons. One, the modeled Pseudocalanus spp. prey concentrations do not capture important spatial and/or temporal differences between the two years. This source of error could be examined with a more detailed copepod population model. Two, inclusion of copepod eggs and other copepod species as prey could reduce starvation in 1995 and compensate for the difference between the two ratios. Though the four dominant prey taxa were more abundant in 1998 than 1995 (Buckley \& Durbin, 2006), the gut contents of haddock larvae indicated positive feeding preferences for other copepod species in 1995; unfortunately preferences from 1998 were unavailable (Broughton \& Lough, 2010). Three, the magnitude of the predation rate, its relationship with larval fish size, and its variability vertically, horizontally, seasonally, and/or interannually are uncertain. The base predation rate was parameterized as best as possible to agree with mortality estimates for larval fish, and the inverse relationship with larval
size agrees with calculations of decreased mortality with increasing larval age from the GLOBEC GB study period (Mountain et al., 2008). Fourth and finally, the processes responsible for the discrepancy between the modeled survivor per hatch ratio and the recruit per hatch ratio could occur during the juvenile stage, which was not included in this model.

The higher total numbers of surviving larvae in the reference simulations of 1998 compared to 1995 appear to be related to the greater number of larvae hatched in 1998. Since the number surviving was only a small percentage of the initial number of larvae, changes in predation, advection, and growth were expected to be important causes of changes in numbers of surviving larvae between years. However, the initial abundance and distribution of hatched larvae was critically important, as can clearly be seen in the run with opposite environment, i.e., the larvae hatched at the 1998 locations but subjected to the 1995 environmental conditions still had a greater number of survivors even though percent survival was lower. The largest proportion of larvae that hatched and that survived were hatched east of $67.5^{\circ} \mathrm{W}$ in both 1995 and 1998. However, larvae that originated west of $67.5^{\circ} \mathrm{W}$ composed a greater fraction of the total survivors than the total number hatched. Depending on temperature, the egg stage ranges from 10 to 20 d (mean 16 d ; Page \& Frank, 1989). Based on the circulation of Georges Bank, it is likely that the larvae that hatched west of $67.5^{\circ} \mathrm{W}$ were also spawned on that side of the bank, and the modeled proportions of 6% and 27% of larvae hatched in 1995 and 1998 compare favorably with observed proportions of 4% and 30% of the eggs spawned in those locations in those years (Mountain et al., 2008). Though spawning predominantly occurs on the Northeast Peak (NEP), spawning on western Georges Bank can contribute
survivors in the winter when advective loss from the surface waters of the NEP is highest (Lough et al., 2006). Notably, hatching success, which contributed to the higher survival in 1998 simulations, is significantly correlated to the fraction of eggs spawned west of $67.5^{\circ} \mathrm{W}$, and not to the total number of eggs spawned (Mountain et al., 2008).

Conclusions

From the model results, we conclude that the survival of larval haddock on Georges Bank is dominated by food-limitation, particularly from hatch to 7 mm , with both starvation and slower growth leading to higher predation and longer exposure to predation acting as important sources of mortality. Both starvation and predation losses were greater in simulations of larval haddock in 1995, thus it must have been the higher prey concentrations in 1998 that resulted in observations of higher survival and recruitment per hatched larvae in 1998 compared to 1995 (Mountain et al., 2008; Mountain \& Kane, 2010). Temperature-dependent predation rates resulted in cohort contributions that better agreed with observations of the mean hatch date of survivors, further supporting the hypothesis that seasonal increases in predation rate favor survival of larvae from earlier hatch dates (Lapolla \& Buckley, 2005; Mountain et al., 2008). The importance of advection during the larval period was negated by the fact that modeled advective losses were small in general, and higher in 1998 despite lower wind stress that year, due to hatch location. This conclusion is corroborated by Mountain et al. (2008), who did not find a relationship between modeled wind-driven transport and early larval mortality rates.

In addition to higher prey concentrations leading to increased growth rates and decreased starvation, the greater total number of survivors in 1998 was related to the greater number of eggs that hatched in that year. The better hatching success of 1998 was a result of weaker southeastern wind stress and a larger proportion of eggs spawned on the western part of Georges Bank (Mountain et al., 2008). The number of haddock eggs spawned is not significantly correlated to recruitment, whereas egg hatching and larval survival are correlated to recruitment (Mountain et al., 2008). Mountain et al. (2008) found that the contributions of egg and larval mortalities to overall haddock survivorship were comparable. In light of their results and the modeling work presented here, we conclude that interannual differences in haddock recruitment during the 1995-1999 GLOBEC GB study period were dominated by advection during the embryonic period and food-limitation during the larval stage. Our results suggest that food-limitation and its related losses to starvation and predation may be responsible for interannual variability in recruitment and larval survival outside of the years studied. Further research is needed to assess whether these patterns hold for other years.

ACKNOWLEDGEMENTS

Financial support was provided by a WHOI Watson Fellowship, a WHOI Coastal Ocean Institute Student Research Proposal Award, and GLOBEC grants NA17RJ1223 (NOAA) and OCE0815838 (NSF). We would like to thank D.G. Mountain for providing the egg hatching rate data, R.G. Lough for discussions on haddock larvae and predators, and A. Solow for statistical assistance. This manuscript benefitted from the comments of K.A.

Rose and 2 anonymous reviewers. This is contribution number XXXX of the GLOBEC program.

REFERENCES

Aksnes, D.L., and Giske, J. (1993) A theoretical model of aquatic visual feeding. Ecol. Model. 67: 233-250.

Aksnes, D.L., and Utne, A.C.W. (1997) A revised model of visual range in fish. Sarsia 82: 137-147.

Bailey, K.M. (1984) Comparison of laboratory rates of predation on five species of marine fish larvae by three planktonic invertebrates: effects of larval size on vulnerability. Mar. Biol. 79: 303-309.

Bailey, K.M., and Houde, E.D. (1989) Predation on eggs and larvae of marine fishes and the recruitment problem. $A d v$. Mar. Biol. 25: 1-83.

Brodziak, J., and Traver, M. (2006) Status of fishery resources off the Northeastern US: haddock. URL: http://www.nefsc.noaa.gov/sos/spsyn/pg/haddock/. [Last accessed January 2013]

Broughton, E.A., and Lough, R.G. (2010) General trends and interannual variability in prey selection by larval cod and haddock from the Southern Flank of Georges Bank, May 1993-1999. NOAA Tech Memo NMFS-NE 217: 38pp.

Brown, H., Bollens, S.M., Madin, L.P., and Horgan, E.F. (2005) Effects of warm water intrusions on populations of macrozooplankton on Georges Bank, Northwest Atlantic. Cont. Shelf Res. 25:143-156.

Buckley, L.J., and Durbin, E.G. (2006) Seasonal and inter-annual trends in the zooplankton prey and growth rate of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae on Georges Bank. Deep-Sea Res. II 53: 2758-2770.

Buckley, L.J., and Lough, R.G. (1987) Recent growth, biochemical composition, and prey field of larval haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua) on Georges Bank. Deep-Sea Res. II 44: 14-25.

Buckley, L.J., Caldarone, E.M., and Lough, R.G. (2004) Optimum temperature and foodlimited growth of larval Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) on Georges Bank. Fish. Oceanogr. 13: 134-140.

Buckley, L.J., Caldarone, E.M., Lough, R.G., and St. Onge-Burns, J.M. (2006)
Ontogenetic and seasonal trends in recent growth rates of Atlantic cod and haddock larvae on Georges Bank: effects of photoperiod and temperature. Mar. Ecol. Prog. Ser. 325: 205-226.

Buckley, L.J., Lough, R.G., and Mountain, D. (2010) Seasonal trends in mortality and growth of cod and haddock larvae result in an optimal window for survival. Mar. Ecol. Prog. Ser. 405: 57-69.

Butman, B., and Beardsley, R.C. (1987) Long-term observations on the southern flank of Georges Bank. Part I: A description of the seasonal cycle of currents, temperature, stratification, and winds stress. J. Phys. Oceanogr. 17: 367-384.

Butman, B., Beardsley, R.C., Magnell, B., Frye, D., Vermersch, J.A., Schlitz, R., Limeburner, R., Wright, W.R., and Noble, M.A. (1982) Recent observations of the mean circulation on Georges Bank. J. Phys. Oceanogr. 12: 569-591.

Caparroy, P., Thygesen, U.H., and Visser, A.W. (2000) Modelling the attack success of planktonic predators: patterns and mechanisms of prey selectivity. J. Plank. Res. 22: 1871-1900.

Chase, J. (1955) Winds and temperature in relation to the brood-strength of Georges Bank haddock. J. Cons. Int. Explor. Mer 21:17-24.

Chen, C. (1992) Variability of currents in Great South Channel and over Georges Bank: observation and modeling. Ph.D. thesis, Massachusetts Institute of Technology, 283pp.

Chen, C., Liu, H., and Beardsley, R.C. (2003) An unstructured, finite-volume, three dimensional, primitive equation oceanography model: application to coastal oceanography and estuaries. J. Atmos. Ocean Tech. 20: 159-186.

Chen, C., Cowles, G., and Beardsley, R.C. (2006) An unstructured grid, finite-volume coastal ocean model: FVCOM User Manual, Second Edition. SMAST/UMASSD Technical Report 06-0602: 315pp.

Churchill, J., Runge, J., and Chen, C. (2011) Processes controlling retention of spring spawned Atlantic cod (Gadus morhua) in the western Gulf of Maine and their relationship to an index of recruitment success. Fish. Oceanogr. 20: 32-46.

Colton, Jr., J.B., and Anderson, J.L. (1983) Residual drift and residence time of Georges Bank surface waters with reference to the distribution, transport, and survival of larval fishes. NOAA Tech. Memo. NMFS-F/NEC 24: 54pp.

Davis, C.S. (1984) Predatory control of copepod seasonal cycles on Georges Bank. Mar. Biol. 82: 31-40.

Davis, C.S. (1987) Zooplankton life cycles. In: Georges Bank. R.H. Backus and D.W.

Bourne (eds) London: MIT Press, pp. 1-593.
Davis, C.S., Flierl, G.R., Wiebe, P.H., and Franks, P.J.S. (1991) Micropatchiness, turbulence and recruitment in plankton. J. Mar. Res. 49: 109-151.

DFO (2003) Atlantic herring: Georges Bank, Nantucket Shoals, Gulf of Maine stock complex. Nova Scotia: Department of Fisheries and Oceans Science Stock Status Report 2003/028. 7pp.

Fiksen, Ø., and MacKenzie, B.R. (2002) Process-based models of feeding and prey selection in larval fish. Mar. Ecol. Prog. Ser. 243: 151-164.

Fiksen, Ø., and Jørgensen, C. (2011) Model of optimal behaviour in fish larvae predicts that food availability determines survival, but not growth. Mar. Ecol. Prog. Ser. 432: 207-219.

Flierl, G.R., and Wroblewski, J.S. (1985) The possible influence of warm core Gulf Stream rings upon shelf water larval fish distributions. Fish. Bull. 83: 313-330.

Folkvord, A. (2005) Comparison of size-at-age of larval Atlantic cod (Gadus morhua) from different populations based on size- and temperature-dependent growth models. Can. J. Fish. Aquat. Sci. 62: 1037-1052.

Garrison, L.P., Michaels, W., Link, J.S., and Fogarty, M. (2000) Predation risk on larval gadids by pelagic fish in the Georges Bank ecosystem. I. Spatial overlap associated with hydrographic features. Deep-Sea Res. II 57: 2455-2469.

GLOBEC (1992) U.S. GLOBEC: Northwest Atlantic Implementation Plan. GLOBEC Rep. No 6: 81pp.

Heath, M.R., and Lough, R.G. (2007) A synthesis of large-scale patterns in the planktonic prey of larval and juvenile cod (Gadus morhua). Fish. Oceanogr. 16: 169-185.

Hislop, J.R.G. (1988) The influence of maternal length and age on the size and weight of the eggs and the relative fecundity of the haddock, Melanogrammus aeglefinus, in British waters. J. Fish. Biol. 32: 923-930.

Hjort, J. (1914) Fluctuations in the great fisheries of Northern Europe viewed in the light of biological research. Rapp. P.-v. Réun. Cons. Int. Explor. Mer 20: 1-228.

Houde, E.D. (1989) Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish. Bull. 87: 471-495.

Hu, Q., Davis, C.S., and Petrik, C.M. (2008) A simplified age-stage model for copepod population dynamics. Mar. Ecol. Prog. Ser. 360: 179-187.

Huret, M., Runge, J.A., Chen, C., Cowles, G., Xu, Q., and Pringle, J.M. (2007) Dispersal modeling of early life stages: sensitivity analysis with application to Atlantic cod in the western Gulf of Maine. Mar. Ecol. Prog. Ser. 347: 261-274.

Jennings, S., and Mackinson, S. (2003). Abundance-body mass relationships in size structured food webs. Ecol. Lett. 6: 971-974.

Ji, R., Ashjian, C., Campbell, R., Chen, C., Gao, G., Davis, C., Cowles, G., and Beardsley, R. (2012) Life history and biogeography of Calanus copepods in the Arctic Ocean: An individual-based modeling study. Prog. Oceanogr. 96: 40-56.

Ji, R., Davis, C.S., Chen, C., Townsend, D.W., Mountain, D.G., and Beardsley, R.C. (2008) Modeling the influence of low-salinity water inflow on winter-spring phytoplankton dynamics in the Nova Scotian Shelf-Gulf of Maine region. J. Plank. Res. 30: 1399-1416.

Ji, R., Davis, C.S., Chen, C., and Beardsley, R.C. (2009) Life history traits and
spatiotemporal distributional patterns of copepod populations in the Gulf of Maine-Georges Bank region. Mar. Ecol. Prog. Ser. 384: 187-205.

Ji, R., Stegert, C., and Davis, C.S. (2012) Sensitivity of copepod populations to bottom up and top-down forcing: a modeling study in the Gulf of Maine region. J. Plank. Res. doi: 10.1093/plankt/fbs070.

Jones, R. (1973) Density-dependent regulation of the numbers of cod and haddock. Rapp. P.-v. Réun. Cons. Int. Explor. Mer 164: 119-127.

Kane, J. (1984) The feeding habits of co-occurring cod and haddock larvae from Georges Bank. Mar. Ecol. Prog. Ser. 16: 9-20.

Kristiansen, T., Fiksen, Ø., and Folkvord, A. (2007) Modelling feeding, growth and habitat selection in larval cod (Gadus morhua): observations and model predictions in a macrocosm environment. Deep-Sea Res. II 64: 136-151.

Kristiansen, T., Jørgensen, C., Lough, R.G., Vikebø, F., and Fiksen, Ø. (2009) Modeling rule-based behavior: habitat selection and the growth-survival trade-off in larval cod. Behav. Ecol. 20: 490-500.

Kuhlmann, D. (1977) Laboratory studies on the feeding behavior of the chaetognaths Sagitta setosa J. Müller and S. elegans Verril with special reference to fish eggs and larvae as food organisms. Meeresforsch 25: 163-171.

Lankin, K.F., Peck, M.A., Buckley, L.J., and Bengtson, D.A. (2008) The effects of temperature, body size and growth rate on energy losses due to metabolism in early life stages of haddock (Melanogrammus aeglefinus). Mar. Biol. 155: 461472.

Lapolla, A., and Buckley, L.J. (2005) Hatch date distributions of young-of-year haddock

Melanogrammus aeglefinus in the Gulf of Maine/Georges Bank region: implications for recruitment. Mar. Ecol. Prog. Ser. 290: 239-249.

Leggett, W.C., and Deblois, E. (1994) Recruitment in marine fishes: is it regulated by starvation and predation in the egg and larval stages? Netherlands J. Sea Res. 32:119-134.

Lewis, C.V.W., Davis, C.S., and Gawarkiewcz, G. (1994) Wind-forced biological physical dynamics on an isolated off-shore bank. Deep-Sea Res. II 41: 51-73.

Lewis, C.V.W., Chen, C., and Davis, C.S. (2001) Variability in wind forcing and its effect on circulation and plankton transport over Georges Bank. Deep-Sea Res. II 48: 137-158.

Lough, R.G. (1984) Larval fish trophodynamic studies on Georges Bank: sampling strategy and initial results. In: The propagation of cod Gadus morhua. E. Dahl, D.S. Danielssen, E. Moskness, and P. Solemdal (eds) Flødevigen rapportser I, pp. 395-434.

Lough, R.G., and Potter, D.C. (1993) Vertical distribution patterns and diel migrations of larval and juvenile haddock Melanogrammus aeglefinus and Atlantic cod Gadus morhua on Georges Bank. Fish. Bull. 91: 281-303.

Lough, R.G., Buckley, L.J., Werner, F.E., Quinlan, J.A., and Pehrson Edwards, K. (2005) A general biophysical model of larval cod (Gadus morhua) growth applied to populations on Georges Bank. Fish. Oceanogr. 14: 241-262.

Lough, R.G., Hannah, C.G., Berrien, P., Brickman, D., Loder, J.W., and Quinlan, J.A.
(2006) Spawning pattern variability and its effect on retention, larval growth and recruitment in Georges Bank cod and haddock. Mar. Ecol. Prog. Ser. 310: 193212.

Lough, R.G., Valentine, P.C., Potter, D.C., Auditore, P.J., Bolz, G.R., Neilson, J.D., and Perry, R.I. (1989) Ecology and distribution of juvenile cod and haddock in relation to sediment type and bottom currents on eastern Georges Bank. Mar. Ecol. Prog. Ser. 56: 1-12.

MacKenzie, B.R., and Kiørboe, T. (1995) Encounter rates and swimming behavior of pause-travel and cruise larval fish predators in calm and turbulent laboratory environments. Limnol. Oceanogr. 40: 1278-1289.

MacKenzie, B.R., and Leggett, W.C. (1993) Wind-based models for estimating the dissipation rates of turbulent energy in aquatic environments: empirical comparisons. Mar. Ecol. Prog. Ser. 94: 207-216.

Madin, L.P., Bollens, S.M., Horgan, E., Butler, M., Runge, J., Sullivan, B.K., Klein MacPhee, G., Durbin, E., Durbin, A.G., Van Keuren, D., Plourde, S., Bucklin, A., and Clarke, M.E. (1996) Voracious planktonic hydroids: unexpected predatory impact on a coastal marine ecosystem. Deep-Sea Res. II 43: 1823-1829.

Mountain, D.G., and Kane, J. (2010) Major changes in the Georges Bank ecosystem, 1980s to the 1990s. Mar. Ecol. Prog. Ser. 398: 81-91.

Mountain, D.G., Berrien, P., and Sibunka, J. (2003) Distribution, abundance and mortality of cod and haddock eggs and larvae on Georges Bank in 1995 and 1996. Mar. Ecol. Prog. Ser. 263: 247-260.

Mountain, D., Green, J., Sibunka, J., and Johnson, D. (2008) Growth and mortality of

Atlantic cod Gadus morhua and haddock Melanogrammus aeglefinus eggs and larvae on Georges Bank, 1995 to 1999. Mar. Ecol. Prog. Ser. 353: 225-242.

Page, F.H., and Frank, K.T. (1989) Spawning time and egg stage duration in Northwest Atlantic haddock (Melanogrammus aeglefinus) stocks with emphasis on Georges and Browns Bank. Deep-Sea Res. II 46(Suppl. 1): 68-81.

Page, F.H., Sinclair, M., Naimie, C.E., Loder, J.W., Losier, R.J., Berrien, P.L., and Lough, R.G. (1999) Cod and haddock spawning on Georges Bank in relation to water residence times. Fish. Oceanogr. 8: 212-226.

Papaioannou, G., Papanikolaou, N., and Retalis, D. 1993. Relationships of photosynthetically active radiation and shortwave irradiance. Theor. Appl. Climatol. 48: 23-27.

Peck, M.A., Buckley, L.J., and Bengtson, D.A. (2006) Effects of temperature and body size on the swimming speed of larval and juvenile Atlantic cod (Gadus morhua): implications for individual-based modeling. Env. Biol. Fish. 75: 419-429.

Peterson, I., and Wroblewski, J.S. (1984) Mortality rate of fishes in the pelagic ecosystem. Deep-Sea Res. II 41: 1117-1120.

Petrik, C.M., Kristiansen, T., Lough, R.G., and Davis, C.S. (2009) Prey selection of larval haddock and cod on copepods with species-specific behavior: a modelbased analysis. Mar. Ecol. Prog. Ser. 396: 123-143.

Purcell, J. (1981) Feeding ecology of Rhyzophysa eysenhardti, a siphonophore predator of fish larvae. Limnol. Oceanogr. 26: 424-432.

Purcell, J. (1985) Predation on fish eggs and larvae by pelagic cnidarians and ctenophores. Bull. Mar. Sci. 37: 739-755.

Rideout, R.M., Trippel, E.A., and Litvak, M.K. (2005) Effects of egg size, food supply and spawning time on early life history success of haddock Melanogrammus aeglefinus. Mar. Ecol. Prog. Ser. 285: 169-180.

Scheffer, M., Baveco, J.M., DeAngelis, D.L., Rose, K.A., and van Nes, E.H. (1995) Super-individuals a simple solution for modeling large populations on an individual basis. Ecol. Model. 80: 161-170.

Sheader, M., and Evans, F. (1975) Feeding and gut structure of Parathemisto gaudichaudi (Guerin) (Amphipoda, Hyperiidea). J. Mar. Biol. Assoc. UK 55: 641656.

Sheldon, R.W., Prakash, A., and Sutcliffe, Jr., W.H. (1972) The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327-340.

Sibunka, J.D., Johnson, D.L., and Berrien, P.L. (2006) Distribution and abundance of fish eggs collected during the GLOBEC broad-scale Georges Bank surveys, 19951999. NOAA Tech. Memo. NMFS-NE 199: 72pp.

Sullivan, B.K., and Meise, C.J. (1996) Invertebrate predators of zooplankton on Georges Bank, 1977-1987. Deep-Sea Res. II 43: 1503-1519.

Trippel, E.A., and Chambers, R.C. (1997) Introduction. In: Early life history and recruitment in fish populations. R.C. Chambers and E.A. Trippel (eds) London: Chapman and Hall, pp. xxi-xxxii.

Vollset, K.W., Folkvord, A., and Browman, H.I. (2011) Foraging behaviour of larval cod (Gadus morhua) at low light intensities. Mar. Biol. 158: 1125-1133.

Werner, F.E., Page, F.H., Lynch, D.R., Loder, J.W., Lough, R.G., Perry, R.I., Greenberg,
D.A., and Sinclair, M. (1993) Influences of mean advection and simple behavior on the distribution of cod and haddock early life stages on Georges Bank. Fish. Oceanogr. 2: 43-64.

Werner, F.E., Perry, R.I., Lough, R.G., and Naimie, C.E. (1996) Trophodynamic and advective influences on Georges Bank larval cod and haddock. Deep-Sea Res. II 43: 1793-1822.

Wiebe, P., Beardsley, R., Mountain, D., and Bucklin, A. (2002) U.S. GLOBEC Northwest Atlantic/Georges Bank Program. Oceanogr. 15: 13-29.

Wilcox, J.R., and Jeffries, H.P. (1974) Feeding habits of the sand shrimp Crangon septemspinosa. Bio. Bull. 146: 424-434.

Wright, P.J., and Gibb, F.M. (2005) Selection for birth date in North Sea haddock and its relation to maternal age. J. Anim. Ecol. 74: 303-312.

Yamashita, Y., Aoyama, T., and Kitagawa, D. (1985) Laboratory studies of predation by the hyperiid amphipod Parathemisto japonica on larvae of the Japanese sand-eel Ammodytes personatus. Bull. Jap. Soc. Sci. Fish. 50: 1089-1093.

Yen, J. (1987) Predation by a carnivorous marine copepod, Euchaeta norvegica Boeck, on eggs and larvae of the North Atlantic cod Gadus morhua L. J. Exp. Mar. Biol. Ecol. 112: 283-296.

1306

1307
1308

1309
1310
1311

1312
1313

1314
1315

1316

1317
1318

TABLES
Table 1. Statistics on the number of individuals (n) per super-individual (super) at time of hatch.

	1995			1998		
	Feb	Mar	Apr	Feb	Mar	Apr
Min.(n)	6.50×10^{5}	7.10×10^{5}	6.96×10^{5}	6.43×10^{5}	7.14×10^{5}	1.37×10^{6}
Max.(n)	2.37×10^{9}	2.42×10^{10}	6.24×10^{9}	1.99×10^{10}	2.31×10^{10}	2.11×10^{10}
Mean(n)	1.62×10^{8}	1.06×10^{9}	6.74×10^{8}	1.09×10^{9}	2.22×10^{9}	2.52×10^{9}
Std. Dev.(n)	3.22×10^{8}	2.22×10^{9}	1.02×10^{9}	2.04×10^{9}	3.87×10^{9}	3.35×10^{9}
Total(n)	4.81×10^{11}	4.47×10^{12}	1.80×10^{12}	3.90×10^{12}	3.47×10^{12}	1.42×10^{13}
Annual total (n)		6.75×10^{12}			2.85×10^{13}	
Total(super)	2.97×10^{3}	4.22×10^{3}	2.67×10^{3}	3.59×10^{3}	4.69×10^{3}	5.63×10^{3}
Annual total(super)		9.86×10^{3}			1.39×10^{4}	

Table 2. The different simulations, their notation, the variable or process changed, and the hypothesis tested with each.

Case name	Notation	Changed	Hypothesis tested
Reference	R	--	Interannual recruitment variability; hatch date of survivors
Cross initialization	O	Physical environment	Hatch location vs. physical environment during transport
Low prey	L	1998 prey densities	Food-limitation
Swimming behavior	DVM	Vertical swimming	Effect of vertical distribution
Temperaturedependent predation	$\begin{aligned} & \text { TP6 } \\ & \text { TP5 } \end{aligned}$	Total predation rate $\begin{aligned} & \mathrm{T}_{\text {base }}=6.5^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {base }}=5.5^{\circ} \mathrm{C} \end{aligned}$	Seasonal increases in predation rate
Spatiallydependent predation	$\begin{aligned} & \text { CP } \\ & \text { FP } \end{aligned}$	Total predation rate $\begin{aligned} & \mathrm{C}+50 \%, \mathrm{~F}-50 \% \\ & \mathrm{C}-50 \%, \mathrm{~F}+50 \% \end{aligned}$	Spatially distinct predator communities
Interannually varying predation	$\begin{aligned} & \text { 95P+ } \\ & \text { 95P- } \end{aligned}$	Total predation rate $95+10 \%, 98-10 \%$ $95-10 \%, 98+10 \%$	Interannually different predation rates

1336

1337
1338
1339

1340
1341

1342
1343
1344

1345
1346

1347
1348

1349
1350
1351
1352

Table 3. Weighted mean time (d) to 12 mm and weighted mean specific growth rate $\left(\mathrm{d}^{-1}\right)$ of individuals from hatch until survival to 12 mm in the reference case. Mean time calculations include individuals that reached 12 mm after the 55 d larval period, but the mean growth rates do not.

	Feb		Mar		Apr	
1995	51	0.041	46	0.051	46	0.042
1998	48	0.054	47	0.049	38	0.062

1357
1358
1359
1360
1361

Table 4. Fate, contribution of each cohort, and annual survival of individuals (as fraction of total individuals hatched) at 55 dph or 12 mm in the reference case with systematic addition of mortality sources.

		1995			1998		
		F	M	A	F	M	A
Advection only	Advection	0.03	0.13	0.11	0.06	0.24	0.27
	Survival	0.97	0.87	0.89	0.94	0.76	0.73
	Cohort contribution	0.08	0.65	0.27	0.17	0.36	0.47
	Survival per hatch		0.88			0.77	
Advection and starvation only	Advection	0.03	0.13	0.11	0.06	0.24	0.27
	Starvation	0.89	0.71	0.44	0.82	0.57	0.32
	Survival	0.08	0.16	0.45	0.12	0.19	0.41
	Cohort contribution	0.03	0.46	0.52	0.06	0.24	0.71
	Survival per hatch		0.23			0.29	
All sources	Advection	0.01	0.07	0.09	0.04	0.15	0.16
	Starvation	0.49	0.24	0.20	0.39	0.21	0.12
	Predation	0.49	0.69	0.69	0.57	0.63	0.68
	Survival	0.003	0.003	0.022	0.005	0.006	0.036
	Cohort contribution	0.02	0.27	0.71	0.03	0.11	0.86
	Survival per hatch		0.01			0.02	

1363

1364
1365

1366
1367

1368
1369
1370

1371
1372

1373
1374

1375
1376
1377

1378
1379

1380
1381

1382
1363

Table 5. Total number of surviving larvae $\left(\times 10^{10}\right)$ by cohort in the reference case.

1995	0.14	1.51	4.01	5.66
1998	1.91	6.23	50.47	58.61

.

\square

Table 6. Weighted mean temperature $\left({ }^{\circ} \mathrm{C}\right)$ experienced by individuals from hatch until survival to 12 mm for each cohort in the reference case.

	Feb	Mar	Apr
1995	6.5	6.4	7.0
1998	6.4	6.4	7.4

1407
1408
1409
1410

1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422

Table 7. Weighted mean Pseudocalanus spp. concentration (no. m^{-3}) of the grouped developmental stages experienced by individuals from hatch until survival to 12 mm for each cohort and year in the reference case.

	1995 reference			1998 reference				1998 low prey		
	Feb	Mar	Apr	Feb	Mar	Apr	Feb	Mar	Apr	
Nauplii	472	983	2085	692	1815	4552	357	1035	2333	
Copepodites	231	315	416	490	594	1471	300	354	761	
Adults	22	62	93	41	108	222	22	69	111	
Total	726	1360	2594	1223	2517	6245	679	1458	3204	

Table 8. Fate of all individuals, as fraction of total individuals hatched, at 55 dph or 12 mm in the reference and cross-initialization cases.

		1995 environment			1998 environment		
		Feb	Mar	Apr	Feb	Mar	Apr
1995	Advection	0.01	0.07	0.09	0.01	0.03	0.11
	Starvation	0.49	0.24	0.20	0.38	0.20	0.13
	Predation	0.49	0.69	0.69	0.61	0.76	0.73
	Survived	0.003	0.003	0.022	0.006	0.009	0.028
1998	Advection	0.08	0.24	0.12	0.04	0.15	0.16
	Starvation	0.46	0.24	0.21	0.39	0.21	0.12
	Predation	0.47	0.51	0.64	0.57	0.63	0.68
	Survived	0.001	0.003	0.032	0.005	0.006	0.036

FIGURE CAPTIONS

Fig. 1. Map of the Gulf of Maine (GOM) and Georges Bank with the subregions: Crest (C), Great South Channel (GSC), Mid-Atlantic Bight (MAB), Northeast Peak (NEP), Northern Flank (NF), and Southern Flank (SF). The 60, 100, and 200 m isobaths are shown and labeled.

Fig. 2. 1995 reference case distributions of individuals at hatch (a-c), of all individuals, dead or alive, at the weighted mean time to 12 mm (d-f), and of individuals that survived to 12 mm at the weighted mean time to 12 mm (g-i). The gray lines are the 60,100 , and 200 m isobaths. Hatch locations were determined from observations of egg abundance (Sibunka et al., 2006) projected forward using estimated egg mortality rates and spatially integrated kriging as described in Mountain et al. $(2003,2008)$. Contours are presented for the \log of the fraction of individuals.

Fig. 3. 1998 reference case distributions of individuals at hatch (a-c), of all individuals, dead or alive, at the weighted mean time to 12 mm (d-f), and of individuals that survived to 12 mm at the weighted mean time to 12 mm (g-i). The gray lines are the 60,100 , and 200 m isobaths. Hatch locations were determined from observations of egg abundance (Sibunka et al., 2006) projected forward using estimated egg mortality rates and spatially integrated kriging as described in Mountain et al. $(2003,2008)$. Contours are presented for the \log of the fraction of individuals.

Fig. 4. Percent contributed by each cohort to the total number of individuals (top) hatched and (bottom) survived to 55 dph or 12 mm in the reference case. F: February (black), M: March (gray), A: April (white).

Fig. 5. Weighted mean depth of larvae from 1995 (a-d) and 1998 (e-h) hatch until 55 dph or 12 mm in 10 m depth bins. Passive: reference, DVM: diel vertical migration, All: all larvae, 12 mm : only those that survived to 12 mm .

Fig. 6. Fate of all individuals, as percent of total individuals hatched, at 55 dph or 12 mm in the reference and cross-initialization cases. A: advection, P: predation, St: starvation, Su: survived.

Fig. 7. Fate of all individuals, as percent of total individuals hatched west or east of $67.5^{\circ} \mathrm{W}$, at 55 dph or 12 mm in the reference case. A: advection, $\mathrm{P}:$ predation, St : starvation, Su: survived.

Fig. 8. Percent contributed by each cohort to the total number of individuals (top) hatched west or east of $67.5^{\circ} \mathrm{W}$ and (bottom) survived to 55 dph or 12 mm in the reference case. F: February, M: March, A: April, W: west, E: east.

Fig. 9. (a) Survival per hatch (fraction of individuals that survived to 55 dph or 12 mm out of all those hatched) in 1995 and 1998 for all ten cases. The dashed lines are the 1995 and 1998 reference case values. (b) 1998:1995 ratio of the number of survivors per
hatched larva. The dashed line at 1.17 represents the calculated 1998:1995 ratio of the number of recruits per hatch from Mountain and Kane (2010). R: reference, O: opposite environment, DVM: diel vertical migration behavior, CP: spatially-dependent high crest predation, FP: spatially-dependent high flank predation, 95P+: higher 1995 predation, 95P-: lower 1995 predation, TP6: temperature-dependent predation $T_{\text {base }}=6.5^{\circ} \mathrm{C}, \mathrm{TP} 5$: temperature-dependent predation $T_{\text {base }}=5.5^{\circ} \mathrm{C}$, L: low prey.

Fig. 10. The fraction of individuals hatched that were lost to (a) advection, (b) predation, and (c) starvation in 1995 and 1998. Note differences in y-axis scales. The dashed lines are the 1995 and 1998 reference case values. R: reference, O: opposite environment, DVM: diel vertical migration behavior, CP: spatially-dependent high crest predation, FP: spatially-dependent high flank predation, 95P+: higher 1995 predation, 95P-: lower 1995 predation, TP6: temperature-dependent predation $T_{\text {base }}=6.5^{\circ} \mathrm{C}$, TP5: temperaturedependent predation $T_{\text {base }}=5.5^{\circ} \mathrm{C}$, L: low prey.

Fig. 11. Fraction of surviving individuals from each cohort (cohort contribution) is presented as the difference from the reference case for 1995 (a-c) and 1998 (d-f). O: opposite environment, D : diel vertical migration behavior, C : spatially-dependent high crest predation, F: spatially-dependent high flank predation, $\mathrm{P}+$: higher 1995 predation, P-: lower 1995 predation, TP6: temperature-dependent predation $T_{\text {base }}=6.5^{\circ} \mathrm{C}, \mathrm{TP} 5$: temperature-dependent predation $T_{\text {base }}=5.5^{\circ} \mathrm{C}$, L: low prey.

Fig. 12. Weighted mean specific growth rate $\left(\mathrm{d}^{-1}\right)$ of surviving 12 mm individuals from all cohorts in 1995 and 1998. The dashed lines are the 1995 and 1998 reference case values. R: reference, O: opposite environment, DVM: diel vertical migration behavior, CP: spatially-dependent high crest predation, FP: spatially-dependent high flank predation, 95P+: higher 1995 predation, 95P-: lower 1995 predation, TP6: temperaturedependent predation $T_{\text {base }}=6.5^{\circ} \mathrm{C}$, TP5: temperature-dependent predation $T_{\text {base }}=5.5^{\circ} \mathrm{C}, \mathrm{L}$: low prey.

Fig. 13. Mean \log abundance and standard errors $\left(\mathrm{m}^{-3}\right)$ of the potential predators (a) mysid shrimps, (b) siphonophores, and (c) hyperiid amphipods on Georges Bank in 1995 (solid line) and 1998 (dashed line).

Fig. 14. Comparison of Buckley and Durbin (2006) derived curves (lines) to model weighted mean specific growth rates $\left(\mathrm{d}^{-1}\right)$ of 12 mm survivors and the weighted mean prey concentrations they experienced for (a) 5-7 mm and (b) 7-12 mm larvae. 1995 reference (circle), 1998 reference (diamond), 1998 low prey (plus). Note the differences in x - and y-axis scales in (a) and (b).

Fig. 1. Map of the Gulf of Maine (GOM) and Georges Bank with the subregions: Crest (C),
Great South Channel (GSC), Mid-Atlantic Bight (MAB), Northeast Peak (NEP), Northern Flank (NF), and Southern Flank (SF). The 60, 100, and 200 m isobaths are shown and labeled.

Fig. 2. 1995 reference case distributions of individuals at hatch (a-c), of all individuals, dead or alive, at the weighted mean time to $12 \mathrm{~mm}(\mathrm{~d}-\mathrm{f})$, and of individuals that survived to 12 mm at the weighted mean time to 12 mm (g-i). The gray lines are the 60,100 , and 200 m isobaths. Hatch locations were determined from observations of egg abundance (Sibunka et al., 2006) projected forward using estimated egg mortality rates and spatially integrated kriging as described in Mountain et al. (2003, 2008). Contours are presented for the \log of the fraction of individuals.

Fig. 3. 1998 reference case distributions of individuals at hatch (a-c), of all individuals, dead or alive, at the weighted mean time to $12 \mathrm{~mm}(\mathrm{~d}-\mathrm{f})$, and of individuals that survived to 12 mm at the weighted mean time to 12 mm (g-i). The gray lines are the 60,100 , and 200 m isobaths. Hatch locations were determined from observations of egg abundance (Sibunka et al., 2006) projected forward using estimated egg mortality rates and spatially integrated kriging as described in Mountain et al. (2003, 2008). Contours are presented for the \log of the fraction of individuals.

Fig. 4. Percent contributed by each cohort to the total number of individuals (top) hatched and (bottom) survived to 55 dph or 12 mm in the reference case. F: February (black), M: March (gray), A: April (white).

Fig. 5. Weighted mean depth of larvae from 1995 (a-d) and 1998 (e-h) hatch until 55 dph or 12 mm in 10 m depth bins. Passive: reference, DVM: diel vertical migration, All: all larvae, 12 mm : only those that survived to 12 mm .

Fig. 6. Fate of all individuals, as percent of total individuals hatched, at 55 dph or 12 mm in the reference and cross-initialization cases. A: advection, P: predation, St: starvation, Su: survived.

Fig. 7. Fate of all individuals, as percent of total individuals hatched west or east of $67.5^{\circ} \mathrm{W}$, at 55 dph or 12 mm in the reference case. A: advection, P: predation, St: starvation, Su: survived.

Fig. 8. Percent contributed by each cohort to the total number of individuals (top) hatched west or east of $67.5^{\circ} \mathrm{W}$ and (bottom) survived to 55 dph or 12 mm in the reference case. F: February, M: March, A: April, W: west, E: east.

Fig. 9. (a) Survival per hatch (fraction of individuals that survived to 55 dph or 12 mm out of all those hatched) in 1995 and 1998 for all ten cases. The dashed lines are the 1995 and 1998 reference case values. (b) 1998:1995 ratio of the number of survivors per hatched larva. The dashed line at 1.17 represents the calculated 1998:1995 ratio of the number of recruits per hatch from Mountain and Kane (2010). R: reference, O: opposite environment, DVM: diel vertical migration behavior, CP: spatially-dependent high crest predation, FP: spatially-dependent high flank predation, 95P+: higher 1995 predation, 95P-: lower 1995 predation, TP6: temperaturedependent predation $T_{\text {base }}=6.5^{\circ} \mathrm{C}$, TP5: temperature-dependent predation $T_{\text {base }}=5.5^{\circ} \mathrm{C}$, L: low prey.

Fig. 10. The fraction of individuals hatched that were lost to (a) advection, (b) predation, and (c) starvation in 1995 and 1998. Note differences in y-axis scales. The dashed lines are the 1995 and 1998 reference case values. R: reference, O: opposite environment, DVM: diel vertical migration behavior, CP: spatially-dependent high crest predation, FP: spatially-dependent high flank predation, 95P+: higher 1995 predation, 95P-: lower 1995 predation, TP6: temperaturedependent predation $T_{\text {base }}=6.5^{\circ} \mathrm{C}$, TP5: temperature-dependent predation $T_{\text {base }}=5.5^{\circ} \mathrm{C}$, L: low prey.

Fig. 11. Fraction of surviving individuals from each cohort (cohort contribution) is presented as the difference from the reference case for 1995 (a-c) and 1998 (d-f). O: opposite environment, D: diel vertical migration behavior, C : spatially-dependent high crest predation, F : spatiallydependent high flank predation, $\mathrm{P}+$: higher 1995 predation, $\mathrm{P}-:$ lower 1995 predation, TP6: temperature-dependent predation $T_{\text {base }}=6.5^{\circ} \mathrm{C}, \mathrm{TP} 5$: temperature-dependent predation $T_{\text {base }}=5.5^{\circ} \mathrm{C}, \mathrm{L}$: low prey.

Fig. 12. Weighted mean specific growth rate $\left(\mathrm{d}^{-1}\right)$ of surviving 12 mm individuals from all cohorts in 1995 and 1998. The dashed lines are the 1995 and 1998 reference case values. R: reference, O: opposite environment, DVM: diel vertical migration behavior, CP: spatiallydependent high crest predation, FP: spatially-dependent high flank predation, 95P+: higher 1995 predation, 95P-: lower 1995 predation, TP6: temperature-dependent predation $T_{\text {base }}=6.5^{\circ} \mathrm{C}, \mathrm{TP} 5$: temperature-dependent predation $T_{\text {base }}=5.5^{\circ} \mathrm{C}$, L: low prey.

Fig. 13. Mean \log abundance and standard errors $\left(\mathrm{m}^{-3}\right)$ of the potential predators (a) mysid shrimps, (b) siphonophores, and (c) hyperiid amphipods on Georges Bank in 1995 (solid line) and 1998 (dashed line).

Fig. 14. Comparison of Buckley and Durbin (2006) derived curves (lines) to model weighted mean specific growth rates $\left(\mathrm{d}^{-1}\right)$ of 12 mm survivors and the weighted mean prey concentrations they experienced for (a) $5-7 \mathrm{~mm}$ and (b) $7-12 \mathrm{~mm}$ larvae. 1995 reference (circle), 1998 reference (diamond), 1998 low prey (plus). Note the differences in x - and y-axis scales in (a) and (b).

APPENDIX: Model equations

All parameters and variables are defined in Table A1.

Prey density

The Pseudocalanus spp. density was modeled with a 4-stage (eggs-nauplii-copepodite-adult) concentration-based population model (Hu et al., 2008; Ji et al., 2009), excluding the eggs as a prey source. Individual-based model copepod density, prey $_{\text {dens }, i}$ $\left(\mathrm{mm}^{-3}\right)$, was calculated from the Pseudocalanus spp. population model density, ENCA_{i} $\left(\mathrm{m}^{-3}\right)$, for each developmental stage $i(\mathrm{~N}, \mathrm{C}, \mathrm{A})$ according to the following. For all 1995 simulations,

$$
\begin{equation*}
\text { prey }_{\text {dens }, i}=10^{-9} \cdot \mathrm{ENCA}_{i} \tag{1}
\end{equation*}
$$

For the 1998 low prey simulation,

$$
\begin{equation*}
\text { prey }_{\text {dens }, i}=2.5 \cdot 10^{-9} \cdot \mathrm{ENCA}_{i} \tag{2}
\end{equation*}
$$

For all other 1998 simulations,

$$
\begin{equation*}
\text { prey }_{\text {dens }, i}=5.0 \cdot 10^{-9} \cdot \mathrm{ENCA}_{i} \tag{3}
\end{equation*}
$$

Copepod characteristics

The length, width, and biomass of a grouped developmental stage was set as the mean of all stages within that group using the stage-specific lengths, $l_{\text {cope }}(\mathrm{mm})$, widths, width (mm), and biomasses, biom ($\mu \mathrm{g}$), in Davis $(1984,1987)$ (Table A2). The copepod image area, $A_{\text {cope }}(\mathrm{mm})$, was

$$
\begin{equation*}
A_{\text {cope }}=0.75 \cdot l_{\text {cope }} \cdot \text { width } \tag{4}
\end{equation*}
$$

and the Pseudocalanus spp. specific swimming speed, $u\left(\mathrm{~mm} \mathrm{~s}^{-1}\right)$, was

$$
\begin{equation*}
u=0.859 \cdot l_{\text {cope }} \tag{5}
\end{equation*}
$$

Light

Visible surface light, PAR $\left(\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$, was estimated from the physical model output of shortwave radiation, $\operatorname{swrad}\left(\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$,

$$
\begin{equation*}
\text { PAR }=0.45 \cdot \text { swrad } \tag{6}
\end{equation*}
$$

A ratio of PAR to shortwave radiation of 0.45 is representative of field measurements (c.f. Papaioannou et al., 1993). In situ light, $E(z)\left(\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$, decayed with depth;

$$
\begin{equation*}
E(z)=\operatorname{PAR} \cdot e^{-z \cdot a t t} \tag{7}
\end{equation*}
$$

with an attenuation coefficient, att $\left(\mathrm{m}^{-1}\right)$, characteristic of the Gulf of Maine/Georges Bank region.

Larval visual range

Larval eye sensitivity, E_{l}, was a function of its length,

$$
\begin{equation*}
E_{l}=\frac{l^{2}}{0.015} . \tag{8}
\end{equation*}
$$

and was used in the calculation of visual range, $R_{\text {larva }}(\mathrm{mm})$,

$$
\begin{equation*}
R_{\text {larva }}^{2}=C \cdot A_{\text {cope }} \cdot E_{l} \cdot \exp (-c \cdot R) \cdot \frac{E(z)}{K_{e}+E(z)}, \tag{9}
\end{equation*}
$$

also a function of prey contrast, C, copepod image area, the scattering of image-forming light, c, in situ light, and the larval light half saturation value, $K_{e}\left(\mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$.

Turbulence

Turbulent kinetic energy, $t \mathrm{ke}\left(\mathrm{m}^{2} \mathrm{~s}^{-3}\right)$, was related to the vertical diffusivity, $k h\left(\mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$, from the physical model,

$$
\begin{equation*}
t k e=1.6 \cdot 10^{-5} \cdot k h \tag{10}
\end{equation*}
$$

and was used to calculate the turbulent velocity, $\omega\left(\mathrm{mm} \mathrm{s}^{-1}\right)$,

$$
\begin{equation*}
\omega=10^{-3} \cdot \sqrt{3.615 \cdot\left(t k e \cdot\left(R_{\text {larva }} \cdot 10^{-3}\right)\right)^{2 / 3}} \tag{11}
\end{equation*}
$$

Probability of successful capture

The probability of successful capture, $p_{\text {cap }}$, was an empirical function of prey species (Pseudocalanus spp.) and stage length fit to the results of mechanistic simulations of species-specific prey escape behaviors, which included the deformation rate threshold, escape jump speed, and escape jump angle, such that

$$
\begin{equation*}
p_{c a p}=\frac{\exp \left(d_{1} \cdot r^{3}+d_{2} \cdot r^{2}+d_{3} \cdot r+d_{4}\right)}{1+\exp \left(d_{1} \cdot r^{3}+d_{2} \cdot r^{2}+d_{3} \cdot r+d_{4}\right)}, \tag{12}
\end{equation*}
$$

where $d '$ sare species-specific constants, and r is the copepod prey to larval fish length ratio.

Encounter rate

$$
\text { If } p_{c a p}<0.05 \text {, then the number of prey encountered, enc }\left(\mathrm{mm}^{-3}\right) \text {, was zero. }
$$

Otherwise, the number of prey encountered per time step, $d t$, was a function of prey density, larval pause frequency, $f\left(\mathrm{~s}^{-1}\right)$, larval pause duration, $\tau(\mathrm{s})$, larval visual range, copepod swimming speed, and turbulent velocity,

$$
\begin{equation*}
e n c=\text { prey }_{\text {dens }} \cdot\left(\frac{2}{3} \pi \cdot f \cdot R_{\text {larva }}^{3}+\pi \cdot f \cdot \tau \cdot R_{\text {larva }}^{2} \cdot \sqrt{u^{2} \cdot \omega^{2}}\right) \cdot d t \tag{13}
\end{equation*}
$$

Ingestion

 Each copepod developmental stage was encountered and captured separately. The number of each stage captured, cap, and the biomass of each stage ingested, ingest $_{i}(\mu \mathrm{~g})$, for each stage were$$
\begin{align*}
& \text { cap }=\text { enc } \cdot p_{c a p} \tag{14}\\
& \text { ingest }_{i}=\text { cap } \cdot \text { biom } \tag{15}
\end{align*}
$$

Total ingestion, ingest $_{\text {tot }}(\mu \mathrm{g})$, was the sum of the biomass ingested of each copepod developmental stage;

$$
\begin{equation*}
\text { ingest }_{t o t}=\sum_{i}^{N, C, A} \text { ingest }_{i} . \tag{16}
\end{equation*}
$$

A fraction of the ingested biomass was assimilated using a size-dependent assimilation efficiency, assim,

$$
\begin{equation*}
\operatorname{assim}=0.8 \cdot\left(1.0-0.4 \cdot \exp \left(-0.002 \cdot\left(m_{\mu g}-50.0\right)\right)\right) \cdot d t / 3600 \tag{17}
\end{equation*}
$$

The assimilated biomass moved into the stomach, but was limited by the amount of room available in the stomach from the previous time step. The new gut contents, gut $(\mu \mathrm{g})$, became

$$
\begin{equation*}
g u t_{t}=g u t_{t-d t}+\text { assim } \cdot \text { ingest }_{\text {tot }} \tag{18}
\end{equation*}
$$

if they were less than the size of the larval gut. Otherwise, they were the size of the gut, which was 6% of the larval mass.

Metabolism

The routine respiration rate, metab $(\mu \mathrm{g})$, of haddock was set as

$$
\begin{equation*}
\text { metab }_{r}=1.021 \cdot m_{m g}^{0.979} \cdot e^{0.092 \cdot T} \cdot d t / 3600 \tag{19}
\end{equation*}
$$

where T is temperature in ${ }^{\circ} \mathrm{C}$. Metabolism was increased a constant amount during light hours to account for the swimming activity of feeding fish. The light threshold was
updated to reflect the recent findings of active feeding at low light intensities. The light threshold was $5.0 \times 10^{-3} \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for larvae $<7.5 \mathrm{~mm}$ and $5.0 \times 10^{-4} \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ for larvae $\geq 7.5 \mathrm{~mm}$. Active metabolism, metab $_{a}(\mu \mathrm{~g})$, was

$$
\begin{equation*}
\operatorname{metab}_{a}=1.4 \cdot \text { metab }_{r} \tag{20}
\end{equation*}
$$

for larvae $\leq 5.5 \mathrm{~mm}$ and

$$
\begin{equation*}
\operatorname{metab}_{a}=2.5 \cdot \text { metab }_{r} \tag{21}
\end{equation*}
$$

for larvae $>5.5 \mathrm{~mm}$.

Maximum growth

If the gut contents were enough for maximum growth $(g u t \geq D)$, then the mass specific growth rate $\left(\% \mathrm{~d}^{-1}\right)$ was a temperature-dependent rate,

$$
\begin{equation*}
s g r_{\max }=s_{1}+s_{2} \cdot T-s_{3} \cdot T \cdot \ln \left(m_{m g}\right)-s_{4} \cdot T \cdot \ln \left(m_{m g}\right)^{2}+s_{5} \cdot T \cdot \ln \left(m_{m g}\right)^{3} \tag{22}
\end{equation*}
$$

where s 's are constants. The maximum instantaneous growth rate $g_{\text {max }}\left(\mathrm{dt}^{-1}\right)$ was calculated from the specific growth rate,

$$
\begin{equation*}
g_{\max }=\ln \left(\left(\frac{s g r_{\max }}{100}\right)+1\right) \cdot d t /(24 \cdot 3600) \tag{23}
\end{equation*}
$$

The biomass required to grow at the maximum rate, $D(\mu \mathrm{~g})$, was

$$
\begin{equation*}
D=\left(\exp \left(g_{\max }\right)-1\right) \cdot m_{\mu g}+\text { metab }_{a} . \tag{24}
\end{equation*}
$$

If $g u t \geqslant D$, then the gut contents were reduced by D,

$$
\begin{equation*}
g u t=g u t-D, \tag{25}
\end{equation*}
$$

the weight gain, gain ($\mu \mathrm{g}$), was

$$
\begin{equation*}
\text { gain }=\left(\exp \left(g_{\max }\right)-1\right) \cdot m_{\mu g}, \tag{26}
\end{equation*}
$$

and growth, $g\left(\mathrm{dt}^{-1}\right)$, was set as

$$
\begin{equation*}
g=g_{\max } \tag{27}
\end{equation*}
$$

Food-limited growth
If the gut contents were lower than required $(g u t<D)$ by the maximum growth, then growth was determined by the biomass available in the stomach. The weight gain equaled

$$
\begin{equation*}
\text { gain }=g u t-\text { metab }_{a}, \tag{28}
\end{equation*}
$$

and the gut contents were reduced by this amount

$$
\begin{equation*}
\text { gut }=\text { gut }- \text { gain } . \tag{29}
\end{equation*}
$$

Instantaneous growth was calculated as

$$
\begin{equation*}
g=\ln \left(m_{\mu g}+\text { gain }\right)-\ln \left(m_{\mu g}\right) \tag{30}
\end{equation*}
$$

Size increase

The larval weight was updated by the mass gained,

$$
\begin{equation*}
m_{\mu g}=m_{\mu g}+\text { gain } \tag{31}
\end{equation*}
$$

Length was calculated from weight as

$$
\begin{equation*}
l={\frac{m_{\mu g}}{0.194}}^{1 / 3.768} \tag{32}
\end{equation*}
$$

if this length was greater than or equal to the old length, otherwise the length from the previous time step was used since shrinking in length is not possible.

Starvation

A larva was considered to have starved to death if its mass fell below 70% of the reference mass, $m_{r e f}(\mu \mathrm{~g})$, the mass that it would have at that length from an empirical length-weight relationship of haddock larvae;

$$
\begin{equation*}
m_{r e f}=0.194 \cdot l^{3.768} \tag{33}
\end{equation*}
$$

Predation submodel

The nonvisual predation rate, $\operatorname{pred}_{n v}\left(\mathrm{dt}^{-1}\right)$, was found using a size-dependent model adapted from Peterson and Wroblewski (1984)

$$
\begin{equation*}
\operatorname{pred}_{n v}=2.63 \cdot 10^{-4} \cdot m_{g}^{-0.25} \cdot d t / 3600 \tag{34}
\end{equation*}
$$

with larval mass, m_{g}, in g .
Visual predators were simulated by following the visual predation models of Aksnes and Giske (1993), Aksnes and Utne (1997), and Fiksen \& Jørgensen (2011). Similar to larval vision, predator vision was a function of prey contrast, larval prey image area, $A_{l}\left(\mathrm{~m}^{2}\right)$, predator eye sensitivity, E_{p}, the scattering of image-forming light, in situ light, and the light half saturation of the predator, $K_{e}\left(\mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$. Prey (larval fish) width was assumed to be a constant 20% of its length such that the equation for image area simplified to

$$
\begin{equation*}
A_{\text {larva }}=0.75 \cdot l \cdot 0.2 \cdot l=0.15 \cdot l^{2} \tag{35}
\end{equation*}
$$

The perception radius of a predator, $R_{\text {pred }}(\mathrm{mm})$, increased with larval fish size as

$$
\begin{equation*}
R_{\text {pred }}^{2}=C \cdot A_{\text {larva }} \cdot E_{p} \cdot \exp \left(-c R_{\text {pred }}\right) \cdot \frac{E(z)}{K_{e}+E(z)} \tag{36}
\end{equation*}
$$

Visual predator density $N_{v i s}\left(\mathrm{~m}^{-3}\right)$ was assumed to decrease with increasing larval size;

$$
\begin{equation*}
N_{v i s}=1.36 \cdot 10^{-2} \cdot m_{\mu g}^{-1} \tag{37}
\end{equation*}
$$

The visual predation rate, $\operatorname{pred}_{v i s}\left(\mathrm{dt}^{-1}\right)$, took the form of that for a cruising fish predator,

$$
\begin{equation*}
\text { pred }_{v i s}=1800 \cdot \pi \cdot v \cdot R_{\text {pred }}^{2} \cdot N_{v i s} \cdot d t \tag{38}
\end{equation*}
$$

where $v\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ was a constant that accounted for predator velocity, converting perception radius from mm to m , and a parameterization such that the total base predation rate was approximately $0.1 \mathrm{~d}^{-1}$ for a 5 mm larva (Bailey \& Houde, 1989). The visual predation rate decreased with larval size and depth.

The total base predation rate, $\operatorname{pred}_{\text {base }}\left(\mathrm{dt}^{-1}\right)$, was the sum of nonvisual and visual predation rates,

$$
\begin{equation*}
\text { pred }_{\text {base }}=\text { pred }_{v i s}+\text { pred }_{n v} \tag{39}
\end{equation*}
$$

Temperature dependent predation

In the alternate simulations, temperature-dependent predation, $\operatorname{pred}_{\text {temp }}\left(\mathrm{dt}^{-1}\right)$, was modeled as a $0.01 \mathrm{~d}^{-1}$ per $1^{\circ} \mathrm{C}$ increase in temperature following Houde (1989). The base predation rate was the constant rate used in the reference simulations.

$$
\begin{equation*}
\text { pred }_{\text {temp }}=\text { pred }_{\text {base }}+0.01 \cdot\left(T-T_{\text {base }}\right) \tag{40}
\end{equation*}
$$

In the T 6 simulation, the base temperature, $T_{\text {base }}\left({ }^{\circ} \mathrm{C}\right)$, was set as $6.5^{\circ} \mathrm{C}$, the temperature associated with the predation rate of $0.1 \mathrm{~d}^{-1}$ for a 5 mm larva (Jones, 1973; Bailey \& Houde, 1989; Houde, 1989);

$$
\begin{equation*}
\text { pred }_{\text {temp }}=\text { pred }_{\text {base }}+0.01 \cdot(T-6.5) . \tag{41}
\end{equation*}
$$

In the T 5 simulation, $T_{\text {base }}$ was lowered to $5.5^{\circ} \mathrm{C}$ to cause greater predation rates during warmer months,

$$
\begin{equation*}
\text { pred }_{\text {temp }}=\text { pred }_{\text {base }}+0.01 \cdot(T-5.5) \tag{42}
\end{equation*}
$$

Spatially-dependent predation

Two different simulations were run with spatially-dependent predation. In each, the base predation rate was increased 50% in one location and decreased 50% in the other, resulting in a predation rate that was three times greater in one area than the other. In the higher crest predation simulation (CP), predation shoalward of the 60 m isobath, pred $_{\text {crest }}$ $\left(\mathrm{dt}^{-1}\right)$, and predation in waters deeper than 60 m , pred $_{\text {flanks }}\left(\mathrm{dt}^{-1}\right)$, were

$$
\begin{align*}
& \text { pred }_{\text {crest }}=1.5 \cdot \text { pred }_{\text {base }} \tag{43}\\
& \text { pred }_{\text {flanks }}=0.5 \cdot \text { pred }_{\text {base }} \tag{44}
\end{align*}
$$

In the opposite simulation with higher predation on the flanks (FP) the rates were

$$
\begin{align*}
& \text { pred }_{\text {crest }}=0.5 \cdot \text { pred }_{\text {base }} \tag{45}\\
& \text { pred }_{\text {flanks }}=1.5 \cdot \text { pred }_{\text {base }} . \tag{46}
\end{align*}
$$

Interannually varying predation

Another set of simulations varied the predation rates between years. The base predation rate was altered by $\pm 10 \%$ in one year and by $\pm 10 \%$ in the opposite direction in the other. 10% higher in 1995, 10% lower in 1998 ($95+$ or $\mathrm{P}+$),

$$
\begin{align*}
& \text { pred }_{95}=1.1 \cdot \text { pred }_{\text {base }} \tag{47}\\
& \text { pred }_{98}=0.9 \cdot \text { pred }_{\text {base }} \tag{48}
\end{align*}
$$

10% lower in 1995, 10% higher in 1998 ($95-$ or P-),

$$
\begin{align*}
& \text { pred }_{95}=0.9 \cdot \text { pred }_{\text {base }} \tag{49}\\
& \text { pred }_{98}=1.1 \cdot \text { pred }_{\text {base }} \tag{50}
\end{align*}
$$

Predation mortality losses

 Losses of individuals within a super-individual via predation, $n_{\text {pred }}$, were modeled for each super-individual by drawing a random number from a binomial distribution of the current number of individuals, n, with the probability of predation, p.$$
\begin{equation*}
n_{\text {pred }} \sim \operatorname{binomial}(n, p) \tag{51}
\end{equation*}
$$

The probability was calculated from an exponential probability distribution from the total predation rate,

$$
\begin{equation*}
p=1-\exp \left(- \text { pred }_{\text {base }}\right) \tag{52}
\end{equation*}
$$

This probability was used with an exact binomial probability density function when $n \leq 20$. When $n>20$ and $n p \leq 50$, the Poisson approximation for a binomial distribution with small p was used,

$$
\begin{equation*}
n_{\text {pred }} \sim \operatorname{Poisson}(n \cdot p) \tag{53}
\end{equation*}
$$

The Poisson distribution was further approximated by a normal distribution when $n>20$ and $n p>50$,

$$
\begin{equation*}
n_{\text {pred }} \sim \operatorname{normal}(n \cdot p, n \cdot p) \tag{54}
\end{equation*}
$$

At each time step, the number of individuals was reduced by the number drawn from the binomial or binomial approximated probability distribution,

$$
\begin{equation*}
n_{t}=n_{t-d t}-n_{\text {pred }} \tag{55}
\end{equation*}
$$

Swimming behavior

The diel vertical behavior simulations imposed preferred daytime and nighttime depths of 40 m and 20 m , respectively, for larvae $>9 \mathrm{~mm}$ following observations. Vertical swimming velocity, $w\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$, was implemented as a tangential function that directed larvae towards the preferred depth, $z_{\text {pref }}(\mathrm{m})$;

$$
w=w_{\max }+\tanh \left(z-z_{\text {pref }}\right)
$$

[56]
where $w_{\max }\left(\mathrm{m} \mathrm{s}^{-1}\right)$ was 1.5 times the routine swimming speed of larval cod,

$$
\begin{equation*}
w_{\max }=1.5 \cdot 10^{-3} \cdot\left(0.261 \cdot l^{1.552 \cdot l^{-0.08}}-\frac{5.289}{l}\right) . \tag{57}
\end{equation*}
$$

248 Table A1. Descriptions, units, values, and sources of symbols used in model equations.

Symbol	Description	Units	Value	Source
$A_{\text {cope }}$	copepod image area	mm^{2}	eq. 4	Kristiansen et al. (2007)
$A_{\text {larva }}$	larval image area	mm^{2}	eq. 35	Fiksen \& Jørgensen (2011)
assim	assimilation efficiency	-	eq. 17	Lough et al. (2005)
att	light attenuation coefficient	m^{-1}	0.18	Kristiansen et al. (2007)
biom	copepod biomass	$\mu \mathrm{g}$	Table A2	Davis (1984, 1987)
C	prey contrast	-	0.3	Aksnes \& Utne (1997)
c	image-forming light attenuation	mm^{-1}	$5.4 \cdot 10^{-4}$	Aksnes \& Giske (1993)
cap	number of each copepod stage captured	-	eq. 14	
D	biomass needed for maximum growth	$\mu \mathrm{g}$	eq. 24	Kristiansen et al. (2007)
d_{1}	capture fit constant	-	$-1.06 \cdot 10^{3}$	
d_{2}	capture fit constant	-	$3.86 \cdot 10^{3}$	
d_{3}	capture fit constant	-	$-4.96 \cdot 10^{2}$	
d_{4}	capture fit constant	-	20.2	
$d t$	biological model time step	S	3600	
E_{l}	larval eye sensitivity	-	eq. 8	Fiksen \& MacKenzie (2002)
E_{p}	predator eye sensitivity	-	$5 \cdot 10^{4}$	Fiksen \& Jørgensen (2011)
$E(z)$	light	$\mu \mathrm{mol} \mathrm{m}{ }^{-2} \mathrm{~s}^{-1}$	eq. 7	
ENCA	population model copepod density	m^{-3}	ENCA output	Ji et al. (2009)
enc	number encountered	-	eq. 13	MacKenzie \& Kiørboe (1995)
f	pause frequency	s^{-1}	0.53	MacKenzie \& Kiørboe (1995)
g	instantaneous growth rate	dt^{-1}	eqs. 27, 30	
$g_{\text {max }}$	maximum instantaneous growth rate	dt^{-1}	eq. 23	
gain	weight gain from growth	$\mu \mathrm{g}$	eqs. 26,28	Kristiansen et al. (2007)

gut	larval gut contents	$\mu \mathrm{g}$	eqs. 18, 25, 29	Kristiansen et al. (2007)
i	copepod developmental stage	-	N, C, A	
ingest $_{i}$	biomass ingested of each stage	$\mu \mathrm{g}$	eq. 15	
ingest $_{\text {tot }}$	total copepod biomass ingested	$\mu \mathrm{g}$	eq. 16	
K_{e}	light half saturation	$\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}$	1.0	Aksnes \& Utne (1997)
kh	vertical diffusivity	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	FVCOM output	
l	larval length	mm	eq. 32	Lankin et al. (2008)
$l_{\text {cope }}$	copepod length	mm	Table A2	Davis (1984, 1987)
m_{g}	larval mass	g	$m_{\mu \mathrm{g}} \cdot 10^{-6}$	
$m_{\text {ref }}$	larval reference mass	$\mu \mathrm{g}$	eq. 33	Lankin et al. (2008)
$m_{\mu g}$	larval mass	$\mu \mathrm{g}$	eq. 31	
$m_{m g}$	larval mass	mg	$m_{\mu \mathrm{g}} \cdot 10^{-3}$	
metab $_{a}$	active metabolism	$\mu \mathrm{g}$	eqs. 20, 21	Lough et al. (2005)
metab	routine metabolism	$\mu \mathrm{g}$	eq. 19	Lankin et al. (2008)
$N_{v i s}$	visual predator density	m^{-3}	eq. 37	
n	number of individuals per super-individual	-	eq. 55	
$n_{\text {pred }}$	number of individuals lost to predation	-	eqs. $51,53,54$	Scheffer et al. (1995)
ω	turbulent velocity	$\mathrm{mm} \mathrm{s}^{-1}$	eq. 11	MacKenzie \& Leggett (1993)
PAR	surface light	$\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}$	eq. 6	
p	predation probability	-	eq. 52	
$p_{\text {cap }}$	capture success probability	-	eq. 12	
pred95	predation rate specific to 1995	dt^{-1}	eqs. 47,49	
pred98	predation rate specific to 1998	dt^{-1}	eqs. 48,50	
pred $_{\text {base }}$	reference predation mortality rate	dt^{-1}	eq. 39	
pred $_{\text {crest }}$	predation mortality rate on crest	dt^{-1}	eqs. 43,45	
pred $_{\text {flanks }}$	predation mortality rate on flanks	dt^{-1}	eqs. 44,46	

$\operatorname{pred}_{n v}$	nonvisual predation mortality rate	dt^{-1}	eq. 34	Peterson \& Wroblewski (1984)
pred $_{\text {temp }}$	temperature-dependent predation mortality rate	dt^{-1}	eqs. $40,41,42$	
pred $_{\text {vis }}$	visual predation mortality rate	dt^{-1}	eq. 38	Fiksen \& Jørgensen (2011)
prey $_{\text {dens }}$	copepod density	mm^{-3}	eqs. 1, 2, 3	
$R_{\text {larva }}$	larval perception distance	mm	eq. 9	Aksnes \& Utne (1997)
$R_{\text {pred }}$	predator perception distance	mm	eq. 36	Aksnes \& Utne (1997)
r	prey:larva length ratio	-	$l_{\text {cope: }} / 1$	
s_{1}	maximum growth constant	$\% \mathrm{~d}^{-1}$	1.08	Folkvord (2005)
s_{2}	maximum growth constant	$\% \mathrm{~d}^{-1}{ }^{\circ} \mathrm{C}^{-1}$	1.79	Folkvord (2005)
s_{3}	maximum growth constant	$\% \mathrm{~d}^{-1} \mathrm{C}^{-1} \mathrm{~mm}^{-1}$	0.074	Folkvord (2005)
s_{4}	maximum growth constant	$\% \mathrm{~d}^{-1}{ }^{\circ} \mathrm{C}^{-1} \mathrm{~mm}^{-2}$	0.0965	Folkvord (2005)
s_{5}	maximum growth constant	$\% \mathrm{~d}^{-1} \mathrm{C}^{-1} \mathrm{~mm}^{-3}$	0.0112	Folkvord (2005)
$s g r_{\text {max }}$	maximum specific growth rate	\% d ${ }^{-1}$	eq. 22	Folkvord (2005)
swrad	short wave radiation	$\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}$	FVCOM output	
τ	pause duration	S	1.4	MacKenzie \& Kiørboe (1995)
T	temperature	${ }^{\circ} \mathrm{C}$	FVCOM output	
$T_{\text {base }}$	base temperature	${ }^{\circ} \mathrm{C}$	T6:6.5, T5:5.5	
tke	turbulent kinetic energy	$\mathrm{m}^{2} \mathrm{~s}^{-3}$	eq. 10	Davis et al. (1991)
u	copepod swimming speed	$\mathrm{mm} \mathrm{s}^{-1}$	eq. 5	Petrik et al. (2009)
v	visual predator constant	$\mathrm{m} \mathrm{s}^{-1}$	0.05	
w	larval swimming speed	$\mathrm{m} \mathrm{s}^{-1}$	eq. 56	
$w_{\text {max }}$	maximum larval swimming speed	$\mathrm{m} \mathrm{s}^{-1}$	eq. 57	Peck et al. (2006)
width	copepod width	mm	Table A2	Davis (1984, 1987)
z	larval depth	m		
$z_{\text {pref }}$	preferred depth for vertical behavior	m	day:40 m, night:20 m	Lough \& Potter (1993)

Table A2. Mean copepod properties (Davis 1984, 1987).

	Developmental stage		
	N	C	A
$l_{\text {cope }}(\mathrm{mm})$	0.2850	0.6340	1.000
width (mm)	0.1483	0.3040	0.4000
biom $(\mu \mathrm{g})$	0.5767	4.040	16.67

APPENDIX 2: Particle number sensitivity analysis

METHODS

We randomly subsampled the model output with $3 x$ particles to mean values and standard deviations for numbers of particles not simulated, and to see how modeled results compared to these. The reference cases for 1995 and 1998 were used as the model output. This output was randomly subsampled 100 times for each number of particles. We tested from 250 to the maximum number of particles of each cohort at intervals of 250 . Model simulation results, subsampling mean ± 1 s.d., and ± 1 s.d. of the maximum number of particles subsampled were plotted against the number of particles. We defined convergence as when the mean fraction fell within ± 1 s.d. of the maximum number of particles subsampled.

RESULTS

The mean fractions lost to the different sources of mortality and fractions survived appeared robust for particles ≥ 1000 in all cohorts of both years (Fig. A1-A4). However, model results with the original number of particles often fell outside of $\pm 1 \mathrm{~s}$. . of the subsampled results ($14 / 24$ times). The subsample means were always within ± 1 s.d. of the maximum number of particles subsampled for particle numbers ≥ 2250. Simulations with $3 x$ the original number of particles always fell within ± 1 s.d. of the maximum number of particles subsampled.

Fig. A1. Fraction of individuals lost to advection as a function of the number of particles simulated or subsampled. Heavy line: mean of 100 subsamples, thin line: ± 1 s.d. of 100 subsamples, dashed line: ± 1 s.d. of maximum number of particles subsampled for that cohort, circles: model simulations with 1 x and 3 x the original number of particles.

Fig. A2. Fraction of individuals lost to starvation as a function of the number of particles simulated or subsampled. Heavy line: mean of 100 subsamples, thin line: ± 1 s.d. of 100 subsamples, dashed line: ± 1 s.d. of maximum number of particles subsampled for that cohort, circles: model simulations with 1 x and 3 x the original number of particles.

Fig. A3. Fraction of individuals lost to predation as a function of the number of particles simulated or subsampled. Heavy line: mean of 100 subsamples, thin line: ± 1 s.d. of 100 subsamples, dashed line: ± 1 s.d. of maximum number of particles subsampled for that cohort, circles: model simulations with 1 x and 3 x the original number of particles.

Fig. A4. Fraction of individuals that survived as a function of the number of particles simulated or subsampled. Heavy line: mean of 100 subsamples, thin line: ± 1 s.d. of 100 subsamples, dashed line: ± 1 s.d. of maximum number of particles subsampled for that cohort, circles: model simulations with 1 x and 3 x the original number of particles.

