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ABSTRACT OF THE THESIS

A Recommendation System for Predicting Privacy Leaks in Mobile Traffic

By

Milad Asgari Mehrabadi

Master of Science in Computer Engineering

University of California, Irvine, 2019

Professor Athina Markopoulou, Chair

Today’s smart phones have access to personal stored data, including personally identifiable in-

formation (PII) that can be used to uniquely identify users. It is well-known that a wide range of

mobile applications transmit this data to remote servers, including their own servers, third-party

advertisers, and trackers, which clearly poses a threat to user privacy. The present study’s goal is to

detect PII in packets transmitted out of a mobile device, referred to as “privacy leaks”. This study

build on prior work that developed systems for intercepting each network packet and inspecting

it to detect PII, typically using deep-packet inspection (DPI) and/or machine learning techniques.

This thesis, develop a lightweight mechanism that can predict if an outgoing packet contains any

PII, based on minimal information, namely (i) the application name (package name) that generated

the packet and (ii) the second-level destination domain. The problem is formulated as a recom-

mendation system combining baseline and neighborhood predictors that exploit the similarity of

mobile app behavior and PII leak types. Two different datasets of popular apps are used to get

insights into privacy leak patterns. It is shown that the present framework can successfully detect

89% and 84% of PII in network packets on average while achieving F1 score as high as 0.97 and

0.91 in both datasets.
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Chapter 1

Introduction

As mobile devices have access to our personal and sensitive information to conduct their functions,

using the growing number of applications can cause privacy risks. Users cannot control the leak

of their personally identifiable information (PII) to a wide array of external servers. These external

servers may indeed need the PII for providing a service (e.g., the developer or application server),

or it may be for the purpose of tracking (ad servers, trackers and analytic services). Most of the

related work that tries to detect privacy leaks fall into there categories: (i) static analysis for source

code analysis like [4, 13], (ii) dynamic analysis and runtime analysis like [9, 34], and (iii) network

traffic analysis for monitoring network traffic [24, 26].

This thesis takes the network-based approach: the goal is to detect PII in outgoing packets transmit-

ted out of the mobile device, which is referred to as “privacy leaks”. Prior work has developed mo-

bile software for intercepting each outgoing network packet and inspecting it to determine whether

it contains PII, typically using deep-packet inspection (DPI) and/or machine learning techniques

with packet-based features [22, 24, 25, 27]. In this thesis, a lightweight mechanism is developed

that can predict whether a particular outgoing packet contains a PII or not, based only on minimal

information, namely (i) the name of the application that generated the outgoing packet and (ii)
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the destination domain that the packet is sent to. Such a lightweight system can be a front line of

defense: when the recommendation system predicts that a particular packet transmits PII out of the

device, it can trigger more heavyweight and accurate mechanisms based on DPI. Furthermore, as

mobile traffic becomes increasingly encrypted, deep-packet inspection is no longer possible, and

we need to be able to identify potential privacy leaks based on readily available information on

the device (application name) and network packet (destination domain) that cannot be encrypted

or obfuscated.

This thesis’ contributions are as follows. The problem of predicting whether a particular outgoing

packet is likely to contain a privacy leak of particular type (namely Android ID, Advertiser ID,

Email, Location etc.) is formulated as a top-N recommendation system. The author combines

several predictors, including (i) a baseline predictor that accounts for heterogeneity of leak numbers

and types among mobile apps and destination domains; (ii) a neighborhood predictor that exploits

the similarity of apps in terms of domains they sent PII to; and (iii) a neighborhood predictor

that exploits the fact that packets often leak several PIIs together and some leak types co-occur in

the same packet (e.g., Location, City and Zip Code). Two different datasets which are provided

by [23,25] are used in this thesis. These datasets collected from automatic interactions with popular

apps, basically a packet trace in which each packet is annotated with a list of PII it contains. The

first dataset has 400 apps (Antshield dataset), and the second one contains historical and current

versions of 512 popular Android apps which covers 7, 665 app releases over 8 years (App-Versions

dataset). These datasets are analyzed to obtain insights into privacy leak patterns, which guide

the design of the predictors, as well as for evaluation. It is shown that the proposed system can

successfully predict most leaks in the test data (more than 89% and 84% in the average case for

Antshield and App-Versions datasets, respectively) while achieving the F1 score up to 0.97 and

0.91 for Android ID and IMEI leak types for these datasets.

The rest of this thesis is structured as follows. Chapter 2 states the problem, presents the datasets

and highlights corresponding observations. Chapter 3 presents the predictors inspired by the pat-
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terns found in the dataset. Chapter 4 presents evaluation results. Chapter 5 reviews related work,

and finally Chapter 6 concludes the thesis and outlines future work.

3



Chapter 2

Problem Statement & Dataset Overview

2.1 Per-Packet Prediction of PII Leaks

Mobile applications send packets to different servers, regularly. These packets might contain one

or more different PIIs in packet header and/or payload. The goal is to find out for a given packet it

contains privacy leaks or not. As mentioned in Chapter 1, prior approaches detect these PII leaks

using DPI and/or machine learning with packet-based features [24]. In this thesis, recommender

system models are developed to predict leakage of PII using only two features: (i) application

name which has generated the packet, and (ii) the destination domain that this packet goes to. Both

of these features are readily available for each packet. App name is available on the device and can

be mapped to the outgoing packet. Also, it is possible to extract destination domain of each packet

using IP address from TCP/IP and HTTP/S headers or the URL address inside the unencrypted

packet payload. For this purpose, the recommender system framework is trained offline using the

available datasets and then it can be used for new incoming packets. This packet might contain a

PII (e.g., Location). Fig. 2.1 illustrates an overview of the problem definition. For each packet, the

source application that generates this packet and the destination address it goes to are available (the

4



features). The goal is to identify whether an outgoing packet has specific leak types by looking

only at application name and destination domain.

Location ✓
IMEI ✕

Advertiser ID ✓

Android ID ✕

Pre-trained RS

Packet

"1489453560079,3df2571f-20b2-45dd-865e-

e9b441ae058c": {

"dst_ip": "54.154.14.250",

"dst_port": 443, 

"headers": {

…

"host": "init.supersonicads.com", 

"user-agent": "Dalvik/2.1.0 (Linux; U; 

Android 7.0; Nexus 6 Build/NBD91Y)"

}, 

"host": "init.supersonicads.com", 

…

"protocol": "HTTPS",

"scr_port": 45492, 

"ts": "1489453560079", 

"uri": 

"/sdk/v6.4.17?platform=android&applicationKe

y=4cd970b5&location=XXXX&sdkVersion=6.4.1

7&advId=AdvertiserID"}

…

Leak Types

RS

Figure 2.1: PII prediction per-packet using a pre-trained recommendation system (RS)

In this thesis, we consider the most common PIIs of each dataset, which are categorized into four

different categories by [25]:

1. Device Identifiers: IMEI, IMSI, Android ID, Serial Number, Advertiser ID, Hardware Serial

2. Personal Information: Email, First Name

3. Location: City, Zip Code, Location coordinates

4. Credentials: Username

This thesis’ goal is to predict the PII leaks of each packet based on only two properties: (i) package

name of corresponding app and (ii) the second-level destination domain. Hence, throughout the

remainder of this thesis, we refer to packet and the pair of <app, domain> interchangeably.
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2.2 Datasets

To train the models, we use two different datasets in this thesis. These datasets collected by [25]

and [23] and contain a set of recorded packets exchanged between mobile applications and servers

by running UI/Application Exerciser Monkey [3]. Monkey is a tool that automatically interacts with

apps to simulates user activities.

Antshield Dataset. All entries in this dataset have been collected using AntMonitor [26]; an

open-source application for monitoring and collecting packet measurements from mobile devices.

The dataset consists of packet traces annotated with: the PII information (could be none, one or

more PII), the name of the application, server which the app is communicating with (here, to deal

with the sparsity of the matrix, the second-level domain of each server is considered, for example,

google.com instead of api.google.com), the protocol of the packet (HTTP or HTTPS), destination

IP and port number, timestamp, headers, payload data, and whether the packet is classified as a

background or a foreground activity. A foreground activity entails that a data packet is generated

and sent to the server while the user is interacting with the application. A background activity

implies that a data packet is generated and sent to the server automatically by the application

when the application window is not active. A background activity typically remains undetected

to the user, and can even occur while application is asleep or in standby mode. For this reason,

background activities are particularly interesting to monitor, as they could potentially reveal a

deliberate underhanded behavior of an application which may be indicative of a security threat.

This dataset was generated by simulating five minutes of user interaction with each of the 400 most

popular applications on Google Play. Within the packets generated during background activities,

there are 351 different domains, 203 applications, and 2, 779 PII leaks in total. These leak types

and number of corresponding packets containing each of them for background and foreground

activities is summarized in Table 2.1.
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# of Background # of Foreground
Non-leaks 6354 7562

Advertiser ID 1528 1690
Location 744 125

Android ID 319 904
City 66 59

Zip Code 37 36
IMEI 27 106

Serial Number 23 80
Username 16 66

IMSI 16 2
First Name 2 35

Email 1 0
Total Packets: 18205 8172 10033

Table 2.1: Number of packets per leak type (background vs. foreground) for Antshield dataset

# of packets
Non-leaks 26837

Advertiser ID 6726
IMEI 2670

Android ID 2487
Email 2247

Location 2237
Hardware Serial 1310
Other leak types 23140
Total Packets 67654

Table 2.2: Number of packets per leak type for App-Versions dataset

App-Versions Dataset. This publicly available dataset also includes packet traces of historical

and current versions of 512 popular Android apps over 8 years of app version history which covers

7, 665 app releases. These traces of packets have package name of each app, second-level domain,

protocol, time stamp and a list of PIIs that exist in each packet. These packet-logs are generated

by simulating of 5, 000 Monkey automated interactions and monitored using Mitmproxy [1]. To

avoid sparsity, all of the domains that different versions of an application is contacting with are

combined together. After this aggregation, we have 2258 unique domains and 512 applications.

Detailed information about this dataset is mentioned in Table 2.2.
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AdvertiserId(#leaks: 177)
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Leak

(a) Advertiser ID

Domains
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s

AndroidId(#leaks: 67)

No Leak

Unknown

Leak

(b) Android ID

Figure 2.2: Privacy leak patterns of apps-domains for Advertiser ID (a), and Android ID (b) for
Antshield dataset

Also, the summarized information of both datasets is mentioned in Table 2.3.

# apps # domains # leaking packets # non-leaking packets source
Antshield (Background) 203 351 2779 6354 [25]

App-Versions 512 2258 40817 26837 [23]

Table 2.3: Summary of considering datasets

2.3 Observations

As the datasets contain very few leaks for some of the leak types, Fig. 2.2 and Fig. 2.3 show the

matrix, and the number of unique leaks (in terms of <app, domain>) for the first two PIIs with

the highest number of leaks (Advertiser ID and Android ID for Antshield dataset and Advertiser ID

and Location for App-Versions dataset). Also, Advertiser ID is analyzed in detaild since it has the

highest number of unique leaks within considering leak types in both datasets. The ones marked

as red denote the existence of a PII leak for the corresponding <app, domain> pairs. Blue marks

represent the non-leaking pairs and finally, the gray ones show missing values.

Fig. 2.2, 2.3 show some biases in data. In other words, some apps send a specific leak type

to more different domains. The app with the highest number of domains in Antshield dataset is

com.myyearbook.m1 (MeetMe), a chatting app, which sends Advertiser ID to 20 different domains.
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Domains

A
pp

s
Advertiser ID(#leaks: 1219)

No Leak

Unknown

Leak

(a) Advertiser ID

Domains

A
pp

s

Location(#leaks: 419)

No Leak

Unknown

Leak

(b) Location

Figure 2.3: Privacy leak patterns of apps-domains for Advertiser ID (a), and Location (b) for App-
Versions dataset

The corresponding app in App-Versions dataset is com.withbuddies.yahtzee (YAHTZEE), a group

dice game, with 31 domains. Also, mopub.com, a monetization and analytical platform for mobile

app developers and publishers, receives Advertiser ID from the highest number of different apps

in Antshield dataset (16) and facebook.com receives Advertiser ID from 114 different apps in App-

Versions dataset.

In addition, it is worth mentioning that there are some talkative applications communicating with

multiple domains by sending PII regardless of its type. The first two talkative applications from

Antshield dataset are com.myyearbook.m and com.freecraft.pocket.edition that talk to 22 and 13

domains, respectively. Also, applovin.com and mopub.com, have the highest number of apps talk-

ing to them (16). Such an observation is shown in Fig. 2.4 which is a bipartite graph of Antshield

dataset for the background PII transmissions. In App-Versions dataset, mobi.MultiCraft with 35,

and com.withbuddies.yahtzee with 32 different domains are the first two talkative apps. Also,

googleapis.com (438) and google.com (133) are the first two talkative domains regardless of con-

sidering leak types.

Furthermore, by examining the correlation between leak types, it is observed that there are high

correlations between co-occurrence of leak types. Fig. 2.5 illustrates these correlations (Pearson

correlation) between different leak types for both datasets. For example, Fig. 2.5a shows that there
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vungle.com

appsflyer.com - 13

mbinc12.mb32b - 12

com.myyearbook.m1 - 22

applovin.com - 16

mopub.com - 16

facebook.com - 10

com.freecraft.pocket.edition - 13

Figure 2.4: Bipartite graph of the background leaks in Antshield dataset. Green nodes denote
domains and pink ones show the applications. The number in front of each node corresponds to its
degree.

are high correlations between Location, Zip Code, and City which accords with the fact that all of

them are for location-based services.

Furthermore, Fig. 2.6 and Fig. 2.7 show the similarity graph of the applications based on their

Advertiser ID leakage to common domains. Each node in this graph is an application, and the

edges show the similarity of these applications in terms of sending the Advertiser ID to common

domains. The value of this similarity is the number of common domains that two applications are

talking with. After running the community detection algorithm provided by the graph analysis tool,

Gephi [5], it is shown that these communities capture the most similar apps regarding a specific

leak type. For example, the purple community in Fig. 2.6 contains Talking Tom and Talking Hank

which are from the same developer and in the same category. Also, applications from the same

10
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Figure 2.5: Correlation between leak types for both datasets

developers are labeled in these figures (colors represent communities). The author hypothesizes

that this is due to the developers’ use of similar libraries/SDKs. This observation leads the author

to take advantage of the neighborhood models, seeking to exploit the fact similar apps (which are

talking to the common domains) are likely to exhibit similar leaks.

Fig. 2.8 shows the background vs. foreground activity for mbinc12.mb32b (a Free Music MP3

Player) for Antshield dataset. As shown in this figure, mbinc12.mb32b leaks City and Zip Code

only in the background. Besides, this figure demonstrates that there could be more domains in the

background for some apps. Therefore, considering background activities is interesting since the

user is not directly aware of them, and they could be indicative of a security threat.
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com.outfit7.mytalkinghank1.1.0.807

com.weather.Weather7.4.1

com.weather.Weather7.7.1

com.outfit7.mytalkingtomfree3.9.3.143
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Figure 2.6: App similarity graph and communities based on Advertiser ID (Antshield dataset)
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Figure 2.7: App similarity graph and communities based on Advertiser ID (App-Versions dataset)
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Chapter 3

A Recommendation System for Per-packet

PII Prediction

3.1 Recommendation Systems

In this thesis, the problem of leak prediction is formulated as a binary recommendation system.

Recommendation systems are widely used to predict unknown ratings. Netflix Cinematch [2]

aims to predict unknown movie ratings using the known ratings. Similarly, Amazon [19] uses

recommendation systems to show relevant products to its customers based on the known ratings

and user interests. However, their usage has been extended to other domains same as database

queries [6] and web services [31]. Such services, Netflix for example, could represent their data

as a matrix where the rows in this matrix represent the users and the columns denote movies. The

matrix entries are the ratings of the corresponding movies. In this thesis context, for each leak type

a similar matrix is built, where rows represent apps and the columns denote domains these apps

talking to, as illustrated in Fig. 3.1. The entries of this matrix determine whether the corresponding

leak type exists (“1”), does not exist (“0”), or is missing (“?”).
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Figure 3.1: Leak prediction problem as a recommendation system framework. “1” represents leak,
“0” non-leak, and “?” shows missing values.

The motivation to use recommendation systems is that the PII leak detection can be defined in

this context, since unknown PII leaks (unseen packets) can also be predicted using the existing

information.

Background. In the classic Netflix recommendation system problem, users’ movie ratings are

contained in a Rating Matrix R, such that each row is a user, and each column is a movie. It

follows that entry rij of this matrix holds useri’s rating for moviej . There are some missing

values inside the matrix which are unknown ratings. The goal of this problem is to predict these

missing values. Generally, there are two techniques for recommendation systems: content-based

filtering and collaborative filtering [7]. In content-based filtering, the idea is to look at each row

individually and recommend items based on the user profile. In contrast, collaborative filtering

considers all the data of the rating matrix and explores the existing patterns of the whole matrix.

In collaborative filtering, there are two main approaches: neighborhood and latent-factor. The

neighborhood approach could either use the similarity of users or movies based on the ratings.

The latent-factor approach finds the statistical similarity of users in the hidden structure of data
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that is called latent factors which are factorized version of the rating matrix [7]. In this thesis, the

approach is collaborative filtering, and the predictions are made based on the neighborhood model.

To formulate the problem in a recommendation system framework, we build the table of app-

domain as a rating matrix for each leak type l. Let Rl be such a matrix. Each element of this

matrix, rlij , is the existence of the leak type l in at least one packet going from the application i

to the domain j (Fig. 3.1). To make the predictions, 20% of the known data is selected to be test

data and the rest as the training data. To deal with overfitting caused by the sparsity of the data,

regularization factors are added in the models. Finally, to find the value of these factors, 5-fold

cross-validation technique is used. The model is built in a hierarchical approach, starting with a

basic baseline predictor and gradually improving it.

3.2 Baseline Predictor

At the beginning of the prediction, a simple predictor which does not consider the structure of the

entire data like collaborative filtering does, is used. It uses simple averaging and finds biases in the

data. Intuitively, it captures the tendency of applications for PII leakage and popularity of domains

for receiving a PII. To expose such biases the least squares problem and its optimization solution is

utilized. In this thesis context, there are biases for applications and domains, which define ratings

relative to the average. Let r̄l be the average rating for the leak l and bli the bias of each application

i relative to r̄l. Parameter blj would be the bias for domain j. In other words, parameters bli and blj

capture the deviations of application i and domain j compare to the average [17]. Assuming r̂lij to

be the predicted rating for leak l of pair < appi, domainj >, The Baseline Predictor (BL) for this

pair is:

r̂lij = r̄l + bli + blj (3.1)
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For simplicity of notation, we remove superscript l, and we state our equations for one leak type.

To find the biases (bi and bj), one option is to solve Eq. (3.2) which minimizes the Root Mean

Square Error (RMSE) of the predicted value and the real value of the ratings for training data

(< i, j > pairs) [17].

min{bi,bj}
∑
<i,j>

(rij − r̂ij)2 + λ(
∑
i

b2i +
∑
j

b2j) (3.2)

In Eq. (3.2), the second term (λ(
∑

i b
2
i +

∑
j b

2
j)) is added to overcome the produced overfitting.

Removing these biases from the rating matrix eliminates the distorted view of application leaking

patterns and provides a better prediction [7]. Therefore, the Neighborhood Predictor is built over

the error matrix (R̃) (Eq. (3.3)).

R̃ = R− R̂ (3.3)

3.3 Neighborhood Predictor

Neighborhood model is a popular approach in recommendation system. The intuition is that the

prediction can be made using information obtained from similar items and/or users. In the con-

sidering problem, we can define the neighborhood either in terms of the application or the domain

similarities. This thesis chooses to take into account the application similarities with respect to the

domains they contact. In particular, two apps are similar if they are sending packets to the same

domains. In other words, similar applications exhibit similar leaks to the common domains. The

neighborhood models are being used as an adjusting factor for the baseline. The first main property

of neighborhood-based methods is explainability which tries to explain the reasons for predictions

and the effectiveness of users’ ratings to the movies. The next feature is its ability to handle new

ratings. These kinds of models handle new incoming users to the system as soon as they provide
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some ratings to the system [17]. This property is useful in privacy leak prediction context in which

the goal is to predict the PII leakages of new application. Neighborhood relies on pairwise statis-

tical correlation [7]. Pearson correlation, which is a general form for cosine similarity is used for

this purpose.

The proposed model uses the corresponding rows of applications in the error matrix (R̃), and

performs the summations on the common domains for each PII leakage in the training data (k in

Eq. (3.4)). Let matrix D be the similarity matrix of apps. Each entry dij of this matrix would be

the similarity value for each pair of apps (Eq. (3.4)). For each application i, ¯̃ri is the mean value

of ratings given by application i in matrix R̃.

dij =

∑
k(r̃ik − ¯̃ri)(r̃jk − ¯̃rj)√∑

k(r̃ik − ¯̃ri)2
√∑

k(r̃jk − ¯̃rj)2
(3.4)

Using matrix D, it is possible to define neighborhood Li for each application i, which contains a

set of applications that have the L largest values of |dij| for all j’s (j 6= i). The weighted sum of the

ratings for the apps in their neighborhood is the neighborhood predictor. These weights correspond

with the defined similarity. Using this weighted sum, which is normalized by the value of weights,

we leverage Eq. (3.5) as the neighborhood predictor for each pair of < appi, domainj >.

r̂Nij =

∑
k∈Li

dikr̃kj∑
k∈Li
|dik|

(3.5)

Let the corresponding rating matrix for the Neighborhood Predictor be R̂N .

Taking neighborhood information into account, the Baseline & Neighborhood Predictor (BL+N)

is as follows:

R̂BL+N = R̂+ R̂N (3.6)
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3.4 The Weighted Combination of the Predictors

Ensemble prediction exploits and can bring diverse predictors. One way of the combination is

just doing a simple averaging. The more efficient way is to combine the predictors by learning an

importance weight for each of them. This weight is proportional to the accuracy of each model.

For the Neighborhood Predictor, we define

wN
ij =

∑
k∈Li

dik∑
k∈Li

dik + L1

as the weight of the predictor. The corresponding matrix for these weights isWN . The value L1

is the parameter that needs to be estimated for each leak type. This weight is close to 1 for higher

similarity within the neighborhood, and it is close to 0 for lower similarity. By adding BL to the

weighted neighborhood, the weighted version (Eq. (3.7)) is defined. This thesis calls it Baseline

& Weighted Neighborhood Predictor (BL+WN) for each leak type l. Note that WN
l and R̂N

l are

multiplied using the Hadamard product which is the element-wise multiplication.

R̂BL+WN
l = R̂l +WN

l � R̂N
l (3.7)

3.5 Weighted Correlated Leak Type Predictor

Another predictor which is referred to as Weighted Correlated Leak Type Predictor (WCLT) is

the result of the observation in Fig. 2.5. This predictor is the ensemble of different Baseline &

Weighted Neighborhood Predictor of correlated leak types. Likewise, for each leak type a similar

weight is defined, which is proportional to the correlation of leak types:

wC
i,j =

corr(i, j)

corr(i, j) + L2

20



Where i is the leak type we are predicting for, and j would be any leak type which correlates with

i. L2 needs to be estimated here as well. Putting it all together, the final predictor would be Eq.

(3.8) which is defined as Weighted Correlated Leak Type Predictor (WCLT) for each leak type l.

The set L is the set of all leak types that are correlated with leak type l.

R̂WCLT
l = (R̂l +WN

l � R̂N
l ) +

∑
l′∈L

wC
l,l′ · (R̂l +WN

l � R̂N
l )

R̂WCLT
l = R̂BL+WN

l +
∑
l′∈L

wC
l,l′ · R̂BL+WN

l′ (3.8)
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Chapter 4

Evaluation

4.1 Setup

Datasets. The datasets which are used in this thesis, are provided by [23, 25], and contain pack-

ets generated by different Android apps using automated interactions, as described in Chapter 2,

Section 2.2. For Antshield dataset since it has information about background activities, only back-

ground activities are considered. For App-Versions dataset, since it contains different versions of

applications, the corresponding domains of apps (regardless of versions) are aggregated. Then, for

each leak type, a binary rating matrix is built, as described in Chapter 3, Section 3.1.

Tool. The implementation of the proposed predictors are with the help of Surprise [15], which is

a Python library for recommendation system purposes. Also, for evaluation part which compares

recommendation system results with baseline machine learning classifiers, the machine learning

package of Python is utilized, which is provided by [20].

Parameters. All parameters, i.e., λ (regularization term for baseline predictor), L1, L2 (for the

neighborhood and correlation weights, respectively) and |L| (the neighborhood size), are estimated
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using 5-fold cross-validation. These parameters are learned for each leak type separately. In order

to reduce the impact of overfitting and underfitting in the predictions, the hyper-parameters of

machine learning classifiers (i.e., decision tree, random forest and AdaBoost) are chosen using

grid search and cross-validation techniques to find the best model.

Metrics. To evaluate the proposed model, 80% of non-missing data are sampled as the training

data and the rest as the test data. To see how well the proposed models can predict ratings for each

leak type, RMSE for the test set is used as a measurement. The experiment is run multiple times

using cross-validation with different test sets and average them. Also, to evaluate the performance

of the top-N recommendation system the F1 score and hit ratio are used.

Fig. 4.1 and 4.2 illustrate and compare the RMSE of different predictors per leak type for both

datasets (sorted by the number of leaks present in the dataset). Using the weighted neighborhood

and the correlation of leak types, the error can be improved. Also, Fig. 4.1 shows for most of the

leak types (e.g., Android ID, Advertiser ID, and Serial Number) WCLT has a slightly better error

compared to BL+WN.

As shown in Fig. 4.1 and 4.2, as the number of leaks decreases, there is a reduction in the average

RMSE values. Therefore, the lower values of RMSE for the leaks on the right side of Fig. 4.1

and 4.2 are due to the lack of data points inside the rating matrix. Hence, most of the values are

zero, and also the predicted values are close to zero. This sparsity of PII data points causes the

lower RMSE. In general, as our predictor sees more leaks in the training phase, it should perform

better (due to reduction in overfitting). Therefore, although RMSE is low, some of leak types like

First Name, suffer from a poor predictor. Hence, RMSE cannot be a good representative of how

well a specific model performs. To arrive at a better evaluation for the models, the performance is

measured by finding the top-N recommendations.

In this thesis context, for each data point in pair of< appi, domainj > from the test set, the ratings

given by appi for domainj and the rest of domains using the considering model is predicted. After
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Figure 4.1: Average RMSE of the test sets for each predictor per leak type (Antshield dataset)
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sorting this list in descending order, we have a ranked list of ratings. By picking the first N items

from this ranked list, we have the top-N recommendations of each model. When domainj is

within this N -sized window of recommendations, then domainj is recommended to appi and we

have a hit.

The classification (confusion matrix) of the results for these recommendations is stated in Table

4.1 which is given by [14].

Recommended Not recommended
Preferred True-Positive (TP) False-Negative (FN)

Not preferred False-Positive (FP) True-Negative (TN)

Table 4.1: Classification of results for the top-N recommendation system

Also, following metrics can be computed using values stated in Table 4.1.

Precision =
TP

TP + FP
, True Positive Rate (Recall) =

TP
TP + FN

False Positive Rate =
FP

FP + TN
, Accuracy =

TP + TN
FP + TP + FN + TN

F1 Score = 2 · Precision · Recall
Precision + Recall

4.2 Using the Correlation of Leak Types

Fig. 4.3 and 4.4 show the comparison of WCLT, BL+WN, BL+N and BL predictors of Advertiser

ID and Location for Antshield dataset (test set). As illustrated in these figures, WCLT performs

better than the other predictors after some N (N = 23 and N = 7 for Advertiser ID and Location,

respectively) in terms of F1 score (Fig. 4.3a and 4.4a). The reason is the lower rate of false

positives for aforementioned leak types after these N values (Fig. 4.3b and 4.4b). Since Location

has a higher correlation with the other leak types (Fig. 2.5a), its WCLT benefits from a higher

improvement compare to other leak types, like Advertiser ID. Fig. 4.3c and 4.4c which is the rate
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of true positives vs. false positives, illustrate this fact. Also, area under curve (AUC) for these leak

types illustrated in Fig. 4.3d and 4.4d. Also, in terms of accuracy, as illustrate in Fig. 4.3e and Fig.

4.4e, WCLT performs better compared to the other recommendation system models.

Fig. 4.5 illustrates comparison of our different recommender system models of Advertiser ID for

App-Versions dataset. As Fig. 4.5a shows, by using correlation of leak types, F1 score improves

(after N = 10). That is because of the lower rate of false positives after N = 10 (4.5b). Also,

based on Fig. 4.5c, the ratio of true positives vs. false positives is higher for WCLT compared

to other predictors. Fig. 4.5d shows the AUC values for these models. In terms of accuracy, as

illustrated in Fig. 4.5e, WCLT has a higher accuracy per each N compared to other proposed

recommendation system models (after N = 4).

4.3 Optimal WCLT

In order to compare the proposed recommendation system with other machine learning models, the

value ofN with the highest F1 score for WCLT is chosen and fixed. Hence, the results are provided

based on the best value of N for each leak type throughout the rest of this thesis. Besides, in order

to have a more fair comparison, the results for the first six leak types in terms of number of PII

leaks in the scope of considering leak types, are reported for both datasets.

Fig. 4.6 and 4.7 show the F1 score (a) and the average hit ratio (b) for WCLT per leak types (having

the same order as in Fig. 4.1 and 4.2) for a given N (N with the best F1 score). The F1 score in

Fig. 4.6a and 4.7a, indicates the rate of true positives compared to the false positives and false

negatives. Fig. 4.6b and 4.7b show the average ratio of leaks captured by the model compared to

the number of leaks exist in the test set (hit ratio). For example in Fig. 4.6b, on average WCLT

with N = 24 (which has the best F1 score between different values of N ) reveals 96% of packets

containing Advertiser ID.
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Figure 4.5: Performance of different recommender system models of Advertiser ID in App-
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4.4 Comparison of WCLT to Baselines

In this section, the optimal WCLT model is compared to the state-of-the-art that uses machine

learning models, namely decision tree and AdaBoost classifiers. To train the classifiers the apps

and domains are used in one-hot representation as features, which are the same inputs for the rec-

ommendation system framework. Also, random forests are trained. Because of the structure of

data, which has apps and domains as features, random forests suffer the lousy performance. So,

the results of decision tree and AdaBoost are reported here. As illustrated in Tables 4.2 and 4.3,

AdaBoost has no significant improvement over our datasets. So, only decision trees are compared

with WCLT model. For most cases like Advertiser ID in Antshield dataset and Hardware Serial

in App-Versions dataset, F1 score of WCLT is better than decision tree, as mentioned in Tables

4.2 and 4.3. Also based on Table 4.2 for Antshield dataset, WCLT has lower false negative rates

in comparison with decision tree, for most cases. In terms of false positive rate there is no sig-

nificant improvement by using WCLT over Antshield dataset. Similarly, based on Table 4.3 for

App-Versions dataset, WCLT ends up with a lower false negative rate for most of the leak types

(e.g., IMEI). However, both models have nearly similar false positive rates. Since the goal is to

predict PII leaks, false negatives which are misclassified PII leaks, are more important than false

positives. So, WCLT is a better option when we are considering only apps and domains as features.

4.5 WCLT Compared to Deep-packet Inspection

As mentioned in Chapter 1, state-of-the-art uses deep-packet inspection to predict PII leaks ( [24,

25, 27]). In DPI, beside apps and domains, they extract more features from packet headers and/or

payload [27]. By means of these packet-based features (bag of words from key-values extracted

from each packet, Fig. 2.1), classifiers are being trained. The author trains decision tree classifiers

given by [25] on only Antshield dataset, since the header and payload information are available for

31



Method Leak Type F1 Accuracy FN Rate Recall Precision FP Rate

Decision Tree

Advertiser ID 0.43 0.74 0.65 0.34 0.60 0.08
Android ID 0.5 0.94 0.6 0.4 0.66 0.01
Location 0.90 0.99 0.16 0.83 1 0.0

City 0.44 0.96 0.5 0.5 0.4 0.02
Zip Code 0.66 0.98 0.33 0.66 0.66 0.007

IMEI 0.0 0.97 1 0.0 0.0 0.0

Ada Boosting

Advertiser ID 0.45 0.74 0.63 0.36 0.60 0.09
Android ID 0.5 0.94 0.6 0.4 0.66 0.01
Location 0.9 0.99 0.16 0.83 1 0

City 0.44 0.96 0.5 0.5 0.40 0.02
Zip Code 0.66 0.98 0.33 0.67 0.67 0.007

IMEI 0.0 0.97 1 0.0 0.0 0.0

WCLT (best N )

Advertiser ID (N = 24) 0.94 0.96 0.035 0.96 0.92 0.11
Android ID (N = 7) 0.97 0.99 0.06 0.93 1 0.002
Location (N = 1) 0.84 0.99 0.26 0.73 1 0.0

City (N = 4) 0.46 0.94 0.15 0.85 0.31 0.08
Zip Code (N = 1) 0.78 0.99 0.11 0.88 0.72 0.009

IMEI (N = 1) 0.33 0.98 0.0 1 0.25 0.0

Table 4.2: Comparison of WCLT over the best N with decision tree and AdaBoost trained on
Antshield dataset using apps and domains as features

Method Leak Type F1 Accuracy FN Rate Recall Precision FP Rate

Decision Tree

Advertiser ID 0.8 0.96 0.22 0.77 0.84 0.015
Location 0.78 0.98 0.27 0.72 0.84 0.004

Email 0.69 0.98 0.36 0.63 0.76 0.007
Android ID 0.84 0.98 0.17 0.82 0.86 0.004

IMEI 0.86 0.98 0.15 0.84 0.88 0.004
Hardware Serial 0.62 0.98 0.44 0.55 0.71 0.004

Ada Boosting

Advertiser ID 0.8 0.96 0.22 0.77 0.83 0.016
Location 0.77 0.98 0.27 0.72 0.83 0.004

Email 0.69 0.98 0.36 0.63 0.76 0.007
Android ID 0.84 0.98 0.17 0.82 0.86 0.004

IMEI 0.86 0.98 0.15 0.84 0.88 0.004
Hardware Serial 0.62 0.98 0.43 0.57 0.68 0.005

WCLT (best N )

Advertiser ID (N = 7) 0.80 0.96 0.22 0.77 0.82 0.018
Location (N = 7) 0.81 0.98 0.22 0.77 0.85 0.004

Email (N = 2) 0.60 0.96 0.05 0.94 0.43 0.03
Android ID (N = 4) 0.86 0.99 0.13 0.86 0.85 0.006

IMEI (N = 4) 0.91 0.99 0.04 0.95 0.87 0.005
Hardware Serial (N = 1) 0.71 0.98 0.22 0.77 0.65 0.008

Table 4.3: Comparison of WCLT over the best N with decision tree and AdaBoost trained on
App-Versions dataset using apps and domains as features

this dataset. The measurements of this experiment are summarized in Table 4.4. Since we have

more PII leaks for the first two leak types (i.e., Advertiser ID and Android ID), the F1 score is close
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enough to the DPI approach. For the rest of leak types which we have fewer PII leaks, by adding

more features using deep-packet inspection we will have more accurate and precise models with

higher F1 score, which is not surprising. Basically, by adding more rules (features) inside decision

trees, the rate of false positives decreases. Therefore, higher precision leads to a higher F1 score

for the prediction model. Comparison between Table 4.2 and Table 4.4 confirms these findings.

Method Leak Type F1 Accuracy Recall Precision

Decision Tree

Advertiser ID 0.96 0.96 0.94 0.98
Android ID 0.94 0.94 0.92 0.97
Location 0.98 0.98 0.97 0.99

City 0.95 0.95 0.92 0.98
Zip Code 0.92 0.92 0.91 0.94

IMEI 0.96 0.96 0.94 0.97

Table 4.4: Evaluation of decision tree trained on Antshield dataset using deep-packet inspection
and key-value pairs in header/payload as features
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Chapter 5

Related Work

Leak Detection. Detection of privacy leaks by mobile applications has been previously addressed

by three different approaches. The static analysis approach inspects decompiled .apk files without

any runtime analysis to capture privacy violations by analysis of the control flow graph and tracking

Android callbacks which are responsible for returning various information like location [4, 10, 12,

13] and mining permission-set of applications and their corresponding API calls [30]. Furthermore,

some of the libraries which are used by the app developers are a source of potential privacy leaks

[18].

In the dynamic analysis approaches, they perform runtime analysis to detect information leakage.

Running such an examination requires rooting the Android device to track memory references [23].

TaintDroid [9] and VetDroid [34] are commonly used in the dynamic analysis. DroidScope [32]

captures more detailed native and Dalvik instruction traces regarding information leakage through

Java and native components. Also, dynamic analysis approach has been explored by [8].

Finally, the network traffic analysis or VPN-based approaches monitor all the Internet traffic of

the mobile device in order to capture PII contained in IP traffic. The datasets which have been

analyzed in this thesis were obtained using this approach. State-of-the-art tools using this approach
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are PrivacyGuard [29], AntMonitor [26], HayStack [22], and ReCon [24] which uses machine

learning to identify PIIs. Recently, a machine learning approach was applied to detect ad-requests,

in addition to PIIs, in outgoing packets [27].

The main drawback of these approaches is that they all suffer the overhead of analysis. For exam-

ple, static analysis has the decompilation process and analysis of the code. In the dynamic analysis,

we have to root the phone and monitor flows, and finally, in VPN-based techniques, DPI costs a

lot in terms of resources and computations. In this thesis, a new lightweight method, which uses

minimal information related to each packet (namely the application package name and destination

domain) is proposed, that has a lower overhead, which is important when applied in real-time on

every outgoing packet on the mobile device. For packets where a potential PII is detected, a more

heavyweight and accurate (DPI-based) mechanism can be applied, but this would be only a sub-

set of the packets. Furthermore, with the increased use of encryption, it is important to rely on

minimal, easily accessible features to detect PII.

Similar Datasets. There are similar datasets to the ones that are used in this thesis, typically cap-

tured using a VPN-based approach. The study of [21] used a dataset that has been collected using

Lumen [22], to detect third-party advertising and tracking services. This dataset has information

of flows as wells as app permissions. To identify PII leakage using machine learning, ReCon [24]

has collected packet traces as well.

Blacklisting. There is also prior work on analyzing IDS logs and blacklisting malicious sources

which follows a similar approach: they predict future attacks based on the observed attacks. In

Highly Predictive Blacklisting (HPB) [33] Zhang et al. have defined similarity between victims

based on their common attackers and have formulated the problem of future attack prediction as

Google’s PageRank using this similarity metric. Soldo et al. [28] predict future attacks using a

recommendation system setup. Katti et al. [16] have studied the concept of correlated attacks by

considering the correlation among victims. Freudiger el al. [11] have studied the forecasting attack

sources based on the collaboration of victims in a privacy-preserving way.
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Chapter 6

Conclusion

In this thesis, the problem of privacy leak prediction, on a per-packet basis based on only two fea-

tures, as a recommendation system has been studied. The proposed predictors have been designed

inspired by the leak patterns observed in two relevant dataset ( [23,25]). The proposed recommen-

dation system performs well for most of the leak types, and it can successfully detect 89% and

84% of considering leak types on average for Antshield and App-Versions datasets while the best

F1 score achieved was 0.97 and 0.91 for Android ID and IMEI detection, respectively.

Directions for future work include the following: (1) look into other datasets that provide informa-

tion about the underlying causes of the observed patterns (e.g., libraries and SDKs which were not

available in our dataset) (2) incorporate additional features external to the network dataset (e.g.,

category of apps etc.) (3) implement our system on a mobile device as a first-line of defense which

can trigger further deep-packet inspections.
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