
UC Irvine
UC Irvine Previously Published Works

Title
Teaching Computational Thinking to Elglish Leanrers

Permalink
https://escholarship.org/uc/item/6784c97t

Journal
NYS TESOL Journal, 5(2)

Authors
Jacob, Sharin
Nguyen, Ha
Tofel-Grehl, Colby
et al.

Publication Date
2018

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6784c97t
https://escholarship.org/uc/item/6784c97t#author
https://escholarship.org
http://www.cdlib.org/

12 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

Invited Article

TEACHING COMPUTATIONAL THINKING

TO ENGLISH LEARNERS

Sharin Jacob*

Ha Nguyen

University of California at Irvine

Colby Tofel-Grehl

Utah State University

Debra Richardson

Mark Warschauer

University of California at Irvine

Computational thinking is an essential skill for full participation in society in today’s world (Wing,

2006). Yet there has been little discussion about the teaching and learning of computational thinking

to English learners. In this paper, we first review what computational thinking is, why it is important in

education, and the particular challenges faced in teaching computational thinking to speakers of

English as a second language. We then discuss some approaches for addressing these challenges,

giving examples from two recent K–12 initiatives in which we have been involved.

Keywords: coding, computational thinking, computer science, elementary school, STEM

Computational thinking represents an analytic approach to solving problems utilizing concepts

essential to computing (Wing, 2006). Stephen Wolfram succinctly describes computational thinking as the

ability to formulate thoughts and questions in a manner that is communicable to a computer to achieve

desired results (Weber, 2018). Consensus on an exact definition of computational thinking has not yet

been achieved (Barr & Stephenson, 2011; Grover & Pea, 2013), but in general, scholars agree that

computational thinking skills include automation, abstraction, algorithmic thinking, modularization, and

data analysis (International Society for Technology in Education & Computer Science Teachers

Association, 2011). Abstraction is foundational to computational thinking (Bennedsen & Caspersen, 2006;

Kramer, 2007). Given this requirement, certain dispositions or mindsets are fundamental to being

successful in computational thinking, including positive attitudes toward mistakes, ambiguity, complexity,

persistence, communication, and multiple paths to solutions (International Society for Technology in

Education & Computer Science Teachers Association, 2011). In practice, computational thinking involves

navigating multiple layers of abstraction at any given time, identifying which components to include or

exclude within the scope of a given problem or model. Algorithms represent the automation of these

abstractions (Wing, 2006)—for example, by programming the instructions a computer can use to carry out

a specific set of tasks in a particular order to solve a problem. Automated processes permeate our daily

13 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

lives, ranging from percolators that brew coffee, to thermostats and stop lights for environmental and

traffic control, to self-checkout machines in grocery stores, ATMs in banks, and digital personal assistants

in our homes. Each of these automated applications aggregates a host of algorithms, some of which may

be relatively simple while others may feature dizzying levels of abstraction.

There are key similarities and differences between computer science, computational thinking, and

coding. While computer science refers to the study of computers, computational thinking represents an

approach that is generalizable to a broad array of disciplines. Computational thinking skills are critical to

solving long-standing problems in the biological, physical, and social sciences, while providing

foundational tools for the nascent study of the digital humanities. Although computational thinking is

often operationalized through computer programming, its instruction does not require the use of

computers (Bell, Alexander, Freeman, & Grimley, 2009), but rather can be enacted through an

“unplugged” approach. Unplugged activities provide multimodal avenues for students to learn essential

computing concepts, which typically are later reinforced through computer programming exercises.

Computational thinking can also be taught outside the context of computer science through cross-

curricular integration. While there is a plethora of research on integrating computational thinking with

Science, Technology, Engineering, and Mathematics (STEM) subjects (Jona et al., 2014; Weintrop et al.,

2016), there is an emerging literature on its integration with literacy curricula. Jacob and Warschauer (in

press) developed a three-dimensional theoretical framework for exploring the relationship between

computational thinking and literacy (computational thinking as literacy, computational thinking through

literacy, and literacy through computational thinking). This conceptual approach explores ways in which

literacy skills facilitate computational thinking and, conversely, how students’ existing computational

thinking skills can be leveraged to promote literacy development while illustrating pedagogical

implications for such integration.

Why Teach Computational Thinking?
Given the pervasiveness of computational artifacts in society and our daily lives, students are

increasingly required to adopt computational approaches in solving everyday problems. Meanwhile, with

the rise of automation and artificial intelligence, economists predict that up to 800 million jobs will be

automated by 2030 (McKinsey Global Institute, 2017). Success in this dynamic workforce requires students

to think computationally and navigate multiple levels of abstraction to find innovative solutions for

perplexing problems. Beyond workforce preparation, developing students’ computational thinking skills

fosters civic engagement, allowing students to participate as scholars who increasingly utilize

computation to ameliorate social ills, whether in search of a cure for cancer or the elimination of hunger.

Scholars argue that these computational thinking skills have such a pervasive impact on social

communication and interaction that they represent fundamental literacies (diSessa, 2000; Jacob &

Warschauer, in press). Despite these trends, educational institutions continue to teach discrete reading,

writing, and mathematics skills while failing to emphasize the development of computational thinking

skills. Updating current pedagogical practices through educational policy initiatives can emphasize these

skills and dispositions by explicitly integrating computational thinking objectives into the curricula of core

subject areas.

Although efforts to teach computational thinking in K–12 schools have been promising, the United

States lags behind other nations in training its students in computer science, largely due to the lack of a

systematically mandated computer science curriculum. Efforts dedicated to broadening participation in

computer science, such as the Computer Science for All initiative enacted by Obama in 2016, seek to

teach all students, and especially those from traditionally underserved backgrounds, to become

developers, rather than simply consumers, of technology (Smith, 2016). Despite these efforts, shortages in

14 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

the STEM workforce are even more severe in the computer science area, where only 500,000 students will

graduate by 2020 to fill 1.4 million positions nationwide (Bureau of Labor Statistics, 2015). English learners,

who as one of the fastest growing populations in U.S. schools remain dramatically underrepresented in

computer science courses and careers (Martin, McAlear, & Scott 2015), present a valuable resource to

address this need. While Latinos constitute 54% of California K–12 enrollment (Ed Data, 2018), they

represent only 22% of Advanced Placement Computer Science test takers in the state (College Board,

2017). Furthermore, Latinos, low socio-economic students (SES), and English learners receive 50% less

computer science instruction than do their peers (Martin, McAlear, & Scott, 2015). Realizing these

students’ underdeveloped talents would not only greatly benefit them but also enhance the potential for

future U.S. technological innovation and progress.

In attempts to broaden participation of students from traditionally underserved groups, researchers

have tried to identify and target the underlying causes of underrepresentation in computer science.

Findings indicate that compared to their privileged counterparts, students from multicultural, low-SES

backgrounds lack computer and internet access at home and school (McFarland et al., 2017) and perceive

fewer role models from diverse backgrounds working in computer science fields (Royal & Swift, 2016).

Accessibility and visibility are further hindered by the lack of representation in the media of computer

scientists from culturally diverse backgrounds (Royal & Swift, 2016). These factors are exacerbated by a

lack of computer science exposure at home and at school (Google & Gallup, 2015; Wang, Hong, Ravitz, &

Moghadam, 2016). Increasing students’ available resources for, exposure to, and identification with the

computer science discipline is critical to addressing underrepresentation of students from multilingual,

multicultural backgrounds (Mercier, Barron, & O’Connor, 2006; Packard & Wong, 1999; Teague, 2002).

Challenges in Teaching Computational Thinking to English Learners
 Teaching computational thinking to English learners brings its own challenges and opportunities in

terms of content, cognitive and linguistic demands, and widespread stereotyping against certain groups

of learners. The strict syntactic demands of coding often limit student productivity by increasing time

spent on debugging and error correction (Bennedsen & Caspersen, 2012). Text-based programming

languages are unintuitive and challenge emerging readers; content demands are exacerbated by lower

levels of computer and internet access that hinder opportunities to practice for students from culturally

and linguistically diverse backgrounds (McFarland et al., 2017). Furthermore, much of the existing curricula

typically lack culturally responsive materials that motivate students by bridging home and formal learning

environments (Brown & Doolittle, 2008). Taking into account their content needs, differential access to

technology at home, and diverse family and cultural backgrounds, providing access for these students

requires not just technological resources, but also new pedagogical tools for engagement.

In addition to content demands, successful computational thinking also requires particular dispositions

or mindsets (Goode, Margolis, & Chapman, 2014; International Society for Technology in Education &

Computer Science Teachers Association, 2011). The process of debugging and troubleshooting calls for

persistence, comfort with ambiguity, and a positive view of making mistakes. Students from affluent

homes who have had previous exposure to computer science enjoy the advantage of acquiring problem-

solving strategies unique to computer science elsewhere—and oftentimes through prior informal and

formal learning environments. Furthermore, unlike math and science, computational thinkers must

develop the ability to deal with open-ended problems (International Society for Technology in Education

& Computer Science Teachers Association, 2011). In addition, computer science problems involve multiple

solutions, which makes computational thinking difficult to assess (Fuller et al., 2007), rendering these

assessments prone to teacher beliefs and biases. While efficiency, simplicity, elegance, and usability

represent some of the criteria used to measure the quality of abstractions in computational thinking

15 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

(Wing, 2006), in any given problem seemingly ineffective or mistaken solutions may lead to one of many

potentially correct solutions. Tracking these myriad approaches to a solution presents a challenge for

many students—particularly English learners, who may face linguistic challenges in articulating their own

problem-solving processes and solutions. Teacher misperceptions and faulty beliefs about these students

may result in misdiagnosing errors in a student’s work when the student is, in fact, practicing novel and

innovative approaches to problem solving (Ryoo, Lee, Sandoval, & Goode, 2013). To promote equitable

instruction for linguistically diverse students, teachers need to recognize the nature of computer science

content and develop an in-depth understanding of students’ problem-solving processes. Further research

is needed on the types of linguistic scaffolds and supports that develop students’ computational thinking

skills and facilitate their acquisition of content knowledge in computer science.

Language learners from marginalized backgrounds also confront pervasive stereotyping in computer

science. Computer scientists are often perceived as nerdy males who wear unglamorous glasses and

possess inborn, prodigious talent (Aspray, 2016), a stereotype fed by beliefs that interests, talents, and

abilities are innate to certain, often privileged, groups (Margolis, 2010). Rather than viewing achievement

gaps in computer science as the result of gaps in students’ innate abilities, culturally responsive

approaches recognize the systemic sociocultural and historical inequities that lead to differential learning

opportunities for students from underserved groups. Diversity initiatives, such as Science for All (Lee &

Fradd, 1998) and Computer Science for All (Smith, 2016), recognize these disparities and maintain that all

students are capable of achievement regardless of cultural, linguistic, and socioeconomic backgrounds.

Furthermore, these initiatives promote instructional practices that draw upon students’ wealth of cultural

and linguistic resources to enrich learning and promote identification with the field.

Approaches to Teaching Computational Thinking to English Learners
Although research on quality computer science instruction for language learners is sparse, effective

instructional practices for English learners in STEM have been well established in these findings: (a)

engaging language learners in science and math requires intensive linguistic scaffolding to understand

discipline-specific discourse structures and demanding technical language (Snow & Katz, 2010); (b)

providing English learners multiple opportunities to practice problem-solving skills in language-rich

environments allows them to simultaneously develop academic language proficiency and content

knowledge (Lee & Fradd, 1998); (c) engaging language learners in inquiry-based, collaborative peer-to-

peer talk motivates students to use newly acquired language (Zwiep & Straits, 2013); and (d) integrating

these instructional practices with culturally responsive materials connects the STEM curriculum to

students’ lives and communities (Brown & Doolittle, 2008). Consequently, linguistic scaffolding and

culturally responsive pedagogies can be both supportive and effective in the instruction of computational

thinking. Because a relationship exists between computing and students’ sense-making—students use

informal language and everyday experiences to inquire about and explain algorithm compositions—

teachers can thus build instruction on the intersections between students’ everyday knowledge and

computational thinking practices.

A focus on students’ sense-making in inquiry-based learning allows them to learn and retain

computational thinking patterns more than does teacher-directed instruction (Ioannidou, Bennett,

Repenning, Koh, & Basawapatna, 2011). Inquiry-based learning in computer science includes practicing

computational thinking in drafting initial approaches to problem solving and experimenting with multiple

strategies; such inquiry also entails the teaching and learning strategies that allow for students’ hands-on

investigations to uncover major concepts, instead of memorization of discrete facts (Goode, Chapman, &

Margolis, 2012). Inquiry-based learning approaches that positively contribute to the knowledge, skills, and

16 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

attitudes in computer science among diverse learners can also be scaled to larger programs (Margolis,

Goode, & Binning, 2015).

Linguistic Scaffolding

The vocabulary, syntax, and features in academic language used for describing computational thinking

processes are distinct from everyday language. When learning computing and computational thinking,

students are expected to acquire content-specific vocabulary (e.g., algorithm, loop) and distinguish

between nontechnical terms and their common-usage counterparts (e.g., steps, repeat). The functions of

inquiry-based learning in computer science, including describing and interpreting data, proposing

solutions, and communicating findings, might be unfamiliar to English learners in particular.

Explicit vocabulary instruction is an instrumental approach to scaffolding student learning of both

content-specific and general language conventions (Buxton, Lee, & Santau, 2008). Teachers can model the

computational thinking concepts in everyday language and then provide vocabulary instruction after

students have mastered the concept. For example, teachers can explain the idea of an algorithm as a

series of connected steps by giving an everyday example of students’ morning routine as an algorithm:

getting up, brushing teeth, eating breakfast, going from home to school. Teachers then would introduce

the word “algorithm” and explain it as a list of steps written for the computer to accomplish a task. Studies

suggest that this delayed approach avoids overtaxing working memory and results in more effective

learning of both concepts and language (Brown & Ryoo, 2008; Ryoo, 2015).

It is important that teachers consider students’ oral and written language development in learning

computational thinking. Studies have documented the benefits of creative computing to developing

literacy skills among traditionally marginalized youth. Peppler and Warschauer (2012) observed how

Brandy, a nine-year-old girl with cognitive disabilities, developed the metalinguistic awareness to improve

her reading and writing ability through programming multimedia artifacts. Brandy began to make the

connection between reading the code blocks and combining them in semantically meaningful ways.

Through the process, Brandy regained her interest in the traditional literacy form of reading and writing

and took up a more central social position in the after-school computer clubhouse (Peppler &

Warschauer, 2012). Just like the researchers’ and after-school staff’s noticing of Brandy’s emergent text-

making abilities, teachers should monitor the language development of English learners. Formative

assessment of students’ discourse and artifacts provides teachers the opportunity to take note of and

support students’ emergent text-making abilities, underscoring the meaning of computational thinking

concepts and their use in both everyday contexts and programming environments.

The development of literacy skills also occurs in group discussion and student collaboration. During

those activities, several students have opportunities to practice computational thinking discourse and

build on each other’s ideas. Such discourse is optimal for learning computer science content and

language if it is part of a process of collaborative inquiry-based learning (Fradd, Lee, Sutman, & Saxton,

2001; McNeill & Krajcik, 2007). Peppler, Warschauer, and Diazgranados’s (2010) study of diverse

elementary students in peer game-critique groups provides a compelling example of the benefits of

collaborative discourse. Students who learned to critically evaluate peer-created videos in talk and text

were found to enhance both their computational thinking and language skills (Peppler et al., 2010).

Culturally Relevant Curriculum

Computer science education that values students’ agency, sociocultural background, and authorship

significantly engages students, especially those who are traditionally underrepresented in computing

(Ryoo et al., 2013). Intervention for English learners should make computational thinking relevant by

drawing from students’ own funds of knowledge and contexts (Basu & Barton, 2007). Students from

17 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

underrepresented groups often favor relational learning—learning together with peers and making

connections between learning and their communities and culture—over noncollaborative or competitive

approaches that make them feel isolated (Anderson & Adams, 1992). Culturally relevant teaching that

values interdependence and collaboration would therefore validate student identities and backgrounds

beyond instruction of content knowledge, and prepare English learners for the demands of creative

thought and social negotiation in developing computational thinking.

There are many approaches to teaching computing and computational thinking to English learners in

culturally responsive ways. For example, teachers can ask students to create digital storytelling projects or

identity texts, dual-language artifacts that draw on students’ backgrounds, families, and interests in

programming environments. Teachers can also utilize pair programming, where two students work

simultaneously on a program, code, or design: one student plays the role of the “driver,” actively writing

codes and controlling the keyboard, while the other student becomes the “navigator,” checking the

correctness and efficiency of the program. Students who pair program perceive more confidence and

enjoyment in their work, produce higher quality programs, and are more likely to persist in computing

than those who do not (McDowell, Werner, Bullock, & Fernald, 2006). The notion of pair programming can

be extended to collaborative learning to create multimedia products such as games, music, and models

and simulations; these activities allow students to build learning communities as well as explore personal

backgrounds and interests. Teachers can also showcase examples of computer science applications in

cultural designs, which allows students to connect computational thinking practices to their own lives

(Goode et al., 2012). This process will enhance students’ computational thinking skills while enriching their

identity, cognition, and language use (Cummins, Hu, Markus, & Montero, 2015).

In the following sections, we present two examples of responsive teaching in which we are involved

that are both culturally and linguistically sensitive: CONECTAR, a National Science Foundation (NSF)-

funded project that focuses on integrating computer science into the English Language Arts curriculum in

elementary schools, and Project STITCH, an NSF-funded project that developed the curricular units and

professional development program to introduce electronic textiles (e-textiles) into middle school curricula.

CONECTAR
CONECTAR (Collaborative Network of Educators for Computational Thinking for All Research) is a

project created by the research-practice partnership between the University of California-Irvine (School of

Education and School of Information and Computer Sciences), the Orange County Department of

Education, and the Santa Ana Unified School District (SAUSD). The project’s goal is to develop and pilot

instructional materials for teaching computational thinking in Grades 3–5 in the SAUSD, targeted at the

district’s Latino students (96%) and English language learners (60%). As such, it is among the first to

examine the linguistic and sociocultural processes that underlie English learners’ success in mastering

computational thinking; it also examines the role of computational thinking in an English Language Arts

curriculum (Jacob & Warschauer, in press).

In the first year of the project (2017–2018), five teachers piloted a draft curriculum (adapted from the

Computer Science for All in San Francisco initiative; see Smith, 2016) using Scratch, a block-based

programming environment, in their classroom. In this plan, ongoing feedback on the implementation

process and collaborative curricular development between researchers and teachers allows the project to

develop approaches to teaching computational thinking in ways that meet the needs of English learners in

the SAUSD. The collaboration not only happens during the school year, but also occurs during a week-

long summer institute, where teachers and researchers modify the lessons based on experience in the

classroom, integrate linguistic scaffolding into each lesson, and micro-teach to reflect on instructional

strategies. At the time of this writing, the first summer institute has been completed and teachers have

18 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

successfully implemented development of the first year of the curriculum based on the principles of

linguistic scaffolding and culturally relevant pedagogy elaborated below.

Linguistic Scaffolding

Explicit vocabulary instruction. To begin the project, teachers utilize a range of strategies to

introduce computational thinking concepts to students, conducting explicit instruction with vocabulary

cards in introductory units, when students first experiment with the basic elements of Scratch. Teachers

model the vocabulary in everyday terms and engage students in exploratory activities in the programming

environment before restating the target vocabulary. The vocabulary cards become class resources that

students can refer to in subsequent activities, with teachers re-emphasizing concepts as they come up in

specific lessons.

Emergent literacy skills. We worked collaboratively with the teachers to embed computer science

and language objectives into each lesson and to develop the linguistics frames for students’ sense-making

of computational thinking. When learning computational thinking, students use everyday language at

varied levels of sophistication to explain concepts, negotiate code meanings, and propose alternative

solutions. The frames are developed for three language proficiency levels: emerging (low), expanding

(medium), and bridging (high). In theory, the linguistic frames are grounded in the systemic functional

linguistics perspective, which states that language is tightly woven in social contexts and that the

language meaning-making process constantly adapts to changing human interaction (Halliday, 1973). In

addition, the frames draw on the parallels between language and programming: both rely on syntactic

sequencing and social negotiation among speakers/programmers to create meaningful constructs

(Grover, 2015). In practice, teachers can model the sentence frames to students and use reminders (e.g.,

flashcards, placemats, handouts) to encourage students to utilize more advanced academic discourse. The

linguistic frames are useful for formative assessment, as teachers monitor and facilitate emerging literacy

skills in individual reflection and group discussion of student programs.

Culturally Relevant Curriculum

Our approach in this project to promote culturally relevant curriculum is twofold: enhance students’

identification with computer science and engage students in culturally responsive pedagogies. First, the

curriculum gives students the space to explore and create interest-driven and personal artifacts. At the

end of each of the five units, students participate in a culminating activity that builds on the concepts they

have learned. For example, the final unit focuses on creative storytelling, where students have a chance to

write and program an interactive story under the theme “Choose your own adventure.” The open-ended

nature of the assignments and the possibility to reuse and build on existing works from the Scratch

community allow for the exploration and showcasing of students’ identities, while scaffolding students at

different levels of programming and language competence. This approach is similar to Burke and Kafai’s

(2010) proposal that coding can reinforce programming and composition skills, especially when the

projects are of personal interest to students. In addition, the curriculum includes multiple activities—

namely, pair programming, group debugging, and peer critiques—that facilitate student relational

learning and collaborative discourse. The culmination of student artifacts also helps teachers track

students’ progress in attaining computational thinking and literacy skills.

Second, we work with teachers to compile English Language Arts lesson plans that include storybooks

about computational thinking processes (e.g., problem-solving) and inspirational women scientists.

Studies have shown that students embrace relatable role models and the qualities associated with them in

the STEM fields (Aish, Asare, & Miskioğlu, 2018). The storybooks aim to open up the conversation with

19 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

students to increase their ability belief, motivation, and identification with STEM in general and computer

science-related fields in particular (Wang & Degol, 2017).

Project STITCH
Project STEM Teaching Integrating Textiles and Computing Holistically (STITCH) is a curriculum and

professional development project designed to facilitate the evolution of a curricular approach to STEM

content that integrates computer science into secondary classrooms. Using electronic textiles (e-textiles),

Project STITCH requires students to program microprocessors to gather and process the data needed to

solve a range of authentic problems drawn from physics, chemistry, earth science, and life science in

Grades 6–12. The project allows students to explore the process of designing solutions to fit everyday

problems. E-textiles are sewable, often wearable, projects that involve sewing microprocessors to

actuators such as LED lights, buzzers, and sensors with conductive thread. By sewing circuits using

traditional crafting materials and new sewable technologies, students design solutions that are

intellectually rigorous as well as culturally and personally meaningful.

In the first year of the project (2016–2017), 18 secondary teachers received training and subsequently

taught Project STITCH in their classrooms. Focused feedback from teachers led to curricular revisions and

instructional scaffolding to better meet the needs of native and Latino populations being served across

the Intermountain region of the western United States. Findings indicate tremendous potential for e-

textiles to help shape both student and teacher perceptions of who engages with science (Howell, Tofel-

Grehl, Fields, & Ducamp, 2016).

Scaffolding for Identity

Because early exposure to meaningful and relevant science experiences acts as a predictor of future

science career interest (Tai, Lui, Maltese, & Fan, 2006), engaging underrepresented students in science

early on is extremely valuable. One way to promote student participation in science is to provide them

with opportunities to engage in projects that capture their interest. Embedding science learning in the

context of students’ everyday lives and culturally significant practices (Petrich, Wilkinson, & Bevan, 2013),

such as e-textiles, provides a meaningful way to engage new student populations in STEM.

Without the opportunity to connect with science personally, students tend to retain—and magnify—

negative feelings toward science (Basu & Barton, 2007). E-textiles offers culturally responsive

opportunities for English learners and other underrepresented students to engage in designing and

making circuitry (Searle & Kafai, 2015). While much work with English learners focuses on skills

development, Project STITCH puts forth a fused model of skill and identity development. When making

projects using e-textiles, greater participation is noted from students who previously did not engage in

science because e-textiles provides an opportunity for these students—that is, compared to most other

science instruction, it is language neutral. This allows those students whose understanding and

contributions were limited by language an opportunity to shine.

Scaffolding Using Explicit Instruction

Project STITCH engages students in a faded-scaffold approach to supporting the development of

computing and computational thinking. Students are encouraged to use code not of their design, which

allows them to consider the applicability of the technology before decomposing it. Students then move

into modifying the code, adjusting the timing and purposes of the light blinks on their initial project. After

students use the code in this way, they work collaboratively to comment and translate the code, which can

be scaffolded in either English or a student’s native language. This process affords teachers many

opportunities and multiple strategies for differentiation, and also allows for assessment of conceptual

20 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

understanding independent of a student’s language skills. In addition, such activity is also scaffolded

through the use of group work to support language learners. After students achieve success in their

commenting and translating of code, they move into remixing and writing simple code for their projects.

Culturally Relevant Curriculum

Project STITCH’s approach to engaging culturally relevant learning is two-pronged. First, we seek to

improve students’ engagement through a language-neutral set of projects that allow for science learning

beyond the confines of a worksheet. We work to improve student identity by disrupting normative

classroom discourse structures and roles in order to provide a new entry point for students with less

linguistic space within the classroom. Because e-textiles-based learning involves making hands-on models

of computational circuits, students are engaged in multiple ways throughout various aspects of the

project. This approach has led to greater buy-in and engagement from students during project work,

which in turn has encouraged positive shifts in student perception of their teacher’s support of them in

learning science (Tofel-Grehl et al., 2016). Second, Project STITCH aims to address ways of shifting

teachers’ private misconceptions of who can successfully engage in science. When teachers work with

students on e-textiles projects, they often report changes in their own perspective on who can do science.

These shifting teacher perceptions, coupled with changing student beliefs, create a powerful fulcrum for

creating a more open and diverse community of learners in science.

Finally, e-textiles also create terrific opportunities to connect to English learners’ families and

communities by taking advantage of the prominent role of textiles and sewing in many immigrant

communities. As a middle school teacher in our project explained:

For the first time in their academic careers, many of my Latino students received instruction and

help with their homework from their parents or family members. Many Latino parents in our town

do not speak English and often express their frustrations of not understanding their children’s

homework, not being able to help their children, and not knowing what homework is due. E-textiles

helped generate interest in my students’ schoolwork through something as simple as sewing.

(Tofel-Grehl & Searle, 2017, pp. 8–9)

Conclusion
 Effective teaching of computational thinking to English learners overlaps substantially with other forms

of content-based instruction. At the same time, as seen in the discussion above, computational thinking

has distinct characteristics that create both challenges and opportunities. Analysis of computer code can

be used to build meta-awareness of computational semiotics, and the visual nature of certain

programming languages, such as Scratch, can scaffold literacy development. Most important, projects

involving computational thinking, whether in creating stories or making e-textile projects, provide ample

opportunities for students to express and develop their own identity—an important element of the

successful second language curriculum.

 The entire field of computational thinking in education is now taking shape. As it does, it will be critical

for TESOL educators to put their stamp on it, so that the way we teach computational thinking best meets

the needs of our diverse students.

21 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

References
Aish, N., Asare, P., & Miskioğlu, E. E. (2018, March). People like me: Providing relatable and realistic role

models for underrepresented minorities in STEM to increase their motivation and likelihood of success.

Paper presented at the 2018 IEEE Integrated STEM Education Conference (ISEC). Princeton, NJ.

Anderson, J. A., & Adams, M. (1992). Acknowledging the learning styles of diverse student populations:

Implications for instructional design. New Directions for Teaching and Learning, 49, 19–33.

Aspray, W. (2016). Participation in computing: The National Science Foundation’s expansionary programs.

New York, NY: Springer.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K–12: What is involved and what is

the role of the computer science education community? ACM Inroads, 2(1), 48–54.

Basu, S. J., & Barton, A. C. (2007). Developing a sustained interest in science among urban minority youth.

Journal of Research in Science Teaching, 44(3), 466–489.

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School students

doing real computing without computers. The New Zealand Journal of Applied Computing and

Information Technology, 13(1), 20–29.

Bennedsen, J., & Caspersen, M. E. (2006). Abstraction ability as an indicator of success for learning object-

oriented programming? ACM SIGCSE Bulletin, 38(2), 39–43.

Bennedsen, J., & Caspersen, M. E. (2012). Persistence of elementary programming skills. Computer Science

Education, 22(2), 81–107.

Brown, B. A., & Ryoo, K. (2008). Teaching science as a language: A “content‐first” approach to science

teaching. Journal of Research in Science Teaching, 45(5), 529–553.

Brown, J. E., & Doolittle, J. (2008). A cultural, linguistic, and ecological framework for response to

intervention with English language learners. Teaching Exceptional Children, 40(5), 66–72.

Bureau of Labor Statistics. (2015). Occupational outlook handbook, 2014–2015: Computer and

information technology. Retrieved from https://www.bls.gov/ooh/computer-and-information-

technology/home.htm

Burke, Q., & Kafai, Y. B. (2010, June). Programming & storytelling: Opportunities for learning about coding

& composition. In Proceedings of the 9th International Conference on Interaction Design and Children

(pp. 348–351). New York, NY: Association for Computer Machinery.

Buxton, C., Lee, O., & Santau, A. (2008). Promoting science among English language learners: Professional

development for today’s culturally and linguistically diverse classrooms. Journal of Science Teacher

Education, 19(5), 495–511.

College Board (2017). AP program participation and performance data 2017. [Data file]. Retrieved from

https://research.collegeboard.org/programs/ap/data/participation/ap-2017

Cummins, J., Hu, S., Markus, P., & Montero, M. K. (2015). Identity texts and academic achievement:

Connecting the dots in multilingual school contexts. TESOL Quarterly, 49(3), 555–581.

diSessa, A. (2000). Changing minds: Computers, learning and literacy. Cambridge, MA: MIT Press.

Ed Data (2018). California public schools. [Data file]. Retrieved from https://www.ed-data.org/state/CA

Fradd, S. H., Lee, O., Sutman, F. X., & Saxton, M. K. (2001). Promoting science literacy with English

language learners through instructional materials development: A case study. Bilingual Research

Journal, 25(4), 479–501.

Fuller, U., Riedesel, C., Thompson, E., Johnson, C. G., Ahoniemi, T., Cukierman, D., . . . Thompson,

D. M. (2007). Developing a computer science-specific learning taxonomy. ACM SIGCSE Bulletin,

39(4), 152–170. Retrieved from http://portal.acm.org/citation.cfm?doid=1345375.1345438

doi:10.1145/1345375.1345438

https://www.bls.gov/ooh/computer-and-information-technology/home.htm
https://www.bls.gov/ooh/computer-and-information-technology/home.htm
https://research.collegeboard.org/programs/ap/data/participation/ap-2017
https://www.ed-data.org/state/CA

22 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond curriculum: The exploring computer science

program. ACM Inroads, 3(2), 47–53.

Goode, J., Margolis, J., & Chapman, G. (2014, March). Curriculum is not enough: The educational theory

and research foundation of the Exploring Computer Science professional development model. In

SIGCSE ’14: Proceedings of the 45th ACM Technical Symposium on Computer Science Education (pp.

493–498. New York, NY: Association for Computer Machinery.

Google & Gallup (2015). Images of computer science: Perceptions among students, parents and educators

in the U.S. Retrieved from https://services.google.com/fh/files/misc/images-of-computer-science-

report.pdf

Grover, S. (2015, April). “Systems of Assessments” for deeper learning of computational thinking in K–12.

Paper presented at the 2015 Annual Meeting of the American Educational Research Association,

Chicago, IL.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational

Researcher, 42(1), 38–43.

Halliday, M. A. K. (1973). Explorations in the functions of language. London, UK: Edward Arnold.

Howell, J., Tofel-Grehl, C., Fields, D. A., & Ducamp, G. J. (2016). E-textiles to teach electricity: An

experiential, aesthetic, handcrafted approach to science. In C. Williams (Ed.), Teacher pioneers: Visions

from the edge of the map (pp. 232–245). Pittsburgh, PA: ETC Press.

International Society for Technology in Education (ISTE) & Computer Science Teachers Association (CSTA),

(2011). Operational definition of computational thinking for K-12 education. Retrieved from

http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf

Ioannidou, A., Bennett, V., Repenning, A., Koh, K. H., & Basawapatna, A. (2011, April). Computational

thinking patterns. Paper presented at the Annual American Educational Research Association Meeting,

New Orleans, LA.

Jacob, S., & Warschauer, M. (in press). Computational thinking and literacy. Journal of Computer Science

Integration.

Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K., Weintrop, D., & Beheshti, E. (2014, January).

Embedding computational thinking in science, technology, engineering, and math (CT-STEM). Paper

presented at the Future Directions in Computer Science Education Summit Meeting, Orlando, FL.

Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM, 50(4), 36–42.

Lee, O., & Fradd, S. H. (1998). Science for all, including students from non-English-language backgrounds.

Educational Researcher, 27(4), 12–21.

Margolis, J. (2010). Stuck in the shallow end: Education, race, and computing. Boston, MA: MIT Press.

Margolis, J., Goode, J., & Binning, K. (2015). Expanding the pipeline-exploring computer science: Active

learning for broadening participation in computing. Computing Research News, 27(9), 16–19.

Martin, A., McAlear, F., & Scott, A. (2015). Path not found: Disparities in access to computer science

courses in California high schools. Retrieved from https://eric.ed.gov/?id=ED561181

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming improves student retention,

confidence, and program quality. Communications of the ACM, 49(8), 90–95.

McFarland, J., Hussar, B., de Brey, C., Snyder, T., Wang, X., Wilkinson-Flicker, S. . . . Hinz, S. (2017). The

condition of education 2017 (NCES 2017-144). U.S. Department of Education. Washington, DC: National

Center for Education Statistics.

McKinsey Global Institute. (2017). Jobs lost, jobs gained: Workforce transitions in a time of automation.

Retrieved from https://www.mckinsey.com/

http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://www.mckinsey.com/~/media/mckinsey/featured%20insights/future%20of%20organizations/what%20the%20future%20of%20work%20will%20mean%20for%20jobs%20skills%20and%20wages/mgi-jobs-lost-jobs-gained-report-december-6-2017.ashx
https://www.mckinsey.com/~/media/mckinsey/featured%20insights/future%20of%20organizations/what%20the%20future%20of%20work%20will%20mean%20for%20jobs%20skills%20and%20wages/mgi-jobs-lost-jobs-gained-report-december-6-2017.ashx

23 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

McNeill, K. L., & Krajcik, J. (2007). Middle school students’ use of appropriate and inappropriate evidence in

writing scientific explanations. Paper presented at Thinking with Data: The Proceedings of the 33rd

Carnegie Symposium on Cognition. Mahwah, NJ: Erlbaum.

Mercier, E. M., Barron, B., & O'Connor, K. M. (2006). Images of self and others as computer users: The role

of gender and experience. Journal of Computer Assisted Learning, 22(5), 335–348.

Packard, B. L., & Wong, E. D. (1999). Future images and women's career decisions in science. Retrieved from

https://eric.ed.gov/?id=ED430805

Peppler, K., & Warschauer, M. (2012). Uncovering literacies, disrupting stereotypes: Examining the

(dis)abilities of a child learning to computer program and read. International Journal of Learning and

Media, 3(3), 15–41.

Peppler, K., Warschauer, M., & Diazgranados, A. (2010). Game critics: Exploring the role of critique in

game-design literacies. E-learning and Digital Media, 7(1), 35–48.

Petrich, M., Wilkinson, K., & Bevan, B. (2013). It looks like fun, but are they learning? In M. Honey & D.

Kanter (Eds.), Design, make, play (pp. 50–70). New York, NY: Routledge.

Royal, D., & Swift, A. (2016, October 18). U.S. minority students less exposed to computer science. Gallup.

Retrieved from http://www.gallup.com/poll/196307/minority-students-less-exposed-computer-

science.aspx

Ryoo, J. J., Margolis, J., Lee, C. H., Sandoval, C. D., & Goode, J. (2013). Democratizing computer science

knowledge: Transforming the face of computer science through public high school education.

Learning, Media and Technology, 38(2), 161–181. doi:10.1080/17439884.2013.756514

Ryoo, K. (2015). Teaching science through the language of students in technology-enhanced instruction.

Journal of Science Education and Technology, 24(1), 29–42.

Searle, K. A., & Kafai, Y. B. (2015). Boys’ needlework: Understanding gendered and indigenous perspectives

on computing and crafting with electronic textiles. Paper presented at the Proceedings of the Eleventh

Annual International Conference on International Computing Education Research, Omaha, NB.

Retrieved from http://dl.acm.org/citation.cfm?id=2787724

Smith, M. (2016, January 30). Computer science for all. [Web log comment]. Retrieved from

https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all

Snow, M. A., & Katz, A. (2010). English language development: Foundations and implementation in

kindergarten through grade five. In Eli Hinkel (Ed.), Improving education for English learners: Research-

based approaches (California Department of Education, Vol. III), (pp. 83–148). New York, NY: Routledge.

Tai, R. H., Liu, C. Q., Maltese, A. V., & Fan, X. (2006). Planning early for careers in science. Science,

312(5777), 1143–1144.

Teague, J. (2002). Women in computing: What brings them to it, what keeps them in it?. ACM SIGCSE

Bulletin, 34(2), 147–158.

Tofel-Grehl, C., Fields, D., Searle, K., Maahs-Fladung, C., Feldon, D., Gu, G., & Sun, C. (2017). Electrifying

engagement in middle school science class: Improving student interest through e-textiles. Journal of

Science Education and Technology, 26(4), 406–417.

Tofel-Grehl, C., & Searle, K. (2017). Critical reflections on teacher conceptions of race as related to the

effectiveness of science learning. Journal of Multicultural Affairs, 2(1), 4. Retrieved from

http://scholarworks.sfasu.edu/jma/vol2/iss1/4

Wang, J., Hong, H., Ravitz, J., & Moghadam, S. H. (2016, February). Landscape of K–12 computer science

education in the US: Perceptions, access, and barriers. In Proceedings of the 47th ACM Technical

Symposium on Computing Science Education (pp. 645–650). Association for Computing Machinery.

http://dl.acm.org/citation.cfm?id=2787724
http://dl.acm.org/citation.cfm?id=2787724
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all

24 NYS TESOL JOURNAL Vol. 5, No. 2, July 2018

Wang, M. T., & Degol, J. L. (2017). Gender gap in science, technology, engineering, and mathematics
(STEM): Current knowledge, implications for practice, policy, and future directions. Educational
Psychology Review, 29(1), 119–140.

Weber, M. (2018, March 22). Harvard EdCast: Teaching computational literacy. Message posted to
https://www.gse.harvard.edu/news/18/03/harvard-edcast-teaching-computational-
literacy?utm_source=facebook&utm_medium=social&utm_campaign=EdCast&utm_term=
&utm_content=

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of Science Education and
Technology, 25(1), 127–147.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Zwiep, S. G., & Straits, W. J. (2013). Inquiry science: The gateway to English language proficiency. Journal of

Science Teacher Education, 24(8), 1315–1331.

*Corresponding author: sharinj@uci.edu

https://www.gse.harvard.edu/news/18/03/harvard-edcast-teaching-computational-literacy?utm_source=facebook&utm_medium=social&utm_campaign=EdCast&utm_term=&utm_content
https://www.gse.harvard.edu/news/18/03/harvard-edcast-teaching-computational-literacy?utm_source=facebook&utm_medium=social&utm_campaign=EdCast&utm_term=&utm_content
https://www.gse.harvard.edu/news/18/03/harvard-edcast-teaching-computational-literacy?utm_source=facebook&utm_medium=social&utm_campaign=EdCast&utm_term=&utm_content
https://www.gse.harvard.edu/news/18/03/harvard-edcast-teaching-computational-literacy?utm_source=facebook&utm_medium=social&utm_campaign=EdCast&utm_term=&utm_content
https://www.gse.harvard.edu/news/18/03/harvard-edcast-teaching-computational-literacy?utm_source=facebook&utm_medium=social&utm_campaign=EdCast&utm_term=&utm_content

