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ABSTRACT OF THE DISSERTATION

Advancing Mathematical Reasoning with Language Models:

A Multimodal and Knowledge-Intensive Perspective

by

Pan Lu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Kai-Wei Chang, Co-Chair

Professor Song-Chun Zhu, Co-Chair

Mathematical reasoning is a pivotal component of human intelligence, crucial for advancing

education and science. This dissertation delves into the development of language model systems

capable of robust mathematical reasoning, marking a significant step toward realizing general ar-

tificial intelligence. We introduce multi-modal and knowledge-intensive benchmarks to assess

the reasoning capabilities of large language models (LLMs) and vision-language models (VLMs)

across real-world contexts, including visual information, tabular data, and scientific domains.

This dissertation advances the field by proposing new pre-trained VLMs. For instance, Patch-

Trm introduces a patch-based cross-modal Transformer model for abstract diagram reasoning. We

also present innovative retrieval and tool-augmented algorithms that enhance LLM capabilities.

Notably, Inter-GPS is a neuro-symbolic solver for geometry that demonstrates human-level perfor-

mance, marking a first in the domain. Additionally, PromptPG pioneers the use of reinforcement

learning for dynamic in-context example selection, significantly improving the stability and accu-

racy of LLMs. Another groundbreaking contribution is Chameleon, a model that integrates LLMs

with external tools, vastly increasing their flexibility and effectiveness in real-world applications.

The dissertation concludes by analyzing the latest advances in mathematical reasoning within vi-

sual contexts, and highlighting the current challenges and future prospects.
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CHAPTER 1

Introduction

1.1 Motivation

Mathematical reasoning is a fundamental aspect of human intelligence that enables us to com-

prehend and make decisions based on numerical data and language. It is applicable in various

fields, including science, engineering, finance, and everyday life, and encompasses a range of abil-

ities, from basic skills such as pattern recognition and numerical operations to more advanced

skills like problem-solving, logical reasoning, and abstract thinking. The development of artificial

intelligence (AI) systems capable of solving math problems and proving theorems has been a long-

standing focus of research in machine learning and natural language processing (NLP), dating back

to the 1960s [Fei63, Bob64].

As deep learning continues to revolutionize NLP tasks such as question answering and machine

translation [SVL14, KT19], it has also made significant strides in mathematical reasoning [WLS17,

YD19, GGB20, WWS22b]. Recently, large language models (LLMs) such as GPT-4 [Ope23a] and

LLaMA 3 [TLI23] have demonstrated impressive mathematical reasoning capabilities, achieving

comparable human-level performance on benchmarks like GSM8K [CKB21].

However, current works face several challenges. First, the focus has primarily been on text-only

domains [CKB21, HBK21], while real-world math and science problems often involve multimodal

contexts such as images, diagrams, and tables. Second, LLMs are approaching performance sat-

uration on some text-based benchmarks, leaving limited room for improvement [Ant24, ZWL23].

Third, there remains a significant performance gap on more complex, real-world challenges that

require retrieving and applying domain knowledge, conducting multi-step reasoning, and utilizing

domain-specific tools [LBX24].

1



How Do Our Humans Solve These Problems?

SR

QP
Understand diagram

!" ⊥ $%,
$! ⊥ !%,

!" intesects with $% at "

Reason (Calculate) step by step

In ∆$%&, &( = 3 and %( = 14.
Find $(.

Retrieve the theorem

$"
!" =

!"
%"!"! = $" 1 "%

Geometric Mean Theorem

$"
!" =

!"
%" Geometric Mean Theorem

3
3 =

3
14 RS = 3, QS = 14, and PS = x

3! = 42 Cross products

3 ≈ 8. : Use a calculator to take the positive square root

12Figure 1.1: A geometry problem requiring diagram understanding, theorem selection, and
step-by-step calculation.

To illustrate the challenges faced by current LLMs, consider three example problems involving

geometry diagrams, scientific scenarios, and tabular contexts. Solving the geometry problem in

Figure 1.1 requires understanding the diagram, grounding symbols and attributes, and applying

appropriate theorems like the Geometric Mean Theorem. While the Pythagorean theorem might

initially seem applicable, it would lead to a complex system of equations. Instead, the Geometric

Mean Theorem allows for a more straightforward solution by setting up a single equation and

calculating step by step.How Do Our Humans Solve These Problems?

Question: Which type of force from the 
baby's hand opens the cabinet door?
Options: (A) pull (B) push

Context: A baby wants to 
know what is inside of a 
cabinet. Her hand applies 
a force to the door, and 
the door opens.

Understand multimodal context

A baby opens the cabinet door.

Recall background knowledge
The direction of a push is away from the object that is 
pushing. The direction of a pull is toward the object that 
is pulling.

Reason (Think) step by step

1. The baby's hand applies a force to the cabinet door. 
2. This force causes the door to open. 
3. The direction of this force is toward the baby's hand. 
4. This force is a pull.

11Figure 1.2: A science question requiring multimodal understanding, knowledge retrieval, and mul-
ti-hop reasoning.

Figure 1.2 presents a science question that requires understanding the multimodal context of

a baby opening a cabinet door, recalling relevant background knowledge, and providing step-by-

step reasoning based on the context and knowledge to arrive at the correct answer. Answering such
2



questions involves multimodal content understanding, external knowledge extraction, and explicit

multi-hop reasoning.How Do Our Humans Solve These Problems?

Wanda went on a camping trip and logged 
the number of miles she hiked each day. 
What is the median of the numbers?

Miles hiked
Day Miles

Sunday 10
Monday 9
Tuesday 10
Wednesday 5
Thursday 9

Look at the following schedule. When does 
the bus depart from the train station?
(A) 12:35 P.M. (B) 1:10 P.M. 
(C) 1:10 P.M. (D) 10:45 A.M.

Bus schedule
Location Arrive Depart
stadium 10:20 A.M. 10:25 A.M.
park 10:35 A.M. 10:45 A.M.
hotel 11:10 A.M. 11:15 A.M.
airport 12:05 P.M. 12:10 P.M.
train station 12:25 P.M. 12:35 P.M.
bus station 1:10 P.M. 1:10 P.M.

Understand table
This table shows the number of miles 
Wanda hiked each day on her trip.

Recall knowledge
To find the median, the data must be 
arranged in order from least to greatest (or 
greatest to least), and then the middle 
value(s) is/are determined.

Reason (Program) step by step
Call external tool (Python Interpreter)

miles = [10, 9, 10, 5, 9]
miles= sorted(miles)
mid1 = (len(miles) - 1) // 2
mid2 = len(miles) // 2
ans = (miles[mid1] + miles[mid2]) / 2
# executed output: ans = 9

Reason (Think) step by step
Call external tools (row lookup)

1. Find the train station on the schedule. Find 
the departure time for the train station.

2. Train station: 12:35 P.M. The bus departs 
from the train station at 12:35 P.M. 

3. The answer is 12:35 P.M.

Location Arrive Depart
train station 12:25 P.M. 12:35 P.M.

Understand table

This table shows the schedule of the bus.
There are multiple rows and columns

13

Figure 1.3: Math word problems in tabular context requiring knowledge retrieval and tool utiliza-
tion.

Figure 1.3 shows two math word problems in tabular context. The first question, asking for

the median of numbers, requires recalling how to calculate the median and potentially utilizing

a Python interpreter for a precise result. The second question, involving a larger table, could be

simplified by using a row lookup tool to locate relevant information.

Solving these problems requires capabilities beyond just processing text, such as understand-

ing visual information, retrieving relevant knowledge, and performing rigorous logical reasoning,

potentially with the aid of external tools. Current LLMs, while powerful, are not well-equipped to

handle such multimodal, knowledge-intensive problems requiring complex reasoning.

To address these challenges, this dissertation first proposes multimodal, knowledge-intensive

benchmarks to evaluate the capabilities of LLMs on real-world math and science problems. These

benchmarks are designed to be (1) multimodal, featuring not just text but also natural images,

geometry diagrams, abstract scenes, and scientific figures; (2) knowledge-intensive, requiring re-

trieval and application of domain knowledge, online resources, textbooks, theorems, and rules; and

(3) requiring rigorous multistep reasoning, often needing neuro-symbolic reasoning, tool augmen-

tation, and verification to ensure precise predictions.
3



The dissertation then explores pre-trained vision-language models (VLMs) to enhance math-

ematical reasoning through pretraining and hierarchical image parsing layouts. Furthermore, it pro-

poses tool-augmented and retrieval-augmented algorithms that significantly enhance LLMs’

mathematical reasoning in real scenarios. The key insights are that (1) integrating formal lan-

guages and symbolic solvers can strengthen LLMs for complex reasoning, such as in geometry,

(2) LLMs can learn to dynamically select relevant demonstrations to improve in-context learning

performance, and (3) LLMs can effectively utilize external tools and resources.

The ultimate goal is to develop LLMs and their visual variants VLMs that can more robustly

and flexibly apply mathematical reasoning to solve real-world problems across diverse domains

by leveraging multimodal understanding, retrieving and applying relevant knowledge, compos-

ing necessary tools, and generating correct solutions through interpretable multi-step reasoning.

This dissertation takes important steps towards that goal through new benchmarks, models, and

algorithms while also revealing key challenges and future opportunities in this space.

1.2 Dissertation Outline

My ultimate research goal is to build machines that can reason and collaborate with humans

for the common good, an ambition that lies at the intersection of AI, humans, and science. Specifi-

cally, I aim to develop AI systems that achieve expert-level problem-solving and assist humans

in scientific discovery.

Following these central topics, the dissertation is organized into four parts as follows: PART I

MULTIMODAL AND KNOWLEDGE-INTENSIVE BENCHMARKS, PART II PRE-TRAINED VISION-

LANGUAGE MODELS, PART III RETRIEVAL AND TOOL-AUGMENTED ALGORITHMS, and PART

IV SUMMARY AND FUTURE DIRECTIONS.

PART I introduces novel mathematical reasoning benchmarks in multimodal and knowledge-

intensive scenarios. Chapter 2 presents three new datasets respectively: Geometry3K [LGJ21],

IconQA [LQC21], and TabMWP [LQC23], which are designed to evaluate AI models’ perfor-

mance in rigorous math problems across diverse contexts such as geometry diagrams, abstract

scenes, and tabular data. These benchmarks provide a comprehensive testbed for assessing the ca-
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pabilities of AI systems in mathematical reasoning tasks that require understanding and integrating

information from multiple modalities. Chapter 3 introduces ScienceQA [LMX22], a benchmark

that assesses AI models’ performance in knowledge-intensive scientific reasoning tasks requiring

multimodal understanding and external knowledge application. ScienceQA serves as a valuable

resource for evaluating the ability of AI systems to reason about complex scientific concepts and

leverage domain-specific knowledge.

PART II explores the development of robust foundation models for mathematical reasoning

in abstract diagrams. Chapter 4 proposes Patch-Trm [LQC21], a novel patch-based cross-modal

Transformer model that enhances visual mathematical reasoning capabilities by learning hierar-

chical relationships between image patches and text. Patch-Trm demonstrates the potential of

specialized architectures in improving the performance of AI systems on visual reasoning tasks,

particularly in the context of abstract diagrams.

PART III focuses on the design of efficient algorithms to enhance reasoning abilities, through

tool-augmented and retrieval-augmented approaches. Chapter 5 introduces Inter-GPS [LGJ21], a

neuro-symbolic solver for geometry problems that demonstrates human-level performance. Inter-

GPS showcases the effectiveness of combining neural networks with symbolic reasoning tech-

niques to tackle complex geometric reasoning tasks. Chapter 6 presents PromptPG [LQC23], a

novel approach that employs reinforcement learning for dynamic in-context example selection to

improve the few-shot learning capabilities of large language models. PromptPG highlights the

potential of adaptive prompting strategies in enhancing the performance of language models on

reasoning tasks with limited training data. Chapter 7 introduces Chameleon [LPC23], a tool-

augmented reasoning framework that enhances the reasoning capabilities of language models by

integrating external computational tools. Chameleon demonstrates the benefits of augmenting lan-

guage models with specialized tools and knowledge sources to tackle complex reasoning problems.

PART IV summarizes recent progress in mathematical reasoning and discusses future direc-

tions. Chapter 8 highlights the latest advances in visual mathematical reasoning [LBX24], ad-

dressing current challenges and potential future directions, such as performance saturation, bridg-

ing performance gaps, and strategies for self-improvement. This chapter provides an overview of

the state-of-the-art in visual mathematical reasoning and identifies key areas for future research

5



and development. Chapter 9 concludes the dissertation by discussing future work and the broader

impact of the research, emphasizing the potential of AI systems to achieve expert-level problem-

solving and assist humans in scientific discovery. The conclusion underscores the significance of

the presented research in advancing the field of AI and its potential to transform various domains

through enhanced reasoning capabilities.

By curating novel benchmarks, developing robust foundation models, and designing efficient

algorithms, this dissertation aims to push the boundaries of AI’s capabilities in complex reasoning

tasks and facilitate scientific discoveries. The research presented here contributes to the overarch-

ing goal of building machines that can reason and collaborate with humans for the common good,

marking a significant step towards realizing general artificial intelligence.
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Part I

Multimodal and Knowledge-Intensive

Benchmarks
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CHAPTER 2

Multimodal Mathematical Reasoning

2.1 Geometry Problem Solving

2.1.1 Introduction

Automated geometry problem solving (GPS) is also a long-standing mathematical reasoning task

[GHL60, Wen86]. As shown in Figure 1.1, a geometry problem consists of a textual descrip-

tion and a diagram. The multimodal inputs describe the entities, attributes, and relationships of

geometric elements, and the goal is to find the numeric solution to an unknown variable.

Several datasets for geometry have been released in recent years, including GEOS [SHF15],

GEOS++ [SDX17], GeoShader [AGM17] and GEOS-OS [SX17] datasets. However, these datasets

are relatively small in scale and contain limited problem types. For example, there are only 102

shaded area problems in GeoShader and 186 problems in GEOS. While GEOS++ and GEOS-OS

contain more data of 1,406 and 2,235 problems, respectively, they have not been publicly available

yet. Instead, our Geometry3K dataset features 3,002 SAT-style problems collected from two high-

school textbooks that cover diverse graph and goal types. Besides, each problem in Geometry3K

is annotated with dense descriptions in formal language (defined in Section 5.3), which makes it

particularly suited for symbolic reasoning and interpretable problem solving.

2.1.2 Dataset Collection

Most existing datasets for geometry problem solving are relatively small, contain limited problem

types, or not publicly available. For instance, the GEOS dataset [SHF15] only contains 186 SAT

problems. Although there are 1,406 problems in GEOS++ [SDX17], this dataset has not been
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Problem Text Diagram Choices Text Literals Diagram Literals
Find y. Round to the 
nearest tenth.

A. 18.8
B. 23.2
C. 25.9
D. 44.0
Answer: C

Find(y) Equals(LengthOf(Line(A,B)),32)
Equals(LengthOf(Line(B,D)),y)
Equals(MeasureOf(Angle(A,C,B)),54)
Equals(LengthOf(Line(A,D)),x)
PointLiesOnLine(D,Line(A,C))
Perpendicular(Line(B,D),Line(C,D))
Equals(LengthOf(Line(A,B)),LengthOf(Lin
e(B,C)))

Find the perimeter of 
$\parallelogram$ 
JKLM.

A. 11.2
B. 22.4
C. 24
D. 44.8
Answer: B

Find(PerimeterOf(Parallelogram
(J,K,L,M)))

Equals(LengthOf(Line(L,K)),7.2)
Equals(LengthOf(Line(M,L)),4)
Equals(LengthOf(Line(E,J)),6)
PointLiesOnLine(E,Line(M,L))
Perpendicular(Line(J,E),Line(E,L))

In $\odot$ K, MN = 
16 and m $\widehat$ 
MN = 98. Find the 
measure of LN. 
Round to the nearest 
hundredth.

A. 6.93
B. 7.50
C. 8.94
D. 10.00
Answer: C

Circle(K)    
Equals(LengthOf(Line(M,N)),16)
Equals(MeasureOf(Arc(M,N)),98)
Find(LengthOf(Line(L,N)))

Equals(LengthOf(Line(J,K)),10)
Perpendicular(Line(P,K),Line(M,P))
PointLiesOnLine(P,Line(M,N))
PointLiesOnLine(P,Line(L,J))
PointLiesOnLine(P,Line(L,K))
PointLiesOnLine(K,Line(P,J))
PointLiesOnLine(K,Line(L,J))
PointLiesOnCircle(M,Circle(K))
PointLiesOnCircle(J,Circle(K))
PointLiesOnCircle(N,Circle(K))
PointLiesOnCircle(L,Circle(K))

Figure 2.1: More data examples in the Geometry3K dataset.

released to the public yet. Therefore, we build a new large-scale geometry problem benchmark,

called Geometry3K. The data is collected from two popular textbooks for high school students

across grades 6-12 by two online digital libraries (McGraw-Hill1, Geometryonline2). Groups of

well-trained annotators with undergraduate degrees manually collect each problem with its prob-

lem text, geometry diagram, four candidate choices, and correct answer. Each problem text is

annotated in the format of LATEX. In order to evaluate the fine-grained performance of geometry

solvers, we label each problem data with the corresponding problem goal and geometry shapes.

Unlike existing datasets that only collect the problem text and diagrams, we further annotate

each data in Geometry3K with dense formal language descriptions that bridge the semantic gap

between the textual and visual contents as well as benefit the symbolic problem solver. The anno-

tated formal language is used to train and evaluate our proposed problem parsers. Data examples

are illustrated in Figure 2.1.

1https://www.mheducation.com/

2www.geometryonline.com
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Total Train Val Test

Questions 3,002 2,101 300 601
Sentences 4,284 2,993 410 881
Words 30,146 20,882 2,995 6,269

Literals (Text) 6,293 4,357 624 1,312
Literals (Diagram) 27,213 19,843 2,377 4,993

Table 2.1: Basic statistics of our Geometry3K dataset.
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Number of question words
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Question Distribution

Geometry3K

Figure 2.2: Question length distribution of Geometry3K.

2.1.3 Dataset Statistics

The Geometry3K dataset consists of 3,002 problems and is divided into the train, validation, and

test sets with the ratio of 0.7:0.1:0.2, as shown in Table 2.1. Figure 2.2 illustrates the question dis-

tribution by the number of sentence words. The long tail in the distribution requires the geometry

solvers to understand the rich semantics in the textual content.

There are 6,293 literals for the problem text and 27,213 literals for the diagrams in Geome-

try3K, respectively. We list the most and least frequent predicates with a frequency greater than 5

in Table 2.2. It is shown that the predicates for the problem text are more evenly distributed than

those for diagrams. This is mainly because the problem text describes diverse geometric shapes,

attributes, and relations while diagrams display the basic properties of points, lines, and arcs.
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Predicates (Text) % Predicates (Diagram) %

Find 19.00 Line 30.89
Line 14.49 PointLiesOnLine 16.66
Equals 11.83 Equals 15.17
LengthOf 9.53 MeasureOf 10.46
MeasureOf 8.97 LengthOf 8.69
...... ......
CircumscribedTo 0.05 Triangle 0.03
SumOf 0.04 Quadrilateral 0.02
HeightOf 0.04 Kite 0.01
BaseOf 0.04 HeightOf 0.01
IsHypotenuseOf 0.04 Square 0.01

Table 2.2: Most and least frequent predicates in the formal descriptions of the Geometry3K dataset
(with a frequency greater than 5).

Dataset #qa #word #shape #goal #var grade operator type

GeoShader [AGM17] 102 / 4 1 1 6-10 {+, −, ×, ÷, 22,
√
2}

GEOS [SHF15] 186 4,343 4 3 1 6-10 {+, −, ×, ÷, 22,
√
2}

GEOS++ [SDX17] 1,406 / 4 3 1 6-10 {+, −, ×, ÷, 22,
√
2}

GEOS-OS [SX17] 2,235 / 4 3 1 6-10 {+, −, ×, ÷, 22,
√
2}

Geometry3K (ours) 3,002 36,736 6 4 3 6-12 {+, −, ×, ÷, 22,
√
2, sin, cos, tan}

Table 2.3: Comparison of our Geometry3K dataset with existing datasets.

2.1.4 Comparisons with Existing Datasets

To the best of our knowledge, it is one of the largest geometry problem datasets. We summarize

the Geometry3K dataset’s main statistics and a comparison of existing datasets in Table 2.3. In

addition to four elementary shapes (lines, triangles, regular quadrilaterals, and circles) mentioned

in that GEOS dataset, Geometry3K contains irregular quadrilaterals and other polygons. Besides,

in Geometry3K, there are more unknown variables and operator types that may require equation

solving to find the goal of the problem. Note that 80.5% of problems are solvable without the asso-

ciated diagram in the GEOS dataset. By contrast, less than 1% of the problems in our Geometry3K

dataset could be solved when the problem diagram is not provided. In general, the statistics and

comparisons above show Geometry3K is challenging for geometry problem solvers.
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2.1.5 Human Performance

We pushed the test-split data of the dataset to the crowdsourcing platform, Amazon Mechanical

Turk3. Each eligible annotator must have obtained a high school or higher degree and was asked

to answer 10 problems within 25 minutes. To ensure annotators solved the problems to the best

of their ability, they were further asked to spend at least 7 minutes on the problem set and 10

seconds on each problem. We filtered out annotators who did not satisfy these requirements. We

also asked dozens of graduates majoring in science or engineering to answer these problems to

evaluate human experts’ performance. Table 5.2 shows the human performance. Compared to

random guessing with an accuracy of 25%, humans achieved an overall accuracy of 56.9%, and

human experts achieved a good performance of 90.9%.

2.2 Math Word Problems in Abstract Scenes

2.2.1 Introduction

In recent years, we have witnessed exciting advancements in the field of visual question answering

(VQA). This area of research aims to develop systems capable of responding to natural language

questions based on visual information. There have been efforts to develop datasets for the visual

question answering (VQA) task since the first large-scale benchmark was introduced in [AAL15].

Early released datasets [GKS17, KZG17, SNS19, WLS20] contain natural images and related

questions, where understanding the visual and textual contents is essential for question answering.

Some recent datasets introduce questions that involve more diverse visual scenes or require external

knowledge to answer, which leads to more complex visual and semantic reasoning for question

answering. For example, CLEVR [JHM17] is a synthetic dataset that serves as a diagnostic test

for a range of visual reasoning abilities over combinations of three object shapes. However, these

datasets are limited to the natural image domain and pay little attention to abstract diagrams, which

also have informative semantics and wide applications.

3https://www.mturk.com/
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To address the need for vision-and-language reasoning for diagrams, several abstract diagram

QA datasets have been developed. For example, abstract VQA [AAL15, ZGS16] considers the

task of answering questions on abstract scenes. Similarly, NLVR [SLY17], FigureQA [KMA17],

and DVQA [KPC18] feature diagrams that are generated with several figure types or question

templates. However, either diagrams or questions in these datasets are generated from limited

templates, leading to the existence of unintended visual or linguistic shortcuts for question an-

swering. Some more works have proposed datasets of middle school math or science problems in

more practical and complex scenarios [SHF15, KSS17, SDX17, SDM18, LGJ21]. A central lim-

itation of the subject QA datasets is that they require complex domain-specific knowledge, which

makes disentangling visual reasoning and domain knowledge difficult. Herein, we address these

limitations by introducing the IconQA dataset, where only elementary commonsense is required.

Through IconQA, we aim to provide a new benchmark for abstract scene understanding and learn-

ing different visual reasoning skills in real-world scenarios.

To address these shortcomings, we release Icon Question Answering (IconQA), a large-scale

dataset that contains 107,439 QA pairs and covers three different sub-tasks: multiple-image-choice,

multiple-text-choice and filling-in-the-blank. A typical IconQA problem is provided with an icon

image and a question, and the answer is in the form of either a short piece of text or a choice from

multiple visual or textual choices. Correctly answering IconQA questions needs diverse human

intelligence skills. As examples in Figure 2.3 show, IconQA poses new challenges for abstract

diagram understanding like recognizing objects and identifying attributes. Besides, it is critical to

develop diverse cognitive reasoning skills, including counting objects, comparing attributes, per-

forming arithmetic operations, making logical inferences, completing spatial reasoning, or lever-

aging external commonsense to answer IconQA questions.

The IconQA dataset provides diverse questions that require abstract diagram recognition, com-

prehensive visual reasoning skills, and basic commonsense knowledge. IconQA consists of 107,439

questions split across three different sub-tasks. To the best of our knowledge, IconQA is the largest

VQA dataset that focuses on real-world problems with icon images while involving multiple hu-

man intelligence reasoning abilities (see Table 2.8).
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Q: Which picture shows the grapes 
inside the refrigerator?
C: 

Q: Which picture has symmetry?
C: 

Q: Select the picture that shows equal 
parts.
C: Q: Which object is beside the trash can?

C:

Q: The first picture is a bucket. Which 
picture is fourth?
C: (A) bucket (B) boat (C) crab
A: boat

Q: Are there fewer rabbits than carrots?
C: (A) no (B) yes
A: no

Q: If you select a marble without 
looking, how likely is it that you will 
pick a black one?
C: (A) certain (B) unlikely    (C) 
impossible (D) probable
A: probable

Q: Finn is riding his bike this evening. 
What time is it?
C: (A) 7:00 P.M. (B) 7:00 A.M.
A: 7:00 P.M. 

Q: How many rectangles are there?
C: (A) 51 (B) 49 (C) 52
A: 52

Q: How many cubes tall is the cactus?
A: 3

Q: How many shapes are green?
A: 4

Q: How many pineapples are in the 
bottom row?
A: 5

Q: Which tool would help you put the 
correct amount of brown sugar in a 
batch of cookies?
C:

Q: What fraction of the colored pieces 
in each model? 
A: 1/2

Q: There are five foxes. Then, four foxes 
run away. Find how many foxes stay.
A: 1

Figure 2.3: Examples from the IconQA dataset. Top: multi-image-choice sub-task. Middle: multi-
-text-choice sub-task. Bottom: filling-in-the-blank sub-task.

2.2.2 Dataset Collection

We aim to collect icon-based question answering pairs that involve multiple reasoning skills, such

as visual reasoning and commonsense reasoning. To construct the IconQA dataset, which stems

from real-world math word problems, we search for open-source math textbooks with rich icon

images and diverse topics. Of those, we choose IXL Math Learning which compiles popular text-

books aligned to California Common Core Content Standards4. We ask well-trained crowd workers

to collect problems that cover content from pre-K to third grade, as these problems usually contain

abstract images and involve little to none complex domain knowledge. With the driven interest

of visual reasoning over abstract images, we filter out the questions that do not accompany icon

images or only have images in black and white. Redundant or repetitive data instances are also

removed. Question choices are randomly shuffled to ensure a balanced answer distribution.

Question skill categories. The questions we collected contain meta-information including

question topics, chapter names, image names, and so on. After extensive data exploration by well-

informed individuals, we designed a set of rules that map each question to 1-3 of the 13 categories

based on trigger words in metadata. The rules for trigger words are listed in Table 2.4.

4https://www.ixl.com/standards/california/math
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Skill types Trigger words in metadata

Geometry name the shape, shapes of, classify shapes, solid, corners, faces, edges, vertices, sides,
dimensional, rectangle, circle, triangle, square, rhombus, sphere, cylinder, cone, cubes,
hexagon, perimeter, area, curved, open and close, flip turn, symmetry

Counting count, tally, a group, ordinal number, area, even or odd, place value, represent numbers,
comparing review, equal sides, square corners, one more, one less, fewer, enough, more.

Comparing compare, comparing, more, less, fewer, enough, wide and narrow, light and heavy, long
and short, tall and short, match analog and digital

Spatial top, above, below, beside, next to, inside and outside, left
Scene problems with pictures, beside, above, inside and outside, wide and narrow, objects
Pattern the next, comes next, ordinal number, different
Time clock, am or pm, elapsed time, times
Fraction equal parts, halves, thirds, fourths, fraction
Estimation estimate, measure
Algebra count to fill, skip count, tally, even or odd, tens and ones, thousands, of ten, elapsed

time, perimeter, area, divide
Measurement measure
Commonsense light and heavy, compare size, holds more or less, am or pm, times of, tool
Probability likely

Table 2.4: Trigger words in metadata used to categorize skills in the IconQA dataset.

2.2.3 Data Analysis

Finally, we collect 107,439 IconQA data instances, where each data point contains a colored icon

image, a natural language question, optional image or text choices, as well as a correct answer. The

IconQA dataset consists of 107,439 questions and is divided into train, validation, and test splits

with a ratio of 6:2:2, as shown in Table 2.5. The dataset consists of three sub-tasks: multi-image-

choice, multi-text-choice, and filling-in-the-blank. The multi-image-choice sub-task is defined as

choosing the correct image from a list of image candidates based on a given diagram and its corre-

sponding question. Similarly, the multi-text-choice sub-task is defined as a multiple choice question

with 2-5 text choices and an abstract diagram. The filling-in-the-blank sub-task is similar to the

common VQA task, requiring a brief text answer for each question, except in IconQA, the images

are icon images instead of natural images.

Questions. Figure 2.4 illustrates the distribution of question lengths of each sub-task in the

IconQA dataset. For simplicity, all questions longer than 35 words are counted as having 35

words. Questions in the multi-text-choice sub-task distribute more evenly, while for multi-img-
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Tasks All Train Val Test

Multi-image-choice 57,672 34,603 11,535 11,535
Multi-text-choice 31,578 18,946 6,316 6,316
Filling-in-the-blank 18,189 10,913 3,638 3,638

All 107,439 64,462 21,489 21,489

Table 2.5: Statistics for the IconQA dataset.

choice, there is a long-tail distribution due to the complexity of textual scenarios. We find that

some icon objects are frequently mentioned in the questions.
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Figure 2.4: Question statistics based on number of words in IconQA.

In Figure 2.5, the frequencies of the 40 most frequently mentioned icons are shown. These

icon entities cover different daily-life objects such as animals, plants, shapes, food, etc. We cluster

question sentences into different types based on frequent trigram prefixes starting the sentences.
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Figure 2.5: Top 40 icons mentioned in the IconQA question texts and their appearance percentage.
These icons cover various types of real-world objects.

The distribution of questions is visualized in Figure 2.6. Importantly, the diversity in the ques-
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Figure 2.6: Question types in IconQA. Figure 2.7: Word cloud of the question text in IconQA.

tion distribution implies the requirement of high-level understanding of textual and visual contents

in IconQA. Figure 2.7 shows the word cloud of the question text in IconQA after eliminating the

stop words. The most frequent words: shape, many, and object indicate that answering IconQA

questions requires the model to identify a variety of geometric shapes and icon objects. Inspired

by this, learning informative representations for icon images plays an important role in visual rea-

soning for the IconQA task.

Skill types Description

Geometry Identify shapes, symmetry, transformations
Counting Count objects, shapes
Comparing Compare object attributes
Spatial Identify spatial positions and relations
Scene Understand abstract scenes
Pattern Identify next and different patterns
Time Identify time of clocks, events
Fraction Perform fraction operations
Estimation Estimate lengths, large numbers
Algebra Perform algebraic operations
Measurement Measure widths, lengths, heights
Commonsense Apply external knowledge
Probability Perform probability and statistics operations

Table 2.6: Definition of reasoning skill types the in IconQA dataset.

Skill categories. Our IconQA dataset contains questions of multiple different cognitive rea-

soning and arithmetic reasoning types that can be grouped into 13 categories, shown in Table 2.6.
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We annotate each question in IconQA with its corresponding skill types based on the tags provided

by the original problem sources. Figure 2.8 shows the distributions of questions related to each

skill. For instance, to answer 13.8% of the questions in IconQA, the model has to be capable of

comparing object attributes.
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Figure 2.8: Skill distribution in IconQA questions.

Each question can be related to up to three skills out of these 13 categories, and on average, a

question requires 1.63 skills. The detailed statistics are demonstrated in Table 2.7. In general, the

filling-in-the-blank sub-task consists of questions that require the most number of skills, averaging

1.81 skills per question. 9.25% of the filling-in-the-blank questions require 3 skills.

Task Avg. 1 skill 2 skills 3 skills

Multi-image-choice 1.51 55.78% 37.44% 6.77%
Multi-text-choice 1.73 33.21% 60.14% 6.65%
Filling-in-the-blank 1.81 28.30% 62.43% 9.25%

All 1.63 44.50% 48.34% 7.16%

Table 2.7: Skill numbers for questions in the IconQA dataset.

As the examples from IconQA shown in Figure 2.3, the first and second questions require the

skills of scene understanding and spatial reasoning. The third example asks how many sticks exist

in the diagram, requiring the basic ability of counting and basic algebra operations. As stated

before, the IconQA dataset requires a wide range of skills for a model to perform well on IconQA.
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#QA #Image AvgQ MaxQ Image Type Source #Object #Task VisualAns CommonSen Arithmetic

VQA [AAL15] 614,163 204,721 6.1 23 Natural Annotated - 2 ✓
CLEVR [JHM17] 999,968 100,000 18.4 43 Natural Generated 3 1
VQA-Abstract [AAL15] 150,000 50,000 6.0 21 Scene Annotated 131 2
DVQA [KPC18] 2,325,316 300,000 10.3 23 Bar chart Generated - 1 ✓
NLVR [SLY17] 92,244 92,244 11.2 25 Scatter plot Generated 3 1
Geometry3K [LGJ21] 3,002 2,342 10.1 46 Diagram Real-world 4 1 ✓
AI2D [KSK16] 4,563 4,903 9.8 64 Illustration Real-world - 1 ✓
IconQA (Ours) 107,439 96,817 8.4 73 Icon image Real-world 388 3 ✓ ✓ ✓

Table 2.8: Statistics for the IconQA dataset and comparisons with existing datasets.

Comparisons to other datasets. We compare our IconQA dataset with two datasets on natu-

ral images and five datasets on abstract diagrams in Table 2.8. To summarize, IconQA is different

from these datasets in various aspects. Unlike natural images (VQA [AAL15], CLEVR [JHM17])

or abstract diagrams like scenes, charts, plots, and illustrations (VQA-Abstract [AAL15], DVQA

[KPC18], NLVR [SLY17], AI2D [KSK16], Geometry3K [LGJ21]), IconQA features icon images

and covers the largest object set of 388 classes. As questions in IconQA stem from real-world

math problems and they may describe complex problem scenarios, IconQA has the longest ques-

tion length among all related datasets. Furthermore, IconQA requires both commonsense and

arithmetic reasoning due to its origin from real-world problems. Lastly, IconQA contains more

QA task types including answering questions with image choices.

2.3 Math Word Problems in Tabular Contexts

2.3.1 Introduction

Developing machines equipped with mathematical reasoning capabilities is one of the long-standing

goals of artificial intelligence. Solving math word problems (MWPs) is a well-defined task to di-

agnose the ability of intelligent systems to perform numerical reasoning and problem-solving as

humans. A surge of datasets has been proposed to facilitate the research in this domain [UC17,

AGL19, MLS20, CKB21]. However, most existing MWP datasets focus on textual math word

problems only. Tables, widely distributed in different documents such as invoices, health records,

and financial reports, contain rich structured information different from unstructured text. Solv-

ing math word problems in such a tabular context is much more challenging than existing MWP
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Sandwich sales

Shop Tuna Egg salad

City Cafe 6 5

Sandwich City 3 12

Express Sandwiches 7 17

Sam's Sandwich Shop 1 6

Kelly's Subs 3 4

Question: As part of a project for health class, Cara surveyed local delis 
about the kinds of sandwiches sold. Which shop sold fewer sandwiches, 
Sandwich City or Express Sandwiches?
Options: (A) Sandwich City (B) Express Sandwiches
Answer: (A) Sandwich City
Solution: 
Add the numbers in the Sandwich City row. Then, add the numbers in 
the Express Sandwiches row.
Sandwich City: 3 + 12 = 15. Express Sandwiches: 7 + 17 = 24.
15 is less than 24. Sandwich City sold fewer sandwiches.

square beads $2.97 per kilogram

oval beads $3.41 per kilogram

flower-shaped beads $2.18 per kilogram

star-shaped beads $1.95 per kilogram

heart-shaped beads $1.52 per kilogram

spherical beads $3.42 per kilogram

rectangular beads $1.97 per kilogram

Question: If Tracy buys 5 kilograms of spherical beads, 4 kilograms of 
star-shaped beads, and 3 kilograms of flower-shaped beads, how much 
will she spend? (unit: $)
Answer: 31.44
Solution: 
Find the cost of the spherical beads. Multiply: $3.42 × 5 = $17.10.
Find the cost of the star-shaped beads. Multiply: $1.95 × 4 = $7.80.
Find the cost of the flower-shaped beads. Multiply: $2.18 × 3 = $6.54.
Now find the total cost by adding: $17.10 + $7.80 + $6.54 = $31.44. 
She will spend $31.44.

Figure 2.9: Two examples from the TabMWP dataset. The top is a free-text problem with a numer-
ical answer; the bottom is a multi-choice problem with a textual answer.

benchmarks since the system needs to make cell selections and align heterogeneous information

before performing further numerical reasoning.

To fill this gap, we propose Tabular Math Word Problems (TabMWP), a new large-scale dataset

that contains 38,431 math word problems with tabular context, taken from grade-level math cur-

ricula. There are two question types: free-text questions in which the answer is an integer or

decimal number, and multi-choice questions where the answer is a text span chosen from option

candidates. Different from existing MWP datasets, each problem in TabMWP is accompanied by

a tabular context, which is represented in three formats: an image, a semi-structured text, and a

structured table. Each problem is also annotated with a detailed solution that reveals the multi-step

reasoning steps to ensure full explainability.

To solve problems in TabMWP, a system requires multi-hop mathematical reasoning over het-

erogeneous information by looking up table cells given textual clues and conducting multi-step

operations to predict the final answer. Take the problem above in Figure 2.9 as an example. To

answer the question “how much will she spend (if Tracy buys three kinds of beads)?”, we first need

to look up the corresponding three rows in the given table, calculate the individual cost for each

kind of bead, and finally sum three costs up to get the answer of 31.44.
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2.3.2 Related Datasets

Math word problem datasets. The task of solving MWPs is to predict the answer given a natural

language description of a math problem. There have been great efforts in developing datasets for

MWPs, including Math23K [WLS17], MathQA [AGL19], ASDiv [MLS20], SVAMP [PBG21],

and Lila [MFL22]. However, these datasets only involve the textual modality, and most are limited

to a small data scale. Some recent datasets like DVQA [KPC18], IconQA [LQC21], Geometry3K

[LGJ21], and UniGeo [CLQ22] introduce math problems with diagrams as the visual context,

where the system needs to perform mathematical reasoning over multi-modal information. To

the best of our knowledge, our dataset TabMWP is the first dataset that requires mathematical

reasoning over heterogeneous information from both the textual question and the tabular context.

Table QA datasets. Table Question Answering (Table QA) refers to the task of answering ques-

tions about tabular data. Numerous datasets have been developed for Table QA. For example,

TabMCQ [JTH16] is an early dataset collected from grade exams. Datasets like WTQ [PL15],

WikiSQL [ZXS17], and SQA [IYC17] contain semi-structured tables from Wikipedia, while Spi-

der [YZY18] collects structured tables sourced from databases. Recent work aims at introducing

datasets that require multi-hop reasoning between the textual and tabular data [CZC20, CCS20,

TYC20, KCK21, NHM22]. Datasets most related to our TabMWP dataset are FinQA [CCS21],

TAT-QA [ZLH21], and MultiHiertt [ZLL22] because they need numerical reasoning on financial

reports with tabular data. Note that 77.6% of questions in TAT-QA can be solvable without mathe-

matical reasoning and 50.0% of questions in FinQA are not table-must to be answered. In contrast,

our proposed TabMWP collects questions where both mathematical reasoning and tabular context

are necessary, and each question is annotated with a solution in natural language.

2.3.3 Dataset Collection

Data source. We construct TabMWP based on openly available content. The raw problems are

collected from an online learning website, IXL5, which hosts a large number of high-quality math

5https://www.ixl.com/math
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problems curated by educational experts. Only math word problems that are accompanied by a

tabular context and a detailed solution are collected. We develop a script to extract the tabular

context, the question, options that apply, the correct answer, and the solution for each problem.

These elements can be precisely identified using HTML tags. For each table, we take a screenshot

and store its raw text.

Data preprocessing. To make TabMWP compatible with various baselines, we represent the

tabular context as three formats: an image, semi-structured text, and a structured spreadsheet. The

semi-structured format is created by converting the raw table text into a flattened token sequence,

with each row separated by a newline character ‘\n’ and each column separated by ‘|’. The semi-

structured text is further transformed to the structured format, which can be easily retrieved and

executed by SQL-based methods [LCG22] using packages like pandas. For clarity, the table title

is separated from the raw table. Examples of three formats are shown in Table 2.9.

Quality control. We further conduct quality control to ensure data quality. The goal of con-

structing TabMWP is to collect math word problems that necessitate multi-hop mathematical rea-

soning between the question and the tabular context. Therefore, we ask human experts to filter

problems that can be solved either without the context of the table or by looking up table cells

without numerical reasoning. To further ensure data quality, we ask human experts to perform a

final review to re-check the dataset and manually revise incorrect annotations.

Under review as a conference paper at ICLR 2023

Image format Semi-structured format Structured format

Table title: Field day schedule
Table text:
Event | Begin | End
water balloon toss | 11:30 A.M. | 11:50 A.M.
obstacle course | 12:05 P.M. | 12:25 P.M.
parachute ball toss | 12:30 P.M. | 1:30 P.M.
jump rope race | 1:40 P.M. | 2:05 P.M.
balloon stomp | 2:15 P.M. | 2:35 P.M.
relay race | 2:50 P.M. | 3:40 P.M.
hula hoop contest | 3:55 P.M. | 4:30 P.M.

Table title: Field day schedule

Table 7: Three different formats for the tables in the TABMWP dataset.
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Table 2.9: Three different formats for the tables in the TabMWP dataset.

For better quantitative evaluation, we formalize the TabMWP problems as two question types:

(a) free-text questions, where the answer is numerical text only and the unit text is separately
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Question types Answer types (%) Descriptions

Free-text
Integer (59.50%) The answer is an integer number, e.g., “40”, “1,207”, “-3”.
Decimal (15.23%) The answer is a decimal or a fraction number, e.g., “192.80”, “68/217”.

Multi-choice
Extractive (13.01%) The answer could be extracted from the table context.
Boolean (10.97%) The answer is Boolean, e.g., “yes”/“no”, “true”/“false”, “linear”/“nonlear”.
Other (1.29%) The answer belongs to other text types, e.g., a statement.

Table 2.10: Format diversity of questions and answers in the TabMWP dataset.

Statistic Number

Total questions 38,431
* free-text questions 28,719
* multi-choice questions 9,712

# of different questions 28,876
# of different answers 6,153
# of different solutions 35,442

# of different tables 37,644
# of tables with a title 23,259

# of table cells (Average/Max) 12.9 / 54
# of table rows (Average/Max) 5.9 / 11
# of table columns (Average/Max) 2.2 / 6

Question length (Average/Max) 22.1 / 92
Answer length (Average/Max) 1.1 / 27
Solution length (Average/Max) 49.5 / 350

Table 2.11: Key statistics for the TabMWP dataset.

extracted; and (b) multi-choice questions, the answer of which is the text span from choice options,

as defined in Table 2.10. The order of choice options is shuffled to alleviate distribution bias.

Redundant information in solutions is removed, and some solutions are manually rewritten to

be more human-readable. Finally, problems with the same table, question, and answer text are

regarded as redundant and thus removed.

2.3.4 Dataset Statistics

Key statistics. The TabMWP dataset contains 38,431 tabular math word problems, which are

partitioned with 6:2:2 into the training, development, and test splits, corresponding to 23,059,

7,686, and 7,686 problems. Their main statistics are shown in Table 2.11. 74.7% of the questions
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in TabMWP belong to free-text questions, while 25.3% are multi-choice questions. There are

28,876 different questions, 6,153 different answers, and 35,442 different solutions, indicating that

TabMWP has a rich diversity in the problem distribution. The questions have an average of 22.1

words in length and solutions of 49.5, showing that they have lexical richness.

One distinct characteristic of TabMWP is that each problem is accompanied by a tabular con-

text, without which the problem would be unsolvable. There are 37,644 different tables in total,

and 60.5% of the tables have a title. The table has an average of 5.9 rows and 2.2 columns, which

results in an average of 12.9 cells and a maximum of 54 cells. These statistics suggest that tables

in TabMWP distribute diversely across semantics and layouts.

Dataset Size #Table Need Need Table Type Question Type Answer Type Solution
Math? Table? Domain Format Free-text MC Text Integer Decimal Type

Dolphin18K [HSL16] 831 ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ formula
DRAW-1K [UC17] 1,000 ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ formula
Math23K [WLS17] 23,162 ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ formula
MathQA [AGL19] 37,297 ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ formula
ASDiv [MLS20] 2,305 ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ formula
SVAMP [PBG21] 1,000 ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ formula
GSM8K [CKB21] 8,792 ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ text
IconQA [LQC21] 107,439 ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗

FinQA [CCS21] 8,281 2,766 ✓ 76.6% finance text ✓ ✗ ✗ ✓ ✓ program
TAT-QA [ZLH21] 16,552 2,747 50.0% ✓ finance text ✓ ✗ ✗ ✓ ✓ ✗

MultiHiertt [ZLL22] 10,440 9,843 ✓ 89.8% finance text ✓ ✗ ✗ ✓ ✓ ✗

TabMWP (ours) 38,431 37,644 ✓ ✓ open text* ✓ ✓ ✓ ✓ ✓ text

Table 2.12: A comparison of MWP and Table QA datasets that require numerical reasoning. text*:
each table in TabMWP is accompanied by an image format.

Comparison to existing datasets. As shown in Table 2.12, TabMWP differs from related

datasets in various aspects: (1) TabMWP is the first dataset to study math word problems over tab-

ular context on open domains and is the largest in terms of data size; (2) Problems in TabMWP are

annotated with the tabular context, unlike previous MWP datasets in the first segment; (3) Differ-

ent from Table QA datasets like FinQA, TAT-QA, and MultiHiertt, a lack of either mathematical

reasoning or the tabular context renders the problems in TabMWP unanswerable; (4) There are

two question types in TabMWP, and the answer could be a text span, an integer number, or a dec-

imal number; (5) Each problem is annotated with natural language solutions to reveal multi-hop

reasoning steps.
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CHAPTER 3

Knowledge-Intensive Scientific Reasoning

3.1 Introduction

A long-standing goal of AI systems is to act reliably and learn complex tasks efficiently like human

beings. In the process of reliable decision making, humans follow an explicit chain-of-thought

(CoT) reasoning process that is typically expressed as an explanation. However, machine learning

models are trained mostly using a large number of input-output examples to perform a specific task.

These black-box models only generate the final decision without reliably revealing the underlying

reasoning process. Not surprisingly, it is unclear if they understand the task and can generalize

even though they perform well on the benchmark. On the other hand, humans are able to learn

from instructions or explanations from past experience and generalize them to novel and unseen

problems. This helps them learn more quickly with fewer data. In this section, we explore if

machines can be endowed with such reasoning abilities in the context of science-based question

answering.

Recently, science problem solving benchmarks [KSS17] have been used to diagnose the multi-

hop reasoning ability and interpretability of AI systems. To answer science questions, a model

needs to not only understand multimodal contents but also extract external knowledge to arrive at

the correct answer. Since these tasks require domain-specific knowledge and explicit multi-hop

reasoning, a model would be not interpretable if it fails to provide explanations to reveal the rea-

soning process. However, current science question datasets [KSS17, KSK16, SYB20] mostly lack

annotated explanations for the answers. To address this issue, other science datasets annotate the

explanations, but they are restricted to the textual only modality and limited to small data scales

[JWM18, DJT21, MCK18] or a small set of topics [KCG20, JC20]. Therefore, we collect Science
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Figure 3.1: We construct the ScienceQA dataset where a data example consists of multimodal
question answering information and the grounded lecture and explanation.

Question Answering (ScienceQA), a large-scale multi-choice dataset that contains multimodal sci-

ence questions with explanations and features rich domain diversity.

ScienceQA is collected from elementary and high school science curricula, and contains 21,208

examples along with lectures and explanations. Different from existing datasets [KSK16, KSS17,

SYB20], ScienceQA has richer domain diversity from three different subjects: natural science,

social science, and language science. A typical example consists of a question, multiple choices,

multimodal contexts, a correct answer, as well as a lecture and an explanation. The lecture and

explanation provide general external knowledge and specific reasons, respectively, for arriving at

the correct answer.

Consider the thoughts one person might have when answering the question in Figure 3.1. One

first recalls the knowledge regarding the definition of a force learned from textbooks: “A force is

a push or a pull that ... The direction of a push is ... The direction of a pull is ...”, then forms

a line of reasoning: “The baby’s hand applies a force to the cabinet door. → This force causes

the door to open. → The direction of this force is toward the baby’s hand.”, and finally arrives at

the correct answer: “This force is a pull.”. Following [NRL20], we formulate the task to output

a natural explanation alongside the predicted answer. In this work, we train language models to

generate lectures and explanations as the chain of thought (CoT) to mimic the multi-hop reasoning

process to answer ScienceQA questions.

Our experiments show that current multimodal methods [YYC19, AHB18, KJZ18, GJY19,
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LYY19, LQC21] fail to achieve satisfactory performance on ScienceQA and do not generate cor-

rect explanations. Instead, we find that CoT can help large language models not only in the few-

shot learning setting but also in the fine-tuning setting. When combined with CoT to generate the

lecture and explanation, the fine-tuned UnifiedQA [KMK20] achieves an improvement of 3.99%

as opposed to not using CoT in the fine-tuning stage. The few-shot GPT-3 model [BMR20] via

chain-of-thought prompting can obtain 75.17% on ScienceQA with an improvement of 1.20%

compared to the few-shot GPT-3 without CoT. Prompted with CoT, GPT-3 can generate reason-

able explanations as evaluated by automated metrics, and promisingly, 65.2% of explanations meet

the gold standard of human evaluations. We also investigate the upper bound for models to harness

explanations by including them in the input. We find that doing so improves GPT-3’s few-shot per-

formance by 18.96%, suggesting that explanations do aid models and are currently underutilized

in the CoT framework. Further analysis shows that, like humans, language models benefit from

explanations to learn with less data: UnifiedQA with CoT obtains the same results as UnifiedQA

without CoT with only 40% of the training data.

To sum up, our contributions are three-fold: (a) To bridge the gap in existing datasets in the

scientific domain, we build Science Question Answering (ScienceQA), a new dataset containing

21,208 multimodal science questions with rich domain diversity. To the best of our knowledge,

ScienceQA is the first large-scale multimodal dataset that annotates lectures and explanations for

the answers. (b) We show that CoT benefits large language models in both few-shot and fine-

tuning learning by improving model performance and reliability via generating explanations. (c)

We further explore the upper bound of GPT-3 and show that CoT helps language models learn

from fewer data.

3.2 Related Work

Visual question answering. Since the task of visual question answering (VQA) was first pro-

posed in [AAL15], there have been plenty of VQA datasets [ZGS16, ZGB16, KZG17, GKS17,

JHM17, HM19] conducted to facilitate the research work. Although our ScienceQA dataset shares

some features with VQA, there are several main differences between them. First, ScienceQA is
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more challenging than existing VQA datasets because it contains multimodal contexts and diverse

topics in the scientific domain. In addition, most answers are annotated with lectures and ex-

planations, which makes ScienceQA a suitable dataset for multi-modal question answering and

multi-hop reasoning for AI systems. Inspired by the recent remarkable performance achieved for

VQA [LLZ18, LJZ18, GLL18, GJY19, LYY19, DBK21], in this work, we further extensively

benchmark ScienceQA with a wide range of attention-based [AHB18, LLZ18, KJZ18, GJY19]

and Transformer-based [LBP19, LYY19, LYY20, DBK21] methods.

Datasets for science problems. Science problem solving is a challenging task that requires an

AI system not only to understand the multimodal information from the science curriculum but also

to reason about how to answer the domain-specific questions. Current science problem datasets

such as AI2D [KSK16], DVQA [KPC18], VLQA [SYB20], and FOODWEDS [KTK16] have

contributed to multimodal reasoning in the scientific domain. For example, a portion of VLQA

contains multimodal questions on science subjects. These datasets, however, lack annotated ex-

planations for the answers to reveal the reasoning steps. Some other datasets annotate the answers

in the forms of supporting facts [MCK18, KCG20], entailment trees [DJT21], explanation graphs

[JWM18], reasoning chains [JC20]. However, these datasets are restricted to the single text modal-

ity with small data scales and limited topics. Instead, our ScienceQA annotates the answers with

grounded lectures and explanations. Besides, ScienceQA features a richer domain diversity across

3 subjects, 26 topics, 127 categories, and 379 skills.

Learning from explanations and few-shot learning. Explanations help humans understand

a task better, and there have been several attempts to show the same for models. For example, the

learning from instruction paradigm [MKB21, OWJ22, WBZ21, MKB22, PMP22, LDC22], where

the task level explanation is provided in the form of instruction, improves model performance

significantly. An example of learning from explanations in the scientific domain is proposed in

[SX17] where the model interprets demonstrative solutions to solve geometry problems. Recently,

there has been a surge of interest in few-shot learning, where language models learn a specific

task from a few examples [PKC21, BCL21]. For instance, [NAG22, WWS22b, LQC23] find that

explanations in the format of the chain of thought can improve language models’ reasoning ability

in few-shot learning. In this work, we show that the chain of thought boosts the performance
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of large language models like UnifiedQA [KMK20] if the models generate explanations along

with the answer in a fine-tuning way. Furthermore, a few-shot GPT-3 model via chain-of-thought

prompting is able to improve the reasoning performance on ScienceQA and generate reasonable

explanations.

3.3 Dataset

We collect ScienceQA, which is a multimodal multiple-choice science question dataset containing

21,208 examples. An example in ScienceQA is shown in Figure 3.1. Given the science question

and multimodal contexts, the task is to select the correct answer from multiple options. Different

from existing datasets [SDX17, KSK16, SYB20, LGJ21, KTK16], ScienceQA covers diverse top-

ics across three subjects: natural science, social science, and language science. Moreover, most

questions are annotated with grounded lectures and detailed explanations. The lecture provides

general knowledge that introduces the background information for solving problems of a similar

class. The explanation reveals a specific reason for the answer. To effectively answer the ques-

tions, a model often needs to be able to understand the multimodal content in the input and extract

external knowledge, similar to how humans do. More importantly, the goal of ScienceQA is to aid

development of a reliable model that is capable of generating a coherent chain of thought when

arriving at the correct answer to reveal the multi-step reasoning process.

3.3.1 Data Collection

Questions in the ScienceQA dataset are sourced from open resources managed by IXL Learning,

an online learning platform curated by experts in the field of K-12 education. The dataset includes

problems that align with California Common Core Content Standards. To construct ScienceQA,

we downloaded the original science problems and then extracted individual components (e.g. ques-

tions, hints, images, options, answers, lectures, and solutions) from them based on heuristic rules.

We manually removed invalid questions, such as questions that have only one choice, questions

that contain faulty data, and questions that are duplicated, to comply with fair use and transforma-
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Statistic Number

Total questions 21,208

Questions with text context 10,220 (48.2%)
Questions with image context 10,332 (48.7%)

* Image of natural format ≈2,960 (14.0%)
* Image of diagram format ≈7,372 (34.8%)

Questions with both contexts 6,532 (30.8%)
Questions with a lecture 17,798 (83.9%)
Questions with a explanation 19,202 (90.5%)

Different questions 9,122
Different lectures 261

Topic classes 26
Category classes 127
Skill classes 379

Average question length 12.11
Average choice length 4.40
Average lecture length 125.06
Average explanation length 47.66

Table 3.1: Main statistics of the ScienceQA dataset.

tive use of the law. If there were multiple correct answers that applied, we kept only one correct

answer. Also, we shuffled the answer options of each question to ensure the choices do not follow

any specific pattern. To make the dataset easy to use, we then used semi-automated scripts to refor-

mat the lectures and solutions. Therefore, special structures in the texts, such as tables and lists, are

easily distinguishable from simple text passages. Similar to ImageNet, ReClor, and PMR datasets,

ScienceQA is available for non-commercial research purposes only and the copyright belongs to

the original authors. To ensure data quality, we developed a data exploration tool to review exam-

ples in the collected dataset, and incorrect annotations were further manually revised by experts.

The tool can be accessed at https://scienceqa.github.io/explore.html.

3.3.2 Data Analysis

Key statistics. We randomly split the dataset into training, validation, and test splits with a ratio

of 60:20:20. Each split has 12,726, 4,241, and 4,241 examples, respectively. Table 3.1 shows

the main statistics of ScienceQA. ScienceQA has a large set of different questions, totaling up to
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9,122. Out of the 21,208 questions in ScienceQA, 10,332 (48.7%) have an image context, 10,220

(48.2%) have a text context, and 6,532 (30.8%) have both. 83.9% of the questions are annotated

with a lecture, while 90.5% of the questions feature an explanation. The cross-combination of

these information sources diversifies the problem scenario: sometimes the model is given a lot

of information from multiple sources, while at other times, the only source of information is the

question itself. This level of complexity is very common in grade-level science exams.
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Figure 3.2: Question distribution of the ScienceQA dataset.

Question analysis. ScienceQA has a diverse set of science questions. Figure 3.2 shows a dis-

tribution of the first four words in the question text. A large number of question lengths and formats

highlight the diversity of ScienceQA. The question lengths range from 3 words to 141 words, and

the questions in ScienceQA have an average length of 12.11 words. The question length distribu-

tion is visualized against other VQA datasets in Figure 3.3. As shown in the diagram, ScienceQA’s

distribution is flatter than other datasets, spanning more evenly across different question lengths.

Figure 3.4 (a) is a word cloud showing the most frequently appeared words in the question

texts. Stopping words that do not contain any semantic meaning, such as “what” or “and”, are
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Figure 3.3: Question length distribution of related datasets in ScienceQA.

removed to give us a clearer view of the semantic range of ScienceQA. The diagram shows that

ScienceQA covers a wide range of topics, with words from different topics showing up across the

cloud.

Figures 3.4 (b) (c) (d) show the word clouds for each of the three subjects. We can observe

from the word clouds that the words are well-matched to the subject themes. In natural science

questions, words such as “trait”, “magnet”, and “force” appear frequently. Words such as “capital”

and “state” show up frequently in social science questions, whereas words such as “dictionary” and

“page” are common in language science questions.

Context analysis. Figure 3.5 shows the number and percentage of questions with either an image

context, a text context, or both. There are a total of 7,803 unique image contexts and 4,651 unique

text contexts. 66.11% of the questions have at least one type of context information. The image

context is in the format of diagrams or natural images, which visualize the critical scenario neces-

sary for question answering or simply illustrate the question for better understanding. Similarly,

the textual context can provide either semantically rich information or a simple hint to the question.

Therefore, models need to be flexible and general to understand these diverse types of contexts.

Domain diversity. Each ScienceQA question belongs to one of the three subjects: natural science,

social science, and language science. With each subject, questions are categorized first by the topic

(Biology, Physics, Chemistry, etc.), then by the category (Plants, Cells, Animals, etc.), and finally
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(a) Questions of all subjects. (b) Questions in natural science.

(c) Questions in social science. (d) Questions in language science.

Figure 3.4: Word cloud distributions of question texts in different subjects in ScienceQA.

3,800
(17.92%)

3,688
(17.39%)

6,532
(30.80%)

7,188
(33.89%) No context

Image Text

Image and text!

Figure 3.5: Question distribution with different context formats in ScienceQA.

by the specific skill (Classify fruits and vegetables as plant parts, Identify countries of Africa,

etc.). ScienceQA has a total of 26 topics, 127 categories, and 379 skills. The treemap in Figure 3.6

visualizes the different subjects, topics, and categories and shows that ScienceQA questions are

very diverse, spanning a wide range of domains.
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Figure 3.6: Domain diversity in ScienceQA. Each color corresponds to one subject: natural sci-
ence, social science, and language science.

3.3.3 Choice Statistics

Table 3.2 shows the number of questions with each number of different choices. Questions have

a minimum of two options and a maximum of five options. Figure 3.7 shows the distribution of

choice length in ScienceQA. Most choices are short, containing up to five words. However, the

distribution has a long tail where about 5% of the choices contain more than 15 words. Hence, it

requires models to have a high level of text understanding to address diversely distributed choices.

Choice number Size Percent

2 11,045 52.08%
3 5,078 23.94%
4 4,893 23.07%
5 192 0.91%

Table 3.2: Choice number distribution in ScienceQA.

3.3.4 Grade Statistics

The grade distribution is shown in Table 3.8. The majority of questions come from the middle

level curriculum (i.e., from grade 3 to grade 8) while around 10% are taken from the high school

curriculum (i.e., from grade 9 to grade 12). These high school level questions are close to or at the
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Figure 3.7: Choice length distribution in ScienceQA.

difficulty level of the U.S. standardized tests for college admissions. Machine algorithms need to

master a large amount of scientific knowledge and perform complex reasoning in order to perform

well on ScienceQA.

Grades Number Percent

Grade 1 95 0.45%
Grade 2 1,678 7.91%
Grade 3 3,032 14.3%
Grade 4 3,544 16.71%
Grade 5 3,086 14.55%
Grade 6 2,450 11.55%
Grade 7 2,749 12.96%
Grade 8 2,546 12.0%
Grade 9 491 2.32%
Grade 10 558 2.63%
Grade 11 539 2.54%
Grade 12 440 2.07%

Figure 3.8: Grade distribution statistics in ScienceQA.

3.3.5 Comparisons with Existing Datasets

Table 3.3 shows a comparison of ScienceQA and other science problem datasets. As shown in the

table, ScienceQA is much larger than most other datasets. ScienceQA also has the largest set of

images, spans across all 12 grades, contains the longest questions, and has the most diverse input

sources. As opposed to limiting the subject to only natural science, ScienceQA also includes social
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science and language science, largely adding to the domain diversity of the dataset. Furthermore,

most of the questions in ScienceQA are annotated with textual lectures (83.9%) and explanations

(90.5%), which reveal the reasoning path to the correct answer. To the best of our knowledge,

ScienceQA is the first large-scale multimodal science question dataset that annotates the answers

with detailed lectures and explanations.

#Q #I AvgQ MaxQ Grades Science subjects Contexts Images Lecture Explanation

Geometry3K [LGJ21] 3,002 2,342 10.1 46 6-12 natural (geometry) image diagram ✗ ✗

AI2D [KSK16] 4,563 4,903 9.8 64 1-6 natural image diagram ✗ ✗

FOODWEBS [KTK16] ≈5,000 ≈5,00 - - 8 natural (foodweb only) image diagram ✗ ✗

ARC [CCE18] 7,787 0 20.4 128 3-9 natural ✗ ✗ ✗ ✗

TQA [KSS17] 26,260 3,455 9.2 57 6-8 natural image, text diagram ✓ ✗

IconQA [LQC21] 107,439 96,817 8.4 73 PreK-3 math visual diagram ✗ ✗

WorldTree [JWM18] 1,680 0 - - 3-5 natural ✗ ✗ ✗ ✓

OpenBookQA [MCK18] 5,957 0 10.6 68 1-6 natural ✗ ✗ ✗ ✓

QASC [KCG20] 9,980 0 8.0 25 1-9 natural ✗ ✗ ✗ ✓

ScienceQA (ours) 21,208 10,332 12.1 141 1-12 natural, social, language image, text natural, diagram ✓ ✓

Table 3.3: Statistics for the ScienceQA dataset and comparisons with existing datasets.

3.4 Baselines and Chain-of-Thought Models

In this section, we establish baselines and develop two chain-of-thought models on ScienceQA.

3.4.1 Heuristic Baselines

The first heuristic baseline is random chance: we randomly select one from the multiple options.

Each trial is completed on the whole test set, and we take three different trials for an average result.

The second heuristic baseline is human performance. We post the task to Amazon Mechanical

Turk and ask workers to answer ScienceQA questions. Only workers who obtain a high school or

higher degree and pass the qualification examples are qualified for the study. Each worker needs

to answer a set of 10 test questions, and each question is answered by three different workers.

In order to understand how humans perform on ScienceQA questions, we used Amazon Me-

chanical Turk (AMT) to crowdsource answers to the test set. The interface of instructions and one

example of a test question is shown in Figures 3.9 and 3.10. A total of 4,241 test questions were

shuffled and split into 425 batches, with each batch having 10 questions (excluding the last one).
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For each batch, we also randomly added five training questions as exam examples. Each set of 15

questions was then assigned to 3 AMT workers. Only workers who correctly answer 4 out of the

5 exam examples or more are qualified for the human performance study. In other words, workers

who failed to pass the qualified exam were eliminated from the analysis. For each set of 15 ques-

tions, we provided the worker with $0.5 per HIT task. At the rate of 3 questions per minute, this

amounts to $6.0 per hour.

Figure 3.9: Instructions for AMT workers to answer the ScienceQA questions.

Figure 3.10: A test question example from ScienceQA presented to AMT workers for evaluation.

3.4.2 Language Model Baselines

Zero-shot and few-shot baselines. We establish the zero-shot baselines on top of UnifiedQA

[KMK20] and GPT-3 [BMR20]. The zero-shot setup follows the format of QCM→A where the

input is the concatenation of tokens of the question text (Q), the context text (C), and multiple
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options (M), while the output is to predict the answer (A) from the option set. We extract the

caption from the captioning model based on ViT [DBK21] and GPT-2 [RWC20] for the image as

the visual context. In the few-shot setting, we follow the standard prompting [BMR20] where in-

context examples from the training set are concatenated before the test instance. These in-context

examples serve as an instruction for the language model to adjust to the specific task in ScienceQA.

Fine-tuning baselines. We first consider the fine-tuning baselines from VQA models [AHB18,

KJZ18, YYC19, GJY19, KSK21, LQC21, LYY19] proposed in recent years. These VQA baselines

take the question, the context, and choices as the textual input, take the image as the visual input,

and predict the score distribution over choice candidates via a linear classifier. In addition, we build

the fine-tuning baseline on top of the large language model UnifiedQA [KMK20]. UnifiedQA

takes the textual information as the input and outputs the answer option. Similarly, the image is

converted into a caption that provides the visual semantics for the language model.

3.4.3 Language Models with the Chain of Thought

A chain of thought refers to a coherent flow of sentences that reveals the premises and conclusion

of a reasoning problem [WWS22b]. A chain of thought clearly decomposes a multi-hop reasoning

task into intermediate steps instead of solving the task in a black-box way. The chain of thought can

be the step-by-step thought process [WWS22b] before arriving at the final answer or explanations

[NRL20] that come after the answer. The annotated lectures and explanations in ScienceQA serve

as demonstrations of the chain of thought that mimics the multi-step reasoning steps of human

beings. In this work, we study if large language models can generate reasonable explanations as

the chain of thought to reveal the thought process when answering ScienceQA questions. Further,

we explore how the chain of thought can improve the reasoning ability of language models on

ScienceQA in both few-shot and fine-tuning learning.

UnifiedQA with the chain of thought. UnifiedQA [KMK20] is a state of the art model for

multi-option question answering. The original architecture of UnifiedQA takes the question and

options as the input and outputs a short phrase as the final answer. We make a format modification

to develop UnifiedQA with the chain of thought (CoT), i.e., UnifiedQA is fine-tuned to generate a
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Question: question : Iquesi

Options: (A) option : Iopti1 (B) option : Iopti2 (C) option : Iopti3

Context: context : Iconti

Answer: The answer is answer : Iai . BECAUSE: lecture : I lecti explanation : Iexpi

Question: question : Iquest

Options: (A) option : Ioptt1 (B) option : Ioptt2 (C) option : Ioptt3 (D) option : Ioptt4

Context: context : Icontt

Answer:

Figure 3.11: Prompt instruction encoding for the test example t in GPT-3 (CoT).

long sequence of text which consists of the answer followed by the lecture and explanation.

GPT-3 via chain-of-thought prompting. Recent research work [BMR20, MFL22, LQC23]

has shown that GPT-3 [BMR20] can perform various tasks when provided with in-context ex-

amples in a standard prompt. Take multi-option question answering as an example, the standard

prompt [LBM21, ZWF21, LSZ22] builds instructions using in-context examples with components

of the question text, options, and the correct answer text. This style of few-shot learning enables

the GPT-3 model to answer specific questions without parameter updates. Different from standard

prompting, we build GPT-3 via chain-of-thought (CoT) prompting, as shown in Figure 3.11. To

be specific, for each test problem t, we map the prompt instruction I : {Ii}n, It into a textual for-

mat where {Ii}n refers to the instruction set of n-shot in-context examples from the training set,

while It denotes the test instruction. Instead of the way where the explanation comes before the

answer [WWS22b], we feed the instruction I into the encoder-decoder model GPT-3 to generate

the answer a followed by the lecture lect and explanation exp: M : {Ii}n, It → a, lect, exp.

3.4.4 Experimental Setup

Evaluation metrics. The heuristics and VQA baselines treat our ScienceQA task as a multi-

class classification problem with multiple options and are evaluated with the accuracy metrics.

UnifiedQA and GPT-3 treat ScienceQA as a text generation problem. So the most similar option is

selected as the final prediction to evaluate the question answering accuracy. The generated lectures

and explanations are evaluated by automatic metrics [PRW02, Lin04, RG19] and human scores by

annotators.
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Implementation details. The VQA baselines are trained for a maximum number of 50 epochs

with a learning rate of 5e−5. We fine-tune the UnifiedQA for 50k iterations and evaluate every

1k iteration. The training process is stopped following the early stopping strategy with a patience

period of three evaluations. For GPT-3, we use the text-davinci-002 engine, which is the

most capable model version suggested in the official documentation. Below are details on the

experiments:

• Fine-tuning on the dataset. Fine-tuning baselines (VQA baselines and UnifiedQA) are trained

on the training set, developed on the validation set, and evaluated on the test set.

• Input sizes: For VQA baselines, we set the maximum number of input words or tokens as 100.

• Batch sizes. We use batches of 64 and 4 for VQA baselines and fine-tuned UnifiedQA, respec-

tively.

• Newline character. For language models, the newline separators (\n) in the text are replaced

with \\n when encoding the inputs because \n is normally used as a stop symbol, following

the original works [BMR20, KMK20].

• Captioning model. We use the tool1 to generate captions for the images in the dataset. The

maximum length of generated captions is 16, the number of beams is 4, and the maximum

number of output tokens is 512.

• Compute resources. We use two GeForce RTX 3090 GPUs for fine-tuning VQA baselines

and UnifiedQA on the dataset.

• Questions without any context. For questions without any context, the context text is replaced

with an empty string.

• GPT-3: Following default settings, we choose temperature, frequency penalty and presence

penalty as 0.0, and top probability as 1.0. All experiments for GPT-3 are run via the online

API. Experiments in Figure 3.15 are repeated four times.

3.4.5 Results for Question Answering

Table 3.4 demonstrates the empirical results for Science Question Answering.

1https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
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Model Learning Format NAT SOC LAN TXT IMG G1-6 G7-12 Avg

Random chance - M→A 40.28 46.13 29.25 47.45 40.08 39.35 40.67 39.83

Q only [AHB18] train set Q→A 41.34 27.22 47.00 41.79 35.15 9.28 40.87 39.85
CI only [AHB18] train set CI→A 41.34 29.25 45.45 42.33 36.09 39.21 41.07 39.87

Q+M only [AHB18] train set QM→A 52.66 51.86 60.18 55.57 50.37 52.53 57.88 54.44
Q+CT+M only [AHB18] train set QCTM→A 57.28 49.04 61.36 60.46 52.80 54.44 60.51 56.61
Q+CI+M only [AHB18] train set QCIM→A 58.97 53.77 60.45 62.85 54.49 56.72 61.04 58.26

MCAN [YYC19] train set QCM→A 56.08 46.23 58.09 59.43 51.17 51.65 59.72 54.54
Top-Down [AHB18] train set QCM→A 59.50 54.33 61.82 62.90 54.88 57.27 62.16 59.02

BAN [KJZ18] train set QCM→A 60.88 46.57 66.64 62.61 52.60 56.83 63.94 59.37
DFAF [GJY19] train set QCM→A 64.03 48.82 63.55 65.88 54.49 57.12 67.17 60.72
ViLT [KSK21] train set QCM→A 60.48 63.89 60.27 63.20 61.38 60.72 61.90 61.14

Patch-TRM [LQC21] train set QCM→A 65.19 46.79 65.55 66.96 55.28 58.04 67.50 61.42
VisualBERT [LYY19, LYY20] train set QCM→A 59.33 69.18 61.18 62.71 62.17 62.96 59.92 61.87

UnifiedQASMALL [RSR20] zero-shot QCM→A 47.78 40.49 46.00 50.24 44.12 45.56 46.21 45.79
UnifiedQABASE [RSR20] zero-shot QCM→A 50.13 44.54 48.18 53.08 48.09 47.58 50.03 48.46

UnifiedQASMALL [RSR20] train set QCM→A 53.77 58.04 61.09 52.10 51.51 58.22 53.59 56.57
UnifiedQABASE [RSR20] train set QCM→A 68.16 69.18 74.91 63.78 61.38 72.98 65.00 70.12
UnifiedQABASE (CoT) train set QCM→AE 70.60 74.02 78.36 65.69 64.80 75.48 69.48 73.333.21↑
UnifiedQABASE (CoT) train set QCM→ALE 71.00 76.04 78.91 66.42 66.53 77.06 68.82 74.113.99↑

GPT-3 [BMR20] zero-shot QCM→A 75.04 66.59 78.00 74.24 65.74 76.36 69.87 74.04
GPT-3 [BMR20] 2-shot QCM→A 74.64 69.74 76.00 74.44 67.28 76.80 68.89 73.97

GPT-3 (CoT) 2-shot QCM→AE 76.60 65.92 77.55 75.51 66.09 78.49 67.63 74.610.64↑
GPT-3 (CoT) 2-shot QCM→ALE 75.44 70.87 78.09 74.68 67.43 78.23 69.68 75.171.20↑

Human - QCM→A 90.23 84.97 87.48 89.60 87.50 91.59 82.42 88.40

Table 3.4: Evaluation of baselines over different classes in accuracy (%). Model names: Q =
question, M = multiple options, C = context, CT = text context, CI = image context, CoT = chain
of thought. Format names: A = answer, AE = answer with explanation, ALE = answer with lecture
and explanation. Question classes: NAT = natural science, SOC = social science, LAN = language
science, TXT = text context, IMG = image context, G1-6 = grades 1-6, G7-12 = grades 7-12.

VQA baselines. We feed the VQA baseline models with the input of QCM format to predict

answers A. Out of all the VQA models we benchmarked, VisualBERT [LYY19, LYY20] performs

the best on average (61.87%). Interestingly, Patch-TRM [LQC21] beats VisualBERT in natural

science (NAT) and language science (LAN), and it also performs better in higher-grade questions

(67.50% v.s. 59.92%). However, in the subject of social science (SOC), VisualBERT outperforms

Patch-TRM by a large margin (+22.39%). Such drastic changes in performance might imply that

current VQA models are not generalized to process the challenging questions in ScienceQA.

Language models. We evaluate whether large-scale pretraining on text can help language

models learn scientific knowledge and thus perform better on the ScienceQA task. For this purpose,

we have tried two of the state-of-the-art pre-trained language models: UnifiedQA and GPT-3.
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Figure 3.12: Interface of instructions for AMT workers to evaluate the explanations generated from
UnifiedQA (CoT) and GPT-3 (CoT).

(i) UnifiedQA. The results show that without any supervised fine-tuning (zero-shot), Uni-

fiedQA cannot beat any VQA baseline model, while the pretraining does help the model obtain

some scientific knowledge to outperform the random baseline. When fine-tuned with the answer

labels in ScienceQA, UnifiedQABASE reports an accuracy of 70.12% on average. By further teach-

ing the model to generate the answer along with lecture and explanation, the developed language

model with chain-of-thought (UnifiedQABASE (CoT)) brings additional improvements of +3.21%

(QCM→AE) and +3.99% (QCM→ALE). These results show that generating the chain of thought

along with the answer benefits the reasoning ability of language models.

(ii) GPT-3. The positive effect of pretraining is also proved by the surprisingly good results

from GPT-3 in the same zero-shot setting as UnifiedQA. Without any fine-tuning, GPT-3 already

reaches almost the best performance we can get. Interestingly, prompting the GPT-3 with two

training examples with only answers results in a negligible difference. However, if we prompt

GPT-3 with chain-of-thought prompting (QCM→ALE), we obtain the state-of-the-art result so far

(75.17%).

Human performance. Humans outperform all benchmarks consistently across question classes,

context types, and grades, e.g., a 20.07% gap for questions with the image context (IMG) between

humans and our best performing model. The gap is to be filled by future research on multimodal

reasoning for scientific question answering.
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Question: What do these two changes have in common?\n
bleaching clothes\n
a piece of apple turning brown\n
Options: (A) Both are only physical changes. (B) Both are caused by cooling. (C) Both are chemical changes. (D) Both are 
caused by heating.\n
Answer: The answer is C. BECAUSE: A physical change is a change to a substance that does not change what the substance 
is. A physical change only changes the substance’s physical properties, such as its size, shape, or color.\n
A chemical change is a change to a substance that changes what the substance is. A chemical change changes the substance’s 
chemical properties, such as its chemical structure.\n
The changes that you listed are both chemical changes.\n
When you bleach clothes, the chemical structure of the fabric changes. This change makes the fabric less likely to hold color.\n 
When a piece of fruit turns brown, the chemical structure of the fruit changes. This change makes the fruit taste different.
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Figure 3.13: One example of the predicted answer along with the chain of thought from GPT-3
(CoT).

3.4.6 Human Evaluation of Generated Explanations

We also evaluated the quality of predictions from GPT-3 (CoT) and UnifiedQA (CoT) by asking

AMT workers to rate the model-generated explanations. The interface is shown in Figure 3.12.

Each sample’s question text, contexts, choices, and answers were presented, along with the corre-

sponding explanation generated by language models. The workers were asked to decide whether

the proposed explanation is relevant (is related to the question), correct (gives a correct answer

and explanation), and complete (fully explains the answer). Prediction outputs that contain textual

explanations were grouped into batches of 10, each assigned to 3 workers for evaluation. For each

batch, we provided the workers with a monetary compensation of $0.3. Finally, the human scores

for each explanation were determined by taking a majority vote.

One prediction example of GPT-3 (CoT) is visualized in Figure 3.13. We can see that GPT-3

(CoT) predicts the correct answer and generates a reasonable lecture and explanation to mimic

the human thought process. We further report automatic metrics (BLEU-1/4 [PRW02], ROUGE-L

[PRW02], and (sentence) Similarity [RG19] to evaluate the generated lectures and explanations,

as shown in Table 3.5. The Similarity metric computes the cosine-similarity of semantic embed-

dings between two sentences based on the Sentence-BERT network [RG19]. The results show that

UnifiedQABASE (CoT) generates the most similar explanations to the given ones. However, it’s

commonly agreed that automatic evaluation of generated texts only provides a partial view and has

to be complemented by a human study. By asking annotators to rate the relevance, correctness, and

completeness of generated explanations, we find that the explanations generated by GPT-3 (CoT)
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conform best to human judgment.

Model Format BLEU-1 BLEU-4 ROUGE-L Similarity Relevant Correct Complete Gold

UnifiedQABASE (CoT) QCM→ALE 0.397 0.370 0.714 0.811 80.4% 76.6% 76.1% 56.9%
GPT-3 (CoT) QCM→AE 0.234 0.048 0.351 0.561 76.9% 73.0% 70.5% 52.5%
GPT-3 (CoT) QCM→ALE 0.192 0.052 0.323 0.595 88.5% 78.8% 84.5% 65.2%

Table 3.5: Automatic metrics (BLEU-1/4, ROUGE-L, Similarity) and human evaluation of gener-
ated explanations. A gold explanation refers to one that is relevant, correct, and complete.

3.4.7 Analysis

Blind studies. Blind studies are conducted on top of the modification of the full model, Top-Down

[AHB18]. The results achieved in blind studies of Q only and CI only are close to random chance,

showing that the ScienceQA dataset is robust and reliable in distribution. The performance drops

in Q+M only, Q+CT+M only, and Q+CI+M only indicate that all input components provide critical

information for answering ScienceQA questions.

Prompt types. We study the effect of prompt types and visualize the comparison in Figure

3.14. It shows that prompting the GPT-3 model with both lectures and explanations (QCM→ALE)

results in the highest accuracy on average and the smallest variance. In contrast, prompting with

only explanations (QCM→AE) gives the largest variance, resulting in a less stable model.
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Figure 3.14: Accuracy of GPT-3 (CoT) cross different prompt types with 4-shot examples.

Number of in-context examples. In Figure 3.15, we further investigate how different num-

bers of training examples encoded in prompts can affect the prediction accuracy. The QCM→ALE
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prompt type outperforms or performs comparably to the QCM→A type with all numbers of ex-

amples. And we observe the peak performance of QCM→ALE with 2 training examples being

prompted. After that, the accuracy goes down as more training examples are added to the model.
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Figure 3.15: Accuracy of GPT-3 (CoT) cross different numbers of training examples (b).

Dynamic sampling. In Table 3.6, instead of random sampling, we try to dynamically select the

in-context examples to prompt with the same class as the test sample. However, slight differences

in prediction accuracy are observed when comparing them to simple random sampling.

Prompt type Sampling Acc. (%)

QCM→ALE Dynamic (same topic) 75.15
QCM→ALE Dynamic (same category) 74.58
QCM→ALE Dynamic (same skill) 75.10

Table 3.6: Dynamic sampling for GPT-3 (CoT).

Upper bound. We search the upper bound of the GPT-3 accuracy by feeding the gold lec-

ture and explanation in the test prompt. As reported in Table 3.7, QCME*→A outperforms the

QCM→ALE baseline by 18.86% and QCMLE*→A outperforms QCM→ALE by 18.96%, in-

dicating a potential improvement direction by generating correct explanations before answering

science questions.

Positions of lectures and explanations. We study the performance of GPT-3 (CoT) in terms

of different positions of lectures and explanations on 1,000 test examples. The results are shown

in Table 3.8. There could be huge accuracy decreases if GPT-3 (CoT) predicts lectures and expla-

nations before answers. It is mainly because if GPT-3 (CoT) is formulated to generate the long
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Prompt type Sampling Acc. (%)

QCML*→A Random 73.59
QCML*→AE Random 74.32
QCME*→A Random 94.0318.86↑
QCMLE*→A Random 94.1318.96↑

QCM→ALE Random 75.17

Table 3.7: Upper bound of GPT-3 (CoT).

lecture and explanation first, there is a greater chance that it will stop generating the prediction

early or use up the maximum token limits before obtaining the required answer.

Prompt type Sampling Acc. (%)

QCM→LA Random 60.6
QCM→EA Random 56.0
QCM→LEA Random 55.4
QCM→ELA Random 51.5

QCM→ALE Random 73.6

Table 3.8: Different positions of L/E for GPT-3 (CoT).

CoT learns with fewer data. To study if the chain of thought helps language models learn

more efficiently, we report the accuracies of UnifiedQA and UnifiedQA (CoT) fine-tuned on differ-

ent sizes of the training set in Figure 3.16. UnifiedQA (CoT) benefits language models by learning

the coherent reasoning path when answering questions, resulting in similar accuracy with fewer

training examples.
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Figure 3.16: UnifiedQA (CoT) learns efficiently with fewer training examples.
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3.4.8 Case Study

Successful cases. We visualize three examples with correct answers and gold explanations pre-

dicted by GPT-3 via chain-of-thought prompting (CoT) in Figures 3.17 to 3.19. We can see that

GPT-3 (CoT) not only predicts the correct answers but also generates reasonable explanations,

which follow the multi-hop reasoning process of human beings. This suggests that large language

models like GPT-3 have great promise for implementing high-level reasoning abilities.

4XHVWLRQ��:KLFK�DQLPDO
V�QHFN�LV�DOVR�DGDSWHG�IRU�KXQWLQJ�SUH\�ZKLOH�NHHSLQJ�WKH�UHVW�RI�LWV�ERG\�VWLOO"
&RQWH[W��6DGGOH�ELOOHG�VWRUNV�OLYH�QHDU�ZHWODQGV�DQG�ODNHV��7KH\�HDW�PRVWO\�ILVK��7KH�
V�QHFN�KHOSV�LW�JUDE�
ILVK�ZKLOH�NHHSLQJ�WKH�UHVW�RI�LWV�ERG\�VWLOO��,I�WKH�VWRUN�KDG�WR�PRYH�LWV�ERG\��LW�PLJKW�VFDUH�WKH�ILVK�DZD\��
)LJXUH��VDGGOH�ELOOHG�VWRUN��$�EODFN�DQG�ZKLWH�ELUG�LV�VWDQGLQJ�LQ�WKH�JUDVV�
2SWLRQV���$��QRUWKHUQ�SLQWDLO��%��EODFN�KHDGHG�KHURQ
$QVZHU��7KH�DQVZHU�LV�%��%(&$86(��7KH�QRUWKHUQ�SLQWDLO�LV�D�GXFN��,W�GRHV�QRW�KXQW�IRU�ILVK�¬I
7KH�EODFN�KHDGHG�KHURQ�LV�D�W\SH�RI�KHURQ��,W�OLYHV�QHDU�ZHWODQGV�DQG�ODNHV��,W�HDWV�PRVWO\�ILVK�¬I
7KH�KHURQ
V�QHFN�KHOSV�LW�JUDE�ILVK�ZKLOH�NHHSLQJ�WKH�UHVW�RI�LWV�ERG\�VWLOO��,I�WKH�KHURQ�KDG�WR�PRYH�LWV�ERG\��LW�PLJKW�VFDUH�
WKH�ILVK�DZD\�

�6XEMHFW��1DWXUDO�VFLHQFH��7RSLF��%LRORJ\��&DWHJRU\��$GDSWDWLRQV��6NLOO��$QLPDO�DGDSWDWLRQV��EHDNV��PRXWKV��DQG�QHFNV�

*ROG�H[DPSOH�LQ�$SSHQGL[�
����

Figure 3.17: A natural science example with the correct answer and a gold explanation.

4XHVWLRQ��6XSSRVH�0DVRQ�GHFLGHV�WR�EDNH�EOXHEHUU\�PXIILQV��:KLFK�UHVXOW�ZRXOG�EH�D�FRVW"
&RQWH[W��0DVRQ�LV�GHFLGLQJ�ZKHWKHU�WR�EDNH�EOXHEHUU\�PXIILQV�RU�FUDQEHUU\�PXIILQV��+H�ZDQWV�WKH�PXIILQV�WR�EH�WDVW\��%XW�KH�
DOVR�ZDQWV�WR�PDNH�D�ORW�RI�PXIILQV�
2SWLRQV���$��0DVRQ�ZLOO�JHW�WR�HDW�EOXHEHUU\�PXIILQV��+H�WKLQNV�EOXHEHUU\�PXIILQV�DUH�WDVWLHU�WKDQ�FUDQEHUU\�PXIILQV���%��
0DVRQ�ZLOO�JLYH�XS�VRPH�PXIILQV��+H�FRXOG�KDYH�PDGH�PRUH�FUDQEHUU\�PXIILQV�WKDQ�EOXHEHUU\�PXIILQV�
$QVZHU��7KH�DQVZHU�LV�%��%(&$86(��$�FRVW�LV�DQ\WKLQJ�WKDW�\RX�KDYH�WR�JLYH�XS�WR�JHW�VRPHWKLQJ�HOVH�
,Q�WKLV�FDVH��0DVRQ�ZLOO�KDYH�WR�JLYH�XS�VRPH�PXIILQV��+H�FRXOG�KDYH�PDGH�PRUH�FUDQEHUU\�PXIILQV�WKDQ�EOXHEHUU\�PXIILQV��
6R��WKH�FRVW�RI�PDNLQJ�EOXHEHUU\�PXIILQV�LV�WKH�RSSRUWXQLW\�FRVW�RI�QRW�PDNLQJ�FUDQEHUU\�PXIILQV�

�6XEMHFW��6RFLDO�VFLHQFH��7RSLF��HFRQRPLFV��&DWHJRU\��%DVLF�HFRQRPLF�SULQFLSOHV��6NLOO��&RVWV�DQG�EHQHILWV�

*ROG�H[DPSOH�LQ�$SSHQGL[�
�����

Figure 3.18: A social science example with a correct answer and a gold explanation.

Failure cases. GPT-3 via chain-of-thought prompting obtains promising results but still fails to

answer a wide range of challenging questions in ScienceQA. The failure cases can be classified

into two types: (a) the model fails to understand the multimodal inputs and lacks domain-specific

knowledge to arrive at the correct answer; (b) the model generates the wrong chain of thought with

irrelevant, incorrect, or incomplete information.

Figures 3.20 to 3.22 visualize three examples with predictions from GPT-3 (CoT). In these ex-

amples, GPT-3 (CoT) is able to predict the correct answers but fails to generate gold explanations.
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4XHVWLRQ��:KLFK�VHQWHQFH�XVHV�D�PHWDSKRU"
&RQWH[W��1�$
2SWLRQV���$��7KH�FDW
V�VLOYHU�H\HV�ZHUH�WZR�VKLQ\�FRLQV���%��7KH�FDW
V�VLOYHU�H\HV�ZHUH�OLNH�WZR�VKLQ\�FRLQV�
$QVZHU��7KH�DQVZHU�LV�$��%(&$86(��$�PHWDSKRU�LV�D�ILJXUH�RI�VSHHFK�WKDW�XVHV�RQH�WKLQJ�WR�GHVFULEH�DQRWKHU��$�PHWDSKRU�
LV�D�W\SH�RI�DQDORJ\�¬I
,Q�D�PHWDSKRU��RQH�WKLQJ�LV�VDLG�WR�EH�DQRWKHU�WKLQJ�¬I
)RU�H[DPSOH��\RX�PLJKW�VD\���0\�GDG�LV�D�EHDU��¬I
7KLV�PHDQV�WKDW�\RXU�GDG�LV�ELJ�DQG�VWURQJ��QRW�WKDW�KH�LV�DFWXDOO\�D�EHDU�¬I
7KH�VHQWHQFH��7KH�FDW
V�VLOYHU�H\HV�ZHUH�WZR�VKLQ\�FRLQV��LV�D�PHWDSKRU�¬I
7KH�VHQWHQFH��7KH�FDW
V�VLOYHU�H\HV�ZHUH�OLNH�WZR�VKLQ\�FRLQV��LV�QRW�D�PHWDSKRU��,W�LV�D�VLPLOH�¬I
$�VLPLOH�LV�D�ILJXUH�RI�VSHHFK�WKDW�XVHV�WKH�ZRUGV��OLNH��RU��DV��WR�FRPSDUH�WZR�WKLQJV�

�6XEMHFW��/DQJXDJH�VFLHQFH��7RSLF��)LJXUDWLYH�ODQJXDJH��&DWHJRU\��/LWHUDU\�GHYLFHV��6NLOO��,GHQWLI\�VLPLOHV�DQG�PHWDSKRUV�

*ROG�H[DPSOH�LQ�$SSHQGL[�
����

Figure 3.19: A language science example with a correct answer and a gold explanation.

4XHVWLRQ��:KLFK�LV�WKH�PDLQ�SHUVXDVLYH�DSSHDO�XVHG�LQ�WKLV�DG"
&RQWH[W��$�EODFN�GRJ�VWDQGLQJ�LQ�IURQW�RI�D�IHQFH�
2SWLRQV���$��ORJRV��UHDVRQ���%��HWKRV��FKDUDFWHU���&��SDWKRV��HPRWLRQ�

$QVZHU��7KH�DQVZHU�LV�&��%(&$86(��7KH�DG�LV�WU\LQJ�WR�PDNH�\RX�IHHO�D�FHUWDLQ�ZD\�DERXW�WKH�SURGXFW��,W�LV�QRW�WU\LQJ�WR�
SHUVXDGH�\RX�ZLWK�ORJLF�RU�ZLWK�DQ�DSSHDO�WR�FKDUDFWHU�

�6XEMHFW��/DQJXDJH�VFLHQFH��7RSLF��:ULWLQJ�VWUDWHJLHV��&DWHJRU\��3HUVXDVLYH�VWUDWHJLHV��6NLOO��,GHQWLI\�DSSHDOV�WR�HWKRV��SDWKRV��
DQG�ORJRV�LQ�DGYHUWLVHPHQWV�

&RUUHFW�$QVZHU���1RW�5HOHYDQW�([SODQDWLRQ
����

Figure 3.20: An example with a correct answer but an irrelevant explanation.

For example, GPT-3 (CoT) generates an irrelevant explanation because the context text does not

include fine-grained visual information in the image (Figure 3.20). In the example shown in Figure

3.21, GPT-3 (CoT) fails to predict coherent thought chains, providing an incorrect example and an

incorrect statement for a chemical change. The third example is given in Figure 3.22, where the

generated explanation is just a repetition of the input question and the output answer, instead of

following the complete thought chain to arrive at the final answer.

Three failure examples with wrong predicted answers are listed in Figures 3.23 to 3.25. We

extract the image captions and feed them to the large language model as the visual content input.

However, these captions lack fine-grained semantics and usually do not work well for diagrams,

which results in two failure cases shown in Figure 3.23 and 3.24. Moreover, there exist challenges

for large language models to reason about the questions that require them to understand complex

and uncommon domain knowledge. For example, GPT-3 (CoT) cannot understand accurately the

terminology of personification in language science (Figure 3.25).
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4XHVWLRQ��:KDW�GR�WKHVH�WZR�FKDQJHV�KDYH�LQ�FRPPRQ"
PL[LQJ�VDQG�DQG�JUDYHO
FUXVKLQJ�D�PLQHUDO�LQWR�SRZGHU
&RQWH[W��1�$
2SWLRQV���$��%RWK�DUH�FKHPLFDO�FKDQJHV���%��%RWK�DUH�RQO\�SK\VLFDO�FKDQJHV���&��%RWK�DUH�FDXVHG�E\�FRROLQJ���'��%RWK�DUH�
FDXVHG�E\�KHDWLQJ�
$QVZHU��7KH�DQVZHU�LV�%��%(&$86(��$�SK\VLFDO�FKDQJH�LV�D�FKDQJH�WR�D�VXEVWDQFH�WKDW�GRHV�QRW�FKDQJH�ZKDW�WKH�VXEVWDQFH�
LV��$�SK\VLFDO�FKDQJH�RQO\�FKDQJHV�WKH�VXEVWDQFH
V�SK\VLFDO�SURSHUWLHV�¬I
)RU�H[DPSOH��ZKHQ�\RX�FXW�D�PLQHUDO��\RX�FKDQJH�LWV�VKDSH��%XW�WKH�PLQHUDO�LV�VWLOO�WKH�VDPH�VXEVWDQFH��6R��FXWWLQJ�D�PLQHUDO�LV�D�
SK\VLFDO�FKDQJH�¬I
$�FKHPLFDO�FKDQJH�LV�D�FKDQJH�WR�D�VXEVWDQFH�WKDW�FKDQJHV�ZKDW�WKH�VXEVWDQFH�LV��$�FKHPLFDO�FKDQJH�FKDQJHV�WKH�VXEVWDQFH
V�
FKHPLFDO�SURSHUWLHV�¬I
)RU�H[DPSOH��ZKHQ�\RX�PL[�VDQG�DQG�JUDYHO��\RX�PDNH�FRQFUHWH��&RQFUHWH�LV�D�QHZ�VXEVWDQFH�ZLWK�GLIIHUHQW�SURSHUWLHV�IURP�
VDQG�DQG�JUDYHO��6R��PL[LQJ�VDQG�DQG�JUDYHO�LV�D�FKHPLFDO�FKDQJH�¬I
&UXVKLQJ�D�PLQHUDO�LQWR�SRZGHU�LV�D�SK\VLFDO�FKDQJH��7KH�PLQHUDO�LV�VWLOO�WKH�VDPH�VXEVWDQFH�

�6XEMHFW��1DWXUDO�VFLHQFH��7RSLF��&KHPLVWU\��&DWHJRU\��3K\VLFDO�DQG�FKHPLFDO�FKDQJH��6NLOO��&RPSDUH�SK\VLFDO�DQG�FKHPLFDO�
FKDQJHV�

&RUUHFW�$QVZHU���1RW�&RUUHFW�([SODQDWLRQ
�����

Figure 3.21: An example with a correct answer but an incorrect explanation.

4XHVWLRQ��,V�WKH�IROORZLQJ�WUDLW�LQKHULWHG�RU�DFTXLUHG"
0DUVKDOO�KDV�ILYH�ILQJHUV�RQ�HDFK�KDQG�
&RQWH[W��+LQW��0DUVKDOO�ZDV�ERUQ�ZLWK�ILYH�ILQJHUV�RQ�HDFK�KDQG�
2SWLRQV���$��DFTXLUHG��%��LQKHULWHG
$QVZHU��7KH�DQVZHU�LV�%��%(&$86(��0DUVKDOO�ZDV�ERUQ�ZLWK�ILYH�ILQJHUV�RQ�HDFK�KDQG��7KLV�WUDLW�ZDV�LQKHULWHG�IURP�
0DUVKDOO
V�SDUHQWV�

�6XEMHFW��1DWXUDO�VFLHQFH��7RSLF��%LRORJ\��&DWHJRU\��+HUHGLW\��6NLOO��,GHQWLI\�LQKHULWHG�DQG�DFTXLUHG�WUDLWV�

&RUUHFW�$QVZHU���1RW�&RPSOHWH�([SODQDWLRQ
�����

Figure 3.22: An example with a correct answer but an incomplete explanation.

4XHVWLRQ��:KLFK�PRQWK�LV�WKH�ZHWWHVW�RQ�DYHUDJH�LQ�&KULVWFKXUFK"
&RQWH[W��8VH�WKH�JUDSK�WR�DQVZHU�WKH�TXHVWLRQ�EHORZ��$�VHULHV�RI�SKRWRJUDSKV�VKRZLQJ�
D�YDULHW\�RI�FRORUIXO�REMHFWV�
2SWLRQV���$��$SULO��%��'HFHPEHU��&��0D\

$QVZHU��7KH�DQVZHU�LV�%��%(&$86(��7KH�JUDSK�VKRZV�WKH�DYHUDJH�PRQWKO\�UDLQIDOO�LQ�&KULVWFKXUFK�IURP������WR������¬I
7KH�ZHWWHVW�PRQWK�RQ�DYHUDJH�LV�'HFHPEHU��ZLWK�DQ�DYHUDJH�UDLQIDOO�RI�������PP�¬I
7KH�VHFRQG�ZHWWHVW�PRQWK�LV�0D\��ZLWK�DQ�DYHUDJH�UDLQIDOO�RI�������PP�¬I
7KH�WKLUG�ZHWWHVW�PRQWK�LV�$SULO��ZLWK�DQ�DYHUDJH�UDLQIDOO�RI�������PP�

�6XEMHFW��1DWXUDO�VFLHQFH��7RSLF��(DUWK�VFLHQFH��&DWHJRU\��:HDWKHU�DQG�FOLPDWH��6NLOO��8VH�FOLPDWH�GDWD�WR�PDNH�SUHGLFWLRQV�

:URQJ�$QVZHU
�����

Figure 3.23: An example with a wrong answer and a wrong explanation.

3.5 Conclusion

We propose ScienceQA, a dataset that features 21,208 multi-option questions with multimodal

contexts from the science curriculum. To the best of our knowledge, ScienceQA is the first large-
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4XHVWLRQ��:KLFK�RFHDQ�LV�KLJKOLJKWHG"
&RQWH[W��$�SDLQWLQJ�RI�D�SHQJXLQ�RQ�D�EOXH�EDFNJURXQG�
2SWLRQV���$��WKH�,QGLDQ�2FHDQ��%��WKH�$UFWLF�2FHDQ��&��WKH�3DFLILF�2FHDQ��'��WKH�
6RXWKHUQ�2FHDQ

$QVZHU��7KH�DQVZHU�LV�&��%(&$86(��7KH�3DFLILF�2FHDQ�LV�WKH�ODUJHVW�RFHDQ��,W�FRYHUV�PRUH�WKDQ�RQH�WKLUG�RI�WKH�(DUWK
V�
VXUIDFH�

�6XEMHFW��6RFLDO�VFLHQFH��7RSLF��*HRJUDSK\��&DWHJRU\��3K\VLFDO�*HRJUDSK\��6NLOO��2FHDQV�DQG�FRQWLQHQWV�

:URQJ�$QVZHU
����

Figure 3.24: An example with a wrong answer and a wrong explanation.

4XHVWLRQ��&RPSOHWH�WKH�VHQWHQFH�VR�WKDW�LW�XVHV�SHUVRQLILFDWLRQ�
$W�QLJKW��ZKHQ�WKH�PDFKLQHV�ZHUH����WKH�IDFWRU\�VHHPHG�WR�EH�DQ�HQWLUHO\�GLIIHUHQW�SODFH�
&RQWH[W��1�$
2SWLRQV���$��RII��%��DVOHHS
$QVZHU��7KH�DQVZHU�LV�$��%(&$86(��3HUVRQLILFDWLRQ�LV�D�ILJXUH�RI�VSHHFK�WKDW�JLYHV�KXPDQ�TXDOLWLHV�WR�QRQKXPDQ�WKLQJV�¬I
)RU�H[DPSOH��WKH�VHQWHQFH�³7KH�ZLQG�ZDV�KRZOLQJ´�XVHV�SHUVRQLILFDWLRQ��,W�JLYHV�WKH�KXPDQ�TXDOLW\�RI�VRXQG�WR�WKH�QRQKXPDQ�
WKLQJ�ZLQG�¬I
7KH�VHQWHQFH�³7KH�VXQ�ZDV�VPLOLQJ´�XVHV�SHUVRQLILFDWLRQ��,W�JLYHV�WKH�KXPDQ�TXDOLW\�RI�H[SUHVVLRQ�WR�WKH�QRQKXPDQ�WKLQJ�
VXQ�¬I
,Q�WKH�VHQWHQFH�³$W�QLJKW��ZKHQ�WKH�PDFKLQHV�ZHUH�RII��WKH�IDFWRU\�VHHPHG�WR�EH�DQ�HQWLUHO\�GLIIHUHQW�SODFH�´�WKH�PDFKLQHV�DUH�
JLYHQ�WKH�KXPDQ�TXDOLW\�RI�VRXQG�

�6XEMHFW��/DQJXDJH�VFLHQFH��7RSLF��:ULWLQJ�VWUDWHJLHV��&DWHJRU\��&UHDWLYH�WHFKQLTXHV��6NLOO��8VH�SHUVRQLILFDWLRQ�

:URQJ�$QVZHU
����

Figure 3.25: An example with a wrong answer and a wrong explanation.

scale multimodal science dataset where most questions are annotated with corresponding lectures

and explanations. We establish various baselines, including recent VQA models and large language

models on ScienceQA. We further study if language models can generate reasonable explanations

and then benefit the reasoning ability. Experiments show that UnifiedQA with the chain of thought

can achieve an improvement of 3.99% and few-shot GPT-3 via chain-of-thought (CoT) prompting

can obtain a satisfactory accuracy of 75.17% on ScienceQA. 65.2% of the generated explanations

from GPT-3 (CoT) meet the gold standard by human evaluations.
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Part II

Pre-trained Vision-Language Models
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CHAPTER 4

Patch Cross-modal Transformer Model

4.1 Introduction

We have witnessed the exciting development of visual question answering (VQA) research in re-

cent years. The long-standing goal of the VQA task is to develop systems that can answer natural

questions that correspond to visual information. Several datasets have been released to evaluate

the systems’ visual and textual content understanding abilities [AAL15, ZGB16, GKS17, JHM17,

HM19, WLS20]. Besides, numerous methods are proposed to push the limit of performing visual

reasoning over natural images [AHB18, KJZ18, YYC19, GJY19].

One of the underlying limitations of current VQA works is that they are focusing on answering

visual questions for natural images. However, besides natural images, abstract diagrams that carry

visual and semantic richness, account for a large part of the visual world. For instance, it is shown

that emojis can express rich human sentiments [KSK16, FMS17], and diagrams like icons can

map the physical worlds into symbolic and aesthetic representations [LGG19, MBT18, KBY20].

Some pioneering works attempt to design systems that are capable of answering questions for

abstract diagrams. However, these benchmarks either address domain-specific charts, plots and,

illustrations [KSK16, KPC18], or are generated from limited templates [ZGS16, SLY17, JHM17].

These limitations impede their practical applications in real-world scenarios, such as elementary

education, where abstract diagrams are involved with diverse objects and various reasoning skills

[Kar11].

To address these shortcomings, we have introduced icon question answering (IconQA), a new

task for abstract visual reasoning and compositional question answering in Section 2.2. The task,

stemming from the math word problems [Mar08] for children, exhibits a promising potential to
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Q: What is the man doing?
A: riding a motorcycle

Q: Which object is next to the one 
shaped like a cube?
C: 

Q: How many sticks are there?
A: 80

Q: Which picture shows the pizza inside 
the oven?
C: (A) left one (B) right one

CLEVR

IconQA

Q: How many tomatoes are there?
A: 5

Q: How many objects are metal things?
A: 4

VQA 2.0VQA

Figure 4.1: Top: Examples in three popular VQA datasets: VQA [GKS17], VQA 2.0 [GKS17],
and CLEVR [JHM17]. Bottom: Examples of three sub-tasks in our collected IconQA dataset.

develop education assistants. We name the proposed task as IconQA because the images depict

icons, which simplify recognition and allow us to focus on reasoning skills for further research. A

typical IconQA problem is provided with an icon image and a question, and required to give the

answer or choose one from multiple choices in text or image formats.

Correctly answering IconQA questions needs diverse human intelligence skills. As examples

shown in Figure 4.1, it requires perceptual abilities such as understanding text and abstract dia-

grams, including recognizing objects and identifying attributes. It further requires cognitive skills

like counting objects, comparing attributes, performing arithmetic operations, making logical in-

ference, completing spatial reasoning, or leveraging external commonsense. Thus, these inherent

complexities of IconQA make it a challenging task.

Current paradigms [AHB18, KJZ18, GJY19] for vision-language tasks typically depend on

multimodal fusion approaches between two modalities (like single-hop attention over image re-

gions conditioned on the input question), which limit the types of potential interactions within

modalities. Inspired by recent advances that Transformer has achieved for achieving fine-grained

interactions for input tokens, we propose a novel pyramid patch cross-modal Transformer (Patch-

TRM) to learn implicit visual and linguistic relationships in IconQA (Figure 4.2). Patch-TRM
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fuses the diagram and question inputs into a common semantic embedding space within a multi-

modal Transformer, which applies self-attention and cross-modal attention mechanisms to learn

intra- and inter-modality interactions homogeneously.

Existing Transformer-based methods [LBP19, LYY19] need pre-extracted object region pro-

posals learned from natural images, leading to the domain gap when processing icon images in

IconQA. Given that the icon objects are arranged in grid-like regions with varied sizes, we parse

the diagrams into patch sequences in a spatial pyramid structure. Then patches are encoded by

a ResNet network [HZR16] and fed to transformer encoders for outputting patch embedding by

learning their hierarchical relationships. To enhance the semantic representations for the diagrams,

we use IconQA, a large-scale icon dataset, to pretrain the backbone ResNet in the icon classifica-

tion task. Experiments show that our proposed method is capable of extracting meaningful visual

representations for icon images and thus achieving better performances than current advanced

VQA methods in the IconQA task.

Our contributions can be summarized as 1) we propose a new task IconQA that requires ab-

stract diagram understanding for icon images and diverse visual reasoning skills; 2) unlike existing

methods limited on natural images, our novel cross-modal Transformer model with the pretraing

technology can extract hierarchical and informative visual representations for icon images and then

significantly outperforms previous work for the IconQA task.

4.2 Related Work

VQA Methods. Early VQA approaches usually combine multi-modal inputs by applying atten-

tion mechanisms over image regions or question words [KJZ18, LLZ18, LJZ18, GLL18, YYC19,

GJY19]. Inspired by the semantic nature of VQA images, a line of approaches adopt object pro-

posals from pre-trained object detectors and learn their semantic relationships [KJZ18, YYC19,

GJY19]. As Transformers achieve excellent performance on vision tasks, pioneering works have

attempted to use pre-trained models to learn visual representations for natural images in the VQA

task [LBP19, LYY19, CLY20, KSK21] and achieve significant improvements. However, current

VQA models are not capable of extracting meaningful visual representations from abstract dia-
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grams, as they require image embeddings or object proposals learned from natural images. Instead,

we develop a strong baseline that feeds spatial patch sequences into a Transformer encoder that is

powered by the embedding module pre-trained on our Icon645 dataset.

Pretrained Models. After the transformer model achieves excellent performance on transla-

tion tasks, large-scale pre-trained model BERT [KT19] and its variants such as TinyBERT [JYS20]

have become dominant language models. Inspired by these achievements, we apply the BERT

model pre-trained on a large-scale corpus to encode questions in IconQA. When it comes to the

vision side, progress is lagging behind for pre-trained models. Some pioneering works have at-

tempted to use the pre-trained models to learn visual representations for natural images in vision-

language tasks like VQA [LBP19, LYY19, CLY20] and achieve significant improvements. How-

ever, current visual Transformer models for VQA are not capable of extracting meaningful visual

representations for abstract diagrams, as they require to extract object proposals from object detec-

tors trained by natural images. Instead, we propose a novel visual model that feeds spatial patch

sequences into a transformer encoder and then learns their representations by self-attention.

4.3 Patch Cross-modal Transformers

Inspired by recent advances Transformer has achieved in vision-language tasks [LYY19, LBP19],

we develop a cross-modal Transformer model Patch-TRM for icon question answering. Taking the

multi-image choice sub-task as an example, the overall architecture is shown in Figure 4.2. The

diagram is first parsed into ordered patches in a hierarchical pyramid layout. These patches are

then encoded by a pre-trained ResNet and passed through a vision Transformer. Question text is

encoded by a language Transformer and fused with patch embeddings via the attention mechanism.

The encoded image choices are concatenated with the joint diagram-question representation and

then fed to a classifier for question answering. The other two sub-tasks utilize similar network

architectures, except that in the multi-text-choice sub-task, we use an LSTM encoder [HS97] for

choice embedding, while filling-in-the-blank does not need a choice encoder.
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Figure 4.2: Our proposed model Patch-TRM for the IconQA task.

4.3.1 Diagram Encoder

Similar to natural images in most VQA datasets, abstract diagrams also have rich visual and

semantic information that is critical to answering questions. Current dominant VQA methods

[AAL15, AHB18, KJZ18, GJY19, YYC19, JMR20] either extract high-level visual representa-

tions from a pre-trained ResNet backbone network [HZR16] in a top-down fashion, or apply a

bottom-up mechanism to extract semantic representations via a object detector, such as a model

based on Faster R-CNN [RHG15]. However, these methods depend heavily on the backbone net-

work, which is pre-trained on natural images. When processing diagrams in IconQA, they are

likely to fail to extract meaningful representations or reasonable object proposals. Inspired by the

early progress in using hierarchical scene layout to parse images [LSF10, ZWZ15, WWZ15] and

the recent advances in Transformer-based image encoding [LBP19, LYY19, Won21], we develop a

method that splits diagrams into hierarchical patch sequences from a pyramid structure and learns

their visual representations using a visual Transformer.

As diagrams in IconQA have more varied aspect ratios than natural images, we add blank

paddings at the bottom or on the right side of the images to ensure that they are square-shaped.

Each padded diagram is then cropped into a set of patch sequences with different scales. The

padding operation and the hierarchical scene layout can facilitate extracting complete objects that

retain specific semantics. Let p = [p1, p2, . . . , pn] denote the patch sequence in the splitting order

from the original diagram. From each patch sequence, we extract the visual features using a ResNet

model and represent the features as fp = [fp1 , fp2 , . . . , fpn ]. The representation for each patch, fpi ,

is then summed up with its positional embedding with respect to its sequencial index i. Finally,
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the updated visual patch embeddings pass through a standard multi-layer Transformer [VSP17] to

learn high-level visual representations hp = [h[CLS], hp1 , hp2 , . . . , hpn ]. Here, the trainable token

[CLS], which is added to the Transformer inputs, learns the global meaning of these sequences. As

mentioned before, it is not feasible to use existing pre-trained ResNet to process abstract diagrams

due to a lack of similar resources for pre-training. So we pre-train the ResNet on icon classifica-

tion with the icon dataset we compiled (Section 4.4.1). More details of the pre-training task are

discussed in Section 4.4.2.

4.3.2 Language Encoder

Questions in IconQA have a wide distribution of question lengths, so we follow the recent ap-

proaches [VSP17, JYS20, TCL19, LYY19, LBP19] that apply the BERT model [KT19] to embed

question texts, rather than using traditional LSTM [HS97] or GRU [CMG14] for long sequence

encoding. Given the question w0, w1, . . . , wt, the input is formatted as [[CLS], w0, w1, . . . , wt]. We

use the WordPiece [SN12] subword tokenizer and the resulting sequence is padded to the maxi-

mum length. Similar to other methods that use BERT as sentence encoders, we consider the output

corresponding to the first token [CLS] as the embedding of the entire question, noted as hq.

4.3.3 Answer Reasoning

Given the image patch representation hp ∈ Rn×k, and question embedding hq ∈ Rk, where n

denotes the number of diagram patches and k denotes the learned embedding size of the patches,

we apply a cross-modal attention to learn their joint representation:

a = softmax (Wphp ◦Wqhq) , (4.1)

hv =
n∑
i

a(i)× hpi , (4.2)

where Wp and Wq are learnable mapping parameters, and ◦ is the element-wise product operator.

The joint representation hv is calculated as the weighted sum over all diagram patches.

Before predicating the answer, multiple choice candidates need to be encoded. Taking the
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multi-image-choice task as an example, each image choice is encoded as the output of the last

pooling layer of the pre-trained ResNet. The encoded image choice is denoted as hc ∈ Rm×k,

where m is the number of the candidates. The choice embeddings are concatenated with the

diagram-question representation, and then the resulted embeddings are fed to a classifier over the

candidates:

pans = softmax (Wa ([hv;hc]) + ba) , (4.3)

where Wa and ba are classifier parameters, and pans is the probability of the predicated answer

choice.

Similarly, in the multi-text-choice sub-task, the answer is predicated over text choices, except

that each text choice is embedded with LSTM layers first. We formulate the filling-in-the-blank

sub-task as a multi-class classification problem from all possible answers in the training data, as

most VQA works do. After generating the joint encoding for the input diagram and question, a

linear classifier is trained to predict the final answer.

4.4 Image Encoder Pre-training

Current dominant VQA methods either rely heavily on the ResNet backbone network to extract

image features or depend on the Transformer encoders to learn image embeddings. However,

these networks are pre-trained on natural images and are likely to fail to extract meaningful rep-

resentations or reasonable object proposals when processing the diagrams in IconQA. Instead, we

pre-train the ResNet network on the icon classification task with the icon dataset we compiled (Sec-

tion 4.4.1). Patch-TRM hierarchically parses the diagram into patches that retain complete objects

to a large extent, and the parsed patches are embedded by the pre-trained ResNet network before

being fed into the vision Transformer. The hierarchical parsing structure, along with the ResNet

pre-trained on icon data facilitate our Patch-TRM to learn informative diagram representations for

the IconQA task.
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Data #Classes #Icons Min Size Max Size Colored

Icon645 377 645,687 64×64 256×256 ✓

Table 4.1: Statistics for the Icon645 dataset.

4.4.1 Pre-training Data: Icon645

As discussed in Section 2.2.3, IconQA questions are accompanied by abstract diagrams that cover

a wide range of icon objects. Using existing backbone networks to extract image representations

for these icon images is inadequate, as most of these networks are pre-trained on natural images. To

overcome the limitation, we develop a new large-scale icon dataset for pre-training existing vision

backbone networks. We use the collected icon data to pre-train the current backbone networks,

which can be applied to extract diagram representations in IconQA.

We retrieve the 388 icon classes mentioned in the question texts from Flaticon1, the largest

database of free vector icons. After removing 11 classes that can’t be retrieved, we construct an

icon dataset containing 377 classes, called Icon645. As summarized in Table 4.1, the Icon645

dataset includes 645,687 colored icons with a minimum size of 64 by 64 and a maximum size of

256 by 256. Examples in Table 4.2 show that our collected icons include a wide variety of colors,

formats and styles. On top of pre-training encoders, the large-scale icon data could also contribute

to future research on abstract aesthetics and symbolic visual understanding. In this work, we use

the icon data to pre-train backbone networks on the icon classification task in order to extract

semantic representations from abstract diagrams in IconQA.

Icons Examples Icons Examples

Bed Bucket
Cake Car
Castle Dog
Giraffe Kite
Soda Tree

Table 4.2: Collected icon examples in the Icon645 dataset.

1Flaticon: https://www.flaticon.com/
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Method Total Head Medium Tail

ResNet32 [HZR16] + CB [CJL19] 27.91 19.66 36.51 33.53
ResNet32 [HZR16] + Focal Loss [LGG17] 32.80 51.59 36.51 8.94
ResNet32 [HZR16] + LDAM [CWG19] 42.65 55.68 46.42 24.94
ResNet101 [HZR16] + LDAM [CWG19] 62.93 70.29 70.50 47.51

Table 4.3: Results for icon classification.

4.4.2 Icon Classification for Pre-training

The Icon645 dataset is collected to pre-train the backbone network for patch feature extraction.

The dataset has a long-tailed distribution, and thus we address the class-imbalanced issue follow-

ing previous studies on specific loss functions such as CB loss [CJL19], Focal loss[LGG17], and

LDAM loss [CWG19]. The metric of Top-5 accuracy is used to evaluate different model setups and

the evaluation results are summarized in Table 4.3. Following [LMZ19], to demonstrate perfor-

mances on different data parts, we divide the dataset into three balanced clusters: Head, Medium,

and Tail, corresponding to 132, 122, and 123 classes respectively. All classes in Head have at least

1,000 instances, all classes in Medium have 300 - 999 instances, and all classes in Tail have fewer

than 300 instances. As the results show, the backbone network ResNet101 with a re-balanced

LDAM loss function achieves the best result for icon classification on Icon645. Consequently, we

adopt this pre-trained ResNet101 network to extract patch features in our baseline Patch-TRM for

IconQA.

4.5 Experiments
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Figure 4.3: An overview of benchmark baselines on the IconQA task.
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4.5.1 Baselines

For comparison, we consider multi-modal pooling methods with attention mechanisms [AHB18,

KJZ18, GJY19, YYC19], Transformer-based VQA approaches [LBP19, CLY20, Won21, KSK21],

and three blind study methods as benchmark models, as summarized in Figure 4.3. Additionally, a

user study is conducted to explore the performances of human beings in different age groups.

Attention models. We construct four attention models for benchmarking. The first model im-

plements Top-Down attention [AHB18] for VQA, which is a strong attention method that applies

free-form based attention on image representations from a pre-trained ResNet-101 network. The

remaining three models utilize the bottom-up attention mechanism with the help of object detec-

tion proposals from Faster-RCNN [RHG15]. Specifically, BAN [KJZ18] proposes a method that

utilizes bilinear attention distributions to learn joint vision-language information. DFAF [GJY19]

is an advanced model that applies self-attention and cross-modal attention and introduces the infor-

mation flow to help the model focus on target question words and image regions. The last approach,

MCAN [YYC19], learns the self-attention on the questions and images and the question-guided-

attention of images jointly.

Transformer models. Four Transformer-based models are also implemented as benchmarks.

ViLBERT [LBP19] and UNITER [CLY20] are two Transformer-based approaches that take im-

age object proposals from Faster-RCNN [RHG15] and question tokens as inputs. Specifically,

ViLBERT learns the joint representation of the image content and the natural language content

from image proposal regions and question tokens, while UNITER processes multimodal inputs

simultaneously for joint visual and textual understanding. The last two benchmarks ViL [Won21]

and ViLT [KSK21] are more recently proposed Transformer models that take image patch tokens

instead of object proposals as inputs when representing the image.

Blind study models. We develop three models to check for possible data biases in the IconQA

dataset. A random baseline picks up one from the given choice candidates for the multiple-choice

sub-tasks while predicts the answer by randomly selecting one from all possible answers in the

train data for the filling-in-the-blank sub-task. Q-Only is set up similar to the Top-Down [AHB18]

model, but it only considers textual inputs. This baseline learns the question bias in the training
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set. I-Only also has a Top-Down architecture, but it only takes abstract diagrams as inputs, and

tests the distribution biases in the images and answers in IconQA.

User study. To assess human performances in the IconQA task, we post the test set of IconQA

on Amazon Mechanical Turk (AMT) and ask people to provide answers to the questions in the test

set. We also ask the participants to provide us with their age group anonymously. We strongly

encourage parents who have young children to let their children complete the questionnaires, as

their answers give us insights to how the designed audience of these questions perform. Further

details about the user study are included in Appendix 4.7.

4.5.2 Experimental Details

Following prior work [AAL15], all the baselines are trained on the IconQA training set, tuned on

the validation set, and finally evaluated on the test set. Similar to [AAL15], we choose accuracy

as the evaluation metric. For the two multi-choice sub-tasks, the answer is regarded as correct

only if it matches the ground truth. On the other hand, as the collected answers for filling-in-

blank are short numbers, correct answers are expanded to include both the digital number and its

corresponding words.

All experiments are run on one Nvidia RTX 3090 GPU. We use the Adamax optimizer with

optimal learning rates of 7 × 10−4, 8 × 10−4, and 2 × 10−3 on the three sub-tasks respectively.

We apply a binary cross-entropy loss to train the multi-class classifier with a batch size of 64 and

a maximum epoch of 50. The early stopping strategy is used when the validation accuracy stops

improving for five consecutive epochs. It takes about 50, 30, and 10 minutes to train our baseline

Patch-TRM on three sub-tasks respectively.

We use the same learning parameters set in Top-Down [AHB18] when evaluating the eight

baselines listed in Section 4.5.1 and our developed baseline Patch-TRM. Some crucial parameters

used in our model are clarified below.

Patch-TRM. For our approach Patch-TRM, each diagram is split four times by varied scales,

resulting in 79 (1+4+9+16+49) patches totally. After resizing them to to 224×224, patch visual

features are extracted from the last pooling layer, resulting in a 2048-d feature vector. The ResNet
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network used to embed the patches is pre-trained on the icon classification task as discussed in

Section 4.4.2. The patch Transformer has one layer of Transformer block with four attention heads

and outputs embeddings with a hidden state size of 768. A small pre-trained BERT model [TCL19]

is used to encode the question text in the language encoder.

Attention models. For Top-Down, the attention-based baselines use 7×7×2048-d features

from the last convolution layer. For BAN [KJZ18], DFAF [GJY19], and MCAN [YYC19], image

features of dimension 2,048 are extracted from Faster R-CNN [RHG15]. Question words in these

attention models are encoded into features of dimension 1,024 by GRU [CMG14]. And the visual

and textual features are then embedded into 1,024 dimensions with the corresponding attention

mechanisms and fusion methods reported in original works.

Transformer models. For ViLBERT [LBP19] and UNITER [CLY20], we use Faster R-CNN

[RHG15] to extract 36 proposal regions as the visual inputs. Both ViL [Won21] and ViLT [KSK21]

use ViT-B/32 pre-trained on ImageNet to encode the image emebeddings. The hidden size is set

as 768, the layer depth is 32, and the input image is sliced into patches with a size of 32. For ViL,

we use two dependent Transformers to embed the question and image respectively.

4.5.3 Experimental Results

Table 4.4 demonstrates the results of the benchmark methods and our baseline on the IconQA test

set. The first three columns of the results represent the three sub-tasks: multi-image-choice, multi-

text-choice, and filling-in-the-blank respectively. The remaining 13 columns illustrate the results

of these approaches over problems that require different reasoning skills, as defined in Table 4.4.

Human performance. Out of the 54,896 collected answers, 9,620 are made by young chil-

dren from age 3 to 8, 19,040 are made by adolescents from age 9 to 18, and 26,236 are made by

adults. The human performance over the three sub-tasks and thirteen skills is illustrated in Figure

4.4. The detailed results for human performance in the IconQA task are shown in Table 4.5. As

expected, young children do not answer the questions as well as adolescents or adults, suggesting

that most participants answered their ages correctly. Moreover, the results show that humans per-

form more consistently on all sub-tasks compared to machine algorithms. Interestingly, humans
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Sub-tasks (3) Reasoning skills (13)

Method Img. Txt. Blank Geo. Cou. Com. Spa. Sce. Pat. Tim. Fra. Est. Alg. Mea. Sen. Pro.

Human 95.69 93.91 93.56 94.63 97.63 94.41 93.31 92.73 95.66 97.94 97.45 87.51 96.29 86.55 97.06 85.67

Random 41.70 36.87 0.29 30.30 18.38 41.20 36.49 34.25 34.81 35.82 34.84 3.62 11.12 0.36 45.16 38.81
Q-Only 41.64 36.86 28.45 38.03 33.63 48.19 37.14 35.37 33.66 48.09 33.06 40.46 28.02 38.07 45.25 40.76
I-Only 41.56 36.02 46.65 38.71 37.64 45.26 37.52 35.47 36.29 47.37 32.48 62.29 31.73 64.02 45.25 37.51

Top-Down [AHB18] 75.92 68.51 73.03 80.07 65.01 80.65 45.78 58.22 55.01 68.28 72.43 99.54 50.00 99.46 84.54 83.75
BAN [KJZ18] 76.33 70.82 75.54 79.99 67.56 82.12 53.20 66.92 55.67 66.50 73.77 97.06 47.46 96.50 82.12 82.45
ViLBERT [LYY19] 76.66 70.47 77.08 80.05 71.05 75.60 49.46 58.52 62.78 66.72 74.09 99.22 50.62 99.07 81.78 70.94
MCAN [YYC19] 77.36 71.25 74.52 79.86 68.94 82.73 49.70 62.49 54.79 68.00 76.20 99.08 47.32 98.99 83.25 84.87
DFAF [GJY19] 77.72 72.17 78.28 81.80 70.68 81.69 51.42 67.01 56.60 67.72 77.60 99.02 50.27 98.83 84.11 85.70
UNITER [CLY20] 78.71 72.39 78.53 81.31 71.01 83.67 48.34 61.25 60.81 69.77 78.37 99.41 49.18 99.38 86.10 87.84
ViT [Won21] 79.15 72.34 78.92 82.60 70.84 82.12 54.64 68.80 58.46 68.66 77.41 98.95 51.10 98.76 84.72 86.07
ViLT [KSK21] 79.67 72.69 79.27 82.61 71.13 84.95 53.38 66.72 59.22 69.99 75.81 99.02 50.55 98.91 86.10 87.65

Patch-TRM (Ours) 82.66 75.19 83.62 81.87 77.81 87.00 55.62 62.39 68.75 77.98 82.13 98.24 56.73 97.98 92.49 95.73

Table 4.4: Results on the IconQA dataset.
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Figure 4.4: Performance of humans in different age groups for the IconQA task. Left: Accuracy
over three sub-tasks; Right: Accuracy over thirteen reasoning skills.

are outperformed by models quite significantly in questions that require numerical reasoning skills

like probability, measurement, and estimation.

Sub-tasks (3) Reasoning skills (13)

Method Img. Txt. Blank Geo. Cou. Com. Spa. Sce. Pat. Tim. Fra. Est. Alg. Mea. Sen. Pro.

Human 95.69 93.91 93.56 94.63 97.63 94.41 93.31 92.73 95.66 97.94 97.45 87.51 96.29 86.55 97.06 85.67
Human (3-8) 94.58 89.51 89.61 93.02 96.20 91.28 91.24 90.45 95.76 95.32 97.54 78.86 95.33 78.57 93.92 74.76
Human (9-18) 94.63 90.97 93.71 93.28 97.04 93.46 91.47 90.92 94.55 97.59 96.77 86.79 95.83 86.60 96.51 80.56
Human (19+) 97.34 95.83 94.22 96.27 98.44 96.17 96.31 95.85 96.34 98.96 97.95 89.59 96.84 88.00 98.49 90.82

Table 4.5: Human performance in the IconQA task.

Analysis by task types. Humans outperform all benchmarks consistently over there sub-tasks

and most reasoning skills. There is still a large gap to fill for future research of abstract diagram

understanding and visual reasoning on the icon domain. The results achieved in blind studies of

64



Q-only and I-only are close to random, showing that the IconQA dataset is robust and reliable in

distribution. Our proposed Patch-TRM baseline outperforms current state-of-the-art VQA models

in all three sub-tasks. These improvements mainly come from two insights: pre-training ResNet

on icon images and taking a hierarchical approach with attention mechanism.

Analysis by reasoning types. Similarly, the Patch-TRM baseline obtains better results than

the benchmarks over most reasoning skill types. Interestingly, in some skills such as estimation,

measurement, and probability, Patch-TRM performs better than average human beings. This im-

plies that neural networks have a promising potential to develop the basic ability of mathematical

reasoning.

4.5.4 Ablation Study

To study the functions of individual components in our model, we conduct an ablation analysis.

Table 4.6 presents the results of different simplifications of our full model, where each implemen-

tation is trained on the IconQA train set and tested on the validation set. Instead of ResNet101

pre-trained on the icon classification task, Patch-TRM w/o pre utilizes ResNet101 pre-trained on

natural image data for patch feature extraction. The decreasing performance of 0.95-2.49% indi-

cates that pre-training backbones on tasks within similar domains is critical to downstream tasks.

The attention mechanism helps to combine the image and question representations and improves

the model performance by up to 7% compared to using simple concatenation (denoted as Patch-

TRM w/o att). Positional embeddings of the ordered diagram patches benefit the vision Trans-

former by enabling it to learn spatial relationships among the patches, compared to the baseline

without position embeddings (Patch-TRM w/o pos). Patch-TRM V-CLS uses the output embed-

ding of [CLS] token as the diagram feature instead, which leads to a drastic performance decline.

We have also experimented with coarse-grained patch cropping (e.g., Pyramid 1+4+9+16 denotes

30 patches, Pyramid 1+4+9 denotes 14 patches), which results in a performance degradation of

0.51% to 7.79%.
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Method Img. Txt. Blank

Patch-TRM w/o pre 82.01 72.72 81.67
Patch-TRM w/o att 80.63 68.00 80.29
Patch-TRM w/o pos 81.27 64.98 80.68
Patch-TRM V-CLS 80.15 63.90 70.27

Pyramid 1+4+9+16 82.45 68.76 82.19
Pyramid 1+4+9 80.61 67.42 81.36

Full model 82.96 75.21 83.10

Table 4.6: Ablation study in the IconQA dataset.

4.5.5 Quantitative Analysis

Quantitative analysis. We visualize one example with the cross-modal attention map generated by

our baseline Patch-TRM in Figure 4.5. The visualized attention shows that our baseline is capable

of attending to the corresponding patch regions with higher weights given the input question.

Q: Which object is next to the one shaped like a cube?

Figure 4.5: An example of text-to-image attention visualization by Patch-Trm.

Figure 4.6 presents five examples from the IconQA test set predicted by our Patch-TRM base-

line for each sub-task. Although Patch-TRM achieves promising results for most problems in

IconQA, it still fails to address some complicated cases. For example, it encounters difficulties in

identifying dense objects and making multi-hop reasoning.

4.6 Conclusion

In this work, we introduce icon question answering (IconQA), a novel task that requires under-

standing abstract scenes and diverse visual reasoning skills. Unlike existing VQA methods relying
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Q: Which picture shows the grapes 
inside the refrigerator?
C: 

Q: Which picture has symmetry?
C: 

Q: Select the picture that shows equal 
parts.
C:

Q: Which object is beside the trash 
can?
C:

Q: Which shape shows three-fourths? 
C:

Q: The first picture is a bucket. Which 
picture is fourth?
C: (A) bucket (B) boat (C) crab
Ours: boat

Q: Are there fewer rabbits than carrots?
C: (A) no (B) yes
Ours: no

Q: If you select a marble without 
looking, how likely is it that you will 
pick a black one?
C: (A) certain (B) unlikely  (C) 
impossible (D) probable
Ours: probable

Q: Finn is riding his bike this evening. 
What time is it?
C: (A) 7:00 P.M. (B) 7:00 A.M.
Ours: 7:00 P.M. 

Q: How many rectangles are there?
C: (A) 51 (B) 49 (C) 52
Ours: 51

Q: How many cubes tall is the cactus?
Ours: 3

Q: How many shapes are green?
Ours: 4

Q: How many faces does this shape 
have?
Ours: 6

Q: How many pineapples are in the 
bottom row?
Ours: 5

Q: How many blocks are there?
Ours: 10

Ours Ours Ours Ours Ours

Figure 4.6: Result examples predicted by Patch-TRM in the IconQA test set. Top: Multi-im-
age-choice sub-task. Middle: Multi-text-choice sub-task. Bottom: Filling-in-the-blank sub-task.
Correctly predicted answers are highlighted in green, while wrong ones are highlighted in red.

on pre-trained models learned from natural images, we propose a new approach called Patch-TRM.

It parses diagrams into patches using a pyramid layout and learns joint diagram-question represen-

tations via a cross-modal Transformer. We also pre-train the ResNet backbone on icon classifi-

cation to enhance visual representations for this domain. Patch-TRM significantly outperforms

previous VQA methods on IconQA. Future research could focus on improved diagram parsing and

explicit visual reasoning for IconQA. Importantly, IconQA has promising potential applications in

areas like online education, where visual reasoning over abstract diagrams is crucial.

4.7 Appendix: User Study

4.7.1 Crowd Sourcing Method

Using Amazon Mechanical Turk (AMT), we ask people to provide answers to the questions in the

test set along with their age group. We also strongly encourage parents who have young children to

let their children complete the questionnaires, as their answers give us insights to how the designed

audience of these questions perform. The test set is split into batches of 20 questions, which we

call a task, with each task assigned to 3 crowd workers on AMT. This amounts to a total of 64,467
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Figure 4.7: Instructions provided to AMT workers for the user study of the IconQA dataset.

effective test set answers.

4.7.2 Quality Assurance

To ensure the truthfulness of the age information, we ask the participants to select their age at both

the beginning and the end of the questionnaire, with the age choices appearing in 2 different orders.

To ensure the quality of the answers, we include 4 attention check questions: 3 of which are about

the instructions, making sure that the participants read the instructions carefully. We also add an

extra fake question in the middle for each choosing an image choice and choosing a text choice

task, instructing them to choose the fourth choice despite what the choices are. Figure 4.7 shows

the instructions and the first three attention check questions. Figure 4.8 shows the fake question

along with the age confirmation. Figure 4.9 is an example question for the multi-image-choice

sub-task. We also make sure that the workers answering our tasks have a history HIT approval rate

of at least 95% and a previous approval count of 1,000.

In summary, for each Human Intelligence Task (HIT) on AMT, we have 2 age questions, 4

attention check questions, and 20 real questions from the IconQA test set. Among the 64,467 test

answers, we filter out 1) the questionnaires that do not pass the 4 attention check questions, 2)
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Figure 4.8: Attention check questions presented to AMT workers during the IconQA user study.

Figure 4.9: An AMT example question from the multi-image-choice sub-task of IconQA.

the questionnaires that do not answer consistently for the two age-related questions, 3) the ques-

tionnaires that are finished unreasonably slowly/quickly. After filtering, we have 54,896 effective

question answers, which we believe is a decently large sample for the human performance study.
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Part III

Retrieval and Tool-Augmented Algorithms
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CHAPTER 5

Neuro-Symbolic Geometric Solver

5.1 Introduction

Geometry problem solving is a long-standing challenging task in artificial intelligence and has been

gaining more attention in the NLP community recently [SHF14, HLP19, SDH20]. Solving geom-

etry problems is an essential subject in high-school education for the development of students’

abstract thinking. As an example shown in Figure 5.1, given problem text in natural language and

a corresponding diagram, one needs to identify the geometric relations, apply theorem knowledge,

and conduct algebraic calculations to derive the numerical value of the answer.

Psychologists and educators believe that solving geometric problems requires high-level think-

ing abilities of symbolic abstraction and logical reasoning [Chi98, NN17]. However, if algorithms

take the raw problem content, it might encounter challenges to understand the abstract semantics

and perform human-like cognitive reasoning for inferring the answer in the geometry domain. A

formal language is composed of words from a well-formed alphabet based on a specific set of rules

and is commonly used in the fields of linguistics and mathematics. Therefore, our proposed ge-

ometry solver parses the problem inputs into formal language descriptions (see examples in Figure

5.1) before solving the problems.

To translate the problem text and diagrams to formal descriptions, existing methods [SHF15,

SDX17, SX17] highly depend on human annotations like symbols in diagrams as the intermedi-

ate results. Also, these methods fail to provide the explicit reasoning processes when predicting

the answer. For example, [SHF15] simplifies the problem solving task to an optimization prob-

lem to pick one that satisfies all constraints from choice candidates. Furthermore, most current

datasets are either small in scale or not publicly available [SHF15, SX17], which further hinders
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In triangle ABC, AD = 3 and BD
= 14. Find CD.
Choices:
A. 6.0    B. 6.5    C. 7.0    D. 8.5
Answer: B

BD

C

A

Triangle(A,B,C)
Equals(LengthOf(Line(A,D)),3)
Equals(LengthOf(Line(B,D)),14)
Find(LengthOf(Line(C,D)))

Text Formal Language

Triangle(A,B,C)
Triangle(A,C,D)
Triangle(B,C,D)
PointLiesOnLine(D,Line(A,B))
Perpendicular(Line(A,C),Line(B,C))
Perpendicular(Line(C,D),Line(A,B))

Diagram Formal Language

Figure 5.1: A data example from the Geometry3K dataset, annotated with formal language de-
scriptions for both the problem text and diagram.

the research of geometry problem solving.

To overcome these challenges, we have constructed a new large-scale benchmark, called Ge-

ometry3K, to assess algorithms’ performance of geometry problem solving. The Geometry3K

dataset consists of 3,002 multi-choice problems as well as covers diverse geometric shapes and

problem goals (See details in 2.1). Each problem in Geometry3K is annotated with the problem

text, a diagram, four choices, and a correct answer. In contrast with existing work, we also annotate

each problem text and diagram with unified structural descriptions in formal language.

We further present a novel geometry solving approach with formal language and symbolic

reasoning, called Interpretable Geometry Problem Solver (Inter-GPS). Inter-GPS (Figure 5.2) de-

velops an automatic parser that translates the problem text via template rules and parses diagrams

by a neural object detector into formal language, respectively. In contrast to parameter learning,

Inter-GPS formulates the geometry solving task as problem goal searching, and incorporates theo-

rem knowledge as conditional rules to perform symbolic reasoning step by step. It demonstrates an

interpretable way to tackle the task. Also, we design a theorem predictor to infer the possible the-

orem application sequence in Inter-GPS for the efficient and reasonable searching path. Extensive

experiments on the Geometry3K and GEOS datasets show Inter-GPS achieves large improvements

over existing methods.

Our contributions are three-fold: (1) we introduce a large-scale diverse benchmark of geometry

problem solving, Geometry3K, which is densely annotated with formal language; (2) we develop
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an automatic problem parser to translate the problem text and diagram into formal language; (3) we

propose a novel interpretable problem solver that applies symbolic reasoning to infer the answer.

5.2 Related Work

Approaches for Geometry Problem Solving. Due to the sparsity of appropriate data, most early

works on automated geometry systems focus on geometry theorem proving [Wen86, CGZ96,

YWG19, GYZ19], problem synthesis [AGM14], diagram parsing [SHF14], as well as problem

formalization [GY18]. [SHF15] attempt using computer vision and natural language processing

techniques to solve geometry problems with problem understanding. However, the system does

not perform explicit reasoning with axiomatic knowledge as it reduces the task to an optimization

problem to see which choice can satisfy all constraints. Some recent efforts [SDX17, SDH20]

have been made to incorporate theorem knowledge into problem solving. They feed geometry

axioms written as horn clause rules and declarations from the diagram and text parser into logical

programs in prolog style to solve the problem. However, these methods fail to provide human-

readable solving steps. And parameter learning on horn clause rules and built-in solvers leads to

an uncontrollable search process. In contrast, our proposed Inter-GPS implements explicit sym-

bolic reasoning to infer the answer without the help of candidate answers in an interpretable way.

Interpretable Math Problem Solving. Due to the intrinsic requirements of symbolic un-

derstanding and logical reasoning, interpretability of solvers plays an essential role in geometry

problem solving. While the interpretability of geometry problem solvers is rarely explored, some

pioneering work has been proposed in the general math problem solving domain. Broadly there

are two main lines of achieving interpretable solving steps for math problems. The first gener-

ates intermediate structural results of equation templates [HSL17, WZZ19], operational programs

[AGL19] and expression trees [WWC18, QLL20, HLC21]. The second line of work with a higher

level of interpretability translates the math problems into symbolic language and conducts logical

reasoning iteratively to predict the final results [MII17, RR18]. Furthermore, inspired by work on

semantic parsing [HZ05, ZM06, TML14], we claim structured diagram parsing and joint semantic

representations for text and diagrams is critical in interpretable geometry problem solving.
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5.3 Geometry Formal Language

A geometry problem P is defined as a tuple (t, d, c), in which t is the input text, d is the diagram

image and c = {c1, c2, c3, c4} is the multiple-choice candidate set in the format of numerical

values. Given the text t and diagram d, an algorithm is required to predict the correct answer

ci ∈ c. We formally describe the problem in the geometric domain language Ω, a set of literals

composed of predicates and arguments. Basic terms used in the geometry problem solver are

defined as follows.

Definition 1. A predicate is a geometric shape entity, geometric relation, or arithmetic function.

Definition 2. A literal is an application of one predicate to a set of arguments like variables or

constants. A set of literals makes up the semantic description from the problem text and diagrams

in the formal language space Ω.

Definition 3. A primitive is a basic geometric element like a point, a line segment, a circle, or

an arc segment extracted from the diagram.

Table 5.1 lists examples of predicates and literal templates. There are 91 predicates in our

defined formal language, and we list them in the Tables 5.7 to 5.12 in Appendix 5.8.

Terms Examples

predicate Line, IntersectAt, IsMedianOf
literal Find(AreaOf(Triangle(A,B,C))

Table 5.1: Examples of terms used in the formal language for geometry problem solving.

5.4 Geometry Problem Parser

Our proposed Inter-GPS takes the problem text and diagrams as inputs and translates them into

formal language descriptions automatically via the text parser (Section 5.4.1) and the diagram

parser (Section 5.4.2), respectively.
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5.4.1 Text Parser

Given the word sequence of the problem text T , the text parser needs to translate it into a set of

literals Lt, a sequence composed of predicates and variables. Recently, deep neural networks have

achieved promising performances in sequence-to-sequence (Seq2Seq) learning tasks like machine

translation [SVL14, VSP17, KT19]. However, semantic parsers using Seq2Seq learning methods

are not feasible to generate satisfactory literals in the Geometry3K dataset for two reasons. Firstly,

the limited scale of geometry datasets weakens these highly data-driven methods. Secondly, neural

semantic parsers tend to bring noises in generated results while geometry solvers with symbolic

reasoning are sensitive to such deviations.

Inspired by previous works [KCC08, SHF15, BGL14] that indicate the rule-based parsing

method is able to obtain precise parsing results, we apply this approach with regular expressions

to perform text parsing. We also achieve a semantic text parser using BART [LLG20], one of the

state-of-the-art sequence learning models for comparison.

5.4.2 Diagram Parser

Diagrams provide complementary geometric information that is not mentioned in the problem text.

Previous works [SHF14, SHF15] require manual annotations to identify symbols in the diagrams

and fail to deal with special relational symbols such as parallel, perpendicular, and isosceles.

Instead, an automatic diagram parser without human intervention is proposed in this section and is

able to detect varied diagram symbols.

The diagram parser first applies Hough Transformation [SS01] to extract geometry primitives

(points, lines, arcs, and circles), following [SHF15]. Then the diagram symbols and text regions

are extracted through a strong object detector RetinaNet [LGG17], and the textual content is further

recognized by the optical character recognition tool MathPix1. After obtaining the primitive set P

and symbol set S, we need to ground each symbol with its associated primitives. [SHF15] adapts

a greedy approach where each symbol is assigned to the closest primitive without considering its

1https://mathpix.com/
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validity. Instead, we formulate the grounding task as an optimization problem with the constraint

of geometry relations:

min
∑
s

dist(si, pj)× 1{si assigns to pj}

s.t. (si, pj) ∈ Feasibility set F,

(5.1)

where the dist function measures the Euclidean distance between the symbol si and primitive pj .

F defines the geometric constraints for symbol grounding. For example, the parallel symbol could

only be assigned to two lines with the same slopes and the perpendicular symbol is only valid to

two orthogonal lines.

5.5 Geometry Problem Solver

Unlike existing methods [SHF15, SDX17, AGM17, SDH20], Inter-GPS achieves the explicit sym-

bolic reasoning with the theorem knowledge base and the human-readable search process, shown

in Figure 5.2.

 

In triangle ABC, AB = BC.
Find y. 

Triangle(A,B,C)
Triangle(A,B,D)
Triangle(B,C,D)
Equals(Line(B,C),32)
Equals(Line(C,D),x) 
Equals(Line(B,D),y)
Equals(Angle(C,A,B),54)
PointLiesOnLine(D,Line(A,C))
Perpendicular(Line(B,D),Line(A,D))
Equals(Line(B,C),Line(A,B))
Find(y)

 

A

B

DC x

y32

54°

Rule-Based Text Parser

Neural Detector Diagram Parser Relation Set in Formal Language

 

 

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Transformer-Based Theorem Predictor

 
Equals(Line(A,B),32)

Equals(y,25.89)

 Isosceles Triangle Theorem9

Law of Sine Theorem16

Symbolic Geometry Problem Solver

✔

Figure 5.2: Overview of the Inter-GPS architecture. Given the problem diagram and text, In-
ter-GPS first parses the inputs into a relation set defined in formal language. Then it applies the
theorem sequence predicted by the theorem predictor to perform symbolic reasoning over the re-
lation set to infer the answer. 9⃝ and 16⃝ denote the orders of the applied theorems.
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5.5.1 Symbolic Geometry Solver

Overall, Inter-GPS takes the relation set R and the theorem knowledge base set KB as inputs,

and outputs the numeric solution g∗ of the problem goal g. The relation set R defines geom-

etry attributes and relations in the given problem, and is initialized with literals from the text

and diagram parsers. R is further expanded with literals that are derived from definitions of

geometry shapes. For example, a triangle is defined as three connected sides. So if there is a

literal Triangle(A,B,C), six more literals (Ponit(A), Ponit(B), Ponit(C), Line(A,B),

Line(B,C), Line(C,A)) will be appended toR.

The theorem set KB is represented as a set of theorems, where each theorem ki is written as a

conditional rule with a premise p and a conclusion q. For the search step t, if the premise p of ki

matches the current relation setRt−1, the relation set is updated according to the conclusion q:

Rt ← ki ∧Rt−1, ki ∈ KB. (5.2)

After the application of several theorems, equations between the known values and the unknown

problem goal g are established, and g could be solved after solving these equations:

g∗ ← SOLVEEQUATION(Rt, g). (5.3)

5.5.2 Theorem Predictor (TP)

As the geometry problems in Geometry3K are collected from high school textbooks, it might

need to apply multiple theorems before the problems are solved. Intuitively, one possible search

strategy is to use brute force to enumerate candidates in the theorem set randomly. The random

search strategy is inefficient and might lead to problems unsolvable as there might be applications

of complicated theorems in the early stage. Therefore, an ideal geometry problem solver can

solve the problems using reasonable theorem application sequences. Students with good academic

performance can solve a problem with prior knowledge learning from a certain amount of problem

solving training. Inspired by this phenomenon, a theorem predictor is proposed to infer the possible
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theorem application sequence for inference after multiple attempts on the train data. Recent studies

[LIS17, BBV18] also suggest that neural guided search can speed up the search process.

There are no annotated theorem application sequences for data in Geometry3K due to tremen-

dous worker labor. Thus, we randomly sample from the theorem set multiple times to generate

the application sequences. A generated sequence is regarded as positive if the geometry solver

Inter-GPS solves the problem after the application of that sequence. A positive sequence with the

minimum length for a problem is seen as pseudo-optimal. Finally, after attempts, we collect 1,501

training samples with the problem and its pseudo-optimal theorem application sequence.

Given the problem formal description L = {l1, ..., lm}, the theorem predictor aims to recon-

struct the pseudo-optimal theorem sequence T = {t1, ..., tn} token by token. We formulate the

generation task as a sequence-to-sequence (Seq2Seq) problem and use a transformer-based model

[LLG20] to generate theorem sequence tokens. Specifically, the transformer decoder predicts the

next theorem order ti given T = {t1, ..., ti}. The Seq2Seq model is trained to optimize the negative

log-likelihood loss:

LTP = −
n∑

i=1

log pTP (ti | t1, . . . , ti−1) , (5.4)

where pTP is the parametrized conditional distribution in the theorem predictor model.

5.5.3 Low-first Search Strategy

After the application of the theorem sequence predicted by the theorem predictor, it is likely that

Inter-GPS still could not find the problem goal. Generally, humans incline to use simple theorems

first when solving math problems to reduce complex calculations. If simple theorems are not tan-

gible, they will turn to more complex theorems. On account of that, we apply an efficient search

strategy with heuristics driven by subject knowledge. We categorize theorems into two groups:

lower-order theorem set KB1 and higher-order theorem set KB2. The lower-order set KB1 (e.g,

Triangle Angle-Sum Theorem, Congruent Triangle Theorem) only involves in two simple opera-

tions of addition and subtraction, while KB2 (e.g, Law of Sines) requires complex calculations.
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Algorithm 1 Symbolic Geometry Solver
Input: Literals L, goal g, knowledge bases KB1, KB2
Onput: Numeric goal value g∗ and theorem application S
1: function SEARCH(L, g, KB1, KB2)
2: Initialize relation setR0 with L, g∗ = ∅, S = ∅
3: KBp ← THEOPREDICTOR(L) ▷ Predicted
4: for ki ∈ KBp do
5: Rt ← ki ∧Rt−1

6: S.APPEND(ki)
7: end for
8: g∗ ← SOLVEEQUATION(Rt, g)
9: if g∗ ̸= ∅ then

10: return g∗ and S
11: end if
12: while g∗ = ∅ andRt is updated do
13: for ki ∈ KB1 do ▷ Lower-order
14: Rt ← ki ∧Rt−1

15: S .APPEND(ki)
16: g∗ ← SOLVEEQUATION(Rt, g)
17: if g∗ ̸= ∅ then
18: return g∗ and S
19: end if
20: end for
21: for ki ∈ KB2 do ▷ Higher-order
22: Rt ← ki ∧Rt−1

23: S .APPEND(ki)
24: g∗ ← SOLVEEQUATION(Rt, g)
25: if g∗ ̸= ∅ then
26: return g∗ and S
27: end if
28: end for
29: end while
30: end function

In each following search step after using predicted theorems, we first enumerate theorems in the

lower-order set KB1 to update the relation setR:

Rt ← ki ∧Rt−1, ki ∈ KB1. (5.5)
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If lower-order theorems fail to updateR anymore, higher-order theorems are considered to update

R:

Rt ← ki ∧Rt−1, ki ∈ KB2. (5.6)

The search process stops once we find the problem goal g or the search steps reach the maximum

steps allowed. The whole search algorithm for Inter-GPS is presented in Algorithm 1.

5.6 Experiments

5.6.1 Experimental Settings

Datasets and evaluation metrics. We conduct experiments on the Geometry3K and GEOS

[SHF15] datasets. The Geometry3K dataset involves 2,101 training data, 300 validation data, and

601 test data, respectively. The GEOS dataset provides 55 official SAT problems for evaluating

geometry solvers. Regarding our proposed Inter-GPS model, if the one closest to the found solu-

tion among the four choices is exactly the ground truth, the found solution is considered correct.

For a fair comparison, if Inter-GPS fails to output the numeric value of the problem goal within

allowed steps, it will randomly choose the one from the four candidates. In terms of compared

neural network baselines, the predicted answer has a maximum confidence score among choice

candidates.

Baselines. We implement several deep neural network baselines for geometry solvers to compare

them with our method. By default, these baselines formalize the geometry problem solving task

as a classification problem, fed by the text embedding from a sequence encoder and the diagram

representation from a visual encoder. Q-only only encodes the problem text in the natural language

by a bi-directional Gated Recurrent Unit (Bi-GRU) encoder [CMB14]. I-only only encodes the

problem diagram by a ResNet-50 encoder [HZR16] as the input. Q+I uses Bi-GRU and ResNet-

50 to encode the text and diagram, respectively. RelNet [BNM17] is implemented for embedding

the problem text because it is a strong method for modeling entities and relations. FiLM [PSD18] is

compared as it achieves effective visual reasoning for answering questions about abstract images.
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Method All Angle Length Area Ratio Line Triangle Quad Circle Other

Random 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Human 56.9 53.7 59.3 57.7 42.9 46.7 53.8 68.7 61.7 58.3
Human Expert 90.9 89.9 92.0 93.9 66.7 95.9 92.2 90.5 89.9 92.3

Q-only 25.3 29.5 21.5 28.3 33.3 21.0 26.0 25.9 25.2 22.2
I-only 27.0 26.2 28.4 24.5 16.7 24.7 26.7 30.1 30.1 25.9
Q+I 26.7 26.2 26.7 28.3 25.0 21.0 28.1 32.2 21.0 25.9
RelNet [BNM17] 29.6 26.2 34.0 20.8 41.7 29.6 33.7 25.2 28.0 25.9
FiLM [PSD18] 31.7 28.7 32.7 39.6 33.3 33.3 29.2 33.6 30.8 29.6
FiLM-BERT [KT19] 32.8 32.9 33.3 30.2 25.0 32.1 32.3 32.2 34.3 33.3
FiLM-BART [LLG20] 33.0 32.1 33.0 35.8 50.0 34.6 32.6 37.1 30.1 37.0

Inter-GPS (ours) 57.5 59.1 61.7 30.2 50.0 59.3 66.0 52.4 45.5 48.1
Inter-GPS (GT) 78.3 83.1 77.9 62.3 75.0 86.4 83.3 77.6 61.5 70.4

Table 5.2: Evaluation results of our proposed method and comparison with baselines on the Ge-
ometry3K dataset.

FiLM-BERT uses the BERT encoder [KT19] instead of the GRU encoder, and FiLM-BART uses

the recently proposed BART encoder [LLG20].

Implementation details. Main hyper-parameters used in the experiments are shown below. For

our symbolic solver, a set of 17 geometry theorems is collected to form the knowledge base. For

generating positive theorem sequences, each problem is attempted by 100 times with the maximum

sequence length of 20. The transformer model used in the theorem predictor has 6 layers, 12

attention heads, and a hidden embedding size of 768. Search steps in Inter-GPS are set up to 100.

For the neural solvers, we choose the Adam optimizer and set the learning rate as 0.01, and the

maximum epochs are set as 30. Each experiment for Inter-GPS is repeated three times for more

precise results.

5.6.2 Comparisons with Baselines

Table 5.2 compares the results of symbolic solver Inter-GPS with baselines on our proposed Ge-

ometry3K dataset. Apart from the overall accuracy, the results of different problem types are also

reported. Benefiting from symbolic reasoning with theorem knowledge, our Inter-GPS obtains an

overall accuracy of 57.5%, significantly superior to all neural baselines. Inter-GPS even attains a

better accuracy compared to human beings. Inter-GPS with ground truth formal language gains a

further improvement of 20.8%. Inter-GPS also obtains state-of-the-art performance over exiting
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Method Acc (%)

GEOS [SHF15] 49
GEOS++ [SHF15] 49
GEOS-OS [SX17] 52
GEOS++AXIO [SDX17] 55

Inter-GPS (ours) 67

Table 5.3: Evaluation results on the GEOS dataset.

geometry solvers on the GEOS dataset, as shown in Table 5.3.

5.6.3 Ablation Study and Discussion

Search strategies. The overall accuracy and average steps needed for solving problems with dif-

ferent search strategies in Inter-GPS are reported in Table 5.4. Predict refers to the strategy that

uses the theorems from the theorem predictor followed by a random theorem sequence. The strat-

egy largely reduces the average steps to 6.5. The final strategy in Inter-GPS applies the predicted

theorems first and lower-order theorems in the remain search steps, and gains the best overall

accuracy.

Search strategies Accuracy (%) # Steps

Random 75.5 ± 0.2 13.2 ± 0.1
Low-first 77.3 ± 0.3 15.1 ± 0.2
Predict 77.5 ± 0.1 6.5 ± 0.1
Predict+Low-first (final) 78.3 ± 0.1 7.1 ± 0.1

Table 5.4: Performance of Inter-GPS with different search strategies.

Problem parsers and literal sources. The rule-based text parser achieves an accuracy of 97%

while only 67% for the semantic text parser. Table 5.5 reports the Inter-GPS performance fed with

different sources of literals. With literals generated from our problem solver, Inter-GPS achieves an

accuracy of 57.5%. The current text parser performs very well as there is only a slight gap between

Inter-GPS with generated text literals and ground truth literals. An improvement of 17.5% for

Inter-GPS with annotated diagram literals indicates that there is still much space to improve for the

diagram parser.

Searching step distribution. Figure 5.3 compares correctly solved problem distribution by the av-
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Diagram w/o Diagram Diagram (GT)

Text w/o 25.0 ± 0.0 46.6 ± 0.7 58.7 ± 0.2
Text 25.4 ± 0.0 57.5 ± 0.2 75.0 ± 0.6
Text (GT) 25.4 ± 0.0 58.0 ± 1.7 78.3 ± 0.1

Table 5.5: Performance of Inter-GPS with predicted and ground truth (GT) literals.

erage number of search steps in different strategies. Our final Inter-GPS applies the Predict+Low-

first strategy, with which 65.97% problems are solved in two steps and 70.06% solved in five steps.
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Figure 5.3: Distribution of correctly solved problems by the number of search steps required by
Inter-GPS.

Neural geometry solvers. Current neural network baselines for geometry solving fail to achieve

satisfactory results in the Geometry3K dataset. It is because there are limited data samples for these

neural methods to learn meaningful semantics from the problem inputs. Besides, dense implicit

representations might not be suitable for logical reasoning tasks like geometry problem solving.

We replace the inputs of problem text and diagram in the Q+I baseline with the ground truth textual

and visual formal annotations and report the result in Table 5.6. An improvement of 9.2% indicates

the promising potential for neural network models for problem solving if structural representations

with rich semantics are learned.

Failure cases. Inter-GPS might not find a solution because of inaccurate parsing results and the

incomplete theorem set. Figure 5.4 illustrates some failure examples for Inter-GPS. For example,
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Diagram (visual) Diagram (formal)

Text (natural) 26.7 35.3
Text (formal) 34.6 35.9

Table 5.6: Neural solver performance with different representations of the problem text and dia-
grams.

2

In rhombus ABCD,  
m∠DAB = 
2m∠ADC. 

Text parser: nested expressions

Diagram parser: ambiguous symbols Diagram parser: multiple primitives

Symbolic solver: complex theorems

(a) (b)

(c) (d)

Figure 5.4: Examples of failure cases encountered by Inter-GPS on the Geometry3K dataset.

diagram parsing tends to fail if there are ambiguous annotations or multiple primitives in the dia-

gram. It is difficult for the text parser to handle nested expressions and uncertain references. And

the symbolic solver is still not capable of solving complex problems with combined shapes and

shaded areas in the diagrams.

Interpretability in Inter-GPS. Inter-GPS provides an interpretable symbolic solver for geometry

problem solving. First, Inter-GPS parses the problem contents into a structural representation of

formal language. Second, Inter-GPS performs symbolic reasoning to update the geometric relation

set explicitly. Last, Inter-GPS applies reasonable theorems sequentially in the search process.

5.7 Conclusion

Solving geometry problems is one of the most challenging tasks in math question answering. We

propose a large-scale benchmark, Geometry3K, which consists of 3,002 high-school geometry

problems with dense descriptions in formal language. We further propose a novel geometry solving

approach, Interpretable Geometry Problem Solver (Inter-GPS), which parses the problem as formal

language from an automatic parser and performs symbolic reasoning over the theorem knowledge
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base to infer the answer. Also, a theorem predictor with a low-first search strategy is designed

to generate the reasonable theorem application sequence. Experiment results show that Inter-GPS

outperforms existing state-of-the-art methods by a large margin.

5.8 Appendix: Gemetric Formal Language

We define 91 predicates and their corresponding literal templates in the geometry language do-

main. For development, these predicates are categorized into six groups: geometric shapes (Ta-

ble 5.7), unary geometric attributes (Table 5.8), general geometric attributes (Table 5.9), binary

geometric relations (Table 5.10), A-IsXOf-B-type geometric relations (Table 5.11), as well as nu-

merical attributes and relations (Table 5.12). Moreover, $ in the literal templates denotes the

undetermined shape.

# Predicates Literal templates

1 Point Point(A), Point($)
2 Line Line(A,B), Line(m), Line($)
3 Angle Angle(A,B,C), Angle(A), Angle(1), Angle($)
4 Triangle Triangle(A,B,C), Triangle($), Triangle($1,$2,$3)
5 Quadrilateral Quadrilateral(A,B,C,D), Quadrilateral(1), Quadrilateral($)
6 Parallelogram Parallelogram(A,B,C,D), Parallelogram(1), Parallelogram($)
7 Square Square(A,B,C,D), Square(1), Square($)
8 Rectangle Rectangle(A,B,C,D), Rectangle(1), Rectangle($)
9 Rhombus Rhombus(A,B,C,D), Rhombus(1), Rhombus($)
10 Trapezoid Trapezoid(A,B,C,D), Trapezoid(1), Trapezoid($)
11 Kite Kite(A,B,C,D), Kite(1), Kite($)
12 Polygon Polygon($)
13 Pentagon Pentagon(A,B,C,D,E), Pentagon($)
14 Hexagon Hexagon(A,B,C,D,E,F), Hexagon($)
15 Heptagon Heptagon(A,B,C,D,E,F,G), Heptagon($)
16 Octagon Octagon(A,B,C,D,E,F,G,H), Octagon($)
17 Circle Circle(A), Circle(1), Circle($)
18 Arc Arc(A,B), Arc(A,B,C), Arc($)
19 Sector Sector(O,A,B), Sector($)
20 Shape Shape($)

Table 5.7: 20 predicates and corresponding literal templates for geometric shapes.
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# Predicates Literal templates

1 RightAngle RightAngle(Angle($))
2 Right Right(Triangle($))
3 Isosceles Isosceles(Polygon($))
4 Equilateral Equilateral(Polygon($))
5 Regular Regular(Polygon($))
6 Red Red(Shape($))
7 Blue Blue(Shape($))
8 Green Green(Shape($))
9 Shaded Shaded(Shape($))

Table 5.8: 9 predicates and corresponding literal templates for unary geometric attributes.

# Predicates Literal templates

1 AreaOf AreaOf(A)
2 PerimeterOf PerimeterOf(A)
3 RadiusOf RadiusOf(A)
4 DiameterOf DiameterOf(A)
5 CircumferenceOf CircumferenceOf(A)
6 AltitudeOf AltitudeOf(A)
7 HypotenuseOf HypotenuseOf(A)
8 SideOf SideOf(A)
9 WidthOf WidthOf(A)
10 HeightOf HeightOf(A)
11 LegOf LegOf(A)
12 BaseOf BaseOf(A)
13 MedianOf MedianOf(A)
14 IntersectionOf IntersectionOf(A,B)
15 MeasureOf MeasureOf(A)
16 LengthOf LengthOf(A)
17 ScaleFactorOf ScaleFactorOf(A,B)

Table 5.9: 17 predicates and corresponding literal templates for general geometric attributes .

# Predicates Literal templates

1 PointLiesOnLine PointLiesOnLine(Point($),Line($1,$2))
2 PointLiesOnCircle PointLiesOnCircle(Point($),Circle($))
3 Parallel Parallel(Line($),Line($))
4 Perpendicular Perpendicular(Line($),Line($))
5 IntersectAt IntersectAt(Line($),Line($),Line($),Point($))
6 BisectsAngle BisectsAngle(Line($),Angle($))
7 Congruent Congruent(Polygon($),Polygon($))
8 Similar Similar(Polygon($),Polygon($))
9 Tangent Tangent(Line($),Circle($))
10 Secant Secant(Line($),Circle($))
11 CircumscribedTo CircumscribedTo(Shape($),Shape($))
12 InscribedIn InscribedIn(Shape($),Shape($))

Table 5.10: 12 predicates and corresponding literal templates for binary geometric relations.
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# Predicates Literal templates

1 IsMidpointOf IsMidpointOf(Point($),Line($))
2 IsCentroidOf IsCentroidOf(Point($),Shape($))
3 IsIncenterOf IsIncenterOf(Point($),Shape($))
4 IsRadiusOf IsRadiusOf(Line($),Circle($))
5 IsDiameterOf IsDiameterOf(Line($),Circle($))
6 IsMidsegmentOf IsMidsegmentOf(Line($),Triangle($))
7 IsChordOf IsChordOf(Line($),Circle($))
8 IsSideOf IsSideOf(Line($),Polygon($))
9 IsHypotenuseOf IsHypotenuseOf(Line($),Triangle($))
10 IsPerpendicularBisectorOf IsPerpendicularBisectorOf(Line($),Triangle($))
11 IsAltitudeOf IsAltitudeOf(Line($),Triangle($))
12 IsMedianOf IsMedianOf(Line($),Quadrilateral($))
13 IsBaseOf IsBaseOf(Line($),Quadrilateral($))
14 IsDiagonalOf IsDiagonalOf(Line($),Quadrilateral($))
15 IsLegOf IsLegOf(Line($),Trapezoid($))

Table 5.11: 15 predicates and corresponding literal templates for A-IsXOf-B-type geometric rela-
tions.

# Predicates Literal templates

1 SinOf SinOf(Var)
2 CosOf CosOf(Var)
3 TanOf TanOf(Var)
4 CotOf CotOf(Var)
5 HalfOf HalfOf(Var)
6 SquareOf SquareOf(Var)
7 SqrtOf SqrtOf(Var)
8 RatioOf RatioOf(Var), RatioOf(Var1,Var2)
9 SumOf SumOf(Var1,Var2,...)
10 AverageOf AverageOf(Var1,Var2,...)
11 Add Add(Var1,Var2,...)
12 Mul Mul(Var1,Var2,...)
13 Sub Sub(Var1,Var2,...)
14 Div Div(Var1,Var2,...)
15 Pow Pow(Var1,Var2)
16 Equals Equals(Var1,Var2)
17 Find Find(Var)
18 UseTheorem UseTheorem(A B C)

Table 5.12: 18 predicates and corresponding literal templates for numerical attributes and relations.
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CHAPTER 6

Automatic Demonstration Learning

6.1 Introduction

Large Language Models (LLMs) such as GPT-3 [BMR20] have demonstrated remarkable abili-

ties in in-context learning [WWS22b, WWS22a], where they can learn from the context of the

data presented to them. For example, given a task description and a few examples, an LLM can

be prompted to solve math word problems by following the provided chain-of-thought reasoning

process, which consists of intermediate reasoning steps leading to the final output.

However, the performance of LLMs in in-context learning can be highly unstable, as it depends

on the selection of context examples [ZWF21, LSZ22, LBM22], typically sourced from the training

data. Research has shown that performance can fluctuate widely under different permutations

of examples, ranging from random chance to perfect performance, indicating a high variance in

LLM’s accuracy. This instability is particularly evident in benchmarks like TabMWP [LQC23],

a mathematical reasoning dataset with tabular contexts, where problems are distributed across

multiple question types and diverse table layouts.

To address this challenge, we propose the task of automatic prompt learning, where the goal is

to select optimal examples from a set of candidates to use as the prompt, given a test query. For

instance, given a test query and five candidate examples, we aim to select the best two examples

to form the prompt for the LLM, such as GPT-3. Selecting good examples enables the LLM

predictions to be as stable and accurate as possible. However, the challenge lies in the vast search

space, determined by the number of permutations. For example, selecting a 4-shot prompt from

100 candidate examples would result in P 4
100 possibilities. Moreover, there is no ground truth

available for the selection of in-context examples.
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Figure 6.1: Overview of our proposed PromptPG approach, which learns to select high-performing
in-context examples via policy gradient by interacting with the GPT-3 API, without relying on any
manually designed heuristics.

To tackle this challenge, we propose PromptPG, a novel approach that learns to select in-

context examples from a small amount of training data via policy gradient for prompt learning.

As illustrated in Figure 6.1, an agent learns to find optimal in-context examples from a candidate

pool, aiming to maximize the prediction rewards on given training examples when interacting with

the GPT-3 environment. A policy network, built on top of the BERT language model [KT19]

with fixed parameters and a one-layer linear neural network with learnable parameters, defines

the strategy for selecting in-context examples given the current training example. The learnable

parameters are updated following the policy gradient strategy [SB98]. Unlike random selection

[WWS22b, WWS22a], brute-force search, or retrieval-based selection [LSZ22], PromptPG con-

structs the prompt dynamically given the candidate pool when interacting with the GPT-3 API.

We conduct extensive experiments with PromptPG and other baselines on TabMWP. We im-

plement two state-of-the-art methods as baselines: UnifiedQA [KMK20] for general question an-

swering and TAPEX [LCG22] for tabular question answering, both in pre-trained and fine-tuned

settings. Experimental results show that PromptPG achieves an overall accuracy of 68.23% on

TabMWP, surpassing previous methods by a large margin of up to 5.31%. Further analysis demon-

strates that PromptPG selects better in-context examples compared to a wide range of existing

selection strategies and significantly reduces prediction variance compared to random selection.
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The main contributions of our work are as follows: (a) We propose PromptPG, a novel approach

that learns the prompt dynamically via policy gradient to select in-context examples for few-shot

GPT-3. To the best of our knowledge, it is the first work that applies reinforcement learning

to select in-context examples for the few-shot GPT-3 model; (b) Experimental results show that

PromptPG achieves an improvement of up to 5.31% on TabMWP over existing methods, with

reduced selection instability compared to random selection.

6.2 Related Work

6.2.1 Prompt Learning for Language Models

Large pre-trained language models, such as GPT-3 [BMR20], have shown their remarkable ability

of few-shot learning on a wide range of downstream tasks [HGJ19, BMR20, MYZ22, LMX22].

Given a few in-context examples as demonstrations, GPT-3 can generalize to unseen test exam-

ples without parameter updating. For example, [WWS22b] randomly select different in-context

examples from the training set and formulate their corresponding prompt with a test sample. How-

ever, recent studies show that few-shot GPT-3 highly depends on the selection of in-context ex-

amples and could be unstable, varying from the near chance to near state-of-the-art performance

[ZWF21, LSZ22, LQY23]. To mitigate the volatility of selecting in-context examples, [LBM22]

propose retrieving relevant examples that are semantically similar to the test sample. Other pos-

sible strategies could be using brute-force permutation search or relying on manually designed

heuristics like choosing the most complex examples. Inspired by reinforcement learning’s ability

to search for an optimal action policy, we propose applying the policy gradient strategy [SB98] to

learn to select in-context examples more efficiently and stably without designing human-designed

heuristics.

6.2.2 Policy Gradient

Policy gradient is an approach to solving reinforcement learning problems that target modeling

and optimizing the policy directly. Many policy gradient algorithms have been proposed in the
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past decade [SLH14, LHP15, MBM16, SWD17, BHB18]. They have been proven effective in

areas like robotics [PS06] and chatbots [KBT16]. In recent work that focuses on aligning language

models with human values [OWJ22, QZL22, GMT22], policy gradient has been used to optimize

language models with rewards learned from human feedback and preference. To the best of our

knowledge, our PromptPG is the first work that proposes to select prompts dynamically for large

pre-trained language models in the mathematical reasoning field.

6.3 Dynamic Prompting via Policy Gradient

The in-context examples can be randomly [WWS22b, WWS22a] or retrieval-based selected [LSZ22]

from the training set. Recent research, however, has shown that few-shot GPT-3 can be highly

unstable across different selections of in-context examples and permutations of those examples

[ZWF21, LSZ22, LBM22]. This instability may be more severe on mathematical reasoning prob-

lems, where examples are more distinct because they include various question types and heteroge-

neous context formats. To alleviate this issue, we aim to propose a novel approach that can learn to

select performing in-context examples using a policy gradient strategy, without brute-force search-

ing or manually designed heuristics, as summarized in Algorithm 2.

Formally, given a TabMWP problem pi, we want the agent to find K in-context examples

ei = {e1i , e2i , ..., eKi } from a candidate pool Ecand, and generate the answer âi, maximizing a reward

ri = R(âi|pi). The in-context examples are selected according to a policy

eki ∼ πθ(ei|pi), eki ∈ Ecand, e
k
i are independent for k = {1, 2, ..., K}, (6.1)

where θ are the policy’s parameters. The answer is generated through: âi = GPT-3(ei, pi) using

the selected examples and the given problem as the input prompt. The reward is then computed by

evaluating the generated answer âi with respect to the ground truth answer ai:

ri = R(âi|pi) = EVAL(âi, ai), ri ∈ {−1, 1}. (6.2)

The function EVAL() returns a reward of 1 if the generated answer aligned with the label and −1
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otherwise. Our goal is to maximize the expected reward of the generated answer under the policy

Eei∼πθ(ei|pi)[R(GPT-3(ei, pi))]. We optimize the reward with respect to the parameters of the policy

network using the Policy Gradient method [SB98]. The expected reward cannot be computed in

closed form, so we compute an unbiased estimation with Monte Carlo Sampling,

Eei∼πθ(ei|pi) [R(GPT-3(ei, pi))] ≈
1

N

N∑
i=1

R(GPT-3(ei, pi)), ei ∼ πθ(ei|pi), (6.3)

where N is the size of each batch yielded from our training problem set Ptrain. In this work, we

experiment using the REINFORCE policy gradient algorithm [Wil92]:

∇Eei∼πθ(ei|pi) [R(GPT-3(ei, pi))] = Eei∼πθ(ei|pi)∇θ log(πθ(ei|pi))R(GPT-3(ei, pi))

≈ 1

N

N∑
i=1

∇θ log(πθ(ei|pi))R(GPT-3(ei, pi)), ei ∼ πθ(ei|pi).

(6.4)

Intuitively, if the predicted answer is correct, we update the policy so that the probability of se-

lecting the same prompts gets higher. Otherwise, we update the policy to reduce the probability of

selecting such less matched examples. The learning process is summarized in Algorithm 2 in the

appendix.

To get the contextualized representation of the given problem and candidate examples, we use

the BERT [KT19] [CLS] token representation as the problem encoding. We add a small linear

layer on top of the BERT final pooling layer. That allows our model to learn both the semantic

similarity that the pre-trained BERT model provides and the hidden logical similarity shared among

the math problems. During training, the parameters of BERT are fixed and only the appended linear

layer is updated, i.e., θ is composed of the learnable parameters W and b:

h(ei) = W(BERT(ei)) + b,

h(pi) = W(BERT(pi)) + b,

πθ(ei|pi) =
exp [h(ei) · h(pi)]∑

e′i∈Ecand
exp [h(e′i) · h(pi)]

.

(6.5)
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Algorithm 2 Dynamic Prompt Learning via Policy Gradient (PromptPG)
Input: Initial policy πθ0 , training example set Ptrain, candidate example set Ecand, # of training epochs N
Output: Learned policy πθ

1: function REINFORCE(πθ0 , Ptrain, Ecand, N )
2: Initialize policy network π with parameter θ0
3: for epoch = 1, 2, ..., N do
4: for Pbatch ∈ Ptrain do ▷ get a batch from the training set
5: Lbatch ← 0
6: for pi ∈ Pbatch do
7: Sample eki ∼ πθ(ei|pi), eki ∈ Ecand, k = {1, ...,K} ▷ K is # of in-context examples
8: âi ← GPT-3(e1i , ..., e

k
i , pi) ▷ âi is the GPT-3 generated answer

9: ri ← EVAL(âi, ai), ri ∈ {−1, 1} ▷ ai is the ground truth answer of pi
10: Lbatch ← Lbatch − ri · lnπθ(ei|pi)
11: end for
12: Optimize Lbatch wrt. θ
13: end for
14: end for
15: return πθ
16: end function

6.4 Experiments

6.4.1 Evaluation Task

We conduct extensive experiments with PromptPG and other baselines on TabMWP, a mathemat-

ical reasoning benchmark featuring tabular contexts. TabMWP includes diverse question types

and various tabular formats. Each question is annotated with a step-by-step solution, making it an

excellent benchmark for revealing performance fluctuations in LMs due to different selections of

few-shot examples, and for verifying the effectiveness of PromptPG in selecting optimal few-shot

examples from candidates.

A tabular math word problem p in TabMWP is represented as a pair (t, q), where t is a table

context and q is a question. The table t could be represented in a visual format as an image, semi-

structured text, or a structured database. In this work, we focus on the semi-structured format as

the table context for simplicity. The table t features complicated layouts and formats: it contains

multiple rows and columns, and each cell can be a string of text, a string of a number, or a mix

of them. Depending on the question and answer types, the question q may be accompanied by

multiple-choice options c = {c1, c2, . . . , cn} or a unit u. Given a semi-structured tabular context t
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and an unstructured question text q, the task is to generate the answer a, which is either numerical

only text for a free-text question, or a text span from given options for a multiple-choice question.

6.4.2 Evaluation Baselines

We first develop two large language models, UnifiedQA [KMK20] and TAPEX [LCG22], in both

pre-trained and fine-tuned settings, as strong baselines on TabMWP. Different model sizes are

included to examine the performance across different model capacities. We further implement the

zero-shot GPT-3 model, the few-shot GPT-3 model, and their chain-of-thought (CoT) reasoning

variants [WWS22b]. We also study the heuristic guess baseline and human performance to analyze

the lower and upper bounds on TabMWP, respectively.

Heuristics guess. To investigate the lower bound of the accuracy on TabMWP, we design

simple heuristics to guess answers for each question type. For multi-choice questions, we randomly

select one from the given options with even probabilities. For free-text questions on TabMWP, the

answers could only be integral or decimal numbers. Intuitively, we take advantage of regular

expressions to extract all the numbers from the tabular context and the question text as candidates,

and then randomly choose one number as the prediction.

UnifiedQA baselines. UnifiedQA [KMK20] is a T5-based [RSR20] QA system that was pre-

trained on 8 seed QA datasets of multiple formats but with a unified text-to-text paradigm. We

load the pre-trained checkpoint as the pre-trained baseline and train it on TabMWP as the fine-

tuned baseline. Three different parameter sizes are compared: SMALL (60M), BASE (220M), and

LARGE (770M).

TAPEX baselines. TAPEX [LCG22] is a BART-based [LLG20] language model pre-trained

on structured tabular data to mimic the behavior of a SQL executor that can answer table-based

questions. TAPEX shows state-of-the-art performance on four table-related datasets. We establish

the pre-trained and fine-tuned baselines on top of TAPEX with two model sizes: BASE (140M) and

LARGE (400M).

Zero-shot GPT-3 and zero-shot-CoT GPT-3. We establish the zero-shot baseline based on

GPT-3 [BMR20]. The zero-shot setup follows the format of TQ(C)→A where the input is the
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concatenation of tokens of the tabular context (T), the question text (Q), and choice options (C)

that apply while the output is to predict the answer (A). Following [KGR22], we further build

zero-shot-CoT GPT-3, which refers to the GPT-3 model with a chain-of-thought (CoT) prompt.

Specifically, we add the prompt “Let’s think step by step” at the end of the input to ask the model

to generate the multi-step solution (S) to mimic the reasoning process as humans. Then the model

takes the raw input and the newly generated solution to predict the final answer.

Few-shot GPT-3 and few-shot-CoT GPT-3. Inspired by the recent progress achieved by GPT-

3 in solving MWPs [WWS22b, WWS22a, KGR22], we evaluate TabMWP using GPT-3 models in

few-shot learning settings. Provided with a few in-context examples of math word problems as the

context, GPT-3 can generate the answer for a test problem and has shown impressive performance

across different MWP datasets [WWS22b, WWS22a].

We follow the standard prompting [WWS22b] where in-context examples are randomly se-

lected from the training data as demonstrations for the test example. Specifically, a few training

examples, along with the test example pi, are provided to GPT-3 for answer prediction. The prompt

template is TQ(C)→SA, where each training example consists of a table context t, a question q,

options c that apply, and an answer a. To generate the solution before the final answer, a solution s

can be augmented in front of the answer a to reveal the multi-step reasoning process, which is able

to boost the prediction performance [WWS22b]. To make the few-shot GPT-3 model workable on

TabMWP, we utilize the semi-structured format as the tabular context.

Human study. To examine how humans perform on our TabMWP dataset, we released the

human evaluation task on Amazon Mechanical Turk (AMT) to the test split. We designed two

sub-tasks for the human study: answering the free-text questions and answering the multi-choice

questions. The user interfaces for the two sub-tasks are shown in Figure 6.2. Each human intelli-

gence task (HIT) contains 5 exam questions and 15 test questions. A worker should have a HIT

Approval Rate of 98% or higher and be approved with 5,000 or more HITs. The worker is provided

with detailed instructions at the beginning and needs to pass at least 3 free-text exam questions or

4 multi-choice exam questions to be qualified for the human study. Each HIT is assigned to two

different workers. We assign a reward of $0.80 and $0.60 for one HIT of free-text and multi-choice

sub-tasks, respectively. The human study results are available in Table 6.1.
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Figure 6.2: User interfaces for the human study on the TabMWP dataset, showcasing the design
for both free-text and multi-choice question types.

6.4.3 Evaluation metric

The answer part is extracted from the GPT-3 generation using manually designed regular expres-

sions. To evaluate the baselines and our method, we utilize the accuracy metric to determine if

the generated answer is correct given the ground truth answer. For free-text problems where the

answer is set as a number, we normalize the prediction and the label to decimal numbers with

two-digit precision and check if their values are equivalent. For multi-choice problems, we choose

the most similar one from options to the generated answer following [KMK20].

6.4.4 Implementation details.

Fine-tuned UnifiedQA and TAPEX baselines are trained on the train split and evaluated on the

test split. Few-shot GPT-3 and few-shot-CoT GPT-3 randomly select two in-context examples

from the training data to build the prompt. Our PromptPG is built on top of few-shot GPT-3 with

a different selection strategy: (a) in the training stage, the agent learns to select two examples

from 20 candidates and is evaluated on 160 training examples to calculate the reward; (b) in the

test stage, the agent with an optimal policy chooses two examples from 20 candidates for each
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test example. The candidates are randomly selected from the training set. Experiments for two

few-shot GPT-3 baselines and our PromptPG are repeated three times, and the average accuracy is

reported in Table 6.1.

Our experiments for UnifiedQA baselines, TAPEX baselines, and our proposed PromptPG are

conducted using PyTorch on two Nvidia RTX 3090 GPUs. For fine-tuning the UnifiedQA and

TAPEX baselines, we use the Adam optimizer [KB14] with an initial learning rate of 5e−5. The

training process takes 10 epochs with a batch size of 16. The maximum number of input tokens is

set as 200 and the maximum output length is 100.

In our proposed PromptPG, the embedding size of the added linear neural network is 768. To

learn the policy network, we use the Adam optimizer with an initial learning rate of 1e−3. The

maximum number of training epochs is 30, with a batch size of 20. The training process is stopped

early if there is any NaN value in the loss for a batch of training data.

For the GPT-3 engine, we use TEXT-DAVINCI-002, the most capable engine recommended by

the official documentation. The temperature is set as 0 and the top probability is set as 1.0 to get

the most deterministic prediction. The maximum number of tokens allowed for generating text is

512. Both the frequency penalty and the presence penalty are set as the default value, i.e., 0.

6.4.5 Experimental Results

Table 6.1 demonstrates the results of different baselines and our method on the TabMWP dataset.

Benefiting from pre-training on the tabular corpus, the TAPEX baseline performs better on average

than UnifiedQA with a similar model size, which is only pre-trained on unstructured textual data.

Increasing the model size can improve the prediction accuracy for both UnifiedQA and TAPEX.

Fine-tuned on TabMWP, the baseline models can significantly improve the prediction performance

on the average and all aggregated accuracy metrics.

Without any examples provided to GPT-3, zero-shot GPT-3 achieves a comparable accuracy

to the best fine-tuned baselines, UnifiedQALARGE and TAPEXLARGE, showing its surprisingly good

generalization ability on TabMWP. Provided with two randomly sampled in-context examples as

the prompt, few-shot GPT-3 gets an improvement of 0.17%. Generating the multi-step solution
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Method
Training Selection

Question Types Answer Types Grades
Avg.Data Strategy FREE MC INT DEC EXTR BOOL OTH 1-6 7-8

Heuristic Baselines
Heuristic guess - - 6.71 39.81 8.37 0.26 30.80 51.22 26.67 17.55 12.27 15.29
Human performance - - 84.61 93.32 84.95 83.29 97.18 88.69 96.20 94.27 81.28 90.22
pre-trained Baselines
UnifiedQASMALL - - 1.18 43.62 1.37 0.43 38.70 49.78 37.14 15.57 7.65 12.18
UnifiedQABASE - - 4.60 43.02 5.28 1.97 37.08 50.11 38.10 17.14 11.11 14.56
UnifiedQALARGE - - 4.48 48.80 5.19 1.72 48.33 50.33 40.00 19.78 10.87 15.96
TAPEXBASE - - 7.32 39.76 8.68 2.06 35.06 47.11 20.95 18.67 11.81 15.73
TAPEXLARGE - - 8.80 46.59 10.62 1.72 46.91 48.11 30.48 22.65 13.18 18.59
fine-tuned Baselines
UnifiedQASMALL 23,059 - 22.27 51.31 27.27 2.83 52.28 48.11 69.52 35.85 21.71 29.79
UnifiedQABASE 23,059 - 34.02 70.68 40.74 7.90 84.09 55.67 73.33 53.31 30.46 43.52
UnifiedQALARGE 23,059 - 48.67 82.18 55.97 20.26 94.63 68.89 79.05 65.92 45.92 57.35
TAPEXBASE 23,059 - 39.59 73.09 46.85 11.33 84.19 61.33 69.52 56.70 37.02 48.27
TAPEXLARGE 23,059 - 51.00 80.02 59.92 16.31 95.34 64.00 73.33 67.11 47.07 58.52
Prompting Baselines w/ GPT-3
Zero-shot - - 53.57 66.67 55.55 45.84 78.22 55.44 54.29 63.37 48.41 56.96
Zero-shot-CoT - - 54.36 66.92 55.82 48.67 78.82 55.67 51.43 63.62 49.59 57.61
Few-shot (2-shot) 2 Random 54.69 64.11 58.36 40.40 75.95 52.41 53.02 63.10 49.16 57.13
Few-shot-CoT (2-shot) 2 Random 60.76 69.09 60.04 63.58 76.49 61.19 67.30 68.62 55.31 62.92
PromptPG w/ GPT-3 (Ours)
Few-shot-CoT (2-shot) 160+20 Dynamic 66.17 74.11 64.12 74.16 76.19 72.81 65.71 71.20 64.27 68.235.31↑

Table 6.1: Evaluation results of various baselines and our method on TabMWP.

before the answer, the few-shot-CoT GPT-3 model reports the best performance among all of these

baseline models, with an accuracy of 62.92%. Unlike few-shot-CoT GPT-3 randomly selecting the

in-context examples, our proposed PromptPG learns to select performing examples with the help

of policy gradient. PromptPG establishes a state-of-the-art performance on the TabMWP dataset:

it surpasses the best baseline few-shot-CoT GPT-3 by 5.31% on average. PromptPG shows its

consistent advantages on two question types, two grade groups, and most of the answer types.

Heuristic guess and human performance. The accuracy of multi-choice questions by heuris-

tic guess is 39.81%, which aligns with the fact that there are 2.88 options on average. The accuracy

for free-text questions is considerably low since the inputs of TabMWP problems do not have direct

clues for the answers. Humans outperform all benchmarks consistently across question types, an-

swer types, and grade groups, with a 21.99% average accuracy advantage over our best performing

PromptPG. This gap is to be filled by future research on semi-structured mathematical reasoning.
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Problem types and difficulty. Among all the baselines, we find it is easier for models to

answer multi-choice questions than free-text questions. Questions with the boolean (BOOL) and

other (OTH) answer types tend to have lower accuracy scores than the extractive (EXTR) answer

type, because the former ones need the abilities of fact verification and language understanding

on diverse options, respectively. It is also not surprising for us to find that all the models perform

worse on problems in grades 7-8 than in a lower-level group of 1-6.

6.4.6 Ablation Study

Here, we will study how different factors have an effect on the performances of baselines and our

method on TabMWP. Experiments are conducted on 1,000 development examples.

Blind study of the dataset. We evaluate the information gain of each component of the

TabMWP problems by removing it from model inputs. To eliminate the impact and variance

caused by example selection, the study is conducted using the zero-shot GPT-3 model. As shown

in Table 6.2, there is a dramatic decline when either the tabular context (T) or the question text

(Q) is missing from the inputs. For example, T→A and Q→A only attain an average accuracy

of 6.10% and 7.00%, respectively, and their accuracies are near to zero on the multi-choice ques-

tions. Taking both tabular and textual data as inputs (TQ→A), the model significantly beats the

heuristic guess. With the complete input information (TQ(C)→A), the full model achieves the best

performance. The blind study shows that our TabMWP is robust and reliable in distribution, and

all input components are indispensable parts that provide necessary information for answering the

questions.

Model Format FREE MC INT DEC EXTR BOOL OTH 1-6 7-8 Avg.

Heuristic guess TQ(C)→A 7.31 40.36 9.20 0.00 34.44 47.32 50.00 17.99 13.96 16.40

Zero-shot GPT-3 T→A 8.28 0.36 10.24 0.67 0.66 0.00 0.00 9.41 1.02 6.10
Zero-shot GPT-3 Q→A 9.24 1.09 10.94 2.68 1.32 0.89 0.00 10.23 2.03 7.00
Zero-shot GPT-3 T(C)→A 8.28 41.82 10.24 0.67 36.42 50.89 25.00 23.60 8.12 17.50
Zero-shot GPT-3 Q(C)→A 9.10 33.09 10.94 2.01 25.17 44.64 25.00 21.29 7.11 15.70
Zero-shot GPT-3 TQ→A 55.31 68.36 56.60 50.34 79.47 54.46 58.33 66.34 47.46 58.90
Zero-shot GPT-3 (full model) TQ(C)→A 54.76 72.00 56.42 48.32 76.82 66.07 66.67 67.00 47.97 59.50

Table 6.2: Blind studies on TabMWP. T: tabular context; Q: question; C: choice options; A: answer.
Q(C) means choice options follow the question in the input, while Q refers to the question only.
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(a) Accuracy w.r.t. different numbers of training
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(b) Accuracy w.r.t. different numbers of
candidates, given 80 and 160 training examples.

Figure 6.3: Accuracy of PromptPG with respect to different numbers of training and candidate
examples. Experiments are conducted on 1,000 development instances from TabMWP, with each
setting repeated using four random seeds to ensure robustness.

Number of training examples. We study the effect of different numbers of training examples

on our dynamic prompt learning in Figure 6.3 (a). With more training examples, the prediction

accuracy first gradually increases to a peak of around 160 training examples. After that, the ac-

curacy goes down with a growing variance. We reckon it is because the policy gradient algorithm

can benefit from the scaling-up training data but fails to exploit more examples efficiently.

Number of candidate examples. In Figure 6.3 (b), we investigate how different numbers of

candidate examples can affect policy learning performance. With the increasing candidate number,

it is observed that the prediction accuracy will first go up and then go down after a threshold, given

80 or 160 training examples. It is probably because when the candidate pool is too small, the policy

gradient algorithm has a limited action space to explore enough problem types. In contrast, too

many candidates could make the algorithm hard to learn an optimal policy in a large search space.

Different selection strategies. In Table 6.3, we compare the proposed PromptPG with ran-

dom selection and other heuristic-based example selection strategies for the few-shot-CoT GPT-3

model. Compared to random selection, selecting the same question or answer type of examples

helps the model to take the task-relevant examples as the prompt, thus improving the accuracy

and reducing the variance. Choosing the most complex examples does not boost the prediction

performance consistently. Manual selection selects the two examples from 20 with the highest
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Selection strategy Acc. (%)

Same question type 66.2 ± 0.60
Same answer type 67.9 ± 0.38
Same grade level 67.9 ± 1.87

Most complex (# of table cells) 64.0 ± 0.42
Most complex (# of ques. words) 68.2 ± 0.26

Random selection 65.2 ± 4.01
Manual selection (fixed w/ top 2) 66.9 ± 0.00
Nearest neighbor 68.2 ± 0.29

PromptPG (Ours) 70.9 ± 1.27

Table 6.3: Evaluation results of different selection strategies with three trials.

evaluation accuracy on one-shot-CoT GPT-3 as the fixed set of in-context examples. Although

it achieves the lowest prediction variance of 0, it only improves by 1.7% over random selection.

The most semantically similar examples, as a kind of nearest neighbor search of the test example,

help construct the performing and stable prompt for GPT-3. PromptPG shows its effectiveness in

selecting optimal in-context examples over other strategies and largely reduces the instability.

Number of few-shot examples. We study the few-shot-CoT GPT-3 model with random se-

lection in terms of the different numbers of in-context shots. For each number of in-context shots,

the experiment was conducted on 1,000 development examples and repeated three times. The re-

sults are shown in Table 6.4. When increasing the number of in-context shots from the current

2 to 4, the few-shot-CoT GPT-3 model reduces the prediction variance from the random selec-

tion of in-context shots and achieves an accuracy improvement of 2.5%. When the number of

in-context shots is increased to 5, the model with random selection does not gain further benefits.

Our PromptPG displays impressive advantages over random selection in terms of data efficiency

and prediction accuracy. With only two in-context shots, PromptPG achieves the highest accuracy

of 70.9% and a comparable low deviation compared to random selection with more shots.

6.4.7 Case Study

We conduct the case study of our proposed PromptPG. We visualize the two in-context examples

selected by strategies of our PromptPG, nearest neighbor search, and random selection, in Figure
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Model Selection strategy Shot number Acc. (%)

Few-shot-CoT GPT-3 Random selection 2 65.2 ± 4.01
Few-shot-CoT GPT-3 Random selection 3 65.7 ± 1.16
Few-shot-CoT GPT-3 Random selection 4 67.7 ± 0.78
Few-shot-CoT GPT-3 Random selection 5 67.5 ± 0.98
Few-shot-CoT GPT-3 PromptPG (ours) 2 70.9 ± 1.27

Table 6.4: Results of different numbers of few-shot examples on 1,000 development examples.

6.4, 6.5, and 6.6, respectively.

The nearest neighbor search strategy selects the “superficially” similar examples to the test

example. It selects the most similar candidates to the test query based on semantic similarity, such

as the BERT score of two sentences. For example, consider a test query asking, “How many more

children than parents are playing tag?” Nearest neighbor search might select an example with

similar wording like “How many children” in the question. However, despite the similar words,

these two questions involve different reasoning steps. Therefore, this retrieved few-shot example

does not effectively guide GPT-3 to generate the correct steps to answer the test question.

Instead, our PromptPG algorithm prefers examples that demonstrate multiple reasoning steps

and showcase similar mathematical reasoning abilities to the test example. Given the same test

query, our algorithm retrieves a different in-context example. The solution to this example first

analyzes the question and offers a general solution. It then writes an expression to calculate the

answer and finally concludes by providing the answer. With this example used as the prompt,

GPT-3 follows similar steps to solve the test example and outputs the correct answer.
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▷ In-context example 1 (ID: 28463)

Table:
Option | Change in phone price
Add an upgrade | $60
Buy a used phone | -$75

Option Change in phone price

Add an upgrade $60

Buy a used phone -$75

Employee \(|\) Pay period \(|\) \\
Dhruba Khanal \(|\) December 9-15 \(|\) \\
Total earnings \(|\) \(|\) $620.00 \\
Federal income tax \(|\) $71.14 \(|\) \\
State income tax \(|\) $48.90 \(|\) \\
Other taxes \(|\) $47.00 \(|\) \\
Total taxes \(|\) \(|\) ? \\
Pay after taxes \(|\) \(|\) ? \\

Question: Luna is looking at the price of new cell phones online. Her favorite company, OrangeTech, has a special this weekend.
Luna can add an upgrade to a phone for an additional cost, or she can buy a used phone to get a discount. The change in price for
each option is shown in the table. Which option results in a greater change in price?
Options: (A) adding an upgrade (B) buying a used phone
Answer:
(Step 1) To find the option that results in a greater change in price, use absolute value. Absolute value tells you how much the
price changes.
(Step 2) Add an upgrade: |$60| = $60
(Step 3) Buy a used phone: |-$75| = $75
(Step 4) Buying a used phone results in a greater change in price. It reduces the price by $75. The answer is buying a used phone.

▷ In-context example 2 (ID: 13974)

Table:
heart-shaped beads | $3/kilogram
rectangular beads | $2/kilogram
spherical beads | $2/kilogram
oval beads | $2/kilogram

heart-shaped beads $3/kilogram

rectangular beads $2/kilogram

spherical beads $2/kilogram

oval beads $2/kilogram

Question: Rebecca bought 2.5 kilograms of oval beads. How much did she spend? (Unit: $)
Answer:
(Step 1) Find the cost of the oval beads. Multiply the price per kilogram by the number of kilograms.
(Step 2) $2 × 2.5 = $5
(Step 3) She spent $5. The answer is 5.

▷ Test example (ID: 17417)

Table:
[TITLE]: Birthday party
Activity | Parents | Children
Singing | 14 | 20
Eating cake | 5 | 10
Jumping rope | 16 | 20
Swimming | 16 | 19
Playing tag | 4 | 9

Birthday party

Activity Parents Children

Singing 14 20

Eating cake 5 10

Jumping rope 16 20

Swimming 16 19

Playing tag 4 9

Birthday party

Activity | Parents | Children

Singing | 14 | 20
Eating cake | 5 | 10
Jumping rope | 16 | 20
Swimming | 16 | 19
Playing tag | 4 | 9

Question: At Josie’s birthday party, children and parents celebrated by participating in some activities. How many more children
than parents are playing tag? (Unit: children)
Answer:
(Step 1) To find the difference between the number of children and parents playing tag, subtract the number of parents from the
number of children.
(Step 2) 9 - 4 = 5
(Step 3) There are 5 more children than parents playing tag. The answer is 5.
Output: 5

Figure 6.4: Two in-context examples selected by PromptPG, the prompt, and the correct prediction.
The selected examples require similar abilities of mathematical reasoning to the test example.
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▷ In-context example 1 (ID: 18429)

Table:
[TITLE]: Children’s weights (lbs)
Stem | Leaf
1 | 7
2 | 4
3 |
4 |
5 | 2, 2, 8
6 | 6
7 | 1, 3
8 | 7, 8
9 | 0

Children’s weights (lbs)

Stem Leaf

1 7

2 4

3

4

5 2, 2, 8

6 6

7 1, 3

8 7, 8

9 0

[TITLE]: Children’s weights (lbs)
Stem | Leaf
1 | 7
2 | 4
3 |
4 |
5 | 2, 2, 8
6 | 6
7 | 1, 3
8 | 7, 8
9 | 0

Question: Dr. Thornton, a pediatrician, weighed all the children who recently visited her office. How many children weighed
exactly 52 pounds? (Unit: children)
Answer:
(Step 1) For the number 52, the stem is 5, and the leaf is 2. Find the row where the stem is 5. In that row, count all the leaves
equal to 2.
(Step 2) You counted 2 leaves, which are blue in the stem-and-leaf plot above.
(Step 3) 2 children weighed exactly 52 pounds. The answer is 2.

▷ In-context example 2 (ID: 18129)

Table:
whole wheat pancake mix | $1/lb
buttermilk pancake mix | $2/lb
chocolate chip pancake mix | $2/lb
blueberry pancake mix | $1/lb
plain pancake mix | $2/lb
raspberry pancake mix | $2/lb

whole wheat pancake mix $1 per lb

buttermilk pancake mix $2 per lb

chocolate chip pancake mix $2 per lb

blueberry pancake mix $1 per lb

plain pancake mix $2 per lb

raspberry pancake mix $2 per lb

whole wheat pancake mix | $1/lb
buttermilk pancake mix | $2/lb
chocolate chip pancake mix | $2/lb
blueberry pancake mix | $1/lb
plain pancake mix | $2/lb
raspberry pancake mix | $2/lb

Question: If Vince buys 3.4 pounds of buttermilk pancake mix, how much will he spend? (Unit: $)
Answer:
(Step 1) Find the cost of the buttermilk pancake mix. Multiply the price per pound by the number of pounds.
(Step 2) $2 × 3.4 = $6.80
(Step 3) He will spend $6.80. The answer is 6.80.

▷ Test example (ID: 17417)

Table:
[TITLE]: Birthday party
Activity | Parents | Children
Singing | 14 | 20
Eating cake | 5 | 10
Jumping rope | 16 | 20
Swimming | 16 | 19
Playing tag | 4 | 9

Birthday party

Activity Parents Children

Singing 14 20

Eating cake 5 10

Jumping rope 16 20

Swimming 16 19

Playing tag 4 9

Birthday party

Activity | Parents | Children

Singing | 14 | 20
Eating cake | 5 | 10
Jumping rope | 16 | 20
Swimming | 16 | 19
Playing tag | 4 | 9

Question: At Josie’s birthday party, children and parents celebrated by participating in some activities. How many more children
than parents are playing tag? (Unit: children)
Answer:
(Step 1) For the activity “Playing tag”, the stem is 4, and the leaf is 9. Find the row where the stem is 4. In that row, count all the
leaves equal to 9.
(Step 2) You counted 9 leaves, which are blue in the stem-and-leaf plot above. 9 children are playing tag. The answer is 9.
Output: 9
Ground truth: 5

Figure 6.5: In-context examples selected by nearest neighbor search, the prompt, and the incorrect
prediction. The selected examples are semantically similar to the test example.
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▷ In-context example 1 (ID: 13033)

Table:
[TITLE]: Watermelons harvested
Day | Number of watermelons
Wednesday | 59
Thursday | 51
Friday | 53
Saturday | 52

Watermelons harvested

 Day Number of watermelons

Wednesday 59

Thursday 51

Friday 53

Saturday 52

Question: A farmer recalled how many watermelons were harvested in the past 4 days. On which day were the most watermelons
harvested?
Options: (A) Wednesday (B) Thursday (C) Friday (D) Saturday
Answer:
(Step 1) Find the greatest number in the table. Remember to compare the numbers starting with the highest place value. The greatest
number is 59.
(Step 2) Now find the corresponding day. Wednesday corresponds to 59. The answer is Wednesday.

▷ In-context example 2 (ID: 32386)

Table:
[TITLE]: Basketball hoops
Park | Number of basketball hoops
Heron Park | 2
Kelly Park | 7
Westfield Park | 4
Pinehurst Park | 4
Linden Park | 3
Mooreland Park | 7
Crestview Park | 2
Riverfront Park | 4

Basketball hoops

Park Number of basketball hoops

Heron Park 2

Kelly Park 7

Westfield Park 4

Pinehurst Park 4

Linden Park 3

Mooreland Park 7

Crestview Park 2

Riverfront Park 4

Question: The parks department compared how many basketball hoops there are at each park. What is the mode of the numbers?
Answer:
(Step 1) Read the numbers from the table.
(Step 2) First, arrange the numbers from least to greatest: 2, 2, 3, 4, 4, 4, 7, 7.
(Step 3) Now count how many times each number appears.
(Step 4) 2 appears 2 times. 3 appears 1 time. 4 appears 3 times. 7 appears 2 times.
(Step 5) The number that appears most often is 4.
(Step 6) The mode is 4. The answer is 4.

▷ Test example (ID: 17417)

Table:
[TITLE]: Birthday party
Activity | Parents | Children
Singing | 14 | 20
Eating cake | 5 | 10
Jumping rope | 16 | 20
Swimming | 16 | 19
Playing tag | 4 | 9

Birthday party

Activity Parents Children

Singing 14 20

Eating cake 5 10

Jumping rope 16 20

Swimming 16 19

Playing tag 4 9

Birthday party

Activity | Parents | Children

Singing | 14 | 20
Eating cake | 5 | 10
Jumping rope | 16 | 20
Swimming | 16 | 19
Playing tag | 4 | 9

Question: At Josie’s birthday party, children and parents celebrated by participating in some activities. How many more children than
parents are playing tag? (Unit: children)
Answer:
(Step 1) Find the difference between the number of children and the number of parents for each activity.
(Step 2) For singing, the difference is 6.
(Step 3) For eating cake, the difference is 5.
(Step 4) For jumping rope, the difference is 4.
(Step 5) For swimming, the difference is 3.
(Step 6) For playing tag, the difference is 5.
(Step 7) The greatest difference is 6. The answer is 6.
Output: 6
Ground truth: 5

Figure 6.6: Eandomly selected in-context examples, the prompt, and the incorrect prediction. The
selected examples have limited relevance to the test example,.
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CHAPTER 7

Tool-Augmented Compositional Reasoning

7.1 Introduction

Remarkable progress has been observed in recent large language models (LLMs) for various natu-

ral language processing tasks, with prominent examples such as GPT-3 [BMR20], PaLM [CND23],

LLaMA [ZHZ24], ChatGPT [Ope22], and the recently developed GPT-4 [Ope23a]. LLMs have

demonstrated emergent abilities, including in-context learning and chain-of-thought (CoT) reason-

ing [WTB22]. These models are capable of solving diverse tasks in a zero-shot fashion [KGR22]

or with the aid of a few examples [WWS22b], and they show great potential in planning and

decision-making akin to human beings [HXX23, HAP22]. Despite these capabilities, LLMs face

inherent limitations, such as an inability to access up-to-date information [KSW22], perform pre-

cise mathematical reasoning [PBG21, LQY23], or utilize specialized models [SDD23]. Therefore,

enhancing current LLMs with the capability to automatically compose external tools for real-world

task solving is critical to address these drawbacks.

Consider the example ② in Figure 7.1: Which is the main persuasive appeal used in this ad?.

To answer this question, one needs to: 1) infer that there is an ad image containing text context and

call a text decoder to understand the semantics; 2) retrieve background knowledge about persuasive

appeals and the differences among three persuasive appeals; 3) generate a solution based on the

input query and intermediate results from previous steps; and 4) finally produce the answer in

a task-specific format. On the other hand, when answering Which animal’s skin is adapted for

survival in cold places (③), one might need to call modules such as an image captioner to decipher

image information and a web search engine to retrieve domain knowledge to understand scientific

terminologies. However, current tool-augmented LLMs still face challenges when addressing these
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Answer Generator

- The question is about identifying the main persuasive appeal used in an advertisement. 
- There are three main types of persuasive appeals: ethos, pathos, and logos. 
- Ethos is an appeal to the speaker's or writer's credibility, character, or authority. 
- Pathos is an appeal to the audience's emotions, feelings, or sympathies. 
- Logos is an appeal to logic, reason, or rationality, using facts, statistics, or arguments. 

[194, 21]: Earthzy paper
[244, 70]: plates now
[172, 112]: carry the Sierra
[231, 159]: Club seal of
[275, 198]: approval

Analyze the advertisement to determine which persuasive appeal is used. The 
ad mentions that Earthzy paper plates carry the Sierra Club seal of approval. 
This implies that the product is environmentally friendly and has been endorsed 
by a reputable organization. This appeal is primarily based on the credibility 
and authority of the Sierra Club, which is an example of ethos (character).

Bing Search Solution GeneratorQuery Generator

Which is the main persuasive 
appeal used in this ad?

(A) pathos (emotion)
(B) ethos (character)
(C) logos (reason)

ethos (character)

What is the direction of this push?
(A) away from the baseball bat 
(B) toward the baseball bat

Image Captioner Knowledge Retrieval Answer GeneratorSolution Generator

Image Captioner

Answer GeneratorSolution GeneratorKnowledge RetrievalText Detector

Which animal’s skin is adapted 
for survival in cold places?
(A) Eurasian lynx 
(B) Thorny Devil

1 1

22

3 3

Figure 7.1: Examples of our Chameleon approach with GPT-4 on ScienceQA, a multi-modal ques-
tion answering benchmark in scientific domains. Chameleon adapts to different queries by syn-
thesizing programs that compose various tools and execute them sequentially to generate final
answers.

real-world queries across various scenarios. Most existing approaches are either limited to a small

number of tools [MFL22, CMW23, WLJ22, IDS23, PLS23, SDD23] or relying on domain-specific

tools [NHB21, YLW23b, GK23, WYQ23, SMV23], and thus are not easy to generalize to queries

of new domains. In this work, we study how to enable LLMs to synthesize programs to capture

the logic of composing heterogeneous tools.

To address the challenges of existing work, we introduce Chameleon, a plug-and-play compo-

sitional reasoning framework that leverages LLMs to synthesize programs and compose various

tools for a wide range of tasks. Unlike existing tool-augmented LLMs [SDD23, NHB21, YLW23b,

GK23, WYQ23, SMV23], Chameleon uses a richer set of tools, including LLMs, off-the-shelf vi-

sion models, web search engines, Python functions, and heuristics-based modules. Moreover,

Chameleon leverages the in-context learning capabilities of LLMs and builds on an LLM as a

natural language planner, without requiring any training or carefully curated rules. Prompted

by tool descriptions and usage examples, the planner infers a program composed of a sequence

of tools to execute in order to generate the final response for a user query. Instead of gener-

ating programs in domain-specific languages [NHB21, SMV23, GK23], Chameleon generates

natural-language-like (NL) programs (e.g., [Text Detector, Knowledge Retrieval,

Solution Generator, Answer Generator] for the second query in Figure 7.1). The
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NL-like programs are easy to understand and debug by users with limited programming experi-

ence, and easily extendable to new modules. During each module’s execution, the module pro-

cesses the query and cached context, returns a result determined by the module itself, and updates

the query and context for subsequent execution. Composing modules as a sequential program

allows subsequent modules to leverage prior cached context and updated queries.

We showcase the adaptability and effectiveness of Chameleon on the ScienceQA [LMX22] and

TabMWP [LQC23] tasks. ScienceQA is a multi-modal question answering benchmark spanning

multiple context formats and various scientific topics, while TabMWP is a mathematical bench-

mark involving diverse tabular contexts. These two benchmarks serve as a good testbed to eval-

uate Chameleon’s ability to coordinate diverse tools across different types and domains. Notably,

Chameleon with GPT-4 achieves an 86.54% accuracy on ScienceQA, significantly improving upon

the best published few-shot model by 11.37%. On TabMWP, using GPT-4 as the underlying LLM,

Chameleon achieves an improvement of 7.97% over chain-of-thought (CoT) prompted GPT-4

[WWS22b] and a 17.0% increase over the best-published model [CMW23], lifting the state of

the art to 98.78%. Further studies suggest that using GPT-4 as a planner exhibits more consistent

and rational tool selection and is able to infer potential constraints given the instructions, compared

to other LLMs like ChatGPT.

Our contributions are as follows: (1) We develop a plug-and-play compositional reasoning

framework, Chameleon, that effectively composes external tools to address inherent limitations of

LLMs and tackle a broad range of reasoning tasks. (2) Relying on an LLM as a natural language

planner to generate programs, Chameleon successfully integrates various tools, including LLMs,

off-the-shelf vision models, web search engines, Python functions, and rule-based modules, to

build a versatile and adaptable AI system capable of answering real-world queries. (3) We demon-

strate Chameleon’s effectiveness on two challenging benchmarks, significantly surpassing the state

of the art.
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7.2 Related Work

Compositional reasoning. Neural modular and compositional approaches have been explored to

automatically perform desired sub-task decomposition, enhancing interpretability and adaptability

across various reasoning tasks. Early work [ARD16a, ARD16b] posits that complex reasoning

tasks are fundamentally compositional and proposes neural module networks (NMN) to decom-

pose them into subtasks. However, these methods rely on brittle off-the-shelf parsers and are

limited by module configurations. Some later work [JHV17, HAR17, HAD18, KKR21], takes

a step further by predicting instance-specific network layouts in an end-to-end manner, without

relying on parsers, using reinforcement learning [Wil92] and weak supervised learning.

In visual reasoning, models comprising a program generator and an execution engine have

been proposed to combine deep representation learning and symbolic program execution [JHV17,

YWG18]. In the domain of mathematical reasoning, an interpretable solver has been developed to

incorporate theorem knowledge as conditional rules and perform symbolic reasoning step by step

[LGJ21]. Our work takes inspiration from neural module networks, yet it offers several distinct

advantages. First, Chameleon does not require expensive supervision of task-specific programs for

modeling training. Instead, it generates sequential programs, consisting of modules, that are easy

to generalize to various domains and tasks, allowing the extension to new modules in a plug-and-

play manner. Second, Chameleon does not require any training, but uses the in-context learning

capabilities of LLMs to generate programs prompted by natural language instruction and demon-

strations.

Tool-augmented LLMs. In recent years, the development of large language models (LLMs)

[SFA22, CND23, CHL24, TLI23, BMR20, Ope22, Ope23a] has made tremendous progress and

has stimulated research in prompt learning [WWS22b, LQC23, KTF23] and instruction learning

[TLI23, ZHZ24, PLH23, GHZ23]. Despite the impressive performance of LLMs, they suffer from

inherent limitations, such as the inability to access up-to-date information [KSW22], utilize exter-

nal tools [SDD23], or perform precise mathematical reasoning [PBG21, LQY23]. Recent bench-

marks, such as ScienceQA and TabMWP [LMX22, LQC23, CYK23, CYK24, SHZ24, LBX24],
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Model
Tool Use Skill Dimension Inference & Extension

Size Image Web Know. Math Table Composition Planning Plug-n-Play

CoT [WWS22b] 1 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
Lila [MFL22] 1 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
PoT [CMW23] 2 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
Code4Struct [WLJ22] 1 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
PAL [GMZ23] 2 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
MathPrompter [IDS23] 2 ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

ART [PLS23] 4 ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓
Toolformer [SDD23] 5 ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ natural lang. ✗
WebGPT [NHB21] 10 ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ program ✗

MM-ReAct [YLW23b] 10 ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ word match ✓
Visual ChatGPT [WYQ23] 10+ ✓ - - ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ natural lang. ✓
ViperGPT [SMV23] 10+ ✓ - - ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ program ✓
VisProg [GK23] 10+ ✓ - - ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ program ✓
HuggingGPT [SST23] 10+ ✓ ✓ ✗ ✗ ✗ ✓ ✗ - ✗ - ✓ natural lang. ✓

Chameleon (ours) 10+ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ natural lang. ✓

Table 7.1: A comparison of work that augments large language models with tool usage.

have emerged to evaluate the capability of LLMs to tackle intricate reasoning challenges, espe-

cially those emphasizing the use of external tools. Concurrently, there has been a growing interest

in harnessing external tools and modular approaches to augment LLMs. These augmented LLMs

can access real-time information aided by web search engines [NHB21] and leverage domain-

specific knowledge from external resources [YIW23]. Some work leverages the Python interpreter

to generate complex programs to employ powerful computational resources, and execute logical

reasoning tasks more effectively [WLJ22, GMZ23, CMW23, MFL22, IDS23, PLS23, LLC23].

For example, Toolformer [SDD23] constructs tool-use augmented data to train language models to

select five tools. In the realm of visual tools, various approaches have been proposed to enhance

the capabilities of large language models in handling visual tasks [YLW23b, WYQ23, SMV23,

GK23, SST23], augmented with Hugging Face models [SST23], Azure models [YLW23b], visual

foundation models [WYQ23].

We compare Chameleon with other tool-augmented language models in Table 7.1. Many of

these approaches are either constrained to a small set of tools or limited to task-specific tools,

which reduces their capabilities across various skill dimensions and hampers their generalizability

to new tasks. A recent line of work relies on large amounts of supervision [SDD23, KSW22] and

focuses on generating commands [NHB21] and programs [SMV23, GK23] to infer the choice of

tools. However, this approach needs to carefully tailored prompts to specific tasks and particular
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tools, and is neither flexible nor adaptive. In contrast, Chameleon instructs LLMs with natural

language instructions that simply describe the roles of each module and provide a few calling

examples, eliminating the need for additional training or tool-specific prompts when learning to

compose different tools. More importantly, Chameleon offers users flexibility in terms of tool types

and sources, updating the underlying LLMs, adding new tools, and adapting to new tasks. Our

work shares the same spirit of AutoGPT [Ric23], an autonomous GPT-4 agent with the artificial

general intelligence (AGI) ambition to incorporate numerous tools to achieve user-defined goals.

While AutoGPT is still under development, our work is the first to instantiate the idea and verify

its effectiveness on well-studied benchmarks.

7.3 General Framework: Chameleon

To address the limitations of current LLMs in utilizing diverse tools, we propose Chameleon, a

novel plug-and-play compositional reasoning framework, synthesizing the composition of various

tools to accommodate a wide range of problems. Chameleon is comprised of a module inven-

tory that defines different types of tools and an LLM-based planner, whose purpose is to de-

compose the original problem into sub-tasks that can be effectively solved by task-specific tools.

Unlike existing tool-augmented LLM approaches [SDD23, GK23, WYQ23, SST23], our mod-

ule inventory features multiple tool types as illustrated in Table 7.2, enabling Chameleon to ex-

hibit various reasoning abilities, including image understanding, knowledge retrieval, web search,

complex mathematical reasoning, and table understanding. Instead of generating domain-specific

programs [NHB21, GK23, SMV23], Chameleon employs an LLM-based planner to create natural-

language-like programs that follow natural language instructions, which is less error-prone, easily

expandable to new modules, and user-friendly.

We formalize our planner as follows: given the input query x0, the module inventory M,

and constraints G, the natural language planner P selects a set of modules that can be executed

sequentially to answer the query via generating a program in a natural-language-like format. The

module inventoryM consists of a set of pre-built modules: {Mi}, each corresponding to a tool of

various types (Table 7.2). G are the constraints for the plan generation, for example, the concurrent
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relations and sequence orders of modules. In our work, the planner P is an LLM prompted to

generate a sequence of module names in a few-shot setup. The planner is prompted in natural

language with a planning task instruction I, the descriptions of modules inM with corresponding

constraints G, as well as a few demonstration examples D. A T -length plan sampled from P can

be denoted as p = M1, . . . ,MT , where M t represents an the t-th element in the generated plan

and M t ∈ M. Formally, given an input query (problem statement) x0, a plan p is generated as

follows:

p← P(x0; I,M,G,D). (7.1)

Given the generated plan, the corresponding modules for each step are then executed sequentially.

The plan is a natural-language program where each module is bound simply via string matching.

When evaluating the module M t at time step t, the output of the execution yt is calculated by:

yt ←M t(xt−1; ct−1), (7.2)

where xt−1 is the input for the current module M t, and ct−1 is the cached information (e.g., image

semantics, retrieved knowledge, generated programs) resulting from the execution history of mod-

ules. Both the problem input xt and cache ct for the next module M t+1 are updated, respectively,

by:

xt ← update input(xt−1, yt), (7.3)

ct ← update cache(ct−1, yt). (7.4)

The update input and update cache functions are hand-designed for each Mi. Specifically,

update input is applied to elements in the input query, including the question, table context,

and image. These elements are updated after module execution. update cache corresponds to

the generation of new information, such as a description for the input image or retrieved knowledge

from external resources. Finally, the response r to the query is generated by the last module MT :

r = yT ←MT (xT−1; cT−1). (7.5)
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Tool Types Tools

OpenAI

Knowledge Retrieval, Query Generator,
Row Lookup, Column Lookup,
Table Verbalizer, Program Generator,
Solution Generator

Hugging Face Image Captioner

Github Text Detector 

Web Search Bing Search

Python Program Verifier, Program Executor

Rule-based Answer Generator

Table 7.2: Different tools in our module inventory.

7.4 Applications of Chameleon

We demonstrate the applications of Chameleon on two challenging tasks: ScienceQA [LMX22]

(Section 7.4.2) and TabMWP [LQC23] (Section 7.4.3), using the module inventory introduced in

Section 7.4.1.

7.4.1 Module Inventory

To accommodate various reasoning capabilities over a diverse range of queries, our system utilizes

a rich module inventory of various external tools. We provide a high-level overview of this inven-

tory here, with detailed implementations in specific experiments. The complete module inventory,

M, is presented in Table 7.2. Each tool within the inventory is defined as follows:

Knowledge Retrieval: This module retrieves additional background knowledge crucial for

tackling complex problems. It is especially beneficial for specialized domains like science and

mathematics, providing context for the task. For example, if a query is about a tax form table, this

module could generate knowledge about tax procedures, offering valuable context.

Bing Search: Like “Knowledge Retrieval”, the “Bing Search” module aims to provide wide-

ranging task-relevant knowledge. In contrast, it excels when broader or up-to-date information

from multiple sources is required. Using the search engine API, this module returns relevant

search results based on the input query, which are then parsed and used by subsequent modules to

gather richer context information from diverse sources, enhancing problem-solving effectiveness.
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Query Generator: Since the original problem typically lacks a tailored query for retrieving

task-relevant information, this module creates search engine queries based on the problem, which

are then used by the “Bing Search” module. Mostly, it is a good strategy to use the “Query Gen-

erator” module before the “Bing Search”. Coupled with the search engine tool, generating more

targeted queries generally facilitates both the recall and precision of retrieved information.

Image Captioner: Designed to generate captions for images, this module provides crucial

supplementary context for queries. It is particularly valuable when understanding an image seman-

tically, like identifying objects and interactions in a scene. Using pre-trained models, it translates

visual data into language, facilitating effective comprehension and reasoning about image content.

Text Detector: This module is designed to identify text within a given image. Typically, the

“Text Detector” is employed when a question requires the extraction of textual information from

images containing diagrams, charts, tables, maps, or other visual elements. By effectively detecting

text in various formats, this module aids in the analysis and understanding of image-based content.

Row Lookup: This module is crucial when queries involve tabular context, as locating relevant

cells is often required. Large tables can distract the system, so “Row Lookup” simplifies the table

by retaining only rows relevant to the query. If all rows are pertinent, it returns the original table.

Column Lookup: Like the “Row Lookup” module, “Column Lookup” addresses questions

involving tabular context by focusing on relevant columns. It simplifies the table by retaining only

pertinent columns, or returns the original table if all columns are relevant.

Table Verbalizer: Converting structured tables into text is likely to enhance the comprehension

of tabular information by various downstream modules as shown by [MCL22] for open-domain

question answering, making this module a vital part of our system. It translates tables into eas-

ily understandable descriptions for modules like “Program Generator” and “Solution Generator”,

particularly useful for small, domain-specific tables like stem-and-leaf plots or function tables.

Program Generator: Program-aided approaches are shown to enhance the logical and math-

ematical reasoning abilities of LLMs [WLJ22, GMZ23, CMW23, MFL22, IDS23, PLS23]. The

“Program Generator” generates Python programs to solve queries effectively, which is particu-

larly beneficial for queries requiring complex computations or intricate logical operations, such as
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“if-else” statements.

Program Verifier: Recent studies highlight the importance of verification to reduce halluci-

nation [PGH23, MTG24]. Hence, “Program Verifier” ensures the validity and error-free nature of

programs generated by “Program Generator”. It checks for syntax and logical errors, and potential

execution issues, enhancing the reliability and accuracy of the solutions.

Program Executor: This module executes the program generated by “Program Generator” and

produces the result, bridging the gap between program generation and final solution derivation.

Solution Generator: This module generates a detailed solution to the input query using all

the cached information. Employing a chain-of-thought prompting approach [WWS22b], it ensures

coherent and well-structured responses. The planner can directly employ this module instead of

other functional modules if it can solve the query independently, especially for simpler ones.

Answer Generator: This task-specific module uses a rule-based approach to extract and nor-

malize answers from the results of the “Program Executor” or “Solution Generator”. Unlike the

Solution Generator” that provides detailed multi-step solutions, “Answer Generator” serves as the

final module in the pipeline, providing concise and task-specific answers.

7.4.2 Science Question Answering

Science Question Answering (ScienceQA [LMX22]) is a diverse benchmark for multi-modal ques-

tion answering over a range of scientific topics and contexts. As examples illustrated in Figure 7.1,

answering these questions requires various tools and skills like image captioning, text detection,

knowledge retrieval, online resource search, and multi-clue visual reasoning. When generating

programs for using tools, we limit the search space to the relevant inventory subset (Table 7.3

in the appendix). Programs are deemed invalid and default to a “Solution Generator” and “An-

swer Generator” sequence if these are not the final two elements, following the chain-of-thought

prompting baseline [WWS22b]. See Table 7.8 in the appendix for the constructed natural lan-

guage planner prompt. The prompts for LLM-based modules like “Knowledge Retrieval”, “Query

Generator”, and “Solution Generator” are shown in Tables 7.10, 7.11, and 7.12, respectively, in

Appendix 7.7.
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7.4.3 Tabular Mathematical Reasoning

TabMWP [LQC23] is a mathematical reasoning task involving diverse tabular contexts like sched-

ules, prices, tax forms, plots, and function relations (Figure 7.8). It requires AI systems to un-

derstand various table formats and perform precise numerical or symbolic computations. Like

ScienceQA, we constrain the program search space to focus on two tool types: 1) those help-

ing LLMs better digest tabular information (e.g., “Row Lookup”, “Column Lookup”, and “Table

Verbalizer”) and 2) those performing faithful symbolic computations (e.g., “Program Generator”,

“Program Verifier”, and “Program Executor”) as listed in Table 7.3. The generated programs must

meet certain constraints, such as including “Answer Generator” and placing “Program Generator”

prior to both “Program Verifier” and “Program Executor”. Non-compliant programs default to a

sequence of “Program Generator”, “Program Verifier”, “Program Executor”, and “Answer Genera-

tor”, aligning with the program-of-thought prompting baseline [CMW23] with added verification.

7.5 Experiments

The effectiveness and adaptability of Chameleon are evaluated on two complex reasoning tasks,

ScienceQA [LMX22] and TabMWP [LQC23].

7.5.1 Experimental Details

Tool Types Tools used on ScienceQA Tools used on TabMWP

OpenAI
Knowledge Retrieval, Query 
Generator, Solution Generator

Knowledge Retrieval, Row Lookup, Column Lookup,
Table Verbalizer, Program Generator, Solution Generator

Hugging Face Image Captioner

Github Text Detector 

Web Search Bing Search

Python Program Verifier, Program Executor

Rule-based Answer Generator Answer Generator

Table 7.3: Tools used on ScienceQA and TabMWP. Reusable tools are marked in green.
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Planner implementations. We use the gpt-3.5-turbo engine for ChatGPT and the gpt-4

engine for GPT-4 when constructing the LLM-based planner. The maximum length for gener-

ated programs is set to 128, and the temperature is set to 0 for the most deterministic generation.

The planner prompts for the ScienceQA and TabMWP are illustrated in Table 7.8 and Table 7.9,

respectively.

Module implementations for ScienceQA. By default, the LLM-based models use four in-context

examples as demonstrations, have a temperature setting of 0, and allow a maximum of 512 tokens

for completion. Additional specific implementation details are provided as follows:

• Knowledge Retrieval: The prompt consists of 3 demonstration examples and the template is

shown in Table 7.10.

• Query Generator: The prompt template is shown in Table 7.11. The maximum number of

tokens for completion is set as 64.

• Solution Generator: The prompt consists of 2 demonstration examples and the template is

shown in Table 7.12.

• Image Captioner: We use the captioning model1 to generate textual descriptions for input

images. The maximum length of generated captions is set to 16, the number of beams is 4, and

the maximum number of output tokens is 512.

• Text Detector: This module is based on the github model2 to extract the text contents with

coordinates in the image.

• Bing Search: This module calls the Bing Search API3 and returns the top three responses for

the text query.

• Answer Generator: This module extracts the answer snippet from the result provided by the

“Solution Generator” and selects the most similar option from the given choices.

Module implementations for TabMWP. Similar to ScienceQA, the LLM-based modules by

default use four in-context examples as demonstrations, have a temperature setting of 0, and allow

1https://huggingface.co/nlpconnect/vit-gpt2-image-captioning

2https://github.com/JaidedAI/EasyOCR

3https://www.microsoft.com/bing
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a maximum of 512 tokens for completion. Additional implementation details are provided as

follows:

• Knowledge Retrieval: The prompt consists of 5 demonstration examples and the template is

shown in Table 7.13.

• Row Lookup: It is enabled only when there are more than three rows and 18 table cells,

in order to accelerate inference. The prompt consists of 7 demonstration examples and the

template is shown in Table 7.14. The maximum number of tokens for completion is set as 256.

• Column Lookup: Similarly, this module is enabled with two or more columns and 18 or more

table cells. The prompt consists of 6 demonstration examples and the template is shown in

Table 7.15. The maximum number of tokens for completion is set as 256.

• Table Verbalizer: The prompt consists of 7 demonstration examples and the template is shown

in Table 7.16.

• Program Generator: The prompt template is shown in Table 7.17. The maximum number of

tokens for completion is set as 256.

• Solution Generator: The prompt consists of 16 demonstration examples and the template is

shown in Table 7.18.

• Answer Generator: It is used to normalize answers with two-place precision for questions

with numerical answers and select the most similar option for multiple-choice questions.

Implementations of update input and update cache. update input is triggered by

the execution of specific tools, like ‘Row Lookup’, which alter or replace elements in the input to

reflect the updated state. Tools such as ‘Image Captioner’, ‘Text Detector’, ‘Knowledge Retrieval’,

‘Web Search’, and ‘Program Generation’ generate new elements. update cache stores these

new elements in the cache, making them accessible for later tools’ execution.

7.5.2 Experimental Results

ScienceQA. Table 7.4 presents the results of existing baselines and our approach Chameleon,

with key results highlighted in Figure 7.2 (a). We report the number of tuned parameters for this

task and the overall accuracy, along with accuracy scores for different question types, including
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Model #Tuned
Params ALL NAT SOC LAN TXT IMG NO G1-6 G7-12

Heuristic baselines
Random Choice [LMX22] - 39.83 40.28 46.13 29.25 47.45 40.08 33.66 39.35 40.67
Human [LMX22] - 88.40 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42
Fine-tuned models
MCAN [YYC19] 95M 54.54 56.08 46.23 58.09 59.43 51.17 55.40 51.65 59.72
Top-Down [AHB18] 70M 59.02 59.50 54.33 61.82 62.90 54.88 59.79 57.27 62.16
BAN [KJZ18] 112M 59.37 60.88 46.57 66.64 62.61 52.60 65.51 56.83 63.94
DFAF [GJY19] 74M 60.72 64.03 48.82 63.55 65.88 54.49 64.11 57.12 67.17
ViLT [KSK21] 113M 61.14 60.48 63.89 60.27 63.20 61.38 57.00 60.72 61.90
Patch-TRM [LQC21] 90M 61.42 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50
VisualBERT [LYY19, LYY20] 111M 61.87 59.33 69.18 61.18 62.71 62.17 58.54 62.96 59.92
UnifiedQA [KMK20] 223M 70.12 68.16 69.18 74.91 63.78 61.38 77.84 72.98 65.00
UnifiedQA CoT [LMX22] 223M 74.11 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82
MM-COTT [ZZL23] 223M 70.53 71.09 70.75 69.18 71.16 65.84 71.57 71.00 69.68
MM-COT [ZZL23] 223M 84.91 87.52 77.17 85.82 87.88 82.90 86.83 84.65 85.37
MM-COTLarge [ZZL23] 738M 91.68 95.91 82.00 90.82 95.26 88.80 92.89 92.44 90.31
LLaMA-AdapterT [ZHZ24] 1.2M 78.31 79.00 73.79 80.55 78.30 70.35 83.14 79.77 75.68
LLaMA-Adapter [ZHZ24] 1.8M 85.19 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05
Few-shot GPT-3
GPT-3 [BMR20] 0M 74.04 75.04 66.59 78.00 74.24 65.74 79.58 76.36 69.87
GPT-3 CoT [LMX22] 0M 75.17 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68

Published results (Above) ▲

Few-shot ChatGPT
ChatGPT CoT 0M 78.31 78.82 70.98 83.18 77.37 67.92 86.13 80.72 74.03
Chameleon (ChatGPT) 0M 79.93 81.62 70.64 84.00 79.77 70.80 86.62 81.86 76.53
Few-shot GPT-4
GPT-4 CoT 0M 83.99 85.48 72.44 90.27 82.65 71.49 92.89 86.66 79.04
Chameleon (GPT-4) 0M 86.54 89.83 74.13 89.82 88.27 77.64 92.13 88.03 83.72

Table 7.4: QA accuracy (%) on the test set of ScienceQA.

natural, social, and language sciences, text, image, and no context, as well as grades 1-6 and 7-

12. The highest scores among models in each section and overall are highlighted in blue and red,

respectively, and the results of our best model are marked in bold.

Employing ChatGPT [Ope22] as the base LLM, Chameleon achieves a 79.93% accuracy,

a 1.62% improvement over Chain-of-Thought (CoT) [WWS22b] prompted ChatGPT. Notably,

Chameleon is a generalized form of CoT, where the generated program is a sequence of “Solu-

tion Generator” and “Answer Generator”. Chameleon benefits from additional tool usage, such as

“Knowledge Retrieval”, “Bing Search”, “Image Captioner”, and “Text Detector”. When built upon

GPT-4 [Ope23a], our model attains an accuracy of 86.54%, outperforming GPT-4 CoT [LMX22]
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Model #Tuned
Params ALL FREE MC INT DEC EXTR BOOL OTH G1-6 G7-8

Heuristic baselines
Heuristic guess - 15.29 6.71 39.81 8.37 0.26 30.80 51.22 26.67 17.55 12.27
Human performance - 90.22 84.61 93.32 84.95 83.29 97.18 88.69 96.20 94.27 81.28
Fine-tuned models
UnifiedQASMALL [KMK20] 41M 29.79 22.27 51.31 27.27 2.83 52.28 48.11 69.52 35.85 21.71
UnifiedQABASE [KMK20] 223M 43.52 34.02 70.68 40.74 7.90 84.09 55.67 73.33 53.31 30.46
UnifiedQALARGE [KMK20] 738M 57.35 48.67 82.18 55.97 20.26 94.63 68.89 79.05 65.92 45.92
TAPEXBASE [LCG22] 139M 48.27 39.59 73.09 46.85 11.33 84.19 61.33 69.52 56.70 37.02
TAPEXLARGE [LCG22] 406M 58.52 51.00 80.02 59.92 16.31 95.34 64.00 73.33 67.11 47.07
Zero-shot GPT-3
GPT-3 [BMR20] 0M 56.96 53.57 66.67 55.55 45.84 78.22 55.44 54.29 63.37 48.41
GPT-3 CoT [WWS22b] 0M 57.61 54.36 66.92 55.82 48.67 78.82 55.67 51.43 63.62 49.59
Few-shot GPT-3
GPT-3 [BMR20] 0M 57.13 54.69 64.11 58.36 40.40 75.95 52.41 53.02 63.10 49.16
GPT-3 CoT [WWS22b] 0M 62.92 60.76 69.09 60.04 63.58 76.49 61.19 67.30 68.62 55.31
GPT-3 CoT-PromptPG [LQC23] 0M 68.23 66.17 74.11 64.12 74.16 76.19 72.81 65.71 71.20 64.27
Codex* [CTJ21] 0M 59.4 - - - - - - - - -
Codex PoT* [CMW23] 0M 73.2 - - - - - - - - -
Codex PoT-SC* [CMW23] 0M 81.8 - - - - - - - - -

Published results (Above) ▲

Few-shot ChatGPT
ChatGPT CoT 0M 82.03 78.43 92.32 75.38 90.30 92.30 92.89 87.62 83.06 80.66
ChatGPT PoT 0M 89.49 90.24 87.35 89.31 93.82 92.10 85.89 55.24 90.60 88.00
Chameleon (ChatGPT) 0M 93.28 93.13 93.72 92.71 94.76 91.29 98.11 78.85 93.37 93.17
Few-shot GPT-4
GPT-4 CoT 0M 90.81 88.48 97.49 86.16 97.51 96.86 99.11 89.52 92.40 88.70
GPT-4 PoT 0M 96.93 97.40 95.58 98.48 93.22 96.25 98.00 68.57 96.97 96.87
Chameleon (GPT-4) 0M 98.78 98.95 98.29 99.34 97.42 98.58 98.56 93.33 98.95 98.54

Table 7.5: QA accuracy (%) on the test set of TabMWP.

by 2.55% and GPT-3 CoT by 11.37%, creating the new state of the art in few-shot settings.

TabMWP. Table 7.5 presents results with key models in Figure 7.2 (b). We report the number

of tuned parameters for this task and the overall accuracy, and accuracy of different question types,

including free-text questions, multi-choice questions, integer answers, decimal answers, extractive

answers, Boolean answers, other text answers, grades 1-6, and grades 7-8. * refers to a subset of

results.

Similarly, significant improvements are observed for Chameleon over both fine-tuned and few-

shot models. It is worth noting that both CoT and Program-of-Thought (PoT) [CMW23] can be

viewed as special cases of Chameleon. Apart from “Solution Generator” and “Answer Generator”,
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Figure 7.2: Results of main baselines and Chameleon. Dashed lines represent human performance.

CoT doesn’t utilize any tool, while PoT only relies on symbolic programming tools like “Pro-

gram Generator” and “Program Executor”. Chameleon (ChatGPT) outperforms ChatGPT CoT

and ChatGPT PoT by 11.25% and 3.79%, respectively, emphasizing the advantage of our enriched

tool set. With GPT-4, Chameleon gains an additional 5.50%, reaching a 98.78% accuracy. Notably,

Chameleon (GPT-4) surpasses Codex PoT-SC [CMW23], the best-published model, by 17.0% and

human performance by 8.56%.

7.5.3 Qualitative Analysis

Tool use planning. The proportions of key tools called in the programs from Chameleon on

ScienceQA and TabMWP are visualized in Figure 7.3 and Figure 7.4, respectively. Interestingly,

ChatGPT and GPT-4 exhibit different planning behaviors. Generally, ChatGPT has a strong bias

toward using or not using certain tools, highly influenced by in-context examples. For instance,

ChatGPT calls “Knowledge Retrieval” in 72% of queries but only calls “Bing Search” in 3% of

cases on ScienceQA; on TabMWP, ChatGPT heavily relies on “Row Lookup” (47%) but calls

“Column Lookup” less frequently (4%). However, GPT-4 acts more objectively and rationally in

tool selection. For example, GPT-4 calls “Knowledge Retrieval” more frequently (81% vs. 72%)

and calls “Bing Search” more than ChatGPT (11% vs. 3%) when answering scientific questions on

ScienceQA. Impressively, GPT-4 consistently calls “Query Generator” and “Bing Search” simulta-

neously by observing the tool usage descriptions, while ChatGPT lacks such reasoning capability.
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Figure 7.3: Distribution of tools called in the programs generated by Chameleon on ScienceQA.
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Figure 7.4: Distribution of tools called in the programs generated by Chameleon on TabMWP.

Module ∆ (ScienceQA) ∆ (TabMWP)

Knowledge Retrieval -7.8% -2.2%
Bing Search -7.4% -
Text Detector -8.4% -
Image Captioner -6.0% -
Program Generator - -7.4%
Table Verbalizer - -0.2%

Table 7.6: Score drop with disabled modules on ScienceQA and TabMWP.

Ablation study with disabled modules. We study the accuracy decline of Chameleon when key

modules in the generated programs are disabled (Table 7.6), using ChaptGPT as the underlying

LLMs and 500 test examples. The results reveal that “Knowledge Retrieval” plays a vital role in

both tasks. Domain-specific tools, such as the search engine and vision models for ScienceQA,

and program tools for TabMWP, also prove to be important.

Module transitions. We visualize the transition graphs of modules for generated programs by

Chameleon (GPT-4) on ScienceQA and TabMWP in Figures 7.5 and 7.6, respectively. The transi-

tion probabilities in these graphs are computed from the tool transitions observed on the test sets.

These graphs show that the GPT-4 planner is able to make good decisions on how to sequence

tools in a few-shot setup. For example, on ScienceQA, Chameleon often decides to rely on either

“Knowledge Retriever” or “Bing Search”, but rarely both. On TabMWP, we observe two main

modes: either going through the solution generator module or via the program generator, verifier,

and executor.
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knowledge_retrieval

 0.53 

text_detector

 0.3 

query_generator

 0.11 

image_captioner

 0.06 

solution_generator

 1.0 

 0.78 

 0.22 

bing_search

 1.0 

 0.79 

 0.01 

 0.21 

answer_generator

 1.0 

 0.02 

 0.01 

 0.97 

END

 1.0 

Figure 7.5: Transition probabilities between modules in programs generated by Chameleon
(GPT-4) on ScienceQA. START is the start symbol, END is a terminal symbol, and the others
are non-terminal symbols.

Generated program statistics. Chameleon utilizes the LLM-based natural language planner to

generate programs, i.e., sequences of used modules (tools). We report the statistics of the number of

unique generated programs and the average length of corresponding tool sequences by Chameleon

in Table 7.7. On both ScienceQA and TabMWP, using GPT-4 as the base LLM generates fewer

distinct programs, i.e., more consistent programs, than using ChatGPT, even when given the exact

same prompt in the planning model. Our results are consistent with the findings in [Ope23a], which

observes that GPT-4 has a superior capability of understanding long contexts, aligning with human

instructions, and performing high-level reasoning compared to other LLMs such as ChatGPT.

7.5.4 Case Study
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Figure 7.6: Transition probabilities between modules in programs generated by Chameleon
(GPT-4) on TabMWP. START is the start symbol, END is a terminal symbol, and the others are
non-terminal symbols.

Visualization examples of ScienceQA. Examples from Chameleon (GPT-4) on ScienceQA are

visualized in Figure 7.1. Chameleon (GPT-4) is able to adapt to different input queries by gen-

erating programs that compose various tools and executing them sequentially to obtain accurate

responses. For instance, to answer the first question (①), What is the direction of this push?, the

system calls the image captioner model to extract semantic information from the image and em-

ploys the knowledge retrieval model to gather background knowledge for multi-modal reasoning.

In the second example (②), the natural language planner infers that a text detector tool is needed
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Task Model # of different programs Average program length

ScienceQA
Chain-of-thought (CoT) 1 2
Chameleon (ChatGPT) 14 3.03
Chameleon (GPT-4) 11 3.40

TabMWP

Chain-of-thought (CoT) 1 2
Program-of-thought (PoT) 1 3
Chameleon (ChatGPT) 28 4.17
Chameleon (GPT-4) 19 4.09

Table 7.7: The statistics of the number of different generated programs and the average length of
generated programs by Chameleon, respectively.

A polar bear is standing in the snow.

Animal skin adaptations for cold environments

Eurasian lynxAnswer Generator

Solution Generator

Image Captioner

(Response 1) Birds use feathers, and most mammals use hair or 
fur, to trap a layer of air next to the skin and reduce heat transfer 
to the environment. Marine mammals like whales use blubber, a 
thick layer of fat, as a heavy-duty form of insulation. In cold 
weather, birds fluff their feathers and animals raise their fur to 
thicken the insulating layer.
(Response 2) Adaptations: Have a thick fur coat for insulation 
against the cold. In winter, the coat is white to provide camouflage 
against the ice and snow. In summer, when the snow has melted, 
they have a thin, dark grey or brown coat which provides 
camouflage against rock and vegetation.
(Response 3) The polar bear is adapted to life in a cold climate 
Polar bears are well adapted for survival in the Arctic. Their 
adaptations include: a white appearance - as camouflage from 
prey on the snow...

The context mentions that polar bears live in and around the cold
Arctic Ocean, and their skin is adapted to help them survive in 
cold places. Out of the given options, neither the Eurasian lynx 
nor the thorny devil is mentioned in the context. However, the 
polar bear is mentioned as an animal with skin adapted for 
survival in cold places. Since the polar bear is not listed as an 
option, we must choose the most possible option from the given 
choices. The Eurasian lynx lives in colder regions compared to 
the thorny devil, which is a desert-dwelling reptile. Therefore, the 
answer is A.

Query Generator

Bing Search

Which animal’s skin is adapted
for survival in cold places?
(A) Eurasian lynx 
(B) Thorny Devil

Figure 7.7: One more example from our Chameleon (GPT-4) approach on ScienceQA.

to understand the context of the ad. The third query (③; more details provided in Figure 7.7 in

the appendix), Which animal’s skin is adapted for survival in cold places?, involves scientific ter-

minology related to animal survival. The planner decides to call the Bing search engine to access

domain-specific knowledge, benefiting from the numerous online resources.

Visualization examples of TabMWP. The adaptability and versatility of Chameleon for vari-

ous queries are also observed on TabMWP, as illustrated in the examples in Figure 7.8. The first
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This table shows the number of miles Wanda hiked each day on 
her camping trip. The median is the middle value in a set of data 
when the data is arranged in order. To find the median, the data 
must be arranged in order from least to greatest (or greatest to 
least), and then the middle value(s) is/are determined.

miles_hiked = [10, 9, 10, 5, 9]
miles_hiked = sorted(miles_hiked)
middle1 = (len(miles_hiked) - 1) // 2
middle2 = len(miles_hiked) // 2
ans = (miles_hiked[middle1] + miles_hiked[middle2]) / 2

9Answer Generator

Knowledge Retrieval

Program Generator

Program Verifier

Program ExecutorWanda went on a camping trip 
and logged the number of miles 
she hiked each day. What is the 
median of the numbers?

ans = 9.0

Miles hiked

Day Miles

Sunday 10

Monday 9

Tuesday 10

Wednesday 5

Thursday 9

Look at Bronson's pay stub. Bronson lives 
in a state that has state income tax. How 
much did Bronson make after taxes?

This table shows Bronson‘s pay stub for the pay period of March 
16-31.Total earnings represent the amount of money Bronson 
made before taxes. Federal income tax, state income tax, and 
other taxes are the amounts deducted from Bronson’s total 
earnings for various taxes. Total taxes can be calculated by adding 
the federal income tax, state income tax, and other taxes. Pay 
after taxes is the amount of money Bronson made after all 
taxes have been deducted from his total earnings. This can be 
calculated by subtracting the total taxes from the total earnings.

The table shows Bronson Le's pay stub for the pay period of March 
16-31. It includes his total earnings of $1,200.00, federal income tax 
of $133.44, state income tax of $62.10, and other taxes of $91.00. 
The total taxes and pay after taxes are not provided but can be 
calculated by adding the tax amounts and subtracting them 
from the total earnings, respectively.

913.46Answer Generator

Knowledge Retrieval

Table Verbalizer

Program Verifier

Program Executor ans = 913.46

Employee Pay period

Bronson Le March 16-31

Total earnings $1,200.00

Federal income tax $133.44

State income tax $62.10

Other taxes $91.00

Pay after taxes ?
Program Generator total_earnings = 1200

federal_income_tax = 133.44
state_income_tax = 62.10
other_taxes = 91.00
total_taxes = federal_income_tax + state_income_tax + 
other_taxes
ans = total_earnings - total_taxes

Look at the following schedule. When does 
the bus depart from the train station?
(A) 12:35 P.M. (B) 1:10 P.M.
(C) 1:10 P.M. (D) 10:45 A.M.

Bus schedule

Location Arrive Depart

stadium 10:20 A.M. 10:25 A.M.

park 10:35 A.M. 10:45 A.M.

hotel 11:10 A.M. 11:15 A.M.

airport 12:05 P.M. 12:10 P.M.

train station 12:25 P.M. 12:35 P.M.

bus station 1:10 P.M. 1:10 P.M.

12:35 P.M.Answer Generator

Row Lookup

Solution Generator

(Step 1) Find the train station on the schedule. Find the departure
time for the train station.

(Step 2) Train station: 12:35 P.M. The bus departs from the train 
station at 12:35 P.M. 

(Step 3) The answer is 12:35 P.M.

Location Arrive Depart

train station 12:25 P.M. 12:35 P.M.

Figure 7.8: Three examples of our Chameleon approach with GPT-4 on TabMWP, a mathematical
reasoning benchmark with tabular contexts.

example (①) involves mathematical reasoning on a tax form. Chameleon (1) calls the knowl-

edge retrieval model to recall basic knowledge that assists in understanding this domain-specific
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Figure 7.9: Distribution of mistake examples across different categories on ScienceQA. Image:
image captioning, Knowledge: knowledge understanding, Solution: solution generation.

table, (2) describes the table in a more readable natural language format, and (3) finally relies on

program-aided tools to perform precise computations. In the second example (②), the system gen-

erates Python code that closely aligns with the background knowledge provided by the knowledge

retrieval model. The third example (③) requires the system to locate the cell in a large tabular

context given the input query. Chameleon calls the row lookup model to help accurately locate

the relevant rows and generate the language solution via an LLM model, instead of relying on

program-based tools.

7.5.5 Error Analysis

To examine the error sources of the base large language models and understand how our model

reduces mistakes from different aspects, we conduct an error analysis, as shown in Figure 7.9. We

select 50 mistake examples from the ChatGPT baseline on ScienceQA as the evaluation set. We

count the number of mistake examples and analyze their corresponding mistake type categories for

ChatGPT, our Chameleon (ChatGPT) approach, and Chameleon (GPT-4).

The results show that our Chameleon approach can substantially reduce the number of mistakes

compared to ChatGPT. Our model features tools for image captioning and knowledge retrieval,
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thus the mistakes made by ChatGPT in the category of image understanding are reduced to 10 and

19 from 32 by Chameleon (ChatGPT) and Chameleon (GPT-4); while the mistakes made by Chat-

GPT in the category of knowledge understanding are reduced to 6 and 3 from 37 by Chameleon

(ChatGPT) and Chameleon (GPT-4). Benefiting from the sequential execution of tools, the mis-

takes caused by solution generation are significantly reduced as well. Additionally, we find that

the task planning of GPT-4 outperforms ChatGPT by a large margin.

Failure cases. Inaccurate responses may arise from the limitations of the current modules or from

suboptimal programs generated by the planner. Additionally, the module inventory may lack tools

capable of addressing specific abilities. For instance, in Figure 7.19, the generated query from

the “Query Generator” module is insufficiently specific, leading to a response from “Bing Search”

that does not adequately detail the characteristics of the Death Valley ecosystem, particularly with

regard to the types of organisms present.4 For the example in Figure 7.20, the LLM-based solution

generator struggles to understand the bus schedule, which incorporates domain-specific knowl-

edge. Furthermore, the LLM planner does not utilize tools like “Table Verbalizer” and “Column

Lookup”, which could enhance the LLM’s comprehension of the tabular context.

7.6 Conclusion

In conclusion, we introduce a novel plug-and-play compositional reasoning framework, Chameleon,

that addresses the limitations of current large language models by augmenting them with exter-

nal tools in a plug-and-play manner. Our approach employs a diverse set of tools and demon-

strates impressive adaptability and effectiveness on two challenging benchmarks, ScienceQA and

TabMWP. By achieving significant improvements in accuracy over existing state-of-the-art mod-

els, Chameleon showcases its potential for addressing real-world queries across various domains.

7.7 Appendix

4Death Valley National Park is very much alive from U.S. Geological Survey: https://www.usgs.gov/
geology-and-ecology-of-national-parks/ecology-death-valley-national-park-0.
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▷ Instruction for the planner model

You need to act as a policy model, that given a question and a modular set, determines the sequence of modules that
can be executed sequentially can solve the question.

The modules are defined as follows:

Query Generator: This module generates a search engine query for the given question. Normally, we consider
using ”Query Generator” when the question involves domain-specific knowledge.
Bing Search: This module searches the web for relevant information to the question. Normally, we consider using
”Bing Search” when the question involves domain-specific knowledge.
Image Captioner: This module generates a caption for the given image. Normally, we consider using ”Im-
age Captioner” when the question involves the semantic understanding of the image, and the ”has image” field
in the metadata is True.
Text Detector: This module detects the text in the given image. Normally, we consider using ”Text Detector”
when the question involves the unfolding of the text in the image, e.g., diagram, chart, table, map, etc., and the
”has image” field in the metadata is True.
Knowledge Retrieval: This module retrieves background knowledge as the hint for the given question. Normally,
we consider using ”Knowledge Retrieval” when the background knowledge is helpful to guide the solution.
Solution Generator: This module generates a detailed solution to the question based on the information provided.
Normally, ”Solution Generator” will incorporate the information from ”Query Generator”, ”Bing Search”, ”Im-
age Captioner”, ”Text Detector”, and ”Knowledge Retrieval”.
Answer Generator: This module extracts the final answer in a short form from the solution or execution result.
This module normally is the last module in the prediction pipeline.

Below are some examples that map the problem to the modules.

▷ In-context example(s)

Question: Compare the average kinetic energies of the particles in each sample. Which sample has the higher
temperature?

Context: The diagrams below show two pure samples of gas in identical closed, rigid containers. Each colored ball
represents one gas particle. Both samples have the same number of particles.

Options: (A) neither; the samples have the same temperature (B) sample A (C) sample B

Metadata: ‘pid’: 19, ‘has image’: True, ‘grade’: 8, ‘subject’: ‘natural science’, ‘topic’: ‘physics’, ‘category’:
‘Particle motion and energy’, ‘skill’: ‘Identify how particle motion affects temperature and pressure’

Modules: ["Text Detector","Knowledge Retrieval","Solution Generator","Answer Gen

erator"]

Table 7.8: The prompt constructed for the planner model on the ScienceQA task. The prompt
consists of the instruction that describes the role of the planner model, the in-context examples that
map the problem to the module sequence, and the test example.
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▷ Instruction for the planner model
You need to act as a policy model, that given a question and a modular set, determines the sequence of modules that
can be executed sequentially can solve the question.

The modules are defined as follows:

Program Generator: This module generates a Python program that can solve the given question. It takes in the
question and possible context and produces a program that can be executed by the ”Program Executor” module.
Normally, we consider using ”Program Generator” when the questions and contexts involve complex computation,
such as arithmetic operations over multiple numbers, or when the questions involve complex logical operations,
such as ”if-else” statements.
Program Verifier: This module verifies whether the generated program from ”Program Generator” is valid and
error-free. It checks for syntax errors, logical errors, and other potential issues that may arise during program
execution.
Program Executor: This module executes the generated program from ”Program Generator” and produces an
output that can be further processed by other modules, such as ”Question Answering”.
Row Lookup: This module returns the simplified table that only remains the rows that are relevant to the question.
It takes in the question and a table and returns the simplified table. If all rows are relevant or there are only three
rows or fewer, return the original table. Normally, we only consider using ”Row Lookup” when the table involves
more than three rows and the question only requires a small number of rows to answer the question.
Column Lookup: This module returns the simplified table that only remains the columns that are relevant to the
question. It takes in the question and a table and returns the simplified table. If all columns are relevant or there
are only two columns, return the original table. Normally, we consider using ”Column Lookup” when the table
involves more than two columns and the question only requires a small number of columns to answer the question.
Table Verbalizer: This module converts the table to a description that can be easily understood by the downstream
modules, like ”Program Generator”, ”Solution Generator”, ”Question Answering”. Normally, we consider using
”Table Verbalizer” when the table involves a small number of rows and columns and the table is domain-specific,
such as steam-and-leaf plots, function tables, etc.
Knowledge Retrieval: This module retrieves domain-specific knowledge for the given question and table. Nor-
mally, we consider using ”Knowledge Retrieval” when the question and table involve domain-specific knowledge,
such as ”steam-and-leaf plots”, ”function tables”, ”tax forms”, etc.
Solution Generator: This module generates a detailed solution to the question based on the information provided.
Normally, we use ”Solution Generator” when the question and table involve simple computation, such as arithmetic
operations over a single number.
Answer Generator: This module extracts the final answer in a short form from the solution or execution result.
This module normally follows the ”Solution Generator” or ”Problem Executor” module.

Below are some examples that map the problem to the modules.
▷ In-context example(s)

Table:
designer watch — $8,141
designer coat — $6,391

Question: How much more does a designer watch cost than a designer coat? (unit: $)

Modules: ["Program Generator","Program Verifier","Program Executor","Answer Gene
rator"]

Table 7.9: The prompt constructed for the planner model on the TabMWP task. Similarly, the
prompt consists of the instruction, the in-context examples, and the test example.
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▷ Instruction
Read the following question, and generate the background knowledge as the context information that could be
helpful for answering the question.

▷ In-context example(s)

Question: Which property do these three objects have in common?

Options: (A) hard (B) soft (C) yellow

Metadata: ‘pid’: 43, ‘has image’: True, ‘grade’: 4, ‘subject’: ‘natural science’, ‘topic’: ‘physics’, ‘category’:
‘Materials’, ‘skill’: ‘Compare properties of objects’

Detected text in the image: [‘handkerchief’, ‘slippers’, ‘leisure suit’]

Knowledge:
- This question is about comparing the properties of three objects: a handkerchief, slippers, and a leisure suit.
- The objects are related to the topic of physics and the skill of comparing properties of objects.
- Properties of objects can include physical characteristics such as color, texture, shape, size, weight, and material.

Table 7.10: The prompt constructed for the “Knowledge Retrieval” module on the ScienceQA task.

▷ Instruction
Read the following question and metadata, and generate the query for browser search as the context information
that could be helpful for answering the question.

▷ In-context example(s)

Question: Which property do these two objects have in common?

Options: (A) hard (B) bendable

Metadata: ‘pid’: 329, ‘has image’: True, ‘grade’: 2, ‘subject’: ‘natural science’, ‘topic’: ‘physics’, ‘category’:
‘Materials’, ‘skill’: ‘Compare properties of objects’

Detected text in the image: [([[41, 183], [131, 183], [131, 199], [41, 199]], ‘rubber gloves’), ([[245, 183], [313,
183], [313, 197], [245, 197]], ‘rain boots’)]

Search Query: Common material properties of jump rope and rubber gloves

Table 7.11: The prompt constructed for the “Query Generator” module on the ScienceQA task.
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▷ Instruction
Given the question (and the context), select the answer from the options [”A”, ”B”, ”C”, ”D”, ”E”]. You should
give concise and step-by-step solutions. Finally, conclude the answer in the format of ”the answer is [ANSWER]”,
where [ANSWER] is one from the options [”A”, ”B”, ”C”, ”D”, ”E”]. For example, ”the answer is A”, ”the answer
is B”, ”the answer is C”, ”the answer is D”, or ”the answer is E”. If the answer is not in the options, select the most
possible option.

▷ In-context example(s)

Question: Which property do these two objects have in common?

Context: Select the better answer.

Options: (A) hard (B) bendable

Metadata: ‘pid’: 6493, ‘has image’: True, ‘grade’: 2, ‘subject’: ‘natural science’, ‘topic’: ‘physics’, ‘category’:
‘Materials’, ‘skill’: ‘Compare properties of objects’

Image caption: A pair of scissors next to a pair of scissors.

Detected text with coordinates in the image: [([[53, 185], [121, 185], [121, 199], [53, 199]], ‘jump rope’), ([[233,
183], [323, 183], [323, 201], [233, 201]], ‘rubber gloves’)]

Retrieved knowledge:
- This question is about comparing the properties of two objects: rubber gloves and rain boots.
- The objects are related to the topic of physics and the skill of comparing properties of objects.
- Properties of objects can include physical characteristics such as color, texture, shape, size, weight, and material.
In this case, the two objects have the property of being bendable in common.

Bing search response: The most common materials used for disposable gloves are Latex, Vinyl and Nitrile. Each
material has its benefits and drawbacks. Latex Gloves are constructed from Natural Rubber Latex and are the most
popular type of disposable glove.

Solution: An object has different properties. A property of an object can tell you how it looks, feels, tastes, or
smells. Different objects can have the same properties. You can use these properties to put objects into groups.
Look at each object. For each object, decide if it has that property. A bendable object can be bent without breaking.
Both objects are bendable. A hard object keeps its shape when you squeeze it. The rubber gloves are not hard. The
property that both objects have in common is bendable. Therefore, the answer is B.

Table 7.12: The prompt constructed for the “Solution Generator” module on the ScienceQA task.
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▷ Instruction
Read the following table and question, and generate the domain-specific knowledge as the context information that
could be helpful for answering the question.

▷ In-context example(s)

Table:
x | y
10 | 15
11 | 9
12 | 2
Question: The table shows a function. Is the function linear or nonlinear?

Knowledge:
- A linear function is a function whose graph is a straight line.
- A nonlinear function is a function whose graph is not a straight line.
- The equation of a linear function is y = mx+ b, where m is the slope and b is the y-intercept.
- The equation of a nonlinear function is not y = mx+ b.

Table 7.13: The prompt constructed for the “Knowledge Retrieval” module on the TabMWP task.

▷ Instruction
Read the following question and table. Each row is separated by a newline (‘\n’) and each column is separated by a
vertical bar (‘|’). Return the simplified table that only remains the rows that are relevant to the question. If all rows
are relevant, or the number of rows is fewer than three, return the original table.

▷ In-context example(s)

Question: In preparation for graduation, some teachers and students volunteered for the various graduation
committees. How many people are on the music committee?

Table:
Committee | Students | Teachers
Program | 5 | 17
Ticket | 20 | 5
Music | 20 | 15
Schedule | 15 | 20
Food | 18 | 2

Simplified Table:
Committee | Students | Teachers
Music | 20 | 15

Table 7.14: The prompt constructed for the “Row Lookup” module on the TabMWP task.
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▷ Instruction
Read the following question and table. Each row is separated by a newline (‘\n’) and each column is separated by
a vertical bar (‘|’). Return the simplified table that only remains the columns that are relevant to the question. If all
columns are relevant, return the original table.

▷ In-context example(s)

Question: Look at the following schedule. When does Recess end?

Table:
Subject | Begin | End
Recess | 6:15 A.M. | 7:20 A.M.
Orchestra | 7:30 A.M. | 8:40 A.M.
Art | 8:45 A.M. | 9:35 A.M.
Handwriting | 9:45 A.M. | 10:20 A.M.
Gym | 10:30 A.M. | 11:15 A.M.
Choir | 11:20 A.M. | 12:25 P.M.
Science | 12:35 P.M. | 1:35 P.M.
Reading | 1:40 P.M. | 2:50 P.M.

Simplified Table:
Subject | End
Recess | 7:20 A.M.
Orchestra | 8:40 A.M.
Art | 9:35 A.M.
Handwriting | 10:20 A.M.
Gym | 11:15 A.M.
Choir | 12:25 P.M.
Science | 1:35 P.M.
Reading | 2:50 P.M.

Table 7.15: The prompt constructed for the “Column Lookup” module on the TabMWP task.
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▷ Instruction
Read the following question and table. Write a textual description of the table. The description should keep the
critical information in the table for answering the question. The description should not answer the question.

▷ In-context example(s)

Table:
Committee | Students | Teachers
Program | 5 | 17
Ticket | 20 | 5
Music | 20 | 15
Schedule | 15 | 20
Food | 18 | 2

Table description: The table shows the number of students and teachers on each of the four graduation committees:
Program, Ticket, Music, and Schedule. The Music committee has 20 students and 15 teachers.

Table 7.16: The prompt constructed for the “Table Verbalizer” module on the TabMWP task.

▷ Instruction
Read the following table and then write Python code to answer a question.

▷ In-context example(s)

Table:
Price | Quantity demanded | Quantity supplied
$895 | 21,000 | 3,400
$945 | 17,200 | 7,400
$995 | 13,400 | 11,400
$1,045 | 9,600 | 15,400
$1,095 | 5,800 | 19,400

Questions: Look at the table. Then answer the question. At a price of $995, is there a shortage or a surplus? Please
select from the following options: [‘shortage’, ‘surplus’].

Code:
# Python Code, return ’ans’. Make sure that ’ans’ is a string selected from

the options in the question
quantity_demanded_at_price_955 = 13400
quantity_supplied_at_price_955 = 11400
if quantity_demanded_at_price_955 > quantity_supplied_at_price_955:

ans = ’shortage’
else:

ans = ’surplus’

Table 7.17: The prompt constructed for the “Program Generator” module on the TabMWP task.
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▷ Instruction
Read the following table and then answer a question.

▷ In-context example(s)

Table:
Price | Quantity demanded | Quantity supplied
$895 | 21,000 | 3,400
$945 | 17,200 | 7,400
$995 | 13,400 | 11,400
$1,045 | 9,600 | 15,400
$1,095 | 5,800 | 19,400

Question: Look at the table. Then answer the question. At a price of $995, is there a shortage or a surplus? Please
select from the following options: [‘shortage’, ‘surplus’].

Solution: At the price of $995, the quantity demanded is greater than the quantity supplied. There is not enough of
the good or service for sale at that price. So, there is a shortage. The answer is shortage.

Table 7.18: The prompt constructed for the “Solution Generator” module on the TabMWP task.
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▷ Query

Question: Which better describes the Death Valley ecosystem?

Context: Figure: Death Valley. Death Valley is a desert
ecosystem in eastern California.

Options: (A) It has dry, thin soil. It also has many different
types of organisms. (B) It has a small amount of rain. It also
has only a few types of organisms.

Metadata: ‘pid’: ‘18973’, ‘has image’: True, ‘grade’: 3, ‘subject’: ‘natural science’, ‘topic’: ‘biology’, ‘cate-
gory’: ‘Ecosystems’, ‘skill’: ‘Describe ecosystems’

▷ Response
Generated Program: ["Query Generator","Bing Search","Solution Qenerator","Answer
Generator"]

Query Generator:
Characteristics of Death Valley ecosystem

Bing Search: (the first one from response candidates)
Visitors come to Death Valley to experience the stark and lonely vastness of the valley, the panorama of rugged
canyons and mountains; the pleasures of the dry, moderate winter climate, the challenge of the hot, arid summer;
the relief of the cooler mountains; and the reminders of frontier and Native American ways of life.

Solution Generator:
Death Valley is a desert ecosystem, which means it has specific characteristics related to its climate and the
organisms that live there. A desert ecosystem typically has dry, thin soil and a small amount of rain. This
environment supports only a few types of organisms that are adapted to survive in such harsh conditions. Therefore,
the answer is B.

Answer Generator (Wrong prediction):
(B) It has a small amount of rain. It also has only a few types of organisms.

Correct Answer (Ground truth):
(A) It has dry, thin soil. It also has many different types of organisms.

Table 7.19: An example of failure cases in ScienceQA from Chameleon (GPT-4) where some
modules perform inaccurately.
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▷ Query
Table:

Table Title: Tour bus schedule

Table: (semi-structured format)
historic house | 10:15 A.M. | 10:30 A.M. | 10:45 A.M. | 11:00 A.M.
downtown | 11:00 A.M. | 11:15 A.M. | 11:30 A.M. | 11:45 A.M.
skyscraper | 11:30 A.M. | 11:45 A.M. | 12:00 P.M. | 12:15 P.M.
old building | 12:30 P.M. | 12:45 P.M. | 1:00 P.M. | 1:15 P.M.
governor’s mansion | 1:00 P.M. | 1:15 P.M. | 1:30 P.M. | 1:45 P.M.

Question: This is Oliver’s complete financial record for September. How much money did Oliver have after he
purchased the basketball?

Options: (A) 2 hours and 15 minutes (B) 2 hours and 45 minutes (C) 15 minutes (D) 30 minutes
▷ Response

Generated Program: ["Row Lookup","Solution Generator","Answer Generator"]

Row Lookup:
historic house | 10:15 A.M. | 10:30 A.M. | 10:45 A.M. | 11:00 A.M.
governor’s mansion | 1:00 P.M. | 1:15 P.M. | 1:30 P.M. | 1:45 P.M.

Solution Generator:
(Step 1) Find the last departure time from the historic house and the first arrival time at the governor’s mansion:

Historic house last departure: 11:00 A.M.
Governor’s mansion first arrival: 1:00 P.M.

(Step 2) Subtract the departure time from the arrival time:
1:00 P.M. - 11:00 A.M. = 2 hours

(Step 3) It takes 2 hours to get from the historic house to the governor’s mansion.
(Step 4) The answer is 2 hours and 15 minutes.

Answer Generator (Wrong prediction): (A) 2 hours and 15 minutes

Correct Answer (Ground truth): (B) 2 hours and 45 minutes

Table 7.20: An example of failure cases in TabMWP from Chameleon (GPT-4) where some mod-
ules perform inaccurately and the generated programs are suboptimal.
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Part IV

Summary and Future Directions
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CHAPTER 8

Latest Advances in Visual Mathematical Reasoning

8.1 Understanding Mathematical Reasoning in Visual Contexts

A long-standing goal of AI is to create general-purpose assistants that can tackle diverse unseen

tasks. We have witnessed great progress in foundation models in text such as ChatGPT [Ope22,

Ope23a] and in vision-language models such as Bard [Goo23] and GPT-4V [Ope23b]. Despite

these advances, a significant gap persists in our understanding of their mathematical reasoning

capabilities within visual scenarios due to the lack of systematic evaluations.

Mathematical reasoning stands as a testament to the intricacies of human intelligence [Kah11].

It requires rigorous logical thinking, domain-specific knowledge, and the ability to engage in mul-

tistep reasoning processes [LKB23]. This complexity is observed not only in textual scenarios but

also significantly in visual contexts. When assessing a child’s mathematical reasoning capabilities,

problems are often designed to encompass visual contexts [SI89, PCS20]. At the same time, AI

agents with strong mathematical reasoning capabilities in visual contexts have a wide range of

real-world applications, such as solving complex problems [SHF15, WLS17], addressing logical

queries about statistical data [WIL23, YLW23a, LWW24], and assisting in theorem proving and

scientific discovery in advanced research [TKC22, DDX23, TWL24].

Numerous datasets have been curated to assess the mathematical reasoning abilities of AI

systems, with most presented purely in text form. Some datasets such as ChartQA [LGJ21,

DA22, MDT22] have explored mathematical reasoning in vision-language settings. However,

these datasets tend to either focus on specific tasks, like math word problems, or particular visual

contexts, such as geometry problems or bar charts. General-purpose visual question answering

(VQA) datasets on natural scenes contain only a small portion of questions necessitating math-
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ematical reasoning, leaving a comprehensive investigation of vision-language reasoning within a

mathematical framework largely unexplored.

On the other hand, Large Language Models (LLMs) [Ope22, Ope23a] and Vision-Language

Models (VLMs) [Goo23, Ope23b, TAB23] have exhibited impressive problem-solving skills in

many tasks and domains. Recently, some studies have aimed to augment existing LLMs with

mathematical and scientific reasoning capabilities using external tools [LPC23, CYK24]. However,

the ability of these foundation models to perform mathematical reasoning in visual contexts has

not been systematically examined. Therefore, it is essential to develop a new benchmark to (1)

facilitate the development of mathematical reasoning systems in visually intensive scenarios, and

(2) evaluate the research progress of LLMs and VLMs, especially their capabilities in solving

rigorous reasoning tasks.

We present MathVista, a consolidated Mathematical reasoning benchmark in Visual contexts.

We propose a task taxonomy to guide the development of MathVista: (1) we identify seven math-

ematical reasoning types: algebraic reasoning, arithmetic reasoning, geometry reasoning, logical

reasoning, numeric common sense, scientific reasoning, and statistical reasoning; (2) we focus on

five primary tasks: figure question answering (FQA), geometry problem solving (GPS), math word

problem (MWP), textbook question answering (TQA), and visual question answering (VQA); and

(3) we encompass a diverse array of visual contexts, including natural images, geometry diagrams,

abstract scenes, synthetic scenes, as well as various figures, charts, and plots.

MathVista incorporates 28 existing multimodal datasets, including 9 math-targeted question an-

swering (MathQA) datasets and 19 VQA datasets. In addition, we have created three new datasets

(i.e., IQTest, FunctionQA, PaperQA) which are tailored to evaluating logical reasoning on puzzle

test figures, algebraic reasoning over functional plots, and scientific reasoning with academic pa-

per figures, respectively. Overall, MathVista consists of 6,141 examples, with 736 of them being

newly curated. To facilitate fine-grained evaluation, examples are annotated with metadata, includ-

ing question type, answer type, task category, grade level, visual context, and required reasoning

skills.

We conduct extensive experiments in MathVista to evaluate the reasoning abilities of 12 foun-
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dation models known for their leading performance in mathematical and multimodal reasoning.

This ensemble includes three LLMs (i.e, ChatGPT, GPT-4, Claude-2), two proprietary VLMs (i.e.,

GPT-4V, Bard), and seven open-source VLMs. For LLMs, we examine zero-shot and few-shot set-

tings using two prompting strategies: chain-of-thought (CoT) [WWS22b] and program-of-thought

(PoT) [CMW23]. These LLMs can also be augmented with off-the-shelf visual models for image

captioning and OCR. We show that MathVista, featuring advanced topics such as college curricula

and scientific reasoning, is a very challenging benchmark, with human performance reaching only

60.3% accuracy.

We show that MathVista, featuring advanced topics such as college curricula and scientific rea-

soning, is a very challenging benchmark, with human performance reaching only 60.3% accuracy.

Remarkably, GPT-4V [Ope23b], the latest multimodal version of GPT-4, achieves a state-of-the-

art accuracy of 49.9%. However, a 10.4% gap in overall accuracy remains between GPT-4V and

the human baseline, leaving plenty of room for model improvement. When augmented with image

captions and OCR text, tool-augmented LLMs such as PoT GPT-4 are able to achieve compara-

ble performance with VLMs like the Multimodal Bard model. We further highlight its emergent

ability to drive goal-directed multi-turn human-AI dialogues.

8.2 The MathVista Benchmark

8.2.1 Collection Guidelines

Our benchmark, MathVista, is motivated to bridge the notable gap in existing benchmarks, which

primarily evaluate mathematical reasoning in textual contexts. It adheres to the following collec-

tion guidelines: (1) it covers multiple tasks and topics to mirror real-world applications; (2) it

incorporates diverse visual contexts and mathematical skills to foster a well-rounded evaluation;

(3) it offers varying levels of challenge to effectively uncover the potential limitations of current

models; and (4) it provides robust settings for deterministic evaluations.

The taxonomy for this work is introduced as follows: We identify seven types of mathemati-

cal reasoning: algebraic reasoning, arithmetic reasoning, geometry reasoning, logical reasoning,
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Math Reasoning Description

Arithmetic Reasoning
(34.1%)

It covers the fundamental operations such as addition, subtraction, multiplication, di-
vision, and understanding of number properties. It may also include the ability to
interpret numerical data in different forms.

Statistical Reasoning
(30.5%)

It focuses on data interpretation and analysis, including measures (mean, median,
mode), dispersion metrics (standard deviation, range), probability concepts, regres-
sion, correlation, and data inferences. It also identifies trends, outliers, and patterns.

Algebraic Reasoning
(28.5%)

It encompasses understanding variables, equations, and the manipulation of expres-
sions with polynomials and exponents. It also covers solving simple to complex equa-
tions, and grasping functions, their properties, and graphical depictions.

Geometry Reasoning
(23.3%)

It emphasizes spatial understanding, analysis of 2D and 3D figures, and reasoning
about their shapes, sizes, and relationships. It includes symmetry, congruency, simi-
larity, area, volume, and transformations.

Numeric
Common Sense

(14.0%)

It involves intuitive understanding of daily numerical concepts, including understand-
ing time differences, numerical judgment, and estimates. It covers temporal reasoning,
spatial numeric assessments, and practical uses like budgeting and time reading.

Scientific Reasoning
(10.7%)

It deals with the application of mathematical concepts in scientific contexts. This
includes scientific notations, formula use, understanding rates, proportions, and per-
centages in practical situations, and problem-solving in scientific inquiries.

Logical Reasoning
(3.8%)

It focuses on critical thinking and deduction from provided information, including
pattern recognition, sequence understanding, predictions, and statement evaluation.
Key components include premises, conclusions, and the use of abstract reasoning.

Table 8.1: Definitions and proportions of seven mathematical reasoning categories in MathVista.

numeric common sense, scientific reasoning, and statistical reasoning, with detailed definitions

provided in Table 8.1 and examples shown in Figure 8.1. We focus on five primary tasks: figure

question answering (FQA), which centers around statistical reasoning over multiple charts and

plots; geometry problem solving (GPS), which deals with geometrical topics; math word problem

(MWP), which involves arithmetic reasoning in everyday scenarios; textbook question answering

(TQA), which usually entails knowledge-intensive reasoning on scientific topics and figures; and

visual question answering (VQA). Furthermore, our objective is to account for a diverse array of

visual contexts, including natural images, geometry diagrams, abstract scenes, synthetic scenes,

multiple charts and plots, scientific figures, tables, function plots, puzzle test figures, and more,

with examples shown in Figure 8.2.

Therefore, We collected nine math question answer (MathQA) datasets in multimodal set-

tings, including four for GPS, two for MWP with visual contexts of synthetic scenes, abstract

diagrams, and tables, and two for TQA on college curricula. Many existing VQA datasets fea-
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C.2 MATHEMATICAL REASONING EXAMPLES

Math Examples

ARI

Question: Karen bought 4 pounds of silk scraps and 4 pounds of
canvas scraps. How much did she spend? (Unit: $)
Solution:
Find the cost of the silk scraps. Multiply: $9.08 ⇥ 4 = $36.32
Find the cost of the canvas scraps. Multiply: $8.17 ⇥ 4 = $32.68
Now find the total cost by adding: $36.32 + $32.68 = $69
She spent $69.
Answer: 69

STA

Question: How many
sequences have nega-
tive Influence Scores?
Answer: 2

ALG

Question: The derivative of y at x = 6 is that at x = 8.
Choices: (A) larger than (B) equal to (C) smaller than
Answer: (A) larger than

Question: How many zeros does this function have?
Answer: 1

Question: What is the value of y at x = 1?
Answer: 0

GEO

Question: AB is a diameter, AC = 8 inches, and BC = 15
inches. Find the radius of the circle.
Diagram logic forms:
PointLiesOnLine(D, Line(B, A))
PointLiesOnCircle(B, Circle(D, radius))
PointLiesOnCircle(A, Circle(D, radius))
PointLiesOnCircle(C, Circle(D, radius))
Answer: (C) 8.5

NUM

Question: What is the age gap between these two people in
image? (unit: years)
Named entities: Winston Churchill, Charles de Gaulle
Wiki caption: Winston Churchill and General de Gaulle at
Marrakesh, January 1944
Answer: 16

SCI

Question: The graph of the concentration
function c(t) is shown after a 7-mg injection
of dye into a heart. Use Simpson’s Rule to
estimate the cardiac output.
Answer: 5.77

LOG

Question: Find the value of the square in the figure.
Solution:
Circle + Square = 5, Triangle + Triangle = 8,
Triangle = 4.
Circle + Triangle = 7, Circle = 3.
Therefore Square = 2
Answer: 2

Table 4: Examples of seven mathematical reasoning categories in MATHVISTA.

23

Figure 8.1: Examples of seven mathematical reasoning categories in MathVista.

ture instances requiring mathematical reasoning abilities, such as arithmetic operations or numeric

common sense. Therefore, reviewed more than 70 datasets, collecting 19 of them that contain
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Natural Images Synthetic Scene Geometry DiagramAbstract Scene

Table Puzzle Test Function Plot Scientific Figure

Scatter PlotBar ChartLine Plot Pie Chart

Figure 8.2: Examples of different visual contexts in MathVista.

Category: Math-targeted
Task: Textbook question answering
Context: Function plot
Grade: College
Math: Algebraic reasoning

Question: Which function is monotonic 
in range [0, pi]?
Choices:
(A) the red one (B) the blue one
(C) both (D) none of them
Answer: (B) the blue one 

Category: Math-targeted
Task: Figure question answering
Context: Scientific figure
Grade: College
Math: Scientific reasoning

Question: What is the performance gap in 
the AgentBench Overall Score between 
the worst API-based LLM and the best 
open-sourced LLM?
Answer: 0.16

Category: Math-targeted
Task: Figure question answering
Context: Puzzle test
Grade: Elementary school
Math: Logical reasoning

Question: Find the missing value 
in this math puzzle.
Solution:
(5 - 4)3 = 1
(7 - 3)3 = 64
(8 - 2)3 = 216
Similarly, (11 - 8)3 = 27.
So the missing value is 27.
Answer: 27

(a) IQTest (b) FunctionQA (c) PaperQA

Figure 8.3: Examples of our newly annotated datasets: IQTest, FunctionQA, and PaperQA.

math-related instances and are publicly available.

While the source datasets we collected encompass multiple visual contexts and mathematical

reasoning abilities, certain scenarios remain unaddressed: logical reasoning on puzzle test dia-
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grams, statistical reasoning on functional plots, and scientific reasoning on academic figures. To

address these gaps, we introduced three new datasets: IQTest, FunctionQA, and PaperQA, with

examples illustrated in Figure 8.3. IQTest comprises examples requiring inductive reasoning, ab-

stract thinking, pattern prediction, and calculations, sourced from puzzle test figures on online

learning platforms. FunctionQA emphasizes subtle visual perceptions of functional plots and al-

gebraic reasoning concerning variables, expressions, equations, and functions. PaperQA is a novel

dataset featuring questions derived from informative academic illustrations, including tables, fig-

ures, and charts from online education resources, with examples sourced from papers released in

August 2023 on Huggingface1.

8.2.2 Benchmark Statistics

The main statistics of MathVista are presented in Table 8.2. There are two types of questions:

multiple-choice and free-form. Answers to free-form questions are categorized as integers, float-

ing numbers, or lists. The large unique number of images, questions, and answers ensures pattern

diversity in MathVista. MathVista is derived from 31 source datasets, including three newly anno-

tated datasets, IQTest, FunctionQA, and PaperQA. The distribution of the five tasks and 31 source

datasets contained within MathVista is visualized in Figure 8.4. The relatively balanced distribu-

tion of these tasks enhances the benchmarking robustness that our dataset provides.

8.3 Vision-Language Models in MathVista

We aim to conduct qualitative and quantitative studies to provide a systematic evaluation of the

latest foundation models for mathematical reasoning in visual contexts using MathVista.

8.3.1 Evaluation Methodologies

Recent LLMs and VLMs have been instructed to generate long responses in conventional settings

instead of short text. Therefore, we propose a new strategy for benchmarking MathVista, unlike

1https://huggingface.co/papers
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Statistic Number

Total questions 6,141
- multiple-choice questions 3,392 (55.2%)
- Free-form questions 2,749 (44.8%)
- Questions with annotations 5,261 (85.6%)
- Questions newly annotated 736 (12.0%)

Unique number of images 5,487
Unique number of questions 4,746
Unique number of answers 1,464

Source datasets 31
- Existing VQA datasets 19
- Existing MathQA datasets 9
- Our newly annotated datasets 3

Maximum question length 213
Maximum answer length 27
Maximum choice number 8
Average question length 15.6
Average answer length 1.2
Average choice number 3.4

Table 8.2: Key statistics of the MathVista benchmark.

using human-designed or template matching rules [LMX22]. The evaluation process consists of

three stages: response generation, answer extraction, and score calculation. Initially, the baselines

generate responses given the input query, which incorporates the task description, the question,

the choices, and the metadata. Next, the short answer text is extracted from the detailed response.

We propose an answer extractor based on LLMs such as GPT-4, inspired by its remarkable ability

for text processing [WWS22b]. Taking advantage of the fact that the instances in MathVista are

either multiple-choice questions for textual answers or free-form questions for numerical answers,

accuracy scores are used as metrics for deterministic evaluation.

8.3.2 Experimental Setup

We evaluate the models in MathVista under three setups: (a) Text-Only LLMs including ChatGPT

[Ope22], GPT-4 [Ope23a], and Claude-2 [Ant23] in zero-shot and two-shot settings with Chain-

of-Thought (CoT) [WWS22b] and Program-of-Thought (PoT) [CMW23], (b) Augmented-LLMs

where the LLMs are provided with additional visual information including the generated image
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Figure 8.4: Source dataset distribution of MathVista.

captions from Multimodal Bard [Goo23] and the detected OCR text from EasyOCR [Jai20], (c)

VLMs that include open-source models such as IDEFICS-9B [LST24], mPLUG-OWL-LLaMA-7B

[YXX23], miniGPT-4-LLaMA-2-7B [ZCS23], LLaMA-Adapter-V2-7B [GHZ23], InstructBLIP-

Vicuna-7B [DLL24], LLaVA-LLaMA-2-13B [LLW23], LLaVAR [ZZG23], and proprietary mod-

els such as Bard and GPT-4V. Since GPT-4V does not offer API access, we resorted to manually

evaluating it using the playground chatbot.

We compare the performance of several models, including Text-only LLMs, Augmented LLMs,

and VLMs in MathVista in Table 8.3. We include random chance (i.e., one of the options in

multiple-choice questions, and empty in the free-form questions) and frequency guess as naive

baselines. Additionally, we established a human performance baseline using Amazon Mechanical

Turk. Eligible human annotators must have a satisfactory annotating history, successfully pass

qualification examples, and possess a high school degree or higher. We asked each annotator to

complete five questions within 20 minutes.

On the VLM side, Multimodal Bard scores a 34.8% accuracy, which is only 58% of human per-

formance at 60.3%. Notably, the best-performing GPT-4V model achieves 49.9%, marking a sub-

stantial 15.1% improvement over Bard; however, it still falls 10.4% short of human performance.
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Model Input ALL FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA

Heuristics baselines

Random chance - 17.9 18.2 21.6 3.8 19.6 26.3 21.7 14.7 20.1 13.5 8.3 17.2 16.3
Frequent guess - 26.3 22.7 34.1 20.4 31.0 24.6 33.1 18.7 31.4 24.3 19.4 32.0 20.9

Large Language Models (LLMs)

Zero-shot ChatGPT Q only 23.5 21.9 26.9 9.1 38.6 23.5 27.7 15.9 25.7 21.6 9.9 41.5 20.5
Zero-shot GPT-4 Q only 26.1 22.3 37.0 7.0 39.2 27.4 33.6 17.4 35.6 16.2 9.2 45.8 19.5
Zero-shot Claude-2 Q only 26.4 21.9 34.1 13.4 36.1 29.1 32.8 20.4 33.3 13.5 12.1 36.4 20.5

2-shot CoT Claude-2 Q only 24.4 18.6 29.8 9.7 33.5 34.1 29.2 19.0 28.0 5.4 13.9 36.9 18.9
2-shot CoT ChatGPT Q only 26.8 20.1 36.5 8.6 44.9 28.5 35.6 17.0 33.5 21.6 14.6 45.9 17.9
2-shot CoT GPT-4 Q only 29.2 20.1 44.7 8.6 46.2 31.3 41.6 19.3 41.0 18.9 13.9 47.5 18.9

2-shot PoT ChatGPT Q only 25.1 19.0 30.8 16.1 38.0 25.7 29.9 19.8 29.3 24.3 19.4 38.5 16.9
2-shot PoT GPT-4 Q only 26.0 20.1 33.2 8.1 44.9 28.5 32.7 16.7 31.0 24.3 13.2 48.4 18.3

Augmented Large Language Models (Augmented-LLMs)

2-shot CoT Claude-2 Q, Ic, It 33.2 26.0 31.7 35.5 48.1 30.2 32.4 32.3 33.0 16.2 17.4 54.9 36.2
2-shot CoT ChatGPT Q, Ic, It 33.2 27.5 29.3 36.0 49.4 29.1 31.0 32.9 31.0 16.2 17.4 50.8 37.2
2-shot CoT GPT-4 Q, Ic, It 33.2 27.9 31.7 31.2 51.9 28.5 33.5 30.9 32.2 13.5 12.5 58.2 37.9

2-shot PoT ChatGPT Q, Ic, It 26.8 24.5 26.4 23.7 33.5 27.9 27.8 26.1 28.0 18.9 13.2 33.6 29.9
2-shot PoT GPT-4 Q, Ic, It 33.9 30.1 39.4 30.6 39.9 31.3 37.4 31.7 41.0 18.9 20.1 44.3 37.9

Vision-Language Models (VLMs)

IDEFICS-9B-Instruct Q, I 19.8 21.6 21.1 6.5 25.9 24.0 22.1 15.0 19.8 18.9 9.9 24.6 18.1
mPLUG-Owl-LLaMA-7B Q, I 22.2 22.7 23.6 10.2 27.2 27.9 23.6 19.2 23.9 13.5 12.7 26.3 21.4
miniGPT4-LLaMA-2-7B Q, I 23.1 18.6 26.0 13.4 30.4 30.2 28.1 21.0 24.7 16.2 16.7 25.4 17.9
LLaMA-Adapter-V2-7B Q, I 23.9 21.2 25.5 11.3 32.3 31.8 26.3 20.4 24.3 24.3 13.9 29.5 18.3
LLaVAR Q, I 25.2 21.9 25.0 16.7 34.8 30.7 24.2 22.1 23.0 13.5 15.3 42.6 21.9
InstructBLIP-Vicuna-7B Q, I 25.3 23.1 20.7 18.3 32.3 35.2 21.8 27.1 20.7 18.9 20.4 33.0 23.1
LLaVA-LLaMA-2-13B Q, I 26.1 26.8 29.3 16.1 32.3 26.3 27.3 20.1 28.8 24.3 18.3 37.3 25.1
Multimodal Bard Q, I 34.8 26.0 47.1 29.6 48.7 26.8 46.5 28.6 47.8 13.5 14.9 47.5 33.0
GPT-4V (Playground) Q, I 49.9 43.1 50.5 57.5 65.2 38.0 53.0 49.0 51.0 21.6 20.1 63.1 55.8

Human

Human performance Q, I 60.3 59.7 48.4 73.0 63.2 55.9 50.9 59.2 51.4 40.7 53.8 64.9 63.9

Table 8.3: Accuracy scores on the testmini subset of MathVista. Input: Q: question, I: image, Ic:
image caption, It: OCR text detected in the image.

These gaps highlight that there is a significant scope for further improvements on our benchmark.

The open-source models (IDEFICS to LLaVA) achieve underwhelming performance in MathVista.

This can be attributed to their lack of math reasoning capabilities, text recognition (useful for math

word problems), shape detection (useful for geometrical problems), and chart understanding. No-

tably, these models utilize different model architectures for processing the vision (e.g., OpenCLIP,

CLIP, Vit-G) and language (e.g., LLaMA-1, LLaMA-2), different alignment strategies (e.g., MLP

projection in LLaVA, Q-former in InstructBLIP, visual abstractor in mPLUGOwl), and instruction

tuning data (e.g., 150K instruction-response pairs from LLaVA data, 3,500 instruction-response
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pairs from miniGPT-4). While fine-tuned with instruction-following data from text-rich images,

LLaVAR does not perform well, indicating that strong text recognition abilities do not guarantee

high performance in MathVista, which requires comprehensive visual perception and mathemati-

cal reasoning. This underscores that there are immense possibilities for innovations in model, data,

or training objectives to improve the zero-shot performance of VLMs in MathVista.
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Figure 8.5: Accuracies of one leading LLM (i.e., PoT GPT-4), three prominent VLMs, random
chance, and human performance on our proposed MathVista across mathematical reasoning and
visual context types.

We also report fine-grained scores for a comprehensive study of the capabilities of existing

models across different, mathematical reasoning abilities and visual context types in Figures 8.5.

Remarkably, GPT-4V surpasses most other baselines in various categories, with exceptions in

problems related to logical reasoning and numeric commonsense reasoning. Notably, GPT-4V

surpasses human performance not only in tasks like geometry problem solving (GPS), textbook

question answering (TQA), and mathematical reasoning skills such as algebraic reasoning but also

in visual contexts including function plots, geometry diagrams, scatter plots, and tables.

We further illustrate one example in Figure 8.6. Consider the question, “What is the high-

est amount this glass measures?” For someone with basic scientific common sense, this beaker

is able to measure 400 milliliters, rather than 600 milliliters. It appears that current advanced
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vision-language foundation models respond with incorrect answers. This indicates that current ad-

vanced models lack the domain-specific knowledge necessary for understanding scientific figures

accurately.

Published as a conference paper at ICLR 2024

ID: 19

Question: What is the highest amount this
glass measures?

Ground truth: 400

LLaMA-Adapter-V2: The highest amount this glass measures is 400 ml.
Correct output: 400

LLaVA: The highest amount this glass measures is 3000 ml.

Multimodal Bard:
The highest amount the beaker in the image measures is 600 ml.

The markings on the side of the beaker are in milliliters (ml). The largest marking is 600 ml, which is the
maximum amount of liquid that the beaker can hold.

The other markings on the beaker are 300 ml, 200 ml, 100 ml, and -400 ml. The negative markings indicate
the amount of liquid that is below the zero mark.

GPT-4V:
The highest amount this glass measures is 600 ml.

Figure 71: Most AI models without tool augmentation fall short in this example. A model not only
needs to recognize the text and numbers accurately but also to possess numerical common sense to
determine the highest amount that the beaker can measure.

68

Figure 8.6: Most AI models without tool augmentation struggle to solve this complex mathematical
reasoning example.

8.4 Tool-Augmented LLMs in MathVista

Among text-only LLMs, all models outperform the random baselines, with the 2-shot GPT-4 using

chain-of-thought (CoT) prompting achieving 29.2%. The limited performance of text-only LLMs

suggests that our dataset requires models to reason within visual contexts for optimal results. When
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equipped with image captions and detected OCR text, augmented LLMs exhibit superior perfor-

mance compared to their text-only counterparts in MathVista. Specifically, the best-performing

augmented LLM is the 2-shot GPT-4 employing program-of-thought (PoT) prompting, which

scores 33.9%. This model generates Python programs for execution, thereby promoting rigorous

reasoning.

Published as a conference paper at ICLR 2024

(a) Errors in answers and explanations (b) Types of wrong explanations

Figure 4: Error analysis of Bard results: (a) presents errors in answers and explanations; (b) delves
into the details of wrong explanations. Notations: “Answer” is “Ans.”, “Explanation” is “Exp.”,
“Partially Correct” is “Partial”, and “Not applicable” refers to unanswerable or indeterminate cases.

Question: Is the function
(f : R to R) injective?
Choices:
(A) Yes
(B) No

Response from Bard:
The function f(x) = x2 is not injective because
it takes two different inputs, �1 and 1, to the
same output, 1. This means that there is no
one-to-one correspondence between the domain
and the range of the function.

In the image, we can see that the graph of the
function passes through the points (�1, 1) and
(1, 1). This means that f(�1) = f(1) = 1.
So, if we have two different inputs, �1 and
1, they both map to the same output, 1. This
violates the definition of an injective function.

Therefore, the answer is (B).

Correct output: (B) No

(a) Correct answer and explanation

Question: Find z.
Choices:
(A) 7 (B) 9
(C) 12 (D) 15

Response from Bard:
We can use the Law of Cosines to solve for z. The Law
of Cosines states that for a triangle with side lengths a, b,
and c and angle measure ✓ opposite side c, the following
equation holds: c2 = a2 + b2 � 2ab cos(✓)

In this case, we have a = 7, b = 9, and ✓ = 90� (because
4RTS is a right triangle). Plugging these values into the
Law of Cosines, we get: z2 = 72+92�2(7)(9) cos(90�)

Since cos(90�) = 0, we can simplify the equation to get:
z2 = 49 + 81 = 130

Taking the square root of both sides, we get z =
p

130.
Since

p
130 is not among the answer choices, we round z

to the nearest integer, which is 12 .

Correct output: (C) 12

(b) Correct answer but wrong explanation

Figure 5: Two examples from Bard. In (b), Bard does not correctly identify the geometry symbols
and relationships. The accurate correct should identify the isosceles triangle and apply its properties.

correct explanation. If the workers find that the model’s explanation is incorrect, they had to choose
whether the wrong explanation was due to various failure modes such as incorrect reasoning with
hallucination or wrong calculations. In our setup, we define hallucination as an introduction of
incorrect facts, in the model explanation, that is not mentioned in the context of the image or question
(e.g., in Figure 39 and Figure 40). More details can be found in §F.7.

We present the distribution of the quality of Bard’s predictions, judged by the human annotators,
in Figure 4 (a). We find that 44.6% of the Bard’s predictions had incorrect answers with incorrect
explanations. Interestingly, we observe that Bard responds with partial (6.8%) or completely (8.1%)
incorrect explanations despite giving the correct answer to the input image and question, highlight-
ing its failure to reach the correct answer for the wrong reasons. In Figure 4 (b), we present the
distribution over possible reasons when Bard provides incorrect explanations. Notably, we find that
49.6% of its responses contain hallucinations. Our analysis highlights that hallucination is a major
source of errors in the generative foundation models (Lu et al., 2023c; Ji et al., 2023). We also
observe that the model responds with correct reasoning but either hallucinates (18.6%) or performs
wrong calculations (19.5%) leaving an overall impression of being a wrong explanation.

Qualitative examples of Multimodal Bard. We also present a few qualitative examples of Bard’s
predictions. In Figure 5 (a), we find that Bard generates the correct answer with the correct expla-
nation, including detecting the correct function (i.e., f(x) = x2) and analyzing its properties (i.e.,
injective) to answer the question. However, in Figure 5 (b), we observe that the model provides the

8

Figure 8.7: Two examples showcasing GPT-4’s performance on MathVista, which depends on the
quality of generated captions and detected OCR texts.

Augmented with external visual models, CoT GPT-4 and PoT GPT-4 are able to achieve com-

parable performance with Multimodal Bard. As shown in Figure 8.7 (a), provided with the accurate

OCR text detected in the image, PoT GPT-4 accurately understands the structural information of

the image and generates a code snippet to perform precise statistical reasoning. In Figure 8.7 (b),

the caption provides some accurate descriptions of the image (e.g., f(x) = c) along with hallucina-

tion (e.g., y = 3, the line passes through (0, 3)) caused by the external Bard model. Although CoT

GPT-4 predicts the correct answer given the partially correct information, the qualities of visual

information augmented by external models have an impact on the accurate visual perception and

thus the final mathematical reasoning performance.
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8.5 Exploring Human-AI Collaborations

This section investigates the use of GPT-4V for multi-turn human-AI interaction in MathVista.

We found that GPT-4V is effective in engaging multi-turn goal-directed conversations with users.

In particular, GPT-4V can make good use of hints (e.g., user feedback or responses) to guide the

conversion to generate desirable results. For instance, it can rectify visual perception errors based

on hints. Given the visual question “How many baseballs are there?” in Figure 8.8, GPT-4V

initially produces an incorrect solution due to errors in detecting the number of baseballs. After

receiving user feedback, like “Your solution is wrong,” it recalibrates and generates the accurate

answer.

It can also refine reasoning steps and calculations. For instance, in Figure 8.9, there is a ques-

tion “which number comes next,” given consecutive numbers 13, 57, 911, 1315, and 1719. GPT-4V

correctly identifies the sequence of numbers in the image but struggles to discern the underlying

pattern as it infers the next number is a concatenation of prime numbers 23 and 29. However, this

question does not involve prime numbers. With feedback from the user, it re-evaluates the pattern

and produces the correct response.
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Let's count the baseballs in each bucket:

1. First bucket: 5 baseballs
2. Second bucket: 6 baseballs
3. Third bucket: 6 baseballs
4. Fourth bucket: 6 baseballs

Total baseballs: 5 + 6 + 6 + 6 = 23 baseballs.

Answer: 23.

Your solution is wrong. You counted the baseballs in each bucket incorrectly.

I apologize for the oversight. Let's try counting again:

1. First bucket: 5 baseballs
2. Second bucket: 5 baseballs
3. Third bucket: 5 baseballs
4. Fourth bucket: 5 baseballs

Total baseballs: 5 + 5 + 5 + 5 = 20 baseballs.

Answer: 20.

How many baseballs are there?

Figure 8.8: GPT-4V initially produces an incorrect solution due to visual perception errors but
recalibrates after receiving user feedback.
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The pattern seems to involve prime numbers.

Let's break it down:
1 and 3 are the first and second prime numbers.
5 and 7 are the third and fourth prime numbers.
9 (not a prime) but followed by 11 which is the fifth prime number.
13 is the sixth prime number and 15 (not a prime) followed by 17 
which is the seventh prime number.
19 is the eighth prime number.

Following this pattern, the next two prime numbers are 23 and 29. 

So, the next number in the sequence would be 2329.

Your solution is incorrect. The pattern does not involve prime numbers.

I apologize for the oversight. Let's re-examine the pattern.

It seems the pattern is derived by concatenating consecutive numbers:

1 and 3 give 13.
5 and 7 give 57.
9 and 11 give 911.
13 and 15 give 1315.
17 and 19 give 1719.

Following this pattern, the next numbers to be concatenated would be 21 and 
23.

So, the next number in the sequence would be 2123.

Which number comes next?

Figure 8.9: GPT-4V correctly identifies the number sequence but struggles with the underlying
pattern until receiving user feedback.
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CHAPTER 9

Future Work and Conclusion

9.1 Current Challenges and Future Prospects

9.1.1 Analyzing Performance Saturation and Bridging Performance Gaps

As indicated in Table 9.1, current advanced LLMs are approaching performance saturation on

mathematical reasoning benchmarks in textual contexts. For example, Claude 3 Opus [Ant24]

attains a 95.0% accuracy rate on GSM8K [CKB21], a collection of grade-school mathematics

questions, leaving a slim margin of 5.0% for further improvement. In the case of MATH [HBK21],

a set of college-level mathematics problems, the program-aided GPT-4 model [ZWL23] achieves

an accuracy of 84.3%, with a remaining gap of 15.7%. However, it is essential to acknowledge the

substantial challenges AI models face in addressing mathematical reasoning within visual contexts.

In the recently developed MathVista [LBX24], a benchmark for math reasoning in visual contexts,

the advanced GPT-4V model [Ope23b] scores 49.9%, and InternVL-Chat-V1.2-Plus [CWW23],

the state-of-the-art (SOTA) model, reaches 59.9%. Both scores significantly lag behind satisfac-

tory performance. This discrepancy likely stems from the combined challenges of understanding

and reasoning within multimodal settings, as current visual LLMs exhibit limited capabilities in

comprehending fine-grained semantics presented in visual inputs and aligning different modalities

for reliable predictions [LBX24].

Looking ahead, there are several promising avenues for overcoming the current limitations

and enhancing the capabilities of LLMs in mathematical reasoning, especially within visual con-

texts. First, there is a critical need for developing more robust and challenging benchmarks. These

benchmarks should not only test the current capabilities of LLMs but also encourage advancements

in understanding complex, multimodal mathematical problems. Second, one of the significant
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Dataset Model Setting Accuracy Gap

Textual contexts

GSM8K Claude 3 Opus [Ant24] 0-shot CoT 95.0% 5.0%
GSM8K GPT-4 [Ope23a] 5-shot CoT 92.0% 8.0%
GSM8K Gemini 1.5 Pro [Tea24] 11-shot CoT 91.7% 8.3%

MATH GPT-4-Code [ZWL23] - 84.3% 15.7%
MATH Claude 3 Opus [Ant24] Maj@32 4-shot 73.7% 26.3%
MATH Claude 3 Opus [Ant24] 0-shot 60.1% 39.9%

Visual contexts

MathVista (testmini) InternVL-Chat-V1.2-Plus [CWW23] 0-shot CoT 59.9% 40.1%
MathVista (testmini) Gemini 1.0 Ultra [TAB23] 0-shot CoT 53.0% 47.0%
MathVista (testmini) GPT-4V [LBX24] 0-shot CoT 49.9% 51.1%

Table 9.1: State-of-the-art performance scores of mathematical reasoning benchmarks in textual
contexts (MATH and GSM8K) and visual contexts (MathVista). Statistics date: March 5, 2024.

challenges in visual contexts is aligning textual and visual information to enable comprehensive

reasoning. Future work will benefit from creating more effective methodologies for this align-

ment, allowing visual LLMs to better understand and integrate multimodal data. Last but not least,

incorporating external tools and resources into LLM frameworks has shown promise in textual

mathematical reasoning [LBX24]. Tool-augmented models in visual settings could leverage dia-

grammatic solvers, geometric inference engines, or other specialized tools to enhance the LLMs’

ability to interpret and reason about visual mathematical problems.

9.1.2 Strategies for Self-Improvement

Supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF) on la-

beled data, such as human-collected datasets, play a crucial role in enhancing the performance

of LLMs on specialized tasks like mathematical reasoning. This process heavily depends on the

availability and quality of annotated data, which often poses a bottleneck in mathematics due

to the limited availability of high-quality labeled datasets. An emerging solution to this chal-

lenge involves leveraging model-generated synthetic data to expand the training datasets for LLMs

[SCA23, GPS23, CDY24]. Specifically, an LLM can undergo further fine-tuning using synthetic

data generated either by itself or by an external LLM.
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Pioneering efforts such as ToRA [GSG23], MathCoder [WRZ23], and MathGenie [LZR24]

have prompted teacher LLMs like GPT-4 [Ope23a] and Llama-2 [TMS23] to produce augmented

mathematical questions and solutions. Despite these advancements, it remains relatively unex-

plored how mathematical LLMs can directly benefit from self-generated synthetic data, bypassing

the need for external, more advanced teacher LLMs. Moreover, while initial research indicates that

LLMs may show improvement when trained on synthesized data during the early iterations, there

appears to be a plateau in performance gains in subsequent iterations. This suggests an inherent

upper bound to self-improvement that can be achieved through synthetic data alone. Identifying

and overcoming this upper bound will require innovative approaches that can stimulate contin-

uous learning and adaptation in LLMs, potentially involving more sophisticated data generation

techniques, iterative refinement processes, and mechanisms for evaluating and integrating novel

insights generated by the models themselves.

9.1.3 Retrieval and Tool-augmented Algorithms

An additional focus is on innovating retrieval and tool-augmented algorithms to amplify LLMs’ ca-

pabilities in rigorous reasoning and scientific discovery. Our prior work, Chameleon [LPC23], has

demonstrated that retrieval and tool-augmented LLMs can enhance the reasoning performance of

LLMs in mathematical and scientific reasoning within multimodal contexts. These benefits stem

from access to vision models, parametric knowledge, online resources, Python interpreters, and

specialized tools from promoted LLMs. This proof-of-concept idea is further verified in our sub-

sequent work, which integrates Wolfram—a computational and scientific tool—to address college-

level scientific problems. In the future, retrieval and tool-augmented algorithms for LLMs can play

important roles in achieving expert-level reasoning abilities in challenging areas by incorporating

more computational tools, scientific platforms, and domain aspects. For instance, this expansion

will involve augmenting LLMs to seamlessly utilize domain-specific tools and integrate expert

insights in biomedical research processes. Furthermore, by developing LLM agents capable of

autonomously retrieving online resources and integrating external feedback, such as execution

information and test case outcomes, these models could effectively address coding challenges,

exemplified by those in the International Olympiad in Informatics (IOI).
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9.1.4 Scientific Discovery and Autonomous Scientists

LLMs and VLMs have emerged as powerful tools for mathematical discovery, leveraging their vast

knowledge base and computational abilities to solve complex problems. The potential of LLMs in

this field has been significantly advanced by the introduction of FunSearch [RBN23], a novel evo-

lutionary procedure that has made substantial strides in the realms of extremal combinatorics, par-

ticularly with the cap set problem, and in tackling algorithmic challenges such as online bin pack-

ing. In scientific domains, LLMs have emerged as promising models in generating dermatological

diagnoses [LXB24], discovering statistical models [LFG24], predicting translation efficiency and

mRNA expression levels [CYL24], and designing scientific experiments [BMK23, HQC24].

In the future, it might be promising to design automated systems capable of proposing hy-

potheses, planning experiments, analyzing outcomes, and refining hypotheses. One example in the

medical domain could be the creation of LLMs and VLMs with a vast knowledge base spanning

biology, chemistry, and medicine, capable of interpreting a variety of data, including academic

papers, databases, and experimental results. These models will proficiently process diverse data

formats, from natural language and LATEXto amino acid and RNA sequences, enabling them to

interpret complex documents, answer intricate queries, and generate innovative hypotheses.

9.2 Conclusion

In this dissertation, we have explored the frontier of mathematical reasoning within the context

of language models, focusing particularly on multimodal and knowledge-intensive approaches.

Through the introduction of innovative benchmarks [LGJ21, LQC21, LMX22, LQC23], we have

systematically evaluated the abilities of large language models (LLMs) and vision-language mod-

els (VLMs) to process and understand complex mathematical and scientific concepts embedded in

real-world scenarios.

Our work has significantly advanced the field by developing new methodologies such as Inter-

GPS [LGJ21], a neuro-symbolic solver for geometry that achieves average human-level perfor-

mance for the first time in history, and Chameleon [LPC23], a tool-augmented reasoning frame-
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work that enhances the reasoning capabilities of LLMs through external computational tools. The

novel approach of dynamic prompting via policy gradient, referred to as PromptPG, has emerged

as a pivotal development, allowing for the dynamic selection of in-context examples via reinforce-

ment learning to enhance the few-shot learning capabilities of large language models. Additionally,

we introduced the Patch-TRM model [LQC21], which integrates patch-based cross-modal trans-

formers to enhance visual mathematical reasoning. These methodologies have not only achieved

state-of-the-art performance but have also opened new avenues for research in AI, particularly in

areas requiring deep multimodal understanding and the integration of external knowledge sources.

The journey of this research explored various aspects of mathematical reasoning within tex-

tual and visual contexts, revealing both the potential and limitations of current models. While

substantial progress has been made in textual contexts, visual mathematical reasoning remains a

formidable challenge, as evidenced by the less satisfactory performance in benchmarks like Math-

Vista [LQY23]. This highlights a crucial area for future research, where more robust and com-

prehensive benchmarks could be developed to push the capabilities of language models further,

especially in interpreting complex visual information.

Looking forward, the challenges that remain are vast yet invigorating. The observed perfor-

mance saturation in specific models prompts a deeper exploration into innovative training paradigms

and algorithm enhancements. We also foresee significant developments in self-improving systems,

which autonomously refine their capabilities through continuous learning cycles. Furthermore, the

integration of retrieval and tool-augmented algorithms will likely play a crucial role in enhancing

model performance across complex domains. Additionally, the pursuit of autonomous scientific

discovery systems presents an exciting frontier that could redefine how research is conducted.

In conclusion, the integration of AI into mathematical and scientific reasoning is just beginning.

This dissertation not only contributes significant knowledge to the academic community but also

opens numerous avenues for future research. The frameworks and benchmarks introduced provide

a solid foundation for further investigation, pushing forward the boundaries of what AI techniques

such as language models can achieve in complex reasoning tasks and facilitating scientific discov-

eries.
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