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Abstract

Making Federated Analytics With Strong Privacy Practical

by

Kunlong Liu

Federated analytics, a way to perform analysis without collecting the raw data in a cen-

tral place, has many applications nowadays. For example, Google trains next-word prediction

models from mobile devices without collecting users’ typing activities. Compared with tra-

ditional centralized approaches, federated analytics is preferred because federated analytics

doesn’t require devices to share their raw data with some central server since sharing raw

data can be risky. The central server might abuse the raw data and there are chances of data

breaches. However, achieving rigorous privacy guarantees for federated analytics can still be

challenging due to the tension between functionality, privacy and efficiency. For example, one

straw man solution is to apply general-purpose secure multiparty computation techniques,

which meets the functionality and privacy goals but is expensive or even impractical for some

queries.

A research question is, can we build federated systems that provide significant function-

alities, rigorous privacy guarantees and are efficient at the same time? Our key insight is that

there are ways to tailor the protocol and the system design for target applications such that

the costs become practical and efficient while functionality and privacy guarantees are still

provided.

As a step to answer this research question, we design and build three federated systems

that target at different types of real queries, including machine learning tasks, graph queries

and statistical queries from health literature. For both machine learning tasks and graph

queries, we build systems that guarantee privacy without trusted cores, scale to millions of

vi



devices, and have a low cost compared to previous works. For statistical queries, we build

systems for tens or hundreds of health systems and provide same accuracy as centralized

baseline while ensuring privacy for complicated statistical queries.
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Chapter 1

Introduction

The rapid growth of personal data coupled with impressive advances in data science have

revolutionized the world in many aspects. For example, companies use the data to build

powerful tools to provide people with more convenient life and biomedical researchers learn

from the data to gain fundamental insights into the basis of human health and disease and to

make better decisions about disease treatment and prevention.

However, personal data can be extremely sensitive and sharing with analysts has signif-

icant privacy concerns. For example, in the scenario an analyst wants to train a recurrent

neural network (RNN) to provide auto-completion suggestions for the android keyboard [1],

devices need to share their typing history with the analyst, which may contain sensitive in-

formation including password, addresses and etc. Similarly, biomedical researchers may want

to learn about some disease [2] and need health systems to share electronic health records

data, which contains sensitive information such as age, ethnicity, addresses, smoking history

and other medical information.

The traditional approach, where the analyst collects the data in a central repository, can-

not address the increasing privacy concerns of the shared data. Firstly, this approach requires

users to trust the analyst, otherwise users will not share the data. In the auto-completion sug-
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Introduction Chapter 1

gestions for the android keyboard [1] case, mobile users need to trust that the company will

not abuse. In the biomedical case, the analyst needs to sign contracts with different health sys-

tems and this process can take months to years and some health systems may not be willing

to sign contracts at all. Secondly, centralizing the data is highly susceptible to data breaches,

especially in bulk [3, 4, 5, 6] and thus sharing raw data with analysts increases the risk of

compromising users’ data.

Federated Analytics is one diagram to perform analysis on distributed data that is owned

by multiple parties under the coordination of a central entity without the raw data leaving

local parties. The term was first coined by Google in 2020 [7] and one popular application of

federated analytics is federated learning (FL). The core principle of federated analytics is to

keep the raw data stored locally on users’ devices, and only making the aggregated results

across many devices available.

At first glance, federated analytics looks privacy-preserving since users’ raw data will not

leave users’ devices. However, there are many possible attacks. Firstly, even users don’t share

the raw data, they still need to share some intermediate results with the analyst. For example,

in federated learning, one common diagram requires each user to share its local model for

aggregation, which has been shown to be vulnerable to inference attacks [8, 9, 10]. Attackers

can reverse engineer to learn about or even reconstruct the raw data from the shared local

model. Second, federated analytics assume that the analyst or the central server and the other

users are honest. That is, these parties will not deviate from the protocol and try to learn about

the data by compromising the system. In the federated learning case, when aggregating local

models from users, a malicious server can manifest one local model by only including the

victim’s model in the aggregation. Similarly, compromised users can also provide malicious

inputs to learn about the victim’s data.

To guarantee privacy, many cryptographic based solutions are proposed. One approach

is to apply local differential privacy (LDP). In LDP, devices locally add noise to their updates

2
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before submitting them for aggregation [11, 12, 13, 14, 15, 16]. On the plus side, the privacy

guarantee in LDP does not depend on the behavior of the aggregator, as devices add noises lo-

cally. Further, LDP is scalable as it adds small device-side overhead. However, on the negative

side, since each device perturbs its update, the final results can have a large error.

A similar approach in statistical queries is distributed approximation [17, 18]. Since com-

puting the exact results require devices to share the raw data, someworks propose methods to

approximate the results that can be computed in a way that only summary-level information

will be leaked. This only applies to the setting where each party holds data for many individu-

als, e.g., health systems containing health records of many patients. This approach adds little

overhead and the privacy does not depend on the behavior of the aggregator. However, the

final results can have a large error if the underlying assumptions are not met. For example,

different data distribution across health systems and not enough number of samples.

An alternative is to use trusted hardware, e.g., Intel SGX [19]. Secure hardware ensures by

hardware design that data and computation within the secure hardware cannot be accessed

by anyone else. These systems add negligible overhead and introduce no errors, but trusting

the hardware design and manufacturer is a strong assumption [20, 21, 22].

To have good accuracy without relying on trust of parties, many works use cryptographic

tools, such as secure multi-party computation (MPC) and homomorphic encryption (HE) [23,

24, 25, 26, 27]. At a high level, users encrypt their updates before submitting to the aggregator.

The aggregator performs computation over the encrypted data and asks users to decrypt the

results before releasing. Works in this category can be further divided by their threat model,

e.g., whether the aggregator is honest-but-curious or can be active malicious. Crypto-based

solutions usually have good accuracy since it does the exact computation as the traditional

centralized approach but in an encrypted fashion. The down side is the performance, espe-

cially for a strong threat model where parties can be malicious. Some existing works show

that some federated analytics systems are super expensive or even impractical [28, 29, 30].

3
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In this dissertation, we focus on methods using cryptographic tools to achieve privacy-

preserving federated analytics due to its advantages of good accuracy and no trust on single

parties. The research questionwe ask is, Canwe build federated systems that provide significant

functionality, provide rigorous privacy guarantees, and are efficient at same time?

Federated analytics is a common diagram and can be used to answer many types of

queries. As a first step to answer this question, we pick three different real-world queries,

namely machine learning tasks (Chapter 3), graph queries (Chapter 4) and statistical queries

(Chapter 5). They differ from each other in several aspects and we will detail it in the later

chapters.

Machine learning tasks, or federated learning, has seen many applications in industry [1,

31, 32, 33]. In FL, mobile devices download the latest model parameters from the server,

perform local training to generate updates to the parameters, and send only the updates to

the server. The server takes the average of the updates and update the global model for next

round of training. Graph queries have also seen many applications [34, 35] and they differ

from federated learning in how updates are computed. In FL, the computation of local updates

are independent from other users but for graph queries, the computation of local updates

requires inputs from other users (neighbors), which leads to a different and more complicated

computational model than FL and brings more privacy risks. Statistical queries are motivated

from real world analysis across multiple health systems [2] and differ from previous two

queries in the global aggregation part. In FL and graph queries, the aggregation operation

is simple averaging. But in statistical queries, the aggregation operations are usually much

more complicated. The takeaway here is these three types of queries are all important in real

world and they represent three different types of applications.

4
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1.1 Challenges and Goals

The challenge of building practical federated analytics systems lies in addressing the ten-

sion between functionality, privacy and efficiency. Existing works usually achieve two of the

three goals and fail to meet the other one. For example, LDP-based works meet privacy and

efficiency goals but fail to meet our functionality goal due to the accuracy issues. Works as-

suming not strong enough adversaries can meet the functionality and efficiency goal but not

the privacy goal. Instead, works assuming no trusted cores such as Orchard [28] fail to meet

the efficiency goal but meets the other two goals. For our target queries, we have not yet seen

systems that can satisfies these three goals at the same time.

Goal 1: Functionality. We want the system to support our target queries but we don’t aim

to be general-purpose. For example, in FL, we focus on a specific training algorithm called

FedAvg [36]. In graph queries, we are also limited to a certain set of queries. This is because

previous works have shown that a general-purpose system with strong privacy are super

expensive and impractical [28, 30]. However, we do aim to provide results as if the data were

centralized and the analysis was done over the centralized data. The intuition behind is the

loss of accuracy for existing methods is usually hard to quantify, which means the system

might not produce reliable results in some scenarios.

Goal 2: Strong privacy guarantees. We want the system to provide rigorous and strong

privacy guarantees. For different scenarios, we have different threat models. However, the

threat models must be practical. For example, in FL, since our target setting is millions of

devices and a central server, we would like the system to tolerate compromise of a fraction of

devices and compromise of the server, since it’s easier for an adversary to compromise some

devices and deviate from the protocol and it’s also possible for some attackers to compromise

the company servers. However, in a setting where only tens of hospitals participate in the

system, it’s unlikely that a hospital will deviate from the protocol.

5
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Goal 3: Efficiency. Of course the system overhead should be low. For different scenarios,

we focus on different metrics. In FL and graph queries, since mobile devices have limited

computational power and network bandwidth, we would like the device-side cost to be as

low as possible and the server-side cost to be practical. Instead, for the statistical queries,

since data owners are hospitals, we focus more on bandwidth and number of communications

rounds.

1.2 Approach

There are a few insights we canmake about building a practical federated analytics system

with strong privacy guarantees. First, we can decouple privacy guarantees with correctness

guarantees and focus on our primary goal — privacy. Let’s use a toy example in federated

learning to illustrate this. Recall that devices need to upload their local models for aggrega-

tion. Consider the following attack: a malicious device uploading a model with all parameters

set to be 0. This attacks definitely compromise correctness, since the global model will differ

from a model trained with the centralized baseline. However, privacy will not be compro-

mised since privacy guarantees don’t rely on what local update is and it’s possible that some

local update consists of all 0. So a short conclusion is, privacy and correctness are two differ-

ent guarantees and in some cases, privacy is a "weaker" guarantee than correctness. Another

observation is, it’s almost impossible for us to ensure correctness if some devices are ma-

licious. Still for the toy example, if the server receives some local update, how can it tell

whether it’s "correct" or not? It’s hard to tell because a malicious device can start from some

desired local update and construct a dataset that will output the desired update. So the first

insight is we can tailor the protocol and system design for a finer-grained threat model, e.g.,

privacy guaranteed when devices and the server are malicious and correctness guaranteed

only when all devices are honest-but-curious.
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The second insight we make is we can tailor the system design and protocol for our tar-

get queries. As discussed before, building a general-purpose system with strong privacy is

usually impractical. So instead of being general-purpose, we want our systems to support a

set of queries and thus we can find characteristics of the workload and tune the system for

better efficiency. For example, in FL, we focus on a specific type of training algorithm called

FedAvg [36] and one characteristics of this algorithm is sampling. That is, only a small subset

of devices will be sampled for contributing local updates in each round. We build a system

that uses this characteristic for better performance. We also apply this idea in graph queries

and statistical queries.

The third insight we make is to have an uniform privacy guarantees across different sys-

tem components. This is important especially when the system is large and complicated. For

example, in FL, we need to securely sample devices, aggregate updates, generate noise and

decrypt the ciphertexts, and etc. The system has many components due to the complicated

workload and each component can be addressed using different MPC protocols. A lesson

we’ve learned from existing works and apply to our system design is to tailor the proto-

cols for each component to make them have same privacy guarantees. The reason behind is

straightforward: the system’s privacy or correctness guarantee is decided by the component

with weakest privacy or correctness guarantees. Any components with stronger privacy or

correctness guarantees incur unnecessary overhead.

In short, we tune system architecture and protocols to our target workload to gain per-

formance improvement while ensuring that we can answer target queries with strong and

rigorous privacy guarantees, and thus to improve the trade-off between functionality, pri-

vacy and efficiency,.
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1.3 Contributions

Our novel contributions in this dissertation are as follows:

• Aero, previously published as [37, 38, 39], a new federated learning system that guaran-

tees good accuracy, differential privacy over an untrusted server, and keeps the device

overhead low. An evaluation of Aero demonstrates that it provides comparable accu-

racy to plain federated learning (without differential privacy), and it improves efficiency

(cpu and network) over state-of-the-art Orchard [28] by up to 105×.

• Colo, previously published as [40], a new and low-cost system for privacy-preserving

federated graph analytics for a particular subset of queries. An implementation and

evaluation of Colo shows that for running a variety of COVID-19 queries over a popula-

tion of 1M devices, it requires less than 8.4 minutes of a device’s cpu time and 4.93 MiBs

in network transfers—improvements over state-of-the-art Mycelium [30] of up to three

orders of magnitude.

• Virtual Pooling, previously published as [41], which is the first system for federated sta-

tistical analytics that produces the same results as the centralized baseline and supports

a set of statistical methods including descriptive statistics, propensity score matching,

Cox Proportional hazard models. An implementation and evaluation of Virtual Pooling

shows that it can produce exactly the same results for an end-to-end analysis pipeline

and it incurs an additional latency of 17 s for a centralized baseline that takes about

5 min.
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Chapter 2

Background

In this chapter, we give an overview of some cryptographic tools we’ve used in building our

privacy-preserving federated systems.

2.1 Differential Privacy (DP)

Differential privacy [42] is a mathematical framework that allows for meaningful data

analysis while protecting individual privacy. The core idea is that the presence or absence

of any single individual’s data in a dataset should not significantly affect the outcome of any

analysis. In other words, differential privacy ensures that any insights derived from the data

are general enough that an observer cannot ascertain whether any specific individual’s data

is included. This guarantee is quantified in the form of two parameters, ϵ, δ, which describes

how much a single row can change the results.

Formally, let D1 and D2 be any two neighboring datasets that differ only in a single row,

A be a randomized algorithm. The algorithm A is said to provide (ϵ, δ)-differential privacy

if, for all neighboring datasets D1 and D2, and all subsets S of the image of A:
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Pr[A(D1) ∈ S] ≤ eϵPr[A(D2) ∈ S] + δ

In other words, a change of single row has a bounded probability to cause a change in the

output. Differential privacy is widely used in machine learning to defend against inference

attacks [8, 9, 10]. The intuition behind is, assuming the real input isD1 and given the output,

the adversary cannot tell whether the input is D1 or any neighboring dataset of D1. The

smaller ϵ, δ are, the smaller probabilities to distinguish between neighboring datasets and

thus strong privacy guarantees.

One way to achieve differential privacy is to add noise to data or query results to protect

individual privacy, making it difficult to infer specific information about any single data point.

One common method for achieving this is through the addition of Gaussian noise.

The amount of noise added depends on ϵ, δ, as well as the sensitivity of the query, which

refers to the maximum amount that a single individual’s data can change the outcome of

a query. The Gaussian noise added to each data point or query result is scaled based on

the sensitivity of the query and the desired privacy level (ϵ, δ). However, this also means a

potential trade-off in data accuracy, as higher noise can obscure finer details of the dataset.

So ideally we would like ϵ, δ to be as small as possible for stronger privacy guarantees, but in

practice, we follow Google [32] to set ϵ near 5.

Sampling can be combined with noise mechanisms like Gaussian to amplify privacy guar-

antees. One commonly used approach is randomized sampling, where a random subset of data

points is selected from the dataset before applying a privacy-preserving mechanism. This

randomized sampling step reduces the chance that any individual’s data will be included in

a given sample, effectively adding an additional layer of protection. For example, in machine

learning, models can be trained on random mini-batches of data, where each mini-batch is

treated as a sample, allowing the model to learn patterns while preserving the privacy of indi-
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viduals in the larger dataset. This approach ensures that privacy loss is spread out over many

iterations, providing cumulative protection throughout the model training process.

However, sampling doesn’t work well in privacy-preserving federated learning. There are

two reasons. First, it’s hard to do uniform sampling since devices can go online and offline

during the training. Some devices might participate more in the training and some devices

might never participate. Second, usually we assume the adversary can observe the traffic and

thus be able to tell which devices talk to the server. That is, the adversary learns which devices

contribute to the training. One key idea of sampling amplification is that the adversary only

knows each device has a probability to participate but doesn’t knowwhich rounds each device

participate in.

2.2 Secure Multi-Party Computation (MPC)

Secure multi-party computation (MPC) is a cryptographic framework that allows multiple

parties to collaboratively compute a function over their inputs while keeping those inputs

private. MPC has been researched extensively by cryptographers and security researchers

for several decades and there are many protocols and primitives. So in this chapter, we only

give an overview of two techniques we’ve used in our systems.

One technique we’ve used in our systems is the Shamir’s secret sharing scheme [43],

where each input is divided into “shares” that are distributed across parties so that no single

party has complete information. Two primitives of Shamir secret sharing are additions and

multiplications. Parties work together to perform computation over the shared data and get

results in a shared manner. At the end of the protocol, parties collaborate to reconstruct the

results. During the computation, only the final results will be revealed. One key characteristic

of Shamir secret sharing is that reconstructing a secret requires a threshold of parties. For ex-

ample, if a secret is shared among 5 parties, with Shamir secret sharing, we can ensure that at
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least 3 parties are required to reconstruct the secret. Of course, this threshold is configurable.

Here we give a toy example. Suppose there are 3 parties S1, S2, S3 and they have a, b, c as

private inputs. The goal is to compute a · b · c without revealing any information about a, b, c.

• S1 generates shares of a, say, a1, a2, a3 = Share(a) and send a2 → S2, a3 → S3. And

we define [a] to be a in its sharing form.

• S2 generates shares of b, say, b1, b2, b3 = Share(b) and send b1 → S1, b3 → S3. And we

define [b] to be b in its sharing form.

• S3 generates shares of c, say, c1, c2, c3 = Share(c) and send c1 → S1, c2 → S2. And

we define [c] to be c in its sharing form.

• S1, S2, S3 run multiplication protocol to compute [a] · [b] · [c] to get the result, say [y].

• S1, S2, S3 run reconstructing protocol to reconstruct y as the public output (result).

Another technique we’ve used in our systems is the Oblivious Transfer (OT) [44], which

is a cryptographic protocol that enables a sender to transfer information to a receiver in a

way that protects the privacy of both parties. Specifically, the sender has multiple pieces of

information but remains unaware of which piece the receiver has chosen, while the receiver

learns only the selected information without gaining access to the other options.

The most commonly used form of OT is 1-out-of-2 Oblivious Transfer, where the sender

has two messages, M0 and M1, and the receiver wants to select one of these messages, say

Mb, where b ∈ {0, 1}. The protocol ensures that:

• The sender does not learn which message the receiver selected.

• The receiver learns only the selected messageMb and gains no information about the

other message.
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2.3 Homomorphic Encryption (HE)

Homomorphic Encryption (HE) is an advanced cryptographic technique that enables com-

putations to be performed directly on encrypted data without needing to decrypt it. In our

systems, we are focused on RLW-based encryption schemes such as BFV [45] and BGV [46].

HE schemes consists one pair of keys: public key pk and secret key sk. The public key is

used to encrypt the data into ciphertexts and can be known to everyone. The private key is

used to decrypt the data and thus should be kept private.

Formally, HE schemes have Keygen, Encrypt, Decrypt functions:

• pk, sk ← Keygen(1λ), where λ is the security parameter.

• ct = Enc(pk,m), wherem is the message.

• m = Dec(sk, ct), where ct is the ciphertext.

In HE, adding ormultiplying ciphertexts translates to adding ormultiplying the encrypted

messages. For example, if twomessages arem1,m2 and their ciphertexts are ct1 = Enc(pk,m1)

and ct2 = Enc(pk,m2), then

• m1 +m2 = Dec(sk, ct1 + ct2)

• m1 ∗m2 = Dec(sk, ct1 ∗ ct2)

In RLWE-based schemes, e.g., BFV, messages are usually encoded into polynomials for

encryption. So one ciphertext can carry multiple numbers, which are also called slots. One

example HE scheme enables us to encrypt 4096 numbers in one ciphertexts and we can add

or multiply these 4096 numbers at the same time.

One challenge with HE is its computational cost, as encrypted operations are significantly

slower than regular operations due to the added complexity of managing encrypted data.
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There are many optimizations, including Number Theoretic Transform (NTT) and Chinese

Remainder Theorem (CRT) encoding. However, the number of multiplication operations, or

specifically multiplication depths can make the costs high. There are two reasons. Firstly, HE

is encoded over some field, e.g., a 108-bit prime number. Increasing multiplications usually

require us to switch to a larger field, which makes each ciphertext larger and also compu-

tational cost higher. Second, HE adds noise during encryption and multiplications increase

the noise scale very fast and thus at some point we need some expensive operations such as

modulus switching or relinearization.

2.4 Zero-Knowledge Proofs (ZKP)

Zero-Knowledge Proofs (ZKPs) are cryptographic protocols that allow one party, known

as the prover, to demonstrate to another party, the verifier, that a certain statement is true

without revealing any additional information beyond the validity of the statement itself. In

our system, we use Groth16 [47].

Here we give a toy example to illustrate how ZKP works. Suppose in FL, a device wants

to prove to the server that ct is a valid encryption under the public key pk.

• Setup: the server needs to generate a pair of keys ProvingKey and V erifyKey. The

ProvingKey is bound to a circuit, which is y = Enc(pk, x), where x is the private

secret and y is the public output.

• The device receives ProvingKey and uses y = ct and x = m to generate a proof,

where ct is the ciphertext andm is the message.

• The device sends ct along with the proof and the server uses the V erifyKey to verifies

whether the device really knows am that satisfies ct = Enc(pk,m).

There are some key benefits of Groth16.
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• Constant-Size Proofs: The proof size is constant (approximately 192 bytes), regardless

of the complexity of the computation.

• Fast Verification: the verification is fast, usually in terms of milliseconds.

• Non-Interactive: Groth16 is a non-interactive proof, meaning that the prover generates

a proof that the verifier can independently verify without the need for back-and-forth

communication.

However, these benefits come at the cost of proving time. If the circuit to prove is large,

it can take a long time to prove. In our toy example of proving validity of encryption, one

proving can cost tens of minutes cpu time.
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Aero

In this chapter, we describe Aero, which significantly improves the trade-off between accu-

racy, privacy, and device overhead for our first target type of queries — federated learning

tasks.

Federated learning (FL) is a recent paradigm in machine learning that embraces a decen-

tralized training architecture [48]. In contrast to the traditional, central model of learning

where users ship their training data to a central server, users in FL download the latest model

parameters from the server, perform local training to generate updates to the parameters, and

send only the updates to the server. Federated learning has gained popularity in trainingmod-

els for mobiles [1, 31, 32, 33] as it can save network bandwidth and it is privacy-friendly—raw

data stays at the devices.

Current systems for federated learning exhibit significant trade-offs between model accu-

racy, privacy, and device efficiency. For instance, one class of systems that includes Oort [49],

FedScale [50], and FedML [51] provides excellent accuracy (comparable to centralized learn-

ing) and device efficiency. But these systems provide only aweak notion of privacy. This point

is subtle. At first glimpse, it appears that in any federated learning system, since users ship

updates to model parameters rather than the raw training data, this data (user images, text
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messages, search queries, etc.) remains confidential. However, research shows that updates

can be reverse-engineered to reveal the raw data [8, 9, 10]. Thus, if the server is compromised,

so is the users’ data. In other words, the server must be trusted.

On the other hand, systems such as HybridAlpha [52] and Orchard [28] offer good ac-

curacy and a differential privacy guarantee for users’ data. Informally, differential privacy

says that an adversary cannot deduce a user’s training data by inspecting the updates or the

learned model parameters [53, 42, 54, 55]. In fact, Orchard guarantees differential privacy

while assuming a byzantine server. But the downside is the high overhead for the devices.

For example, to train a CNN model with 1.2 million parameters [56], Orchard requires from

each device ≈14 minutes of training time on a six-core processor and ≈840 MiB in network

transfers per round of training (§3.5.2). The full training requires at least a few hundred

rounds. Further, for a few randomly chosen devices, this per-round cost spikes to≈214 hours

of cpu time and ≈11 TiB of network transfers. Clearly, this is quite high.
1

Aero provides good accuracy, the differential privacy guarantee in the same threat model

as Orchard, and low device overhead. For instance, most of the time Aero’s devices incur

overhead in milliseconds of cpu time and KiBs of network transfers.

The key idea in Aero is that it does not aim to be a general-purpose federated learning

system, rather focuses on a particular class of algorithms (§3.2.1). These algorithms sam-

ple devices that contribute updates in a round using a simple probability parameter (e.g.,

a device is selected with a probability of 10−5
), then aggregate updates across devices by

averaging them, and generate noise needed for differential privacy from a Gaussian distri-

bution. Admittedly, this is only one class of algorithms, but this class comprises popular

algorithms such as DP-FedAvg [36] and DP-FedSGD [36] that are the ones commonly used

and deployed [1, 31, 50, 51]. With this restriction, Aero tunes system architecture and design

1
Another class of systems provides a particular type of differential privacy called local differential privacy

(LDP) [11, 13, 16]. These systems are efficient but LDP creates a high accuracy loss [16, 57, 13] (§3.1.3, §3.6).
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to these algorithms, thereby gaining on performance by orders of magnitude.

This tuning is non-trivial and requires novel techniques and optimizations (§3.2.2, §3.3).

As one example, the devices must verify that the byzantine server did not behave maliciously.

One prior technique is to use a summation tree [29], where the server explicitly shows its work

aggregating updates across devices in a tree form; the devices then collectively check nodes

of this tree. This checking, in turn, adds overhead to the devices. Aero addresses this tension

between privacy and overhead by leveraging the sampling characteristic of DP-FedAvg and

similar algorithms: the total number of devices that participate in the system (e.g., one billion)

is much larger than the ones that are sampled to contribute updates. Leveraging this char-

acteristic, Aero employs multiple, finer-grained summation trees (rather than a monolithic

tree) to massively divide the checking work across the large device pool (§3.3.3). Aero further

optimizes how each device verifies the nodes of the tree using a technique called polynomial

identity testing (§3.3.3). The aforementioned is just one example of optimization; Aero uses

multiple throughout its architecture (§3.2.2) and design (§3.3).

We implemented Aero by extending the FedScale FL system [50] (§3.4). FedScale supports

plain federated learning without differential privacy or protection against a byzantine server.

However, it is flexible, allows a programmer to specify models in the PyTorch framework [58],

and includes a host of models and datasets, with model sizes ranging from 49K to 3.9M, for

easy evaluation. Our evaluation of Aero’s prototype (§3.5) shows that Aero trains models

with comparable accuracy to FedScale, in particular, the plain FedAvg algorithm in FedScale

(§3.5.1). Aero also improves overhead relative to Orchard by up to five orders of magnitude,

to a point where the overhead is low to moderate. For instance, for a 1.2M parameter CNN on

the FEMNIST dataset [56, 59], and for a total population of 109 devices where 104 contribute

updates per round, a Aero device requires 15 ms of cpu time and 3.12 KiB of network transfers

per round. Occasionally (with a probability of 10−5
in a round) this overhead increases when

a device contributes updates, to a moderate 13.4 minutes of latency on a six-core processor
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and 234 MiB in network transfers.

Prior to Aero, one must choose two of the three properties of high accuracy, rigorous

privacy guarantee, and low device overhead. With Aero, one can train models in a federated

manner with a balance across these properties, at least for a particular class of federated

learning algorithms. Thus, Aero’s main contribution is that it finally shows a way for a data

analyst to train models while asking the data providers to place no trust in the analyst or their

company.

3.1 Problem and background

This section outlines the problem and gives a short background onOrchard [28] that forms

both a baseline and an inspiration for Aero.

3.1.1 Scenario and threat model

We consider a scenario consisting of a data analyst and a large number of mobile devices,

e.g., hundreds ofmillion. The analyst, perhaps at a large company such as Google, is interested

in learning a machine learning model over the data on the devices. For instance, the analyst

may want to train a recurrent neural network (RNN) to provide auto-completion suggestions

for the android keyboard [1].

One restriction we place on this scenario is that the training must be done in a federated

manner. (We refer the reader to prior work [60, 61] for a discussion on training in the central-

ized, non-federated model.) As noted earlier, federated learning proceeds in rounds, where in

each round devices download the latest model parameters from a server, generate updates to

these parameters locally, and send the updates to the server. The server aggregates the model

updates. This repeats until the model achieves a target accuracy.

In this scenario, a malicious server, or even a malicious device, can execute many attacks.
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For instance, a malicious server can infer the training data of a device from the updates con-

tributed by the device [8, 9, 10]. Similarly, a malicious device that receives model parameters

from the server can execute an inference attack to learn another device’s input.

We assume the strong OB+MC threat model from Orchard. The server is honest-but-

curious most of the time but occasionally byzantine (OB), while the devices are mostly correct

(MC), but a small fraction can be malicious. The rationale behind the occasionality of the

server’s maliciousness is that the server’s operator, e.g., Google, is reputed and subject to

significant scrutiny from the press and the users, and thus unlikely to be byzantine for long.

However, it may occasionally come under attack, e.g., from a rogue employee. The rationale

behind the smallness of the fraction of malicious devices is that with billions of devices, it

is unlikely that an adversary will control more than a small percentage. For instance, for

a billion devices, only controlling 3% is already significantly larger than a large botnet. We

further assume that a configurable percentage of honest devices may be offline during any

given round of training.

3.1.2 Goals

Under the OB+MC threat model, we want our system to meet the following goals.

Privacy. It must guarantee the gold standard definition of privacy, i.e., differential privacy

(DP) [53, 42, 54, 55]. Informally, a system offers DP for model training if the probability of

learning a particular set of model parameters is (approximately) independent of whether a

device’s input is included in the training. This means that DP prevents inference attacks [62]

where a particular device’s input is revealed, as models are (approximately) independent of

its input.

Accuracy. During periods when the server or the devices that contribute in a round are not

byzantine, our system must produce models with accuracy comparable to models trained via
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plain federated learning. That is, we want the impact of differential privacy to be low. Further,

we want the system to mitigate a malicious device’s impact on accuracy and prevent it from

supplying arbitrary updates.

Efficiency and scalability. We want the system to support models with a large number

of parameters while imposing a low to moderate device-side overhead. For the former, a

reference point is the android keyboard auto-completion model (an RNN) with 1.4M param-

eters [1]. For the device overhead, if a device participates regularly in training, e.g., in every

round, then it should incur no more than a few seconds of cpu and a few MiBs in network

transfers per round. However, we assume that devices can tolerate occasional amounts of

additional work, contributing tens of minutes of cpu and a few hundred MiBs in network

transfers.

3.1.3 Possible solution approaches

Meeting all of the goals described above is quite challenging. For illustration, consider the

following solution approaches.

Local differential privacy. One option to guarantee differential privacy is to pick a feder-

ated learning algorithm that incorporates local differential privacy (LDP) [11]. In LDP-based

federated learning, devices add statistical noise to their updates before uploading them to

the server. The added noise protects updates against a malicious server which now cannot

execute an inference attack, but LDP significantly degrades model accuracy relative to plain

federated learning as every device must add noise. For instance, the LDP-FL [13] system

trains a VGG model over CIFAR10 with 10% accuracy compared to 62% with plain federated

learning.

Trusted server. One alternative is to use central differential privacy [55], where a central

entity adds a smaller amount of noise to device updates to ensure differential privacy. This
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approach mitigates the accuracy issue, but provides weak to no privacy as the central entity

sees devices’ updates.

Server-side secure multiparty computation (MPC). One way to reduce trust in the cen-

tral server is to break it down into multiple non-colluding pieces, e.g., three servers, that

run in separate administrative domains. Then, one would run a secure multi-party compu-

tation protocol [63, 64] among these servers such that they holistically perform the required

computation (noise generation, addition, etc.) while no individual server sees the input or

intermediate state of the computation. The problem is that we must still put significant trust

in the server—that an adversary cannot compromise, say, two administrative domains.

Large-scale MPC. One can remove trust in the server by instead running MPC among the

devices (essentially the devices perform the server’s work). The problem now shifts to effi-

ciency and scalability: general-purpose MPC protocols are expensive and do not scale well

with the number of participants [65, 66]. Indeed, scaling MPC to a few hundred or thousand

participants is an active research area [67, 68], let alone hundreds of millions of participants.

State-of-the-art: Orchard. Orchard [28] takes a middle ground. It runs small(er)-scale

MPC among devices while assuming an (occasionally) byzantine server. In particular, it forms

a committee of a few tens of devices picked randomly from the entire population of devices;

this committee then runs MPC among its members. Figure 3.1 shows an overview of Orchard.

Orchard supports the full-batch gradient descent algorithm where all devices contribute up-

dates in a round. For every round, Orchard runs the following four phases.

In the setup phase, Orchard samples the committee. Its members use MPC to generate

keys for two cryptographic primitives: additive homomorphic encryption (AHE) [69, 45] and

zero-knowledge proof (ZK-proof) [47, 70].

In the generate phase, devices download the latest model parameters from the server. Af-

ter local training, they encrypt their model updates (denoted by∆ in Figure 3.1) and generate
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Figure 3.1: An overview of Orchard [28]. ∆k denotes k-th device’s update. The superscript t
denotes the round number. Orchard runs the four phases of setup, generate, add, and release

for every round.

a ZK-proof to prove to the server that the ciphertexts are well-formed and the model updates

are bounded. The encryption hides the updates from the byzantine server and the proof lim-

its the impact of malicious devices (they cannot supply arbitrary updates and thus ruin the

model accuracy).

In the add phase, the server homomorphically adds the encrypted updates. The server

also generates proof that it performed the addition correctly so that all devices can collabo-

ratively verify the addition. This verification is necessary to prevent a byzantine server from

launching subtle attacks to break DP. (We will discuss these attacks further in §3.3.3.)

In the release phase, the committee from the setup phase uses MPC to decrypt the output

ciphertexts from the add phase. The committee also generates and adds the DP noise to the

output, before releasing it, to guarantee (central) DP.

The challenge with Orchard is that even though it uses MPC at a smaller scale, the MPC

overhead is still high. First, in the setup phase, committee devices generate fresh keys for each

round, and generating one AHE key pair inside general-purpose MPC requires≈180 seconds

of cpu and 1 GiB of network transfers. Second, the overhead of the add phase to verify the
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server’s work grows linearly with the model size and becomes unpragmatic as soon as the

model has a few hundred thousand parameters. Third, in the release phase, committee devices

decrypt ciphertexts and generate DP noise inside general-purpose MPC, costing, for example,

≈2600 seconds of cpu and ≈38 GiB of network transfers per device for a model with just 4K

parameters.

In general, providing high accuracy, differential privacy, and device efficiency simultane-

ously in a threat model where there is no trusted party proves incredibly challenging.

3.2 Overview of Aero

The high-level idea in Aero is to focus on a specific type of federated learning algorithms

comprising DP-FedAvg [36], DP-FedSGD [36], and DP-FTRL [32]. These algorithms have sim-

ilar characteristics; for instance, they all sample noise for differential privacy from a Gaussian

distribution. To keep Aero easier to explain and understand, we take the most popular DP-

FedAvg as the canonical algorithm and describe Aero in its context.

3.2.1 DP-FedAvg without amplification

DP-FedAvg proceeds in discrete rounds (Figure 3.2). In each round t, it samples a small

subset of user devices using a probability parameter q (line 8), and asks the sampled devices

to provide updates to the global model parameters (line 10). The devices locally generate

the updates before clipping them by a value S and uploading them (line 21); this clipping is

necessary for differential privacy and it bounds the norm (sensitivity) of a device’s update.

DP-FedAvg then aggregates these updates (line 12) and (separately) adds noise sampled from

a Gaussian distribution. The standard deviation of the Gaussian distribution depends on a

noise scale parameter z and the clipping bound S; both are input parameters for DP-FedAvg.

Finally, DP-FedAvg updates a privacy accountantM that computes, based on the noise scale
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Main:

1: parameters
2: device selection probability q ∈ (0, 1]
3: DP noise scale z
4: total # of devicesW
5: clipping bound on device updates S

6: Initialize model θ0, DP privacy budget accountantM
7: for each round t = 0, 1, 2, . . . do
8: Ct ← (sample users with probability q)
9: for each user k ∈ Ct

do

10: ∆t
k ← UserUpdate(k, θt, S)

11: // Add updates and Gaussian DP noise with σ = zS
12: ∆t ←

∑
k ∆

t
k +N (0, Iσ2)

13: θt+1 ← θt + (∆t/(qW )) // Update model

14: UpdateM based on noise scale z and parameter q

UserUpdate(k, θ0, S)
15: parameters B,E, η // η is learning rate

16: θ ← θ0

17: for each local epoch i in 1 to E do

18: B ← (k’s data split into size B batches)

19: for batch b ∈ B do

20: θ ← θ − η∇ℓ(θ; b) // ℓ is loss fn. (model err.)

21: θ ← θ0 + Clip(θ − θ0, S)

22: return ∆k = θ − θ0 // Already clipped

Figure 3.2: Pseudocode for the DP-FedAvg algorithm. Clip(·, S) scales its input vector such
that its norm (Euclidean distance from the origin) is less than S. M is the privacy budget

accountant of Abadi et al. [55] that tracks the values of the DP parameters ϵ and δ.

z and sampling probability q, two parameters ϵ and δ associated with differential privacy

(line 14). These parameters capture the strength of the guarantee: how much the model

parameters learned after a round vary depending on a device’s input. A lower value of δ and

ϵ is desirable, and the literature recommends ensuring that ϵ stays close to or below 1, and δ

is less than 1/W , whereW is the total number of devices [36].

DP-FedAvg has three characteristics that are crucial for Aero. The first is the sampling of

devices (lines 8 to 10 in Figure 3.2). For instance, the sampling parameter q could be 10−5
such

that 10,000 out of, say, 109 total devices contribute updates in a round. The second charac-

teristic is that the noise is sampled from a Gaussian distribution whose standard deviation σ
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Figure 3.3: An overview of Aero’s architecture and the four phases of its protocol.

is predetermined (set before the algorithm is run). This is in contrast to other DP algorithms

that utilize techniques such as the Sparse Vector Technique (SVT) that generate noise de-

pending on the value of the updates [71, 72]. The third characteristic is averaging of updates:

DP-FedAvg simply adds updates and noise (line 12 in Figure 3.2) rather than combining them

using a more complex function. Aero heavily leverages these characteristics.

Finally, we remark that Aero can support DP-FedAvg only without the amplification as-

sumption for DP. This is because the adversary (the byzantine server) can observe all traffic

and knows which devices contribute updates for training. In contrast, the amplification as-

sumption requires the server to be oblivious to the contributors, which in turn improves the

privacy budget. We leave the addition of expensive oblivious approaches (which hides who

is contributing updates besides hiding the updates themselves) to future work.

3.2.2 Architecture of Aero

Aero borrows two system components from Orchard: an aggregator and a public bulletin

board (Figure 3.3). The aggregator runs server-side inside a data center and therefore consists

of one or more powerful machines. Its main role is to combine updates from user devices

without learning their content. The bulletin board is an immutable append-only log. The

aggregator (which is potentially malicious) and the devices use the bulletin board to reliably

broadcast messages and store states across rounds, e.g., the latest values of DP parameters ϵ
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and δ. Like Orchard [28], Aero assumes that free web services such as Wikipedia, or a public

block-chain could serve as the bulletin board.

LikeOrchard, Aero also consists of committees of devices, but instead of a single committee

as in Orchard, Aero has three types of committees tailored to the needs of DP-FedAvg (and

similar algorithms). A master committee handles system setup, including key generation for

cryptographic primitives. A DP-noise committee handles Gaussian noise generation. And

multiple decryption committees perform decryption operations to release updates to the global

model parameters at the end of a training round. Aero samples each committee afresh each

round, dividing the committee workload across the large population of devices.

An architecture with separate committee types is deliberate and crucial. It helps tailor

a committee’s protocol to its tasks to significantly improve efficiency. Besides, the use of

multiple committees of the same type, i.e., multiple decryption committees, helps Aero scale

with model size as each committee works on a subset of model parameters.

Notably, the ability to use separate committee types is possible only because of the specifics

of DP-FedAvg. For instance, the fact that Gaussian noise generation does not depend on the

value of the updates allows Aero to separate the DP-noise committee from the decryption

committees.

3.2.3 Protocol overview of Aero

To begin training a model, a data analyst supplies input parameters (the model archi-

tecture, the initial model parameters, and the other input parameters for DP-FedAvg) to the

aggregator. The aggregator then initiates a round-based protocol consisting of discrete rounds.

In each round, it executes one iteration of the for loop in the Main procedure of DP-FedAvg

(line 7 in Figure 3.2). Each round further consists of the four phases of setup, generate, add,

and release (Figure 3.3).
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In the setup phase, the aggregator samples the various committees for the round. The

master committee then receives and validates the input parameters, and generates keys for

an AHE and a ZK-proof scheme. Aero’s setup phase is similar to Orchard (§3.1.3) with the key

difference that Aero’s master committee uses techniques to reuse keys across rounds rather

than generating them fresh for each round using MPC.

Next, in the generate phase, (i) devices select themselves to generate updates for the round,

and (ii) the DP-noise committee generates the Gaussian noise for DP. Both types of devices use

techniques to perform their work efficiently. For instance, the DP-noise committee generates

noise in a distributed manner while avoiding MPC.

Next, in the add phase, the aggregator adds the model updates to the Gaussian noise

without learning the plaintext content of either of them. This is done through the use of the

AHE scheme. The entire population of devices collectively verifies the aggregator’s work.

Again, the key is efficiency for the devices, for which the aggregator and the devices use a

new verifiable aggregation protocol.

Finally, in the release phase, each decryption committee receives the secret key for the

AHE scheme from the master committee and decrypts a few ciphertexts from the add phase.

The key point is that a decryption committee avoids general-purpose MPC by using a spe-

cialized decryption protocol.

3.3 Design of Aero

We now go over the design details of Aero phase-by-phase. The main challenge in each

phase is keeping the device overhead low while protecting against the malicious aggregator

and the malicious subset of devices. We highlight these challenges, and Aero’s key design

choices and techniques.

But before proceeding, we briefly discuss committee formation, which is common to mul-
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tiple phases. To form committees, Aero uses the sortition protocol from Orchard (which in

turn used Algorand’s protocol [73]). This protocol relies on a publicly verifiable source of

randomness so that the results of the election are verifiable by all devices. At the end of the

protocol, the aggregator publishes the list (public keys) of the committee members by putting

it on the bulletin board. An important aspect of committee formation is committee size and

the number of malicious devices in a committee:provision of a larger number of malicious

devices A relative to the committee size C increases costs but ensures higher resiliency. Like

Orchard, Aero makes a probabilistic argument [29] to selectC andA such that the probability

of the number of malicious devices exceeding A is small. For example, if the overall popula-

tioncontains up to f = 3% malicious devices (§3.1.1), then the probability that a randomly

sampled subset of C = 45 devices contain more than A = 2C/5 = 18 malicious devices is

less than 9.6 · 10−14
.

3.3.1 Setup phase

Much of Aero’s setup phase is similar to Orchard. During this phase, (i) the aggregator

samples the master committee, which then (ii) receives and validates inputs for the round

(i.e., receives model parameters θt for the current round t, the device selection probability

q, noise scale z, and clipping bound S, and generates new values of the DP parameters ϵ, δ),

and (iii) generates keys for cryptographic primitives (§3.2.3). We do not focus on the first two

pieces to avoid repetition with Orchard, but include them in the supplementary material for

completeness (Appendix §A.1.5). Instead, the key challenge in Aero is the overhead of key

generation.

Recall (§3.1.3) that Orchard uses MPC among the master committee members to correctly

run the key generation function and ensure that even if the malicious members of the com-

mittee collude, they cannot recover the AHE secret key. The overhead of this MPC is high:
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≈1 GiB of network transfers and 180 seconds of cpu time per committee device.How can this

overhead be reduced?

One idea [30] is to reuse keys across rounds rather than generate them afresh for each

round. Indeed, this is what Aero does: the master committee in round 1 generates the keys

and shares them with the committee for the next round, and this committee then shares the

keys with the committee for the third round, and so on. But one has to be careful.

Consider the following attack. Say that the malicious aggregator receives a victim device

k′s update Enc(pk,∆t
k) in round t. Then, in the next round t + 1, the aggregator colludes

with a malicious device in the overall population to use Enc(pk,∆t
k) as the device’s update.

This attack enables the aggregator to violate differential privacy as the victim device’s input

does not satisfy the required clipping bound S in round t+1 due to its multiple copies (§3.2.1).

Orchard does not suffer from this attack as it generates fresh keys in each round: the cipher-

text for round t decrypts to a random message with round t + 1’s key. However, prior work

that reuses keys in this manner (in particular, Mycelium [30]) does suffer from this attack.

Thus, Aero must apply the reuse-of-keys idea with care. Aero adjusts the generate and

add phases of its protocol (§3.2.3) to prevent the aforementioned attack. We are not in a

position yet to describe these changes, but we will detail them shortly when we describe

these other phases (§3.3.2, §3.3.3). Meanwhile, the changes in the setup phase relative to

Orchard are the following: for the AHE secret key sk, Aero implements an efficient verifiable

secret redistribution scheme [74, 30] such that committee members at round t + 1 securely

obtain the relevant shares of the key from the committee at round t. For the public keys (AHE

public key pk, and both the ZK-proof public proving and verification keys), the committee for

round t signs a certificate containing these keys and uploads it to the bulletin board, and the

committee for round t+ 1 downloads it from the board.

The savings by switching from key generation to key resharing are substantial for the

network, with a slight increase in cpu. While the MPC solution incurs ≈1 GiB of network
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transfers and 180 seconds of cpu time per committee device, key resharing requires 125 MiB

and 187 seconds, respectively (§3.5.2). The cpu is higher because key resharing requires cer-

tain expensive field exponentiation operations [74].

3.3.2 Generate phase

Recall from §3.2.3 that during this phase (i) Aero must pick a subset of devices to gen-

erate updates to the model parameters, (ii) the DP-noise committee must generate Gaussian

noise for differential privacy, and (iii) both types of devices must encrypt their generated data

(updates and noise).

Device sampling for updates. One design choice is to ask the aggregator to sample devices

that will contribute updates. The problem with this option is that the (malicious) aggregator

may choose the devices non-uniformly; for instance, it may pick an honest device more often

than the device should be picked, violating differential privacy. An alternative is to ask the

devices to sample themselves with probability q (as required by DP-FedAvg; line 8 in Fig-

ure 3.2). But then a malicious device may pick itself in every round, which would allow it to

significantly affect model accuracy.

Aero adopts a hybrid and efficient design in which devices sample themselves but the ag-

gregator verifies the sampling. LetBt
be a publicly verifiable source of randomness for round

t; this is the same randomness that is used in the sortition protocol to sample committees for

the round. Then, each device k with public key πk computes PRG(πk||Bt), where PRG is

a pseudorandom generator. Next, the device scales the PRG output to a value between 0 and

1, and checks if the result is less than q. For instance, if the PRG output is 8 bytes, then the

device divides this number by 264 − 1. If selected, the device runs the UserUpdate procedure

(line 10 in Figure 3.2) to generate updates for the round. This approach of sampling is efficient

as devices only perform local computations.
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Gaussian noise generation. The default option is to make the DP-noise committee gener-

ate the noise using MPC, but as noted several times in this paper, this option is expensive.

Instead, Aero adapts prior work [75] on distributed Gaussian noise generation. The Gaussian

distribution has the property that if an element sampled fromN (0, a) is added to another ele-

ment sampled fromN (0, b), then the sum is a sample ofN (a+b) [75, 52, 76]. This works well

for the simple case when all C committee members of the DP-noise committee are honest.

Given the standard deviation of the Gaussian distribution, σ = z ·S, the devices can indepen-

dently compute their additive share. That is, to generate samples from N (0, Iσ2) (line 12 in

Figure 3.2), each committee member can sample its share of the noise from the distribution

N (0, I σ2

C
).

The challenge in Aero is therefore: how do we account for the Amalicious devices in the

DP-committee? These devices may behave arbitrarily and may thus generate either no noise

or large amounts of it. Adding unnecessary noise hurts accuracy, not privacy. In contrast,

failing to add noise may violate privacy. We thus consider the worst case in which malicious

users fail to add any noise and ask honest devices to compensate. Each honest client thus

samples its noise share from the distribution N (0, I σ2

C−A
).2

This algorithm generates noise cheaply without expensive MPC. The downside is that it

may generate more noise than necessary, hurting accuracy. To mitigate this risk, we carefully

choose the committee size to minimize the ratio of additional noise. Specifically, we chooseC

to keep the ratio (C−A)/C close to 1. For instance, instead of picking a committee containing

a few tens of devices similar to the master committee, we pick a somewhat larger DP-noise

committee: (A,C) = (40, 280).3

Encryption and ZK-proofs. Once the devices generate their updates or shares of the Gaus-

2
Aero can further compensate for honest-but-offline devices. Say, for e.g., that B of C − A honest devices

must be provisioned to be offline. Then, Aero subtracts B from C − A to get the number of honest-but-online

devices.

3
Using a probabilistic argument for committee size selection as before (§3.3), if f = 3% devices in the overall

population are malicious, then the chances of sampling 280 devices with more than 1/7th malicious is 4.1·10−14
.
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sian noise, they encrypt the content using the public key of the AHE scheme to prevent the

aggregator from learning the content. Further, they certify using a ZK-proof scheme that the

encryption is done correctly and the data being encrypted is bounded by the clipping value S

(so that malicious devices may not supply arbitrary updates). This encryption and ZK-proof

generation is same as in Orchard, but Aero requires additional changes. Recall from the setup

phase that Aero must ensure a ciphertext generated in a round is used only in that round,

to prevent complications due to reuse of keys (§3.3.1). To do this, each device concatenates

the round number t (as a timestamp) to the plaintext message before encrypting it. Further,

the ZK-proof includes additional constraints that prove that a prefix of the plaintext message

equals the current round number.

3.3.3 Add phase

Recall that during the add phase (i) the aggregator adds ciphertexts containing device

updates to those containing shares of Gaussian noise, (ii) the devices collectively verify the

aggregator’s addition (§3.2.3).

This work during the add phase has subtle requirements. So first, we expand on these

requirements while considering a toy example with two honest and a malicious device. The

first honest device’s input is Enc(pk,∆), where ∆ is its update, while the second honest de-

vice’s input is Enc(pk, n), where n is the Gaussian noise. For this toy example, first (R1),

the aggregator must not omit Enc(pk, n) from the aggregate as the added noise would then

be insufficient to protect ∆ and guarantee DP. Second (R2), the aggregator must not let the

malicious device use Enc(pk,∆) as its input. Relatedly, the aggregator itself must not modify

Enc(pk,∆) to Enc(pk, k · ∆), where k is a scalar, using the additively homomorphic prop-

erties of the encryption scheme. The reason is that these changes can violate the clipping

requirement that a device’s input is bounded by S (e.g., 2 · ∆ may be larger than S). And,
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third (R3), the aggregator must ensure that the above (the malicious device or the aggregator

copying a device’s input) does not happen across rounds, as recall that Aero uses the same

encryption key in multiple rounds (§3.3.1).

One option to satisfy these requirements is to use the verifiable aggregation protocol of

Orchard [29] that is based on summation trees. The main challenge is resource costs. Briefly,

in this protocol, the aggregator arranges the ciphertexts to be aggregated as leaf nodes of a

tree, and publishes the nodes of the tree leading to the root node. For example, the leaf nodes

will be Enc(pk,∆) and Enc(pk, n), and the root node will be Enc(pk,∆)+Enc(pk, n), for the

toy example above. Then, devices in the entire population inspect parts of this tree: download

a few children and their parents and check that the addition is done correctly, that the leaf

nodes haven’t been modified by the aggregator, and the leaf nodes that should be included are

indeed included. The problem is that Orchard requires a device to download and check about

3 · s nodes of the tree [29, 28], where s is a configurable parameter whose default value is

six. But for realistic models, each node is made of many ciphertexts (e.g., the 1.2M parameter

CNN model requires ℓ = 293 ciphertexts), and 18 such nodes add to 738 MiB.

Aero improves this protocol using two ideas. First, Aero observes that the entire popula-

tion of devices that must collectively check the tree is massive (e.g., 109). Besides, although

the tree has bulky nodes with many ciphertexts, the total number of nodes is not high due to

sampling (e.g., only 10,000 devices contribute updates in a round). Thus, Aero moves away

from one summation tree with “bulky” nodes, to ℓ summation trees with “small” nodes, where

ℓ is the number of ciphertexts comprising a device’s update (e.g., ℓ = 293 for the 1.2M param-

eter model). Then, each device probabilistically selects a handful of trees, and a checks few

nodes within each selected tree.

Second, Aero optimizes how a device tests whether the sum of two ciphertexts equals

a third ciphertext. Aero recognizes that ciphertexts can be expressed as polynomials and

the validity of their addition can be checked efficiently using a technique called polynomial
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identity testing (PIT) [77, 78]. Roughly, PIT says that the sum of polynomials can be checked

by evaluating them at a random point and checking the sum of these evaluations. Using PIT,

Aero replaces the ciphertexts at the non-leaf nodes of the summation trees with their much

smaller evaluations at a random point.

We now describe Aero’s protocol in detail, first without the PIT optimization, and then

with it.

Incorporating finer-grained summation trees. Aero’s protocol has three steps: commit,

add, and verify (Figure 3.4). In the commit step, all devices commit to their ciphertexts be-

fore submitting them to the aggregator (line 1–3 in Figure 3.4). The aggregator publishes a

Merkle tree of these commitments to the bulletin board. Committing before submitting en-

sures that a malicious device cannot copy and submit an honest device’s input (requirement

R2 above). Similarly, this design ensures that the aggregator cannot change a device’s input

(again requirement R2).

In the add step, the aggregator adds the ciphertexts via summation trees. Specifically, if

device updates have ℓ ciphertexts, the aggregator creates ℓ summation trees, one per cipher-

text (line 6 in Figure 3.4). The leaf vertices of the j-th tree are the j-th ciphertexts in the

devices’ inputs, while each parent is the sum of its children ciphertexts, and the root is the

j-th ciphertext in the aggregation result. The aggregator publishes the vertices of the sum-

mation trees on the bulletin board (line 7 in Figure 3.4), allowing an honest device to check

that its input is not omitted (requirement R1 above).

In the verify step, each device in the system selects q · ℓ summation trees, where q is the

device sampling probability (line 8 in Figure 3.4), and checks s leaf nodes and 2s non-leaf

nodes in each tree. (s = 6 in our implementation.) Specifically, the device checks that the leaf

node ciphertexts are committed to in the commit step (requirementR2), and the ZK-proofs of

the ciphertexts are valid, e.g., the first part of the plaintext message in the ciphertexts equals
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the current round number (requirement R3). For the non-leafs, the device checks that they

sum to their children.

Incorporating PIT. Checking the non-leaf vertices is a main source of overhead for the

protocol above. The reason is that even though each non-leaf is a single ciphertext, this

ciphertext is large: for the quantum-secure AHE scheme Aero uses (§3.4), a ciphertext is

131 KiB, made of two polynomials of 212 coefficients each, where each coefficient is 16 bytes.

As mentioned earlier, Aero reduces this overhead by using polynomial identity testing

(PIT) [77, 78]. This test says that given a d-degree polynomial g(x)whose coefficients are in a

field F, one can test whether g(x) is a zero polynomial by picking a number r ∈ F uniformly

and testing whether g(r) == 0. This works because a d-degree polynomial has at most d

solutions to g(x) == 0 and d is much less than |F|.

Using PIT, Aero replaces the ciphertexts at the non-leafs with their evaluations at a ran-

dom point r. Then, during the “Verify” step, a device checks (line 10 in Fig. 3.4) whether these

evaluations (rather than ciphertexts) add up. Thus, instead of downloading three ciphertexts

with 2 · 212 field elements each, a device downloads 2 elements of F per ciphertext.

A requirement for PIT is generation of r, which must be sampled uniformly from the

coefficient field. For this task, Aero extends the master committee to publish an r to the

bulletin board in the add step, using a known protocol to securely and efficiently generate a

random number [79, 66].
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Add phase protocol of Aero

Commit step
1. Each device (with public key πi) that generates ciphertexts (ci1, . . . , ciℓ) and correspond-

ing ZK-proofs (zi1, . . . , ziℓ) in the generate phase does the following: for each j ∈ [1, ℓ],
generates a commitment to (πi, cij), namely tij = Hash(rij||cij||πi), where rij is a ran-
dom 128-bit nonce. The device sends (πi, ti1, ..., tiℓ) to the aggregator A.

2. A checks that PRG(πi||Bt) ≤ q or πi is a member of the DP-noise committee. Otherwise,

it ignores the message.

3. For each j ∈ [1, ℓ],A sorts pairs (πi, tij) by πi to form an array of tuplesCommitj . A then

generates a Merkle treeMCj from array Commitj and publishes the root to the bulletin

board.

4. Each device from step 1 above sends (πi, cij, rij, zij) to the aggregator, for each j ∈ [1, ℓ].

5. A checks the messages. If any proof zij or any commitment tij = Hash(rij||cij||πi) is
incorrect, it ignores the message.

Add step
6. For each j ∈ [1, ℓ], A computes a summation tree STj . The leaves are STj(0, i) =

(πi, cij, rij, zij) if A got a correct message and (πi,⊥) otherwise. Each non-leaf vertex

has two children and a parent ciphertext is the sum of its children ciphertexts.

7. For each j ∈ [1, ℓ], A serializes all vertices of STj into an array and publishes a Merkle

treeMSj , as well as the root of the summation tree STj . To each device that sent a correct
leaf, A also sends a proof that this leaf is inMSj .

Verify step
Every device in the system does the following:

8. With probability q, select elements from [1, ℓ] to form an index array idx containing

indices of the trees to inspect.

9. Choose a random vinit ∈ [0,M ′ − 1]. For each j ∈ idx, and for each i ∈ [vinit, vinit + s)
mod M ′

,

(a) verify that STj(0, i) = (πi,⊥) or (πi, cij, rij, zij), and πi ≤ πi+1 (except if

i =M ′ − 1)
(b) if STj(0, i) ̸= (πi,⊥), verify that commitment tij appears inMCj ,

tij = H(rij||cij||πi), and zij is valid
(c) check STj(0, i) is inMSj

10. For each j ∈ idx, choose s distinct non-leaf vertices of STj . For each such non-leaf

vertex, verify that its ciphertext equals the sum of the children ciphertexts, and that the

vertex and its children are inMSj .

Figure 3.4: Aero’s verifiable aggregation. This description does not include the PIT opti-

mization (described in text) that applies to line 10.
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3.3.4 Release phase

During the release phase, Aero must decrypt the ℓ ciphertexts from the add phase, i.e.,

the ℓ root nodes of the ℓ summation trees. The default, but expensive, option is to use MPC

among the members of the decryption committees.

Aero addresses this efficiency challenge using known ideas and applying them; i.e., Aero’s

contribution in this phase is not new techniques, but the observation that existing ideas can

be applied. Nevertheless, applying these ideas requires some care and work.

First, recall that Aero has multiple decryption committees (§3.2.2). Naturally, to reduce

per-device work, each committee decrypts a few of the ℓ ciphertexts. A design question for

Aero is how many committees should it use. On the one hand, more committees are desir-

able (best case is ℓ). However, more committees also mean that each has to be larger to ensure

that none of them samples more thanA out ofC malicious devices, breaking the threshold as-

sumptions of a committee. Meanwhile, a larger committee means more overhead. In practice

(§3.5), we take a middle ground and configure Aero to use ten decryption committees.

Second, Aero reduces each committee’s work relative to the MPC baseline, using a fast

distributed decryption protocol to decrypt the ciphertexts [80]. The use of this protocol is

possible as a decryption committee’s task is only of decryption given how we formed and

assigned work to different types of committees (§3.2.2). This fast protocol requires the com-

mittee devices to mainly perform local computations with little interaction with each other.

The caveat is that for this protocol to be applicable, the committee members must know an

upper bound on the number of additive homomorphic operations on the ciphertexts they are

decrypting.
4
Fortunately, in Aero’s setting this bound is known: it is the maximum number

of devices whose data the aggregator adds in the add phase (Mmax in Figure 3.4). The benefit

of distributed decryption (and moving work outside MPC) meanwhile is substantial.

4
This bound is needed to add a “smudging noise” to the committee’s decryption output to ensure that the

output does not leak information on the inputs to the aggregation [81].
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Figure 3.5: An overview of Aero’s implementation.

3.3.5 Privacy proof

Aero’s protocol provides the required differential privacy guarantee (§3.1.2). The supple-

mentary material (Appendix A.1) contains a proof. But, briefly, the key reasons are that (i) in

the generate phase, honest devices sample themselves to make sure that they are not sampled

more than expected, (ii) the verifiable aggregation protects these devices’ input, and (iii) key

resharing and fast decryption protocols keep secret keys hidden.

3.4 Prototype implementation

We implemented a prototype of Aero atop FedScale [50], which is a scalable system for

federated learning capable of handling a large number of devices. By default, FedScale sup-

ports algorithms such as FedAvg and FedSGD (without differential privacy). Further, it allows

a data analyst to specify the model using the popular PyTorch framework.

Our Aero prototype extends FedScale in the following way (Figure 3.5). First, it extends

the programming layer of FedScale with Opacus [82], which is a library that adjusts a PyTorch

model to make it suitable for differentially private federated learning; for instance, Opacus

replaces the batch normalization layer of a neural network with group normalization. Second,

our prototype extends the device-side code of FedScale with additional components needed

for the various committees and phases in Aero (key resharing, Gaussian noise generation,
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Dataset Model Size FedScale Aero

FEMNIST [59] LeNet [83] 49K 75% 74%

CNND [56] 1.2M 78% 68%

CNNF [48] 1.7M 79% 68%

AlexNet [84] 3.9M 78% 40%

CIFAR10 [85] LeNet [83] 62K 48% 48%

ResNet20 [86] 272K 59% 48%

ResNet56 [86] 855K 54% 35%

Speech [87] MobileNetV2 [88] 2M 57% 4%

Figure 3.6: Test accuracy for different models after 480 rounds of training and differential

privacy parameters (ϵ, δ) set to (5.03, W−1.1
). As shown later, increasing ϵ can recover the

accuracy loss.

verifiable aggregation, and distributed decryption; §3.3). FedScale is written in Python while

the code we added is in Rust; thus, we use PyO3 to wrap the Rust code with Python interfaces.

Third, our prototype extends the FedScale server-side code with Aero’s aggregator code and

the code to coordinate the various phases of Aero. In total, we added ≈4,300 lines of Rust to

FedScale.

Our prototype configures the cryptographic primitives for 128-bit security. For additively

homomorphic encryption, we use the BFV encryption scheme. We set the polynomial degree

in BFV to 212 and use the default parameters from Microsoft SEAL [89]. For ZK-proofs, we

use ark_groth16 [90], which implements the zkSNARK of Jens Groth [47].

3.5 Evaluation

We evaluate Aero in two parts. First, we compare it with plain federated learning, specif-

ically, the FedScale system. This comparison sheds light on the cost of privacy both in terms

of model accuracy and resource consumption on the devices. Second, we compare Aero to

Orchard, which is the state-of-the-art system for training models in a federated manner in

the same threat model as Aero. This comparison helps understand the effectiveness of Aero’s

techniques in reducing overhead. Our main results are the following:
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Figure 3.7: Test accuracy versus rounds for Aero and FedScale for the 1.7M parameter CNNF

model and the 2M parameter MobileNetV2 model.

• Aero can train models with comparable accuracy to FedScale (plain federated learning). For

instance, for a CNN model over the FEMNIST dataset, Aero produces a model with 79.2%

accuracy with DP parameter ϵ = 5.53, relative to 79.3% in FedScale, after 480 rounds of

training.

• Aero’s cpu and network overhead is low to moderate: for a 1.2M parameter model, devices

spend 15 ms of cpu and 3.12 KiBs of network transfers most of the time, and occasionally

(with a probability of 10−5
in a round) 13.4 min. of processor time and 234 MiBs of network

transfers.

• Aero’s techniques improve over Orchard by up to 2.3 · 105×.

Testbed. Our testbed has machines of type c5.24xlarge on Amazon EC2. Each machine

has 96vcpus, 192 GiB RAM, and 25 Gbps network bandwidth. We use a single machine for

running Aero’s server. Meanwhile, we co-locate multiple devices on a machine: each device

is assigned six cpus given that modern mobiles have processors with four to eight cpus.

Default system configuration. Unless specified otherwise, we configure the systems to

assumeW = 109 total devices. For Aero, we set the default device sampling probability q in

DP-FedAvg to 10−5
; i.e., the expected number of devices that contribute updates in a round
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is 104. We also configure Aero to use ten decryption committees, where each committee

has a total of C = 45 devices of which A = 18 may be malicious. The first decryption

committee also serves as the master committee. We configure the DP-noise committee with

(A,C) = (40, 280). For Orchard, we configure its committee to have 40 devices of which 16

may be malicious.
5

3.5.1 Comparison with FedScale

Accuracy. We evaluate several datasets and models to compare Aero with FedScale, specifi-

cally, the FedAvg algorithm in FedScale. Figure 3.6 shows these datasets and models. We use

CNND and CNNF for two different CNN models: one dropout model [56] and the other from

the FedAvg paper [48].

Aero’s accuracy depends on the DP parameters ϵ and δ. For Figure 3.6 experiments, we

set ϵ = 5.04 and δ = 1/W 1.1
. Further, for both systems, we set all other training parameters

(batch size, the number of device-side training epochs, etc.) per the examples provided by

FedScale for each dataset.

Figure 3.6 compares the accuracies after 480 rounds of training (these models converge in

roughly 400-500 rounds). Generally, Aero’s accuracy loss grows with the number of model

parameters. The reason is that DP-FedAvg adds noise for every parameter and thus the norm

of the noise increases with the number of parameters.

Although Aero’s accuracy loss is (very) high for a larger number of parameters, this loss

is recoverable by increasing ϵ (but still keeping it at a recommended value). Figure 3.7 shows

accuracy for two values of ϵ for two example models. Increasing ϵ from 5.04 to 5.53 recov-

ers the accuracy loss. For instance, for the CNNF model, FedScale’s accuracy is 79.3% after

480 rounds, while Aero’s is 79.2%. The reason is that as ϵ increases, more devices can con-

5
Aero’s committees are larger because it must ensure, using a union bound, that the chance of sampling

more than A malicious devices across any of its committees is the same as in Orchard.
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cpu (ms) network (KiB)

Model Size FedScale Aero FedScale Aero

LeNet 49K 3.36E-4 2 3.93E-5 0.96

CNND 1.2M 9.50E-4 55 9.66E-4 3.87

CNNF 1.7M 9.49E-4 77 1.35E-3 5.15

AlexNet 3.9M 1.75E-3 170 3.12E-3 11.0

Figure 3.8: Per device per round average cost for different models.

tribute updates (q increases), which increases the signal relative to the differential privacy

noise. Overall, Aero can give competitive accuracy as plain federated learning for models

with parameters ranging from tens of thousand to a few million.

Device overhead. Another cost of privacy relative to plain federated learning is increased

device overhead. Figure 3.8 summarizes the average cpu and network cost per round per

device for the four models on the FEMNIST dataset. (We picked the FEMNIST dataset just as

an example, but the results for the other datasets are qualitatively the same.)

Overall, anAero device on average (considering the different types of Aero devices) spends

5.9 ·103−9.7 ·104× higher cpu and 3.5 ·103−2.4 ·104× higher network relative to FedScale.

This overhead is due to the fact that FedScale does not use any cryptographic operations,

while Aero devices use many, for example, encryption and ZK-proofs during the generate

phase, and verifiable aggregation during the add phase. However, Aero’s overhead, at least,

on average, is low (Figure 3.8). Further, as we will show next, Aero’s worst-case overhead is

also moderate.

3.5.2 Comparison to Orchard

Both Aero and Orchard have multiple types of devices. Aero has devices that participate

in the master committee, generate updates (or Gaussian noise), verify the aggregator’s work,

and participate in the decryption committee. Similarly, Orchard has generator, verifier, and

committee devices. We compare overhead for these devices separately.
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Figure 3.9: cpu time per device per round of training for different device roles in Aero and Orchard.

Generator device overhead. The overhead for the generators changes only with the model

size (after excluding the training time to generate the plain updates). Thus, we vary the

number of model parameters and report overhead.

Figure 3.9a shows the cpu time and Figure 3.10a shows the network transfers with a vary-

ing number of model parameters. These overheads grow linearly with the number of model

parameters (the network overhead is not a straight line as it includes a fixed cost of 60 MiB to

download ZK-proof proving keys).The reason is that the dominant operations for a generator

device are generating ZK-proofs and shipping ciphertexts to the aggregator. The number of

both operations is proportional to the number of parameters (§3.3.2).

In terms of absolute overhead, a specific data point of interest is a million-parameter
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Figure 3.10: Network transfers per device per round of training for different device roles in

Aero and Orchard.

model, e.g., the CNND model with 1.2M parameters. For this size, a generator device spends

1.01 hours in cpu time, or equivalently 13.4 minutes of latency (wall-clock time) over six cores.

The generator also sends 101 MiB of data over the network. These overheads are moderate,

considering the fact that the probability that a device will be a generator in a round is small:

10−5
.

Finally, the cpu and network overhead for Aero and Orchard is roughly the same.The rea-

son is that the dominant operations for the two systems are common: ZK-proofs and upload

of ciphertexts.

Verifier device overhead. Figure 3.9b shows cpu and Figure 3.10b shows network overhead

for the verifier devices that participate in the verifiable aggregation protocol (§3.3.3). These
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experiments fix the number of model parameters to 1.2M and vary the probability q with

which a verifier device samples summation trees to inspect (recall that a verifier device in

Aero checks q · ℓ summation trees). For Orchard, overhead does not change with q (q is

effectively 1).

Overall, Aero’s verifier devices, which are the bulk of the devices in the system, are effi-

cient consuming a few milliseconds of cpu and a few KiBs of network transfers. For instance,

for q = 10−5
, Aero incurs 3.12 KiB in network and 15 ms of cpu time, while Orchard incurs

1.96 seconds (130×) and 738 MiB (2.36 · 105×).

Comparing Aero with Orchard, a verifier in Aero consumes lower cpu than Orchard for

smaller values of q but a higher cpu for larger q. This trend is due to constants: even though

an Aero device checks q · ℓ summation trees and 3s ciphertexts in each tree versus ℓ · 3s

ciphertexts in Orchard, Aero devices verify the ZK-proofs to address the reuse-of-keys issue,

while Orchard does not have such a requirement (§3.3.3). Each proof check takes≈700 ms on

a single cpu of c5.24xlarge. Indeed, Aero w/o ZK-proof check (another line in the plot)

is strictly better than Orchard.

Aero’s network overhead increases linearly with q, while Orchard’s stays constant as it

does not do sampling (Figure 3.10b). Notably, when q = 1, i.e., when Aero and Orchard

check the same number of ciphertexts, a Aero verifier consumes 251 MB, which is ≈ 1/3rd

of Orchard. This is because polynomial identity testing allows a Aero verifier to download

evaluations of ciphertext polynomials rather than the full polynomials from non-leaf vertices

(§3.3.3).

Committee device overhead. Figure 3.9c and Figure 3.10c show the cpu and network over-

head of decryption committee devices as a function of the model size. (In Aero, the first

decryption committee also serves as the master committee.)

Aero’s overheads are much lower than Orchard’s—for 1.2M parameters, cpu time is 206 s
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in Aero versus 214 hours in Orchard (i.e., 3751× lower), and network is 234MiB inAero versus

11 TiB in Orchard (i.e., 4.8 · 104× lower). This improvement is for two reasons. First, Aero

divides the decryption of multiple ciphertexts across committees, and thus each performs less

work. Second, Aero uses the distributed decryption protocol (§3.3.4), while Orchard uses the

general-purpose SCALE-MAMBA MPC [65].

3.6 Related work

Aero’s goal is to add the rigorous guarantee of differential privacy to federated learning—

at low device overhead. This section compares Aero to prior work with similar goals.

Local differential privacy (LDP). In LDP, devices locally add noise to their updates before

submitting them for aggregation [11, 12, 13, 14, 15, 16, 91, 92, 93, 94, 57, 95, 96, 97, 98, 99, 100,

101, 102]. On the plus side, the privacy guarantee in LDP does not depend on the behavior of

the aggregator, as devices add noises locally. Further, LDP is scalable as it adds small device-

side overhead relative to plain federated learning. However, on the negative side, since each

device perturbs its update, the trained model can have a large error.

Central differential privacy (CDP). Given the accuracy loss in LDP, many systems target

CDP [103, 104, 105, 75, 52, 106, 107, 108, 19, 29, 28, 109]. The core challenge is of hiding

sensitive device updates from the aggregator.

Several systems in this category target a setting of a few tens of devices to a few thousand

devices [109, 52, 75, 108, 105]. These systems require all devices to participate in one or more

cryptographic primitives, and thus their overhead grows with the number of devices. For

example, in secure aggregation based FLDP [108], each device generates a secret key, then

masks its update using the key, before sending the masked update to the aggregator. Then,

the devices securely sum their masks to subtract them from the aggregator’s result. This latter

protocol requires each device to secretly share its mask with all others.
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Chase et al. [106] do not require their protocol to scale with the number of devices: two

devices aggregate updates from all others before generating and adding DP noise via Yao’s

MPC protocol [63]. The issue is that if the adversary compromises the two devices, it learns

the updates.

Honeycrisp [29], Orchard [28], andMycelium [30] target a setting of a billion devices. One

of their key insights is to run expensive cryptographic protocols among a small, randomly-

sampled committee, while leveraging an untrusted resourceful aggregator to help with the

aggregation. Among the three systems, Orchard supports learning tasks, while Honeycrisp

supports aggregate statistics and Mycelium supports graph analytics. The limitation of Or-

chard is that it imposes a large overhead on the devices (§3.1.3, §3.5). Aero improves over

Orchard by several orders of magnitude (§3.5).

An alternative to cryptography is to use trusted hardware, e.g., Intel SGX [19]. These

systems add negligible overhead over plain federated learning, but trusting the hardware

design and manufacturer is a strong assumption [20, 21, 22].

No differential privacy. Many systems provide a weaker notion of privacy than differential

privacy, for functionality such as federated machine learning [23, 24, 25, 26, 27, 110, 111, 112,

113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133],

statistics [134], and aggregation [135, 136, 137, 138, 139]. For instance, BatchCrypt [114] uses

Paillier AHE [140] to hide updates from the aggregator. The promise is that the adversary

learns only the aggregate of the data of many devices. The fundamental issue is that aggre-

gation does not provide a rigorous guarantee: one can learn individual training data from the

trained model parameters [8, 9, 141, 10].
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3.7 Summary

Federated learning over a large number of mobile devices is getting significant attention

both in industry and academia. One big challenge of current practical systems, those that

provide good accuracy and efficiency, is the trust they require: the data analyst must say “let’s

trust that the server will not be compromised”. Aero adds an alternative. It shows that one can

perform FLwith good accuracy, moderate overhead, and the rigorous guarantee of differential

privacy without trusting a central server or the data analyst. Aero improves the trade-off

by focusing on a specific type of learning algorithms and tuning system architecture and

design to these algorithms (§3.3). The main evaluation highlight is that Aero has comparable

accuracy to plain federated learning, and improves over prior work Orchard that has strong

guarantees by five orders of magnitude (§3.5).
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Colo

In this chapter, we describe an efficient system for our second type of target queries, privacy-

preserving federated graph analytics in a strong threat model.

As a motivating example, consider the following scenario between a mobile app maker of

a contact tracing application for an infectious disease like COVID-19 [142, 143, 144], and an

influential data analyst such as the Centers for Disease Control and Prevention (CDC) [145].

The app maker installs the app on a large number of mobile devices, where it collects in-

formation on whether a device owner is currently infected, and when, where, and for how

long the device comes in contact with other devices. Abstractly, one can view the devices

as a graph where they are the nodes and their interactions are the edges. Meanwhile, the

analyst wants to use the data to study disease patterns. For instance, it wants to understand

the prevalence of superspreaders by evaluating the average number of infected devices in an

infected device’s neighborhood [34, 35]. Can we enable the analyst to run such queries and

learn their result? Further, can we do it in a way that doesn’t require moving device and edge

data outside the devices to a centralized location? And further still, can we ensure that only the

query result is revealed and no new individual device information is learned by any other party?

This is the problem of privacy-preserving federated graph analytics. The federated aspect of
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this problem emphasizes keeping raw data at the devices, in contrast to centralizing the data,

which is highly susceptible to data breaches, especially in bulk [3, 4, 5, 6]. Meanwhile, the

privacy guarantee of the problem emphasizes that an entity should get only the information

that it absolutely needs. Thus, an analyst may learn the query result that is an aggregate

across devices. And any device may not learn any more information than it knows locally

through its own data and edges.

In this scenario, we consider a threat model where devices and the analyst can be mali-

cious as the data is highly sensitive and compromising devices or the analyst can often hap-

pen. Similar to prior work [30], we primarily focus on privacy: we guarantee privacy in the

presence of malicious adversaries, but ensure integrity only when all parties are semi-honest.

Ensuring malicious integrity would impose much overhead and make the system impractical.

Thus we leave ensuring malicious integrity as future work.

As we discuss in related work (§4.6), privacy-preserving federated graph analytics is an

emerging area of research and displays a trade-off between generality, privacy, and efficiency.

For instance, Gunther et al. [146, 147] have built a system RIPPLE to answer epidemio-

logical questions. However, their system answers aggregation queries only where a device

can securely sum its state (e.g., an integer) with its neighbors’ state. It doesn’t support other

secure operations such as multiplication and comparsion. Thus, it cannot answer our moti-

vating query on superspreaders. RIPPLE also releases partial sums to the devices, and does

not consider the strongest of threat models as a set of its aggregators are honest-but-curious

(but not malicious).

In contrast, Roth et al. [30] have built a general-purpose system, Mycelium, that assumes

a strong threat model where both the devices and a centralized aggregator can be malicious.

However, Mycelium is expensive. For the superspreader query over 1M devices, each

device incurs 8.79 hours of local cpu time and 5.73 GiB of network transfers.

Colo allows an analyst to run simple queries (like the superspreader query) that have
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predicates with a limited set of inputs and outputs, and that evaluate these predicates between

a device and its neighbors and then aggregate the results across the devices. Colo guarantees

privacy (only the analyst learns the query result and no entity gets any other intermediate

data) while assumingmalicious devices and a set ofM aggregation servers of which a fraction

f of them can be malicious. A possible configuration from existing work [148, 149] is to set

M to be 40-100 and f = 0.2. Finally, Colo is scalable and efficient: it supports a large number

of devices in the order of a few million, while requiring them to contribute a small amount of

cpu and network.

At a high level, Colo follows a workflow of local evaluation followed by a global aggre-

gation across devices (§4.2). In the local evaluation, each device evaluates the query between

itself and its neighbors. The global aggregation then aggregates these per-device outputs. In

this workflow, Colo must address two challenges. First, it must hide node, edge, and topology

data during the local evaluation without imposing a large overhead on the devices. Second,

it must aggregate per-node outputs across the population of devices without revealing the

intermediate results, and again while being efficient for the devices.

The first challenge of hiding node, edge, and topology data is tricky, especially with ma-

licious devices (§4.1.4). For instance, say two neighboring devices vA and vB want to com-

pute the product vA.inf · vB.inf (as needed for the superspreader query), where inf indi-

cates their infection status. Then, a malicious device, say vB , may set its infection status to

vB.inf = 108. As a result, the query result secretly encodes vA’s infection status (result is

large if vA.inf = 1). One may use a general-purpose tool from cryptography to address this

issue, but that would be expensive. Furthermore, even if there were an efficient protocol for

this computation, say that requires a single interaction between vA and vB , then this protocol

must also hide that vA and vB are communicating, to protect their topology data, i.e., the fact

they are neighbors.

Colo addresses the first challenge, particularly, the part of hiding node and edge data,
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through a new, tailored secure computation protocol (§4.3.3). Colo observes that the query

predicates that Colo targets operate over a limited set of inputs and produce a limited set of

outputs. For instance, the legitimate inputs and outputs for vA.inf · vB.inf are all either zero

or one. Thus, instead of using a general purpose secure computation protocol such as Yao’s

Garbled Circuits [150] that operates over arbitrary inputs and outputs, Colo uses a protocol

that operates over a limited set of inputs and outputs. Specifically, one party, say vB , com-

putes all possible legitimate query outputs in plaintext, and then allows the other party vA

to pick one of these outputs privately using oblivious transfers (OT) [151, 44]. Colo forti-

fies this protocol against malicious behavior of vB by incorporating random masks, efficient

commitments [152, 153], and range proofs [70, 154] (§4.3.3).

The protocol described above doesn’t yet address the requirement of hiding the topology

of devices. To hide this data efficiently, that is, the knowledge of who is a neighbor with

whom, Colo prohibits the devices from directly interacting with each other. Rather, Colo

arranges for them to communicate via a set of servers, specifically, a set of 40 to 100 servers,

where up to 20% are malicious (§4.2). This arrangement enables the servers to run a particular

metadata hiding communication system, Karaoke [148], that is provably secure and low cost

for the devices (although with significant overhead for the resourceful servers) (§4.3.3).

Finally, Colo addresses the second challenge of global aggregation across devices through

straightforward secret sharing techniques while piggybacking on the set of servers (§4.2,

§4.3.4). Specifically, devices add zero sum masks to their local outputs, and send shares of

these local results to the servers. As long as one of the servers is honest, the analyst learns

only the query output.

We have implemented (§4.4) and evaluated (§4.5) a prototype of Colo. Our evaluation

shows that for 1M devices connected to at most 50 neighbors each, and for a set of example

queries (Figure 4.1) which includes the superspreader query, a device in Colo incurs less than

8.4 minutes of (single core) cpu time and 4.93 MiB of network transfers. In contrast, the
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Mycelium system of Roth et al. [30] requires a device-side cost of 8.79 hours (single core)

cpu time and 5.73 GiB network transfers. In addition, Colo’s server-side cost, depending on

the query, ranges from $158 to $1,504 total for Colo’s 40 servers (the lower number is for the

superspreader query). In contrast, Mycelium’s server-side cost is over $57, 490 per query.

Colo’s limitations are substantial. In particular, it does not handle general purpose queries,

rather only those that evaluate predicates over a bounded set of inputs and outputs. How-

ever, Colo scales to a significant number of devices and is efficient for them, in a strong threat

model. But more importantly, unlike prior work, Colo shows that privacy-preserving feder-

ated graph analytics can be practical, and that the CDC could run certain queries over the

devices’ data while guaranteeing privacy in a strong sense, without draining the devices’ re-

sources, and without aggressively depleting its own budget (e.g., running the superspreader

query in a large city every two weeks would cost around four thousand dollars annually).

4.1 Problem statement

4.1.1 Scenario

We consider a scenario consisting of a data analystA and a large number ofmobile devices

vi for i ∈ [0, N). For instance, N = 106.

The devices form a graph. As an example, they may run a contact tracing application for

COVID-19 [142, 143, 144] that collects information on the infection status of the device owners

and identities of the devices they come in contact with, that is, their neighbors. More precisely,

a device may have (i) node data, for example, a status variable inf indicating whether the

device’s owner is currently infected, tInf indicating the time the owner got infected (or null

if the owner is not infected), and demographic information such as age and ethnicity; (ii) edge

data, for example, the number of times the device came in contact with a neighbor (contacts),
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the cumulative duration (duration) of these interactions, and (location, time, duration) of

each interaction; and, (iii) topology data, for example, the list of the device’s neighbors.

Query Description

Q1 The total number of infections in an infected participant’s neighborhood

SELECT COUNT(*) FROM neigh(1) WHERE self.inf & neighbor.inf

Q2

The amount of time neighbor has spent near infected device if neighbor is infected

within 5-15 days of contact with the device

SELECT SUM(edge.duration) FROM neigh(1) WHERE self.inf & neighbor.inf &
(neighbor.tInf ∈ [edge.lastContact+5 days, edge.lastContact+15 days])

Q3 The frequency of contact between device and neighbor, if device infected neighbor

SELECT SUM(edge.contacts)/COUNT(*) FROM neigh(1) WHERE self.inf & neighbor.inf &
(neighbor.tInf > self.tInf+2 days)

Q4 Secondary attack rate of infected devices if they traveled on the subway

SELECT SUM(neighbor.inf)/COUNT(*) FROM neigh(1) WHERE self.inf &
onSubway(edge.lastContact.location)

Q5 The number of secondary infections caused by infected devices in different age groups

SELECT COUNT(*) FROM neigh(1) WHERE self.inf & neighbor.inf & (neighbor.tInf >
self.tInf+2 days) GROUP BY self.age

Q6

The number of secondary infections based on type of exposure (such as family, social,

work)

SELECT COUNT(*) FROM neigh(1) WHERE self.inf & neighbor.inf & (neighbor.tInf >
self.tInf+2 days) GROUP BY edge.setting

Q7 Secondary attack rates in household vs non-household contacts

SELECT SUM(neighbor.inf)/COUNT(*) FROM neigh(1) WHERE self.inf GROUP BY
isHousehold(edge.lastContact.location)

Q8 Secondary attack rates within case-contact pairs in the same age group

SELECT SUM(neighbor.inf)/COUNT(*) FROM neigh(1) WHERE self.inf &
neighbor.age∈[0,100] & self.age∈[neighbor.age-10,neighbor.age+10]

Figure 4.1: Example graph queries from Mycelium [30] and the literature on health ana-

lytics [34, 155, 156, 35, 157, 158, 159, 160, 161]. We assume that the domain of the inputs to

these queries is bounded, for example, inf ∈ [0, 1] and tinf ∈ [1, 120], referring to the days
in the latest few months.

The analystA, say a large hospital or CDC in the context of the contact tracing application,

wants to analyze the device data by running graph queries. Figure 4.1 shows a few example

queries from the literature [34, 155, 156, 35, 157, 158, 159, 160, 161] (these queries are a subset

of the ones considered in the Mycelium system of Roth et al. [30]). For instance,Amay want

to learn the number of active infections infected devices have in their neighborhood (Q1). As
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another example, it maywant to learn how frequently infected devices contact their neighbors

who are subsequently infected (Q3). Generally, these queries perform a local computation at

every device and its neighborhood, and then aggregate the per-device results.

4.1.2 Threat model

We assume that the devices are malicious, i.e., an adversary can compromise an arbitrary

subset of devices. A compromised device may try to learn information about an honest device

beyond what it knows from its own data. For instance, if a compromised device is a neighbor

of an honest device, then the compromised device already has edge data for their edge (e.g.,

the location and time of their last meeting); however, the adversary may further want to learn

if the honest device is infected (neighbor’s node data), whether it recently met someone on

the subway (neighbor’s edge data), and whom it recently came in contact with (neighbor’s

topology data).

The analyst may also be malicious and want to learn about individual device node, edge,

or topology data—information that is more granular than the result of the queries.

Finally, we assume that the adversary may also observe and manipulate network traffic,

for instance, in the backbone network, and try to infer relationships between devices.

4.1.3 Goals and non-goals

Target queries. Ideally, wewould support arbitrary graph queries. However, as noted earlier,

generality of queries is in tension with privacy and efficiency. Thus, in this paper we focus on

simpler queries such as those in Figure 4.1 where the aggregations across devices are SUM,

COUNT and AVG operations, and where devices compute simple predicates on a small set

of possible inputs in their one hop neighborhood (for example, the infection status inf is

either zero or one, and the time of infection tinf may be in [1, 120] referring to the days in
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the latest few months). We note that although these queries are a sub-class of a broad set of

queries, they are important according to the health literature and form a precursor to more

sophisticated queries in an analyst’s workflow. Besides the limitation on the generality, we

don’t aim to support interactive queries.

Privacy (P1). Private data should always be hidden from the adversary. From the point of

view of a device, it may not learn any information beyond its own node, edge, and topology

data. In particular, it may not learn any information about a neighbor beyond what is con-

tained in the direct edge to the neighbor. Similarly, the analyst must only learn the query

result.

Privacy (P2). Individual devices will cause limited changes to query result. With privacy goal

P1, only the query result would be learnt by the adversary. To prevent adversaries from learn-

ing (additional) information from the query result, the system must guarantee that individual

devices will make bounded contribution to the result.

Scale and efficiency. First, our system must support a large number of devices, for example,

one million. We assume that these devices have a bounded degree, for example, up to 50

neighbors. (If the actual device graph has nodes with a larger degree, then they may select

a subset uniformly for the query execution.) Second, in terms of device overhead, we want

that to be low, for example, minutes of cpu time and at most a few MiBs in network transfers,

which is affordable for mobile devices. Meanwhile, if the system employs any servers, e.g.,

cloud servers, then we want the server-side cost to be affordable. In terms of dollar cost of

renting the servers, we want the per-server cost to be no more than a few tens of dollars (per

query over a million devices).

Correctness (non-goal). In this paper, we focus on privacy and require the query output

to be correct only during periods when all parties (devices and any servers) are semi-honest.

Ensuring correctness in the periods of malicious behavior could be very expensive. Thus we
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Figure 4.2: An overview of Colo’s query distribution, local aggregation, and global aggrega-

tion phases of query execution. The dotted line in local aggregation depicts metadata-hiding

communication, and the dashed line depicts secure computation.

leave it as future work. Nevertheless, the system must ensure privacy at all times.

4.1.4 Challenge and straw man solutions

Meeting these goals, particularly, privacy and efficiency, when the parties can behave

maliciously is hard. We explain this point by discussing possible approaches and attacks

below. We will use query Q1 (Figure 4.1), calculating the total number of infected direct

neighbors of all infected devices, for illustration purposes.

Centralized server. One approach is to assume a trusted central server and ask devices to

upload their data in plaintext. For example, each device uploads the node data (inf ) along

with its neighbor list, and edge data for all the edges. The server can evaluate the query using

a graph analytics system such as GraphX [162] as the data is in a single location in plaintext.

This approach, however, breaks the privacy goal P1 immediately. The server sees individ-

ual device data and learns more than the query result.

This approach also breaks the privacy goal P2. Though the devices do not learn more

than they should in this approach, malicious devices can execute subtle attacks to cause a

victim device contribute more than desired to the query result and thus leak information. For

the example query Q1, the server needs to compute

∑
vA,vB

vA.inf · vB.inf for all pairs of

neighbors (vA, vB) to calculate the total number of infections in infected devices’ neighbor-
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hood. A malicious device v0 can send a large constant, e.g., v0.inf = 106 to the server. As

a result, if an honest device v1 is v0’s neighbor, the product v1.inf · v0.inf will contribute

a large value in the aggregation and the adversary can infer whether v1.inf is 0 or 1 by

inspecting the query result. As another example of breaking P2, a set of malicious devices

can claim that a victim device is their neighbor. Again for the example query, if 106 mali-

cious devices claim v1 is their neighbor and set their inf to be 1, the server will compute∑
vA,vB

vA.inf ·vB.inf +
∑

106 1 ·v1.inf . This computation again amplifies the victim device

v1’s data in the aggregate output.

To hide the data from the server (privacy goal P1), one approach is to use tools from cryp-

tography such as homomorphic encryption [69, 45] or secret sharing [163, 43]. Meanwhile,

to meet privacy goal P2, the server will have to run logic to verify devices’ (secret) inputs

to prevent malicious devices from uploading arbitrary data. However, this approach doesn’t

scale to a large number of devices. For example, for Q1, the server will need to perform at

least O(N) multiplications (N is the number of devices), and also verifications of devices’

data. Indeed, as we discuss in related work (§4.6), we are not aware of any prior work that

follows the centralized server approach when the threat model assumes malicious parties.

Federated analytics. Another approach to the problem is the idea of keeping the data fed-

erated. Each device keeps its raw data local and first communicates with its neighbors to

perform local computation (e.g., aggregation at the neighborhood level), before uploading

this local result to a server for aggregation. The federated approach has distinct advantages

relative to the centralized approach: (i) it allows devices to feel more trust in the system as

they keep possession of their data, (ii) it doesn’t risk bulk data breaches as devices do not

collectively centralize their data, and (iii) it handles data updates naturally as each device

computes locally and can use its latest data. However, efficiency is still challenging.

The state-of-the-art system that follows the federated approach, Mycelium [30], assumes
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malicious devices and a single untrusted server and scales to a large number of devices. How-

ever, even for our simple example query Q1 and for 1M devices, a Mycelium device spends

8.79 hours in cpu time and 5.73 GiB in network transfers (§4.5). The server is also expen-

sive: it spends 1304 h cpu time and 5737 TiB network transfers. One core challenge is that

during the local computation (where a device performs local aggregation over its own and

its neighbors’ data), Mycelium still needs to protect against the subtle attacks against pri-

vacy goal P2 mentioned above (e.g., one malicious neighbor inputting an arbitrary value into

the aggregation)—attacks for which Mycelium uses general-purpose (and expensive) homo-

morphic encryption [164] and zero-knowledge proofs [154]. Besides, Mycelium must protect

against arbitrary behavior of the untrusted server, which may try to manipulate the aggrega-

tion, e.g., add a device’s data a large number of times to learn it.

4.2 Overview of Colo

Given the unique advantages of the federated approach relative to the centralized ap-

proach, Colo follows the former. To facilitate federation, Colo relies on a set of servers, for

example, 40-100 servers, Si for i ∈ [0,M) (Figure 4.2). These servers may be in separate ad-

ministrative domains (e.g., Azure versus AmazonAWS versus Google Cloud Platform, and dif-

ferent geographical zones within these cloud providers). Colo assumes that at most f = 20%

of these servers may be compromised by the adversary. That is, an adversary may compro-

mise, e.g., up to 8 servers when the number of servers is 40. M and f are both configurable

and we followed prior works [148, 149] to use this default setting.

The devices connect to the servers in a star topology, where the central hub of the star

is the set of servers and a spoke connects to a device. Thus, the devices do not directly in-

teract with each other; rather, they communicate via the servers. This design is necessary

for two reasons. First, the devices typically do not have each other’s IP address. Second, the
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Setup (one time)
• The servers Si, i ∈ [0,M), generate a set of keys for a zero-knowledge proof (ZKP) scheme

using a MPC protocol [165].

• The servers distribute the keys to the devices. A device downloads the set of keys from one

server and hashes of these keys from the others to defend against attacks from malicious

servers (a malicious server can distribute malicious keys). The devices stores the keys

locally.

Query distribution
1. The analyst A submits a query q to all the servers.

2. The servers verify the query and sign it. Each server broadcasts its signed query to all

devices to start query execution.

Local aggregation
3. The servers run the Karaoke system [148] to enable the devices to communicate anony-

mously with each other.

4. Each device initializes its local result of query execution to 0 and runs the local aggrega-

tion secure computation protocol (§4.3.3; Figure 4.4) with its neighbors over the Karaoke

system [148] to obtain a share of its local result.

Global aggregation
5. Each device secret shares its own share of its local result with the servers.

6. Each server sums all secret shares it receives. Each server sends its sum to the analyst and

the analyst who adds the sum across the servers to reconstruct the global result.

Figure 4.3: A high-level description of Colo’s phases.

communication via the servers helps hide the devices’ topology data.

Colo has a one-time setup phase, and three phases of query distribution, local aggregation,

and global aggregation for query execution (Figure 4.2).

In the setup phase, the servers generate and distribute keys for a cryptographic protocol

used in the local aggregation phase. Specifically, they generate the proving and verification

keys for a zero-knowledge proof (ZKP) scheme [165].

In the query distribution phase (the leftmost diagram in Figure 4.2), the analystA specifies

the query, say q, and sends it to each of the servers. Since A can be malicious (§4.1.2) and

may write a query that tries to infer a single device’s data, the servers validateA’s query. For

example, if q contains a WHERE clause of the form WHERE self.ID = xxx, then the servers
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reject it. In general, checking whether a query leaks information about an individual device

is an open and difficult research problem [166, 167, 168, 169]. Colo does not aim to solve it

and assumes that the servers have a list of certified queries that are allowed. Once each server

validates the query, it signs and broadcasts it to the devices. A device starts the next phase

after validating enough signatures, that is, more than the threshold of servers that can be

compromised.

In the local aggregation phase (the center diagram in Figure 4.2), each device evaluates the

query in its neighborhood. For instance, for the query Q1, SELECT COUNT(*) FROM neigh(1)

WHERE self.inf & neighbor.inf, each node computes the local count of infected neighbors in

its neighborhood. More precisely, each node computes the count of infected neighbor (either

zero or one) for each edge, and then adds the results across the edges. Recall that our goal is to

ensure that a device learns no more information than it needs to (§4.1.3). Thus, a device uses

a secure computation protocol with its neighbor such that at the end of the protocol the two

parties receive secret shares of the result of the computation. This protocol admits malicious

devices; for instance, a malicious neighbor is prevented from supplying an arbitrary input

such as setting its inf = 106.

Secure computation hides node and edge data; however, an adversary that observes net-

work traffic can infer topology by monitoring who is performing secure computation with

whom. Thus, the devices in the local aggregation phase execute secure computation over

a metadata-hiding communication network, particularly, the Karaoke system [148]. The

servers facilitate and run this system.

Finally, in the global aggregation phase (the right diagram in Figure 4.2), the devices send

their results from the local aggregation to the servers, who aggregate them. Specifically,

each device secret shares its result with the servers, who locally add the shares they receive

from the devices. The servers send the result of their local computation to the analyst who

combines these outputs across the servers to obtain the query result.

62



Colo Chapter 4

Colo’s architecture (with the star topology where the hub is a set of servers) offers advan-

tages for the privacy versus efficiency tradeoff of Colo. First, the servers form a natural infras-

tructure to instantiate a metadata-hiding communication system such as Karaoke [148, 149].

Second, this architecture keeps the cost of global aggregation low by enabling servers to per-

form only local computations in the global aggregation phase. In contrast, if we assumed

a completely untrusted server as the hub (as in Mycelium [30]), then this untrusted server

would have to use a sophisticated verification protocol to prove that it performed the global

aggregation correctly (for instance, prove that it did not add a victim device’s input many

times). There would also be no resourceful infrastructure to run a metadata-hiding commu-

nication system.

Nevertheless, there are still several challenges in instantiating this architecture, one of

which is the efficiency of the secure computation piece in the local aggregation phase. This

protocol has to be particularly efficient in terms of network transfers because this overhead

gets exacerbated when secure computation messages are routed through the metadata-hiding

network. We next go over the design details of Colo and how it addresses the various chal-

lenges.

4.3 Design details

This section describes the details of Colo. Figure 4.3 provides a high-level overview and

how the phases connect with each other.

4.3.1 Setup (key generation)

The first challenge Colo must deal with is the overhead of key generation and distribution.

Aswewill describe later (§4.3.3), devices in Colo’s local aggregation phase need to generate an

array T of values and prove that each value is within a range [L,U ]. The challenge is that the
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efficient and popular zero-knowledge proof (ZKP) schemes such as that of Groth [154] bind

the proving and verification keys to the statement (the circuit) the prover is proving. That

is, this circuit is a function of the length len(T ) of array T in our case. Unfortunately, the

len(T ) further depends on the analyst’s query q, and may be different for different queries.

On the one extreme, Colo could use a single proving and verification key that works for

len(T ) = 1. Then, when proving the properties of an array T with len(T ) > 1, it could break

down the array into singletons and generate a separate proof for each. The benefit is efficiency

of key generation and distribution as Colo’s servers will need to generate and distribute one

key pair. However, the penalty is during query execution as Colo’s devices would have to

generate many proofs. For instance, for a query with len(T ) = 1024, the cpu time doubles

and the size of the proof increases from 192 B to 192 KiB, relative to generating a single,

holistic proof. This network overhead is significant because each message goes through the

metadata-hiding communication network (§4.2).

On the other extreme, Colo could generate, say, 1024 keys for all possible lengths of T be-

tween 1 and 1024. In this extreme, key generation and distribution is expensive; for instance,

the set of keys which has to be shipped to each device (and stored there) will total 52.4 GiB.

However, the proof generation is optimal with a single proof for the array T , thereby lowering

cpu and network overhead during query execution.

Colo resolves this tension between overhead of key and proof generation by generating a

key set {key20 , key21 , . . . , key2log(len(T ))−1} containing log(len(T )) keys for all powers of two

between 1 and anticipated maximum length len(T ), for example, 1024. Now, the size of the

key set is manageable, e.g., 102 MiB, and during query execution devices generate no more

than log(len(T )) proofs.
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4.3.2 Query distribution

As mentioned in the overview (§4.2), the analyst A specifies a query q and gives it to the

servers, who validate it. Here, we elaborate on how A specifies the query.

Each query has two components: (i) a SQL query similar to the examples we have dis-

cussed (Figure 4.1), and (ii) a transformation function, PreProcess, that transforms the raw

data at a device into a form needed by the SQL query. One can view the PreProcess function

as implementing preprocessing or cleaning of data and the SQL query as the analysis over

the prepossessed data.

As noted earlier (§4.1.3), Colo does not support arbitrary SQL queries. Rather, it targets

simple queries of the form SELECTAGG-OP(g(self.data, neighbor.data)) FROMneigh(1)WHERE

h(self.data, neighbor.data), where AGG-OP is the SUM, COUNT, or AVG aggregation opera-

tion, g is a predicate on the data of two neighbors (including their node and edge data), and h

is a filter that runs over the same data to compute whether a particular edge will participate

in aggregation or not. IfAwants to run a query with a GROUP BY operation,A transforms it

into several sub-queries and submits them to the servers separately. For example,A converts

Q5 in Figure 4.1 into a series of queries such as SELECT COUNT(*) FROM neigh(1) WHERE 20

< self.age < 30 for the different age groups.

The PreProcess function specifies how a device should translate its raw data into the at-

tributes accessed by the SQL query. For example, the analyst A may want to execute Q3

in Figure 4.1 (SELECT SUM(edge.contacts)/COUNT(*) FROM neigh(1) WHERE self.inf & neigh-

bor.inf & (neighbor.tInf > self.tInf+2 days)) for all infectees during a recent time period, e.g.,

March 2023, as suggested in the literature [158]. The PreProcess function should specify how

to derive the following three attributes for the SQL query: i) device infection status inf as a

binary number; ii) the infection timestamp tInf as an integer from 1 to 30 to represent March

1 to 30; iii) edge.contacts, which is the number of interactions two neighbors have had, as

65



Colo Chapter 4

a bounded integer, for example, 80 as in the epidemiology literature [35]. These constraints

(bounds) are necessary as otherwise malicious devices can supply arbitrary inputs.

Once the servers receive A’s query, they verify it by matching it to a list of certified

queries. The servers then sign and broadcast the query; if a device verifies signatures more

than the fraction of servers that can be compromised, it starts query execution.

4.3.3 Local aggregation

Hiding node and edge data

Recall from the overview (§4.2) that the goal of local aggregation is to enable a device to

compute the query locally just on its neighborhood. This computation further breaks into

evaluating the query for every neighbor edge of a node. That is, a node needs to evaluate

a function F = g ◦ h(self.data, neighbor.data) with each of its neighbors and compute∑
neighbor F (self.data, neighbor.data). As an example, for query Q1 the function F equals

F (self.data, neighbor.data) = self.inf · neighbor.inf .

For the moment, assume that we do not need to hide the topology data at the devices

(we will relax this assumption in the next subsection). Then, a natural option for comput-

ing F is to use a two-party secure computation protocol such as Yao’s garbled circuit (Yao’s

GC) [63]. The neighbor, say, vB , could act as the garbler, generate a garbled circuit, send

it to the other node, say, vA, who would act as the evaluator to obtain the result. Since

the two nodes must not obtain the result of F in plaintext, the two nodes may compute

y = F (rvA , rvB , vA.inf, vB.inf) = (vA.inf · vB.inf) + rvA + rvB , where rvA , rvB ∈ F are

uniformly sampled masks supplied by the two parties to hide the output from each other.

(The field F could be 264, for example.) At the end of the protocol, vB may store −rvB as its

output, while vA may store −rvA + y as its output.

The challenge is in preventing malicious behavior efficiently. To protect against a mali-
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Local aggregation protocol of Colo

1. Each device receives a query q containing a function PreProcess, a local computation F ,
and a boundBound. PreProcess contains information on how to convert a device’s raw

data into inputs for F . It also specifies the set of valid values for each input parameter to

F . The bound Bound is the range of valid outputs of F .

2. Each device participates in this local aggregation protocol. Denote A as the device and B
as a neighbor.

3. Each neighbor B of A does the following locally:

(a) (Generate mask) Samples an element r in a field F uniformly randomly.

(b) (Enumerate all inputs of A) Generates an array s containing all possible inputs of A
based on PreProcess.

(c) (Compute outputs) For every s[i], computes T [i] = F (s[i], Bin), where Bin is B’s

input.

(d) (Mask outputs and commit to them) For every T [i], computes T ′[i] = T [i] + r. It
then samples R[i] and generates commitment CM [i] = Commit(T ′[i], R[i]).

(e) (Prove bound of outputs) Generates a ZKP that it knows the opening of all commit-

ments and a mask such that each committed value is the addition of the mask and

some value bounded by Bound.

4. Each neighbor B sends commitments CM and the ZKP to A which verifies the ZKP.

5. (Function evaluation) A runs OT with each neighbor B to retrieve (T ′[j], R[j]), where
s[j] is A’s input to F . The device A verifies the opening to the commitment, that is, it

verifies Commit(T ′[j], R[j]) equals CM [j] received in the previous step.

6. If the verifications above pass, A adds T ′[j] to its local aggregation result. Its neighbor

device B adds −r to its local aggregation result.

Figure 4.4: Colo’s local aggregation.

cious neighbor (garbler vB), Colo would have to use a version of Yao’s GC that employs tech-

niques such as cut-and-choose [170, 171, 172] that prevent a garbler from creating arbitrary

circuits, for example, an F ′
that computes, (vA.inf · 106)+ rvA + rvB . These general-purpose

primitives are expensive because they are not tailored for the queries and they offer more

than we need: malicious integrity is not our goal (§4.1.3).

Observe that the predicates F that appear in Colo’s target queries have bounded inputs

and outputs. For example, Q1 has two possible inputs of 0 and 1 for vA.inf and thus two

possible outputs of 0 and 1. As another example, if we take Q3 in Figure 4.1 and assume tInf

67



Colo Chapter 4

has 30 possibilities (for 30 days), then the number of possible inputs for vA is sixty. That is,

vA’s input pair (inf, tInf) can range from the case (0, 0) to the case (1, 29). Corresponding

to each of these inputs, an output edge.contacts may be a value in the range [0, 79].

Leveraging this observation, the neighbor in Colo (vB above) precomputes outputs for all

possible inputs of vA into an array T instead of generating them at runtime inside Yao’s GC.

One can view this arrangement as making vB commit to the outputs without looking at v′As

input. For instance, for Q3, vB would generate a T of length 60 where each entry is in the

range [0, 79]. Then, vB can arrange for vA to get one of these values obliviously.

Protocol details. Figure 4.4 shows the details of Colo’s protocol. For a moment, assume that

the nodes vA and vB are honest-but-curious. Then, for every possible input of vA, the neighbor

vB generates one entry of array T . It also adds a mask, r ∈ F, to each entry of T . That is,

after generating the array T , vB offsets each entry by the same mask and computes T ′[i] =

T [i]+r, i ∈ [0, len(T )), where r is private to vB . The node vA then obtains one of the entries of

the table corresponding to its input using 1-out-of-len(T ) oblivious transfer [44, 151]. Finally,

vA uploads T [j] + r for the global aggregation, and vB uploads −r to cancel the mask.

To account for a malicious neighbor vB who tries to break our privacy goal P2 (§4.1.3),

Colo’s protocol adds a zero-knowledge range proof [154]. Specifically, vB commits to the

values in T and proves that each value is bounded and that each value is offset by the same

private mask r. Recall from the setup step (§4.3.1) that the keys for the ZKP are specific to

length len(T ) of array T . Thus, vB splits up proof generation as needed depending on the

binary representation of len(T ). After generating the proofs, vB sends them to vA along with

one entry T ′[j] of T ′
(using OT) as well as the opening for the commitment to T ′[j]. Now,

instead of using an OT protocol secure only against an honest-but-curious sender, Colo’s

protocol switches to an OT that defends against a malicious sender (vB) [44, 173].

Colo’s protocol is not general purpose and is not meant to replace Yao’s GC. In particular,
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its overhead is proportional to the input domain size of the predicate F . Thus, it only works

for small input domains. However, its performance benefits are very significant, and allows

the devices to keep their overhead low. First, node vB evaluates the predicate F in plaintext

rather than inside Yao’s GC. Second, the protocol uses ZKP for range proofs, a computation

which has received significant attention in the literature [174, 175]. Third, and similar to the

point above, the OT primitive is also a basic secure computation primitive that has received

much attention on performance optimizations [44, 173, 176, 177].

Hiding topology

The local aggregation protocol so far hides node and edge data; however, an adversary

that canmonitor network traffic can infer who is running secure computation with whom and

thus figure out the topology data for the devices. As noted earlier (§4.2), Colo protects this

information by enabling the devices to communicate over a metadata-hiding communication

system. In particular, Colo uses a state-of-the-art system called Karaoke [148]. Here, we

briefly review Karaoke as it has significant implications on Colo’s server-side overhead.

At a high level, Karaoke relies on the concept of dead drops—a pseudorandom location

(mailbox) at a server. Say device vA wants to send a message to vB , and they have a shared

secret kAB to facilitate this communication (e.g., they can agree on this secret when they

become neighbors). To send a message msg to vB , the device vA first derives a dead drop

and picks a server Sdrop hosting the dead drop, using kAB as the seed of a pseudorandom

generator [178, 179, 180]. The device vA then drops (writes) the message at the dead drop,

while device vB retrieves the message from the dead drop.

Of course, the idea of dead drops alone is insufficient, as the dead drop server Sdrop can

see which devices are communicating with the same dead drop. To fix this issue, Karaoke

makes the devices access the dead drops via servers, similar to a parallel mixnet [181]. Sup-

pose the key pairs of two devices vA, vB are (pkA, skA), (pkB, skB), and the key pairs for
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the M servers Si, i ∈ [0,M)’s are (pki, ski). Then, when the device vA wants to send

a message to a dead drop server, it chooses a uniformly random path of m servers, say,

S0, . . . , Sm−1, to route the message. Specifically, vA onion encrypts [181] the message as

Encpk0(. . . Encpkm−1(Encpkdrop(msg))) and sends it to the first hop on the path. When a

server on the path receives a message, it peels one layer of the onion and forwards the re-

maining message to the next server, until the drop server receives it. To protect against mali-

cious servers dropping messages to compromise privacy, the servers add dummy traffic (noise

messages to random dead drops).

Karaoke adds both significant cpu and network overhead to the servers (§4.5).

Despite this overhead, we pick Karaoke for several reasons. First, the overhead is at

the server-side, where there is more tolerance for overhead relative to the devices. Second,

Karaoke can scale to millions of devices as needed for our scenario. Third, it defends against

malicious servers who may duplicate or drop traffic to learn access patterns at the dead drops.

And, fourth, it provides a rigorous guarantee of (ϵ, δ) differential privacy. For instance, it

makes the case that vA and vB are communicating appear indistinguishable from the case

when they are idle. In particular, with a route length m = 14, assuming 80% of the servers

are honest, it guarantees indistinguishability with a probability of 1− 2 · 10−8
.

4.3.4 Global aggregation

The global aggregation phase is the last phase in query execution. Recall that at the end

of the local aggregation phase, each device has a local result, say yi. For instance, yi equals

the output of secure computation T ′[j] in Figure 4.4 or the mask r added by a device that

constructed the array T ′
. The goal of the global aggregation phase is to aggregate these

outputs across devices to wrap up the execution of the query. For this aggregation, each

device secret shares (using additive shares in the field F) its output yi and sends one share to
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each server. Each server then locally computes

∑
i[yi], where [yi] is a share it receives. The

analyst finally aggregates the results across the servers, that is, computes

∑
edge(T [j] + r) +∑

edge(−r), canceling out the random masks, and obtaining the query output.

This simple global aggregation protocol ensures that the local aggregation results of an

honest device get aggregated with the results of other honest devices exactly once. For in-

stance, if a malicious server drops or duplicates a share [yi] supplied by an honest device,

then the analyst A learns a uniformly random output, because the shares of [yi] at an honest

server will not cancel out. Naturally, this protocol guarantees privacy as long as one of the

servers is honest, which is satisfied by our assumption of only up to f = 20% of servers being

malicious (and the rest are honest).

4.4 Implementation

We have implemented a prototype of Colo in C++. Our prototype is approximately 2,000

lines of code on top of existing frameworks and libraries. In particular, we use CAF [182],

an event-driven framework used commonly for building distributed systems. We instantiate

Colo’s servers and devices as actors in this framework. The source code will be made available

on Github.

Server-side details. Weuse Groth16 [154] as our underlying zkSNARK (ZKP) scheme andwe

use BLS12-381 as its underlying curve for a 128-bit security. In the setup phase, our prototype

generates a set of ZKP keys in MPC using ZoKrates [165]. This protocol ensures that the ran-

domness used to generate the keys is not revealed to an adversary, and that the generated keys

are correct. In the local aggregation phase, servers run Karaoke [148] to provide metadata-

hiding messaging. We follow Karaoke’s default configuration to generate noise messages to

achieve ϵ = ln 4, δ = 10−4
differential privacy after 245 rounds of message losses. In the

global aggregation, servers accept devices’ additive secret shares of local results and reveal
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Application Dataset # of nodes

Social ego-Facebook 4,039

Communication Enron email 36,692

Collaboration DBLP 317,080

Collaboration live journal 3, 997,962

Figure 4.5: Commonly used graph datasets from the Stanford Large Network Dataset Col-

lection (SNAP) [186].

the summation of these results to the analyst. Our prototype uses 264 as the underlying field

F for secret shares.

Device-side details. In the query distribution phase, the devices take as input two func-

tions in C++, one for the predicate F and the other for the PreProcess transformation function

(§4.3.2). The devices also take as input a map object indicating the range of each attribute

accessed by the query. For the local aggregation phase, recall (Figure 4.4) that devices need

cryptographic tools, particularly, a commitment scheme, a ZKP scheme, and an OT proto-

col. For commitments, our prototype uses a ZKP-friendly scheme called Poseidon [153], by

importing the ZKP circuit for this commitment from neptune [183] into ark_groth16 [90]. It

also implements a range proof to prove that the values in the array T are in the range bound.

For OT, we use the simplestOT protocol [44] implemented in libOTe [184]. For enabling the

devices to participate in Karaoke (metadata-hiding communication), we use the onion en-

cryption scheme implemented in libsodium [185]. Finally, for global aggregation, the devices

simply sample random numbers in 264 to generate the additive secret shares of their local

results.

4.5 Evaluation

Our evaluation focuses on highlighting the device- and server-side overhead of Colo, for

a variety of queries, and for different underlying graphs (the number of nodes and edges, and

the degree of these nodes). A summary of our main results is as follows:
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Figure 4.6: Device-side cost with a varying input domain size len(T ) of the query pred-

icate. Queries Q1, Q2, Q4, Q7 from Figure 4.1 have len(T ) = 2, Q3, Q5, Q6 have

len(T ) ∈ [60, 240], and Q8 has len(T ) = 240.

• For 1M devices connected to up to 50 neighbors each, and for all example queries (Fig-

ure 4.1), Colo’s per-device cost is less than 8.4 min of (single core) cpu time and 4.93 MiB

of network transfers.

• For the same number of devices and their neighbors as above, Colo’s server-side cost is

$3.95 to $37.6 per server (or $158 to $1,504 total for the 40 servers), depending on the

query.

• Colo’s overheads for the example queries aremuch lower than the state-of-the-artMycelium,

whose device-side cost is 8.79 hours (single core) cpu time and 5.73 GiB network trans-

fers, per query, and the server-side cost is $57, 490 per query. Thus, Colo brings privacy-

preserving federated graph analytics into the realm of affordability for certain types of

queries.

Baselines. We compare Colo to two baseline systems: a federated non-private baseline and

the state-of-the-art Mycelium [30] for privacy-preserving federated graph analytics.

Our non-private baseline has a coordinator server. It forwards messages between devices

as they typically do not have public IP and cannot interact directly. Using the coordinator,
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devices run graph queries in a federated manner (but they are not privacy-preserving): each

neighbor vB of vA sends its data to vA in plaintext, who then performs local computation and

uploads the result to the coordinator. The coordinator aggregates the results across devices.

This baseline is non-private as devices see their neighbors’ data, and the coordinator sees

the local results computed at the devices. Besides, this baseline does not consider malicious

devices.

For a privacy-preserving baseline, we use the state-of-the-art Mycelium [30]. However,

this is challenging as Mycelium only has a partial public implementation [187]. In particular,

the device-side zero-knowledge proof implementation does not include the full proof, and the

server-side code does not include the aggregation of computation across devices. To work

around these constraints, we report lower-bound estimates for Mycelium. Briefly, however,

for device-side cpu, we use a lower-bound estimate of ZKP since it is the dominant device-

side cost (Mycelium performs homomorphic operations over ciphertexts and proves that these

operations are correct). For the server-side costs and the network overhead, we use a mix of

the released code combined with reported numbers from their paper. For details, we refer

readers to Appendix B.2.

We emphasize that Mycelium has a different and a stronger threat model than Colo—

Mycelium assumes a single byzantine server, while Colo assumes a set of servers (e.g., 40) of

which 20% can be byzantine. Thus, Mycelium is not a direct comparison (but the closest in

the literature), and we use it to situate Colo’s costs, as both Mycelium and Colo operate in

strong threat models.

Queries and datasets. We measure and report the overhead for the example queries in

Figure 4.1. Recall that Colo’s overhead depends on the size of the input domain of the query

predicate, that is, the length len(T ) of array T which contains a value for every possible

input to the predicate. Thus, we vary len(T ). For example, if we assume inf has 2 possible
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values, tInf is any value between 30 and 120 [157, 158, 160, 161], and age has 120 possibilities,

the queries Q1, Q2, Q4, Q7 have len(T ) = 2, Q3, Q5, Q6 have len(T ) ∈ [60, 240], and Q8

has len(T ) = 240. Given these numbers, we vary len(T ) between 2 and 1000, to cover our

example queries.

For the number of nodes and edges in the underlying graph, we take inspiration from

several public datasets from the Stanford Large Network Dataset Collection (SNAP) [186]

(Figure 4.5). In terms of topology, we vary the maximum degree of nodes between 1 and 100;

setting this maximum degree is necessary, as each device must communicate with a fixed

number of nodes (with itself if it does not have enough neighbors) to hide its topology.

Testbed&methodology. Our testbed is Amazon EC2 andwe usemachines of type c5.4xlarge

to run the devices and the servers. Each such machine has 16 cores, 32 GiB memory, and costs

$0.328 per hour [188]. For experiements, we don’t run all devices, e.g., 1M, in one go, which

would require thousands of machines. Instead, we sequentially run batches of 1K devices

each. In a batch, each device connects to e.g. 50 neighbors. This is acceptable as a device’s

overhead only depends on its neighborhood. Servers have a fixed-cost (dummy/noise mes-

sages; described in § 4.5.3) for 1M devices, plus incremental costs per-device. We measure

and aggregate these separately.

The one-time setup phase cost is not included in our experiments because our focus is the

per-query cost. For completeness, we estimate this cost: the server-side cost is in the order of

minutes of cpu time and a few GiBs in network transfers [165, 189] and the device-side cost

is 102 MiB (§4.3.1).

4.5.1 Overhead for different queries

This section evaluates and compares the overhead of Colo and the baselines for different

queries, that is, different sizes of input domain len(T ) of the query predicate. More precisely,
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Figure 4.7: Total server-side cost for Colo (across its 40 servers combined) and the baselines

with a varying input domain size len(T ) of the query predicate. The total number of devices

is 1M and the degree of each is 50 (except for Mycelium’s cpu cost where it is 10).

we fix the query predicate to F (vA.input, vB.input) = vA.input · vB.input, that is, the pred-

icate for query Q1, and set different input sets for vA.input. For instance, vA.input ∈ [0, 1]

fixes len(T ) = 2, vA.input ∈ [0, 9] fixes len(T ) = 10, and so on. For these experiments, we

fix the number of devices to 1M where each device has at most 50 neighbors.

Device-side overhead. Figure 4.6 shows per-device cpu and network overhead as a function

of len(T ). Colo’s overhead for len(T ) = 2 (i.e., query Q1, Q2, Q4, and Q7 in Figure 4.1) is

10.27 s and 415 KiB, and increases to 8.42 min and 4.93 MiB for len(T ) = 256 (this covers all

queries in Figure 4.1), and 29.9 min and 18.12 MiB for len(T ) = 1000.

Colo incurs significantly more overhead than the non-private baseline. For instance, for

len(T ) = 256, the baseline’s overhead is 0.003 s and 6.36 KiB per device, while Colo’s over-

head is 1.68 · 105 and 775 times higher (505.1 s and 4.93 MiB) for the cpu and the network,

respectively. This is because the non-private baseline does the involved cryptographic op-

erations, and devices simply share their data with their neighbors, who perform local com-

putations in plaintext. In contrast, in Colo a device’s overhead is dominated by the cost of

running the local aggregation protocol (§4.3.3) that involves primitives such as commitments,

ZKP, and OT (Figure 4.4).
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However, relative to Mycelium, Colo’s overhead are significantly lower. For instance, for

len(T ) = 256, a device in Mycelium requires 31, 650 s cpu time (8.79 h) and 5.73 GiB network

transfers, while Colo’s 505.1 s and 4.93 MiB is 62.6× and 1.16 · 103× lower. Mycelium’s costs

are higher because of various reasons. First, it performs local aggregation using homomor-

phic encryption and ZKP. For instance, devices multiply ciphertexts containing the inputs

of the neighbors, and prove that this multiplication is correct using a ZKP (that a malicious

device did not manipulate the computation to reveal another device’s input). Second, the ho-

momorphic encryption ciphertexts are large (e.g., 4.3 MiB) as Myceliummust choose large pa-

rameters for homomorphic encryption to support ciphertext-ciphertext multiplications. This

means that the circuit to do the proof is also large, thereby requiring hundreds of seconds

of proving time per ciphertext multiplication. Third, a Mycelium device must participate in

a verification protocol for global aggregation (besides participating in local aggregation) to

check the byzantine aggregator’s work. And, fourth, Mycelium also instantiates a mixnet

over the devices to hide their topology data, again contributing to the device overhead. In

contrast to Mycelium, Colo’s cost is dominated by local aggregation only as the metatdata-

hiding communication is instantiated over the resourceful servers, and the global aggregation

is also lightweight (§4.2, §4.3.3, §4.3.4). Further, the dominant local aggregation requires ZKP-

friendly commitments and range proofs alongside OT, primitives that have been optimized in

the literature (§4.3.3).

Although Colo’s overheads are lower, they increase with len(T ) as the number of cryp-

tographic operations in Colo’s local aggregation protocol depend linearly on len(T ). For

instance, the cpu time of a Colo device is dominated by the time to generate the ZKP—that

each entry of T is within a range. This cost depends on the number of entries, with the proof

for a single entry taking 0.04 s. Similarly, a Colo device’s network overhead increases approx-

imately linearly with len(T ); for instance, a device sends one commitment per entry of T .

In contrast, the overheads for the baselines do not depend on len(T ) as their computation
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model multiplies vA.input · vB.input directly, rather than enumerating all possible outputs.

Thus, Colo’s overheads will surpass that of Mycelium for a large len(T ).

Overall, for Colo’s target queries, its device-side overheads (in the range of a few seconds

to a few minutes in cpu time, and a few hundred KiBs to a few MiBs in network transfers)

appear to be in the realm of practicality for modern mobile devices.

Server-side overhead. Figure 4.7 shows the server-side overhead for Colo and the baseline

systems. Colo’s server-side cost for len(T ) = 2 is 88 h cpu time (on a single core) and

214.78 GiB per server, increases to 147.36 h and 3.46 TiB for len(T ) = 256, and 224.17 h and

12.79 TiB for len(T ) = 1000.

As with the device-side overhead, Colo’s costs are significantly higher than the non-

private baseline, whose server incurs 58.6 min cpu time and 6.36 GiB network transfers.

The baseline server only needs to forward 32-bit messages from devices to other devices;

in contrast, Colo’s servers are responsible for hiding topology. They not only forward onion-

encrypted messages from the devices overm = 28 hops, but also generate noise messages as

part of the Karaoke system to protect against malicious servers (§4.3.3).

Relative to Mycelium, Colo’s server-side cpu is comparable, while the network is sig-

nificantly lower. (For Mycelium’s server-side cpu, since we take numbers from their paper

we are only able to report for a degree bound of 10, which is what they experiment with.)

For instance, for len(T ) = 256, the server-side cost for Mycelium is 1304 h and 5737 TiB,

while it is 5894 h and 138.4 TiB for Colo’s 40 servers combined. The cpu cost for Mycelium

is dominated by the cost to verify ZKPs (for homomorphic operations) and perform global

aggregation (over its byzantine server), while the cpu cost for Colo is dominated by the time

to process onion-encrypted messages. Both overhead turn out to be comparable. Meanwhile,

the network overhead due to these dominant operations is lower in Colo. Although Colo’s

server-side costs are substantial, since servers are resourceful (e.g., the cpu time can be split
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Figure 4.8: Device-side costs with a varying node degree. These experiments set N = 1M
devices and input domain len(T ) = 256 for the query.

across many cores), we consider it affordable. We further assess this affordability by calculat-

ing the dollar cost of renting the servers.

We take both the cpu and network cost and convert it into a dollar cost per query using the

following pricing model. Each c5.4xlarge machine on AWS costs $0.328 per hour and has 16

cores and 32 GiBmemory [188]. We assume that all hourly cost is due to the cpu, and compute

the cpu cost per hour to be $0.0205. For the network cost, we set the cost of transferring one

GiB to $0.01 according to the typical bulk network pricing of cloud providers [190, 191].

Applying this pricing model, Colo’s dollar cost per query (over 1M devices) ranges from

$3.95 to $37.6 per server, or $158 to $1504 total for the 40 servers, depending on the query. In

contrast, the non-private baseline costs $0.08 and Mycelium costs $57,490 per query. These

figures for Colo are substantial but within the reach of the budget of an entity like CDC. For

instance, running the cheapest query (which includes the superspreader query) every two

weeks will cost less than $4K annually.
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4.5.2 Overhead with the degree of devices

In this subsection, we evaluate how the device-side costs change with the degree bound

(the maximum degree of a node). Recall that setting a maximum degree is necessary, as each

device must communicate with a fixed number of nodes (with itself if it does not have enough

neighbors) to hide the communication pattern.

Figure 4.8 shows the device-side cpu and network costs for the three systems for degree

bounds of 1, 10, 50, and 100, for N = 1M devices and len(T ) = 256. We report only the

device-side costs here because the server-side costs change with the total number of devices,

and increasing the degree bound is equivalent to increasing the number of devices from a

server’s point of view (§4.5.3).

When the degree bound is 10, Colo’s devices spend 1.68 min in cpu and 989.77 KiB in

network transfers. This cost increases to 16.8 min cpu and 9.85 MiB network with a degree

bound of 100. The costs increase and decrease with the degree bound because each device

participates in one instance of secure computation (Figure 4.4) per neighbor. This linear de-

pendence is present even for the baselines. For instance, Mycelium’s per-device costs are

1.75 h and 1.16 GiB for a degree bound of 10, and 17.5 h and 11.16 GiB for a degree bound of

100. Overall, Colo can scale to a significant degree bound (e.g., 10 or 50) with affordable costs

for the devices.

4.5.3 Overhead with the number of devices

This subsection evaluates how the three systems scale with the total number of devices.

Specifically, we set the number of devices (nodes) from our example datasets (Figure 4.5), that

is,N ∈ {4K, 36.6K, 317K, 3.99M}. We also considerN = 1M . We fix len(T ) = 256 and the

maximum degree of a node to 10 in alignment with Mycelium’s default setting for a better

comparison to its server-side cpu costs (§4.5.1). Further, since the device-side costs do not
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Figure 4.9: Total server-side cost for Colo (across its 40 servers combined) and the baselines

with a varying number of devices N . The degree of each device is 10 and the input domain

size of the query predicate is set to len(T ) = 256.

depend on the number of devices, rather just the configuration of their local neighborhood,

we focus on the server-side costs.

Figure 4.9 shows these costs, that is, cpu time, network transfers, and dollar cost for the

servers. Colo’s cost is 3.37 h cpu time, 82.15 GiB network transfers, and 0.89 dollars, per

server, for N = 4039 devices, increases to 30.74 h cpu time, 758.09 GiB network transfers,

and 8.21 dollars per server for N = 1M devices, and further increases to 116.67 h cpu time,

2.79 TiB network transfers, and 30.29 dollars per server for N = 3.99M devices.

The server-side costs for Colo (and the baselines) increases with the number of devices.

This is expected as the servers do more work for more devices: send more onion-encrypted
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messages in the case of Colo, route more plaintext messages in the case of the non-private

baseline, and operate over more homomorphic encryption ciphertexts (e.g., in global aggrega-

tion) for Mycelium. However, Colo’s cost is flatter and higher for a lower N . This is because

even for a small number of devices, Colo’s servers must generate and process several million

noise messages (§4.3.3) as required by Karaoke to protect against malicious servers dropping

traffic to learn access patterns to dead drops. For instance, for N = 4039 devices, 3.25 h

(96.4%) and 79.41 GiB (96.7%) of the server-side cost in Colo comes from the noise messages.

However, this fixed cost becomes less significant as the number of devices increases, thus

bringing Colo’s costs lower than Mycelium. For instance, Colo incurs 35.6 dollars in total for

its 40 servers relative to 48 dollars in Mycelium (1.34×) forN = 4K , but 1211.6 dollars versus

47,690 dollars for Mycelium (39.3×) when N equals 3.99M .

Overall, if we consider the dollar cost per server as a key metric for Colo’s costs, then

Colo appears to scale to several million devices. However, scaling it beyond these values

would require further optimizations and refinements at its servers.

4.6 Related work

4.6.1 Graph analytics with a single data owner

A long line of research in graph analytics [192, 193, 194, 195, 196, 197, 198, 199, 200, 201,

202, 203, 204, 205, 206] focuses on outsourcing where a single data owner outsources compu-

tations over its graph to one untrusted server or a set of non-colluding servers. One common

goal for these works is to hide the graph data from the server(s). For this purpose, they use

different cryptographic tools or assumptions.

Flare [192], for instance, outsources computation to servers with a trusted execution envi-

ronment (TEE), e.g., Intel SGX. Specifically, it runs Spark-like computation inside TEE, which
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can support the GraphX interface. Other systems [193, 194, 195, 196, 197, 198] use homomor-

phic encryption instead of TEEs to run a variety of graph queries on an encrypted graph, in-

cluding search [195, 196] and shortest distance computations [197, 198]. In themultiple-server

setting, a common technique is to use secret sharing and multiparty computation to hide the

graph from the servers [199, 200, 201, 202, 203, 204, 205]. For instance, GraphSC [204] assumes

two honest-but-curious servers and supports parallel execution of secure computation for a

broad class of tasks. While GraphSC targets honest-but-curious servers, MAGO [206], which

is designed for subgraph counting, assumes three servers where one can be malicious.

The biggest difference between Colo and these existing works is the problem setting.

While these prior works target a single data owner who outsources computation, Colo tar-

gets a setting with many data owners (e.g., a million devices). Naturally, in Colo’s setting it

is natural to consider the threat of malicious devices. This difference in setting and threat

model leads to a vastly different system architecture (§4.2) and protocol design (§4.3).

4.6.2 Federated graph analytics

Private data federation [207, 208, 209, 210, 211, 212] focuses on a scenario where a set of

data owners hold private relational data and a query coordinator orchestrates SQL queries

on this data. The goal is to keep the sensitive data of the data owners private. Private data

federation has two differences with Colo. First, they natively target the relational data model

while Colo targets the graph data model. (We include these works here because sometimes

graph queries can be expressed in the relational model.) Second, these existing works target

a scenario with a few data owners (e.g., a few tens) where each holds a significant partition

of the relational data. For instance, Senate [212] experiments with 16 parties. In contrast,

Colo targets millions of participants where each has a small amount of data. Third, while

most works in private data federation consider parties to be honest-but-curious, it is natural
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in Colo to consider malicious parties given their number.

DStress [213] focuses on graph queries and a larger number of participants: a few thou-

sand. The key use case is understanding systemic risk for financial institutions, which re-

quires analyzing inter-dependencies across institutions. However, DStress also assumes honest-

but-curious participants as financial institutions are heavily regulated and audited, and thus

unlikely to be malicious.

Gunther et al. [147, 146] consider malicious devices alongside a set of semi-honest servers

to answer epidemiological queries such as an estimate of the change in the number infections

if schools are closed for 14 days. However, they are limited to secure aggregation across

neighbors’ data and their protocol does not hide the result of local aggregation.

Mycelium [30] is the closest relatedwork to Colo. It supports a broad set of queries, targets

a large number of devices and assumes they can be malicious. However, as discussed earlier

(§4.1.4) and evaluated empirically (§4.5), its costs are very high. Colo is a more affordable

alternative in a strong threat model, at least for the subset of queries that Colo targets.

4.7 Summary

Privacy-preserving federated graph analytics is important as graphs are natural in many

contexts. It specifically is appealing because it keeps raw data at the devices (without cen-

tralizing) and does not release any intermediate computation result except for the final query

result. However, the state-of-the-art prior work for this problem is expensive, especially for

the devices that have constrained resources. We presented Colo, a new system that operates

in a strong threat model while considering malicious devices. Colo addresses the challenge

of gaining on efficiency through a new secure computation protocol that allows devices to

compute privately and efficiently with their neighbors while hiding node, edge, and topology

data (§4.3.3, §4.3.3, §4.2). The per-device overhead in Colo is a few minutes of cpu and a few
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MiB in network transfers, while the server’s overhead ranges from several dollars to tens of

dollars per server, per query (§4.5). Our conclusion is that Colo brings privacy-preserving

federated graph analytics into the realm of practicality for a certain class of queries.
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Virtual Pooling

In this chapter, we describe an efficient system for our third type of target queries, privacy-

preserving federated statistical queries among multiple health systems.

Nowadays the rapid growth of biomedical data coupled with impressive advances in data

science have revolutionized biomedical research at all scales, from molecules to populations.

The application of analytic methods to biomedical “big data” has illuminated fundamental

insights into the basis of human health and disease, and has informed strategies on disease

treatment and prevention. For example, a recent multi-site collaboration led by the National

Institutes of Health (NIH), the National Covid Cohort Collaborative (N3C), pooled electronic

health records (EHR) data from across the US to facilitate COVID-19 research, and has led

to many high-impact papers, such as one study [2] on the association between chronic im-

munosuppressive use and in-hospital outcomes of patients with COVID-19.

The traditional approach, pooling data, can be slow-paced, as the clinical researcher has

to sign a data sharing contract with each site, before the site extracts and sends data. Signing

of a data sharing contract can take months or even years. Some sites may not even be willing

to participate due to either technical burden or perceived data security risks. A single data

breach of the server hosting the pooled data repository can compromise the data of millions
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of patients. Even if patient-level patient records are de-identified, there is inherent risk that

an adversary may reidentify individuals.

Another approach for large-scale, multicenter CER over networks of EHR data is dis-

tributed querying. A coordinating center or study lead distributes queries through secure

channels and gets back aggregate results (e.g., summary statistics) from each site. The re-

searcher then combines the aggregate results into a single set of results, for example, using

meta-analysis. However, with this approach, many statistical regression models cannot be

learned precisely.

Inspired by the area of federated learning in computer science, we recently developed a

new privacy-preserving method called virtual pooling [41] that combines the best elements

of these current methods. It allows clinical researchers to analyze data as if they were pooled

in a centralized repository, but with the patient-level data remaining secure at each center.

Virtual pooling adds layers of security and privacy tailored for protected health information,

using an advanced encryption technology. Although the conceptual framework underlying

virtual pooling has already been developed (US patent application 18/493,571), its utility in

healthcare research settings has not yet been tested.

Contributions:

• To the best of our knowledge, virtual pooling is the first privacy-preserving federated

system that supports an end-to-end statistical analysis pipeline and gives the same ac-

curacy as the centralized baseline.

• At the core of virtual pooling is secure and optimized computation of a set of statis-

tical methods, including descriptive statistics, propensity score matching and Cox PH

models, Kaplan-Meier models.

• A prototype implementation and an experimental evaluation of virtual pooling
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5.1 Problem statement

5.1.1 Scenario

We consider a real-world scenario consisting of multiple health systems and an analyst.

The health systems contains EHR data of many patients, for example, age, sex, use of different

medicines, in hospital days, death and etc. This EHR data is extremely sensitive and the health

systems are not allowed to share the raw data with other parties.

The analyst wants to use some statistical methods to analyze the data across multiple

health systems. For example, the analyst wants to learn whether a medicine has some effect

for some disease. The primary reason the analyst seeks to analyze data from multiple health

systems is to ensure high data quality. More health systems mean larger dataset. Also, even

if one health system has enough number of samples, there might be some bias among those

patients since they are in the same region.

We are motivated by a high-impact study [2] that focuses on the association between

chronic immunosuppressive use and in-hospital outcomes of patients with COVID-19 and

our goal is to replicate the study with virtual pooling.

5.1.2 Threat model

In our target study, there are only 59 health systems and we assume each health sys-

tem is honest-but-curious. Besides, we assume no more than half of them will collude with

each other. We also assume that there is a server that will talk to the analyst and coordinate

between health systems. Similarly, we assume the server is honest-but-curious.

In biomedical community, it’s considered secure to reveal aggregate-level information,

e.g., average of ages across patients from some health system. So in virtual pooling, we also

consider the leakage of summary-level information secure.

88



Virtual Pooling Chapter 5

5.1.3 Goals

Privacy. It must guarantee that no patient-level information will be leaked under our honest-

but-curious threat model.

Functionality. With virtual pooling, we should be able to re-run the analysis from our target

study [2], which we will describe in details later. The results virtual pooling produce should

be identical to those given by the centralized baseline. We don’t want to lose accuracy here

because as we have seen from approximationmethods, accuracy loss is usually hard to bound.

However, if the accuracy loss cannot be bound, then it’s hard for the analyst to trust the

results.

Efficiency. For efficiency we focus on latency as well as communication rounds. The reason

is health systems usually have plenty of computation power and bandwidth. Instead, the

latency affects the analyst’ efficiency.

5.1.4 Centralized analysis

The centralized analysis [2] have three steps: preprocessing, propensity score matching

and Cox propotional hazard models. The raw data at each health systems are multiple rela-

tional tables and the preprocessing takes tables as input and outputs one table that consists

of the patients and covariates that we are interested in. This step can happen locally at each

health system.

Propensity score matching. Propensity Score Matching (PSM) is a statistical technique

used in observational studies to reduce selection bias. PSM usually consist of two steps:

• Calculate propensity scores. The first step in PSM is to calculate each individual’s

propensity score, which is the probability of receiving the treatment based on observed

covariates. In our target study, logistic regression is used to compute the scores.
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• Match based on scores. After calculating the propensity scores, treated individuals

(those who received the intervention) are matched with untreated individuals (those

who did not) who have similar scores. In our target study, nearest neighbor matching

is used.

Since the target analysis uses iteratively reweighted least squares method to train logistic

regression model, which is equivalently to Newton-Raphson, we give an overview of how to

train logistic regression model using Newton-Raphson.

Suppose the data is (X, y), where X has N rows and p features and y has N elements of

labels. The log likelihood is defined as

l(β) =
∑
i

yi log(σ(β
Txi)) + (1− yi) log(1− σ(βTxi)), where σ(z) =

1

1 + e−z

If we define y′ = Xβ andW to be diagonal matrix and the elements are from y′(1− y′),

the gradient g(β) is XT (y − y′) and Hessian H(β) = −XTWX .

So β will be updated by β′ = β −H(β)−1g(β).

Cox proportional hazard models. The Cox Proportional Hazards Model [214], often re-

ferred to as the Cox model, is a widely used statistical technique for analyzing time-to-event

data. Here we give an overview of how Cox model works.

Suppose the input data is (X,T,E), where X consists of N patients and p covariates. T

is a vector of N elements indicating the event time for each patient and E contains event

indicator for each patient, e.g., whether that patient i is dead at timestamp Ti.

The Cox model assumes that the hazard ratio is proportional to a linear combination of

covariates. That is

Hazard(Xi)

Hazard(Xj)
=

exp(βTXi)

exp(βTXj)

where β = [β1, β2, ..., βp] is a vector of length p, and βi indicates the effect size of i − th
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covariate on the hazard. So analysts are usually interested in what β is.

Another thing the analyst wants to learn about is how confident we are about the con-

clusion, which is captured by P value. In other words, the P value helps gauge whether the

observed data could have occurred by random chance if there is no real effect.

In our target study, Newton-Raphson method is used to train the Cox model and Wald

test is used to compute the P value. We will describe the process at a high level.

The partial log likelihood of Cox model is defined as

LL(β) = log Πj∈D
exp(βTXj)∑
l∈Rj

exp(βTXl)

whereD contains the index of patients who are dead andRj contains the index of patients

who are at risk at timestamp Tj .

The goal is to find a β that maximize the likelihood and the method we use is Newton-

Raphson. At a high level, if we define H(β) to be the Hessian matrix and g(β) to be the

gradient, β will be updated by the following:

β′ = β −H(β)−1g(β)

If we expand g(β),

g(β) =
∑
j∈D

Xj −
∑
j∈D

∑
l∈Rj

Xl exp(β
TXl)∑

l∈Rj
exp(βTXl)

Similarly, if we define a
⊗

2 = aaT and we expand H(β)

H(β) = −
∑
j∈D

∑
l∈Rj

XlX
T
l exp(βTXl)∑

l∈Rj
exp(βTXl)

+ [

∑
l∈Rj

Xl exp(β
TXl)∑

l∈Rj
exp(βTXl)

]
⊗

2

With Newton-Raphson, we can get some β that maximize the log likelihood. The next
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Figure 5.1: High-level architecture of the virtual pooling system.

step is to compute the P value.

The standard error of β, se(β) is estimated to be diagonal elements ofH(β)−1
and P value

can be derived from β/se(β). That said, once we get Hessian and gradients of β, we can apply

Newton-Raphson for training and Wald test to get the P value.

Descriptive statistics. Besides PSM and Cox model, virtual pooling also needs to support

some descriptive statistics, including mean, variance, standard error and etc. These descrip-

tive statistics help us normalize the data, analyze the possible issues with Cox training. For

example, covariates with low variance can stop Cox model from converging and we might

need to remove those covariates as a solution.
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5.2 Overview of virtual pooling

5.2.1 Architecture of virtual pooling

The basic architecture of virtual pooling system has two parts: i) data processors; and ii)

an orchestrator(Figure 5.1). Firewalled data processors run inside the firewalls maintained by

hospital IT staff. Each processor connects to a hospital database and generates summary re-

sults according to the orchestrator’s requests. Importantly, a data processor keeps individual-

level data within the firewalls and uploads only summary results containing aggregated data.

Orchestrator runs on a third-party server. It receives a statistical query from a data sci-

entist and executes it across the data processors in multiple rounds. In each round, it sends a

sub-component of the query to each processor and receives summary results. The orchestra-

tor combines the results at the end of a round, and begins the next round. This multi-round

approach is crucial for the illusion of a pooled data repository.

5.2.2 Protocol overview

To begin an analysis pipeline, the analyst supplies input parameters (preprocessing func-

tion, covariates used for PSM and Cox model and parameters for matching algorithm) to the

orchestrator.

In the preprocessing phase, the orchestrator sends the preprocessing function to health

systems and each health system preprocess the data locally to get a local table for later com-

putation. The orchestrator also coordinates between health systems to normalize the data for

later logistic regression and Cox model training.

Next, in the PSM phase, the orchestrator trains a logistic regressionmodel across all health

systems securely and publish the model (β of logistic regression in §5.1.4). Each health system

uses the β to compute the propensity scores (PS) and share the PS with the orchestrator. The
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orchestrator combines all the PS and runs a matching algorithm locally based on all PS, and

publish the matching results. That is, which indices of patients from which health systems

are selected in the matched cohort. Each health system uses this information to form/select

a local partition of matched cohort.

Finally, in the Cox model phase, the orchestrator trains a Cox PH model across all health

systems securely and publish the model (β of Cox model in §5.1.4) as well as the P value.

5.3 Design of virtual pooling

At the core of virtual pooling is how descriptive statistics, PSM and Cox model are com-

puted. We now go over the design details of virtual pooling piece-by-piece.

5.3.1 Preprocessing phase

In preprocessing phase, much of the computation happens locally, for example, filtering

for patients who meet some conditions for analysis. The only part that requires coordination

between multiple health systems is normalization and computation of descriptive statistics.

Normalization is required for better convergence of logistic regression models and Cox PH

models. Descriptive statistics, including mean and variance of each covariate, are useful for

the analyst to decide whether some covariate should be included or not.

It’s not difficult to computemean and variance of each covariate in virtual pooling because

we are allowed to reveal summary-level information. For example, to compute a global mean,

we can ask each health system to share the sum of its local data as well as the number of

rows. The server just needs to add up the sum from each health system and divide it by the

total number of rows. There are descriptive statistics that cannot be computed this way, e.g.,

median. But since it’s not used in our target analysis, virtual pooling doesn’t support precise

computation of it for now.
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5.3.2 PSM phase

PSM consists of the calculation of propensity scores and a matching operation, and the

goal of PSM is to balance the cohort between two groups, e.g., whether somemedicine is used.

There have been plenty of works on privacy-preserving logistic regression, based on tech-

niques like differential privacy, secret sharing and homomorphic encryption. These methods

don’t work well for virtual pooling because we are allowed to share summary-level informa-

tion, which makes the computation much easier. At a high level, virtual pooling runs a global

Newton-Raphson training with only use of summary-level information and doesn’t invovle

cryptographic tools.

We give an overview of how virtual pooling trains a logistic regression model here. Recall

that from a centralized view (§5.1.4), the gradient g(β) is XT (y − y′) and Hessian H(β) =

−XTWX . The β will be updated by β′ = β − H(β)−1g(β). Since both gradients and Hes-

sian are summary-level information, we can reveal them for the Newton-Raphson step. It’s

also easy to compute them using summary-level information. Assume health system i has

X[i], y[i], y
′
[i],

g(β) = XT (y − y′) =
∑

XT
[i](y[i] − y′[i])

That said, we just need to ask health system i share XT
i (yi − y′i) with the server, which is

summary-level information and secure to share.

Similarly, if we follow the definition of W and define Wi to be diagonal matrix and the

elements are from y′[i](1− y′[i]), it’s not difficult to show that,

H(β) = −XTWX = −
∑

XT
i W[i]Xi

So each health system just needs to locally compute XT
[i]W[i]X[i] and share it with the server.

One training step will be as follows: i) the coordinator share β with all health systems; ii)
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each health system computes XT
[i](y[i] − y′[i]), XT

[i]W[i]X[i] and share with the coordinator; iii)

the coordinator combines to get g(β) as well asH(β), and update β′ = β−H(β)−1g(β). The

training repeats the above steps until convergence.

After we get a logistic regression model, we can compute propensity scores and do the

matching. Each health system can computeX[i]β
T
to get the scores and share the scores with

the coordinator. Since the matching only takes as input the scores, it can happen locally at

the coordinator. After the matching is done, the coordinator returns indices of which patients

are selected to the health systems.

5.3.3 Cox model phase

We cannot train a Cox PH model like logistic regression where we only need to use

summary-level information. If we follow a similar process like logistic regression, the short

conclusion is that we can compute g(β) using only summary-level information and also the

first term of H(β) (§5.1.4). However, the second term, [

∑
l∈Rj

Xl exp(β
TXl)∑

l∈Rj
exp(βTXl)

]
⊗

2
cannot be com-

puted only by summary-level information.

If we formalize this problem a little bit, health system i has a matrix Ai ∈ Rd×M
, where

M is the total number of deaths across all health systems and d is the number of features.

Our goal is to compute the following without revealing any information about Ai since Ai

contains patient-level information:

(
∑

Ai)(
∑

Ai)
T

We use shamir secret sharing [43] to compute this matrix multiplication securely because

we want to tolerate compromising of a threshold of health systems. At a high level, each site

i generates shamir secret sharing of Ai and sends the shares with other health systems. At

the end of this step, we have [Ai] in the secret shared form. We can compute (
∑
Ai)(

∑
Ai)

T
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over the secret shared values and finally ask the health systems reconstruct the results with

the coordiantor.

However, simply applying this protocol can be super expensive. For example, in our target

study [2], there are 59 health systems and a total 38K deaths among 308K patients and 17

features, which means each Ai ∈ R17×38K
. Since we need to use 159-bit integer to hold

floating point numbers for accuracy purpose, the sharing cost is estimated to be about 760MiB

per health system per Newton-Raphson step. The training usually takes about 5 steps, which

means at least 3.8 GiB to train a Cox PH model for a health system. This cost is too high,

compared with an average of 0.35 MiB of network transfer per health system in the plaintext

centralized approach.

Tie optimization. This optimization is tailored for Cox model training. The key insight is

each row of matrix AT
i corresponds to some death event and can be divided into blocks of

rows according to the death time, where each block can be generated by linear combination

of two row vectors. Patients who have the same death time is called a tie. So instead of sharing

Ai with other health systems, we can share row vectors for each block and ask health systems

to expand to get [Ai] in the shared form. The rest of computation is the same as before. With

this optimization, the network cost reduces to about 3 MiB per Newton-Raphson step and

about 15 MiB for the training, which is about 250× improvement for our target dataset. For

the detailed protocol description, we refer readers to the Appendix §C.1.

5.4 Implementation

Our goal is to re-run the analysis of a high-impact study [2] on the association between

chronic immunosuppressive use and in-hospital outcomes of patients with COVID-19 [2] to

verify that virtual pooling can support real-world statistical analysis with privacy and accu-

racy. However, the data cannot leave the enclave and we are limited to their single-server
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Python environment, which makes it hard for us to build a distributed prototype. So in this

section, we will present details of the analysis pipeline.

The original study analyzed the data from the National COVID Cohort Collaborative

(N3C) repository, which contains EHR of patients in hospitals with confirmed or suspected

COVID-19 in the USA. It has code publicly available
1
, including data extraction code in Spark

SQL and Python, analysis in SparkR.

We used their original data extraction code in the N3C Enclave and got a cohort of 334,754

patients from 59 health systems. This final analytic cohort is larger than the one used in the

paper, which has 222,575 patients from 42 health systems. Due to the differences in the final

analytic cohort, we did not compare virtual pooling’s results to the study. Instead, we only

compared the results of virtual pooling and direct pooling on the cohort of 334,754 patients,

to verify virtual pooling’s accuracy.

The original study used the R package matchIt [215] for propensity score matching. The

propensity scores were computed using a logistic regression model. We followed the original

study to take the use of immunosuppressive medicine as the regression outcome variable and

the same set of covariates, including the week of admission, age, sex and etc, as regression

covariates. The matching was done with a 4:1 nearest neighbor matching algorithm without

replacement and a caliper of 0.2 pooled SDs of the estimated propensity score.

To estimate the risk of death in the matched cohort, the study used the R package sur-

vival [216] to train a Cox proportional hazards model. Similarly, we followed the study to

use the same set of covariates, including immunosuppressive medicine use, congestive heart

failure, renal disease, and etc.

1
https://github.com/National-Clinical-Cohort-Collaborative/CS-ISC
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5.5 Evaluation

In this section, we show how accurate virtual pooling is compared with centralized base-

line.

Setup. To simulate the distributed setting, we split the final analytic cohort into 59 partitions,

according to the covariate of the contributing data site. We used virtual pooling to run the

same propensity score matching and Cox proportional hazards model training. Throughout

the analysis, virtual pooling only transferred summary-level information across different data

partitions.

5.5.1 End-to-end analysis results

To test the accuracy of virtual pooling against the pooled baseline, we compared the end-

to-end results, namely the coefficients of covariates from the Cox PH model and also the P

value of each covariate. We want to test whether virtual pooling can identify the same set of

significant covariates and whether the coefficients of those covariates are identical to those

from the baseline pooled analysis. Our analytic cohort has 334,754 patients from 59 health

systems. For pooling, we ran propensity score matching and Cox PH model training. For vir-

tual pooling, the cohort was distributed into 59 partitions according to the contributing health

system and we ran propensity score matching and Cox PH model training on the distributed

dataset. We compared the coefficients of the Cox PH model and P values of the covariates.

The pooled analysis has a log likelihood of -121302.60 and virtual pooling has the same

log likelihood of -121302.60. As shown in Figure 5.2, virtual pooling has the same coefficients

as pooled baseline and the P value are also the same.

PSM results We also compare the cohort formed by PSM. As discussed, PSM contains two

steps: i) training a logistic regression model to get propensity scores and ii) nearest neighbor

matching. Since we run the same matching algorithm based on the scores, so we just need to
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Baseline Coef VP Coef Baseline P value VP P value

immuno_flag -0.05 -0.05 1.83E-02 1.83E-02

transplant_any -0.18 -0.18 <5.00E-07 <5.00E-07

pulmonary 0.11 0.11 <5.00E-07 <5.00E-07

renal 0.15 0.15 <5.00E-07 <5.00E-07

CHF 0.14 0.14 <5.00E-07 <5.00E-07

rheumatic 0.04 0.04 0.13 0.13

rx_other_pulm 0.04 0.04 0.04 0.04

rx_renal -0.20 -0.20 <5.00E-07 <5.00E-07

rx_laba -0.02 -0.02 0.52 0.52

dmcx 0.04 0.04 0.15 0.15

diabetes -0.04 -0.04 0.14 0.14

rx_inhaled_cs -0.09 -0.09 6.61E-06 7.00E-06

cancer 0.13 0.13 <5.00E-07 <5.00E-07

liver_mild -0.04 -0.04 0.07 0.07

mets 0.06 0.06 0.05 0.05

PVD 0.06 0.06 0.00 0.00

rx_insulin 0.09 0.09 1.11E-05 1.10E-05

Figure 5.2: End-to-end results of centralized baseline and virtual pooling (VP).

compare the logistic regression.

The baseline uses the R package stats [217] for logistic regression, which uses iteratively

reweighted least square method. Virtual pooling uses Newton-Raphson method, which is

essentially the same as the iteratively reweighted least square for logistic regression.

For a precision of 1E-10, in virtual pooling, the logistic regression takes about 8 training

epochs to converge. PSM takes in total 51 covariates for regression and we only present

a subset of covariates in the Figure 5.3. As shown, the converged coefficients are identical

between virtual pooling and pooling.

5.5.2 Robustness experiments

Weused simulated datasets and compared virtual poolingwith pooled baseline to evaluate

whether virtual pooling has robustness accuracy. We sampled 8K rows from the N3C dataset

and split them into three partitions to get different data distributions on each partition, and

we ran propensity score matching and Cox PHmodel training using virtual pooling and direct
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Baseline Coef VP Coef

(Intercept) -3.4299979 -3.4299979

male -0.0910278 -0.0910278

age -0.1078902 -0.1078901

data_partner_id 0.0822743 0.0822743

CHF -0.0174272 -0.0174271

PVD -0.0009256 -0.0009255

pulmonary 0.3927734 0.3927734

rheumatic 0.3016752 0.3016752

liver_mild 0.0717490 0.0717490

diabetes 0.1273330 0.1273330

dmcx -0.0388725 -0.0388725

renal 0.0760874 0.0760874

cancer 0.2640189 0.2640189

mets 0.1489797 0.1489797

rx_insulin 0.0810680 0.0810679

rx_metformin -0.0149585 -0.0149585

rx_laba 0.0711858 0.0711857

rx_inhaled_cs 0.3319529 0.3319528

rx_other_pulm 0.1645172 0.1645172

rx_renal 0.1211015 0.1211015

transplant_any 0.5025364 0.5025364

Figure 5.3: Logistic regression coefficients of centralized baseline and virtual pooling (VP).

pooling.

For example, we picked a significant covariate rx_insulin and non-significant covariate

immuno_flag in the pooled baseline and made three partitions have different correlation and

distribution of these two covariates. We compared the P values of virtual pooling and direct

pooling to test whether virtual pooling can still get the identical results as direct pooling. We

also evaluated the P values that were computed by each local partition to evaluate whether

virtual pooling is robust even when local partitions have different results from direct pooling.

To show that virtual pooling has robustness, we did some experiments as described in

the method section. In short, we sample a small dataset with 8K patients and split them into

3 partitions (sites) to get different data distributions and run propensity score matching and

Cox PH model. We presented two example experiments here.

First, we picked two covariates: rx_insulin and immuno_flag and we partitioned the data

to make site 1 have 1K patients, site 2 have 2K patients and site 3 have 5K patients. If one
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Covariate A = rx_insulin,

Covariate B = immuno_flag

Correlation

coefficient

Covariate A

P-value

Covariate B

P-value

Site 1 0.144216 Not Converged Not Converged

Site 2 -0.113732 0.232816 0.037926

Site 3 0.127933 0.227707 0.426225

Baseline 0.137760 0.004775 0.134493

VP 0.137760 0.004775 0.134493

Covariate A = rx_insulin,

Covariate B = duration

Cox model

Coefficient

Covariate A

P-value -

Site 1 0.589279 0.232916 -

Site 2 -0.029733 0.941576 -

Site 3 0.531353 0.002690 -

Baseline 0.377524 0.004775 -

VP 0.377524 0.004775 -

Figure 5.4: Robustness experiments of virtual pooling (VP).

row has (rx_insulin, immuno_flag) to be either (0,0) or (1,1), it has a higher probability to be

assigned to site 1 and otherwise higher probability to be assigned to site 2. The remaining

rows are just assigned to site 3. As a result, these three sites have different correlation between

these two covariates: site 1 has a correlation coefficient of 0.144216, site 2 of -0.029733 and

site 3 of 0.531353.

As shown in Figure 5.4, if we train Cox PH model local on each site, site 1 failed to con-

verge due to a low variance. Site 2 and Site 3 identified rx_insulin as non-significant covariate.

Meanwhile pooled baseline and virtual pooling both identified rx_insulin as significant co-

variate. Similarly, Site 2 identified immuno_flag as significant covariate, which was identified

as non-significant by pooled baseline and virtual pooling.

Further, we experimented with different distributions of the correlation between one co-

variate and the duration of the events. Similarly if one row has (rx_insulin = 1, duration <

median duration) or (rx_insulin=0, duration > median duration), it has higher probability to

be assigned to site 1 and otherwise site 2. The remaining rows are just assigned to site 3.

We compared local training on each site, pooled baseline and virtual pooling. All three

sites gave quite different Cox coefficients for rx_insulin from pooled baseline, while virtual
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pooling had the same result. Site 1 and Site 2 identified rx_insulin as a non-significant co-

variate, which was instead identified as significant by pooled baseline and virtual pooling

(Figure 5.4).

5.5.3 Latency

As mentioned earlier, the data cannot leave the N3C enclave and we are also limited to

N3C’s environment, which makes it difficult for us to measure the cpu cost as well as latency.

So we make a very rough estimation of end-to-end latency by adding up each component’s

running time.

In centralized baseline, PSM takes about 280 s, which is dominated by the matching op-

eration. The logistic regression takes 6 iterations to converge and is fast. The following Cox

PH model also takes less than 1 second. So in total the latency is about 4.73 min.

In VP, the federated logistic regression is estimated to take about 3 s. For a precision of

1E-10, VP takes 10 iterations. The computation time is about 2 seconds and if we assume each

communication round takes about 30 ms, propensity score computation thus takes less than

3 seconds for virtual pooling. The matching takes about 280 s also since it’s the same piece

of code as centralized baseline. The Cox training in VP takes about 17 s with optimizations

like Chinese remainder theorem (CRT) encoding and Barrett reduction [218].

5.6 Related work

To the best of our knowledge, we are not aware of any federated systems that can support

PSM and Cox model yet. Even for Cox model training, virtual pooling is also the first system

that can provide accuacy as centralized baseline while being secure.

A lot of related works either use approximation to avoid sharing patient-level information

or propose a different function from vanilla algorithm. For example, ODACH [18] proposes
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some surrogate likelihood function for estimation. However, since these works are different

from vanilla definition, there are fundamental errors that we cannot get rid of. The accu-

racy guarantees (how different from centralized baseline) can be different for different cases.

For example, ODACH failed to converge in some of our experiments where the centralized

converged well. Due to the accuracy issue, we don’t consider these works as closely related.

We have not seenmanyworks about privacy-preserving vanilla Cox training. Someworks

fail to provide enough privacy guarantees. For example, WebDISCO [219] can achieve the

same accuracy as direct pooling but can reveal patient-level information when some risk set

at some timestamp contains only one patient. Though Li et al.(2023) [220] also uses some

approximation, it claims to provide close enough results as centralized. However, it has a

similar issue as WebDISCO that in some cases patient-level information will be leaked.

There are also someworks using the cryptographic tools. For example, Yu et al. (2008) [221]

projects higher dimensional features into lower dimension vectors for Cox training. However,

this projection introduces errors and also it’s difficult to compute P value as needed for the

analysis. Some works use homomorphic encryption to train Cox models [222, 223] but these

works have two issues: i) functions like exp need to be estimated and thus introduces errors;

ii) none of them support calculation of P values.

5.7 Summary

Federated statistical analytics is getting significant attention in biomedical research be-

cause traditional centralized approach is difficult to operationalize due to privacy concerns

and thus slowing the pace of clinical studies. One big challenge of current approximation

methods, those that provide good privacy, is that they cannot give the same accuracy as the

centralized baseline. Virtual pooling shows that one can perform statistical analytics with

the same accuracy as centralized baseline without leaking patient-level information. Virtual
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pooling improves the trade-off by focusing on two common methods, PSM and Cox, and tune

the protocol to the threat model and these methods (§5.3). The main evaluation highlight is

that virtual pooling has identical accuracy to centralized baseline and has robustness accu-

racy(§5.5).

105



Chapter 6

Conclusion and Future Work

Federated analytics has seen many applications in both industry and research communities

since raw data can be kept locally and is friendly for privacy. However, federated analytics

is not secure yet in the presence of adversaries and there is a tension between functionality,

privacy and efficiency for privacy-preserving federated analytics systems. Existing works

either sacrifice privacy for efficiency or ensure strong privacy guarantees with high or even

impractical costs.

In this thesis, we take a step to answer the research question Can we build federated sys-

tems that provide significant functionality, provide rigorous privacy guarantees, and are efficient

at same time? by focusing on three different types of real world queries. We take inspiration

from existing works on privacy-preserving federated analytics systems and tune the system

design and protocol to the target application to improve the trade-off between functionality,

privacy and efficiency. Previous works with strong privacy guarantees [28, 30] have high

and impractical costs for our target queries. The work in this thesis, designing and building

federated analytics systems for our three target types of queries, shows that it’s possible and

practical to answer (a certain set of) federated analytics queries with strong privacy guaran-

tees.
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Our federated learning system, Aero, guarantees good accuracy, differential privacy over

an untrusted server, and keeps the device overhead low. Aero tunes system architecture and

design to a popular federated learning algorithms called FedAvg [48] and this tuning requires

novel optimizations and techniques, e.g., a new protocol to securely aggregate updates from

devices. Aero has comparable accuracy to plain federated learning (without differential pri-

vacy), and it improves efficiency (cpu and network) over state-of-the-art Orchard [28] by up

to 105×.

Our federated graph analytics system, Colo, is a new, low-cost system that requires min-

utes of cpu time and a few MiBs in network transfers, for a particular subset of queries with

strong privacy guarantees. At the heart of Colo is a new and tailored secure computation

protocol that enables a device to securely and efficiently evaluate a graph query in its local

neighborhood while hiding device data, edge data, and topology data. For running a variety

of COVID-19 queries over a population of 1M devices, Colo’s improvements of device-side

costs over state-of-the-art Mycelium [30] are of up to three orders of magnitude.

Our federated statistical analytics system, virtual pooling, guarantees accuracy, privacy

and keeps the latency low for multi-step statistical models (e.g. propensity score matching

followed by causal inference). Virtual pooling tunes protocol to the statistical models like

Cox PH models [214]. To the best of our knowledge, virtual pooling is the first federated

analytics system that can support distributed training and inference of Cox PH model with-

out sacrificing accuracy. Besides optimization for Cox PH models, virtual pooling is also a

general-purpose framework that supports a set of different statistical methods with accuracy

and strong privacy.

We envision numerous ways of expanding on research in privacy-preserving federated

analytics and we lay out a number of potential directions as follows.

This thesis primarily focus on privacy and only guarantees correctness when all parties

are honest-but-curious. Extending systems to efficiently guarantee correctness in the pres-
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ence of malicious adversary can substantially improve usability. If we take federated learning

as an example, ensuring correctness can prevent from poisoning attacks to the global model.

One possible approach to provide correctness in the federated learning setting is robust feder-

ated learning, e.g., using median instead of mean to update the global model. The difficulties

would be the efficiency since homomorphic encryption schemes are expensive for compar-

ison operationss. So possible directions can be designing crypto-friendly robust federated

learning algorithms or tuning the system and protocols to some robust FL method, e.g., using

comparison-friendly encryption schemes. As for graph queries and statistical queries, we are

not aware of robustness aggregation yet but this can also be interesting future work.

The span of queries we can support is still fairly small when considering the space of all

possible analytics techniques that can be deployed at scale. Extending systems to support

more queries can have huge impact. For example, Aero only supports DP-FedAvg and there

have been many more federated learning algorithms, like DP-FTRL [33]. Also, Colo only sup-

ports a small set of graph queries and are limited to the input domain size. Possible directions

can be extending to queries with larger input domain size. Also, in virtual pooling, future

work can be to support more complicated statistical models privately and efficiently. Future

work can also be to support more types of queries. For example, graph neural network (GNN)

is gaining attention and extending Aero or Colo to support GNN training is interesting.

Though our systems all assume strong and practical threat model, there is still room to

improve. For example, Aero assumes a small fraction (e.g., 3%) of devices can be compromised,

and future work can be done to improve this fraction to a much larger threshold like 20%.

Also in Colo, we assume a set of servers and at most a fraction (e.g., 20%) of them can collude

with each other. Extending Colo to a single-server architecture will also be interesting. In

virtual pooling, we assume at most 29 of 59 health systems can be compromised and these

health systems are honest-but-curious. Building systems that are efficient and private against

malicious health systems can also be one direction.

108



Conclusion and Future Work Chapter 6

When building systems, we use cryptographic tools as building blocks and they are usu-

ally the bottlenecks. One direction can be to tailor these building blocks and implementation

for better performance. For example, in Aero, device-side cost is dominated by the ZKP of HE

ciphertexts. One possible direction can be tailoring the ZKP for this special circuit, e.g., using

hardware to accelerate or optimizing ZKP schemes.

Though Aero and Colo are not general-purpose, they can support a type of queries. In-

stead, virtual pooling is designed for some specific algorithms, e.g., PSM and Cox. This limi-

tation comes from the functionality requirement. For example, we can apply algorithms like

SGD to train Cox PH models. Though there might be some accuracy loss compared to the

centralized baseline, we don’t need to propose and design a protocol for it. However, be-

sides training the model, we also need to do the inference, which requires us to compute the

Hessian matrix. There is no general-purpose way to compute Hessian matrix for different sta-

tistical models. So one direction can be extending virtual pooling to be general-purpose. This

can be some methods to estimate P value in a more general way or efficient general-purpose

computation, e.g., efficient HE.

Besides directions in terms of improving functionality, privacy and efficiency, there are

also deployment problems. For example, Aero and Colo, as prototypes, don’t consider train-

ing latency, resilience to drop-outs, stragglers, and etc. These problems are not trivial. For

example, Aero, requires synchronization between billions of devices to form committees and

millions of devices to build summation tree. Though Aero reuses committees, the end-to-end

training time can still be a lot, which hurts usability of Aero. Similarly, Colo doesn’t support

interactive queries due to latency as well. Colo is not resilient to drop-outs either, which is

quite common for mobile devices. Now Colo is designed for queries that are run infrequently

and thus devices just need to be online, e.g., every day. However, analysts would prefer inter-

active queries for better efficiency of analysis. Improving latency will also make the resilience

to drop-outs a huge problem.
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Aero Supplementary

A.1 Privacy proof

The goal of Aero is to provide differential privacy for a class of federated learning algo-

rithms. We will take DP-FedAvg as an example and prove that Aero indeed meets its goal in

multiple steps. The proof for other algorithms such as DP-FedSGD is similar. The outline of

the proof is as follows.

First, we will introduce a slightly modified version of DP-FedAvg that makes explicit the

behavior of the malicious aggregator and devices. This modified version changes line 8 and

line 12 in Figure 3.2. For instance, we will modify line 8 in Figure 3.2 to show that a byzantine

aggregator may allow malicious devices to be sampled in a round. Appendix A.1.1 introduces

the modified version and shows that the changes do not impact DP-FedAvg’s differential

privacy guarantee.

Next, we will prove that Aero executes the modified DP-FedAvg algorithm faithfully, by

showing that enough Gaussian noise will be added (Appendix A.1.2) and if an adversary intro-

duces an error into the aggregation, it will be caught with high probability (Appendix A.1.3).

Finally, we will prove that after aggregation, Aero’s decryption protocol does not leak any

information beyond the allowed output of DP-FedAvg (Appendix A.1.4).

We will not cover security of the protocols used in the setup phase, e.g., the sortition

protocol to form committees, because Aero does not innovate on these protocols. With the

above proof structure, wewill showAero provides the differential privacy guarantee to honest

devices’ data.

Before proceeding to the proof, we introduce a few definitions. In the main body of the

paper, for simplicity, we did not distinguish between honest-but-offline and malicious devices

for the DP-noise committee (§3.3.2). Instead, we considered all offline devices as malicious

for this committee, since it’s not possible to tell whether an offline device is malicious or not.

However, for devices that generate updates, we do protect honest-but-offline devices’ data.

So when talking about generator devices, we use the following terms:

• honest-and-online devices,
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• honest-but-offline devices,

• honest devices: including both honest-and-online and honest-but-offline devices

• malicious devices

As for the DP-noise committee members, we still follow the previous definition, namely

• honest members: honest and online members

• malicious members: malicious or honest-but-offline members

A.1.1 DP-FedAvg

As mentioned above, Aero must take into account the behavior of malicious entities for

the computation in line 8 and line 12 of Figure 3.2.

There are two reasons, Aero must modify line 8: first, a malicious aggregator may filter

out honest-but-offline devices’ data in the aggregation; second, a malicious aggregator may

add malicious devices’ data in the aggregation.

To capture the power of a malicious aggregator, we change line 8 to be

Ct ← subset of (sampled honest users with probability q) + (some malicious devices)
We must modify line 12 because the DP-noise committee is likely to add more noise as

noted in the design of the generate phase (§3.3.2). To capture this additional noise, we change

line 12 to be

∆t ←
∑

k ∆
t
k +N (0, Iσ2) + some additional bounded noise

In the remainder of this section, we will prove that the modifications preserve the privacy

guarantee of the original DP-FedAvg algorithm [224].

Device sampling (line 8). For device sampling, there are two possible attacks: either some

malicious devices’ data will be included or some honest devices’ data will be filtered out.

The first case is not a problem, since it’s equivalent to post-processing: for example, after

aggregation, the malicious aggregator can add malicious updates. Post-processing of a defer-

entially private result does not affect the differential privacy guarantee (this follows from the

post-processing lemma in the differential privacy literature [225, 42]).

To prove that filtering out honest devices’ data will not impact the privacy guarantee,

we’ll first give intuition and then a rigorous proof. Intuitively, a larger sampling probability

(larger q) leads to more privacy loss, because a device’s data is more likely to be used in

training. So informally, if each device is expected to contribute an update fewer times, the

privacy loss is expected to be less. Now coming back to the case where the aggregator filters

out honest devices’ data, it is obvious that each device is expected to contribute updates no

more frequently than without filtering, which means the privacy loss is expected to be no

more than without filtering.

In the original paper of DP-FedAvg [224], the DP guarantee relies on themoments accoun-

tant introduced by Abadi et al. [55], whose tail bound can be converted to (ϵ, δ)-differential
privacy. To be precise, the proof uses a lemma (which we will introduce shortly) that gives
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the moments bound on Gaussian noise with random sampling, which is equivalent to (ϵ, δ)-
differential privacy. We cite this lemma as Lemma A.1.1 in the appendix.

So next we will show by replacing the original random sampling with random sampling

plus filtering, the moment bound still holds. In the discussion, without losing generality, we

will focus on functions whose sensitivity is 1, for example, the UserUpdate function that

does local training and gradient clipping with S = 1 in DP-FedAvg (Figure 3.2). Notice that

for any function f ′
whose sensitivity is S ′ ̸= 1, we can always construct a function f = f ′/S ′

whose sensitivity is 1.

Lemma A.1.1 Given any function f , whose norm ∥f(·)∥2 ≤ 1, let z ≥ 1 be some noise scale
and σ = z · ∥f(·)∥2, let d = {d1, ..., dn} be a database, let J be a sample from [n] where
each i ∈ [n] is chosen independently with probability q ≤ 1

16σ
, then for any positive integer

λ ≤ σ2 ln 1
qσ
, the function G(d) =

∑
i∈J f(di) +N (0, σ2I) satisfies

αG(λ) ≤
q2λ(λ+ 1)

(1− q)σ2
+O(q3λ2/σ3).

Notice that if the bound on αG does not change when some data points are filtered out

after sampling, the differential privacy guarantee will not change either. We refer readers to

[55] for more details.

Claim A.1.1 Let J be a sample from [n] where each i ∈ [n] is chosen independently with
probability q ≤ 1

16σ
. Let J ′ ⊆ J be some arbitrary subset of J . Then for any positive integer

λ ≤ σ2 ln 1
qσ
, the function G ′(d) =

∑
i∈J ′ f(di) +N (0, σ2I) also satisfies

αG′(λ) ≤ q2λ(λ+ 1)

(1− q)σ2
+O(q3λ2/σ3).

Proof: Let’s abuse the notation a little bit and define Gf,J to be

Gf,J (d) =
∑
i∈J

f(di) +N (0, σ2I).

To prove this claim, since by definition G ′(d) = Gf,J ′(d), we just need to show

αGf,J ′ (λ) ≤
q2λ(λ+ 1)

(1− q)σ2
+O(q3λ2/σ3).

To do this, suppose for now we have a f ′
on J whose sensitivity is no greater than 1 and

gives the same output as f on J ′
, namely

∥f ′(·)∥2 ≤ 1,Gf ′,J (d) = Gf,J ′(d).
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By applying Lemma A.1.1 on Gf ′,J , we get

αGf ′,J
(λ) ≤ q2λ(λ+ 1)

(1− q)σ2
+O(q3λ2/σ3).

Since Gf ′,J (d) = Gf,J ′(d),
αGf ′,J

(λ) = αGf,J ′ (λ).

Combining the preceding two equations, we get

αGf,J ′ (λ) = αGf ′,J
(λ) ≤ q2λ(λ+ 1)

(1− q)σ2
+O(q3λ2/σ3).

The remaining task is to construct such a f ′
on J , where ∥f ′(·)∥2 ≤ 1, to give the same

output as f on J ′
. One possible f ′

is as follows:

f ′(di) =

{
f(di) if i ∈ J ′,

0 if i ∈ J − J ′.

It’s easy to prove

∑
i∈J ′ f(di) =

∑
i∈J f

′(di).
Next, for the sensitivity of f ′

, it is not difficult to see ∥f ′(·)∥2 ≤ ∥f(·)∥2, since by removing

or adding one entry to the database, f ′
will incur either the same change as f or no change.

So far we have proved that if only a subset of selected devices are included in aggregation

or more malicious devices’ data is included, the differential privacy guarantee will not be

impacted.

Gaussian Noise (line 12). Recall that we also add some additional noise in line 12 in Fig-

ure 3.2. For the Gaussian noise, we need to prove additional noise will not impact privacy,

which is not difficult to show, since this change is also equivalent to post-processing.

With the above proof, we’ve showed that our modified DP-FedAvg provides the same

privacy guarantee as the original DP-FedAvg.

A.1.2 DP-noise committee

This section shows that the N (0, Iσ2) part of line 12 of our modified DP-FedAvg is exe-

cuted faithfully.

We have already covered in the generate phase (§3.3.2) thatN (0, Iσ2) amount of noisewill

be generated by the DP-noise committee as long as the DP-noise committee does not violate

its threshold: less than A out of C devices of the DP-noise committee are indeed malicious.

Thus, in this section we will derive the probability of a committee having fewer than some

threshold of honest members. We will follow the same way to compute the probability as in

Honeycrisp [29], which is a building block for Orchard [28].

Claim A.1.2 (Aero) If a randomly sampled DP-noise committee size is C , the probability of a
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committee member being malicious is f , the probability that committee has fewer than (1−t)·C
honest members is upper-bounded by p = e−fC( ef

t
)tC , when 1 > t ≥ f.

Proof: We treat eachmember beingmalicious as independent events. LetXi be a random

variable

Xi =

{
1, if member i is malicious,

0, if member i is honest.

Let X =
∑

iXi be the random variable representing the number of malicious members. If

t ≥ f , the Chernoff bound shows that

Pr(X ≥ tC) ≤ e−fC(
ef

t
)tC .

So the probability of fewer than (1− t) ·C members being honest will be upper-bounded by

p.
With (high) probability, the lower bound of honest committee members will be (1− t)C .

As long as each honest member contributes
1

(1−t)C
·N (0, σ2I) noise, the total amount of noise

will be no less than N (0, σ2I).
To give some examples of what committee sizes could be, when f = 0.03, we may set

t = 1/7, C = 280, to achieve p = 4.1 · 10−14
; when f = 0.05, we may set t = 1/8, C = 350

to achieve p = 9.78 · 10−7
or C = 450 to achieve p = 1.87 · 10−8

; and, when f = 0.10, we
may set t = 1/5, C = 350 to achieve p = 1.34 · 10−6

or C = 450 to achieve p = 2.82 · 10−8
.

A.1.3 Aggregation

This section will prove that the additions in line 12 in our modified DP-FedAvg are exe-

cuted faithfully in Aero. Otherwise, the aggregator will be caught with a high probability.

We will first prove the integrity of additions as in Aero’s add phase protocol and in Hon-

eycrisp. Next, we will prove the freshness guarantee that no ciphertexts from previous rounds

can be included in the current aggregation. Finally, we will prove how these two proofs to-

gether show that line 12 of modified DP-FedAvg is executed faithfully by Aero.

Integrity. We will start with the integrity claim from Honeycrisp [29].

Claim A.1.3 At the end of add phase, if no device has foundmalicious activity by the aggregator
A, the sum of the ciphertexts published by A is correct (with high probability) and no inputs of
malicious nodes are dependent on inputs of honest nodes (in the same round).

Proof: We refer readers to Honeycrisp [29] for more details. Here we will just give a

short version for demonstration.

We will first prove no inputs of malicious devices are dependent on inputs of honest de-

vices in the same round. Next we will prove if a malicious aggregator introduces an error into

a summation tree, it will be caught with high probability.
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First, assume for the sake of contradiction that it is possible for a malicious device to set

its ciphertext to be c that is from an honest device in the current round. The adversary needs

to produce a t = Hash(r||c||π) and include t in the Merkle treeMC , before the honest device
reveals c. Under the Random Oracle assumption in cryptography, this is not possible. So no

inputs of malicious devices are dependent on inputs of honest devices in the same round.

Next we need to show ifA introduces an error into a summation tree ST , it will be caught
with high probability. In particular, here we will just show the case where A introduces an

error into one of the leaf nodes. Similar analysis can be done for non-leaf nodes, which is

presented in Honeycrisp [29].

Suppose the total number of verifiers is W and the total number of leaf nodes in one

summation tree isM ′
(Figure 3.4). Here we make the assumption thatM ′ ≈ qW , where q is

the sampling probability. We will prove this assumption later in this section.

SupposeA introduces an error into a particular leaf node j ∈ [0,M ′− 1]. The probability
of an honest device picking any vinit to have j ∈ [vinit, vinit + s] is

qs

M ′ .

Since there are at least (1−f)W honest devices, the probability of no honest device checking

j is

(1− qs

M ′ )
(1−f)W = (1− s

W
)(1−f)W ≤ e−(1−f)s.

Similarly we can prove if A introduces error into non-leaf nodes, it will be caught with a

high probability. For instance, if f = 3%, s = 5, the probability is about 0.007; if f = 3%, s =
20, the probability is about 10−11

.

As noted above, proof relies on an assumption about the threshold of Sybils (pseudonym

leaf nodes) the aggregator can introduce into the summation tree. Intuitively, if the aggregator

can introduce as many Sybils as it wants to make M ′ ≫ qW , then the probability of each

node being covered will decrease by a large factor, thus impacting privacy. For example, if

W = 100, q = 0.01, M ′
is expected to be close to qW = 1 and the 100 verifiers expect to

verify only 1 leaf node. However, if the aggregator introduces 99 additional leaf nodes into the

summation tree while the 100 verifiers still expect to verify only 1 leaf node, obviously many

malicious nodes are very likely to be missed by the verifiers. Before claiming in Aero there is

a threshold of Sybils, we need to introduce an assumption from Honeycrisp [29], which we

will also use in our claim.

Assumption A.1.1 (Honeycrisp) All devices know an upper bound Wmax and a lower bound
Wmin of the number of potential participating devices in the system. If the true number of devices
is Wtot, then by definition: Wmin ≤ Wtot ≤ Wmax. We assume Wmax−Wtot

Wmin
is always below

some constant (low) threshold (this determines the portion of Sybils the aggregatorA could make
without getting caught). Wmax

Wmin
should also be below some (more generous) constant threshold.

With the above assumption, similarly, we claim in Aero:
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Claim A.1.4 (Aero) There is a upper bound on the portion of Sybils a malicious aggregator can
introduce without being caught. Precisely, all devices know an upper boundMmax and a lower
bound Mmin of the number of potential leaf nodes in the summation tree. If the true number
of leaf nodes isMtot, then by definition: Mmin ≤ Mtot ≤ Mmax. In Aero, Mmax−Mtot

Mmin
is always

below some constant (low) threshold (this determines the portion of Sybils the aggregatorA could
make without getting caught). Mmax

Mmin
will also be below some (more generous) constant threshold.

Proof: Note that in this claim, by "leaf nodes", we mean leaf nodes corresponding to a

honest generator device. Once we know a upper bound Mmax and a lower bound Mmin of

the number of leaf nodes, in the worst case, a malicious aggregator could introduce at most

Mmax − Mmin Sybils. If the true number of leaf nodes is Mtot, then the aggregator could

introduce at mostMmax −Mtot Sybils.

Let’s first considerMmin andMmax.

Informally, if the number of devicesW is large enough, the number of leaf nodes (gener-

ators) is likely to be close to the expectation qW . Suppose for now there are two constants

capturing this "closeness": kmin, kmax, where kmin ≈ 1, kmax ≈ 1. Then, we have

kmin · qWmin ≤Mmin ≤ kmax · qWmin,

kmin · qWmax ≤Mmax ≤ kmax · qWmax.

Consider the fraction
Mmax

Mmin
.

Mmax

Mmin

≤ kmax · qWmax

kmin · qWmin

=
kmax

kmin

· Wmax

Wmin

Wmax

Wmin
is below some constant threshold as in Assumption A.1.1. If

kmax

kmin
is smaller than

some constant threshold, then it’s reasonable to assume like in Honeycrisp that
Mmax

Mmin
is below

some constant threshold. We will discuss the values of kmax and kmin at the end of the proof.

As for the fraction
Mmax−Mtot

Mmin
, it’s not difficult to see that,

Mmax −Mtot

Mmin

≤ kmaxWmax − kminWtot

kminWmin

Similarly if both kmax and kmin are close to 1, this fraction will be close to
Wmax−Wtot

Wmin
,

which is below some small constant (low) threshold as specified in Assumption A.1.1. So in

Aero, it is reasonable to assume this fraction is also below some constant (low) threshold.

Lastly, let’s discuss kmax and kmin. Consider a general case where the total number of

devices isW and the sampling probability is q. The number of sampled devices (leaf nodes)

is X . Chernoff bound states that,

Pr(X < kminqW ) < (
ekmin−1

kmin
kmin

)qW .

With qW = 5000, kmin = 0.9, the above probability will be smaller than 5.77 · 10−12
.
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Similarly, with qW = 10000, kmin = 0.93, the probability will be smaller than 1.27 · 10−11
.

Since Aero is designed for large-scale training, it’s reasonable to assume kmin is close to 1.

The argument is similar for kmax (e.g. kmax = 1.01).
However, if qW is, for example, 500, to achieve a similar probability of 1.17 · 10−11

, kmin

will be about 0.7. In this setting, it’s not reasonable to assumeM ′ = qW as in Claim A.1.3 any

more. Instead one will need to assume a different bound, e.g.M ′ < 2qW , and re-calculate the

probability. For example, if M ′ = 2qW , in Claim A.1.3, the probability of an honest device

checking a particular leaf node will still be the same. However, the probability of no honest

device checking a particular node will be instead

(1− qs

M ′ )
(1−f)W < (1− s

2W
)(1−f)W ≤ e−(1−f)s/2

Verifiers are expected to verify more nodes in the summation tree to make Claim A.1.3 true

and thus ensure privacy.

Freshness. Reusing the encryption key will not affect the security proof in each round, but

will lead to attacks across rounds, where information from previous rounds can be leaked.

The adversary may obtain the victim device’s ciphertext Enc(m) from a previous round and

use k · Enc(m), where k is a large constant, to participate in a later round. Since k is large,

k ·Enc(m) will dominate the aggregated result. After decryption, the adversary will be able

to learn approximatelym. We define the freshness as the guarantee that only fresh generated

ciphertexts are included in the aggregation.

We need to prove that by asking each device to put the round number in the first slot of

ciphertext, generating corresponding ZK-proof, and in the add phase verifying the ZK proof,

the adversary will not be able to use ciphertexts from previous rounds in the current round.

First, according to the knowledge soundness property of zkSNARK, which states that it is

not possible for a prover to construct a proof without knowing the witness (e.g. secret inputs),

an adversary can’t construct a proof for a new round [226]. This means the adversary can

only insert a non-valid proof into the summation tree.

Next, if the adversary inserts one ciphertext from a previous round with a non-valid proof

into the summation tree, with high probability, it will be caught, since as claimed before, with

high probability each leaf node will be checked by some honest devices. The honest devices

will be able to detect this error.

How Aero supports modified DP-FedAvg. We’ve covered the integrity and freshness of

Aero’s add phase/aggregation. Next we’ll show the modified DP-FedAvg will be executed

faithfully. In order to show this, we claim the following:

Claim A.1.5 Data from honest generator devices will be included at most once in the aggrega-
tion; data from honest DP-noise committee members will be included exactly once.

Proof: It’s not difficult to see that both honest generators’ and honest DP-noise com-

mittee members’ data will be included at most once, as defined in Claim A.1.3. So for honest

generator devices, the proof is done.
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As for honest DP-noise committee member, we just need to prove data from an honest

member will be included (at least once). Recall that for a honest committee member, it is

always online during a round, otherwise will be considered as malicious. Also recall that

in the add phase, after the aggregator constructs the summation tree and the Merkle tree,

the aggregator needs to send a Merkle proof to the device that its data is included in the

summation tree (Step 7 in Figure 3.4). An honest committee member can thus make sure its

data is included in the aggregation by verifying this Merkle proof.

This claim captures the requirement for faithfully executing the modified DP-FedAvg.

Firstly, data from honest generators (including online and offline) will be included at most

once, which is exactly what our new sampling method does (Appendix §A.1.1): some honest

generators might be filtered while others not; those included in the aggregation will be added

exactly once.

Secondly, data from honest DP-noise committee members (only online) will be included

exactly once, which ensures that enough Gaussian noise will be added.

Combining with the integrity and freshness of the underlying aggregation, the modified

DP-FedAvg protocol will be executed as it is in Aero.

A.1.4 Decryption

The last step inAero’s protocol is decryption. In this section, we’ll proveAero’s decryption

protocol will not leak any information, except the decrypted result.

Let’s first review the BFV scheme [46, 45]. Let the field for the coefficients of the ciphertext

polynomials beQ, the polynomials themselves be from a polynomial ringRQ, the distribution

ϕ for the coefficients of error polynomials be the required Gaussian distribution ϕ (standard

deviation=3.2), and the secret key sk be a polynomial of same degree N as the ciphertext

polynomials but with coefficients from the ternary distribution ({-1,0,1}), which we denote as

ψ. Then, given a small constant γ ≪ 1, the BFV scheme has the following procedures

• Keygen: s ← ψ, a ← RQ, e ← ϕ. Compute b = as + e and output pk = (a, b) and
sk = s

• Enc(pk,m): e1 ← ϕ, e2 ← ϕ, r ← ψ, output (c1 = ar + e1, c2 = br + e2 +m/γ)

• Dec(c1, c2) : outputm = ⌊(c2 − c1s) · γ⌉

Since m will finally be known to the aggregator and revealing m is safe, without losing

generality, assume (c1, c2) is the encryption of 0. Further, as defined in release phase (§3.3.4),

esmall = c2 − c1 · s = re+ e2 − se1.

This small error must remain hidden during the decryption process; otherwise, it may reveal

information about the secret key s or the polynomial r. To hide esmall, Aero’s scheme applies

the smudging lemma [81]. This lemma states that to achieve 2−λ
statistical distance between

esmall and esmall + esmudging, esmudging just needs to be sampled from a uniform distribution
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whose bound is λ bitsmore than the upper bound of esmall. Suppose the smudging distribution

is ϕ′
, which is some uniform distribution whose bound is λ bits more than the upper bound

of esmall.

Recall that in the release phase, the decryption committee reveals c1 · s+ esmudging to the

aggregator, where esmudging ← ϕ′
. So the adversary’s view is

(c2, c1, c1s+ esmudging),

which is equivalent to

(c2, c1,−c2 + c1s+ esmudging).

If we can prove this view is indistinguishable from

(c2, c1, e
′
smudging)

where e′smudging is some freshly sampled error from the smudging distribution ϕ′
, then

revealing c1 · s + esmudging to the aggregator will not leak more information than telling the

aggregator a uniformly random number, since (c1, c2) are already known to the aggregator.

To prove the above claim, let’s start with

(c2, c1,−c2 + c1s+ esmudging).

Expanding c2 and c1, we get that the above is same as

(asr + re+ e2, ar + e1,−re− e2 + se1 + esmudging).

With the smudging lemma, the above is indistinguishable from

((as+ e)r + e2, ar + e1, e
′
smudging).

Notice that e′smudging has nothing to do with the secret key s, and we can apply Ring-LWE

assumption to convert (as+e, a) back to (b, a) as otherwise (as+e, a) is not indistinguishable
from (b, a). The above is indistinguishable from

(br + e2, ar + e1, e
′
smudging) = (c2, c1, e

′
smudging).

Since e′smudging doesn’t depend on either the secret key or honest devices’ data, revealing par-

tial decryption result will not leak information about either the secret key or honest devices’

data.

A.1.5 Details of the setup phase

During the setup phase, Aero (i) forms the master committee, which then (ii) receives

and validates inputs for the round, and (iii) generates keys for cryptographic primitives. We

present the details for only the second piece here, as the first and the third are discussed in
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detail earlier (§3.3).

For the second piece, the master committee needs to check whether there is enough pri-

vacy budget to run a training task before launching it. To do this, the committee members

need to calculate the new DP parameters before they launch the training task and check

whether the new parameters are below some threshold. The details are as follows.

Recall that once the master committee is formed, each committee member receives the

model parameters θt for the current round t, the user selection probability q, noise scale z,
and clipping bound S from the aggregator for this round of training (required by DP-FedAvg;

Figure 3.2).

Each committee member locally computes new values of the DP parameters ϵ, δ using

the moment accounting algorithmM (line 14 in DP-FedAvg). This computation requires the

DP parameters ϵ′, δ′ from round t − 1 in addition to the inputs z, q. The committee member

downloads the former from a public bulletin board, where it is signed bymore than a threshold

of honest members of the previous round’s master committee. After getting the former DP

parameters, the committee member calculates the new ϵ, δ. If the new values are below their

recommended value, the committee member signs a certificate containing the parameters (θt,
q, z, S), new values of ϵ, δ, and keys for cryptographic primitives and publish it to the bulletin

board to start this training task.
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Colo Supplementary

B.1 Privacy analysis

In this section, we show the privacy analysis of Colo. We sketch the proof as follows. We

will first prove that if the local aggregation does not leak any information about node data,

edge data, or the topology data and if the local aggregation evaluates a function F ′
, which

has some same property as the function F given by the query, the three phases of query

distribution, local aggregation, and global aggregation will not leak information about the

devices more than the query output. Later, we will prove that the local aggregation protocol

meets the above requirement.

Before going into the proof, we list the assumptions we’ve made for privacy.

Assumption B.1.1 The queries themselves, including the transformation and themetadata (the
bounds on inputs and outputs), won’t break the devices’ data privacy.

Since the queries are public, we assume we can meet this requirement by asking experts to

review and certify the queries before execution, or only support a list of safe queries, as well

as a list of safe transformation functions.

Assumption B.1.2 We assume that devices can send messages to each other privately using a
metadata private messaging system.

In Colo, we use Karaoke [148] to meet this assumption. Other systems that can provide

this functionality will also work and we are not limited to Karaoke.

Assumption B.1.3 We assume that the adversary is not able to compromise all servers.

Indeed, to use Karaoke [148], Colo assumes that 80% of theM servers (M is 40-100) remain

honest. (Onlywith this assumption Karaoke provides its guarantees.) Thus, at least one server

is honest. However, if we use other metadata private messaging systems, as long as there is

one honest server, Colo will still guarantee privacy.
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B.1.1 Proof for the three phases

We clarify that since Colo reveals aggregated results directly to the analyst, Colo itself

is vulnerable to attacks where the adversary may get information by simply inspecting the

final result. That is, even if all devices and servers are honest, the final result itself may reveal

information. Though we consider this out of the scope of Colo, Colo can be extended to add

differential privacy (DP) [53, 42, 54], by asking the servers to add DP noise before revealing

the final result.

In light of revealing the final result, we will show the following in this section: i) Colo

will only reveal the final aggregated result to the analyst and any other information will not

be leaked; ii) in the presence of a malicious adversary, an honest device’s input can change

the final result by at most the same bound as the case where all parties are honest. These two

properties enable Colo to provide provable privacy guarantees.

In order to show the above, we define a concept of sensitivity. Recall that in local aggrega-

tion phase (Figure 4.4), two neighboring devices self and neighborwill evaluate a functionF .
We define the sensitivity of F to be the maximum change in output of F if self or neighbor’s
input changes.

Assumption B.1.4 Say the query requires the two neighboring devices to evaluate F together
and the output range of F is [0, B]. We assume there is a local aggregation protocol that can
enable two neighboring devices to evaluate a function F ′ that has the same sensitivity as F ,
without leaking any information about honest devices.

For now we assume such a local aggregation protocol exists and later we will prove our

local aggregation satisfies this requirement. We now need to prove that if the local aggre-

gation evaluates a (different) function F ′
, which has the same sensitivity as the function F

given by the query, the global aggregation phase won’t leak information more than the final

result.

Claim B.1.1 If Assumption B.1.4 is true, the global aggregation will not leak information more
than the final result and each honest device’s input can cause a change to the final result by at
most B ·DegreeBound.

Proof:
Recall that in the global aggregation phase, the local results are secret-shared with the

servers (§4.3.4). Based on the Assumption B.1.3, we know there is at least one honest server

and thus at least one share remains unknown to the adversary. So the local results will not

be known to the adversary. The only thing the adversary can learn about is the final result

(global aggregated result).

Next, we will show that one honest device’s input can change the global result by at most

B ·DegreeBound
For any pair of neighboring devices (self, neighbor), by Assumption B.1.4, they will get

F ′(self, neighbor) as the local result, and by changing self or neighbor’s inputs, the local
result F ′(self, neighbor) will change by at most B, which is the sensitivity of F .
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In the global aggregation, again since at least one server is honest, it will include its share

of each (honest) device’s local result exactly once. This ensures that F ′(self, neighbor) will
be included at most once in the global aggregation.

Since an honest device has at most DegreeBound of neighbors and for each of them

the honest device can change the global result by at most B, each honest device’s input can

change the final global result by at most B ·DegreeBound.

The above claim shows that in Colo only the final aggregate result will be leaked and each

honest device’s input can change the final result by some bound, which is the same as the case

when all devices are honest-but-curious.

B.1.2 Local aggregation

In this section, we will prove our local aggregation protocol meets Assumption B.1.4, by

first showing no information will be leaked about honest devices, and then discussing the

sensitivity.

Claim B.1.2 The local aggregation protocol in Figure 4.4 will not leak any information about
honest devices’ data.

Proof: First, the topology data is protected byAssumption B.1.2, since no one can observe

the communication between two devices.

Second, we consider amalicious self device thatwants to compromise an honestneighbor
device’s data privacy. The malicious self device receives commitments and ZKP (line (4) in

Figure 4.4). The underlying cryptographic primitives ensure that nothing will be leaked (com-

mitments and ZKP don’t reveal their inputs). Later, the malicious self device participates in

the oblivious transfers (line (5) in Figure 4.4). The maliciously secure OT ensures that the self
device can only learn at most one entry of T and this entry is further protected by a random

mask only known to the neighbor device. So no information is leaked to a malicious self
device.

Third, we consider a malicious neighbor device. The self device will only run OT with

the neighbor device and the maliciously secure OT (that protects against a malicious sender,

that is, neighbor) ensures that this choice number won’t be known to the neighbor device.

The above shows that no information about honest devices will be leaked during our local

aggregation protocol.

Next we need to show that the output of the local aggregation is bounded by B.

Claim B.1.3 The sensitivity of the local aggregation protocol will be bounded by B.

Proof: Note that we do not need to consider attacks that impact correctness but not

privacy. For example, the neighbor device adds 105 to −r locally or simply sets −r to a

random number. These attacks will not increase the sensitivity of the local computation since
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it doesn’t depend on honest devices’ input. So we will show that T [i], namely shares−r held
by the neighbor device and T [i] + r held by the self device, will be in the range of [0, B].

If the neighbor device is honest, it wants to ensure that the output is bounded by B,

because otherwise, its privacy will be impacted. The neighbor device can easily make sure

the output is bounded by B because it constructs the array T and the malicious self device

cannot interfere with this process.

If a self device is honest, it also wants to ensure the bound, since a malicious neighbor
device may provide a malicious T with some entries to be much greater than B, e.g., 106.
This is achieved with the help of commitments and ZKP. The self device can verify that the

entry it receives via OT is the one committed in the commitment, which is ensured by the

collision-resistantance property of the commitment scheme. Further, the ZKP ensures all the

committed values equal the same mask −r with some numbers in [0, B] added to it.

B.2 Mycelium cost calculations

Mycelium is a system designed for federated graph analytics in a strong threat model and

is focused on local aggregation. For global aggregation, Mycelium uses Orchard [28]. Both

systems have only partial implementations available. We didn’t benchmarkMycelium for two

reasons. First, only partial implementation is available, and implementing the full protocol is

hard with existing tools (as we will explain below). Second, we use Mycelium as a baseline for

the purpose of situating Colo’s costs and showing that federated graph analytics in a strong

threat model is a hard problem; for this purpose, the lower-bound estimates would be enough.

Device-side cpu. For a Mycelium device, one dominant cost is proving multiplications of

10 BGV ciphertexts. Mycelium’s design is to follow re-linearization of ciphertexts, but with

some differences. Mycelium assumes a degree bound of 10, and each device multiplies 11

ciphertexts (10 neighbors and itself) together to get a 12-poly ciphertext, without running any

re-linearization locally. Later, after the global aggregation of all 12-poly ciphertexts (across

devices), the aggregator runs re-linearization 10 times, to get back a 2-poly ciphertext.

Mycelium’s public code of this ZKP circuit is not complete due to several reasons: i) their

circuit is point-wise polynomial multiplication but not polynomial multiplications. That is,

their output of 10 ciphertext multiplications is still a 2-poly ciphertext, which doesn’t match

their description; ii) their implementation doesn’t consider the difference between the ZKP

field (they use ZoKrates [165]) and the BGV field. That is, they assume the BGV field to be

the same as the ZKP field. More precisely, they use a 550-bit field for BGV, but ZoKrates only

supports curves BN128, BLS12-381, BLS12-377, and BW6-76, and none of them have a 550-bit

field. The largest ZKP field, BW6-761, is 377-bit.

We are not able to implement a circuit following their design of delaying re-linearization

due to the large number of inputs and outputs to the circuit. We used ark_groth16 [90] to

prove polynomial multiplications but quickly went beyond what ark_groth16 can support for

the first two or three multiplications since each polynomial has 32,768 dimensions. Also, the
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ZKP field size for BW6-761 is a 377-bit number, and proving mod 550-bit operations on a

377-bit field was not feasible.

Given these issues in Mycelium’s implementation, we take numbers from a recent pa-

per [227] (Table 2) that performs and proves BGV multiplications. Specifically, their circuit

proves one multiplication between two ciphertexts and maintains the number of polynomials

in the ciphertext. Their FHE scheme assumes a dimension of 8192 and a field size of 137-bit,

which is far smaller than Mycelium’s dimension of 32768 and a field size of 550-bit. So we

take the 633 s proving time from [227] as a lower-bound estimate for cpu cost to prove one

ciphertext multiplication in Mycelium.

Server-side cpu. For the server-side cpu, we use their released scripts that estimate server-

side costs. However, we only include the server-side cpu cost for local aggregation since their

global aggregation system Orchard also has only a partial implementation available. Thus,

again server cpu is a lower-bound estimate.

Network overhead. Finally for the network cost, for both the devices and the server, we

take both the local aggregation and global aggregation into account. Mycelium (and Orchard)

only have device-server traffic, that is, they route all messages between devices through the

servers, and thus the server-side cost is simply a sum of all the devices’ network cost. For the

local aggregation, we use their released code to estimate this cost, for both the devices and the

server. Specifically, their released script estimates the server’s average outbound network per

device. For example, when the degree bound is 10 (default setting for Mycelium), the output

from the script matches the 350 MiB sent traffic reported in their paper. This actually means

700 MiB of network transfer per device since in Mycelium the server plays as a mailbox and

is only responsible for forwarding messages between devices. So on average, the server sends

350 MiB to one device, which also means on average the server receives 350 MiB from one

device, which translates to about 700 MiB per device. For global aggregation, we use the 19

ciphertexts cost reported in Orchard (1 to upload and 18 to verify the server’s aggregation).

As specified in Mycelium, each ciphertext is a 52-poly ciphertext for a degree bound of 50.

That is, each ciphertext is about 111.8 MiB.

An example. Here, we will give an example to show how we estimate the costs when there

are 1 million devices and the degree bound is 50. For device-side cpu, as we said, proving

one multiplication requires 633 s cpu time and thus for 50 neighbors (with itself), there are 50

multiplications, leading to 8.79 hour cpu time. For device-side network, we use their released

script to estimate the network sent for local aggregation, which is 1.805 GiB, thus 3.61 GiB

for sent and received. The global aggregation is 19 ciphertexts transferred, or 2.12 GiB. So

in total, the device-side network cost is 5.73 GiB. For the server-side cpu, we run their script

to estimate the server-side cpu for the default degree bound 10 setting, that is, 1305 hour.

Finally, for the server-side network, since in Mycelium, there is only device-server network

(we didn’t include other devices like committee devices), we just need to multiply the device-

side network cost by the total number of devices. This is 5730 TiB.
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Appendix C

Virtual pooling supplementary

C.1 Detailed Cox model computation

Assume there areK health systems and health system i has data (Xi, Ti, Ei). We assume

that there are d death events, and we denote their timestamps are TD
1 < TD

2 < ... < TD
d . We

use the following notation:

• Xi[l] to represent the individual at health system i and index l.

• Di(j) to represent indices of individuals who experience death at TD
j .

• Ri(j) to represent indices of individuals who are at risk at timestamp TD
j at site i.

• Di to represent indices of individuals who experience death at any timestamp.

The detailed protocol description can be found in the Figure C.1.
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Cox model phase of virtual pooling (without TIE optimization)

1. The coordinatorA initial β = 0⃗ and repeat Newton-Raphson steps (2 - 8) till convergence.

One Newton-Raphson step
2. Each health system i computes, for each timestamp j, tie_ϕi(j) =

∑
l∈Di(j)

exp(βTXi[l])

and risk_ϕi(j) =
∑

l∈Ri(j)
exp(βTXi[l]), and share them with the coordinator.

3. The coordinator combines to get tie_ϕ(j) =
∑

i tie_ϕi(j) and risk_ϕ(j) =
∑

i risk_ϕi(j)

for every timestamp j, and make them public to health systems.

4. Each health system i computes local share of gradient gi =
∑

l∈Di
Xi[j] −∑

j

∑
l∈Ri(j)

Xi[l] exp(β
TXi[l])

risk_ϕ(j)
and local share of first term of Hessian hai =

−
∑

j

∑
l∈Ri(j)

Xi[l]X
T
i[l]

exp(βTXi[l])

risk_ϕ(j)
.

5. Each health system i computes its local share of Ai =

∑
l∈Ri(j)

Xi[l] exp(β
TXi[l])

risk_ϕ(j)
.

6. Each health system generates shamir secret sharing of [Ai] ← Shamir(Ai) and send

shares [Ai] to other health systems via the coordinator (using symmetric encryption).

7. After receiving shares from all other health systems, health systems locally compute [A] =∑
i[Ai] and compute [AAT ] by shamir secret sharing.

8. Each health system shares gi, hai and its local share of [AAT ] with the coordinator.

9. The coordinator combines shares of [AAT ] to reconstruct AAT
and compute g =

∑
gi,

H =
∑
hai + AAT

. The coordinator update β = β −H−1g

P value
8. After the Cox model converges, we estimate var(β) to be diagonal of H−1

and we apply

Wald test to compute z = β−0⃗√
var(β)

, and compute P value based on Z value.

Figure C.1: Virtual pooling’s Cox model phase.
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