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ABSTRACT 
 
 

Rapid and Spatially Explicit Assessment of Contaminants of Emerging Concern in Data 

Limited Watersheds 

 

By 
 
 

Nicol A. Parker 
 
Contemporary contaminants of consequence to the health of aquatic ecosystems are 

dispersed in the environment owing their widespread use. Some are highly toxic yet cannot 

be monitored at concentrations which induce severe impacts, such as mortality, to aquatic 

organisms. In this research, the focus is on addressing the pressing need for accessible and 

practical tools to perform screening-level ecological risk assessments in the face of an 

increasing number of chemicals used by society. The challenge of obtaining field data for 

calibration and validation, particularly in data-limited conditions, forms the backdrop of this 

research.  

The first chapter delves into the application and evaluation of OrganoFate, 

showcasing its effectiveness in making screening-level predictions that align with observed 

concentrations in surface water. This chapter highlights the model's capability to assess 

potential aquatic health risks associated with CECs and pesticides. 

The second chapter shifts the focus to pesticides, acknowledging their significant 

impact on aquatic and terrestrial ecosystems. It introduces the Environmental Release Tool, a 

sub-tool of the Pesticide Mitigation Prioritization Model, designed to address critical 

challenges in evaluating pesticide toxicity over large extents, tracking spatiotemporal 



 
 

 ix 

pesticide use, assessing cumulative toxicity, and identifying the contributions of different 

pesticide application sites. The chapter reveals key insights into the applied toxicity of 

pesticides and underscores the importance of considering cumulative applied pesticide 

toxicity for effective risk assessment. 

The third chapter introduces the Environmental Fate Tool (EFT), a novel tool with the 

unique ability to quantify aquatic risks for numerous pesticides and watersheds across 

expansive landscapes, pinpoint spatially explicit source contributions, and scale up analyses. 

This tool represents a significant advancement in identifying and prioritizing strategies to 

mitigate risks associated with dispersed chemical pollution in surface waters. 

Overall, this dissertation offers an exploration of tools and methodologies for 

ecological risk assessment in the context of a growing and changing chemical landscape. It 

underscores the importance of modeling approaches to restore and safeguard our water 

resources and provides valuable insights into the ecological risks posed by emerging 

contaminants in various aquatic ecosystems. 

  



 
 

 x 

Table of Contents 
Chapter 1. Screening Ecological Risk of Pesticides and Emerging Contaminants under 
Data Limited Conditions .................................................................................................. 1 

1.1 Introduction ......................................................................................................................2 

1.2 Methods ............................................................................................................................9 
1.2.1 Study Areas ........................................................................................................................................ 10 
1.2.2 Contaminant Loads ............................................................................................................................ 11 
1.2.3 Simulations ........................................................................................................................................ 13 
1.2.4 Evaluation of PECs ............................................................................................................................ 15 
1.2.5 Ecological Risk Screening ................................................................................................................. 17 

1.3 Results and Discussion .................................................................................................... 20 
1.3.1 Ecotoxicological Thresholds .............................................................................................................. 21 
1.3.2 Urban PECs ........................................................................................................................................ 22 
1.3.3 Agricultural PECs .............................................................................................................................. 28 
1.3.4 Limitations and Significance ............................................................................................................. 32 

1.4 Conclusion ...................................................................................................................... 34 

1.5 References ....................................................................................................................... 35 

2.1.0 Introduction ................................................................................................................. 40 

2.1.1 Scale ............................................................................................................................. 41 

2.1.2 Sources ......................................................................................................................... 42 

2.1.3 Cumulative applied toxicity .......................................................................................... 42 

2.1.4 Economic and health scores .......................................................................................... 43 

2.1.5 Toxicity Reduction Targets........................................................................................... 44 

2.2.0 Methods ................................................................................................................ 45 

2.2.1 Scale ............................................................................................................................. 46 

2.2.2 Sources ......................................................................................................................... 46 

2.2.3 Cumulative applied toxicity .......................................................................................... 52 

2.2.4 Economic and health scores .......................................................................................... 53 

2.2.5 Toxicity Reduction Targets........................................................................................... 54 

2.3.0 Results .................................................................................................................. 55 

2.3.1 Scale ............................................................................................................................. 56 

2.3.2 Sources ......................................................................................................................... 58 

2.3.3 Cumulative applied toxicity .......................................................................................... 62 

2.3.4 Economic and health scores .......................................................................................... 67 

2.3.5 Toxicity Reduction Targets........................................................................................... 68 

2.4.0 Discussion ..................................................................................................................... 69 



 
 

 xi 

2.5.0 Conclusion ............................................................................................................ 73 

2.6 References ............................................................................................................... 74 

2.7 Environmental Release Tool User Guide .................................................................. 80 

2.7.1 Environmental Release Tool Methods .................................................................... 81 

2.7.1.1 Pesticide Sources........................................................................................................ 85 

2.7.1.2 Affected Compartment .............................................................................................. 87 

2.7.1.3 Applied toxicity .......................................................................................................... 88 

2.7.1.4 Health and Economic Indices ..................................................................................... 92 

2.7.2 Environmental Release Tool Installation and Operation ........................................ 94 

2.7.2.1 Installing RStudio ...................................................................................................... 94 

2.2 Installing the Environmental Release Tool ...................................................................... 96 

2.7.2.3 Running a Simulation Environmental Release Tool ................................................... 97 

2.7.3 Parameterization ................................................................................................... 99 

2.7.3.1 Default Simulations ................................................................................................. 101 

2.7.3.2 Custom Simulations ................................................................................................. 101 

2.7.3.2 Simulations .............................................................................................................. 105 
2.7.3.2.1 Simulation Overview ................................................................................................................. 105 
2.7.3.2.2 Simulation Parameters ............................................................................................................... 106 

2.7.3.3 Watershed Spatial Data ........................................................................................... 113 

2.7.3.3 Pesticide Autoload Feature ...................................................................................... 115 

2.7.4 Outputs ............................................................................................................... 116 

2.7.4.1 Graphical Outputs ................................................................................................... 116 

2.7.4.2 Tabular Outputs ...................................................................................................... 120 

2.7.5 Example Applications – Environmental Release Tool .......................................... 123 

2.7.5.1 Temporal Trends ..................................................................................................... 123 

2.7.5.2 Chemical Alternatives .............................................................................................. 124 

2.7.5.3 Prioritizing Monitoring ............................................................................................ 125 

2.7.5.4 Health and Economic Tradeoffs............................................................................... 125 

2.7.6 Errors and Updates ............................................................................................. 126 

2.7.7 Acknowledgements .............................................................................................. 126 

2.7.8 References ........................................................................................................... 126 

Chapter 3. Scaling Up the Identification of Pesticide Sources and Risk Reduction Targets 
for Aquatic Environments ............................................................................................ 130 



 
 

 xii 

3.1 Introduction ............................................................................................................ 131 

3.2 Methods ........................................................................................................................ 137 
3.2.1 Sources ............................................................................................................................................. 137 
3.2.2 Irrigation .......................................................................................................................................... 140 
3.2.3 Environmental Compartments and Pesticide Transport ................................................................... 146 
3.2.4 Pesticide Phase Distribution ............................................................................................................. 152 
3.2.5 Risk .................................................................................................................................................. 160 
3.2.6 Validation ......................................................................................................................................... 164 

3.3.0 Results .................................................................................................................... 169 
3.3.1 Predicted Environmental Concentrations – Validation .................................................................... 169 
3.3.2 Aquatic Risks and Sources ............................................................................................................... 176 
3.3.3 Sources ............................................................................................................................................. 183 

3.4.0 Discussion ................................................................................................................... 187 

3.5 Conclusion .................................................................................................................... 191 

3.6 References ............................................................................................................. 191 
 
 

 



 
 

1 
 

Chapter 1. Screening Ecological Risk of Pesticides and Emerging Contaminants 

under Data Limited Conditions  

The increasing number of chemicals used by society requires accessible, easy-to-

implement tools to perform screening-level ecological risk assessments. However, field data 

to calibrate and validate screening tools is challenging to obtain for many watersheds. Thus, 

the evaluation must be done under data-limited conditions. Here we employ and evaluate an 

uncalibrated-mechanistic fate and transport model, OrganoFate, to predict environmental 

concentrations of contaminants of emerging concern (CECs) and pesticides under data-

limited conditions. CECs evaluated include antibacterial compounds sulfamethoxazole and 

triclocarban and a flame-retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP). Pesticides 

evaluated include the widely used insecticides chlorpyrifos, bifenthrin, and esfenvalerate. We 

predict concentrations of the contaminants in watersheds heavily impacted by either urban or 

agricultural development and with low-volume aquatic compartments relative to land area.  

Screening-level predictions were in good agreement with observed concentrations in surface 

water. For instance, observed concentrations of CECs span orders of magnitude, yet 

maximum predicted concentrations captured all observed and were within a factor of 2-3 of 

the highest observed concentrations. OrganoFate was also employed to screen possible 

aquatic health impacts. Results demonstrated possible CEC aquatic health risks for TDCPP 

and triclocarban, with risk quotients of 0.92 and 0.88 respectively. For pesticides, exceedance 

of the United States Environmental Protection Agency Health Benchmarks was predicted and 

observed for each pesticide for most of the simulation, and taxonomic groups that may 
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experience adverse effects endpoint include aquatic invertebrates, fish, amphibians, and 

mollusks. 

1.1 Introduction 

Each year, hundreds of new chemicals are introduced to the US in consumer products 

(e.g., pharmaceuticals, food additives, personal care products, paints, and coatings). To 

understand and mitigate risks associated with these chemicals in the United States and the 

Environmental Protection Agency (USEPA) is tasked with evaluating human and 

environmental health risks. To evaluate most chemicals, the Toxic Substances Control Act 

(TSCA)  serves as the primary legal framework(1,2).  However, in the first ~30 years of 

TSCA, less than 10% of the 36,000 chemicals proposed for use were reviewed, and 62,000 

chemicals already in use were grandfathered in without review(3). In light of the limited 

number of chemicals assessed for health risks, the enormous quantities of chemicals sold 

annually, and increasing chemical diversification, concerns for adverse effects of chemicals 

in use are on the rise(4–7).  

Models have served as an important complement to observation as an approach for 

filling in data gaps, extending the available observations, and for proactive risk assessment. 

Since the 1980s, fate and transport models have been employed by the USEPA to describe 

the behavior of crop protection products in the environment(8). Today, a suite of models is 

employed by the USEPA, each targeting different risk factors (e.g., exposure pathways and 

bioaccumulation) and organisms which include humans, terrestrial, as well as aquatic flora 

and fauna. For pesticides alone, there exists a tool suite of 16 models for predicting 

environmental exposures(9). While many fate and transport models have been developed and 

employed by the USEPA, none are able to simulate radically different chemicals within a 
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single framework (e.g., nanoparticles, ions, and organic contaminants). A new modeling 

framework, ChemFate(10), has been demonstrated to achieve this aim. Here, we evaluate a 

model within ChemFate, OrganoFate, for screening the risk of diverse organic contaminants. 

OrganoFate is part of a dynamic, multi-media modeling framework ChemFate. 

ChemFate contains a suite of chemical-class-specific models while employing the same 

watershed compartment characterization and common processes for each chemical class 

(e.g., atmospheric deposition, soil erosion, deposition, and resuspension of suspended 

sediments) for predicting fate and transport. Collectively these features significantly reduce 

the user effort to simulate chemicals from different classes. ChemFate includes OrganoFate 

(non-ionizable organic contaminants), ionOFate (ionizable organic contaminants), MetalFate 

(metal ions), and nanoFate(11) (nanomaterials).  

Additionally, to simplify the risk assessment process using ChemFate, more than 20 

default environmental scenarios have been developed to represent unique environmental 

characteristics, including predominantly agricultural (e.g., Central Valley, California and Des 

Moines, Iowa) or urban (e.g., New York City, San Francisco, Los Angeles, Austin, London, 

and Zurich) areas. The user can modify all default inputs or develop additional scenarios 

using data from United States scientific agencies (i.e., USGS, USDA, and NOAA) or the 

approach indicated in previous work(12) for European regions.  

ChemFate has been employed to predict nano-particle concentrations(11,12) as well 

as ionizable organics, metal ions, and organic compounds(10). In this investigation, we 

assess the effectiveness of OrganoFate in predicting concentrations of various contemporary 

organic contaminants in watersheds with limited monitoring data, a situation frequently 
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encountered when analyzing CECs. Chemical classes considered include a pharmaceutical, 

an anti-bacterial agent, a flame retardant, and three pesticides.  

Other dynamic multi-media models are existent for the prediction of CECs and have been 

employed by the government or international agencies for organic chemical risk assessment. 

Examples include SimpleBox(13) which is employed by the European Chemical Agency, 

Stochastic Human Exposure and Dose Simulation (SHEDS)(14) utilized by the USEPA, 

CalTOX(15) used by the California Department of Toxic Substances Control, and the 

Berkeley Trent (BETR)-North America(16) which the Organization for Economic 

Coordination and Development (OECD) uses to evaluate chemical risk.  

OrganoFate improves upon these tools by offering a higher spatial resolution via the 

consideration of more environmental compartments. In total, OrganoFate predicts 

environmental concentrations in 26 sub-compartments (e.g., aerosols; suspended sediments 

in freshwater and seawater; soil air, water, and solid phases in four different types of land 

uses). Additionally, most available multi-media models are limited to organic contaminants, 

while OrganoFate is hosted in a platform where parameterization of a study extent can be 

readily used to evaluate diverse chemical classes. 

To evaluate the risks of pesticides in the United States, a key tool used by the 

Environmental Protection Agency is the Pesticides in Water Calculator (PWC)(9,17).  The 

PWC predicts concentrations in soil and surface waters at a daily time-step for pesticides. 

Although there are many similarities between mechanistic approaches used in fate and 

transport models such as OrganoFate and the PWC, there are also important differences. 

The primary focus of the PWC is the examination of how the landscape and its soil 

interact with freshwater bodies in relation to non-ionizable organic pesticides. The PWC 
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emphasizes edge-of-field scenarios, and while it predicts loss via volatilization, it does not 

predict atmospheric concentrations of pesticides. OrganoFate expands its scope by simulating 

concentrations in atmospheric compartments as well as estuarine and coastal waters and is 

part of a comprehensive risk analysis framework that allows for model parameterization to be 

used to evaluate various classes of pesticides. The model also accommodates rapid imports of 

daily time-step pesticide use data in *.csv files, while the PWC requires the user to enter 

pesticide use data manually, with a maximum of 50 inputs per simulation, which severely 

limits its use for high-resolution pesticide use data available in California(18). Given the 

sensitivity of pesticide transport to the date of application(19), accurate daily inputs of 

pesticide use are important in predicting high-exposure events. 

Another key difference is the PWC employs Freundlich isotherms to simulate diffusive 

transport(9,20). OrganoFate employs the fugacity approach with rate-limited mass transfer 

from one compartment to another(10), which is advantageous for considering changes to the 

rate of diffusion with fluxes in chemical concentrations(21). A summary of key differences in 

compartments, processes, and model outputs are highlighted in Table 1. 

Table 1. Summary of key similarities and differences in compartments and major processes 

accounted for in PWC and OrganoFate. X indicates the inclusion of a compartment or 

process, and numeric values the number of compartments/processes considered. 

 

Compartments/Advective 

Processes 

PWC 

Simulation 

OrganoFate 

Simulation 

PWC 

Output 

OrganoFate 

Output 

Freshwater X X X X 
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Water Column X X  X 

Suspended Solids X X  X 

Sediment Pore-Water X X X X 

Sediment Solids X X X X 

Variable Water Volume X    

Water Column Advection X X  X 

Sediment Advection  X  X 

Estuarine or Coastal Waters  X  X 

Suspended Solids  X  X 

Sediment Pore-Water  X  X 

Sediment Solids  X  X 

Water Column Advection  X  X 

Sediment Advection  X  X 

Land Uses/Crop Types 1 4 0 4 

Soil X X  X 

Soil Horizons 8 2 0 2 

Soil Air  X X  X 

Soil Solids X X  X 

Erosion X X X X 

Runoff X X X X 

Leaching X X  X 

Lateral Flow X X  X 

Air  X  X 
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Aerosols  X  X 

Air  X  X 

Air Advection  X  X 

Vegetation  X    

 

To evaluate human health considerations, the ability of OrganoFate to provide a 

comprehensive suite for soil, water, and atmospheric concentrations is important for enabling 

the use of a single tool to explore the risks of contaminants in diverse compartments.  For 

instance, a number of pesticides are volatile, and evaluating their presence in the atmosphere 

as well as soil and water is critical to understanding exposure(22,23). As a single model for 

evaluating risks in diverse compartments, OrganoFate may facilitate more rapid risk 

evaluations of emerging contaminant concerns.   

An important limitation of OrganoFate, other multi-media models, and the PWC is their 

inability to simulate chemical concentrations beyond a single catchment or watershed. 

However, several watershed fate and transport models, such as the Soil and Water 

Assessment Tool (SWAT)(24–26), the Watershed Assessment Risk Management Framework 

(WARMF)(27,28), and the Hydrologic Simulation Program Fortran (HSPF) (29–31), can 

overcome this limitation by simulating chemical concentrations in multiple catchments 

within a hydrologic system (e.g., watershed or river basin). 

Despite their capability to provide output for multiple catchments, using watershed 

models for risk assessments comes with important trade-offs. These models require higher-

resolution spatiotemporal data and access to environmental characteristics and chemical use 
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data, which are often not readily available. Additionally, implementing and calibrating 

watershed-scale models demand more computational power and user expertise. Often, they 

take hundreds of hours to implement and calibrate for a given watershed making them more 

challenging and time-consuming than simpler models. The calibration of these models for 

pesticides and other low-use chemicals with potential high toxicity is particularly 

problematic due to the sparse availability of relevant data. Furthermore, most watershed 

models are limited in their scope, primarily considering non-ionizable organic pesticides and 

not accounting for other types of chemicals. 

A key challenge hindering the advancement of our understanding of environmental 

risks posed by contaminants is the lack of data in certain regions. In this study, we aim to 1) 

evaluate concentrations in data-limited watersheds by exploring the application of the 

mechanistic fate and transport model OrganoFate without calibration; 2) explore 

concentrations of CECs and pesticides in watersheds with intensive urban and agricultural 

runoff as well as a relatively small water compartment to the land area; and 3) to quantify 

potential risks for diverse aquatic species. We hypothesize that, in vulnerable waterways with 

relatively high development intensity and a high drainage area to surface water volume, our 

approach using the uncalibrated fate OrganoFate model will enable us to provide predictions 

of environmental hazards that reasonably capture the median and maximum of observed 

concentrations. By employing this model, we aim to predict concentrations in data-limited 

watersheds, paving the way for a more comprehensive assessment of environmental risks 

associated with contaminants in such regions. 
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1.2 Methods 

To conduct this study, we evaluate the current risks associated with various organic 

contaminants in the aquatic compartment of highly urbanized and agriculturally developed 

regions in California. Specifically, we focus on the antibiotic sulfamethoxazole, anti-bacterial 

agent triclosan, flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP), as well as 

the insecticides chlorpyrifos (organophosphate), bifenthrin, and esfenvalerate (pyrethroids). 

These contaminants were chosen due to their suspected or known toxicity at environmentally 

relevant concentrations. 

Sulfamethoxazole and triclosan are anti-bacterial agents that have been demonstrated 

to significantly contribute to horizontal transfers of antibiotic resistance genes(32). TDCPP is 

a known animal carcinogen that has been used to replace pentabromodiphenyl ether (PBDE) 

flame retardants in commonly used products like furniture, coatings, baby products, and 

electronic equipment(33).  

Chlorpyrifos, an insecticide, has attracted attention in recent years for adverse health 

effects, particularly its impact on childhood neurological development. As a result, 

chlorpyrifos was banned in California in 2020(34,35).  This ban presents an opportunity to 

predict the risks associated with alternative chemicals such as bifenthrin and esfenvalerate, 

which have distinct physicochemical properties. These alternatives are commonly used 

insecticides on crops such as alfalfa, almonds, corn, cotton, oranges, and walnuts(18). 

Notably, for crops like almonds and walnuts, esfenvalerate and bifenthrin are already 

employed to treat nearly equal or greater acreage compared to chlorpyrifos. 
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1.2.1 Study Areas 

To evaluate OrganoFate for the prediction of organic contaminants as an uncalibrated 

model for data-limited watersheds, we predict concentrations in surface water of three 

different watersheds for a 10-year period, 2005-2014. The selected analysis period and 

watersheds coincide with where monitoring data were available for the contaminants of 

interest. Sites selected for analysis were three highly developed watersheds with a 

Mediterranean climate in California. The first site, the upper Santa Clara River Watershed 

(~1,300 km2), is located just north of Los Angeles, see Figure 1. Throughout the analysis 

period, the site experienced an average annual precipitation of 290 mm. The flow of water in 

the area is predominantly influenced by wastewater treatment effluent for the majority of the 

year. In terms of land use, approximately 90% of the watershed consists of urban 

development, while the remaining portion is 

dedicated to agriculture.  

To assess the accuracy of pesticide 

concentration predictions, two additional 

sites were chosen to represent intensive 

agricultural watersheds in the Central Valley. 

The second site is the Visalia Watershed and 

the third the San Joaquin River Watershed. 

The Visalia Watershed (~22,000 km2) is 

located at the southern end of the Central 

Valley. During the analysis period, the site 
Figure 1. Watersheds under investigation; note the 
subwatershed is too small to be visible on the map 
and is indicated with a star. 
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had an average annual precipitation of 170 mm.  

The San Joaquin River Watershed (~35,000 km2) encompasses the entire drainage 

network upstream of a monitoring site for diverse pesticides in Vernalis, CA. Located just 

north of the Visalia Watershed, it had a higher mean annual precipitation of 290 mm. Both 

the Visalia and San Joaquin River Watersheds are hydrologically connected to the Sierra 

Nevada Mountain range from which most of the instream flow is derived, and the proportion 

of developed land is ~90% agricultural.  

To define the boundaries of the considered watersheds, the areas of interest were 

delineated to align with the Watershed Boundary Dataset(36). Each watershed's soil 

compartment was divided into three land use compartments: urban, agricultural, and natural. 

The proportions of land uses were obtained from the National Land Cover Data 2016, which 

provides comprehensive information on land cover across the country(37). Soil, climate, and 

hydrologic data for regions were compiled according to methodologies published in the 

ChemFate User Guide(38).  

1.2.2 Contaminant Loads 

To assess the presence of contaminants of emerging concern (CECs) in the urban 

watershed, we focused on sulfamethoxazole, triclocarban, and TDCPP. Our approach 

involved simulating the loads of these chemicals by determining their mass in the effluent of 

wastewater treatment plants (WWTPs) during the monitoring period. These monitoring 

activities were conducted by the Southern California Coastal Water Research Program 

(SCCWRP) just downstream of the uppermost WWTP on the river. We used measurements 
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conducted during dry, low-flow conditions when the primary flow consisted of WWTP 

discharge. 

As over 90% of the developed land upstream of the WWTP is urban, we made the 

assumption that all CEC loads originated from these WWTPs, rather than from other sources 

like antibiotic loads in runoff from livestock paddocks. To estimate the loads, we calculated 

the product of the observed concentrations of the contaminants and the daily discharge of the 

two WWTPs within the study area.  

In the investigation of agricultural risks, we focused on evaluating the widely used 

insecticides chlorpyrifos, bifenthrin, and esfenvalerate To simulate the release of these 

chemicals, we relied on pesticide use reports obtained from the California Department of 

Pesticides Regulation(18). The reports provide detailed pesticide application data for the 

agricultural sector, with applications reported at the daily time step and 2.6 km2 resolution by 

application site type.  

It's important to highlight that pesticide use also occurs in urban areas of the 

agricultural watersheds, which was not accounted for in this simulation. Although pesticide 

use reports are also provided for urban applications, reports only cover professional pesticide 

applications. Urban use reports have much lower resolution. They are reported at the county 

level and monthly time-step and do not include residential applications. Given the low 

resolution of urban pesticide use data and that more than 90% of the developed land in the 

Visalia and San Joaquin River Watersheds is dedicated to agriculture, our analysis focused 

solely on employing agricultural pesticide use data. 
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1.2.3 Simulations 

To predict environmental concentrations (PECs), OrganoFate was employed. Inputs 

required by the model include 1) the physicochemical parameters for each pollutant; 2) 

watershed characteristics (e.g., environmental compartment characteristics, daily 

meteorology, and streamflow); and 3) daily release rates for each pollutant. In the remainder 

of this section, we highlight features of OrganoFate used to predict contaminant 

concentrations.  

OrganoFate(38) is a multimedia and discretized model that calculates chemical 

concentrations based on a mass balance approach in diverse environmental compartments 

(Table 1). The tool predicts concentrations within each compartment (e.g., air, soil, water, 

and sediment), degradation, and transfer between compartments. Key transport processes 

considered include advection, diffusion/dispersion, mass transfer between phases, runoff, 

erosion, particle settling, and resuspension. 

OrganoFate is among the tools which employ the fugacity approach(39,40). The 

fugacity concept is based upon thermodynamic principles of partitioning whereby the 

chemical potential (Gibbs free energy) of a compartment will tend toward a lower energy 

state. The fugacity approach is advantageous in that the method accounts for phase-specific 

effects in the environment while other available multimedia and discretized models calculate 

chemical distribution as a single coefficient (e.g., partition coefficients) which can mask 

important factors in pesticide distribution(41). For instance, fugacity accounts for the effects 

of variable concentrations on the inter-phase transport potential of a compartment(42). This 

is advantageous for chemicals such as pesticides which can exist in high concentrations in the 
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environment due to direct release to the environment, improper disposal (e.g. in sewers 

(43,44)), or accidental spills.  

In data-limited watersheds, OrganoFate and multi-media models offer a valuable 

advantage by providing concentrations or loads of pesticides in various environmental media 

for the entire study area. This feature presents a straightforward representation of pesticide 

distribution in the environment, making it useful for users seeking to perform a screening-

level risk analysis. 

To perform simulations of fate and transport accurately, it is important to consider the 

release points of chemicals and their background concentrations in the environment. 

OrganoFate facilitates these simulations by allowing users to model chemical release in four 

distinct soil types and directly into air, freshwater, and seawater. Background concentrations 

can be specified for bulk compartments (e.g., soil) as well as specific phases (e.g., soil air). 

These background concentrations can be based on actual monitoring data, or, in the absence 

of such data, a "warm-up" run can be performed to estimate them. 

For the analysis of contaminants of emerging concern (CECs) at the urban site, rather 

than assuming zero initial concentrations, we opted to run the model one time for 10% of the 

total simulation time to represent background concentrations. We then used the predicted 

concentrations as initial concentrations for the entire analysis period. This method helps to 

incorporate realistic initial conditions and provides more accurate results for the full 

simulation period. 

On the other hand, when studying pesticides at agricultural sites, we determined 

initial pesticide concentrations using pesticide use data from the period 1995-2004. The 

parameterization for all other aspects of OrganoFate was set for the analysis period 2005-
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2014. The environmental concentrations observed at the end of the 1995-2004 simulation 

were then used as initial data for the analysis period of 2005-2014. By adopting this 

approach, we ensured that the model started with appropriate pesticide concentrations in 

different compartments, enhancing the reliability of the results. 

1.2.4 Evaluation of PECs 

To assess the accuracy of the predicted environmental concentrations (PECs) 

obtained from OrganoFate, we compared them to the environmental monitoring 

concentration data collected by SCCRWP(45) and the CDPR Surface Water Monitoring 

Program(46). However, when performing this evaluation, it's important to consider the 

limitations of monitoring campaigns. 

Monitoring campaigns are typically designed to capture contaminant concentrations 

above the limit of quantification (LOQ), which is the lowest concentration that can be 

reliably measured with accuracy. As a result, concentrations below the LOQ may not be 

captured in the monitoring data. In contrast, OrganoFate can predict concentrations both 

above and below the LOQ, but we are only able to compare to sample analyses where 

contaminants are detected.  

When using and validating fate and transport models, it is common practice to 

calibrate the model with monitoring data and to refine parameters to minimize the residuals 

of variance (e.g., NSE(47)) between observed and predicted concentrations. In this study 

evaluating the predictive capabilities of OrganoFate in data-limited watersheds, we opted to 

employ the model without calibration.  
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To evaluate the model, a comparative analysis of predicted and observed ranges, 

rather than a residual variance analysis based on the limited monitoring data, was deemed 

more suitable for the screening-level risk assessment conducted in this investigation. We 

opted to use this approach provided limitations in the monitoring data's spatiotemporal 

coverage and ability to capture concentrations below the LOQ.  

The comparative analysis quantified OrganoFate’s ability to predict median and 

maximum concentrations of contaminants. Median value analyses demonstrate a model's 

ability to predict typical concentrations while evaluating maximum predictions explore a 

model's ability to predict the full range of environmental concentrations. Demonstrating the 

model is able to capture observed maxima is important to risk assessment where events with 

high concentrations can introduce the greatest impact on aquatic organisms.  

To evaluate median predictions, we calculated the quotient of predicted values 

relative to observed values, known as the QPEC (Quotient of Predicted Environmental 

Concentrations). Since concentrations can span multiple orders of magnitude, we 

logarithmically transformed the QPEC values using a base 10 (referred to as pQPEC for 

brevity) to enhance interpretability. Positive pQPEC values indicate that predicted 

concentrations are conservative, exceeding the observed values. Conversely, negative values 

suggest that the model fails to capture all the observed concentrations. Values between -1 and 

1 indicate that predictions are within the same order of magnitude as the observed 

concentrations, which are considered reasonable by the USEPA(48). 

The accuracy of predicted maximum concentrations was assessed through numerical 

and graphical comparisons. Numerical differences were quantified as concentration values, 

allowing for direct measurement. Additionally, graphical exploration of predictions utilized 
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boxplots to accommodate the wide range of observations with environmental significance. 

Boxplots represent the inter-percentile range of the 95th percentile of concentrations, with 

whiskers extending up to the 99th percentile. Outliers, depicted as individual points beyond 

the 99th percentile, highlight extreme values in the dataset.  

1.2.5 Ecological Risk Screening 

To assess the ecological health risk of chemicals on aquatic organisms, we compiled 

data from various sources to establish both singular aquatic health benchmarks published by 

regulatory agencies and effect thresholds available in peer-reviewed literature. The 

benchmarks established by regulatory agencies provide thresholds for individual chemicals 

based on conservative analyses of species commonly observed to be most sensitive to 

chemicals. Data from the literature were also considered provided regulatory 

ecotoxicological benchmarks for aquatic risks were unavailable for CECs and may not reflect 

emerging evidence available for chemicals investigated.  

Regulatory thresholds were retrieved from multiple sources, the USEPA Office of 

Pesticide Protection(49) and the California State Water Resources Control Board 

(SWRCB)(50,51). The inclusion of databases from both agencies was driven by the fact that 

USEPA criteria are used for developing pesticide labels and conducting post-registration 

monitoring evaluations. Meanwhile, the SWRCB, as a sub-entity of the California 

Environmental Protection Agency, has developed criteria that specifically account for 

adverse aquatic health impacts observed in California’s waterways. 

The USEPA Aquatic Life Benchmarks are criteria derived for registered pesticides in 

the United States. Benchmarks are based on toxicological investigations of fish, 
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invertebrates, and plants the USEPA conducted to support pesticide registration or 

review(49). We compiled the most sensitive criterion for invertebrates for acute and chronic 

investigations as they are the organisms most sensitive to investigated pesticides. Acute 

benchmarks are derived from the lowest 48-96 h half-maximal effect concentrations (EC50) 

or half-maximal lethal concentrations (LC50) and typically are representative of the most 

sensitive taxa investigated. To obtain a final benchmark for invertebrates, the USEPA 

multiplies toxicity thresholds by a safety factor of 0.5. 

SWRCB ecotoxicological thresholds for bifenthrin and esfenvalerate were retrieved 

from the water quality control plan for pyrethroid pesticide discharges in the Central 

Valley(51). This plan provides comprehensive guidelines for managing the impact of 

pyrethroid pesticides on water quality in the Central Valley region. For chlorpyrifos, the 

SWRCB endpoint was derived from the agency’s water quality goals(50). By incorporating 

national standards and region-specific considerations, this approach provided a more 

comprehensive understanding of potential risks from pesticides. 

To evaluate ecotoxicological thresholds available in peer-reviewed literature for 

pesticides and CECs, we compiled thresholds published in the USEPA database 

ECOTOX(52). This comprehensive database comprises approximately 50,000 toxicological 

studies, covering around 12,000 chemicals and 1,000,000 toxicological thresholds. For 

freshwater organisms in the Animalia kingdom, we consider acute (<4 days) as well as sub-

chronic and chronic (> 4 days) toxicity thresholds for reported EC50s.  Where only one 

endpoint was available for the acute or chronic EC50 of a chemical, we retrieved data for the 

no observable effect concentration (NOEC). 
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These organisms were selected because they are more sensitive to the mode of action 

of the evaluated chemicals compared to other taxa within the Eukarya domain. Effect 

thresholds considered include development, growth, morphology, mortality, injury, 

immunological, intoxication, physiology, and reproduction. While other thresholds such as 

genetic or avoidance behavior exist, we sought to leverage data available where a clear, 

adverse outcome occurred to the sample population.  

Data published in the peer-reviewed literature may be subject to less scrutiny than 

aquatic benchmarks published by regulatory agencies. To evaluate potential effects based on 

available data while mitigating the effects of outliers which may be erroneous, we calculated 

Species Sensitivity Distributions (SSDs). SSDs offer a probabilistic assessment of the 

potential adverse effects across a range of species(53,54).  

Typically, for the acute or chronic EC50 of an investigated chemical, data for four 

species was available. SSDs were generated for chemicals with four or greater species effect 

thresholds, otherwise, the most sensitive endpoint was adopted. Where data for greater than 

four taxonomic groups were available, the most sensitive species endpoint for the species 

group rather than individual species was employed, as characterized by the ECOTOX dataset 

(e.g., fish, crustaceans, insects). This approach was adapted provided that when more data is 

available for species of the same group, the data skews the analysis of effect concentrations 

for organisms towards a particular group with greater available toxicity studies rather than 

providing a more realistic distribution of effects to diverse taxa.  

SSDs are calculable using a number of distributions, among the most common are 

lognormal and log-logistic(55).  Due to the limited toxicity thresholds available for some 

chemicals to evaluate the best-fit distribution, we opted for a lognormal distribution, which 
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has fewer heavy tails compared to log-logistic, reducing over-conservative estimates for 

small ecotoxicity datasets. To evaluate the goodness-of-fit of the distribution, we conducted 

an Anderson-Darling test (∝=0.05).   

Using the SSDs, we determined the probable health effect thresholds using the 

hazardous fifth percentile (HC5). Leveraging the fifth percentile of ecotoxicological 

thresholds as an effect index is valuable for exploring potential adverse environmental 

impacts and is utilized by the United States and European Environmental Protection 

Agencies(55,56). To enhance the robustness of the estimated HC5, we bootstrapped the 

dataset (n=1000) to the fitted SSD and calculated the 95th percentile confidence limits. 

To illustrate instances where observed concentrations are near to or surpass an aquatic 

health benchmark, where able, a risk quotient, 𝑅𝑅𝑅𝑅, was calculated. 𝑅𝑅𝑅𝑅s are calculated from 

the environmental concentration of a chemical, 𝐶𝐶, and the concentration at which toxicity has 

been observed, 𝑇𝑇: 

𝑅𝑅𝑅𝑅 = 𝐶𝐶
𝑇𝑇
  Equation (1) 

For 𝑇𝑇, the USEPA Aquatic Life Benchmarks and median bootstrapped HC5s were employed 

for investigated chemicals. The 𝑅𝑅𝑅𝑅s were calculated for acute and chronic toxicological 

thresholds relative to both observed and predicted concentrations. Where the 𝑅𝑅𝑅𝑅 is greater 

than or equal to unity, the concentration of the contaminant may introduce adverse effects. 

1.3 Results and Discussion   

We present the results of our investigation on leveraging OrganoFate to predict 

chemical concentrations in watersheds with limited data. The study focused on the simulation 

period from 2005 to 2014. Our objective was to explore potential adverse health effects on 
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unique aquatic taxa and identify contemporary concerns for aquatic ecosystem health in 

urban and agricultural watersheds in California. 

1.3.1 Ecotoxicological Thresholds 

In this study, various benchmarks were explored to assess the effects of pesticides on 

aquatic life. Specifically, the USEPA Aquatic Life Benchmarks, SWRCB water quality 

criteria, and HC5 calculated from the USPEA ECOTOX database were considered as the 

effect thresholds.  

During the review of available regulatory health benchmarks for pesticides and the 

calculated HC5, it was found that the USEPA benchmarks were the most conservative, and 

they were considered to evaluate acute and chronic risks. However, before a major update in 

2021, regional recommendations for pesticides (SWRCB criteria) provided even more 

conservative effect thresholds, differing by 1-2 orders of magnitude. This highlights the 

importance of considering multiple ecotoxicological effect databases as knowledge continues 

to evolve, especially given that registered pesticides in the United States are only required to 

be reviewed once every fifteen years. 

For CECs with no available regulatory benchmarks in the United States, where 4 or 

more unique species data were available, the HC5 was predicted from fitted SSDs and 

employed to calculate risk quotients. Where data for fewer than 3 species were available, the 

minimum observed effect endpoint was considered. In addition to using HC5s and SSDs for 

CECs with no regulatory criteria, we employed this approach for pesticides to provide 

information about specific taxonomic group risks, see Table 2. 

Table 2. Summary of the USEPA Aquatic Life Benchmarks calculated HC5s, or minimum 
effect thresholds for chemicals with data for fewer than 3 species. The HC5s were calculated 
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from Species Sensitivity Distributions which employed a lognormal distribution, results of 
the Anderson-Darling goodness-of-fit test are also included (null hypothesis lognormal 
distribution, ∝= 0.05). 

 

To test the goodness-of-fit of lognormal SSDs for available effect data, we conducted 

an Anderson-Darling test. The test evaluates whether sample distributions were significantly 

different from a lognormal distribution (null hypothesis lognormal distribution, ∝= 0.05), 

and for the HC5s, confidence intervals based on boot-strapped sampling were calculated. All 

fitted distributions for evaluated chemicals were insignificantly different from a lognormal 

distribution. Results from the goodness-of-fit test and predicted HC5s can be viewed in 

Table 2.  

1.3.2 Urban PECs  

The evaluation of OrganoFate's prediction accuracy for CECs and potential risks in 

urban environments focused on the upper urban watershed of the Santa Clara River. We 

simulated the concentrations and risks of three chemicals with available monitoring data in 

surface water: sulfamethoxazole, triclocarban, and TDCPP (Figure 2). Notably, the 

freshwater observed concentrations of the CECs (and pesticides) were commonly near or 
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below the median limit of quantification (LOQ) of monitoring analyses. Provided many 

monitoring analyses will not capture concentrations below the LOQ, we included the median 

LOQ of observed data in Figure 2 to illustrate a common lower bound of observed data. 

Figure 2. Predicted and observed freshwater column concentrations of triclocarban, 
sulfamethoxazole, TDCPP, and bifenthrin for the Upper Santa Clara River Watershed from 
2005-2014. Boxplot interquartile ranges reflect the 95th percentile of predictions and 
whiskers the 99th. The median limit of quantification (LOQ) of observations in freshwater is 
included to illustrate where many monitoring analyses will not detect the contaminant. 
 

 

a) Sulfamethoxazole, observations n=9 

 

 

b) Triclocarban, observations n=5 



 
 

24 
 

 

 

c) TDCPP, observations n=8 

 

For the river water column, the predictions generated by OrganoFate successfully 

encompassed the maximum observed concentration of each chemical. This outcome is 

desired to ensure high-risk events are captured and anticipated since the model simulates all 

days of the analysis period while monitoring data captures very limited temporal extents. 

Predicted maxima demonstrated good agreement for maximum observations of CECs, with 

all predictions within a factor of 1.7-4.2 of observed (Figure 2).   

In addition to predictions encompassing maximum observations, there was reasonable 

agreement between the median modeled and observed concentrations. The log-transformed 

quotient of predicted and observed concentrations, pQPEC, was between 0.16-0.39. This 

indicated that the predicted median concentrations were conservative estimates, tending to be 

higher than the observed values. Additionally, values less than 0.5 indicated that the 

predicted mean was within a half order of magnitude of the observed mean. The USEPA 

considers predictions of environmental concentrations of chemicals within an order of 
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magnitude reasonable(48) owing to concentrations varying by orders of magnitudes and the 

numerous environmental conditions affecting instream concentrations.  

To assess potential hazards to aquatic health, we compared predicted and observed 

concentrations to the HC5, or most sensitive effect endpoint where fewer than 3 species had 

available data. For CECs, we discuss risk quotients relative to chronic effect data since they 

were the only effect thresholds where concentrations of contaminants were near or in 

exceedance. CEC chronic endpoint data employed NOECs due to only one ecotoxicological 

endpoint being available for the chronic EC50 of each chemical (see Methods 2.5). 

The calculated RQ from the HC5 of sulfamethoxazole for both observed and 

predicted concentrations was three orders of magnitude lower than unity and did not exceed 

any individual ecotoxicological effect thresholds. This suggests that no adverse effects are 

predicted for sulfamethoxazole. 

However, for TDCPP, the RQ for the chronic HC5 for predicted concentrations was 

0.92 and exceeded the minimum effect threshold for the fish species Danio rerio, indicating 

possible adverse effects. The RQ for observed concentrations was lower, at 0.22. However, 

it's important to note that the temporal coverage of TDCPP data was limited, with only 8 

events over a 5-year simulation period. 

The RQs of triclocarban for predicted and observed concentrations were 0.54 and 

0.26 respectively and did not surpass the HC5. When comparing the RQ for the most 

sensitive chronic NOEC endpoint (0.25 µg/L) and the maximum predicted concentration of 

triclocarban (0.22 µg/L), we found an RQ of 0.88. These findings indicate that triclocarban 

and TDCPP may pose a hazard in the Santa Clara River, warranting further investigation of 

aquatic health hazards through additional monitoring, ecotoxicological and risk assessments. 
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Figure 3. Species sensitivity distributions and hazardous fifth percentiles for chronic effects 
of CECs in the Upper Santa Clara River Watershed for a) sulfamethoxazole, b) TDCPP, and 
c) triclocarban. 

 

a) 
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b) 

 

c) 
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1.3.3 Agricultural PECs 

To assess the effectiveness of OrganoFate as a predictive tool for waterbodies 

affected by agricultural runoff, three commonly used insecticides (bifenthrin, chlorpyrifos, 

and esfenvalerate) were evaluated. The study focused on two watersheds in the Central 

Valley: the Visalia Watershed and the San Joaquin Watershed. 

In the Visalia Watershed, the maximum predicted concentrations for bifenthrin and 

esfenvalerate were both conservative and realistic estimates. These predicted maximum 

concentrations encompassed all observed data, and the 99th percentile of the predicted values 

closely matched the observed values, falling within a factor of 1.5-4.3 of each other (Figure 

4). Given the fact that OrganoFate predicts concentrations for each day of the simulation, this 

level of accuracy is considered good. 

In the Visalia Watershed, it is worth highlighting that a substantial portion of the 

predicted concentrations for bifenthrin and esfenvalerate were below the Limit of 

Quantification (LOQ) for these pesticides. The lack of data in the lower range of 

concentrations makes it challenging to fully assess the model's performance in that particular 

region. As observations cannot capture concentrations below the LOQ, the predicted median 

concentrations appeared to be significantly lower, around 2-3 orders of magnitude, than the 

observed concentrations. Considering the ability of OrganoFate to predict concentrations 

each day of the simulation and below the LOQ limited availability of observation data, where 

most predictions are lower than the LOQ, median accuracy is not quantifiable. 

Figure 4. Predicted and observed concentrations of a) bifenthrin, b) esfenvalerate, and c) 
chlorpyrifos in the freshwater column of the Visalia Watershed, as well as for the San 
Joaquin River Watershed, d) concentrations of chlorpyrifos. Boxplot interquartile ranges 
reflect the 95th percentile of predictions and whiskers the 99th. Also displayed are the median 
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limit of quantification (LOQ) of observed concentrations and USEPA acute and chronic 
Aquatic Life Benchmarks.  

  

a) Bifenthrin, observations n=3 

 

b) Esfenvalerate, observations n=8 

 

  

c) Chlorpyrifos, observations n=91 d) Chlorpyrifos, observations n=56 

  PECs for chlorpyrifos in the Visalia and San Joaquin River Watersheds, similar to 

bifenthrin and esfenvalerate, encompassed all observed concentrations.  The median 

predictions demonstrated close agreement to observed with a pQPEC of 0.1 and 0.16 for the 

Visalia and San Joaquin River Watersheds respectively.  
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However, for predicted maxima, concentrations were 1-2 orders of magnitude higher. 

Closer agreement was observed for 99th percentile predictions, which were within an order of 

magnitude of observed concentrations, which is considered reasonable by the USEPA(48). A 

greater difference in peak predicted chlorpyrifos concentrations and observed relative 

bifenthrin and esfenvalerate is likely attributable to an organic partitioning coefficient that is 

two orders of magnitude lower. Since predictions capture all events and observed 

concentrations relatively few, maximum predictions may provide reasonable predictions for 

events not captured in monitoring campaigns.  

Concerning the USEPA benchmarks, both the observed and predicted concentrations 

for bifenthrin, esfenvalerate, and chlorpyrifos were found to be in exceedance of acute and 

chronic risks, as was observed for the other pesticides, signaling potential risks to the 

environment. The assessment of acute and chronic aquatic community risks also revealed 

concentrations to exceed the HC5 and the EC50 for several taxonomic groups, as shown in 

Figure 4 For instance, chlorpyrifos concentrations in the Visalia watershed were observed to 

exceed the EC50 for water fleas, aquatic flies (such as caddis flies, mayflies, and 

damselflies), mosquitoes, pigmy backswimmers, and crustaceans. Predicted chlorpyrifos 

concentrations also exceeded the EC50 for fish, mussels, and frogs. Collectively, observed 

and predicted concentrations provide strong supporting evidence that protection goals for 

aquatic fauna are not achieved with current pesticide use regimes in the watershed.  

Figure 4(a-d). Observed and predicted concentrations relative to the most sensitive species 
sensitivity distributions (SSDs) of available acute and chronic toxicity where available. 
Depicted in (a-c) are results for the Visalia Watershed where a) are chronic thresholds for 
bifenthrin (insufficient data for acute or chronic SSD), b) the acute SSD for esfenvalerate 
(insufficient data for chronic SSD), and c) the chronic SSD for chlorpyrifos; d) depicts the 
SSD for chlorpyrifos in the San Joaquin River Watershed. Note for chlorpyrifos and 
esfenvalerate, where many species thresholds were available, the distribution was calculated 
for broader taxonomic groups.  
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a) 

 
b) 
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c) 

 
d) 

1.3.4 Limitations and Significance 

Environmental models, including multimedia and watershed scale models, commonly 

use homogenous compartments to represent various environmental media at different scales. 

However, this approach overlooks the significant variability in properties, such as organic 

carbon in soils and sediments, as well as locations of higher concentration within a given 

compartment due to incomplete mixing. Notably, smaller water bodies within a watershed, 
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like small streams and creeks, may also exhibit considerably higher concentrations compared 

to larger rivers, as they experience less dilution(57). Despite this simplification, the model 

effectively mitigates over-parameterization in data-limited regions, thereby reducing 

complexity and enhancing efficiency. Although predictive tools like OrganoFate do not 

replace the need for monitoring or more discretized risk assessment models, they offer 

valuable insights into environmental concentrations and ecological risks at a higher 

spatiotemporal resolution than is typically attainable with monitoring data. 

The significance of employing OrganoFate for this analysis lies in its integration with 

ChemFate, a comprehensive tool capable of predicting concentrations for diverse chemical 

classes, including pesticides based on ionizable organics, metal ions, or nanomaterials, 

covering a wide range of commercial products. This unified approach streamlines analyses, 

sparing users the considerable effort of parameterizing multiple models and familiarizing 

themselves with various tools needed for studying current-use chemicals. Notably, this 

investigation demonstrates that parameterization of OrganoFate using publicly available data 

can reliably predict environmental concentrations of diverse organic contaminants, generally 

falling within the observed range. 

Furthermore, this investigation sheds light on potential threats to aquatic ecosystems 

posed by CECs and pesticides. For CECs, the reliability of risk evaluations is hindered by the 

absence of limited monitoring and toxicological data. On the other hand, contaminants such 

as pesticides may have more comprehensive monitoring and effect datasets. However, 

monitoring data often fails to capture concentrations at which severe adverse effects may 

occur due to the highly targeted mode of action and low limit of quantification. 

Consequently, predictive screening-level tools like OrganoFate play a crucial role in 
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complementing field assessments of the impact of these contaminants on biodiversity in 

surface waters. 

Overall, our study demonstrates that OrganoFate is a valuable tool for understanding 

the fate and concentrations of diverse organic contaminants in environmental systems. Its 

integration into risk evaluations of data-limited watersheds allows researchers to gain 

valuable insights into chemical hazards, aiding in the formulation of effective environmental 

management strategies. Nonetheless, it is essential to interpret results carefully and consider 

additional monitoring data to make informed decisions regarding ecological risk assessment 

and management.  

1.4 Conclusion 

Our study addresses the pressing need for accessible and easy-to-implement tools to 

perform screening-level ecological risk assessments in the face of increasing chemical use in 

society. Due to the limited availability of field data for calibration and validation, we 

evaluated the effectiveness of the uncalibrated fate and transport model, OrganoFate, in 

predicting environmental concentrations of non-ionizable organic contaminants in 

watersheds heavily impacted by urban or agricultural development. The results showed that 

OrganoFate performed well in predicting the range of observed environmental concentrations 

in surface water. 

Furthermore, we utilized OrganoFate to assess the potential impacts on aquatic 

health, revealing risks associated with certain Contaminants of Emerging Concern (CECs) 

like TDCPP and triclocarban. Monitoring data and predictions indicated that USEPA Aquatic 

Life Benchmarks were exceeded for each investigated insecticide, as well as for 

ecotoxicological thresholds associated with severe effects documented in peer-reviewed 
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literature. This suggested possible adverse effects on invertebrates, fish, mollusks, and 

amphibians. 

Our findings highlight the value of OrganoFate as an informative tool for conducting 

screening-level ecological risk assessments, particularly in data-limited conditions. It 

provides valuable insights to support informed decision-making and environmental 

management efforts, enabling better risk evaluation and mitigation strategies. 
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Chapter 2. Leveraging high spatiotemporal resolution data of pesticides applied 
to agricultural fields in California to identify toxicity reduction opportunities 

Pesticides remain a leading environmental hazard, imperiling aquatic and terrestrial 

ecosystems. Reducing pesticide toxicity is hampered by the ability to evaluate toxicity over 

large extents, the spatiotemporal resolution of pesticide use data, the ability to assess 

cumulative toxicity, and the identification of health/economic contributions of different 

pesticide application sites. We introduce the Environmental Release Tool, a sub-tool of the 

Pesticide Mitigation Prioritization Model, to advance these four areas. Using daily pesticide 

use reports required for agricultural applicators in California, we quantify the applied toxicity 

of pesticides to fish as well as aquatic invertebrates, nonvascular plants, and vascular plants. 

With the tool's ability to quantify applied toxicity for hundreds of pesticides and watersheds 

simultaneously, we explore the significance of accounting for cumulative applied pesticide 

toxicity for application sites and watersheds statewide. Our results show that 14 pesticides 

account for 99.9% of applied toxicity, and 16 of 432 application site types introduce 90% of 

toxicity for taxa investigated. We also find cumulative applied toxicity within watersheds 

was significantly greater (p <1.0 E-16) than the maximum impact pesticide for all taxonomic 

groups, with a mean-annual difference of 460-630%. While cumulative applied toxicity was 

significant, and sources varied in individual watersheds, the net applied toxicity can be 

approximated with a short list of active ingredients and site types.  

2.1 Introduction 

Per year ~ 2 billion kilograms of pesticides are applied directly to the environment 

worldwide.(1) Due to their widespread use, pesticides are a leading cause of chemical 

hazards in aquatic environments(2–4) and have contributed to global declines in 

https://sciwheel.com/work/citation?ids=10724620&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4151,10317780,1032218&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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pollinators(5) and other species. Recent European legislative initiatives have sought to reduce 

toxic contributions via use fees tiered according to risk(6,7) and toxicity reduction targets(8). 

These legislative initiatives are important but do not identify taxon-specific toxicity nor 

quantify chemical and application site-specific information that would enable more targeted 

mitigation aims. Other mitigation tools are available to derive toxicity reduction strategies 

which include fate models(9,10), toxicity/risk maps(11,12), risk indices(13–15), and 

summaries of pesticide use(16,17). However, the individual tools are limited by their ability 

to evaluate large extents, toxicity sources, cumulative applied toxicity, and/or ability to 

consider the economic benefits of application sites. To address the limitations of existing 

tools, we have developed a tool to integrate these features into a single framework, the 

Environmental Release Tool. The tool aims to improve the information available for 

targeting pesticide reduction strategies for experts, stakeholders, and the public. The tool is 

the first stage of development for the Pesticide Mitigation Prioritization Model (the second 

stage is a companion fate model) and quantifies the spatiotemporal distribution of applied 

toxicity, defined here as the mass of pesticide released into the environment, weighted by 

toxicity to user-defined priority species. 

2.1.1 Scale 

The first objective of the Environmental Release Tool (ERT) is to identify the applied 

toxicity of pesticides over large extents to promote targeted pesticide toxicity reduction 

strategies. While governments largely regulate pesticides at the national/multinational 

level(18,19), few tools are available to model pesticide impacts across the large and 

heterogeneous scales managed by regulators (e.g., SYNOPS-WEB(13)). Existing watershed 

fate and transport models adaptable to specific regions, such as SWAT(20–22) or HSPF(23–

https://sciwheel.com/work/citation?ids=963769&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11391815,11587763&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12268509&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9842609,12651449&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7304708,7304707&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11527420,6174063,11698868&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10989002,10979125&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12207247,12264553&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11527420&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2424554,2412598,7032478&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8201899,6427007,5021247&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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25) often require global calibration methods due to limited data for model parameters, and 

global calibrations can mask toxicity sources. Global calibrations also require monitoring 

data(26), and for many watersheds, no or limited observations are available for pesticides. 

Moreover, a fate and transport model’s parameterization and calibration for a single pesticide 

and watershed can take hundreds of hours, and its uncertainty is compounded over large 

extents (26–28). Collectively, these factors can obscure important variations and hinder the 

identification of toxicity reduction opportunities at scale. 

2.1.2 Sources 

Another key obstacle to mitigating applied toxicity is identifying pesticide sources 

and application timing(29–31).  Pesticide use data are often not recorded and reported, 

making it difficult to predict watershed-level, applied toxicity. While the Pesticide National 

Synthesis Project(32) provides the best dataset for pesticide use across the United States, the 

data are too coarse for this purpose. However, the state of California is unique; its 

Department of Pesticide (CDPR) has the most comprehensive pesticide use database in the 

world, with daily reports of agricultural applications since 1990.(33) Currently, no tool is 

available with which to efficiently use the database to summarize or map the spatiotemporal 

distribution of pesticide toxicity. The second objective of the ERT is to automatically load 

and process data to prioritize toxicity reduction while providing the flexibility to quantify the 

applied toxicity distribution of pesticides in the United States and beyond.  

2.1.3 Cumulative applied toxicity 

Pesticide-contaminated soils and surface waters typically contain mixtures of active 

ingredients(3,34–36). The cumulative applied toxicity is the sum of the toxicity of all 

https://sciwheel.com/work/citation?ids=8201899,6427007,5021247&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6523559&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6523559,7392792,10365597&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11003763,7933220,10995996&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11919911&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6346993&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4776500,8472388,10317912,10317780&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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pesticides applied at a given site within a particular time period (e.g., daily, monthly, 

annually). Often, the pesticide with the highest toxicity is considered the most relevant one, 

and it is common to assume that the most toxic pesticide can approximate the cumulative 

applied toxicity in a given sample (37,38); however, to reduce pesticide toxicity in a water 

body throughout the year, it is imperative to understand the cumulative applied toxicity, 

which can exhibit significant temporal variation in the pesticides responsible for most 

toxicity(31).   

Most watershed models, even where high-resolution pesticide use data is available, 

cannot accommodate the evaluation of a pesticide mixture within a single simulation; nor are 

pesticide mixtures regulated in the United States(18,39), with few state-level exceptions for 

specific pesticide classes(40). The variability of mixtures(41) and knowledge gaps related to 

the synergism or antagonism of a pesticide mixture to non-target organism toxicity(42) often 

make quantifying their combined effect challenging. Although tools are available that 

simulate and summarize pesticide mixture toxicity, such as regression models(43) and 

cumulative risk maps(12), they have limited spatiotemporal extent. To address the 

cumulative risk knowledge gaps, our third aim is to quantify the spatiotemporal applied 

toxicity of various pesticides at specific application site types to facilitate toxicity reduction 

initiatives.  

2.1.4 Economic and health scores 

Reducing pesticide-applied toxicity can affect the economic prosperity of agricultural 

stakeholders.(44,45) Many options exist for considering the economic benefits and health 

concerns of pesticides, and consideration of economic impacts is mandated by current US 

https://sciwheel.com/work/citation?ids=14607414,4814328&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10995996&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6587873,12207247&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12199702&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7789993&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11113467&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13015832&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7304707&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10979567,10979546&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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legislation(39). However, no tools are known to the authors to dynamically quantify health 

and economic indices for pesticide application sites.  Therefore, the fourth objective of the 

ERT is to generate scores for the various application site types that prioritize toxicity 

reduction opportunities while also considering the economic benefits relative to health 

impacts. Though external factors affecting treatment areas, such as water and stress to crop 

yields, make it difficult to quantify pesticide use benefits, simple health, and economic scores 

can be leveraged to explore effective strategies.  

2.1.5 Toxicity Reduction Targets 

The ERT is a novel tool for targeting toxicity reduction designed to be user-friendly 

for experts (researchers) and non-experts (e.g., the public), with results presented in an 

interactive heatmap with graphical summaries. The development of the ERT sought to 

overcome the limitations of existing tools for prioritizing pesticide mitigation opportunities 

by integrating features to 1) assess variation in applied toxicity at the regulation extent 

(1,000+ watersheds), 2) identify primary sources of environmental toxicity, 3) calculate 

cumulative toxicity, and 4) generate impact scores that consider economic and health aspects 

of toxicity reduction.  

To identify toxicity reduction strategies in diverse landscapes, California is an ideal 

study site due to available information on over 400 agricultural application site types and the 

substantial pesticide use, accounting for 20% of the mass of pesticide sales in the United 

States and 3% worldwide(46,47). Our study leveraged the ERT to identify toxicity reduction 

targets for aquatic taxa in California’s watersheds. It aimed to answer four questions: 1) How 

is toxicity distributed among pesticides for diverse taxa? 2) What are the opportunities for 

https://sciwheel.com/work/citation?ids=6587873&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6483325,7638147&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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toxicity reduction in specific application site types? 3) Does quantifying the cumulative 

toxicity enhance our understanding of environmental toxicity? 4) Which application sites 

have the greatest applied toxicity, and what economic benefits do they have?  

2.2.0 Methods 

The Environmental Release Tool has two platforms: a web application for California 

and a desktop version for all study areas in the United States, which offer different 

advantages. The web-based tool, available on any internet-accessible device, summarizes 

applied toxicity in seconds and provides a simpler user interface. The offline tool offers a 

high degree of customization, more detailed information, and custom simulations. To assist 

experts and non-experts, the desktop and web tools were built in RStudio(48) version 1.4. 

The development environment accommodates full customization of the tool’s code for 

experts and the ability to run unique simulations for non-experts via editing spreadsheet files 

in Google Sheets and clicking a start button.  

This tool does not quantify fate or exposure but rather illustrates the location and 

amount of applied toxicity(49) for designing toxicity reduction strategies and planning 

monitoring campaigns by identifying areas where higher toxicity is released in the 

environment, and its sources. Although the ERT is a spatial tool designed for large extents, 

the tool works best to understand sources of pesticide exposures for species with a small 

habitat range. However, for organisms whose activities are more widespread and who have 

less direct contact with environmental compartments where pesticides are most likely to 

persist, the location of applied toxicity may be less useful for understanding sources of 

potential exposure.  

https://sciwheel.com/work/citation?ids=11275717&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7290129&pre=&suf=&sa=0&dbf=0
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2.2.1 Scale 

To enable evaluations of the variability of pesticide toxicity over large extents, the 

tool summarizes pesticide applications and toxicity by watershed. The data is summarized by 

watershed, and applications sites as well as pesticides within since pesticide losses via runoff 

and eroded sediments share a common outlet. Summarizing applied toxicity by watersheds is 

important to conceptualize areas that share common hydrologic routes for pesticide transport. 

Though the Environmental Release Tool does not simulate loss processes, it is the first stage 

of development of the Pesticide Mitigation Prioritization Model, and the product of the 

second stage of development is a companion, mechanistic fate and transport tool where loss 

processes are simulated.  

Watersheds in the ERT are delineated using the Watershed Boundary Dataset(50), a 

data product of the United States Geological Survey. Each watershed is assigned a 

hydrologic unit code (HUC), which is based on the hydrologic connectivity and scale of the 

watershed. Watersheds with shorter HUCs, such as HUC 2-digit codes, are large watersheds 

encompassing hundreds of thousands of square kilometers, while longer HUCs such as HUC 

8-digit codes (HUC8) represent subwatersheds of the shorter digit codes (e.g., HUC2).  The 

assignment of pesticide use data to watersheds of various spatial extents is facilitated by the 

tool (see SI Section 3.0).  

2.2.2 Sources 

To evaluate the spatiotemporal distribution of pesticides, the ERT benefits from the 

ability to autoload daily pesticide use report data in California from statewide agricultural 

applicators(33). The tool internally hosts the data, and using an autoload script, aggregates 

https://sciwheel.com/work/citation?ids=7725280&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6346993&pre=&suf=&sa=0&dbf=0
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data for the area of interest to the user, which watersheds or counties may define. Where 

counties are used, the tool automatically aggregates data to watersheds in the county. For 

other pesticide input options (e.g., manual inputs or for analyses of other land uses or 

regions), see Appendix X Section 3.0.  

The amount of pesticide applied on application sites (e.g., a specific crop) in 

California is substantial, millions of pounds for widely cultivated crops, and as high as ~40 

million for almonds(51). To assist efficient analyses, the ERT extracts pesticide usage data 

for California from CDPR Pesticide Use Reports(33) by active ingredient (AI) and for the 

432 agricultural site types for the study area of interest to the user. These reports record daily 

applications at the County Meridian Township Range Section (referred to as Section) spatial 

scale (2.6 km2). For Sections where pesticide use data is reported that overlaps multiple 

watersheds, the area fraction of overlap is used to weight the mass of AI applied. Notably, 

urban applications were not included in the autoload feature. The reports do not include 

household applications, and professional urban applications are recorded at the county level 

and at a monthly time step, which cannot be allocated to a specific watershed or date.  

For evaluating pesticide sources of toxicity, ERT facilitates the summarization of 

similar AIs. This feature is useful because many AIs have a similar chemical make-up (e.g., 

isomers or are produced in several forms, including acids, salts, amines, and esters), but have 

no or limited toxicity data for the various AI forms. Provided that AI forms can have very 

different effect concentrations, where possible, the user should provide AI form-specific 

toxicity. To accommodate specific endpoints where available, but to enable simplification of 

tool outputs, unique toxicity endpoints are accepted and calculated for pesticides within a 

user-defined pesticide group, and the group ID reports the group’s total applied toxicity in 

https://sciwheel.com/work/citation?ids=14251990&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6346993&pre=&suf=&sa=0&dbf=0
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tool output. In this investigation, we considered AIs detected (2014-2018) within California’s 

surface waters with available toxicity data (n = 151). From the CDPR’s Pesticide Use 

Reports, 290 forms of the AIs were observed (e.g., 12 unique esters and 15 salts of 2,4-D). 

In addition to pesticide sources of applied toxicity, a key feature of ERT is the ability 

to preserve information relating to application site types. However, too many application 

sites make the interpretation of results difficult. The tool thus enables users to group similar 

application sites (e.g., alfalfa and alfalfa-grass mixture) by assigning the same ID to multiple 

site types. By default, 432 agricultural application site types from Pesticide Use Reports are 

simplified to 116 based on the similarity of the crops. Groupings can be viewed and modified 

in the tool input file for application sites. 

To identify pesticide toxicity reduction targets, the ERT quantifies applied pesticide 

toxicity. Applied toxicity refers to the mass of pesticide applied to an area with the potential 

to do harm(49). The applied toxicity for the ith pesticide in the jth watershed is calculable from 

applications to the kth site type and toxic endpoint of the mth taxon of interest as: 

𝑇𝑇𝑇𝑇𝑗𝑗,𝑖𝑖 = ∑𝑀𝑀𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑚𝑚

𝑇𝑇𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑚𝑚 
     Equation (1) 

Where 𝑇𝑇𝑇𝑇 is the Toxicity Index (kg-m3/kg), 𝑀𝑀 (kg) is the mass of applied AI, and 𝑇𝑇 (kg/m3) 

is the adverse health-effect concentration of concern (e.g., the lethal concentration of fifty 

percent of the test organism population) for the species or taxonomic groups of interest. 

Within a simulation, the tool is suitable for quantifying the applied toxicity to taxa within the 

same compartment, not across environmental compartments, because variation in the 

transport of pesticides based on physicochemical properties is not simulated. The tool 

illustrates applied toxicity within the soil compartment or available for transport to the 
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compartment of interest. While the transport of pesticides from the application site is 

sensitive to their physicochemical properties(52), property correlation to surface water 

detection frequencies has been demonstrated to the more robust for pesticide sales data than 

physicochemical properties in a monitoring campaign of 72 pesticides of diverse properties 

in over 100 streams(53). Though this approach is not suitable for risk assessments, it 

facilitates an understanding of where mitigation opportunities exist(54) without data 

requirements and uncertainty of fate and transport models over large extents(26,27,55).  

Our investigation considers the applied toxicity of pesticides for fish, as well as 

aquatic invertebrates, nonvascular plants, and vascular plants. Toxicity endpoints employed 

were acute values from the United States Environmental Protection Agency (USEPA) 

Aquatic Life Benchmarks Database60,61. The USEPA derives Benchmarks from the 

concentration at which fifty percent of a species sample in single-dose laboratory 

investigations experience severe effects derived from mortality endpoints or, for plants, 

significant changes in growth/biomass (LC50 or EC50). A genera endpoint is then calculated 

based upon a 0.05 cumulative probability of toxicity for represented species, which typically 

reflects the most sensitive species within the taxonomic group. For fish and invertebrates, the 

USEPA calculates the final acute value as the product of the taxonomic group endpoint 

multiplied by a safety factor of 0.5 and does not adjust plants. Where no toxicity endpoints 

were reported for the pesticide in the Aquatic Life Benchmark database (n = 10), the 

Pesticide Properties DataBase(56) acute toxicity endpoints were employed, and unverified 

data were excluded. 

https://sciwheel.com/work/citation?ids=7734645&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13676184&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11650744&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1606304,6523559,7392792&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5917996&pre=&suf=&sa=0&dbf=0
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The first applied toxicity index reported by ERT for pesticides, sites, and watersheds 

is the Relative Toxicity Index (𝑅𝑅𝑇𝑇𝑇𝑇) (kg-m3/kg-m2). The index weights the toxicity of the ith 

applied pesticide by the size of the application area within the jth watershed as: 

𝑅𝑅𝑇𝑇𝑇𝑇𝑗𝑗,𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗
𝐴𝐴𝑗𝑗

  Equation (2) 

where 𝐴𝐴 (m2) is the area affected by pesticide applications.  

To estimate the areas affected by pesticide applications, agricultural land use datasets 

are used. In California, the Pesticide Use Reports can be used to retrieve the impacted area. 

However, there are known inaccuracies. The planted area is often recorded for all the 

grower’s land; although reported for a specific crop, and fields are subject to multiple crop 

rotations within a year. For the applied area, multiple applications are typical for a crop that 

renders the net-application area unknown. Due to these concerns, alternative land use 

datasets were evaluated for use(57–59).  

After reviewing several datasets, the California Department of Water Resources land 

use surveys(55) were found to be the most accurate with a median accuracy of 97.5% and 

positional quality of 8m. However, a limitation of the dataset, as well as the others, is that it 

provides fewer site types (43) compared to Pesticide Use Reports (432). Using this dataset to 

determine the affected area of specific application site types would require highly reducing 

the resolution of pesticide source data. Attempts to recategorize crops to fit available land use 

data did not obtain reliable results.  As a result, we chose to consider the affected area to be 

all agricultural land in the California Department of Water Resources dataset. The 

representation of the affected compartment to all agricultural land was deemed appropriate 

https://sciwheel.com/work/citation?ids=4965425,7035329,7176897&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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because only 5% of agricultural fields in California employ organic cultivation practices(60) 

and use non-synthetic pesticides recorded in use reports.  

As the quantification of the affected compartment area is frequently limited, and the 

fraction of a watershed subject to pesticide application is highly variable, we provide a 

second applied toxicity index independent of area, the Net Toxicity Index (𝑁𝑁𝑇𝑇𝑇𝑇). The NTI is 

a relative rank toxicity index to determine if the applied toxicity is greater than what is 

typical for the ith pesticide in the jth watershed. As our reference of what is typical, we 

calculate for the study area the 50th percentile (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝50) of the applied toxicity for any applied 

pesticide (𝑝𝑝𝑝𝑝𝑝𝑝) in watershed (w). The 𝑁𝑁𝑇𝑇𝑇𝑇 is calculable from the TI of the ith pesticide in the 

jth watershed as: 

𝑁𝑁𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗 = 𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝50 (𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝1,𝑤𝑤1 ,𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝1,𝑤𝑤1 ,𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝1,𝑤𝑤2 ,𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝2,𝑤𝑤2 ,… 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛,𝑤𝑤𝑛𝑛)

  Equation (3) 

The NTI approach can quickly identify applied toxicity above typical levels in the study 

extent. For example, if the 50th percentile of the applied toxicity of pesticides to a watershed 

in the study area is applications of imidacloprid in the San Joaquin Watershed, (e.g., 1000 

TI), to calculate the NTI, the TI of the ith pesticide and the jth watershed of interest is divided 

by 1000 TI. Using this approach, pesticide applications within a watershed over the 

simulation period with an NTI greater than unity have applied toxicity above the 50th 

percentile. This normalization provides a unitless applied toxicity index that does not affect 

the relative rank of the applied toxicity for pesticides, sites, or watersheds, and can identify 

effective toxicity reduction targets specific to the study area.  

https://sciwheel.com/work/citation?ids=10637869&pre=&suf=&sa=0&dbf=0
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2.2.3 Cumulative applied toxicity 

For single taxonomic group investigations with the ERT (e.g., only fish), the 

cumulative applied toxicity, the potential of all pesticides released to the environment and 

under investigation to do harm to the taxon, is calculated via the concentration addition 

method (61,62). We calculate the cumulative toxicity indices of pesticides for each index for 

n pesticides for a watershed (here 𝑤𝑤1) as:  

𝑅𝑅𝑇𝑇𝑇𝑇𝑗𝑗 = ∑𝑅𝑅𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝1,𝑤𝑤1 + 𝑅𝑅𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝2,,𝑤𝑤1 + 𝑅𝑅𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝3,𝑗𝑗,𝑤𝑤1 …𝑅𝑅𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛,𝑗𝑗,𝑤𝑤1   Equation 

(4) 

𝑁𝑁𝑇𝑇𝑇𝑇𝑗𝑗 = ∑𝑁𝑁𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝1,𝑤𝑤1,𝑘𝑘 + 𝑁𝑁𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝2,𝑤𝑤1,𝑘𝑘 + 𝑁𝑁𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝3,𝑤𝑤1,𝑘𝑘 …𝑁𝑁𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛,𝑤𝑤1,𝑘𝑘  Equation 

(5) 

The method used in this study relies on the assumption of additive toxicity and non-

interacting chemical species. While this assumption is theoretically unsound for chemicals of 

diverse modes of action, and this limitation is not addressed by the ERT, pesticides rarely 

express synergism at environmentally relevant concentrations, and cumulative addition has 

been empirically demonstrated to be a reliable method for quantifying pesticide mixture 

toxicity(63). For example, in studies with hundreds of pesticide mixtures, the method has 

predicted mortality within a factor of 2 for 90% of samples(64–66). Additionally, the method 

is robust to independent modes of action(65). However, the approach is not suited to 

simultaneously understand the cumulative toxicity to diverse taxa due to the presence of 

unique organism receptors and responses(67). To address this issue, we conducted 

independent simulations for fish, invertebrates, nonvascular aquatic plants, and vascular 

https://sciwheel.com/work/citation?ids=7778401,2484278&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12993289&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4907385,7789971,7789869&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7789971&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6588268&pre=&suf=&sa=0&dbf=0
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aquatic plants in addition to the simulation that quantified the net applied toxicity for all 

organisms simultaneously. 

Available literature considers that most acute toxicity in a pesticide mixture can be 

represented by a single pesticide(38,68). However, the frequency of use of pesticides varies 

throughout the year, as do pesticides detected in surface waters(31). To evaluate whether the 

tool’s ability to rapidly quantify cumulative applied toxicity improves understanding of 

environmental toxicity relative to evaluations targeting the highest impact pesticide, the 

cumulative toxicity index (NTI) of sites and watersheds was compared to the index of the 

pesticide with the highest applied toxicity using a one-way, paired t-test. Paired t-tests are 

commonly employed for samples measured at two-time points and to compare predictions 

relative to observed data (the cumulative toxicity)(69).  

2.2.4 Economic and health scores 

 The health and economic impacts of application sites are quantified over the study 

extent with a Health Score (ha/NTI), an Economic Score (USD/ha), as well as an Economic 

and Health Score (USD/NTI per ha). These scores are calculated over the study extent 

(California) rather than in specific watersheds due to the low resolution of reliable land use 

data (see 2.2 Sources). The health and economic scores with higher values represent more 

favorable outcomes. Health and economic scores are calculated for the application site areas 

of the study extent as: 

𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝 𝑆𝑆𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝 = 𝐺𝐺𝑝𝑝𝐺𝐺𝑝𝑝𝑝𝑝 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝 (𝑈𝑈𝑈𝑈𝑈𝑈)
𝐻𝐻𝑉𝑉𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 

   Equation (6) 

𝐻𝐻𝑝𝑝𝐻𝐻𝐻𝐻𝑝𝑝ℎ 𝑆𝑆𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝 = 𝐻𝐻𝑉𝑉𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 
𝑇𝑇𝐺𝐺𝑇𝑇𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝑇𝑇𝐼𝐼𝐻𝐻𝑝𝑝𝑇𝑇 (𝑁𝑁𝑇𝑇𝑇𝑇 𝐺𝐺𝑝𝑝 𝑅𝑅𝑇𝑇𝑇𝑇)

   Equation (7) 

https://sciwheel.com/work/citation?ids=4814328,3709043&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10995996&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1881224&pre=&suf=&sa=0&dbf=0
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The Economic and Health Score penalizes crops with high applied toxicity and is calculated 

as: 

       𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝 𝐻𝐻𝐸𝐸𝑎𝑎 𝐻𝐻𝑝𝑝𝐻𝐻𝐻𝐻𝑝𝑝ℎ 𝑆𝑆𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝 = 𝐺𝐺𝑝𝑝𝐺𝐺𝑝𝑝𝑝𝑝 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝 (𝑈𝑈𝑈𝑈𝑈𝑈 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑉𝑉𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝)
𝑇𝑇𝐺𝐺𝑇𝑇𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝑇𝑇𝐼𝐼𝐻𝐻𝑝𝑝𝑇𝑇 (𝑁𝑁𝑇𝑇𝑇𝑇 𝐺𝐺𝑝𝑝 𝑅𝑅𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑉𝑉𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝)

   Equation 

(8) 

For health and economic scores, the harvested hectares and gross value of application site 

types were compiled from the United States Department of Agriculture National Agricultural 

Statistics Service (https://www.nass.usda.gov/). We considered the median economic value 

and harvested hectares for a crop in California from 2014-2018 to minimize single-year 

anomalies.  

In addition to numeric scores, users are also provided with categorical scores based upon 

percentiles for the study area to facilitate interpretation. Scores are divided into 20th 

percentiles and range from ‘Very Low’ (0-20th percentile) to ‘Very High’ (80-100th 

percentile).  

2.2.5 Toxicity Reduction Targets 

To demonstrate the effectiveness of the ERT in providing pesticide toxicity reduction 

targets, we conducted a comprehensive analysis of pesticide use across the 140 HUC8 

watersheds in California (mean area ~3,600 km2); see Figure 1(a). Moreover, we leverage 

the tools’ ability to perform higher resolution analyses to investigate the applied toxicity to 

the 208 HUC12 subwatersheds (mean area ~100 km2) of the San Francisco Bay Delta 

Watershed (BDW) with agricultural pesticide applications; see Figure 1(b). The BDW is an 

area of ecological significance within California and is home to over 90 threatened or 

endangered species(70). To evaluate toxicity reduction targets for aquatic taxa in these study 

https://sciwheel.com/work/citation?ids=7638046&pre=&suf=&sa=0&dbf=0
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areas, we summarized the applied toxicity to fish, invertebrates, nonvascular aquatic plants, 

and vascular aquatic plants. To explore temporal trends in the net applied toxicity (10 years) 

of the study areas, we employed a two-sided Mann-Kendall test. 

The evaluations of toxicity reduction targets in the study areas employs pesticide use 

data recorded at the Section level, which is smaller than a watershed, and a Section may 

overlap multiple watersheds (see Section 2.1). To evaluate the accuracy of the method used 

to assign pesticide use report data to watersheds with Section level data, predicted 

applications were compared to field-level pesticide use data in Kern County, one of the few 

counties with field-level data.  The accuracy of pesticide use assignment to application sites 

within watersheds was evaluated relative to field-level predictions using the median absolute 

percent error (MdAPE). While the root mean square error or mean absolute percentage error 

are more sensitive metrics, they are both sensitive to outliers, whereas the MdAPE has been 

demonstrated to be more robust.(71) Since watersheds can vary in pesticide loads by many 

orders of magnitude, the MdAPE was employed.  

2.3.0 Results 

The ERT results presented in this study cover 140 major watersheds of California 

(HUC8, mean area ~3,600 km2) and 208 HUC12 watersheds (mean area ~100 km2) that 

receive agricultural pesticide applications in an ecologically important region of California, 

the BDW. Sections 3.1 and 3.3 present the results of the simulation which summarize the net 

applied toxicity to fish, aquatic invertebrates, nonvascular plants, and vascular plants. This 

approach illustrates applied toxicity for any investigated taxa, with 18% of the most sensitive 

endpoints for investigated pesticides from fish, 38% from aquatic invertebrates, 27% from 

https://sciwheel.com/work/citation?ids=5250261&pre=&suf=&sa=0&dbf=0
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nonvascular aquatic plants, and 17% from vascular aquatic plants. In section 3.3 Cumulative 

Toxicity, we explore the cumulative applied toxicity observed for specific taxonomic groups.  

2.3.1 Scale 

The evaluation of applied toxicity at the statewide management scale in California 

illustrated that toxicity reduction targets are concentrated in relatively few watersheds. The 

net applied toxicity (NTI) to all aquatic taxa investigated from all pesticides used over the 

simulation period showed 80% of toxicity was applied in only 11% of California's HUC8 

watersheds; see Figure 1(a). NTI varies by several orders of magnitude across California, 

from the lower end of the range (1-100,000) to the high end (>50,000,000). This reflects not 

only the difference in loading but also the wide range of toxicities for different pesticides. 

Watersheds in the 97th percentile, those with NTI values exceeding 50,000,000, received up 

to 8 orders of magnitude more applied toxicity compared to other watersheds across the state. 

These findings enable the identification of areas with high applied toxicity within data-

limited watersheds during the analysis period. The information can be utilized to determine 

specific locations where further investigation of pesticide impacts, such as monitoring or 

simulating fate and transport, should be focused. 

In the case of the BDW (agricultural watersheds exclusively considered), the study 

revealed that 20% of the watersheds accounted for 80% of the applied toxicity; see Figure 

1(b). For the California and BDW scales, results highlight the effectiveness of targeting a 

relatively small fraction of watersheds that receive the highest levels of applied toxicity as a 

strategy for reducing overall toxicity.  

  



 
 

57 
 

Figure 1 (a and b). The heat map and legend values represent applied toxicity as the Net 
Toxicity Index (NTI), the total applied toxicity of pesticide applications to all aquatic taxa 
investigated over the simulation period, fish, invertebrates, nonvascular aquatic plants, and 
vascular aquatic plants. Results are displayed for each study extent, a) California's HUC8 
watersheds and b) the HUC12 subwatersheds in the Bay-Delta Watershed. The NTI ranges 
identify the magnitude of toxicity released during pesticide applications, with values in the 
upper range, greater than 50,000,000, illustrating areas of applied toxicity that are up to 8 
orders of magnitude greater than other watersheds. Base map 
source:http://goto.arcgisonline.com/maps/Reference/World_Imagery. 

 

At scale, the ERT also facilitates the quick identification of changes over time for 

different resolutions (daily, monthly, and annual). We leveraged this feature to identify if 

watersheds were increasing in applied toxicity and may benefit from mitigation efforts. For 

temporal analyses, we extended the evaluation to the most recent 10 years of available 

pesticide use data. Our analysis covered 2009 to 2018, during which the total NTI of 

pesticides used in California’s watersheds increased by 150% in the last five years (2014-

2018) compared to the first five years. To assess the significance of the changes in individual 

http://goto.arcgisonline.com/maps/Reference/World_Imagery
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watersheds, we used a two-sided Mann-Kendall test (𝛼𝛼 = 0.05). Our analysis found that 

applied toxicity significantly increased in 63% of watersheds (p-value < 0.001, tau = 0.9). In 

subwatersheds of the BDW, a similar trend was observed, with 58% of subwatersheds 

showing a significant increase in applied toxicity (p-value < 0.001, tau = 0.9). Although the 

ERT does not simulate transport of pesticides to aquatic ecosystems, these results suggest 

that to preserve environmental health, efforts may be required to manage increases in applied 

toxicity. 

2.3.2 Sources 

The source of 99.9% of applied toxicity (NTI) was identified in the ERT analysis to 

be attributed to just 14 chemicals, as outlined in Table 1. Among these chemicals, 10 were 

classified as insecticides/miticides/acaricides, while the remaining 4 were categorized as 

herbicides. This represents a concise list of toxicity reduction targets, considering 290 AIs 

were evaluated.  

The analysis also revealed that the top two pesticides in terms of applied toxicity, 

cyhalothrin and bifenthrin, accounted for approximately 90% of the NTI, despite constituting 

only 1% of the applied mass. This indicates that these two AIs have a disproportionately 

significant contribution to the overall applied toxicity. Similarly, when focusing on 

subwatersheds of the BDW, bifenthrin and cyhalothrin were found to contribute 

approximately 90% of the applied toxicity. 
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Table 1. Summary of the Net Toxicity Index (NTI) from the release of evaluated pesticides 
which comprise 99.9% of California’s active ingredient (AI) applied toxicity for 2014-2018. 
The results summarize the applied toxicity across all pesticides and taxonomic groups 
investigated (fish, invertebrates, nonvascular plants, and vascular plants). 
 

Pesticide Type Class 

Mass 
Applie
d (kg) NTI 

NTI 
(% 
total) 

cyhalothrin 
insecticide/miticide/arcar
icide 

pyrethroid/pyret
hrin 153,540 

337,877,2
41 

59.27
% 

bifenthrin 
insecticide/miticide/arcar
icide 

pyrethroid/pyret
hrin 472,461 

168,788,0
61 

29.61
% 

cypermethr
in 

insecticide/miticide/arcar
icide 

pyrethroid/pyret
hrin 69,669 

21,874,83
1 3.84% 

esfenvalera
te 

insecticide/miticide/arcar
icide 

pyrethroid/pyret
hrin 78,766 

16,405,16
5 2.88% 

fenpropathr
in 

insecticide/miticide/arcar
icide 

pyrethroid/pyret
hrin 116,580 6,719,464 1.18% 

permethrin 
insecticide/miticide/arcar
icide 

pyrethroid/pyret
hrin 229,446 6,164,708 1.08% 

chlorpyrifo
s 

insecticide/miticide/arcar
icide organophosphate 

2,129,7
45 3,948,126 0.69% 

diflubenzur
on 

insecticide/miticide/arcar
icide urea 56,871 3,565,646 0.63% 

malathion 
insecticide/miticide/arcar
icide organophosphate 794,035 1,456,397 0.26% 

oxyfluorfen herbicide NA 
1,752,5

47 998,332 0.18% 
paraquat 
dichloride herbicide NA 

2,665,7
16 594,586 0.10% 

cyhalothrin 
insecticide/miticide/arcar
icide 

pyrethroid/pyret
hrin 35,934 350,429 0.06% 

indaziflam herbicide NA 54,634 252,411 0.04% 
diuron herbicide urea 326,286 229,973 0.04% 

 

Available surface water and sediment monitoring data during the analysis period 

indicate that pesticide loads identified as having high applied toxicity have been observed at 

lethal concentrations to the aquatic taxa investigated. For instance, in monitoring data for 

agricultural ditches in California for 2014-2018, all pesticides contributing to 99.9% of 

applied toxicity (Table 1), except for indaziflam, were observed at lethal concentrations or at 
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concentrations where plant growth is inhibited (above Aquatic Life Benchmarks)(CDPR, 

n.d.). Furthermore, concerning the pesticides with the highest NTIs, namely cyhalothrin and 

bifenthrin, it was found that all 121 samples in which they were detected exceeded the 

Aquatic Life Benchmarks. It is important to note that even samples where no pesticides were 

detected may still contain concentrations of concern. This is due to the fact that in 99% of the 

sample analyses (n=533), the concentrations could not be detected at levels as low as the 

Aquatic Life Benchmark (limit of quantification too high). 

Notably, cyhalothrin and bifenthrin have a high affinity to sediment and applied 

toxicity to benthic invertebrates. However, our study did not include an assessment of their 

effects on benthic invertebrates, as the Environmental Risk Targeting (ERT) analysis was 

specifically designed to analyze taxa residing in the same environmental compartment (see 

Section 2.2). Nevertheless, to understand if pesticides with high applied toxicity are reaching 

sediment compartments, we explored the frequency of their detection of bifenthrin and 

cyhalothrin and if they were observed at hazardous concentrations. For effect endpoints, we 

considered acute mortality values published for benthic invertebrates in the PPDB(56) 

(unavailable through the USEPA benchmark database).  

Similar to surface water, all detections (n=161) in sediment samples (n=268) 

exceeded life benchmarks, indicating potentially hazardous levels of bifenthrin and 

cyhalothrin. Furthermore,100% of sample analyses could not detect concentrations as low as 

life benchmarks. For these pesticides, an ecotoxicological study in a waterbody in California, 

https://sciwheel.com/work/citation?ids=5917996&pre=&suf=&sa=0&dbf=0
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with little development besides agriculture, has also observed lethal concentrations in 

sediment(72).  

Notably, bifenthrin and cyhalothrin are among the most challenging pesticides to 

measure at levels of concern to aquatic taxa. Their benchmarks are in the parts per trillion 

range, and they have the lowest limit of quantification of pesticides studied except for 

deltamethrin. Earlier work by Parker et al. (2021) also expressed concern that the limits of 

quantification used in sample analyses are generally too high for a number of pesticides with 

high toxicity(74), further emphasizing the need to improve our knowledge in this area 

Regarding California’s diverse pesticide application sites as sources of environmental 

toxicity for the most recent 5-year data, the ERT identified 90% of toxicity (NTI) was 

concentrated in only 16 of the 116 site classes investigated. Out of the total released toxicity, 

25% was applied to almonds, the most widely cultivated crop analyzed, and 19% was applied 

to pistachios. The other seven crops with the highest applied toxicity contributed 1%-11%.  

Furthermore, in most watersheds, a few site types contributed most of the NTI, although the 

sites with the highest applied toxicity varied from one watershed to another. For example, in 

the Salton Sea watershed, which is one of the most heavily impacted in the state, 80% of the 

toxicity was caused by 4 of 72 application site types: alfalfa, sweet corn, lettuce, and 

broccoli. 

When examining the sources of applied toxicity in California’s watersheds with 

increasing NTIs across the state, the analysis revealed that the largest increase in applied 

toxicity was primarily attributed to two pesticides: cyhalothrin (63%) and bifenthrin (27%). 

In terms of application site types in these watersheds, the highest NTI was applied to 

almonds (36%) and pistachios (30%). In the BDW, the rise in applied toxicity was also 

https://sciwheel.com/work/citation?ids=7616383&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11345820&pre=&suf=&sa=0&dbf=0
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primarily contributed by cyhalothrin (75%) and bifenthrin (23%) and nut orchards, with the 

site types with the greatest applied toxicity being almonds (75%) and walnuts (19%). It is 

noteworthy that these nut orchards are among the most widely cultivated crops, with almond, 

pistachio, and walnut orchards spanning ~800,000 ha. 

2.3.3 Cumulative applied toxicity 

The ERT is unique in its ability to assess the applied toxicity of all pesticides used in 

specific application sites over time. Typically, when evaluating the acute toxicity of pesticide 

mixtures, researchers often rely on a single pesticide to approximate within a given time 

frame, given differences in timing within a given season, application amount per event, and 

frequency of use of a given pesticide within a mixture (31). It is also inadequate for large 

areas with diverse pesticide usage patterns, where the most toxic chemical applied can vary. 

The cumulative applied toxicity provides a more complete representation of the potential 

impact. To determine whether the tool's ability to rapidly quantify cumulative applied 

toxicity enhances our understanding of environmental toxicity, we compared the cumulative 

applied toxicity to that of the single pesticide with the highest applied toxicity using one-

way, paired student’s t-test, with a significance level of 0.05. This analysis was conducted for 

all watersheds and sites within watersheds, considering monthly and annual intervals for each 

of the four aquatic taxonomic groups under investigation. To provide a more robust 

evaluation of cumulative toxicity, the analysis of significance was performed at the 

watershed level rather than the overall study extent. This approach was chosen for two main 

reasons. Firstly, it allowed for a larger sample size (n=226), enabling a more comprehensive 

assessment of cumulative applied toxicity. Secondly, within a watershed, the landscape 

where pesticide applications occur is hydrologically connected with its waterbodies. 

https://sciwheel.com/work/citation?ids=10995996&pre=&suf=&sa=0&dbf=0
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Results of the analysis evaluating the significance of accounting for cumulative 

applied toxicity demonstrated cumulative applied toxicity to be significantly greater (p < 

1.0E-16) than the maximum applied toxicity of individual pesticides (Figure 2). These 

results are also valid when evaluating each taxonomic group at monthly and annual time 

steps (Table 2), as well as for site types in each watershed. Across taxa, extents, and time 

steps, the mean cumulative NTI predictions were 118-634% greater than the mean NTI of 

individual pesticides. The significance observed in accounting for cumulative applied 

toxicity aligns with previous chronic and sub-lethal mixture studies (75,76). However, our 

findings differ from previous studies that have focused on acute, single-sample mixture 

toxicity. These acute studies often suggest that toxicity can be represented by the pesticide 

that contributes the most toxicity (38,68). This discrepancy is likely observed because acute 

mixture analyses of individual samples do not account for seasonal and interannual 

variability (31,77–79), while our results capture greater temporal variability in pesticide use 

and presence. 

  

https://sciwheel.com/work/citation?ids=10989288,6425840&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4814328,3709043&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8277685,6427158,1413875,10995996&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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Figure 2. Cumulative applied toxicity (red) for the simulation period versus the maximum 
individual pesticide NTI (blue) for fish in the ten watersheds with the highest applied toxicity 
in California, 2014-2018. Cumulative applied toxicity to fish was significantly greater than 
the maximum individual pesticide toxicity for watersheds in the study extent (a = 0.05, p < 
1.0E-16). 
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Table 2. Results are presented for the one-way, paired t-test (∝ = 0.05), the percent 
difference of means, and the median absolute percent error (MDAPE) for the maximum 
applied toxicity (NTI) of individual pesticides relative to the cumulative applied toxicity 
across California’s HUC8 watersheds for the analysis period. Analyses were performed for 
four aquatic taxonomic groups by watershed and by site, at monthly and annual time steps. 
Cumulative applied toxicity was significantly greater than maximum for all taxa, sites, 
watersheds, and time-steps (a = 0.05, p < 1.0E-16). 
 

Taxonomic Group Summary Interval 
p-
value 

Mean of 
Differenc
es (%) 

MDAP
E (%) 

Invertebrates Monthly Watershed < 1.0E-16 180 31 
Fish Monthly Watershed < 1.0E-16 218 42 
Nonvascular Plants Monthly Watershed < 1.0E-16 217 44 
Vascular Plants Monthly Watershed < 1.0E-16 201 40 
Invertebrates Annual Watershed < 1.0E-16 460 68 
Fish Annual Watershed < 1.0E-16 605 76 
Nonvascular Plants Annual Watershed < 1.0E-16 634 76 
Vascular Plants Annual Watershed < 1.0E-16 496 70 
Invertebrates Monthly Site Type < 1.0E-16 118 1.4 
Fish Monthly Site Type < 1.0E-16 126 3.3 
Nonvascular Plants Monthly Site Type < 1.0E-16 125 5.9 
Vascular Plants Monthly Site Type < 1.0E-16 125 4.1 
Invertebrates Annual Site Type < 1.0E-16 208 35 
Fish Annual Site Type < 1.0E-16 240 42 
Nonvascular Plants Annual Site Type < 1.0E-16 248 44 
Vascular Plants Annual Site Type < 1.0E-16 240 43 

 

In addition to improving our understanding of net environmental toxicity, quantifying 

cumulative toxicity reveals notable spatiotemporal patterns for targeting toxicity reduction. 

Here we provide examples of the cumulative toxicity to aquatic invertebrates seasonally and 

interannually.  

Examining monthly cumulative applied toxicity trends to invertebrates revealed that 

relying solely on single chemical analyses would not capture the chemical with the highest 

toxicity for a month or season. For example, in the first year of the simulation across all 



 
 

66 
 

watersheds in California, esfenvalerate had the highest individual monthly applied toxicity at 

the beginning of the year, followed by bifenthrin in the middle of the year, and cyhalothrin 

towards the end of the year (Figure 3). Different trends were observed for specific 

application sites and watersheds. In the case of the widely cultivated crop table grapes, the 

primary contributors to monthly cumulative applied toxicity during fall and winter were 

chlorpyrifos and oxyfluorfen, while most of the cumulative toxicity in summer resulted from 

fenpropathrin applications (Figure 3).  

Figure 3 (a-d). Temporal trends. Temporal trends of monthly cumulative applied toxicity to 
aquatic invertebrates, the Net Toxicity Index (NTI), for pesticides which introduce 99.9% of 
released toxicity for California’s HUC8 watersheds (a), as well as select, high-impact crops 
which include artichokes (b), spinach (c), and table grapes (d). Annual trend lines (black) 
illustrate average year-to-year increases in cumulative toxicity to aquatic invertebrates (NTI). 

 

The cumulative toxicity contributed by all pesticides to a taxon also varied in 

intensity over the year. Grapes had the greatest monthly cumulative applied toxicity in the 

spring and other crops, like artichokes, in the late summer/fall (Figure 3). Since California’s 
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wet season begins in late fall/winter, later pesticide applications may introduce higher 

pesticide concentrations in runoff than those performed earlier in the year.  

Interannually for invertebrates, cumulative toxicity was observed to increase in 

California’s watersheds. Year-to-year, a significant increase was revealed by a Mann-Kendall 

test (∝= 0.95, p<0.001), with an average increase over the study extent of 7.6%. While some 

sites, such as spinach, exhibited similar trends with a 6.9% increase, there were significant 

differences observed, highlighting the need for targeted risk reduction. Artichokes showed a 

mean year-to-year NTI decrease of -6.9%, making them a less effective target compared to 

table grapes, which had a higher NTI and an average yearly increase in toxicity of 2.8% 

(Figure 3). 

2.3.4 Economic and health scores 

To evaluate the trade-offs between the health and economic impacts of reducing the 

toxicity of application sites, we calculated health and economic scores. A higher score 

indicates a more favorable outcome. The Health Score (ha/NTI) considers the cultivated 

hectares and the applied toxicity of site types. Of application sites contributing 90% of the 

applied toxicity, crops with the lowest Health Score (greatest applied toxicity per hectare) 

include strawberries, sweet corn, and pistachios (Table 3). Among these three crops, the 

Economic Score, as well as the Economic and Health Score, were least favorable for sweet 

corn and most advantageous for strawberries. Our findings suggest sweet corn may have the 

lowest health and economic benefit with contemporary pesticide use practices of the study 

area and should be targeted in mitigation efforts. 
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Table 3. Environmental Release Tool outputs for pesticide application site types which 
introduce 90% of the applied toxicity in California where: NTI the Net Toxicity Index;  NTI 
(%) the percent of the total NTI of the application site type; Economic, Economic Health, 
and Health Scores reflect the numeric score of different site types; and the Economic, 
Economic Health, and Health Values the quantiles of scores where 0-20th quantile is ‘Very 
Low’ and 80-100th ‘Very High’. 
 

Site Type NTI 

NTI 
(% 
Total) 

Economic 
Score 
(USD/ha) 

Economic 
Health 
Score 
(USD/NTI) 

Health 
Score 
(NTI/ha) 

Relative 
Economic 
Score 

Relative 
Economic 
Health Score 

Relative 
Health 
Score 

Almond 1.41E+08 24.7 1.32E+04 2.78E+02 2.11E-02 3-Medium 2-Low 2-Low 
Pistachio 1.07E+08 18.8 1.32E+04 1.86E+02 1.42E-02 3-Medium 2-Low 1-Very Low 
Alfalfa 6.08E+07 10.7 1.58E+03 1.64E+02 1.04E-01 1-Very Low 1-Very Low 4-High 
Lettuce 4.59E+07 8.0 1.75E+03 2.67E+02 1.53E-01 2-Low 2-Low 4-High 
Walnut 2.96E+07 5.2 9.95E+03 2.54E+02 2.55E-02 3-Medium 2-Low 2-Low 
Rice 2.84E+07 5.0 1.21E+03 1.91E+03 1.58E+00 1-Very Low 4-High 5-Very High 
Cotton 2.09E+07 3.7 1.24E+02 6.74E+00 5.45E-02 1-Very Low 1-Very Low 3-Medium 
Tomato 
(Processing) 2.03E+07 3.6 8.57E+03 4.00E+02 4.67E-02 2-Low 2-Low 3-Medium 
Corn 
(Sweet) 1.53E+07 2.7 5.74E+03 5.27E+01 9.17E-03 2-Low 1-Very Low 1-Very Low 
Broccoli 8.71E+06 1.5 8.98E+03 2.70E+02 3.01E-02 3-Medium 2-Low 2-Low 
Cherry 7.66E+06 1.3 5.84E+03 8.68E+02 1.48E-01 2-Low 4-High 4-High 
Peach 6.36E+06 1.1 8.61E+03 3.25E+02 3.77E-02 2-Low 2-Low 3-Medium 
Strawberry 5.93E+06 1.0 1.25E+05 8.57E+02 6.88E-03 5-Very High 4-High 1-Very Low 
Orange 5.67E+06 1.0 4.51E+02 1.29E+01 2.86E-02 1-Very Low 1-Very Low 2-Low 
Onion Misc. 4.09E+06 0.7 1.83E+04 3.05E+02 1.67E-02 3-Medium 2-Low 2-Low 
Bean (Dry) 3.75E+06 0.7 1.42E+03 1.77E+02 1.25E-01 1-Very Low 1-Very Low 4-High 

 

2.3.5 Toxicity Reduction Targets 

To prioritize targets for reducing pesticide toxicity, we used the ERT to identify a 

shortlist of pesticides, application site types, and watersheds responsible for 80% or more of 

the applied toxicity. If efforts targeted just one pesticide, or one pesticide and application site 

type, it would act on 50% or more of the applied toxicity for 89% of watersheds in 

California. However, the specific pesticide or pesticide and site type with the most applied 

toxicity varied by watershed.  

The accuracy of the ERT for predicting applied toxicity with available information 

depends on the reliability of pesticide use assignment to watersheds (see Section 2.2). To 

evaluate the accuracy of applied mass of pesticides to watersheds with the CDPR database 
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(resolution of 2.6 km2), ERT predictions using these data were compared to predictions that 

employed pesticide use data available at the field level in Kern County. The evaluation 

showed the ERT provides a reasonable estimate of the spatiotemporal distribution of 

pesticides, with an observed MdAPE of 1.7% for AIs applied in watersheds. Furthermore, all 

predictions of the applied mass of pesticides to watersheds were within 5% of the field-level 

data. An improved MdAPE of 0.01% was observed for application site predictions per 

watershed.  

2.4.0 Discussion  

We introduce the Environmental Release Tool to enable users to target toxicity 

reduction strategies. It caters to experts and nonexperts and provides insights into reduction 

strategies at various scales and temporal resolutions, identifies sources of toxicity, quantifies 

variation in cumulative toxicity, and provides economic and health scores for application site 

types. The tool provides a statewide, clickable heatmap interface with graphical and tabular 

summaries highlighting high-impact AIs and including application site health and economic 

impact scores to achieve these aims.  

In our study of toxicity reduction opportunities in California, nut orchards had the 

highest applied toxicity when considering the net toxicity for all taxonomic groups evaluated 

which includes fish, aquatic invertebrates, nonvascular plants, and vascular plants. Most 

applied toxicity resulted from pyrethroids, particularly cyhalothrin and bifenthrin. In most of 

California’s watersheds, over half of applied toxicity within a watershed could be targeted by 

considering the pesticide with the greatest NTI for the watershed, and for the site type with 

the highest NTI, the pesticide of greatest applied toxicity for the simulation period. However, 
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our analysis of the cumulative applied toxicity revealed that for each watershed and 

taxonomic group, cumulative toxicity was significantly greater than the maximum of any 

pesticide for monthly or annual time steps (at the annual time-step, typically over 460%). 

These results indicate that while targeting a short list of pesticides within a watershed can 

address most applied toxicity, an evaluation of cumulative pesticide impacts is required to 

understand environmental toxicity, and are congruent with other investigations(31,80). 

Notably, the pesticides observed to have the highest impact also commonly share the same 

mode of action.  For pesticides responsible for 99.9% of the applied toxicity (net of all 

investigated taxa), 7 of 13 affect neurotransmission via sodium ion-gated channels of 

neurons(81). Though conservative assumptions are often employed when individual pesticide 

indices are used as an index of toxicity, these results and previous work(38,82) demonstrate 

the need to consider cumulative impacts, despite challenges in modeling and regulating 

mixture toxicity in the environment(41). 

For toxicity reduction efforts, the ERT can prove an important complement to 

monitoring campaigns. The tool can identify which watersheds and application site types 

require further investigation for pesticides difficult to detect at hazardous levels, such as 

pyrethroids and neonicotinoids, for which effects are observed in the parts per trillion 

range(64). This need was observed for the two pesticides with the highest applied toxicity, 

cyhalothrin and bifenthrin (pyrethroids). Monitoring data for the pesticides reported in the 

CDPR Surface Water Database(73), which includes data from the CDPR, United States 

Geological Survey, the California State Water Resources Control Board, and other 

municipalities and researchers, could not detect the concentrations of AIs as low as their 

Aquatic Life Benchmark in 99% of samples. Further investigations of pesticide impacts may 

https://sciwheel.com/work/citation?ids=14610762,10995996&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5836202&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4814328,2253812&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7789993&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4907385&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5918007&pre=&suf=&sa=0&dbf=0


 
 

71 
 

include monitoring with improved limits of quantification or employing fate and transport 

models to generate predicted environmental concentrations for risk assessment. Agencies 

such as the CDPR already employ models to prioritize future monitoring efforts(83), and 

tools such as the ERT can assist others in planning monitoring campaigns. However, it is 

essential to note that pesticides with high applied toxicity may have a low potential for 

transport to surface water, and vice versa, owing to their unique physicochemical 

properties(84). Therefore, users should compare the applied toxicity for the same pesticide 

across site types and watersheds when prioritizing further investigations to avoid this 

variation affecting prioritization efforts.  

The evaluation of opportunities for best management practices for toxicity mitigation 

is also supported by the ERT. In California, bifenthrin use on strawberries and oranges, two 

of the highest impact application site types, introduced the greatest applied toxicity. Based on 

this information, near-field evaluations of bifenthrin in runoff and eroded sediment from the 

crop fields could be prioritized to quantify aquatic taxa risk. If risks are identified, mitigation 

options can be explored based on crop value. For strawberries whose Economic Score is 

‘Very High’, financial resources may exist to implement mitigation infrastructure such as 

detention ponds or to upgrade irrigation technologies. For crops with a ‘Very Low’ 

Economic Score, such as oranges, chemical alternatives, integrated pesticide mitigation 

practices, or incentives for cultivating lower-impact crops may be preferred for at-risk areas. 

While the ERT does not consider important factors such as the cost of cultivation, it can still 

serve to prioritize application sites for further investigation based on available crop value 

data. 

https://sciwheel.com/work/citation?ids=7745014&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1036849&pre=&suf=&sa=0&dbf=0
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Another mitigation option, which may lead to unintended consequences, is the 

discouragement or ban of pesticides for the benefit of a single species. For instance, 

consumers or agencies may consider discontinuing the use of glyphosate (banned in 20 

countries(85)) to reduce applied toxicity to humans. However, information about the human 

health impacts of glyphosate remains uncertain(86), and replacement AIs could increase 

toxicity for other taxa(87). In this study for four aquatic taxonomic groups, AI forms of 

glyphosate ranked 69th or greater of the pesticides investigated for applied toxicity, although 

it had the highest applied mass. Glufosinate-ammonium, a common alternative, has very 

similar application rates per treatment area but introduced an order of magnitude greater 

applied ecotoxicity to evaluated taxa, despite its applied mass being 10-fold lower. 

Moreover, it is more mobile and similarly persistent to glyphosate. Due to glyphosate's lower 

aquatic toxicity and mobility in the aqueous phase, using glufosinate-ammonium as an 

alternative could shift greater toxicity to aquatic taxa. The shift from human to aquatic 

toxicity may already occur due to California's recent ban on chlorpyrifos(74). Hence, when 

implementing pesticide bans or restrictions, the ERT can help prioritize further investigation 

to reduce applied toxicity to diverse taxa. 

An important limitation of the ERT is that it does not predict pesticide risk, it 

provides valuable insights for toxicity reduction opportunities. Risk prediction depends on 

receptor exposure(88) and factors governing the fate of pesticides(89). Though simulating 

and monitoring the fate of pesticides and organism exposure is imperative to risk assessment, 

given data paucity for many pesticides and watersheds for model parameterization and 

calibration(55), we determined an applied toxicity tool to be important to informing 

mitigation efforts. Key factors that affect exposure, such as the pesticide application method 

https://sciwheel.com/work/citation?ids=11383500&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3888131&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4229637&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11345820&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8201504&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8209313&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1606304&pre=&suf=&sa=0&dbf=0
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to drift, the irrigation method and schedule, and the location of tiling or detention ponds, are 

unknown for most application areas. Other toxicity index tools, such as the PURE14, also do 

not simulate the processes of pesticide fate and exposure, rather, they weight toxicity indices 

by pesticide susceptibility to transformation and transport(14). This feature is not integrated 

into the ERT given the uncertainty of these approaches is unknowable for the heterogeneous 

conditions that exist(14) and the physicochemical properties of pesticides which render 

different effects on their fate under typical environmental conditions. Aerobic degradation 

alone is highly variable; an investigation of 10 pesticides in 8 soil types under identical 

conditions demonstrated a mean difference of 540% in the minimum and maximum half-

lives of the investigated pesticides.(90) Furthermore, while the transport of pesticides to 

surface water bodies is sensitive to their physicochemical properties(52), property correlation 

to surface water detection frequencies has been demonstrated to more robust for pesticide 

sales. Halbach et al. (2021) performed a 2-year monitoring campaign of 76 pesticides in over 

100 streams, and evaluated the explanatory power of pesticide sales data, the half-life of 

pesticides in water and soil, and solubility. The most robust relationship was for pesticide 

sales, and significance for the other factors was only observed for the half-life in water(53). 

2.5.0 Conclusion 

Our study developed the Environmental Release Tool (ERT) to provide an integrated 

framework for targeting pesticide toxicity reductions. We applied the tool to high-resolution 

pesticide use data to quantify toxicity released to aquatic taxa in California, representing 

~20% of the pesticide mass in the United States and covering hundreds of 

commodities(46,47). The ERT demonstrated that mitigation actions on just two pesticides 
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and sixteen site types would affect ~90% of applied toxicity to fish, aquatic invertebrates, 

nonvascular plants, and vascular plants in California’s agricultural landscapes. In addition, 

for each watershed, if the mitigation focus was solely on the pesticide of highest impact, and 

the primary source of toxicity to the greatest impact application site type, it would affect over 

50% of agricultural applied toxicity in most of California’s watersheds. These findings were 

consistent across large and small watersheds, though the high-impact sources varied. Our 

results indicate that the ERT can be a valuable tool for identifying pesticide environmental 

toxicity and should be considered in future agricultural management strategies. 

2.6 References   

1.    Sharma A, Shukla A, Attri K, Kumar M, Kumar P, Suttee A, Singh G, Barnwal RP, 
Singla N. Global trends in pesticides: A looming threat and viable alternatives. 
Ecotoxicol Environ Saf. 2020 Sep 15;201:110812. 

2.    Malaj E, von der Ohe PC, Grote M, Kühne R, Mondy CP, Usseglio-Polatera P, Brack 
W, Schäfer RB. Organic chemicals jeopardize the health of freshwater ecosystems on 
the continental scale. Proc Natl Acad Sci USA. 2014 Jul 1;111(26):9549–54. 

3.    Bradley PM, Journey CA, Romanok KM, Barber LB, Buxton HT, Foreman WT, 
Furlong ET, Glassmeyer ST, Hladik ML, Iwanowicz LR, Jones DK, Kolpin DW, 
Kuivila KM, Loftin KA, Mills MA, Meyer MT, Orlando JL, Reilly TJ, Smalling KL, 
Villeneuve DL. Expanded Target-Chemical Analysis Reveals Extensive Mixed-
Organic-Contaminant Exposure in U.S. Streams. Environ Sci Technol. 2017 May 
2;51(9):4792–802. 

4.    Stehle S, Schulz R. Agricultural insecticides threaten surface waters at the global 
scale. Proc Natl Acad Sci USA. 2015 May 5;112(18):5750–5. 

5.    Goulson D, Nicholls E, Botías C, Rotheray EL. Bee declines driven by combined 
stress from parasites, pesticides, and lack of flowers. Science. 2015 Mar 
27;347(6229):1255957. 

6.    Kudsk P, Jørgensen LN, Ørum JE. Pesticide Load–A new Danish pesticide risk 
indicator with multiple applications. Land use policy. 2018 Jan;70:384–93. 

7.    State of California. California State Budget 2021-2022. State of California; 2021. 
8.    European Commission. Farm to Fork Strategy. COM/2019/640 2020. 
9.    Young DF, Fry MM. PRZM5 A Model for Predicting Pesticides in Runoff, Erosion, 

and Leachate–Revision B . USEPA; 2020 Aug. 
10.   Alterra - Environmental risk assessment, WOT Natuur & Milieu, ter Horst MMS, 

Beltman WHJ, van den Berg F. The TOXSWA model version 3.3 for pesticide 
behaviour in small surface waters : description of processes. Wageningen: Statutory 
Research Tasks Unit for Nature & the Environment; 2016. 

https://sciwheel.com/work/bibliography/10724620
https://sciwheel.com/work/bibliography/10724620
https://sciwheel.com/work/bibliography/10724620
https://sciwheel.com/work/bibliography/4151
https://sciwheel.com/work/bibliography/4151
https://sciwheel.com/work/bibliography/4151
https://sciwheel.com/work/bibliography/10317780
https://sciwheel.com/work/bibliography/10317780
https://sciwheel.com/work/bibliography/10317780
https://sciwheel.com/work/bibliography/10317780
https://sciwheel.com/work/bibliography/10317780
https://sciwheel.com/work/bibliography/10317780
https://sciwheel.com/work/bibliography/1032218
https://sciwheel.com/work/bibliography/1032218
https://sciwheel.com/work/bibliography/963769
https://sciwheel.com/work/bibliography/963769
https://sciwheel.com/work/bibliography/963769
https://sciwheel.com/work/bibliography/11391815
https://sciwheel.com/work/bibliography/11391815
https://sciwheel.com/work/bibliography/11587763
https://sciwheel.com/work/bibliography/12268509
https://sciwheel.com/work/bibliography/9842609
https://sciwheel.com/work/bibliography/9842609
https://sciwheel.com/work/bibliography/12651449
https://sciwheel.com/work/bibliography/12651449
https://sciwheel.com/work/bibliography/12651449
https://sciwheel.com/work/bibliography/12651449


 
 

75 
 

11.   Pistocchi A, Groenwold J, Lahr J, Loos M, Mujica M, Ragas AMJ, Rallo R, Sala S, 
Schlink U, Strebel K, Vighi M, Vizcaino P. Mapping Cumulative Environmental 
Risks: Examples from the EU NoMiracle Project. Environ Model Assess. 2011 
Apr;16(2):119–33. 

12.   Schriever CA, Liess M. Mapping ecological risk of agricultural pesticide runoff. Sci 
Total Environ. 2007 Oct 1;384(1–3):264–79. 

13.   Strassemeyer J, Daehmlow D, Dominic AR, Lorenz S, Golla B. SYNOPS-WEB, an 
online tool for environmental risk assessment to evaluate pesticide strategies on field 
level. Crop Prot. 2017 Jul;97:28–44. 

14.   Zhan Y, Zhang M. PURE: a web-based decision support system to evaluate pesticide 
environmental risk for sustainable pest management practices in California. Ecotoxicol 
Environ Saf. 2012 Aug;82:104–13. 

15.   Ropke B, Bach M, Frede H. DRIPS—a DSS for estimating the input quantity of 
pesticides for German river basins. Environmental Modelling & Software. 2004 
Nov;19(11):1021–8. 

16.   AGIS Lab, University of California, Davis. PUR Web GIS (Internet). (cited 2021 
May 3). Available from: http://purwebgis.ucdavis.edu/PURwebGIS.html 

17.   Maggi F, Tang FHM, la Cecilia D, McBratney A. PEST-CHEMGRIDS, global 
gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. 
Sci Data. 2019 Sep 12;6(1):170. 

18.   U.S. Congress. The Code of Laws of the United States of America. Title 7 2012. 
19.   European Commission. DIRECTIVE 2009/128/EC. 2009. 
20.   Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST. Large area hydrologic 

modeling and assessment part ii: model application. J Am Water Resources Assoc. 
1998 Feb;34(1):91–101. 

21.   Arnold JG, Srinivasan R, Muttiah RS, Williams JR. Large area hydrologic modeling 
and assessment part i: model development. J Am Water Resources Assoc. 1998 
Feb;34(1):73–89. 

22.   Wang R, Yuan Y, Yen H, Grieneisen M, Arnold J, Wang D, Wang C, Zhang M. A 
review of pesticide fate and transport simulation at watershed level using SWAT: 
Current status and research concerns. Sci Total Environ. 2019 Jun 15;669:512–26. 

23.   USEPA. Hydrological Simulation Program - FORTRAN (HSPF)  (Internet). (cited 
2020 Feb 10). Available from: https://www.epa.gov/ceam/hydrological-simulation-
program-fortran-hspf 

24.   Xie H, Lian Y. Uncertainty-based evaluation and comparison of SWAT and HSPF 
applications to the Illinois River Basin. J Hydrol (Amst). 2013 Feb;481:119–31. 

25.   A. Saleh and B. Du. Evaluation of SWAT and HSPF within BASINS program for the 
Upper North Bosque River Watershed in central Texas. Transactions of the ASAE. 
2004;47(4):1039–49. 

26.   Zheng Y, Keller AA. Understanding parameter sensitivity and its management 
implications in watershed-scale water quality modeling. Water Resour Res. 2006 
May;42(5). 

27.   Srivastava P, Migliaccio K, Simunek J. LANDSCAPE MODELS FOR 
SIMULATING WATER QUALITY AT POINT, FIELD, AND WATERSHED 
SCALES. ASABE. 2007;50(5):1683–93. 

https://sciwheel.com/work/bibliography/7304708
https://sciwheel.com/work/bibliography/7304708
https://sciwheel.com/work/bibliography/7304708
https://sciwheel.com/work/bibliography/7304708
https://sciwheel.com/work/bibliography/7304707
https://sciwheel.com/work/bibliography/7304707
https://sciwheel.com/work/bibliography/11527420
https://sciwheel.com/work/bibliography/11527420
https://sciwheel.com/work/bibliography/11527420
https://sciwheel.com/work/bibliography/6174063
https://sciwheel.com/work/bibliography/6174063
https://sciwheel.com/work/bibliography/6174063
https://sciwheel.com/work/bibliography/11698868
https://sciwheel.com/work/bibliography/11698868
https://sciwheel.com/work/bibliography/11698868
https://sciwheel.com/work/bibliography/10989002
https://sciwheel.com/work/bibliography/10989002
https://sciwheel.com/work/bibliography/10979125
https://sciwheel.com/work/bibliography/10979125
https://sciwheel.com/work/bibliography/10979125
https://sciwheel.com/work/bibliography/12207247
https://sciwheel.com/work/bibliography/12264553
https://sciwheel.com/work/bibliography/2424554
https://sciwheel.com/work/bibliography/2424554
https://sciwheel.com/work/bibliography/2424554
https://sciwheel.com/work/bibliography/2412598
https://sciwheel.com/work/bibliography/2412598
https://sciwheel.com/work/bibliography/2412598
https://sciwheel.com/work/bibliography/7032478
https://sciwheel.com/work/bibliography/7032478
https://sciwheel.com/work/bibliography/7032478
https://sciwheel.com/work/bibliography/8201899
https://sciwheel.com/work/bibliography/8201899
https://sciwheel.com/work/bibliography/8201899
https://sciwheel.com/work/bibliography/6427007
https://sciwheel.com/work/bibliography/6427007
https://sciwheel.com/work/bibliography/5021247
https://sciwheel.com/work/bibliography/5021247
https://sciwheel.com/work/bibliography/5021247
https://sciwheel.com/work/bibliography/6523559
https://sciwheel.com/work/bibliography/6523559
https://sciwheel.com/work/bibliography/6523559
https://sciwheel.com/work/bibliography/7392792
https://sciwheel.com/work/bibliography/7392792
https://sciwheel.com/work/bibliography/7392792


 
 

76 
 

28.   Leu C, Singer H, Stamm C, Müller SR, Schwarzenbach RP. Variability of herbicide 
losses from 13 fields to surface water within a small catchment after a controlled 
herbicide application. Environ Sci Technol. 2004 Jul 15;38(14):3835–41. 

29.   Luo Y, Zhang M. Spatially distributed pesticide exposure assessment in the Central 
Valley, California, USA. Environ Pollut. 2010 May;158(5):1629–37. 

30.   Boithias L, Sauvage S, Srinivasan R, Leccia O, Sánchez-Pérez J-M. Application date 
as a controlling factor of pesticide transfers to surface water during runoff events. 
CATENA. 2014 Aug;119:97–103. 

31.   Curchod L, Oltramare C, Junghans M, Stamm C, Dalvie MA, Röösli M, Fuhrimann 
S. Temporal variation of pesticide mixtures in rivers of three agricultural watersheds 
during a major drought in the Western Cape, South Africa. Water Research X. 2020 
Jan 1;6:100039. 

32.   Baker N, Stone W. Estimated Annual Agricultural Pesticide Use for Counties of the 
Contimerous United States, 2008-12. USGS; 2015. 

33.   California Department of Pesticide Regulation. A Guide to Pesticide Regulation in 
California. CDPR; 2017. 

34.   Stone WW, Gilliom RJ, Ryberg KR. Pesticides in U.S. streams and rivers: occurrence 
and trends during 1992-2011. Environ Sci Technol. 2014 Oct 7;48(19):11025–30. 

35.   Sanders C, Orlando J, Hladik M. Detections of Current-Use Pesticides at 12 Surface 
Water Sites in California During a 2-Year Period Beginning in 2015. USGS; 2018. 

36.   De Parsia M, Woodward EE, Orlando JL, Hladik ML. Pesticide Mixtures in the 
Sacramento–San Joaquin Delta, 2016–17: Results from Year 2 of the Delta Regional 
Monitoring Program. USGS; 2019 p. 33. Report No.: 1120. 

37.   Covert SA, Shoda ME, Stackpoole SM, Stone WW. Pesticide mixtures show 
potential toxicity to aquatic life in U.S. streams, water years 2013-2017. Sci Total 
Environ. 2020 Nov 25;745:141285. 

38.   Nowell LH, Moran PW, Schmidt TS, Norman JE, Nakagaki N, Shoda ME, Mahler 
BJ, Van Metre PC, Stone WW, Sandstrom MW, Hladik ML. Complex mixtures of 
dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern 
U.S. streams. Sci Total Environ. 2018 Feb 1;613–614:1469–88. 

39.   USEPA. Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and Federal 
Facilities  (Internet). (cited 2019 Mar 5). Available from: 
https://www.epa.gov/enforcement/federal-insecticide-fungicide-and-rodenticide-act-
fifra-and-federal-facilities 

40.   California Regional Water Quality Control Board. Amendment to the Water Quality 
Control Plan for the Sacramento River and San Joaquin River Basins for the Control 
of Pyrethroid Pesticide Discharges. R5-2017–0057 2017. 

41.   Lydy M, Belden J, Wheelock C, Hammock B, Denton D. Challenges in regulating 
pesticide mixtures. E&S. 2004;9(6). 

42.   Rodney SI, Teed RS, Moore DRJ. Estimating the toxicity of pesticide mixtures to 
aquatic organisms: A review. Human and Ecological Risk Assessment: An 
International Journal. 2013 Nov 2;19(6):1557–75. 

43.   Shoda ME, Stone WW, Nowell LH. Prediction of pesticide toxicity in midwest 
streams. J Environ Qual. 2016 Nov;45(6):1856–64. 

44.   Zilberman D, Schmitz A, Casterline G, Lichtenberg E, Siebert J. The Economics of 
Pesticide Use and Regulation. Science. 1991 Aug 2;253:518–22. 

https://sciwheel.com/work/bibliography/10365597
https://sciwheel.com/work/bibliography/10365597
https://sciwheel.com/work/bibliography/10365597
https://sciwheel.com/work/bibliography/11003763
https://sciwheel.com/work/bibliography/11003763
https://sciwheel.com/work/bibliography/7933220
https://sciwheel.com/work/bibliography/7933220
https://sciwheel.com/work/bibliography/7933220
https://sciwheel.com/work/bibliography/10995996
https://sciwheel.com/work/bibliography/10995996
https://sciwheel.com/work/bibliography/10995996
https://sciwheel.com/work/bibliography/10995996
https://sciwheel.com/work/bibliography/11919911
https://sciwheel.com/work/bibliography/11919911
https://sciwheel.com/work/bibliography/6346993
https://sciwheel.com/work/bibliography/6346993
https://sciwheel.com/work/bibliography/4776500
https://sciwheel.com/work/bibliography/4776500
https://sciwheel.com/work/bibliography/8472388
https://sciwheel.com/work/bibliography/8472388
https://sciwheel.com/work/bibliography/10317912
https://sciwheel.com/work/bibliography/10317912
https://sciwheel.com/work/bibliography/10317912
https://sciwheel.com/work/bibliography/14607414
https://sciwheel.com/work/bibliography/14607414
https://sciwheel.com/work/bibliography/14607414
https://sciwheel.com/work/bibliography/4814328
https://sciwheel.com/work/bibliography/4814328
https://sciwheel.com/work/bibliography/4814328
https://sciwheel.com/work/bibliography/4814328
https://sciwheel.com/work/bibliography/6587873
https://sciwheel.com/work/bibliography/6587873
https://sciwheel.com/work/bibliography/6587873
https://sciwheel.com/work/bibliography/6587873
https://sciwheel.com/work/bibliography/12199702
https://sciwheel.com/work/bibliography/12199702
https://sciwheel.com/work/bibliography/12199702
https://sciwheel.com/work/bibliography/7789993
https://sciwheel.com/work/bibliography/7789993
https://sciwheel.com/work/bibliography/11113467
https://sciwheel.com/work/bibliography/11113467
https://sciwheel.com/work/bibliography/11113467
https://sciwheel.com/work/bibliography/13015832
https://sciwheel.com/work/bibliography/13015832
https://sciwheel.com/work/bibliography/10979567
https://sciwheel.com/work/bibliography/10979567


 
 

77 
 

45.   Goodhue RE, Bolda M, Farnsworth D, Williams JC, Zalom FG. Spotted wing 
drosophila infestation of California strawberries and raspberries: economic analysis of 
potential revenue losses and control costs. Pest Manag Sci. 2011 Nov;67(11):1396–
402. 

46.   Atwood D, Paisley-Jones C. Pesticide Industry Sales and Usage – 2008-2012 Market 
Estimates. U.S. Environmental Protection Agency; 2017. 

47.   CDPR. Summary of Pesticide Use Report Data 2017 (Internet). 2019 (cited 2019 Oct 
17). Available from: https://www.cdpr.ca.gov/docs/pur/pur17rep/17sum.htm 

48.   RStudio Team. RStudio: Integrated Development for R. RStudio; 2020. 
49.   DiBartolomeis M, Kegley S, Mineau P, Radford R, Klein K. An assessment of acute 

insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in 
the United States. PLoS ONE. 2019 Aug 6;14(8):e0220029. 

50.   USGS, USDA. Federal Standards and Procedures for the      National Watershed 
Boundary Dataset (WBD). US Geological Survey Techniques and Methods 11-A3. 
2nd ed. 2011. 

51.   California Department of Pesticide Regulation. Summary of Pesticide Use Report 
Data 2018. California Department of Pesticide Regulation; 2020. 

52.   Xie Y, Luo Y, Singhasemanon N, Goh KS. Regulatory modeling of pesticide aquatic 
exposures in california’s agricultural receiving waters. J Environ Qual. 
2018;47(6):1453–61. 

53.   Halbach K, Möder M, Schrader S, Liebmann L, Schäfer RB, Schneeweiss A, 
Schreiner VC, Vormeier P, Weisner O, Liess M, Reemtsma T. Small streams-large 
concentrations? Pesticide monitoring in small agricultural streams in Germany during 
dry weather and rainfall. Water Res. 2021 Sep 15;203:117535. 

54.   United States Environmental Protection Agency Office of Pollution Prevention and 
Toxics. EPA’s Risk-Screening Environmental Indicators (RSEI) Methodology. 
Washington D.C.: United States Environmental Protection Agency; 2020 Dec. 

55.   Dubus IG, Brown CD, Beulke S. Sources of uncertainty in pesticide fate modelling. 
Sci Total Environ. 2003 Dec 30;317(1–3):53–72. 

56.   Agriculture and Environment Research Unit, University of Hertfordshire. PPDB - 
Pesticides Properties DataBase (Internet). (cited 2018 Oct 20). Available from: 
https://sitem.herts.ac.uk/aeru/ppdb/en/ 

57.   USDA. CropScape - NASS CDL Program (Internet). (cited 2018 Mar 19). Available 
from: https://nassgeodata.gmu.edu/CropScape/ 

58.   Multi-Resolution Land Characteristics (MRLC) Consortium. National Land Cover 
Database (NLCD) (Internet). (cited 2019 Jun 6). Available from: 
https://www.mrlc.gov/data?f%5B0%5D=category%3Aland%20cover&f%5B1%5D=c
ategory%3Aurban%20imperviousness&f%5B2%5D=region%3Aconus&f%5B3%5D=
category%3Aland%20cover&f%5B4%5D=category%3Aurban%20imperviousness&f
%5B5%5D=region%3Aconus 

59.   CADWR Land Use Viewer (Internet). (cited 2019 Jul 10). Available from: 
https://gis.water.ca.gov/app/CADWRLandUseViewer/ 

60.   USDA. 2017 Census of Agriculture . USDA; 2019 Apr. Report No.: AC-17-A-51. 
61.   Sprague JB, Ramsay BA. Lethal levels of mixed copper–zinc solutions for juvenile 

salmon. J Fish Res Bd Can. 1965 Feb;22(2):425–32. 

https://sciwheel.com/work/bibliography/10979546
https://sciwheel.com/work/bibliography/10979546
https://sciwheel.com/work/bibliography/10979546
https://sciwheel.com/work/bibliography/10979546
https://sciwheel.com/work/bibliography/6483325
https://sciwheel.com/work/bibliography/6483325
https://sciwheel.com/work/bibliography/7638147
https://sciwheel.com/work/bibliography/7638147
https://sciwheel.com/work/bibliography/11275717
https://sciwheel.com/work/bibliography/7290129
https://sciwheel.com/work/bibliography/7290129
https://sciwheel.com/work/bibliography/7290129
https://sciwheel.com/work/bibliography/7725280
https://sciwheel.com/work/bibliography/7725280
https://sciwheel.com/work/bibliography/7725280
https://sciwheel.com/work/bibliography/14251990
https://sciwheel.com/work/bibliography/14251990
https://sciwheel.com/work/bibliography/7734645
https://sciwheel.com/work/bibliography/7734645
https://sciwheel.com/work/bibliography/7734645
https://sciwheel.com/work/bibliography/13676184
https://sciwheel.com/work/bibliography/13676184
https://sciwheel.com/work/bibliography/13676184
https://sciwheel.com/work/bibliography/13676184
https://sciwheel.com/work/bibliography/11650744
https://sciwheel.com/work/bibliography/11650744
https://sciwheel.com/work/bibliography/11650744
https://sciwheel.com/work/bibliography/1606304
https://sciwheel.com/work/bibliography/1606304
https://sciwheel.com/work/bibliography/5917996
https://sciwheel.com/work/bibliography/5917996
https://sciwheel.com/work/bibliography/5917996
https://sciwheel.com/work/bibliography/4965425
https://sciwheel.com/work/bibliography/4965425
https://sciwheel.com/work/bibliography/7035329
https://sciwheel.com/work/bibliography/7035329
https://sciwheel.com/work/bibliography/7035329
https://sciwheel.com/work/bibliography/7035329
https://sciwheel.com/work/bibliography/7035329
https://sciwheel.com/work/bibliography/7035329
https://sciwheel.com/work/bibliography/7176897
https://sciwheel.com/work/bibliography/7176897
https://sciwheel.com/work/bibliography/10637869
https://sciwheel.com/work/bibliography/7778401
https://sciwheel.com/work/bibliography/7778401


 
 

78 
 

62.   Bliss CI. The toxicity of poisons applied jointly. Ann Applied Biology. 1939 
Aug;26(3):585–615. 

63.   Belden JB, Brain RA. Incorporating the joint toxicity of co-applied pesticides into the 
ecological risk assessment process. Integr Environ Assess Manag. 2018 Jan;14(1):79–
91. 

64.   Nowell LH, Norman JE, Moran PW, Martin JD, Stone WW. Pesticide Toxicity 
Index--a tool for assessing potential toxicity of pesticide mixtures to freshwater 
aquatic organisms. Sci Total Environ. 2014 Apr 1;476–477:144–57. 

65.   Belden JB, Gilliom RJ, Lydy MJ. How well can we predict the toxicity of pesticide 
mixtures to aquatic life? Integr Environ Assess Manag. 2007 Jul;3(3):364–72. 

66.   Deneer JW. Toxicity of mixtures of pesticides in aquatic systems. Pest Manag Sci. 
2000 Jun;56(6):516–20. 

67.   Anderson BS, Phillips BM, Voorhees JP, Deng X, Geraci J, Worcester K, Tjeerdema 
RS. Changing patterns in water toxicity associated with current use pesticides in three 
California agriculture regions. Integr Environ Assess Manag. 2018 Mar;14(2):270–81. 

68.   von der Ohe PC, De Deckere E, Prüss A, Muñoz I, Wolfram G, Villagrasa M, 
Ginebreda A, Hein M, Brack W. Toward an integrated assessment of the ecological 
and chemical status of European river basins. Integr Environ Assess Manag. 2009 
Jan;5(1):50–61. 

69.   Dietterich TG. Approximate statistical tests for comparing supervised classification 
learning algorithms. Neural Comput. 1998 Sep 15;10(7):1895–923. 

70.   Center for Biological Diversity. San Francisco Bay Area and Delta Protection 
(Internet). (cited 2019 Oct 18). Available from: 
https://www.biologicaldiversity.org/campaigns/san_francisco_bay_area_and_delta_pr
otection/index.html# 

71.   Armstrong JS, Collopy F. Error measures for generalizing about forecasting methods: 
Empirical comparisons. Int J Forecast. 1992 Jun;8(1):69–80. 

72.   Weston DP, Zhang M, Lydy MJ. Identifying the cause and source of sediment 
toxicity in an agriculture-influenced creek. Environ Toxicol Chem. 2008 
Apr;27(4):953–62. 

73.   CDPR. Surface Water Database (Internet). (cited 2018 Oct 20). Available from: 
https://www.cdpr.ca.gov/docs/emon/surfwtr/surfcont.htm 

74.   Parker N, Keller AA. Screening ecological risk of pesticides and emerging 
contaminants under data limited conditions - Case study modeling urban and 
agricultural watersheds with OrganoFate. Environ Pollut. 2021 Jul 4;288:117662. 

75.   Hernández AF, Gil F, Lacasaña M. Toxicological interactions of pesticide mixtures: 
an update. Arch Toxicol. 2017 Oct;91(10):3211–23. 

76.   Bundschuh M, Goedkoop W, Kreuger J. Evaluation of pesticide monitoring strategies 
in agricultural streams based on the toxic-unit concept--experiences from long-term 
measurements. Sci Total Environ. 2014 Jun 15;484:84–91. 

77.   Yu S. The Toxicology and Biochemistry of Insecticides. 2nd ed. Boca Raton: CRC 
Press; 2008. 

78.   Stehle S, Knäbel A, Schulz R. Probabilistic risk assessment of insecticide 
concentrations in agricultural surface waters: a critical appraisal. Environ Monit 
Assess. 2013 Aug;185(8):6295–310. 

https://sciwheel.com/work/bibliography/2484278
https://sciwheel.com/work/bibliography/2484278
https://sciwheel.com/work/bibliography/12993289
https://sciwheel.com/work/bibliography/12993289
https://sciwheel.com/work/bibliography/12993289
https://sciwheel.com/work/bibliography/4907385
https://sciwheel.com/work/bibliography/4907385
https://sciwheel.com/work/bibliography/4907385
https://sciwheel.com/work/bibliography/7789971
https://sciwheel.com/work/bibliography/7789971
https://sciwheel.com/work/bibliography/7789869
https://sciwheel.com/work/bibliography/7789869
https://sciwheel.com/work/bibliography/6588268
https://sciwheel.com/work/bibliography/6588268
https://sciwheel.com/work/bibliography/6588268
https://sciwheel.com/work/bibliography/3709043
https://sciwheel.com/work/bibliography/3709043
https://sciwheel.com/work/bibliography/3709043
https://sciwheel.com/work/bibliography/3709043
https://sciwheel.com/work/bibliography/1881224
https://sciwheel.com/work/bibliography/1881224
https://sciwheel.com/work/bibliography/7638046
https://sciwheel.com/work/bibliography/7638046
https://sciwheel.com/work/bibliography/7638046
https://sciwheel.com/work/bibliography/7638046
https://sciwheel.com/work/bibliography/5250261
https://sciwheel.com/work/bibliography/5250261
https://sciwheel.com/work/bibliography/7616383
https://sciwheel.com/work/bibliography/7616383
https://sciwheel.com/work/bibliography/7616383
https://sciwheel.com/work/bibliography/5918007
https://sciwheel.com/work/bibliography/5918007
https://sciwheel.com/work/bibliography/11345820
https://sciwheel.com/work/bibliography/11345820
https://sciwheel.com/work/bibliography/11345820
https://sciwheel.com/work/bibliography/10989288
https://sciwheel.com/work/bibliography/10989288
https://sciwheel.com/work/bibliography/6425840
https://sciwheel.com/work/bibliography/6425840
https://sciwheel.com/work/bibliography/6425840
https://sciwheel.com/work/bibliography/8277685
https://sciwheel.com/work/bibliography/8277685
https://sciwheel.com/work/bibliography/6427158
https://sciwheel.com/work/bibliography/6427158
https://sciwheel.com/work/bibliography/6427158


 
 

79 
 

79.   Beketov MA, Kefford BJ, Schäfer RB, Liess M. Pesticides reduce regional 
biodiversity of stream invertebrates. Proc Natl Acad Sci USA. 2013 Jul 
2;110(27):11039–43. 

80.   Weisner O, Frische T, Liebmann L, Reemtsma T, Roß-Nickoll M, Schäfer RB, 
Schäffer A, Scholz-Starke B, Vormeier P, Knillmann S, Liess M. Risk from pesticide 
mixtures - The gap between risk assessment and reality. Sci Total Environ. 2021 Nov 
20;796:149017. 

81.   Casida JE. Pest toxicology: the primary mechanisms of pesticide action. Chem Res 
Toxicol. 2009 Apr;22(4):609–19. 

82.   Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D, Pettis 
JS. High levels of miticides and agrochemicals in North American apiaries: 
implications for honey bee health. PLoS ONE. 2010 Mar 19;5(3):e9754. 

83.   Luo Y. Methodology for Prioritizing Pesticides for Surface Water Monitoring in 
Agricultural and Urban Areas III: Watershed-Based Prioritization. CDPR; 2015. 

84.   Luo Y, Zhang M. Management-oriented sensitivity analysis for pesticide transport in 
watershed-scale water quality modeling using SWAT. Environ Pollut. 2009 
Dec;157(12):3370–8. 

85.   Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Asaduzzaman M, 
Parven A, Megharaj M. Controversies over human health and ecological impacts of 
glyphosate: Is it to be banned in modern agriculture? Environ Pollut. 2020 Aug;263(Pt 
A):114372. 

86.   Tarazona JV, Court-Marques D, Tiramani M, Reich H, Pfeil R, Istace F, Crivellente 
F. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the 
European Union assessment and its differences with IARC. Arch Toxicol. 2017 
Aug;91(8):2723–43. 

87.   Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, 
Liber K. Neonicotinoid contamination of global surface waters and associated risk to 
aquatic invertebrates: a review. Environ Int. 2015 Jan;74:291–303. 

88.   USEPA. Guidelines for Ecological Risk Assessment. USEPA; 1998. Report No.: 
FRL-6011-2. 

89.   Mackay D. Multimedia Environmental Models–The Fugacity Approach. 2nd ed. 
Lewis Publishers; 2001. 

90.   Kah M, Beulke S, Brown CD. Factors influencing degradation of pesticides in soil. J 
Agric Food Chem. 2007 May 30;55(11):4487–92.  

  

https://sciwheel.com/work/bibliography/1413875
https://sciwheel.com/work/bibliography/1413875
https://sciwheel.com/work/bibliography/1413875
https://sciwheel.com/work/bibliography/14610762
https://sciwheel.com/work/bibliography/14610762
https://sciwheel.com/work/bibliography/14610762
https://sciwheel.com/work/bibliography/14610762
https://sciwheel.com/work/bibliography/5836202
https://sciwheel.com/work/bibliography/5836202
https://sciwheel.com/work/bibliography/2253812
https://sciwheel.com/work/bibliography/2253812
https://sciwheel.com/work/bibliography/2253812
https://sciwheel.com/work/bibliography/7745014
https://sciwheel.com/work/bibliography/7745014
https://sciwheel.com/work/bibliography/1036849
https://sciwheel.com/work/bibliography/1036849
https://sciwheel.com/work/bibliography/1036849
https://sciwheel.com/work/bibliography/11383500
https://sciwheel.com/work/bibliography/11383500
https://sciwheel.com/work/bibliography/11383500
https://sciwheel.com/work/bibliography/11383500
https://sciwheel.com/work/bibliography/3888131
https://sciwheel.com/work/bibliography/3888131
https://sciwheel.com/work/bibliography/3888131
https://sciwheel.com/work/bibliography/3888131
https://sciwheel.com/work/bibliography/4229637
https://sciwheel.com/work/bibliography/4229637
https://sciwheel.com/work/bibliography/4229637
https://sciwheel.com/work/bibliography/8201504
https://sciwheel.com/work/bibliography/8201504
https://sciwheel.com/work/bibliography/8209313
https://sciwheel.com/work/bibliography/8209313
https://sciwheel.com/work/bibliography/8250191
https://sciwheel.com/work/bibliography/8250191


 
 

80 
 

2.7 Environmental Release Tool User Guide 

Throughout the United States, a high degree of pesticide toxicity is introduced into 

the environment and has been observed to have severe effects on pollinators and aquatic 

taxa.(1–7) In California, 13% of river and stream reaches assessed for non-point sources by 

California Environmental Protection Agency under section 303(d) of the Clean Water Act are 

impaired by pesticides(8). Other mitigation tools are available to derive toxicity reduction 

strategies which include fate models(9,10), toxicity/risk maps(11,12), risk indices(13–15), 

and summaries of pesticide use(16,17). However, the individual tools are limited by their 

ability to evaluate large extents, toxicity sources, cumulative toxicity, and ability to consider 

the economic benefits of application sites. To improve the information available for pesticide 

mitigation via integrating features that address these limitations, we have developed the 

Environmental Release Tool (ERT) for experts, stakeholders, and the public. The tool is the 

first stage of development for the Pesticide Mitigation Prioritization Model (the second stage 

is a companion fate model) and quantifies the spatiotemporal distribution of applied toxicity, 

defined here as the mass of pesticide released into the environment, weighted by toxicity to 

user-defined priority species.  

The ERT accommodates analyses anywhere users can provide pesticide use data but 

is particularly useful in California. The California Department of Pesticide Regulation 

(CDPR) hosts the world’s most comprehensive pesticide use data(18).  Their Pesticide Use 

Reports (PUR) database(19) comprises agricultural pesticide applications recorded at the 

daily time step and 1 square mile (2.6 km2) area by application site. We have leveraged the 

database directly into the ERT to quantify the applied toxicity by active ingredient, source, 

and watershed across California in seconds to minutes. While many regions have minimal 
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pesticide use data relative to California, new resources are being developed to provide use 

estimates for common crops and pesticides such as  PEST-CHEMGRIDS(17). These 

datasets, or future pesticide use collection efforts, can be leveraged with tools such as the 

ERT to explore mitigation opportunities for reducing environmental toxicity. For study areas 

where data is unavailable, users may consider employing pesticide use rates for crops 

observed in California due to pesticide use being recorded for over 400 unique agricultural 

application sites over more than 400,000 km2, the mass of pesticides applied is ~20% of that 

used in the US.(20,21)  

2.7.1 Environmental Release Tool Methods  

The ERT quantifies toxicity reduction targets by chemical, application site, and 

watershed for the study area of interest. Reduction targets are quantified by the applied 

toxicity, defined herein as the mass of pesticide released into the environment as weighted by 

toxicity to species targeted by tool users. Each pesticide may have very different applied 

toxicity relative to applied mass, with some being hundreds to thousands of times more toxic 

for the same amount applied. It is suitable for designing toxicity reduction strategies and 

planning monitoring campaigns by identifying areas where higher toxicity is released in the 

environment, which could introduce health hazards to aquatic taxa, terrestrial taxa, or 

humans. The tool ranks application sites and watersheds by their applied toxicity.  

This tool does not quantify fate or exposure but rather illustrates the location and 

amount of applied toxicity(22) for designing toxicity reduction strategies and planning 

monitoring campaigns by identifying areas where higher toxicity is released in the 

environment, and its sources. Although the ERT is a spatial tool designed for large extents, 

the tool works best to understand sources of pesticide exposures for species with a small 
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habitat range. For organisms whose activities are more widespread, such as feeding 

behaviors, and who have less direct contact with environmental compartments where 

pesticides are most likely to persist, the location of applied toxicity may be less useful for 

understanding sources of potential exposure.  For aquatic organisms, though the transport of 

pesticides to surface water bodies is sensitive to their physicochemical properties(23), 

physicochemical property correlation to surface water detection frequencies has been 

demonstrated to be weaker than for pesticide sales data. Halbach et al. (2021) performed a 2-

year monitoring campaign of over 100 streams. They investigated the explanatory power of 

pesticide frequency of detection with pesticide sales data, the half-life of pesticides in water 

and soil, and solubility for 76 active ingredients. The most robust relationship was for 

pesticide sales, and significance for the other factors was only observed for the half-life in 

water.(24) Though simulating and monitoring the fate of pesticides and organism exposure is 

imperative to risk assessment, given data paucity for many pesticides and environments for 

model parameterization and calibration(25), we determined an applied toxicity tool to be 

important to informing mitigation efforts. 

The ERT has two platforms: a web application for California and a desktop version 

for all study areas in the United States, which offer different advantages. The web-based tool 

is accessible on any internet-accessible device, summarizes applied toxicity in seconds, and 

provides a more straightforward user interface. The offline tool offers a high degree of 

customization, more detailed information, and custom simulations. To assist experts and non-

experts, the ERT web tool and desktop version were built in RStudio(26) version 1.4. The 

development environment accommodates full customization of model code for experts and 
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the ability to run unique simulations for non-experts via editing spreadsheet files in Google 

Sheets and clicking a start button.  

The user interface of the ERT provides a heatmap of applied toxicity. Within the map, 

users can zoom in, pan to find a watershed of interest, and click to see applied toxicity 

summaries by source and chemical for the watershed (Figure 1). In addition to graphical 

summaries, tabular outputs are provided with summaries of applied toxicity for the analysis 

period and the daily time step. Currently, the online tool only accommodates analyses of 

applied toxicity to aquatic organisms (fish, aquatic invertebrates, and nonvascular and 

vascular plants) within California for the most recent 5-year pesticide use data and is not 

customizable. There is also a couple of years lag in pesticide use data availability, and at the 

time of this guide’s publication (2022), the most recent 5-year period of available data is 

2014-2018. The chief advantage of the online platform is that it is accessible from any device 

and provides applied toxicity summaries for watersheds across California in seconds.  The 

offline tool is advantageous because it works for any species, state, or analysis period and 

offers a high degree of customization. The online application is available at this web address 

(https://nicol-parker.shinyapps.io/Environmental-Release-Tool/), and the desktop tool is 

downloadable from the scientific digital repository Dryad and can be found under the DOI: 

10.25349/D9VP6G, or title ‘Pesticide Mitigation Prioritization Model (PMPM) - 

Environmental Release Tool and Results’.



 
 

 
 

Figure 1. The clickable and graphical user interface of the Environmental Release Tool. Note that other graphical summaries are not 
shown in this image, which summarizes crop values, applied toxicity by chemical, and illustrates economic and health indices. Base 
map imagery is a product of OpenStreetMap https://www.openstreetmap.org/copyright. 
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2.7.1.1 Pesticide Sources 

To evaluate targets for pesticide toxicity reduction, the Environmental Release Tool 

requires manually inputting pesticide use data, or for California, the tool can autoload 

pesticide use report data from statewide agricultural applicators(18). The Environmental 

Release Tool internally hosts the pesticide use data. Using an autoload script, the tool 

aggregates data for the area of interest to the user, which watersheds or counties may define. 

The data retrieved by the autoload feature is discussed in the remainder of this section.  

Pesticide use data are retrieved by active ingredient (AI) and for the 432 site types 

from CDPR Pesticide Use Reports(18) that are agricultural. Agricultural applications are 

estimated to account for ~90% of the applied pesticide mass in the United States(21). In 

Pesticide Use Reports, applications are recorded at the daily time step and by site type at the 

County Meridian Township Range Section (referred to as Section) spatial scale (2.6 km2). 

Urban applications are not included within the CDPR pesticide use database records for 

household applications, and most professional urban applications are recorded at the county 

level as well as monthly time-step, which cannot be allocated to a specific watershed or date.  

To enable evaluations of the variability of toxicity reduction opportunities over large 

extents, the tool summarizes pesticide applications and toxicity by watershed. The data is 

summarized by watershed and applications sites as well as pesticides since pesticide losses 

via runoff and eroded sediments share a common outlet. Summarizing applied toxicity by 

watersheds is important to conceptualize areas that share common hydrologic routes for 

pesticide transport. Though the Environmental Release Tool does not simulate loss 

processes, it is the first stage of development of the Pesticide Mitigation Prioritization Model. 
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The product of the second stage of development is a companion, mechanistic fate and 

transport tool where loss processes are simulated.  

To derive watershed-specific applied toxicity, pesticide use data, which is recorded 

by Section, is assigned to watersheds via geospatial intersection analyses. Section geospatial 

data is provided by the California Pesticide Information Portal(18), while watershed 

geospatial data for the United States is available in the Watershed Boundary Dataset(27). The 

Watershed Boundary Dataset delineates watersheds as hydrologic unit codes (HUCs) by 

hydrologic connectivity and at multiple scales. Watersheds with shorter HUCs, such as HUC 

2-digit codes, are large watersheds that encompass hundreds of thousands of square 

kilometers, while longer HUCs, such as HUC 8-digit codes (HUC8) represent subwatersheds 

of the shorter digit codes (e.g., HUC2) that are tens to hundreds of square kilometers.  The 

assignment of pesticide use data to watersheds can be conducted at three watershed spatial 

scales in the Environmental Release Tool to enable users to adjust the resolution of analysis, 

which are HUC8, HUC10, and HUC12, whose watershed mean square areas are ~3,600, 

~440, and ~100 km2 respectively. For Sections where pesticide use data is reported that 

overlaps multiple watersheds, the area fraction of overlap is used to weight the mass of AI 

applied.  

In addition to assigning pesticide use data to a specific watershed, a key feature of the 

Environmental Release Tool is the ability to preserve information relating to the applied 

toxicity of application site types. However, too many application sites make the interpretation 

of results difficult. The tool thus enables users to group similar AIs and application sites 

(e.g., alfalfa and alfalfa-grass mixture) by assigning the same ID to multiple site types. By 

default, 432 agricultural application site types from Pesticide Use Reports are simplified to 
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116 based on the similarity of the crops. Groupings can be viewed and modified in the tool 

input file for application sites. 

2.7.1.2 Affected Compartment 

Areas impacted by pesticide applications for terrestrial and aquatic investigations can 

be estimated with agricultural land use datasets such as the National Land Cover Dataset(28) 

or the Cropland Data Layer(29). In California, the impacted area can be retrieved from 

Pesticide Use Reports, which provide the application and planted area of crops(19). 

However, there are known inaccuracies. The planted area is often recorded for all the 

grower’s land; although reported for a specific crop, fields are subject to multiple crop 

rotations within a year, and multiple applications are typical for a crop which renders the net-

application area unknown. Due to these concerns, alternative land use datasets were 

evaluated for use(28–30).  

The most accurate, high-resolution dataset reviewed was the California Department 

of Water Resources land use surveys (https://data.cnra.ca.gov/dataset/statewide-crop-

mapping) with a median accuracy of 97.5% and positional quality of 8m. However, a 

limitation of the dataset, as well as the others, is that it provides fewer site types (43) 

compared to Pesticide Use Reports (432). Using this dataset to determine the affected area of 

specific application site types would require highly reducing the resolution of pesticide 

source data. Attempts to recategorize crops to fit available land use data did not obtain 

reliable results.  As a result, we chose to consider the affected area to be all agricultural land 

in the California Department of Water Resources dataset. The representation of the affected 

compartment to all agricultural land was deemed appropriate because only 5% of agricultural 

https://data.cnra.ca.gov/dataset/statewide-crop-mapping
https://data.cnra.ca.gov/dataset/statewide-crop-mapping
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fields in California employ organic cultivation practices(31) and use non-synthetic pesticides 

recorded in use reports.) 

2.7.1.3 Applied toxicity 

Applied toxicity refers to the mass of pesticide applied to an area with the potential to 

do harm(22). The applied toxicity for the ith pesticide in the jth watershed is calculable from 

applications to the of the kth site type and toxic endpoint of the mth taxon of interest as: 

𝑇𝑇𝑇𝑇𝑗𝑗,𝑖𝑖 = ∑𝑀𝑀𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑚𝑚

𝑇𝑇𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑚𝑚 
     Equation (1) 

Where 𝑇𝑇𝑇𝑇 is the Toxicity Index (kg-m3/kg), 𝑀𝑀 (kg) is the mass of applied AI, and 𝑇𝑇 (kg/m3) 

is the adverse health-effect concentration of concern (e.g., the lethal concentration of fifty 

percent of the test organism population) for the species or taxonomic groups of interest. 

Within a simulation, the tool is suitable for quantifying the applied toxicity to taxa within the 

same compartment, not across environmental compartments, because variation in the 

transport of pesticides based on physicochemical properties is not simulated. The tool 

illustrates applied toxicity within the soil compartment or available for transport to the 

compartment of interest. While the transport of pesticides from the application site is 

sensitive to their physicochemical properties(23), property correlation to surface water 

detection frequencies has been demonstrated to the more robust for pesticide sales data than 

physicochemical properties in a monitoring campaign of 72 pesticides of diverse properties 

in over 100 streams(24). Though this approach is not suitable for risk assessments, it 

facilitates an understanding of where mitigation opportunities exist(57) without data 

requirements and uncertainty of fate and transport models over large extents(26,27,58). 

https://sciwheel.com/work/citation?ids=11650744&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1606304,6523559,7392792&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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For pesticides, the tool facilitates the summarization of similar AIs. This feature is 

useful because many AIs have a similar chemical make-up (e.g., isomers or are produced in 

several forms, including acids, salts, amines, and esters) but have no or limited toxicity data 

for the various AI forms. Provided that AI forms can have very different affect 

concentrations, where possible, the user should provide AI form-specific toxicity. To 

accommodate AI form-specific endpoints where available but to simplify tool outputs, 

unique toxicity endpoints are accepted and calculated for pesticides within a user-defined 

pesticide group, and the group’s total applied toxicity is reported by the group ID in tool 

output. In this investigation, we considered AIs detected (2014-2018) within California’s 

surface waters with available toxicity data (n = 151). From the CDPR’s Pesticide Use 

Reports, 290 forms of the AIs were observed (e.g., 12 unique esters and 15 salts of 2,4-D).  

Our investigation considers the applied toxicity of pesticides for fish, as well as 

aquatic invertebrates, nonvascular plants, and vascular plants. Toxicity endpoints employed 

were acute values from the United States Environmental Protection Agency (USEPA) 

Aquatic Life Benchmarks Database60,61. The USEPA derives Benchmarks from the 

concentration at which fifty percent of a species sample in single-dose laboratory 

investigations experience severe effects, derived from mortality endpoints, or for plants, 

significant changes in growth/biomass (LC50 or EC50). A genera endpoint is then calculated 

based upon a 0.05 cumulative probability of toxicity for represented species, which typically 

reflects the most sensitive species within the taxonomic group. For fish and invertebrates, the 

USEPA calculates the final acute value as the product of the taxonomic group endpoint 

multiplied by a safety factor of 0.5 and does not adjust plants. Where no toxicity endpoints 

were reported for the pesticide in the Aquatic Life Benchmark database (n = 10), the 
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Pesticide Properties DataBase(32) acute toxicity endpoints were employed, and unverified 

data were excluded. 

The first applied toxicity index reported by ERT for pesticides, sites, and watersheds 

is the Relative Toxicity Index (𝑅𝑅𝑇𝑇𝑇𝑇). The index weights the toxicity of the ith applied 

pesticide by the size of the application area within the jth watershed as: 

𝑅𝑅𝑇𝑇𝑇𝑇𝑗𝑗,𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗
𝐴𝐴𝑗𝑗

  Equation (2) 

where 𝐴𝐴 (m2) is the area of the affected compartment.  

As the quantification of the affected compartment area is frequently limited, and the 

fraction of a watershed subject to pesticide application is highly variable, we provide a 

second applied toxicity index independent of area, the Net Toxicity Index (𝑁𝑁𝑇𝑇𝑇𝑇). The NTI is 

a relative rank toxicity index to determine if the applied toxicity is greater than what is 

typical for the ith pesticide in the jth watershed. As our reference of what is typical, we 

calculate for the study area the 50th percentile (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝50) of the applied toxicity for any applied 

pesticide (𝑝𝑝𝑝𝑝𝑝𝑝) in watershed (w). The 𝑁𝑁𝑇𝑇𝑇𝑇 is calculable from the TI of the ith pesticide in the 

jth watershed as: 

𝑁𝑁𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗 = 𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝50 (𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝1,𝑤𝑤1 ,𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝1,𝑤𝑤1 ,𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝1,𝑤𝑤2 ,𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝2,𝑤𝑤2 ,… 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛,𝑤𝑤𝑛𝑛)

  Equation (3) 

The NTI approach can quickly identify applied toxicity above typical levels in the study 

extent. For example, if the 50th percentile of the applied toxicity of pesticides to a watershed 

in the study area is applications of imidacloprid in the San Joaquin Watershed, 1000 TI, to 

calculate the NTI, the TI of the pesticide and watershed of interest is divided by 1000 TI. 

Using this approach, pesticide applications within a watershed over the simulation period 
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with an NTI greater than unity have applied toxicity above typical levels. This normalization 

provides a unitless applied toxicity index that does not affect the relative rank of the applied 

toxicity for pesticides, sites, or watersheds and can identify effective toxicity reduction 

targets specific to the study area.  

For single taxonomic group investigations with the ERT (e.g., only fish), the 

cumulative applied toxicity, the potential of all pesticides released to the environment and 

under investigation to do harm to the taxon, is calculable via an adaption of the concentration 

addition method(60,61). We calculate the cumulative toxicity indices of pesticides for each 

index for n pesticides for a watershed (here 𝑤𝑤1) as:  

𝑅𝑅𝑇𝑇𝑇𝑇𝑗𝑗 = ∑𝑅𝑅𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝1,𝑤𝑤1 + 𝑅𝑅𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝2,,𝑤𝑤1 + 𝑅𝑅𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝3,𝑗𝑗,𝑤𝑤1 …𝑅𝑅𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛,𝑗𝑗,𝑤𝑤1   Equation 

(4) 

𝑁𝑁𝑇𝑇𝑇𝑇𝑗𝑗 = ∑𝑁𝑁𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝1,𝑤𝑤1,𝑘𝑘 + 𝑁𝑁𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝2,𝑤𝑤1,𝑘𝑘 + 𝑁𝑁𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝3,𝑤𝑤1,𝑘𝑘 …𝑁𝑁𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛,𝑤𝑤1,𝑘𝑘  Equation 

(5) 

The method used in this study relies on the assumption of additive toxicity and non-

interacting chemical species. While this assumption is theoretically unsound for chemicals of 

diverse modes of action, and this limitation is not addressed by the ERT, pesticides rarely 

express synergism at environmentally relevant concentrations, and cumulative addition has 

been empirically demonstrated to be a reliable method for quantifying pesticide mixture 

toxicity(62). For example, in studies with hundreds of pesticide mixtures, the method has 

predicted mortality within a factor of 2 for 90% of samples(63–65). Additionally, the method 

is robust to independent modes of action(64). However, the approach is not suited to 

simultaneously understand the effects of pesticide mixtures on diverse taxa due to the 

https://sciwheel.com/work/citation?ids=7778401,2484278&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12993289&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4907385,7789971,7789869&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7789971&pre=&suf=&sa=0&dbf=0
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presence of unique organism receptors and responses(66). Where multiple organisms are 

included for analysis, the net applied toxicity is interpretable as where toxicity reduction 

opportunities are greatest for all taxa considered. 

2.7.1.4 Health and Economic Indices 

The health and economic impacts of application sites are quantified over the study 

extent with a Health Score (ha/NTI), an Economic Score (USD/ha), as well as an Economic 

and Health Score (USD/NTI per ha). These indices are calculated over the study extent 

(California) rather than in specific watersheds due to the low resolution of reliable land use 

data (see Section 2.2 Affected Compartment). For health and economic scores, higher values 

represent more favorable outcomes. Health and economic scores are calculated for the 

application site areas of the study extent as: 

𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝 𝑆𝑆𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝 = 𝐺𝐺𝑝𝑝𝐺𝐺𝑝𝑝𝑝𝑝 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝 (𝑈𝑈𝑈𝑈𝑈𝑈)
𝐻𝐻𝑉𝑉𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 

   Equation (6) 

𝐻𝐻𝑝𝑝𝐻𝐻𝐻𝐻𝑝𝑝ℎ 𝑆𝑆𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝 = 𝐻𝐻𝑉𝑉𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 
𝑇𝑇𝐺𝐺𝑇𝑇𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝑇𝑇𝐼𝐼𝐻𝐻𝑝𝑝𝑇𝑇 (𝑁𝑁𝑇𝑇𝑇𝑇 𝐺𝐺𝑝𝑝 𝑅𝑅𝑇𝑇𝑇𝑇))

   Equation (7) 

The Economic and Health Score penalizes crops with high applied toxicity and is calculated 

as: 

       𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝 𝐻𝐻𝐸𝐸𝑎𝑎 𝐻𝐻𝑝𝑝𝐻𝐻𝐻𝐻𝑝𝑝ℎ 𝑆𝑆𝑝𝑝𝐸𝐸𝑝𝑝𝑝𝑝 = 𝐺𝐺𝑝𝑝𝐺𝐺𝑝𝑝𝑝𝑝 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝 (𝑈𝑈𝑈𝑈𝑈𝑈 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑉𝑉𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝)
𝑇𝑇𝐺𝐺𝑇𝑇𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝑇𝑇𝐼𝐼𝐻𝐻𝑝𝑝𝑇𝑇 (𝑁𝑁𝑇𝑇𝑇𝑇 𝐺𝐺𝑝𝑝 𝑅𝑅𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝑉𝑉𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝)

   Equation 

(8) 

For health and economic scores, the harvested hectares and gross value of application site 

types were compiled from the United States Department of Agriculture National Agricultural 

Statistics Service (https://www.nass.usda.gov/). We considered the median economic value 

https://sciwheel.com/work/citation?ids=6588268&pre=&suf=&sa=0&dbf=0
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and harvested hectares for a crop in California from 2014-2018 to minimize single-year 

anomalies.  

In addition to numeric scores, users are also provided with categorical scores based 

upon percentiles for the study area to facilitate interpretation. Scores are divided into 20th 

percentiles and range from ‘Very Low’ (0-20th percentile) to ‘Very High’ (80-100th 

percentile). See example output in Table 1. 

Table 1. Environmental Release Tool outputs for pesticide application sites which introduce 
90% of the applied toxicity in California to fish, invertebrates, nonvascular aquatic plants, 
and vascular aquatic plants from 2014-2018, where: NTI the Net Toxicity Index;  NTI (%) 
the percent of the total NTI of the application site type; Economic, Economic Health, and 
Health Scores the numeric score of sites; and the Economic, Economic Health, and Health 
Values the quantiles of scores where 0-20th quantile is ‘Very Low’ and 80-100th ‘Very High’. 
 

Site Type NTI 

NTI 
(% 
Total) 

Economic 
Score 
(USD/ha) 

Economic 
Health 
Score 
(USD/NTI) 

Health 
Score 
(NTI/ha) 

Relative 
Economic 
Score 

Relative 
Economic 
Health Score 

Relative 
Health 
Score 

Almond 1.41E+08 24.7 1.32E+04 2.78E+02 2.11E-02 3-Medium 2-Low 2-Low 
Pistachio 1.07E+08 18.8 1.32E+04 1.86E+02 1.42E-02 3-Medium 2-Low 1-Very Low 
Alfalfa 6.08E+07 10.7 1.58E+03 1.64E+02 1.04E-01 1-Very Low 1-Very Low 4-High 
Lettuce 4.59E+07 8.0 1.75E+03 2.67E+02 1.53E-01 2-Low 2-Low 4-High 
Walnut 2.96E+07 5.2 9.95E+03 2.54E+02 2.55E-02 3-Medium 2-Low 2-Low 
Rice 2.84E+07 5.0 1.21E+03 1.91E+03 1.58E+00 1-Very Low 4-High 5-Very High 
Cotton 2.09E+07 3.7 1.24E+02 6.74E+00 5.45E-02 1-Very Low 1-Very Low 3-Medium 
Tomato 
(Processing) 2.03E+07 3.6 8.57E+03 4.00E+02 4.67E-02 2-Low 2-Low 3-Medium 
Corn 
(Sweet) 1.53E+07 2.7 5.74E+03 5.27E+01 9.17E-03 2-Low 1-Very Low 1-Very Low 
Broccoli 8.71E+06 1.5 8.98E+03 2.70E+02 3.01E-02 3-Medium 2-Low 2-Low 
Cherry 7.66E+06 1.3 5.84E+03 8.68E+02 1.48E-01 2-Low 4-High 4-High 
Peach 6.36E+06 1.1 8.61E+03 3.25E+02 3.77E-02 2-Low 2-Low 3-Medium 
Strawberry 5.93E+06 1.0 1.25E+05 8.57E+02 6.88E-03 5-Very High 4-High 1-Very Low 
Orange 5.67E+06 1.0 4.51E+02 1.29E+01 2.86E-02 1-Very Low 1-Very Low 2-Low 
Onion Misc. 4.09E+06 0.7 1.83E+04 3.05E+02 1.67E-02 3-Medium 2-Low 2-Low 
Bean (Dry) 3.75E+06 0.7 1.42E+03 1.77E+02 1.25E-01 1-Very Low 1-Very Low 4-High 
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2.7.2 Environmental Release Tool Installation and Operation 

To prepare to use the web-based platform, users can navigate to the tool via this link: 

https://nicol-parker.shinyapps.io/Environmental-Release-Tool/ and skip to Section 4.0 of this 

guide. Desktop users will need to follow the stepwise instructions provided for tool 

installation and use in this section and read Section 3.0, model parameterization.  

The desktop ERT is run through the RStudio user interface. All model 

parameterization is done using spreadsheets which can be modified in google sheets or 

Microsoft Excel. When executing tool simulations in RStudio, a pop-up window with a 

clickable user interface (see Figure 2) is produced with graphical summaries of the data and 

tabular exports (in spreadsheet format).  

2.7.2.1 Installing RStudio 

I. Establish an internet connection with your device. 

II. Download R version 4.1, the software environment of RStudio. The software is freely 

available for Mac, Windows, and Linux users here https://cran.rstudio.com/. 

III. Download RStudio version 1.4; the software is freely available for Mac, Windows, and 

Linux users here: https://www.rstudio.com/products/rstudio/download/#download.  

IV. Follow the RStudio download and install instructions.  

V. Open RStudio; for new users, some quick tutorials may be helpful to familiarize 

yourself with the software, but they are unnecessary. The first time you open the 

software, you’ll need to install packages which will take just a few minutes. Packages 

are functions employed by the ERT and are installed within the RStudio user interface. 

The packages which need to be installed include ProjectTemplate, data.table, dplyr, 

https://nicol-parker.shinyapps.io/Environmental-Release-Tool/
https://cran.rstudio.com/
https://www.rstudio.com/products/rstudio/download/#download
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stringr, lubridate, zoo, rgdal, shiny, leaflet, and plotly. To install packages, follow these 

steps for instructions (see Figure 2 to view the RStudio interface): 

1) Within the RStudio Window, navigate to the ‘Packages’ tab in the lower right 

window.  

2) Click the ‘Install’ button. 

3) In the pop-up window, data field ‘Install From’, set the option to ‘Repository 

(CRAN) 

4) Type the list of packages separated by a comma above or copy this list of 

packages and pate into the ‘Packages’ field:  

data.table, tidyverse, stringr, lubridate, zoo, leaflet, plotly, shiny, rgdal  

5) Ensure ‘Install dependencies’ is checked. 

6) Select the ‘Install’ button at the bottom of the pop-up window. 

7) Packages should install without error; if errors are encountered, they will be 

displayed in the Console as ‘Error:’ followed by an issue-specific note. If 

issues are discovered, try installing packages one at a time. To troubleshoot 

the package-specific problems, typically, another package must be installed 

for which the name is displayed in the RStudio console. If difficulties persist, 

RStudio is a widely used platform for which internet searches for error codes 

will provide troubleshooting assistance for your operating system (macOS, 

Windows, or Linux).   
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Figure 2. RStudio package installation. RStudio interface with required user steps/features 
for package installation.  
 

 

2.2 Installing the Environmental Release Tool 

1) Navigate to the ERT model download via this link 

(https://datadryad.org/stash/share/BJwLp5INjd3ybsATDQF2fJLvRdH3uDobvBMnFV

EmC7M, the temporary link for reviewers and publishers, needs to be updated for the 

public) 

2) Download the tool zip file and save it to your computer.  

3) Unzip the ERT download. The ERT model requires a small fraction of the downloaded 

file memory, 0.6 GB. Still, the entire download package requires 6 GB of memory due 

to the millions of pesticide use data points for the most recent 10-year period of data 

https://datadryad.org/stash/share/BJwLp5INjd3ybsATDQF2fJLvRdH3uDobvBMnFVEmC7M
https://datadryad.org/stash/share/BJwLp5INjd3ybsATDQF2fJLvRdH3uDobvBMnFVEmC7M
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availability for California (as of this guide’s publication 2009-2018). To substantially 

reduce the space the ERT requires on your personal computer; you may delete all 

pesticide use data not of interest to your analyses (see the sub-directory 

‘EnvironmentalReleaseTool/data/inputs_simulation/cdpr_pur’ to delete from years not 

of interest to your analyses. For users seeking to conduct analyses beyond this period 

for California, the required files can be downloaded in minutes, see Section 3.4 for 

download instructions.  

2.7.2.3 Running a Simulation Environmental Release Tool 

1) Open RStudio. 

2) Prior to running the ERT in RStudio, the user needs to provide the path to where they 

have saved the ‘EnvironmentalReleaseTool’ directory (folder) on their computer. 

Setting the path tells RStudio and the ERT where to retrieve and save model files. To 

set the path: 

a. Navigate to the top of the RStudio window to the tab ‘Session’, click once, 

and hover over ‘Set Working Directory’ (do not click yet). 

b. Scroll down on the sub-menu that pops up and click once on ‘Choose 

Directory’. 

c. Browse to where the ‘EnvironmentalReleaseTool’ directory is saved and click 

once; then, at the bottom of the pop-up window, select open. The path has 

now been set.  

3) To open the clickable user interface, a user must open the 

‘PMPM_EnvironmentalRelease.R’ file in the ERT directory (where you saved the 

downloaded model). To open the file, in the RStudio window, navigate to the ‘File’ 
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tab at the top left. In the drop-down menu, select ‘Open File’. Navigate to the 

‘EnvironmentalReleaseTool’ directory and open the 

‘PMPM_EnvironmentalRelease.R’ file.  

4) The model can now be run with default inputs. Select the ‘Run App’ button in the 

RStudio window (Figure 3). By default, the model will display ERT outputs for 

pesticide-applied toxicity at the HUC8 watershed scale (mean watershed size ~3,600 

square kilometers) for 2014-2018 in California. For new simulations with the ERT, 

refer to ‘Section 3.0 Parameterization’ of the user guide for instructions to customize 

the simulation.  

5) The clickable user interface will now display (Figure 1). Click around to view 

graphical summaries of data. To view tabular data, open the ‘output’ sub-directory. 

See Section 5. Outputs for more information on available outputs. Note that model 

values are displayed in scientific notation for graphical summaries because they are 

often large values that are otherwise messy to display and difficult to read. Scientific 

notation expresses the number of zeros that follow or precede a number. 1,000,000 is 

written in scientific notation as 1 x 106, 0.1 is written as 1 x 10-1. A quick web search 

of ‘scientific notation’ will provide useful details on the number format, which is 

common scientific practice.  

6) New simulations will require a few minutes to an hour to summarize results and 

display them in the clickable user interface (Figure 1), depending on your operating 

system and the number of watersheds and pesticides analyzed. Once a simulation has 

been run, a user can display an existing simulation result in the user interface in less 

than a minute. To do so, see Section 3.1 instructions.  
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Figure 3. RStudio interface. RStudio interface with key user features for the Environmental 
Release Tool. 1) Top of the window where tabs for navigating RStudio menus are located. 2) 
The name of the tool execution file (‘PMPM_EnvironmentalRelease.R’. 3) The button the 
user clicks to run the script; alternatively, the user can highlight all text in the file and press 
enter. 4) The code in the ‘PMPM_EnvironmentalRelease.R’ file initiates the module's 
running and opening of the user interface. 5) The RStudio console window updates the user 
on what the model is processing. It displays errors if the model does not run correctly. 6) 
Window within which directories on your computer can be navigated (similar to File 
Explorer in Windows or Finder in Mac).  
 

 

2.7.3 Parameterization 

This section describes each input file for the ERT, the parameters (input file fields), 

and provides specific notes on formatting. For inputs, formatting must match the input files; 

see the Template’ input folder with input files and formatting required in the ERT (located in 

the ‘EnvironmentalReleaseTool /data/inputs_simulation/simulations’ directory). To modify 

module inputs discussed below, navigate to the input file of interest, open, edit, and save the 
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files which are editable in Google Sheets, Microsoft Excel, or text editors (format comma-

separated files).  

The ERT summarizes pesticide applied toxicity by watershed. Watersheds are 

delineated using the United States Geological Survey Watershed Boundary Dataset(27). 

Watersheds in this dataset are delineated as hydrologic unit codes (HUCs), with longer-digit 

watersheds of higher resolution. Users can choose between three default watershed 

resolutions to use for the ERT; from lowest to highest resolution, they are eight-digit HUCs 

digits (HUC8), ten-digit HUCs (HUC10), and twelve-digit HUCs (HUC12). The mean area 

of the watersheds varies by state, and in California are ~3,600 square kilometers for HUC8 

watersheds, ~440 square kilometers for HUC10 watersheds, and ~100 square kilometers for 

HUC12 watersheds. Other watershed delineation options are available, which the user may 

choose from, but require manual parameterization of the input files for watersheds and 

application site types, as well as for the user to download the spatial dataset for the resolution 

of interest (see Section 3.3).  

Within the ERT, all default parameters (including pesticide use data) are available at 

each of the three watershed resolutions in California (see Section 1.1). Users seeking to 

analyze pesticides in areas outside of California will need to modify most input files. By 

default, the inputs for pesticide use and toxicity consider pesticides detected in statewide 

surface monitoring campaigns in California that are recorded in the CDPR Surface Water 

Monitoring Database(18) for 2014-2018 (n=151).  Pesticide use data is derived from the 

CDPR PUR database(19) (see Section 1.1). Toxicological data was derived from the United 

States Environmental Protection Agency Aquatic Life Benchmarks Database60,61 (see Section 

1.3). 
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2.7.3.1 Default Simulations 

 Default simulations are available at three spatial scales for aquatic species in 

California’s watersheds for 2014-2018 (defaults will be updated when pesticide use reports 

for later years are publicly available). Two types of simulations can be conducted with 

toxicity endpoints. One considers the most sensitive taxonomic group per pesticide. For the 

toxicity endpoints used, the Aquatic Life Benchmarks(33), 18% of the most sensitive 

endpoints for investigated pesticides were from fish, 38% for aquatic invertebrates, 27% for 

nonvascular aquatic plants, and 17% for vascular aquatic plants. The second approach 

employed toxicity endpoints for the individual taxonomic groups. By default, the active 

pesticide ingredients analyzed are those detected (2014-2018) within California’s surface 

waters (n = 151). From the CDPR’s Pesticide Use Reports, 308 forms of the 151 AIs were 

observed (e.g., 30 unique salts and esters of 2,4-D). If multiple toxicological endpoints exist 

for the active ingredient, the more sensitive endpoint was employed as a conservative toxicity 

estimate; pesticides were evaluated, and default groupings can be viewed in the default 

module input file for pesticides. The custom simulations are under the 

‘EnvironmentalReleaseTool/data/inputs_simulations/simulations’ directory. See the next 

section to customize input parameters to evaluate other species (terrestrial or aquatic), 

pesticides, and study areas. 

2.7.3.2 Custom Simulations 

Within the ‘EnvironmentalReleaseTool/data/inputs_simulation’ directory, there exists a 

file, the ‘Simulation_Information.csv’.  This input file informs the tool which simulation file 

to run, the analysis period, and how output data will be summarized.   

• ‘Simulation_Information.csv’ fields: 
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o simulation_name: Name of the simulation input file to run. The simulation 

input file contains information on the pesticides, application sites, and 

watersheds to be analyzed (see Section 3.2). This field's format can employ 

characters, underscores, and periods (.). The name used in this field must 

match exactly match (capitalization sensitive) the name of the simulation file 

(see Section 3.2) BUT not include the file extension (.csv). This name also 

creates a directory for the simulation to store model outputs.  

o watershed_resolution: Input what resolution to analyze pesticides at for 

watersheds. Users can choose between three default watershed resolutions to 

use for the ERT; from lowest to highest resolution, they are eight-digit HUCs 

digits (HUC8), ten-digit HUCs (HUC10), and twelve-digit HUCs (HUC12). 

To analyze at the HUC8 scale, enter ‘huc8’ in the field for a HUC10 analysis 

‘huc10’, and a HUC12 analysis ‘huc12’. The mean area of the watersheds 

varies by state, and in California are ~3,600 square kilometers for HUC8 

watersheds, ~440 square kilometers for HUC10 watersheds, and ~100 square 

kilometers for HUC12 watersheds.  

o tox_summary: For the graphical summaries provided by the module, this field 

indicates whether to display the NTI or RTI in the heat map summary of 

pesticide applied toxicity; see Equations (2) and (3) in Section 1.0.  

o new_simulation: Enter ‘yes’ to run a new simulation or ‘no’ for the ERT to 

display existing data. The simulation must have data in the ‘output’ and 

‘cache’ sub-directories under the simulation name (automatically generated 
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when a simulation is run) to display graphical summaries for existing 

simulations.   

o print_daily_summary: Provides the option to print daily output of pesticide 

toxicity by watershed, site, and chemical. To provide daily output, insert 'yes'; 

to increase the model speed and reduce the memory consumed by ERT 

outputs, choose not to print daily summary data by entering a 'no'. Tabular 

summaries will always be provided for the analysis period, and graphical 

summaries by month and year.  

o manual_pest_application: Indicates whether to use manually input pesticide 

use data or the auto-load pesticide use feature (available only for California, 

see details in Section 3.4). To employ manual data, enter ‘yes’; to use CDPR 

data, enter ‘no’. 

o filter_by_county: This parameter is only used by the module for evaluations in 

California, where the autoload feature is used for pesticide use data. The field 

indicates whether the model filters the study area by counties specified by the 

user or watersheds. If data are filtered by counties, this information will be 

employed to select watersheds within counties specified by the user in the 

simulation input file (see Section 3.2), and all model outputs will still be 

summarized by watershed. To function, the user must ensure all watersheds in 

California are present in the simulation input file ‘Watersheds.csv’ input file 

(see Section 3.2.2) for the desired scale of analysis (e.g., HUC8). Watershed 

data is available for HUC8, HUC10, and HUC12 watersheds in California in 

the default simulation files provided in the 
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‘EnvironmentalReleaseTool/data/input_simulations/simulations’ directory. To 

filter by county, insert 'yes', and to filter by watershed, 'no'. 

o start_day: First day of simulation with format 'dd'. 

o start_month: First month of simulation with format 'mm'. 

o start_year: First year of simulation with format 'yyyy'. 

o end_day: Last day of simulation with format 'dd'. 

o end_month: Last month of simulation with format 'mm'. 

o end_year: Last year of simulation with format 'yyyy'. 

o affected_depth: This value represents the depth of soil impacted by pesticide 

application and is with the affected area per watershed provided in the 

simulation input file (see Section 3.2) to calculate the NTI (Equation (3)). The 

default value is 0.01m.  

o percentile_NTI: Percentile of the applied toxicity of pesticides in watersheds 

used to calculate the NTI, see Equation (3). The default is the 50th percentile. 

o econ_val: For study areas with uncertain harvested hectares or gross value for 

pesticide application site types, the user can select to use a gross economic 

value for the study area provided by default in the ‘ApplicationSite.csv’ input 

file. To use the economic value for the entire study area to calculate the 

economic score, insert ‘yes’. To use user-defined harvested hectares and gross 

crop value to calculate the economic score for the study region, insert ‘no’. 

o health_val: For study areas with uncertain harvested hectares for pesticide 

application site types within the study region, the user can select to use the 

health score calculated from the application site area across the study area 
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provided by default in the ‘ApplicationSite.csv’ input file. To use the health 

score for the entire study area, insert ‘yes’. To use user-defined harvested 

hectares to calculate the economic score for the study region, insert ‘no’. 

2.7.3.2 Simulations 

The simulation files describe the pesticides to be evaluated, toxic endpoints to employ, 

the extent of analysis, and the output summarization method. Each simulation will have a 

folder with the simulation name and all input files. The user customizes the folder name to 

represent their unique scenario. Section 3.2.1 lists the steps to prepare the ERT to run a new 

simulation. Section 3.2.2 discusses simulation parameters and data resources.  

2.7.3.2.1 Simulation Overview 

1) To run a new simulation, a user can employ one of the simulations provided in the 

‘EnvironmentalReleaseTool/data/inputs_simulation/simulations’ or customize a 

simulation using input files in the ‘Template’ folder.  

a. By default, the ERT is parameterized to analyze pesticide-applied toxicity in 

California for 2014-2018 at the HUC8 watershed resolution (~3,600 km2, 140 

watersheds). Default simulation files are also available for users seeking to 

summarize applied toxicity in California at the resolution of HUC10 

watersheds (~440 km2, 1,038 watersheds) or HUC12 (~100 km2, 4,463 

watersheds) for 2014-2018. These simulation inputs are in the directory 

‘EnvironmentalReleaseTool/data/inputs_simulation/simulations. 

b. Custom simulations must follow the field names and formats of the files in the 

‘EnvironmentalReleaseTool/data/inputs_simulation/simulations/Template’ 
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folder. For custom scenarios, save a copy of the ‘Template’ input folder and 

rename it to reflect the new simulation (e.g., ‘SacramentoWatershed_2021).  

2) To employ the correct simulation files in an ERT model run, the user must enter the 

unique simulation file name into the ‘Simulation_Information.csv’ input file (located 

in the ‘EnvironmentalReleaseTool/data/inputs_simulation’ directory) field 

‘simulation_name’. The simulation name must NOT include the input file extension 

(*.csv) and is capitalization sensitive. The simulation name must also match the 

folder containing all simulation input files in the 

‘EnvironmentalReleaseTool/data/inputs_simulation/simulations/’ directory (e.g., 

folder name ‘SacramentoWatershed_2021’).  

3) For simulations in California, no further parameterization is necessary. For 

simulations outside of California, watershed spatial data acquisition is required. This 

effort requires only a few minutes; see Section 3.3. The simulation file specifies the 

number of watersheds and chemicals to analyze. Typically, the ERT can handle 

simulations at the state level. However, analyses over five years for more than 200 

chemicals and 5,000 watersheds may cause the ERT to run out of RAM and for the 

model not to run. If an error is encountered for large simulation spaces, reduce the 

number of watersheds, chemicals, or years considered.  

2.7.3.2.2 Simulation Parameters 

The simulation input files required are in the 

‘EnvironmentalReleaseTool/data/inputs_simuation/simulations/Template’ directory. The 

simulation run is based on the simulation name provided in the ‘Simulation_Information.csv’ 
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input file (see Section 3.1).  Default simulation files are available, or users can create a 

custom scenario with the template files. A simulation employs six input files: 

‘Pesticides.csv’, ‘Toxicity.csv’, ‘Watersheds.csv’, ‘Counties.csv’, ‘Application_Sites.csv’, 

and ‘Pesticide_Application.csv’. 

• ‘Pesticides.csv’ fields: 

o pesticide_id: Unique identifier which will be used to summarize highly similar 

pesticides. This may be unique from the ‘pesticide’ field to merge similar 

applied chemicals such as isomers.  IMPORTANT NOTE, for pesticide use 

reports in the CDPR PUR database, many active ingredients with slight 

variation in form (e.g., 2,4-D and 2,4-D LITHIUM SALT) exist. If using the 

autoload feature or database, a user will want to ensure they explore all 

chemical names similar to their active ingredient of interest, or the applied 

toxicity may be underestimated. To ensure all pesticide loads associated with 

an active ingredient are included, list all relevant CDPR PUR chemical names 

in the ‘pesticide’ field. For each chemical for which the same toxicity value 

will be used, provide the same ‘pesticide_id’ field value; see Table 2. 

o pesticide: Name of the active ingredient of the pesticides under investigation. 

If the user seeks to use the autoload feature for pesticide use data, the module 

requires this field to match pesticide names within the CDPR PUR(19) 

database (including capitalization). The chemical name formatting can be 

found in the ERT directory under 

‘EnvironmentalReleaseTool/docs/ChemicalFormatting.csv’. 
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o tox_ 1: Toxicity endpoint (kg/m3) used to calculate applied toxicity. Numeric 

formatting with no commas must be employed (e.g., no thousands placeholder 

nor comma used as the decimal); to represent decimals, employ a period (.) 

For sediment or soil toxicity endpoints, typically (mg/kg), convert to (kg/m3) 

using a typical value for the compartment density (e.g., 1,400 kg/m3). For 

example, if the soil toxicity endpoint is 0.001 mg/kg, then: 

0.001
𝐸𝐸𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝
𝑘𝑘𝑚𝑚 𝑝𝑝𝐸𝐸𝐸𝐸𝐻𝐻

= 1000
𝑘𝑘𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝
𝑘𝑘𝑚𝑚 𝑝𝑝𝐸𝐸𝐻𝐻

 

𝑝𝑝𝐸𝐸𝑡𝑡_1 = 1000
 𝑘𝑘𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝
𝑘𝑘𝑚𝑚 𝑝𝑝𝐸𝐸𝐸𝐸𝐻𝐻

∗ 1,400
𝑘𝑘𝑚𝑚 𝑝𝑝𝐸𝐸𝐸𝐸𝐻𝐻
𝐸𝐸3 𝑝𝑝𝐸𝐸𝐸𝐸𝐻𝐻

=  1,400,000
𝑘𝑘𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝
𝐸𝐸3 𝑝𝑝𝐸𝐸𝐸𝐸𝐻𝐻

 

o tox_2 to tox_10: The user has the option to add toxicity endpoints for a total 

of 10 species; however, species evaluated in the same simulation must all 

have toxicity endpoints in the same environmental compartment (see 

Section 1.3). The Environmental Release Tool is a relative ranking tool that 

quantifies the net applied toxicity to species, showing where the relative 

applied toxicity is highest. When multiple species are considered, in tool 

outputs, the net applied toxicity to all species of interest (sum of all applied 

toxicity to individual species). Note that to evaluate the cumulative applied 

toxicity of pesticides to a specific species, a user must run individual 

simulations (provide only a value for tox_1). By default, tox_1 to tox_4 are 

provided and are the toxicity endpoints, obtained from the USEPA Aquatic 

Life Benchmarks(33) (or Pesticide Properties DataBase(32) where USEPA 

benchmarks were unavailable) for fish, invertebrates, nonvascular aquatic 

plants, and vascular aquatic plants respectively. 
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Table 2. Pesticide groups. Example inputs that group chemical names in the pesticide use 
data to chemical names used in model outputs. 
 

pesticide_id pesticide tox_1 

2,4-d ester 2,4-D, BUTOXYETHANOL ESTER 152 

2,4-d ester 2,4-D, ISOOCTYL ESTER 152 

2,4-d salt 2,4-D, DIMETHYLAMINE SALT 299 

2,4-d ester 2,4-D, BUTYL ESTER 152 

2,4-d salt 2,4-D, TRIISOPROPANOLAMINE SALT 299 

 

• ‘Watersheds.csv’ fields: 

o huc: Unique hydrologic unit code watershed identifier. Formatting is 

character, with the string ‘HUC’ followed by the digits of the HUC 

watersheds of interest (e.g., HUC18070301 for HUC8 or HUC1807030111 for 

HUC10). 

o huc_name: Name of hydrologic unit code watershed. Users can use WBD 

default names or create custom names that employ characters, numbers, or 

underscores (no special characters). 

o affected_area_ha: Area (ha) of the watershed impacted by pesticide 

application in hectares (whole watershed area may be used if the affected area 

is unknown). The tool converts the value from ha to m2 internally for toxicity 

index calculations. Numeric formatting with no commas must be employed 

(e.g., no thousands placeholder nor comma used as the decimal); to represent 

decimals, employ a period (.). 
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• ‘Counties.csv’ fields only need to be populated if the user opts for the autoload 

feature for pesticide use data (available only for California study areas) and to filter 

pesticide use data by county (see Section 3.1).  

o county_cd: County code employed by the CDPR. Formatting must match 

codes in the ‘county_cd.txt’ file in the ERT directory under the 

‘data/model_configuration/cdpr_pur’ sub-directory.  

o county_name: Name of the county. Formatting is up to the user. 

• ‘ApplicationSites.csv’ fields provide information about which application sites to 

consider in watersheds (e.g., agricultural sites). The input file also enables users to 

group similar site types considered into one toxicity index (e.g., table grapes and wine 

grapes to a toxicity index for ‘GRAPES’). The fields also describe the value of the 

application sites per hectare. For crop values, default data was aggregated from the 

United States Department of Agriculture National Agricultural Statistics Service 

(USDA NASS)(34) for California for the most recent 5-year pesticide application 

data (2014-2018). For users seeking to customize crop values, the same database 

provides crop values at the state and county levels for the United States.  

o ‘app_site_id’: Unique pesticide application site identifier. For users 

employing the CDPR PUR database, the ‘app_site_id’ must match the 

‘site_code’ field identifier in the CDPR PUR database (see 

‘EnvironmentalReleaseTool/docs/ApplicationSiteForamtting.csv’). If the user 

manually inputs pesticide use data (via the ‘Pesticide_Applications.csv’ input 

file), the ‘app_site_id’ used here must match the pesticide use data. 



 
 

111 
 

o ‘pmpm_id’: Unique application site identifier in outputs of the Environmental 

Release Tool (ERT) of the Pesticide Mitigation Prioritization Model (PMPM). 

This field can summarize outputs from unique application sites in pesticide 

use data into application site type groups, see Table 3. 

Table 3. Application site groups. Example Environmental Release Tool inputs that group 
application site names (app_site_id) into a ‘pmpm_id’ to enable summarization of applied 
toxicity across similar sites. 
 
app_site_id pmpm_id harvested_ha gross_usd 

AIRPORT Urban NA NA 

ALFALFA Alfalfa 308,864 1,027,626,000 

ALFALFA-GRASS MIXTURE Alfalfa 308,864 1,027,626,000 

 

o ‘harvested_ha’: The statewide harvested hectares for each crop type. Numeric 

formatting with no commas must be employed (e.g., no thousands placeholder 

nor comma used as the decimal); to represent decimals, employ a period (.). 

This data is available in the USDA NASS(34) database. 

o ‘gross_usd’: Gross value of crop per year. Numeric formatting with no 

commas must be employed (e.g., no thousands placeholder nor comma used 

as the decimal); to represent decimals, employ a period (.). This data is 

available in the USDA NASS(34) database. 

o ‘health_val’: Health score calculated for the entire study area for application 

site types.  

o ‘econ_val’: Economic score calculated for the entire study area for application 

site types.  
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• ‘PesticideApplications.csv’ fields to input pesticide use data; populating this file is 

ONLY required for users manually inputting pesticide use data (not employing the 

ERT autoload feature). We recommend that users who evaluate California 

agricultural study sites employ the module's automatic pesticide use population 

feature; see Section 3.4 for more information about the autoload feature. Users with 

analyses external to California may benefit from exploring the pesticide use databases 

provided by the United States Geological Survey(35,36) or PEST-CHEMGRIDS(17).   

o date: Date of pesticide application, format dd/mm/yy.  

o huc: Unique hydrologic unit code watershed identifier. Formatting is the 

number of digits of the HUC with no characters (e.g., eight, ten, or twelve) 

and must match values in the ‘huc’ field of the ‘Watersheds.csv’ input file. 

o huc_name: Name of hydrologic unit code watershed. Formatting is up to the 

user. Users can use WBD default names or create custom names that employ 

characters, numbers, or underscores (no special characters). 

o app_site_id: The name of the application site should match the name of the 

source data frame, but this is not a requirement. This field must match the 

‘app_site_id’ present in the ‘Application_Sites.csv’ input file.  

o pesticide: Name of pesticide applied; the field must match the names 

employed in the ‘pesticide’ field in the ‘Pesticides.csv’ input file (can be 

unique from the ‘pesticide_id’ field).  

o pesticide_kg: Mass of active ingredient applied. Formatting is numeric with 

no commas (employ ‘.’ to indicate decimal places).   
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2.7.3.3 Watershed Spatial Data 

The watershed spatial data is employed to visualize the distribution of pesticide applied 

toxicity across watersheds in the graphical user interface. The watershed spatial data file 

formats are shapefiles (*.shp) stored in the directory 

‘EnvironmentalReleaseTool/data/inputs_watershed_spatial_data’. Users conducting 

simulations in California are provided with watershed spatial data files by default in the ERT; 

for other states/counties in the United States, the files can be downloaded from the Natural 

Resources Conservation Service Geospatial Gateway in a few minutes(37). The watershed 

file for the area of interest (e.g., the entire state) will likely be large (>5 MB). For the ERT to 

run efficiently, the polygons should be simplified if the user has the technical expertise. An 

efficient method for simplifying the polygons is to employ the ‘ms_simplify’ function in the 

‘rmapshaper’ package for RStudio (other software users may be more familiar with can be 

used to simplify polygons such as QGIS).  Polygons should be simplified to less than 2 MB; 

the smaller the file, the more efficiently the tool will run. Simplifying polygons does NOT 

affect the analysis resolution, only the graphical summary heatmap in the user interface.  

Follow these steps to download the watershed shapefile: 

1) Navigate to the Geospatial Data Gateway via this link: 

https://datagateway.nrcs.usda.gov/ 

2) In the lower right-hand corner, select the link to ‘Order by County or Counties’ or 

‘Order by State’.   

3) Choose the study area of interest (State or Counties) from the drop-down list.  

4) Scroll down to the heading ‘Hydrologic Units’ (headings are in alphabetical order). 

https://datagateway.nrcs.usda.gov/
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5) Select the resolution to download by 8 Digit Watershed Boundary Dataset (HUC8), 

10 Digit Watershed Boundary Dataset (HUC10), 12 Digit Watershed Boundary 

Dataset (HUC12), or other.  

6) Select the ‘Continue’ button at the bottom of the page.  

7) Under the ‘Format’ heading, select the ‘ESRI Shape’ files from the list. Do not select 

‘Separate ESRI Shapefiles’.  

8) Under the ‘Projection’ heading, select ‘Geographic NAD83’. 

9) Press ‘Continue’ at the bottom of the page.  

10) Enter your email address to receive a link to the requested data, and press ‘Continue’ 

at the bottom of the page. 

11) Review your order and click ‘Place Order’ on the window's lower left.  

12) Open the data download link on your device. Save the downloaded data files 

(shapefiles have multiple files associated with them to display spatial data) into the 

‘inputs_watershed_spatial_data’ directory under the sub-directory of the watershed 

delineation downloaded. For example, save HUC8 watershed data under the 

‘EnvironmentalReleaseTool/data/inputs_watershed_spatial_data/huc8’ directory and 

HUC10 watershed data under the 

‘EnvironmentalReleaseTool/data/inputs_watershed_spatial_data/huc10’ directory. If 

saved under the incorrect directory (e.g., HUC10 data under ‘huc8’), the module will 

not run. Also, ensure the file extensions *.shp, *.prj, *.dbf, and *.shx are present. 

Other files will be present from the data download, which can be copied into the 

folder but are unnecessary for the ERT. 
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2.7.3.3 Pesticide Autoload Feature 

Pesticide use for agricultural applications can be autoloaded in the ERT for California 

study areas if opted for by the user (see Section 3.1). The data employed are derived from the 

CDPR pesticide use reports(19) and are stored in the 

‘EnvironmentalReleaseTool/data/cdpr_pur’ directory. The pesticide use is reported at the 

daily time step by application site type at a resolution of 2.6 km2 (1 mi2), the 

county/range/township/section (COMTRS). This data is assigned to a given watershed in the 

ERT via geospatial intersect analyses. For pesticide use reporting units (COMTRS) 

overlapping multiple watersheds, the fraction of the total area of the pesticide reporting unit 

within a given watershed is used to weigh the amount of pesticide applied.  

By default, pesticide use reports are available for the most recent 10-year period for 

available pesticide use data (2008-2018 at the time of this guide’s publication). They are not 

to be modified by the user without the potential for model disruption. For users seeking to 

conduct analyses before this period, follow these instructions to download data for additional 

years (1990 onward). This is a quick process that will take a few minutes.  This data is not 

included by default because they are large files that require a lot of memory on your device 

(~60 MB per year of data). 

1) Visit the California Pesticide Information Portal website operated by the CDPR and 

navigate to the ‘Data Archives’. At the time of this guide’s publication, the link to the 

homepage with the ‘Data Archives’ link is https://calpip.cdpr.ca.gov/main.cfm. 

Windows users may need to use Firefox or Internet Explorer as their web browser to 

avoid known issues with Chrome. 

2) Download data for years of interest to your analyses.  

https://calpip.cdpr.ca.gov/main.cfm
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3) Drag or copy data from all years of interest to the ERT sub-directory 

‘EnvironmentalReleaseTool/data/cdpr_pur’. Unzip each file in this location (may be 

done by opening the zip file for many users or using a secondary software on your 

device for exporting zip files).  

4) The ERT can now use data for additional years.    

2.7.4 Outputs 

 The ERT offers users graphical and tabular summaries to prioritize toxicity reduction 

strategies detailed in this section.  

2.7.4.1 Graphical Outputs 

When the ERT is opened in the web application, the user can summarize applied 

toxicity by HUC8 watersheds (~3,600 km2) or HUC10 watersheds (~440 km2); for more 

information on the watershed delineations, see the Watershed Boundary Dataset.(27) They 

can then choose to summarize data by month or year. Default data summarizations are by 

HUC8 watershed, time-step year, with the first year 2014 and last 2018 (Figure 1). In the 

desktop application, the watershed resolution displayed will depend on the watershed 

identifier employed in the simulation inputs file (‘Simulation_Information.csv’). If an 8-digit 

value is entered in the ‘Watersheds’ sheet of the input file in the ‘huc’ field, the tool will 

automatically display HUC8 watersheds; if a 10-digit value is entered, HUC10 watersheds, 

etc.  To change the watershed scale at which applied toxicity is summarized graphically, a 

user can display simulations that have been run previously (see Section 3.1) or run a new 

simulation for watersheds at a different spatial resolution. The desktop tool can summarize 

applied toxicity by at any scale of interest to the user (Figure 1). The HUC12 is not offered 

in the web tool due to the high memory storage required for the high-resolution data.  
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To view watershed-specific data, click the watershed of interest on the map; see 

Figure 4. The watersheds are partially transparent, so users can see the names of cities and 

water bodies on the map to help orientate their search. When hovering over the map, the 

following information is provided: the name and number of the HUC, the date by which the 

data is currently summarized, the applied toxicity during the time step, and the applied 

toxicity relative to other watersheds. The applied toxicity relative ranking of low to very high 

is determined via the percentiles of watersheds analyzed; very low represents watersheds in 

the lower 20th percentile of toxicity, low 20-40th percentile, medium 40-60th percentile, high 

60-80th percentile, and very high 80-100th percentile. Watersheds with no pesticides applied 

are not considered in the percentile analysis and are depicted as having no pesticides applied. 

Relative toxicity index in the heat map and other graphical summaries are displayed 

in the side panel. The toxicity index presented on the map in the graphs are in scientific 

notation, a standard format for writing large or small numbers in science. The format 

indicates where the decimal place is relative to the reported digits. For instance: 

 

Scientific Notation Value 

1.00E+06 1000000 

1.00E+05 100000 

1.00E+04 10000 

1.00E+03 1000 

1.00E+02 100 

1.00E+01 10 

1.00E+00 1 
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1.00E-01 0.1 

1.00E-02 0 

 

Figure 4. Clickable heatmap. Information provided by the Environmental Release Tool 
within the heatmap when a watershed is selected. Base map imagery is a product of 
OpenStreetMap https://www.openstreetmap.org/copyright. 
 

  

 

When a watershed is selected in the heatmap, the additional graphical summaries will 

appear in the side panel. A user can view additional value-specific information for each 

Watershed name 

HUC unique numeric 
identifier 

Time-step of data 
summarization 

Toxicity Index  

Relative Toxicity 

https://www.openstreetmap.org/copyright
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graph by hovering over the plot. For instance, in the ‘Site Applied Toxicity’ graph for 

watershed HUC 18030009, it’s observable that almonds contribute 39% of watershed applied 

toxicity (Figure 5(a)). To save graphical summaries from the user interface, a user can hover 

over the summary graphic of interest, and in the top right, icons will appear. If the user 

selects the camera icon (Figure 5(b)), they are given the option to download the image. 

 

Figure 5 (a and b). Pesticide and site applied toxicity. a) Example of the Environmental 
Release Tool graphical summary of applied toxicity from pesticide application site types and 
b) how hovering provides additional details. To download a graphic of interest, hover over 
the image. In the upper right-hand corner, select the camera icon (see red arrow) to prompt 
the tool to download the image. 

 

a) 
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b) 

2.7.4.2 Tabular Outputs  

For the web tool, users can obtain tabular data by following the data download link in the 

upper right of the tool window. For desktop users, the data will automatically be saved into a 

sub-directory named after the simulation in the ‘EnvironmentalReleaseTool/output/’ 

directory. For each simulation, a new sub-directory with the simulation is created in the 

output directory and is provided to the user in the format of ‘*.csv’. Each file name begins 

with the simulation name and ends with file name descriptors (e.g., 

SimulationName_Watershed.csv’).  

 

Tabular outputs the user is provided within the ‘output/SimulationName’ include:  

• ‘SimulationName_Pesticides.csv’: Applied toxicity per pesticide for the simulation 

period. 

• ‘SimulationName _ApplicationSites.csv’: Applied toxicity per application site for the 

simulation period. 
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• ‘SimulationName _Watershed.csv’: Applied toxicity per watershed for the simulation 

period. 

• ‘SimulationName_PesticidesPerApplicationSite’: Applied toxicity for each pesticide 

per application site for the simulation period. 

• ‘SimulationName _PesticidesPerWatershed.csv’: Applied toxicity for each pesticide 

per watershed for the simulation period. 

• ‘SimulationName _ApplicationSitesPerWatershed’: Applied toxicity for each 

application site per watershed for the simulation period. 

• ‘SimulationName_PesticidesPerApplicationSitePerWatershed’: Applied toxicity for 

each pesticide per application site within each watershed for the analysis period.  

• ‘SimulationName _PMPM_Output_Daily_Summary.csv’: Optional output (user 

selects to view this output in the input file ‘Simulation_Information.csv’), which 

provides a daily level summary of applied toxicity by site, chemical, and watershed 

for the simulation period. 

Fields of the output data frames include: 

 huc: Unique hydrologic unit code watershed identifier. 

 huc_name: Name of hydrologic unit code watershed. 

 pesticide: Name of pesticide evaluated. 

 pmpm_id: Unique pesticide application site type for the Environmental 

Release Tool (ERT) in the Pesticide Mitigation Prioritization Model 

(PMPM). By default, the tool simplifies 268 unique application site 

types in pesticide use reports to 96). 

 pesticide_kg: The mass of pesticide applied (kg). 
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 RTI: The applied toxicity (TI/ha) weighted by the affected 

compartment area in a watershed, Equation (2). 

 NTI: The applied toxicity (unitless) of pesticide applied weighted by 

the applied toxicity of a pesticide and watershed in the nth percentile of 

applied toxicity, see Equation (3). 

 NTI_perc: Percentile of pesticide applied toxicity in watersheds used 

to calculate the NTI, see Equation (3). 

 econ_score: Score of the economic value of application sites 

(USD/ha).  

 econ_val: Relative magnitude of the economic value of application 

sites. Calculated in 20th percentile bins as ‘Very Low’, ‘Low’, 

‘Medium’, ‘High’, and ‘Very High’. 

 econ_health_score: Index of the economic value of an application site 

and its protectiveness of environmental health (USD/NTI). 

 econ_health_val: Relative magnitude of an application site's economic 

value and environmental protectiveness. Calculated in 20th percentile 

bins as ‘Very Low’, ‘Low’, ‘Medium’, ‘High’, and ‘Very High’. 

 health_score: Index of an application site’s protectiveness of 

environmental health (NTI/ha). 

 health_val: Relative magnitude of an application site’s protectiveness 

of environmental health. Calculated in 20th percentile bins as ‘Very 

Low’, ‘Low’, ‘Medium’, ‘High’, and ‘Very High’. 
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2.7.5 Example Applications – Environmental Release Tool 

This section provides examples of how users might employ the ERT to attain 

pesticide mitigation insights. Recall that the module does not predict exposure, enabling an 

evaluation of health risks (see Section 1.0). Instead, the ERT allows users to explore sources 

of applied toxicity, regional variability, and mitigation options for reducing toxicity. 

Similarly, economic and health indices flag high applied toxicity application sites relative to 

their gross economic value. Still, they do not account for other important considerations, such 

as how much pesticides migrate to air and water or the costs of cultivating a crop.  

2.7.5.1 Temporal Trends 

The Bay Delta Watershed in California is home to a rich community of organisms, 

including over 90 threatened or endangered species(38–40). Significant concerns for 

pesticide toxicity in waterways have been observed within the watershed.(41) In reviewing 

results from the ERT for sub-watersheds of the Bay Delta for 2014-2018,  two sub-

watersheds that contribute to high applied toxicity are the Dry Creek and the Lower Feather 

River. Graphical summaries provided by the ERT of temporal trends in the Dry Creek 

subwatershed demonstrate the applied toxicity increased from 2014-2018 (Figure 6). In the 

Lower Feather River Watershed, applied toxicity has remained relatively steady and 

decreased marginally. These insights suggest mitigation efforts should prioritize better 

understanding and mitigating the increased pesticide-applied toxicity in the Dry Creek 

Watershed, which is also higher than that of the Lower Feather River Watershed.  
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Figure 6 (a and b). Example of temporal trends of pesticide-applied toxicity provided by the 
Environmental Release Tool for a) the Dry Creek subwatershed and b) the Lower Feather 
River subwatershed. 

 

a) 

 

b) 

2.7.5.2 Chemical Alternatives 

From the ERT heatmap of statewide watersheds, an almond farmer observes that her 

Upper Poso watershed receives high applied toxicity. In the review of the crops contributing 

to toxicity in the watershed, almonds introduce over 60% of applied toxicity. Moreover, of 

the hundreds of different pesticide and crop treatment types in the watershed, bifenthrin on 

almonds accounts for 30% of all pesticide-applied toxicity. The almond farmer considers her 
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routine use of bifenthrin to combat mites, one of the watershed's most damaging pests to 

almonds. Given this knowledge of the high environmental impact of bifenthrin on bees and 

aquatic fauna, she reviews a chemical alternatives database (42). In the review of 

alternatives, she observes that bifenazate is a pesticide that targets mites and has a 

substantially lower toxicity profile and environmental persistence. If bifenazate were 

employed as an alternative to bifenthrin to treat almond mites, the applied toxicity per 

hectare would be reduced by 400-fold for fish and over 100,000-fold for aquatic 

invertebrates. For the subsequent treatment of mite pests, the farmer employs bifenazate.  

2.7.5.3 Prioritizing Monitoring 

For pesticide use practices in California, it was observable from outputs of the ERT 

for 2014-2018 that of the hundreds of pesticides in use, 15 introduced 99% of environmental 

applied toxicity. Moreover, 80% of applied toxicity was applied to 14 different site types and 

14 watersheds. Exemplary actions that may be taken from these insights include exerting 

more effort in the registration/re-registration process for the chemicals and sites identified as 

contributing the majority of applied toxicity or designing monitoring campaigns to more 

closely monitor high-impact chemicals and application sites.   

2.7.5.4 Health and Economic Tradeoffs 

The ERT provides health and economic indices of the sites to which pesticides are 

applied. By considering health protectiveness and the economic value of sites targeted during 

pesticide application, users can evaluate approaches for working with pesticide users to 

reduce applied toxicity in at-risk watersheds. For example, from 2014-2018 in California, 

cotton was observed to have a low economic value per hectare of site types with the highest 
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applied toxicity. In high-risk watersheds, farmers may be incentivized to cultivate crops with 

lower applied toxicity and higher economic value (see Table 1).    

2.7.6 Errors and Updates 

The ERT was developed as a part of an ongoing PhD dissertation and has limited 

capacity for user assistance at the time of this guide’s publication. Accordingly, the tool was 

developed in one of the most widely used data science tools for which a plethora of online 

assistance exists for errors encountered during simulation runs. Users can explore solutions 

to errors encountered via googling the error codes or exploring question and answer websites 

such as Stack Exchange.  Users troubleshooting errors should prioritize ensuring all inputs 

match the EXACT formatting of template files and input field formats described in Section 

3.0 Parameterization. Second, a user should explore device-specific errors for running the 

RStudio software and packages via an internet search of the error code. Third, the user 

should revisit the ERT download link and look for model updates. 
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Chapter 3. Scaling Up the Identification of Pesticide Sources and Risk 

Reduction Targets for Aquatic Environments 

Pesticides remain a primary cause of dispersed chemical pollution in surface waters, 

emphasizing the importance of tools that can identify and prioritize strategies to mitigate 

risks. To target risk reduction opportunities, we introduce a tool, the Environmental Fate 

Tool (EFT), which is novel in its ability to, within a single simulation, quantify the aquatic 

risks for hundreds of pesticides and watersheds across expansive landscapes that encompass 

tens of thousands of kilometers. The EFT goes further by, within a single simulation, 

pinpointing spatially explicit source contributions of application sites within watersheds and 

scaling up analyses to the study extent. The tool is a discretized, mechanistic fate model, 

unique in its capacity to deliver individual and cumulative pesticide screening ecological risk 

assessments at various scales, thereby facilitating the development of strategies to safeguard 

our water resources.  

This investigation applied the tool to simulate pesticide concentrations and associated 

risks for 208 watersheds with agricultural development in a 22,000 km2 study area within the 

San Francisco Bay Delta Watershed, California. Risks to various aquatic organisms, 

including fish, invertebrates, and nonvascular and vascular aquatic plants, were considered. 

Results demonstrate that from 2016 to 2020, 80% of pesticide risks, as weighted by 

application area, were concentrated in 9% of the watersheds and were predominantly 

attributable to applications of lambda-cyhalothrin, imidacloprid, and indaziflam to aquatic 

taxa investigated per area of pesticide application. Most (81%) of toxicity for pesticide active 

ingredients considered (290) are predicted for invertebrates, followed by 16% for vascular 

plants, 3% for nonvascular plants, and 0.3% for fish. Furthermore, across the simulation 
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period, a consistent trend was observed for applied pesticides—the maximum cumulative risk 

of pesticides transported to surface waters for each taxonomic group significantly (p<1E-10) 

exceeded that posed by individual pesticides. The maximum cumulative risk observed for 

any day of the simulation was 370%-820% greater than individual pesticide risk for 

investigated taxa. 

3.1 Introduction 
Pesticides profoundly impact global environmental pollution(1–4) and are the 

predominant cause of aquatic toxicity of dispersed organic chemical pollution in both the 

United States(2) and Europe(1). However, understanding the specific risks they pose to 

diverse taxa is challenging, given variations in their use patterns, landscape characteristics, 

and crop management practices. Assessing pesticide risks becomes particularly difficult due 

to limited monitoring observations for model calibration, data paucity for environmental 

parameterization, and insufficient resolution and availability of pesticide use data. Yet, 

overcoming these challenges is crucial for preserving and restoring environmental health. 

Fortunately, geospatial datasets have made significant advancements, particularly in 

California, offering valuable information on pesticide applications, soil hydrologic 

properties, climate, and irrigation practices. Despite this wealth of data, existing tools fall 

short in their ability to fully harness available data to identify risks of the many pesticides 

used simultaneously at the scale they are registered and managed in the United States and 

Europe, typically at state, national, or multi-national levels(5,6). 

Widely used tools like SWAT(7–9) and HSPF(10–12) in the United States, as well as 

SYNOPS(13,14) in Europe, support analyses of agrochemical risks over large areas. 

However, they cannot compare risks for the many pesticides in use within a single 
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simulation, nor account for risks of pesticide mixtures, which can be significantly higher, 

especially considering the seasonality of pesticide impacts or longer exposures(15–17). 

Additionally, these tools do not effectively highlight the sources of pesticide risk in their 

outputs, such as identifying specific application sites that contribute the highest pesticide risk 

from runoff and eroded sediments. 

The present investigation addresses these limitations by developing the EFT to 

efficiently prioritize risk reduction needs and opportunities for numerous pesticide 

application sites managed across large geographic extents. The EFT quantifies pesticide 

concentrations in environmental media for hundreds of pesticides and watersheds per 

simulation, as well as thousands of application sites. It also provides risk indices for various 

aquatic taxa, identifies primary sources of pesticide toxicity at multiple scales, and predicts 

the number of days concentrations exceed adverse health effect levels. The EFT is part of the 

Pesticide Mitigation Prioritization Model framework and includes a companion model, the 

Environmental Release Tool(16), which summarizes hotspots of pesticide-applied toxicity.  

By considering large extents, we gain a better understanding of where risks exist; 

however, limited data availability or resolution for chemical use rates/locations, 

environmental characteristics, instream hydrology, and climate can increase uncertainty and 

pose challenges.  

For complex fate and transport models, it is common to consider numerous 

parameters requiring proxy data from other sites, expert judgment, or to use static values for 

highly variable characteristics such as stream dimensions, suspended sediment organic 

carbon concentrations, suspended particle radius, burial rate, resuspension rate, etc. Global 

calibration methods are often used to parameterize such models, which involve fitting the 
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model parameters such that the output approaches observed data(18). However, this approach 

is prohibitive of risk modeling in that many surface waters and watersheds have limited or no 

monitoring data for many of the pesticides in use. The calibration approach also emphasizes 

global model responses (e.g., predictions at the watershed outlet), which can mask important 

sources of toxicity(19,20). These sources of toxicity remain hidden because the model is 

adjusted to match landscape and waterbody parameters in a way that minimizes discrepancies 

between predicted chemical concentrations in the waterbody and the limited available 

observations. Observations are highly limited spatially and temporally relative to predictions, 

and parameterization via global calibrations may not reflect our best understanding of how to 

represent unique landscape conditions and management practices' effects on the transport of 

chemicals from specific sites in runoff and eroded sediments.  

To overcome the need to perform global calibrations in surface waters for large-scale 

risk assessment tools, a key aim of the EFT is to understand sources of pesticide risk by 

quantifying pesticide concentrations in surface runoff, lateral flow, eroded sediment, and 

benthic sediment based on high-resolution pesticide use reports. The aim is to provide a tool 

able to evaluate aquatic risks as a calibrated or uncalibrated tool where instream hydrologic 

data is unavailable or limited. The EFT emphasizes the identification of realistic 

concentrations in the most vulnerable tributaries within a watershed and predicts intra-

waterbody risks from runoff and eroded sediment concentrations, which has important 

advantages for evaluating risk at scale.  

Simulating instream concentrations requires complex data about aquatic compartment 

dimensions, discharge, and instream processes. These types of data are often unavailable or 

have severely limited spatial resolution. For instance, discharge, a critical instream 
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characteristic, has the most extensive temporal coverage. However, in many regions, such as 

California, discharge is only monitored at approximately one location per 220 km of stream 

length(21,22). Moreover, 66% of streams in California are dry for a substantial part of the 

year(22). As a result, obtaining comprehensive and representative data for instream 

characteristics is challenging. 

Another advantage of the EFT’s approach, predicting aquatic risks from runoff, 

lateral flow, and eroded sediment is the ability to explore potential risks to the most 

vulnerable waterways within each watershed where monitoring data of many pesticides in 

use are unavailable. During a runoff event in small tributaries, instream concentrations 

approach those of runoff(23); this is attributable to the waterbodies having lower dilution 

potential and slower discharge rates. These small waterbodies also have important ecological 

significance as they can host greater biodiversity(24). By simulating concentrations in runoff 

and eroded sediment, the EFT facilitates the identification of risks to vulnerable waterways, 

thereby contributing to more effective risk assessment and management strategies for data-

limited aquatic ecosystems. 

In this study, we introduce the EFT's development, application, and validation for 

targeting pesticide sources and risk reduction opportunities at scale. We evaluate the tool’s 

application for subwatersheds of the Bay Delta Watershed (BDW) in California.  The BDW 

study extent encompasses 22,000 km2 of intensive agriculture in 208 watersheds within ~100 

km of the San Francisco Bay Delta (Figure 1). The BDW encompasses diverse crops, 

irrigation practices, soil characteristics, and pesticide use strategies, making it a useful study 

area. Furthermore, over 90 threatened or endangered species are found in this area(25), and 
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56% of waterways designated as impaired by pesticides in California are located within 

waterbodies hydrologically connected to the Bay Delta(26).  

The objectives of this investigation of pesticide risks to aquatic taxa in the BDW are 

as follows: 1) assess the EFT's effectiveness in accurately predicting concentrations in small 

agricultural water bodies across large geographical areas; 2) identify the specific sources, 

application sites and pesticides, that contribute the greatest aquatic risks within individual 

watersheds and across the entire study area; 3) quantify the significance of accounting for 

pesticide mixtures to understand the frequency of runoff events with concentrations that may 

cause adverse effects on aquatic organisms. 
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Figure 1. Investigated subwatersheds in the Bay Delta Watershed and their summer crop 
rotations. 
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3.2 Methods 

To identify risk reduction opportunities, the EFT requires users to delineate their 

study extent by watersheds, as well as by unique application sites and, optionally, crop 

rotations. We recommend and use watersheds from the USGS Watershed Boundary 

Dataset(27). The dataset delineates watersheds using hydrologic unit codes (HUCs), which 

employ a numeric ordination approach to naming watersheds in consideration of their 

hydrologic connectivity across various spatial scales. Watershed names also have different 

lengths that correspond to their resolution. For instance, HUC 2-digit codes cover hundreds 

of thousands of square kilometers, and HUC 12-digit codes (HUC12) represent 

subwatersheds of the shorter digit codes (e.g., HUC2), typically spanning tens to hundreds of 

square kilometers. In our study, we focus on HUC12 watersheds, with an average area of 100 

km2 in California. 

3.2.1 Sources 

To evaluate the spatiotemporal distribution of pesticides, the EFT enables manual 

inputs of pesticide use data via text files; or, for California, the tool can autoload pesticide 

use report data from statewide agricultural applicators(28). The EFT internally hosts the 

pesticide use data for California. Using an autoload sub-module, the tool aggregates data for 

the area of interest to the user.  

Pesticide use data in the EFT autoload submodule used for this investigation are 

retrieved by active ingredient (AI) and for the 432 site types that are agricultural from 

California Department of Pesticide Regulation (CDPR) Pesticide Use Reports(28). The 

pesticide use reports contain daily time-step pesticide application data by site type at the 
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County Meridian Township Range Section (2.6 km2, referred to as Section). Rice and urban 

applications are excluded from the autoload pesticide use sub-module. Rice applications were 

not considered owing to their use of water detention mechanisms not simulated by the tool. 

Urban applications are excluded due to use reports not including household applications, and 

most professional urban applications being recorded at the county level and at a monthly 

time-step, which cannot be allocated to a specific watershed or date. Although not 

accommodated in the autoload feature for pesticide use data, the EFT also supports 

evaluations in urban and undeveloped lands where users aggregate the required inputs 

manually.  

To identify the contributions of specific application sites to pesticides within a 

watershed, the EFT adapts the SWAT method of delineating unique land uses, where 

watersheds are subdivided into Hydrologic Response Units (HRUs)(29). Within each HRU, 

environmental media characteristics are treated as both homogenous and contiguous. Using 

this approach, the effects of distinct soil hydrologic behaviors (such as runoff, infiltration, 

and water storage), as well as application rates on the transport and transformation of 

pesticides, are accounted for within each HRU.  

To delineate HRUs by crop type, county-specific agricultural department crop 

permitting spatial data (e.g., Kern(30)) and the crop type reported in pesticide use reports 

could be used to delineate field level data crop use data; however, this data was unavailable 

for most of our study extent. Accordingly, to assign application data to a specific location 

within each Section, we employed the 2018 California Department of Water Resources 

(CADWR) land use surveys(31) to delineate HRUs; the surveys employ satellite imagery and 

ground truthing surveys. The 2018 dataset was leveraged to delineate fields, although more 
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recent land use data sets exist due to the year representing conditions in the middle of the 

simulation period.  The CADWR dataset was selected from reviewed land use datasets, 

which include the CDL(32) and NLCD(33) datasets, due to its provision of the most accurate 

data, with a median accuracy of 97.5% and positional quality of 8m(34).  

For the present investigation, we delineate HRUs by considering fields within a 

watershed that maintain the same crop rotation patterns throughout the year. Taking into 

account crop rotations is particularly important in warmer regions like California, where it’s 

frequent to have 2-3 crop rotations within a single field and year. Incorporating crop rotations 

is crucial as it enables users to grasp the cumulative impacts of pesticide toxicity from 

specific application sites within a watershed. This approach also allows us to simulate diverse 

irrigation practices and evaluate the risks linked to fields cultivating multiple crops within a 

year. In total, 2,794 HRUS were delineated in the study extent. 

After delineating watersheds and HRUs for analyses in California, the EFT can 

autoload pesticide use data from the most recently available pesticide use reports. The 

autoload feature assigns pesticide use data to watersheds using a relational database 

developed for the Sections within which pesticide use is reported and watersheds from 

geospatial intersection analyses.  

Section geospatial data is available through the California Pesticide Information 

Portal(28). To assign pesticide use data within a Section that overlaps multiple watersheds, 

the applied mass is divided by the area fraction of overlap. Within each watershed, pesticide 

use can then be assigned to the land uses within the watershed by quarterly crop rotations. If 

multiple HRUs of a watershed have the same crop rotation within a given quarter, 

assignment of pesticide application to HRUs is conducted by weighting the total mass of 
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applied pesticide in the watershed for a given day to the crop types by the cultivation area of 

each HRU. 

The relationship between multiple watershed resolutions is accommodated in the 

pesticide use autoload feature, which includes HUC12 (~100 km2), HUC10 (~440 km2), and 

HUC8 (~3,600 km2) watersheds. Pesticide use data for all of California for the most recently 

available 10-year period is hosted internally and is updated as new data becomes available 

(latest dataset 2021). To accommodate the assignment of pesticide uses to specific land uses 

of interest to the user within these watersheds, the tool considers information input for the 

user’s HRUs, which describe which watershed the HRU is located in.  

The autoload feature for pesticide use data is only suitable when considering all fields 

of crop types of interest within a watershed. Where only the analysis of a few fields of a crop 

type (e.g., grapes) is of interest to the user, the auto-load submodule will still aggregate all 

pesticide use data for the crop type in the watershed.  

Pesticides evaluated in the present investigation were detected in surface water 

monitoring campaigns in California from 2014-2018(35). Of detected pesticides with 

available toxicity data, we simulated all forms of their active ingredient (n=290) within 

California’s pesticide use reports.  

3.2.2 Irrigation 

A submodule for the EFT was developed to simulate irrigation based on methods 

reported by growers. For the study, irrigation extent accounts for ~600-800% of water 

received by fields and is a key factor in simulating landscape hydrology for the prediction of 

the offsite transport of pesticides. To quantify the irrigation water application volume and 
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frequency from reported methods, the submodule then considers distinct crop 

evapotranspiration rates, crop growth stages, crop rotations, the soil water holding capacity in 

each HRU, and plant water stress. These data enable us to predict the variation in irrigation 

timing and applied volume among diverse crops and for the same crop type across the 

landscape in the absence of detailed irrigation data, which is rarely available due to 

proprietary constraints stemming from socioeconomic factors. 

For crops, the irrigation methods used are reported by growers to the California State 

Water Resources Control Board as part of their compliance with the Irrigated Lands 

Regulatory Program(36). This program oversees agricultural land discharges to mitigate 

potential water quality impacts and requires reporting irrigation methods per crop by Section 

(2.6 km2). Although the program's coverage isn't statewide, it encompasses more than 2 

million hectares of agricultural land, involving approximately 40,000 growers and 

encompassing most of the BDW study extent. To assign irrigation method data to specific 

HRUs, we conducted a spatial join with reports and the CADWR 2018 land use survey data 

(by Section). In cases where irrigation methods were not reported for specific areas within 

the study region, we utilized the nearest neighbor interpolation technique, based on crop 

types, to predict the irrigation method used for an HRU. 

Evapotranspiration and precipitation data employed to predict the irrigated water 

depth required to alleviate the plant water stress of HRUs is derived from the comprehensive 

climate monitoring network known as the California Irrigation Management Information 

System (CIMIS)(37). The stations are operated by the CADWR with the aim of supporting 

informed irrigation for growers.  
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Within the CIMIS system, a network of 267 monitoring stations (although not all are 

currently operational) collects daily weather data. Utilizing this data, we conduct calculations 

to estimate water loss for each unique HRU and irrigation method to predict irrigation 

requirements. This involves taking into account several key factors: the specific crop 

rotations associated with each HRU, the soil's capacity to retain water within the crop's 

rooting depth, the developmental stages of the crops, and the irrigation methods’ typical rate 

of application and efficiency. Information about crop rotations is derived from the CADWR's 

land use survey(34), data for the available water capacities of HRU soils are sourced from 

gSSURGO(38), and the crop rooting depths are derived from the National Resource 

Conservation Service Irrigation Guide(39). For the developmental stages of crops, crop 

evapotranspiration coefficients, and method application rates and efficiencies, we consider 

data from the Basic Irrigation Scheduling Program dataset(40). In cases where coefficients 

were unavailable, we turn to values provided by the University of California Division of 

Agriculture and Natural Resources(41,42).   

Essential to the prediction of irrigation and impacts to pesticide transport is 

accounting for the crop water stress. To achieve this aim, evapotranspiration coefficients that 

relate evapotranspiration data at reference stations to specific crops were used(43). From the 

reference evapotranspiration observed at monitoring stations, the actual crop 

evapotranspiration 𝐸𝐸𝑉𝑉, is calculated as(41): 

𝐸𝐸𝑉𝑉 = 𝐸𝐸 ∗ 𝐾𝐾𝑝𝑝 3.2.1 

Where 𝐸𝐸 is the evaporation observed at the monitoring station and 𝐾𝐾𝑝𝑝  is the crop 

evapotranspiration coefficient.  
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The 𝐾𝐾𝑝𝑝 is calculated for different crop stages, categorized as A, B, C, D, and E. Each 

stage represents a specific phase in the crop's growth cycle. Stage A to B represent the crop's 

initial growth stage, the period from planting to about 10% of the crop’s full ground shading; 

stage B to C is the rapid growth phase where crop ground shading is 10% to 75%; stage C to 

D is the midseason where crop ground shading is greater than or equal to 75% ground 

shading until the crop begins to have reduced evapotranspiration due to aging(41,42). 

Finally, stages D to E represent the late season, characterized by a gradual decline in the 

crop's evapotranspiration coefficient until harvest(41,42). During stages A to B and C to D, 

constant evapotranspiration rates are applied, meaning the crop coefficient remains stable 

throughout these phases.  

For stages with a dynamic 𝐾𝐾𝑝𝑝, B to C and D to E, changes are estimated 

mathematically using a linear representation of 𝐾𝐾𝑝𝑝  where the slope 𝑏𝑏 is calculated 

using(41,42): 

𝑏𝑏 = 𝐾𝐾𝑝𝑝2−𝐾𝐾𝑝𝑝1
𝐻𝐻

 3.2.2 

Where 𝐾𝐾𝑝𝑝1 is the crop evapotranspiration at the beginning of the growth stage, 𝐾𝐾𝑝𝑝2 the crop 

evapotranspiration at the end of the growth stage, and 𝑎𝑎 the number of days in the growth 

stage. Using this approach, 𝐾𝐾𝑝𝑝 is calculable for the kth day of the growth stage, 𝑎𝑎𝑘𝑘, as:  

𝐾𝐾𝑝𝑝 = 𝐾𝐾𝑝𝑝1 + 𝑏𝑏 ∗ 𝑎𝑎𝑘𝑘 3.2.3 

To calculate the frequency of water application required to alleviate plant water 

stress, irrigation methods are grouped into four primary methods drip, micro-sprinkler, 

sprinkler, and gravity (i.e., furrow, border strip, and flood). To simulate the irrigation 

schedule and depth of water applied, we then consider typical application rate, the irrigation 

method's efficiency, and the amount of water required to replenish the soil to field capacity 
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down to the rooting depth of the crop. The application rate (mm -h-1) and efficiency, 

respectively, for the irrigation methods are 11.2 and 0.75 for gravity, 3.2 and 0.75 for 

sprinkler, 1.75 and 0.8 for micro-sprinkler, and 0.7 and 0.85 for drip(40).  

The sub-module triggers irrigation to replenish soil water once the water deficit 

reaches a level that leads to unfavorable plant stress, referred to as the Management Allowed 

Deficit, 𝑀𝑀𝐴𝐴𝑀𝑀 (mm)(44). To estimate the 𝑀𝑀𝐴𝐴𝑀𝑀, the sub-module takes into account the soil 

available water capacity 𝐴𝐴𝐴𝐴𝐶𝐶 (mm/mm) for the soil depth from the surface to the 

termination point of the crop's root system, 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝ℎ (mm). Via consideration of these 

properties and the fraction of allowable water depletion, 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝, the 𝑀𝑀𝐴𝐴𝑀𝑀 is calculated as: 

𝑀𝑀𝐴𝐴𝑀𝑀 =  𝐴𝐴𝐴𝐴𝐶𝐶 ∗ 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝 ∗ 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝  3.2.4 

Provided that we have no site-specific information across the study extent for the 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝, and 

commonly the 𝑓𝑓𝑝𝑝𝑝𝑝𝐻𝐻𝑝𝑝𝑝𝑝 is 0.5, we use 0.5 for all crops.  

To calculate the soil water deficit, deficit (mm), at the daily time-step we consider the 

𝐸𝐸𝑉𝑉, irrigated water, 𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝑚𝑚𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝ℎ (mm), and precipitation, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐸𝐸𝑝𝑝 (mm). We assume most 

irrigators due not have soil moisture probes and rely on basic water balance calculations 

where: 

𝑎𝑎𝑝𝑝𝑓𝑓𝐸𝐸𝑝𝑝𝐸𝐸𝑝𝑝 = 𝑎𝑎𝑝𝑝𝑓𝑓𝑝𝑝𝑝𝑝𝐸𝐸𝑝𝑝0+𝐸𝐸𝑉𝑉 − 𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝑚𝑚𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝ℎ − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐸𝐸𝑝𝑝 3.2.5 

When crops are irrigated, we assume the soil moisture content is returned to field capacity, 

𝐹𝐹𝐶𝐶. To determine the 𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝑚𝑚𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝ℎ when the deficit reaches the MAD, we consider the effects 

of the irrigation methods typical efficiency, 𝑝𝑝𝑓𝑓𝑓𝑓(40): 

𝐸𝐸𝑝𝑝𝑝𝑝𝐸𝐸𝑚𝑚𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝ℎ = 𝐹𝐹𝐶𝐶−𝑀𝑀𝐴𝐴𝑈𝑈
𝑝𝑝𝑒𝑒𝑒𝑒

  3.2.6 

To consider the application rate, the irrigation sub-module quantifies the frequency of 

irrigation required for the method’s application rate to maintain desirable soil moisture 
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conditions, and the application rate’s effect to runoff (see Section 3.2.3). For irrigation 

methods with low application rates, like drip, the rates are too low to fully replenish the soil 

water content to field capacity within a 24-hour period if irrigators were to wait until 

reaching the MAD. Instead, our approach assumes that for these methods, irrigation occurs 

with a frequency that ensures the soil water content can be returned to field capacity during 

the lower incident solar radiation hours of the day (we assume 12 hours).  

When evaluating water application rates and frequency to align with daily 

evapotranspiration rates for low-volume irrigation methods, another issue can surface. In 

some cases, the rate and volume of water application required will exceed the soil's 

infiltration capacity, and runoff would be simulated, even though runoff is unlikely to occur 

in reality. This discrepancy arises from the fact that the soil's water retention capacity might 

be inadequate to prevent runoff when the entire field is irrigated. However, low-volume 

irrigation methods are targeted specifically to the plant root area, and excess water can 

infiltrate the surrounding field soil without introducing runoff. Provided the fraction of fields 

that are irrigated is highly variable and insufficient data is available for large extents, the EFT 

takes a different approach to prevent simulating runoff events from low-volume irrigation 

methods.  

When entering irrigation inputs into the EFT for each HRU, users are required to 

specify whether the irrigation method employed on the HRU is categorized as a 'runoff' or 

'no runoff' method. With this approach, HRUs where irrigation methods are employed that 

will produce runoff, such as gravity-based methods, the HRU is designated as a ‘runoff’ site 

and the generated runoff and eroded sediment is calculated using approaches outlined in 

Section 3.2.3. Conversely, for methods categorized as 'no runoff', the assumption is that any 
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excess water near the crop rooting zone infiltrates the surrounding soil. To simulate this, the 

soil water content of the entire field is adjusted to match the field capacity of the HRU's soil. 

This approach bypasses the need for often difficult-to-obtain data—the fraction of soil 

irrigated within the crop field—while ensuring a conservative balance of soil water within 

the field as related to pesticide offsite transport. The approach is conservative in that higher 

soil water content will induce runoff and sediment erosion for smaller precipitation events 

than when soils have a lower water content.  

3.2.3 Environmental Compartments and Pesticide Transport 

The EFT is designed to simulate pesticide concentrations in surface runoff, lateral 

flow, eroded sediment, and benthic sediment. It's important to clarify that the model does not 

directly predict pesticide concentrations in the stream water column. This is because such 

predictions would necessitate detailed information about instream discharge and dimensions, 

which is often not available(21,22).  Instead, our methodology focuses on estimating 

conservative (higher) concentrations in small water bodies using runoff and eroded sediment 

concentrations. Our approach is rooted in the fact that pesticide concentrations in small 

tributaries approach levels similar to runoff concentrations during runoff events(23).  

Regarding benthic sediments, we utilize a simplified box model to predict 

concentrations independently of instream water column characteristics. Despite not 

accounting for pesticide behavior in the water column of streams, we include benthic 

sediment in our analysis due to its potential for pesticide accumulation. Sediments have 

relatively slow advection rates and, for certain pesticide classes, are compartments with slow 

degradation rates. The specifics of the approach are detailed later in this section.   
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To predict pesticide behavior in the environment, we consider the following for each 

active ingredient: physicochemical properties, degradation rates, and physical processes that 

transport pesticides. Pesticide physicochemical and degradation data were compiled from the 

Pesticide Properties Database (PPDB)(45). The database is a comprehensive resource of 

pesticide information derived from European and United States regulatory agencies when 

available, and where data is unavailable through regulatory agencies, peer-reviewed 

literature, pesticide property/ecotoxicity prediction tool results, and other resources.  

To consider the transport potential of pesticides in each HRU, we account for the 

unique climate, irrigation activities, soil hydrologic property data, and crop management 

parameters that affect runoff and eroded sediment. Climate and irrigation datasets are 

described in Section 3.2.2. To obtain soil hydrologic properties, we extracted data from the 

gridded USDA Soil Survey Geographic Database(38). This comprehensive dataset 

encompasses various hydrologic and textural properties of soils and was developed by the 

National Resource Conservation Service. The dataset groups soils into 'mapping units' based 

on their similarities. When possible, we used area-depth weighted averages for soil 

characteristics(46). For HRUs that intersect multiple mapping units with different reported 

values for a soil hydrologic property, the dominant soil characteristic was used. We 

considered the median value for continuous data, and for categorical data, the value derived 

from the mapping unit comprising the largest land coverage area within the HRU.  

Crop management characteristics were compiled from default parameterizations of 

the cultivar in the Pesticides in Water Calculator, a model utilized by the USEPA to predict 

edge of field runoff for California crops(47). Where values are unavailable, we consider data 
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from the United States Department of Agriculture handbook ‘Predicting Rainfall and Erosion 

Losses’(48).  

To predict pesticide concentrations within each HRU, we begin by calculating the 

daily soil water balance. The EFT model considers two distinct soil layers: the surface soil 

and the soil up to the crop rooting depth. By default, the surface soil depth is set to 30 cm, 

and the crop rooting depth is determined based on typical values reported for crops in the 

National Resource Conservation Service Irrigation Guide(39). The depth of the second layer 

is the depth of the crop root less the surface soil depth. 

 The daily soil water content of the surface soil, 𝑆𝑆𝐴𝐴𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 (mm), and subsurface layer 

up to the crop rooting depth, 𝑆𝑆𝐴𝐴𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝 (mm), are calculated by adapting the SWAT water 

balance approach(29): 

𝑆𝑆𝐴𝐴𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 = 𝑆𝑆𝐴𝐴𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒,0 + 𝐴𝐴𝑖𝑖𝐼𝐼𝑝𝑝𝑉𝑉𝑝𝑝 − 𝑅𝑅𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 − 𝐸𝐸 −𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒  3.3.1 

𝑆𝑆𝐴𝐴𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝 = 𝑆𝑆𝐴𝐴𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝,0 + 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 − 𝐸𝐸 −𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝  3.3.2 

Where 𝑆𝑆𝐴𝐴𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒,0 (mm) and 𝑆𝑆𝐴𝐴𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝,0 (mm) are the initial soil water contents of the surface 

and subsurface layer respectively, 𝐴𝐴𝑖𝑖𝐼𝐼𝑝𝑝𝑉𝑉𝑝𝑝 (mm) is the water received by the HRU 

(precipitation or irrigation), 𝑅𝑅𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 is the surface runoff (mm), 𝐸𝐸 (mm) is the 

evapotranspiration,  𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 (mm) is water lost as leachate from the surface soil layer, and 

𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝 (mm) is leachate lost in the subsurface layer. For 𝐸𝐸, the user can opt within the 

EFT to use crop specific evapotranspiration data required for irrigation inputs (used here and 

recommended) or use evapotranspiration data directly from the climate dataset. 

From the daily water content of the soil layers, surface runoff, lateral flow, leachate, 

and eroded sediment are calculated. Here, lateral flow describes groundwater movement 
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down to the crop rooting depth that may return as surface water flow, depending on field 

slope.  

Surface runoff is calculated using the Soil Conservation Service Curve Number 

Method(49) as: 

𝑅𝑅𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 = (𝑊𝑊𝑖𝑖𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝 − 𝑇𝑇𝑎𝑎)2

𝑊𝑊𝑖𝑖𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝 − 𝑇𝑇𝑎𝑎+ 𝑈𝑈
  3.3.3 

Where 𝑇𝑇𝑉𝑉 is the initial abstraction (mm), and 𝑆𝑆 the soil water retention parameter (mm). For 

initial abstraction, we employ the empirically derived relationship to soil water retention 

where 𝑇𝑇𝑉𝑉 is approximately equal to 0.2𝑆𝑆(49) to represent the initial abstraction.  

The soil water retention parameter, 𝑆𝑆, is derived from the observed relationship to the 

runoff coefficient of soils, 𝐶𝐶𝑁𝑁, which is dependent on the soils hydrologic class and soil 

cover conditions. We calculate a dynamic soil water retention parameter based on daily soil 

moisture conditions(29). Provided that antecedent soil moisture condition affects the runoff 

coefficient, we consider multiple coefficients, the average runoff coefficient (empirically 

derived), 𝐶𝐶𝑁𝑁2, and the runoff coefficients at the wilting point and field capacity of soil, 𝐶𝐶𝑁𝑁1 

and 𝐶𝐶𝑁𝑁3 respectively. 𝐶𝐶𝑁𝑁1 and 𝐶𝐶𝑁𝑁3 are calculated, using the SWAT approach(29), as:  

𝐶𝐶𝑁𝑁1 = 𝐶𝐶𝑁𝑁2 −
20∗(100−𝐶𝐶𝑁𝑁2)

(100−𝐶𝐶𝑁𝑁2+exp (2.533−0.0636∗(100−𝐶𝐶𝑁𝑁2)
 3.3.4 

𝐶𝐶𝑁𝑁3 = 𝐶𝐶𝑁𝑁2 ∗ exp (0.00673 ∗ (100 − 𝐶𝐶𝑁𝑁2))  3.3.5 

The soil water retention parameters under typical conditions, 𝑆𝑆2 (mm), at the soil wilting 

point, 𝑆𝑆𝑚𝑚𝑉𝑉𝑇𝑇 (mm), and at the soil field capacity, 𝑆𝑆3 (mm), are calculated with the runoff 

coefficient under the respective conditions as(29): 

𝑆𝑆𝑇𝑇 = 1000
𝐶𝐶𝑁𝑁𝑥𝑥

− 10  3.6 
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Values derived for the soil water retention parameter under the soil field capacity and 

wilting point are used to calculate the soil water retention at the daily time-step, 𝑆𝑆𝑝𝑝 (mm) 

as(29): 

𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑚𝑚𝑉𝑉𝑇𝑇 ∗ �1 −
𝑈𝑈𝑊𝑊𝑝𝑝

𝑈𝑈𝑊𝑊𝑝𝑝+exp (𝑤𝑤1−𝑤𝑤2∗𝑈𝑈𝑊𝑊𝑝𝑝)
�  3.7 

Where 𝑆𝑆𝐴𝐴𝑝𝑝 (mm) is the soil water content at time t, and 𝑤𝑤1 and 𝑤𝑤2 are the soil water 

retention shape coefficients. The shape coefficients are based on the amount of water in the 

soil at field capacity, 𝐹𝐹𝐶𝐶 (mm), and the amount of water at soil saturation, 𝑆𝑆𝐴𝐴𝑇𝑇 (mm) as(29):  

𝑤𝑤1 = 𝐻𝐻𝐸𝐸 � 𝐹𝐹𝐶𝐶
1−𝑈𝑈3∗𝑈𝑈𝑚𝑚𝑎𝑎𝑥𝑥

−1 − 𝐹𝐹𝐶𝐶� + 𝑤𝑤2 ∗ 𝐹𝐹𝐶𝐶 3.8 

𝑤𝑤2 =
�𝑉𝑉𝐼𝐼� 𝐹𝐹𝐹𝐹

1−𝑆𝑆3∗𝑆𝑆𝑚𝑚𝑎𝑎𝑥𝑥−1
−𝐹𝐹𝐶𝐶�−𝑉𝑉𝐼𝐼� 𝑆𝑆𝑆𝑆𝑆𝑆

1−2.54∗𝑆𝑆𝑚𝑚𝑎𝑎𝑥𝑥−1
−𝑈𝑈𝐴𝐴𝑇𝑇��

𝑈𝑈𝐴𝐴𝑇𝑇−𝐹𝐹𝐶𝐶
 3.3.9 

To quantify water and pesticides lost in lateral flow, we adopt a 2-dimensional, 

kinematic storage model approach for subsurface flow(50). The model assumes water has a 

constant slope across the simulated space for the field length of the HRUs, 𝐿𝐿 (m). The 

drainable volume of water per unit area of the saturated zone of a soil layer, 𝑆𝑆𝐴𝐴𝐻𝐻𝑝𝑝𝑉𝑉𝑖𝑖𝐼𝐼,𝑉𝑉𝑇𝑇 

(mm)(50), is: 

𝑆𝑆𝐴𝐴𝐻𝐻𝑝𝑝𝑉𝑉𝑖𝑖𝐼𝐼,𝑉𝑉𝑇𝑇 = 𝐻𝐻0 ∗ ∅𝐻𝐻 ∗ 𝐿𝐿/2  3.3.10 

Where 𝐻𝐻0 (mm/mm) is the saturated thickness normal to the slope at the outlet as a fraction 

of the total thickness and ∅𝐻𝐻 (mm/mm) is the drainable porosity of the soil. Provided that 

𝑆𝑆𝐴𝐴𝐻𝐻𝑝𝑝𝑉𝑉𝑖𝑖𝐼𝐼,𝑉𝑉𝑇𝑇 is calculated using the difference of 𝑆𝑆𝐴𝐴𝑉𝑉𝑇𝑇 (Equations 3.3.1 and 3.3.2) and the soil 

layer field capacity, 𝐹𝐹𝐶𝐶𝑉𝑉𝑇𝑇 (mm), and ∅𝐻𝐻 can be quantified from the difference of the soil 

porosity and porosity at field capacity, we can solve for the unknown value 𝐻𝐻0 (mm/mm) 

as(50): 
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𝐻𝐻0 = 2∗𝑈𝑈𝑊𝑊𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑛𝑛,𝑙𝑙𝑙𝑙

1000∗∅𝑑𝑑∗𝐿𝐿
  3.3.11 

In which 1000 is a unit conversion factor. Lateral flow, 𝑅𝑅𝑉𝑉𝑉𝑉𝑝𝑝 (mm/day), is then calculable 

from 𝐻𝐻0 and the velocity of flow at the end of the downslope, 𝑣𝑣 (mm/s), as(50): 

𝑅𝑅𝑉𝑉𝑉𝑉𝑝𝑝 = 24 ∗ 𝐻𝐻0 ∗ 𝑣𝑣 3.3.12 

Where 24 is a unit conversion factor. The velocity of flow is determinable from the saturated 

hydraulic conductivity, 𝐾𝐾𝑝𝑝𝑉𝑉𝑝𝑝 (mm/h), and field slope, ∝ (degrees), as(50):  

𝑣𝑣 = 𝐾𝐾𝑝𝑝𝑉𝑉𝑝𝑝 ∗ sin (∝)  3.3.13 

In the EFT, the slope input is as the increase in elevation per distance, 𝑝𝑝𝐻𝐻𝐸𝐸𝑝𝑝𝑝𝑝 

(mm/mm), which is equal to tan(∝). For field slopes, tan(∝) ≅ sin(∝)(29); using this 

approximation, and by combining Equations 3.3.11 and 3.3.12, 𝑅𝑅𝑉𝑉𝑉𝑉𝑝𝑝 is calculated as: 

𝑅𝑅𝑉𝑉𝑉𝑉𝑝𝑝 = 0.024 ∗ �2∗𝑈𝑈𝑊𝑊𝑑𝑑𝑑𝑑𝑎𝑎𝑖𝑖𝑛𝑛.𝑙𝑙𝑙𝑙∗𝐾𝐾𝑝𝑝𝑎𝑎𝑝𝑝∗𝑝𝑝𝑉𝑉𝐺𝐺𝑝𝑝𝑝𝑝
∅𝑑𝑑∗𝐿𝐿ℎ𝑖𝑖𝑙𝑙𝑙𝑙

�  3.3.14 

To calculate vertical water fluxes in the soil layers, we adopt the approach of Neitsch 

et al. (2011).  The travel time of percolation 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (h) is predicted from the water content at 

saturation in the soil layer, 𝑆𝑆𝐴𝐴𝑇𝑇𝑉𝑉𝑇𝑇 (mm), the 𝐹𝐹𝐶𝐶𝑉𝑉𝑇𝑇, and 𝐾𝐾𝑝𝑝𝑉𝑉𝑝𝑝(29): 

𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 = 𝑈𝑈𝐴𝐴𝑇𝑇𝑙𝑙𝑙𝑙−𝐹𝐹𝐶𝐶𝑙𝑙𝑙𝑙
𝐾𝐾𝑝𝑝𝑎𝑎𝑝𝑝

  3.3.15 

The water loss vertically through the soil as leachate, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 (mm), during the time-step, ∆𝑝𝑝 

(h), can then be calculated: 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 = 𝑆𝑆𝐴𝐴𝐻𝐻𝑝𝑝𝑉𝑉𝑖𝑖𝐼𝐼,𝑉𝑉𝑇𝑇 ∗ �1 − 𝑝𝑝𝑡𝑡𝑝𝑝 � −∆𝑝𝑝
𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝

�� 3.3.16 

Leachate from the surface layer transports water and pesticides to the subsurface layer; 

leachate in the subsurface layer is treated as a loss process, and no effects on groundwater are 

calculated.  
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After predicting the soil water balance and loss, sediment erosion is simulated using 

the Modified Universal Soil Loss Equation (MUSLE)(51). MUSLE predicts erosion from 

rainfall and runoff as(51): 

𝑝𝑝𝑝𝑝𝑎𝑎 =  11.8 ∗ (𝑅𝑅𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒,𝑚𝑚𝑉𝑉𝑝𝑝𝑉𝑉𝑝𝑝 ∗ 𝑞𝑞𝑝𝑝𝑝𝑝𝑉𝑉𝑘𝑘 ∗ 𝐴𝐴)0.56 ∗ 𝐾𝐾𝐹𝐹𝐹𝐹𝐴𝐴𝐶𝐶𝑇𝑇 ∗ 𝐶𝐶 ∗ 𝑃𝑃 ∗ 𝐿𝐿𝑆𝑆  3.3.17 

Where 𝑝𝑝𝑝𝑝𝑎𝑎 (metric tons/day) is the sediment yield, 𝑅𝑅𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒,𝑚𝑚𝑉𝑉𝑝𝑝𝑉𝑉𝑝𝑝 (mm/ha) the runoff, 𝑞𝑞𝑝𝑝𝑝𝑝𝑉𝑉𝑘𝑘 

(m3/s) the peak runoff rate, 𝐴𝐴 (ha) the area, KFFACT (0.013 metric ton m2 hr/(m3-metric ton 

cm)) the erodibility factor of soil weighted by the coarse fragment factor, C the cover and 

management factor of the crop rotation, P the support practice factor of the land use, and LS 

the length-slope factor.  

The peak runoff at time t, 𝑞𝑞𝑝𝑝𝑝𝑝𝑉𝑉𝑘𝑘,𝑝𝑝 (m3/s), is calculated using the rational method(29): 

𝑞𝑞𝑝𝑝𝑝𝑝𝑉𝑉𝑘𝑘,𝑝𝑝 = 𝐶𝐶𝑑𝑑∗𝑖𝑖𝑝𝑝∗𝐴𝐴
3.6

  3.3.18 

Where 𝐶𝐶𝑝𝑝 is the ratio of surface water runoff to rainfall, 𝐸𝐸𝑝𝑝 (mm/h) is the rate at which water 

is received by the soil for the HRU at time t, and 3.6 is a unit conversion factor. For each 

HRU, 𝐸𝐸𝑝𝑝 on days with precipitation events is assigned to typical rainfall intensities of the 

HRU, and for irrigation events, 𝐸𝐸𝑝𝑝 is assigned based on the hourly application rate of the 

irrigation method. 

3.2.4 Pesticide Phase Distribution 

The mobility of pesticides in the soil compartment depends on the sorbed and 

dissolved fraction of the chemical within the compartment. We adopt a linear and 

instantaneously reversible pesticide sorption model where pesticides in the compartment are 

instantaneously and homogeneously mixed within the soil. The approach adapts the solid-

water distribution coefficient for the compartment, 𝐾𝐾𝐻𝐻,𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝 (L/mg)(29). The coefficient is 
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calculable from the organic carbon sorption coefficient, 𝐾𝐾𝐺𝐺𝑝𝑝 (L/mg), and organic carbon 

content of the compartment, 𝑂𝑂𝐶𝐶𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝, as(29): 

𝐾𝐾𝐻𝐻,𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝 = 𝐾𝐾𝐺𝐺𝑝𝑝 ∗
𝑂𝑂𝐶𝐶𝑝𝑝𝑐𝑐𝑚𝑚𝑝𝑝

100
 3.4.1 

𝐾𝐾𝐻𝐻,𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝 represents the ratio of pesticide present in the sorbed phase and is equal to the 

quotient of the concentration of pesticides in the sorbed 𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑠𝑠𝑝𝑝𝐻𝐻 (kg pesticide/kg), and 

dissolved phase, 𝐶𝐶𝐻𝐻𝑖𝑖𝑝𝑝𝑝𝑝 (mg/L), and can also be expressed as:  

𝐾𝐾𝐻𝐻,𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝 = 𝐶𝐶𝑝𝑝𝑐𝑐𝑑𝑑𝑠𝑠𝑝𝑝𝑑𝑑
𝐶𝐶𝑑𝑑𝑖𝑖𝑝𝑝𝑝𝑝

 3.4.2 

To calculate the mobile phase of a pesticide during a runoff event, we begin by 

defining the relationship between the pesticide mass in the soil layer, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 (kg/ha), and 

concentrations in the dissolved and sorbed phases of the soil layer as: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 = 0.01(𝐶𝐶𝐻𝐻𝑖𝑖𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 ∗ 𝑆𝑆𝐴𝐴𝑇𝑇𝑉𝑉𝑇𝑇 + 𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑠𝑠𝑝𝑝𝐻𝐻,𝑉𝑉𝑇𝑇 ∗ 𝜌𝜌𝑝𝑝 ∗ 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑉𝑉𝑇𝑇) 3.4.3 

Where 0.01 is a conversion factor, 𝑆𝑆𝐴𝐴𝑇𝑇𝑉𝑉𝑇𝑇 (mm) is the water content of the soil layer at 

saturation, 𝜌𝜌𝑝𝑝 (Mg/m3) is the density of the soil, and 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑉𝑉𝑇𝑇 (mm) is the depth of the soil 

layer. Substituting with Equation 3.4.2, we can derive a relationship between the mass of 

pesticide and concentration with only the dissolved phase concentrations as: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 = 0.01(𝐶𝐶𝐻𝐻𝑖𝑖𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 ∗ 𝑆𝑆𝐴𝐴𝑇𝑇𝑉𝑉𝑇𝑇 + 𝐶𝐶𝐻𝐻𝑖𝑖𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 ∗ 𝐾𝐾𝐻𝐻,𝑉𝑉𝑇𝑇 ∗ 𝜌𝜌𝑝𝑝 ∗ 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑉𝑉𝑇𝑇) 3.4.4 

Loss of pesticides in the dissolved phase at time-step t is dependent on the water phase 

available for transport in each soil layer, 𝑤𝑤𝑉𝑉𝐻𝐻𝑉𝑉𝑖𝑖𝑉𝑉,𝑉𝑉𝑇𝑇 (mm) and is calculated as: 

𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑙𝑙

𝐻𝐻𝑝𝑝
= 0.01 ∗ 𝐶𝐶𝐻𝐻𝑖𝑖𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 ∗ 𝑤𝑤𝑉𝑉𝐻𝐻𝑉𝑉𝑖𝑖𝑉𝑉,𝑉𝑉𝑇𝑇    3.4.5 

The water phase available for transport is the sum of flowing water in surface runoff, 𝑅𝑅𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 

(mm), lateral flow of the layer, 𝑅𝑅𝑉𝑉𝑉𝑉𝑝𝑝,𝑉𝑉𝑇𝑇 (mm), and percolate of the layer, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 (mm): 

𝑤𝑤𝑉𝑉𝐻𝐻𝑉𝑉𝑖𝑖𝑉𝑉,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 = 𝑅𝑅𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 + 𝑅𝑅𝑉𝑉𝑉𝑉𝑝𝑝,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 + 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒  3.4.6 
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𝑤𝑤𝑉𝑉𝐻𝐻𝑉𝑉𝑖𝑖𝑉𝑉,𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝 = 𝑅𝑅𝑉𝑉𝑉𝑉𝑝𝑝,𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝 + 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝   3.4.7 

From the pesticide mass in soil layer, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 (kg/ha), the pesticide concentration in soil-

solution is calculable by rearranging Equation 3.4.4: 

𝐶𝐶𝐻𝐻𝑖𝑖𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑙𝑙

0.01∗(𝑈𝑈𝐴𝐴𝑇𝑇𝑙𝑙𝑙𝑙+𝐾𝐾𝑑𝑑,𝑙𝑙𝑙𝑙∗𝜌𝜌𝑝𝑝∗𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑙𝑙𝑙𝑙)
   3.4.8 

To quantify the change in pesticide mass in the soil layer for a time-step, we combine 

Equations 3.4.5 and 3.4.8: 

𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑙𝑙

𝐻𝐻𝑝𝑝
= 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑙𝑙𝑙𝑙∗𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑙𝑙,𝑙𝑙𝑙𝑙

𝑈𝑈𝐴𝐴𝑇𝑇𝑙𝑙𝑙𝑙+𝐾𝐾𝑑𝑑,𝑙𝑙𝑙𝑙∗𝜌𝜌𝑝𝑝∗𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑙𝑙𝑙𝑙
   3.4.9 

Integrating, we can calculate the amount of pesticide present in the soil layer at time t, 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇,𝑝𝑝 (kg/ha): 

𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑇𝑇,𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑇𝑇,0 ∗ 𝑝𝑝𝑡𝑡𝑝𝑝 �
−𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑙𝑙,𝑙𝑙𝑙𝑙

𝑈𝑈𝐴𝐴𝑇𝑇𝑙𝑙𝑙𝑙+𝐾𝐾𝑑𝑑,𝑙𝑙𝑙𝑙∗𝜌𝜌𝑝𝑝∗𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑙𝑙𝑙𝑙
� 3.4.10 

The amount of pesticide available for transport in the water phase, 𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝐻𝐻𝑉𝑉𝑖𝑖𝑉𝑉,𝑉𝑉𝑇𝑇 (kg/ha), is then 

calculated by subtracting the final mass of the pesticide by the initial mass: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝐻𝐻𝑉𝑉𝑖𝑖𝑉𝑉,𝑉𝑉𝑇𝑇 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑇𝑇,0 �1 − 𝑝𝑝𝑡𝑡𝑝𝑝 � −𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑙𝑙,𝑙𝑙𝑙𝑙

𝑈𝑈𝐴𝐴𝑇𝑇𝑙𝑙𝑙𝑙+𝐾𝐾𝑑𝑑,𝑙𝑙𝑙𝑙∗𝜌𝜌𝑝𝑝∗𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑙𝑙𝑙𝑙
��  3.4.11 

Using the pesticides present in the mobile water phase of the soil, the concentrations 

of pesticides in the dissolved phase of the surface soil and the subsurface, 𝐶𝐶𝑒𝑒𝑉𝑉𝐺𝐺𝑤𝑤,𝑉𝑉𝑇𝑇(kg pst/ha-

mm), can be calculated. Using an upper limit of concentration of the pesticide’s solubility, 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑉𝑉 (mg/L): 

𝐶𝐶𝑒𝑒𝑉𝑉𝐺𝐺𝑤𝑤,𝑉𝑉𝑇𝑇 = 𝐸𝐸𝐸𝐸𝐸𝐸 �
𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝐻𝐻𝑉𝑉𝑖𝑖𝑉𝑉,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒/𝑤𝑤𝑉𝑉𝐻𝐻𝑉𝑉𝑖𝑖𝑉𝑉,𝑉𝑉𝑇𝑇

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑉𝑉/100   3.4.12 

Where 100 is a unit conversion factor. The loss of pesticide in surface runoff, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 (kg 

pst/ha), is then: 
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𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑉𝑉𝐺𝐺𝑤𝑤,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 ∗ 𝑅𝑅𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒  3.4.13 

In lateral flow and leachate of soil layers, 𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉𝑝𝑝,𝑉𝑉𝑇𝑇 (kg/ha) and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 (kg/ha) 

respectively, pesticide loss from soil is: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉𝑝𝑝,𝑉𝑉𝑇𝑇 = 𝐶𝐶𝑒𝑒𝑉𝑉𝐺𝐺𝑤𝑤,𝑉𝑉𝑇𝑇, ∗ 𝑅𝑅𝑉𝑉𝑉𝑉𝑝𝑝,𝑉𝑉𝑇𝑇   3.4.14 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 = 𝐶𝐶𝑒𝑒𝑉𝑉𝐺𝐺𝑤𝑤,𝑉𝑉𝑇𝑇 ∗ 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇  3.4.15 

To predict eroded sediment concentrations, an expression to calculate 𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑠𝑠𝑝𝑝𝐻𝐻,𝑉𝑉𝑇𝑇 is 

required.  First, we rearrange Equation 3.4.2 to solve for 𝐶𝐶𝐻𝐻𝑖𝑖𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 , and substituting in 

Equation 3.4.3: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 = 0.01(𝐶𝐶𝑝𝑝𝑐𝑐𝑑𝑑𝑠𝑠𝑝𝑝𝑑𝑑,𝑙𝑙𝑙𝑙

𝐾𝐾𝑑𝑑,𝑙𝑙𝑙𝑙
∗ 𝑆𝑆𝐴𝐴𝑇𝑇𝑉𝑉𝑇𝑇 + 𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑠𝑠𝑝𝑝𝐻𝐻,𝑉𝑉𝑇𝑇 ∗ 𝜌𝜌𝑝𝑝 ∗ 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑉𝑉𝑇𝑇) 3.4.16 

Then solve for 𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑠𝑠𝑝𝑝𝐻𝐻,𝑉𝑉𝑇𝑇: 

𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑠𝑠𝑝𝑝𝐻𝐻,𝑉𝑉𝑇𝑇 = 100∗𝐾𝐾𝑑𝑑,𝑙𝑙𝑙𝑙∗𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙
𝑈𝑈𝐴𝐴𝑇𝑇𝑙𝑙𝑙𝑙+𝐾𝐾𝑑𝑑,𝑙𝑙𝑙𝑙∗𝜌𝜌𝑝𝑝∗𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑙𝑙𝑙𝑙

  3.4.17 

Next, the pesticide concentration of eroded sediment, 𝐶𝐶𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 (kg pesticide/kg), is calculated 

using the pesticide enrichment ratio in surficial sediments, 𝜀𝜀: 

𝐶𝐶𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 = 𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑠𝑠𝑝𝑝𝐻𝐻,𝑉𝑉𝑇𝑇 ∗  𝜀𝜀  3.4.18 

𝜀𝜀 is estimated by adopting a relationship of enrichment to the concentration of eroded 

sediment(52):  

𝜀𝜀 = 0.78 ∗ (𝐶𝐶𝑝𝑝𝑝𝑝𝐻𝐻,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒)−0.2468  3.4.19 

The mass of pesticides transported via eroded sediment, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 (kg pesticide/ha) is then: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 = 0.001 ∗ 𝑝𝑝𝑝𝑝𝐻𝐻
𝐴𝐴
∗ 𝐶𝐶𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻  3.4.20 

Where 0.001 is a conversion factor.  

 The EFT provides the user the option to predict benthic concentrations of pesticides 

for risk screening, where pesticides may accumulate due to the slow rate of advection relative 
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to the water column and slow rates of degradation for some pesticide classes in the 

compartment. In keeping with the aim to provide pesticide risk information for waterbodies 

with limited or no data describing compartment characteristics, the EFT employs a simple-

box sub-model with flow through. The model is designed to simulate concentrations in 

surficial sediments, where the sorbed pesticides are instantaneously and homogeneously 

mixed within the compartment. For pesticide influx to the compartment, in addition to eroded 

sediment, we consider dispersion between runoff transported over the edge of field benthic 

sediment. Loss processes considered in the benthic sediment include advective sediment loss, 

resuspension, burial, degradation, and dispersion of sorbed pesticides to overlying runoff. We 

assume a constant surficial sediment compartment volume, and the advection, resuspension, 

or burial of sediment on day t is equal to sediment entering the waterbody.  

 The mass of pesticides in benthic sediment, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻  (kg), is the sum of pesticides in 

the dissolved and sorbed phases, represented as: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 = 𝐶𝐶𝑝𝑝𝑤𝑤 ∗ 𝑉𝑉𝑝𝑝𝑤𝑤 + 𝐶𝐶𝑝𝑝𝑝𝑝𝐻𝐻 𝑝𝑝𝐺𝐺𝑉𝑉𝑖𝑖𝐻𝐻 ∗ 𝑉𝑉𝑝𝑝𝑝𝑝𝐻𝐻 𝑝𝑝𝐺𝐺𝑉𝑉𝑖𝑖𝐻𝐻 ∗ 𝜌𝜌𝑝𝑝𝑝𝑝𝐻𝐻 𝑝𝑝𝐺𝐺𝑉𝑉𝑖𝑖𝐻𝐻 3.4.21 

Where 𝐶𝐶𝑝𝑝𝑤𝑤 (kg/m3) is the concentration of pesticide in porewater of sediment, 𝑉𝑉𝑝𝑝𝑤𝑤 (m3) is the 

volume of porewater in sediment,  𝐶𝐶𝑝𝑝𝑝𝑝𝐻𝐻 𝑝𝑝𝐺𝐺𝑉𝑉𝑖𝑖𝐻𝐻 (kg pesticide/kg) is the concentration of 

pesticide sorbed to sediment solids, 𝑉𝑉𝑝𝑝𝑝𝑝𝐻𝐻 𝑝𝑝𝐺𝐺𝑉𝑉𝑖𝑖𝐻𝐻 (m3) is the volume of sediment solids, and 

𝜌𝜌𝑝𝑝𝑝𝑝𝐻𝐻 𝑝𝑝𝐺𝐺𝑉𝑉𝑖𝑖𝐻𝐻 (kg/m3) the density of sediment solids. Adopting the relationship between the 

sorbed and dissolved phase in Equation 3.4.2 into Equation 3.4.21 and rearranging, we can 

calculate the concentration in porewater as:  

𝐶𝐶𝑝𝑝𝑤𝑤 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑
(𝑉𝑉𝑝𝑝𝑤𝑤+𝑉𝑉𝑝𝑝𝑝𝑝𝑑𝑑  𝑝𝑝𝑐𝑐𝑙𝑙𝑖𝑖𝑑𝑑𝑝𝑝∗𝐾𝐾𝑑𝑑,𝑝𝑝𝑝𝑝𝑑𝑑∗𝜌𝜌𝑝𝑝𝑝𝑝𝑑𝑑 𝑝𝑝𝑐𝑐𝑙𝑙𝑖𝑖𝑑𝑑)

  3.4.22 

Considering the relationship between the dissolved and sorbed phase (Equation 3.4.2), 

𝐶𝐶𝑝𝑝𝑝𝑝𝐻𝐻 𝑝𝑝𝐺𝐺𝑉𝑉𝑖𝑖𝐻𝐻 can be represented as: 
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𝐶𝐶𝑝𝑝𝑝𝑝𝐻𝐻 𝑝𝑝𝐺𝐺𝑉𝑉𝑖𝑖𝐻𝐻 = 𝐶𝐶𝑝𝑝𝑤𝑤 ∗ 𝐾𝐾𝐻𝐻,𝑝𝑝𝑝𝑝𝐻𝐻  3.4.23 

The transfer of pesticide from runoff entering the ditch into benthic sediment via 

dispersion, 𝛾𝛾, is estimated using a mass transfer coefficient approach adopted by the United 

States Environmental Protection Agency in the Variable Volume Water Model(53). The mass 

transfer coefficient approach represents all pesticide exchange processes that create an 

equilibrium between the overlaying water and sediment. The approach is used to quantify a 

first-order mass transfer coefficient for data-limited water bodies and is derived from a 

boundary layer exchange model, Ω, calculated as: 

Ω = 𝐴𝐴𝑝𝑝𝑝𝑝𝑑𝑑𝑈𝑈
𝑉𝑉𝑝𝑝𝑝𝑝𝑑𝑑∆𝑇𝑇

   3.4.24 

Where 𝐴𝐴𝑝𝑝𝑝𝑝𝐻𝐻 (m2) is the area of sediment, 𝑀𝑀  (m2/s) is the overall water column-benthic 

dispersion coefficient, 𝑉𝑉𝑝𝑝𝑝𝑝𝐻𝐻 (m3) is the total volume of sediment and pore water, and ∆𝑡𝑡 (m) 

is the boundary layer thickness. The first-order water-benthic mass transfer coefficient, 𝛼𝛼 

(m3/s), is: 

𝛼𝛼 = Ω
(𝑉𝑉𝑝𝑝𝑤𝑤+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑∗𝐾𝐾𝑑𝑑,𝑝𝑝𝑝𝑝𝑑𝑑)

  3.4.25 

From 𝛼𝛼, the pesticide mass exchange between runoff entering the waterbody and sediment is 

calculated: 

𝛾𝛾 = 𝛼𝛼�𝐶𝐶𝑒𝑒𝑉𝑉𝐺𝐺𝑤𝑤,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 − 𝐶𝐶𝑝𝑝𝑤𝑤� ∗ 86,400  3.4.26 

Where 86,400 is a unit conversion factor. The mass of pesticide in sediment is calculated as: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻,0 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 ∗ 𝑓𝑓𝐻𝐻𝑝𝑝𝑝𝑝 + 𝛾𝛾 − 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝐻𝐻,𝑝𝑝−1 ∗ 𝑝𝑝𝑝𝑝𝑎𝑎  3.4.27 

Where 𝑓𝑓𝐻𝐻𝑝𝑝𝑝𝑝 is the fraction of sediment deposited. 

 𝑓𝑓𝐻𝐻𝑝𝑝𝑝𝑝 is input for each HRU by the user. The actual  𝑓𝑓𝐻𝐻𝑝𝑝𝑝𝑝 ranges dependent on 

instream dimensions and flow are commonly unavailable, and the EFT employs a constant 
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𝑓𝑓𝐻𝐻𝑝𝑝𝑝𝑝 throughout the simulation period. To estimate the 𝑓𝑓𝐻𝐻𝑝𝑝𝑝𝑝 of an HRU, we use the sediment 

settling velocity and travel time of the sediment along the edge of field water body length. By 

treating the sediment particles as Brownian, particle interaction negligible, and that frictional 

force compensates the external force of gravity, the particle velocity, 𝑣𝑣𝑝𝑝(m/s), is calculated 

as(54): 

𝑣𝑣𝑝𝑝 = 1
6𝜋𝜋𝜋𝜋𝑝𝑝

∗ 𝐹𝐹𝑝𝑝𝑇𝑇𝑝𝑝 3.4.28 

Adopting Stokes’ Law, the external force acting on the particle due to gravity within a 

viscous fluid(54): 

𝐹𝐹𝑝𝑝𝑇𝑇𝑝𝑝 = 4
3
𝑚𝑚 ∗ 𝜋𝜋 ∗ 𝑝𝑝3 ∗ (𝜌𝜌𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 − 𝜌𝜌𝑤𝑤𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝)  3.4.29 

Substituting Equation 3.4.29 in Equation 3.4.28: 

𝑣𝑣𝑝𝑝 = 2
9
∗ 𝜌𝜌𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑−𝜌𝜌𝑤𝑤𝑎𝑎𝑝𝑝𝑝𝑝𝑑𝑑

𝜋𝜋
∗ 𝑚𝑚 ∗ 𝑝𝑝2  3.4.30 

Where 𝜌𝜌𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 (kg/m3) is the density of suspended solids, 𝜌𝜌𝑤𝑤𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 (kg/m3) is the density of 

water, 𝜇𝜇 (kg/m-s) the dynamic viscosity of water, 𝑚𝑚  (m/s2) the acceleration due to gravity, 

and 𝑝𝑝 (m) the particle radius. By default, we consider a particle radius of 62.5 𝜇𝜇m(55) and a 

suspended sediment density of 1400 kg/m3. 

To determine the amount of solids that settle onto the bottom layer, we consider a 

method that calculates retention time within the edge of field water body, factoring particle 

settling characteristics(56,57). Notably, data describing the dimensions, discharge, and 

instream characteristics are commonly unavailable for edge-of-field water bodies. In our 

study, we evaluate the retention time, denoted as 𝑇𝑇𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 (s), and consider a typical runoff 

event to have a depth of 2 mm. This runoff flows into a trapezoidal water body situated at the 

field's edge. The water body at the edge of the fields is assumed to have the shape of a right-
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trapezoidal prism with 2:1 side slope, a base width of 0.5 m, a surface width of 1m, a depth 

of 1 m, 100 m in length, and has a wetted perimeter of 1.65 m due to a flow height of 0.1 m. 

The flow velocity can be deduced using Manning’s equation, considering a channel slope of 

2% and a Manning’s coefficient of 0.4 for its small hydraulic radius(58). With this data, we 

can anticipate the portion of sediments that will settle in the water body to predict the settled 

fraction of settled sediments in the waterbody(57).  

For a ditch in steady-state flow where the change in sediment across the stream length 

is based on a first-order deposition constant(57), the relationship of the difference in 

concentration of suspended sediments entering the waterbody, 𝐶𝐶𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻,𝑖𝑖𝐼𝐼 (kg/m3), the final 

concentration of suspended sediment leaving the channel, 𝐶𝐶𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻,𝐺𝐺𝑉𝑉𝑝𝑝 (kg/m3), and the 

suspended sediment concentration after sedimentation has reached equilibrium, 𝐶𝐶𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻,𝑝𝑝 

(kg/m3) is: 

𝐶𝐶𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑,𝑐𝑐𝑖𝑖𝑝𝑝−𝐶𝐶𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑,𝑝𝑝
𝐶𝐶𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑,𝑖𝑖𝑛𝑛−𝐹𝐹𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑,𝑝𝑝

= 𝑝𝑝𝑡𝑡𝑝𝑝 (−𝐻𝐻𝑝𝑝∗𝑇𝑇𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑
𝐿𝐿𝑝𝑝ℎ𝑛𝑛

)  3.4.29 

𝑇𝑇𝑇𝑇𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 = 𝐿𝐿𝑝𝑝ℎ𝑛𝑛
𝑒𝑒𝑉𝑉𝐺𝐺𝑤𝑤

 3.4.30 

Where 𝐿𝐿𝑝𝑝ℎ𝐼𝐼 (m) is the length of the channel. 𝑓𝑓𝐻𝐻𝑝𝑝𝑝𝑝 is thus equal to: 

𝑓𝑓𝐻𝐻𝑝𝑝𝑝𝑝 = 1 − exp (−𝐻𝐻𝑝𝑝∗𝑇𝑇𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑
𝐿𝐿𝑝𝑝ℎ𝑛𝑛

)  3.4.31 

For our assumptions of typical stream dimensions and runoff events, the fraction of settled 

solids in the neighboring water body is 0.42. 

To account for the mass of pesticide loss within the soil or sediment compartment, 

degradation is represented as a first-order process, with a rate constant, 𝑘𝑘𝐻𝐻𝑝𝑝𝑑𝑑,𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝. The 

pesticide present within a compartment after considering degradation for each day since the 

application, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝 (kg), is calculated as: 



 
 

160 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝 =𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝,0*exp(-𝑘𝑘𝐻𝐻𝑝𝑝𝑑𝑑,𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝 ∗ 𝑎𝑎𝐻𝐻𝑑𝑑𝑝𝑝) 3.4.32 

For the mass of the pesticide to reach half of the initial concentration, we can substitute the 

pesticide mass in Equation 3.4.28 as: 

0.5*𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝,0 =𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝,0*exp(-𝑘𝑘𝐻𝐻𝑝𝑝𝑑𝑑,𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐿𝐿50,𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝) 3.4.33 

We can then solve for 𝑘𝑘𝐻𝐻𝑝𝑝𝑑𝑑,𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝: 

𝑘𝑘𝐻𝐻𝑝𝑝𝑑𝑑,𝑝𝑝𝐺𝐺𝑚𝑚𝑝𝑝 = 0.693
𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻50,𝑝𝑝𝑐𝑐𝑚𝑚𝑝𝑝

 3.4.34 

The mass of pesticide in the soil layers and sediment at the end of the time-step in the surface 

soil, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒,𝑝𝑝𝐼𝐼𝐻𝐻 (kg), subsurface soil, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝,𝑝𝑝𝐼𝐼𝐻𝐻 (kg),  and sediment, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻,𝑝𝑝𝐼𝐼𝐻𝐻 (kg) after 

consideration of pesticide degradation is: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒,𝑝𝑝𝐼𝐼𝐻𝐻 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒,0 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑒𝑒 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑖𝑖𝑑𝑑𝑠𝑠 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻) ∗

exp (−𝑘𝑘𝐻𝐻𝑝𝑝𝑑𝑑,𝑝𝑝𝐺𝐺𝑖𝑖𝑉𝑉)  3.4.35 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝,𝑝𝑝𝐼𝐼𝐻𝐻 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝐺𝐺𝐺𝐺𝑝𝑝,0 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉𝑝𝑝𝑙𝑙𝑙𝑙 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑉𝑉𝑇𝑇 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻) ∗ exp (−𝑘𝑘𝐻𝐻𝑝𝑝𝑑𝑑,𝑝𝑝𝐺𝐺𝑖𝑖𝑉𝑉)  

3.4.36 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻,𝑝𝑝𝐼𝐼𝐻𝐻 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻,0 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 ∗ 𝑓𝑓𝐻𝐻𝑝𝑝𝑝𝑝 + 𝛾𝛾 − 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝐻𝐻,𝑝𝑝−1 ∗ 𝑝𝑝𝑝𝑝𝑎𝑎) ∗ exp (−𝑘𝑘𝐻𝐻𝑝𝑝𝑑𝑑,𝑝𝑝𝑝𝑝𝐻𝐻)   

3.4.37 

3.2.5 Risk  

To identify risks, we adopt the risk quotient, RQ, which summarizes potential risks to 

a species under investigation. RQ is employed to predict when environmental concentrations 

introduce harm by United States and European Environmental Agencies(59,60). The RQ of 

the ith pesticide in the jth HRU for the kth taxa is: 

𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝐶𝐶𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖,𝑘𝑘

  3.5.1 
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Where 𝐶𝐶(𝜇𝜇g/L)  is the pesticide concentration and 𝑇𝑇 (𝜇𝜇g/L) is the toxicity threshold. 

Adapting the cumulative toxicity approach(61,62), the cumulative risk quotient, RQcum is 

calculable for n pesticides as: 

𝑅𝑅𝑅𝑅𝑝𝑝𝑉𝑉𝑚𝑚,𝑗𝑗,𝑘𝑘 = ∑ 𝐶𝐶𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖,𝑘𝑘

𝐼𝐼
𝑖𝑖=1   3.5.2 

Although the cumulative addition approach does not capture synergistic or antagonistic 

interactions of pesticides, for studies with hundreds of pesticide mixtures, the method has 

been observed to predict mortality within a factor of 2 for 90% of samples(63–65). Given the 

effectiveness of the cumulative addition approach and the presence of substantial data gaps 

regarding pesticide mixture interactions(66), we incorporated the approach in the  EFT. 

For the present evaluation, we evaluate acute risks in the water column (<96 h) to 

fish, invertebrates in the water column, nonvascular aquatic plants, and vascular aquatic 

plants. Ecotoxicological thresholds considered include half-maximal effect or lethal 

concentrations to the sample population, the EC50 and LC50, as available in the PPDB(45) 

for the water column. Where ecotoxicological endpoints were missing, we employed effect 

thresholds from the United States Environmental Protection Agency (USEPA) Aquatic Life 

Benchmarks Database60,61. Additionally, where USEPA benchmarks were more conservative 

than the PPDB, USEPA benchmarks were used. Where endpoints were still unavailable for 

AI forms, endpoints of another of the base AI forms were used (e.g., 2-4 D esters). 

Available literature considers that the most acute risk in a pesticide mixture can be 

represented by the pesticide introducing the greatest toxicity within a sample(38,68). 

However, the types of pesticides and frequency of applications vary throughout the year, 

especially for crop rotations, and single-sample toxicity is not representative of the variation 

in risks that may be observed(15,17,67). To quantify the significance of accounting for all 

https://sciwheel.com/work/citation?ids=4814328,3709043&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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pesticides introduced to the water column to understand risks to aquatic compartments, the 

maximum RQcum of watersheds observed on any simulation day was compared to the 

maximum RQ observed for any individual pesticide. Significance was tested using a one-

way, paired t-test, a method commonly used to compare predictions relative to observed 

data(69). For the analysis, we consider the maximum risk quotient observed for any 

individual pesticide to be the prediction of risk and the cumulative risk quotient the observed 

(actual) risk. 

In addition to evaluating the risk quotients of different taxa, the EFT computes a risk 

index, RI (ha-1). This index is specifically designed to consolidate risk impacts for the source 

under investigation at various extents and for diverse taxa. This consolidation results in a 

singular index for a pesticide, application site type, or watershed of interest, which can be 

summarized at various time-steps (daily, monthly, annual, or over the simulation period). The 

index is weighted based on the size of the HRUs which comprise the extent the RI is 

summarized for. This approach ensures large HRUs which may have a higher applied mass 

due to a greater cultivation area are not penalized more than smaller HRUs. The RI is 

determinable for the ith pesticide and kth taxonomic group for n HRUs for a given day, month, 

or simulation as: 

𝑅𝑅𝑇𝑇𝑖𝑖,𝑘𝑘 = ∑ 𝐶𝐶𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖,𝑘𝑘∗𝐴𝐴𝑗𝑗

𝐼𝐼
𝑗𝑗=1  3.5.3 

The RI for the jth HRU and kth taxonomic group for p pesticides is: 

𝑅𝑅𝑇𝑇𝑗𝑗,𝑘𝑘 = ∑ 𝐶𝐶𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖,𝑘𝑘∗𝐴𝐴𝑗𝑗

𝑝𝑝
𝑖𝑖=1  3.5.4 

The net risk index of the m investigated taxa, RInet (ha-1) for the ith pesticide in n HRUs in the 

study extent is calculated as: 

https://sciwheel.com/work/citation?ids=1881224&pre=&suf=&sa=0&dbf=0
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𝑅𝑅𝑇𝑇𝐼𝐼𝑝𝑝𝑝𝑝,𝑖𝑖 = ∑ ∑ 𝐶𝐶𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖,𝑘𝑘∗𝐴𝐴𝑗𝑗

𝑚𝑚
𝑘𝑘=1

𝐼𝐼
𝑗𝑗=1  3.5.5 

Similarly, for the jth HRU for p pesticides in the study extent: 

𝑅𝑅𝑇𝑇𝐼𝐼𝑝𝑝𝑝𝑝,𝑗𝑗 = ∑ ∑ 𝐶𝐶𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖,𝑘𝑘∗𝐴𝐴𝑗𝑗

𝑚𝑚
𝑘𝑘=1

𝑝𝑝
𝑖𝑖=1  3.5.6 

To summarize an index of risk over the simulation period for all pesticides, HRUs, and taxa, 

we calculate the RInet as: 

𝑅𝑅𝑇𝑇𝐼𝐼𝑝𝑝𝑝𝑝 = ∑ ∑ ∑ 𝐶𝐶𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖,𝑘𝑘∗𝐴𝐴𝑗𝑗

𝑚𝑚
𝑘𝑘=1

𝑝𝑝
𝑖𝑖=1

𝐼𝐼
𝑗𝑗=1  3.5.7 

It's important to highlight that the RIs are not suited for evaluating specific risks to 

aquatic organisms. Instead, their purpose lies in pinpointing regions where relatively higher 

toxic loads per unit area are introduced to water bodies per application area for various 

species. 

Furthermore, the absence of toxicity data for certain active ingredient(s) within 

specific taxonomic group(s) can result in elevated RIs in certain areas where only pesticides 

with known toxicity endpoints for all taxa considered are used. This elevation occurs in 

comparison to regions where applied pesticides lack toxicity data, leading to a negatively 

skewed RI. For this investigation, toxicity data for fish and invertebrates is available for all 

pesticides considered, for nonvascular plants data is available for 92% of pesticides, and for 

vascular plants 77%. While the increased occurrence of missing data for aquatic plants 

introduces a negative bias to risk indices in some application sites and watersheds, they are 

included to provide an index of risk for all evaluated taxa based on the best available 

information. 
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3.2.6 Validation  

The EFT was developed to facilitate risk assessment across large extents with high-

resolution pesticide use and environmental characteristic data and limited instream data. 

Here, we evaluate tool accuracy for predicting aquatic risks as an uncalibrated tool. By 

examining the EFT's performance as an uncalibrated tool, we can gain a clearer 

understanding of its accuracy when applied in regions where there is limited or no in-stream 

data available for calibration purposes. 

Validation efforts compared predictions of the EFT in runoff and benthic sediment to 

observed data in surface water and benthic sediment of water bodies with monitoring data 

available in the CDPR Surface Water Database(35). Although the EFT does not calculate the 

instream dilution of runoff, we hypothesized that in small waterbodies predominantly 

impacted by agriculture, the tool could reasonably predict maximum concentrations of 

pesticides in the water body and acute risks by assuming no dilution since they are runoff-

dominated.  

Validation was performed in water bodies unaffected by urban influences, including 

agricultural creeks and ditches. The assessment of agricultural creeks focused on the 

Orestimba and Alisal Watersheds, spanning the period from 2011 to 2020 (refer to Figure 2). 

These watersheds were chosen for their lack of upstream impacts from developed land. 

Furthermore, validation was also carried out in agricultural ditches across the entire BDW 

study area, as shown in Figure 1. 

 

Figure 2 (a and b). The validation study watersheds of the a) Orestimba Creek and b) the 

Alisal Creek. 
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Within the Orestimba and Alisal Creeks, we evaluated pesticide concentrations in the 

dissolved phase, which represents the most bioavailable form. The available monitoring data 

for dissolved pesticide concentrations in these creeks were then compared against the 

concentrations predicted by the EFT model. 

In the case of the agricultural ditches spanning the BDW study area, only samples 

representing the whole water column (dissolved and sorbed phase) were available for 

validation. These samples were compared against the EFT's projections of whole water 

concentrations for the years 2016 to 2020.  

Due to the significantly larger number of application sites and watersheds being 

evaluated in comparison to the Orestimba and Alisal Watersheds, a narrower time frame of 5 

years was chosen for the BDW study. Opting for a 10-year analysis would have exceeded the 

available RAM in RStudio for standard operating systems, and our objective was to furnish 

Watershed Watershed 
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default simulation data for the EFT to support investigations within this ecologically 

important area. 

For each validation study area, a validation dataset comprised all observations of a 

pesticide within a watershed.  In the Orestimba and Alisal watersheds, 49 validation datasets 

were available in the water column for 44 active ingredients and 17 validation datasets were 

available for benthic sediment for 11 pesticides with diverse physicochemical properties(35). 

In the case of filtered water samples diverse physicochemical parameters were observed, 

with ranges of 0.001 to 100,000 mg/L for solubility, 1.6 to 283,707 mL/g for Koc, and 0.4 to 

500 days for soil half-lives(45). In sediment, pesticide physicochemical parameter ranges 

include for solubility 0.001-60 mg/L, Koc 609-307,558 mL/g, soil half-lives 18.4-175 days, 

and sediment half-lives 10.4-161 days(45).  

Additionally, we evaluated all available agricultural ditch observations within the 

water column and benthic sediment in watersheds across the study extent. For water columns 

in agricultural ditches, 23 validation datasets were available for 15 pesticides(35). In the 

benthic sediment of the agricultural ditches’ 11 validation datasets were available for 6 

pesticides(35).  Pesticide physicochemical properties across the BDW study extent were also 

diverse. For whole water samples, solubility varied from 0.001 to 100,000 mg/L, Koc ranged 

from 28.3 to 283,707 mL/g, and soil half-lives spanned from 6.2 to 229 days(45). In ditch 

benthic sediment ranges in solubility spanned 0.001 to 0.33 mg/L, Koc values ranged from 

5,000 to 307,558 mL/g, soil half-lives were between 21.9 and 175 days, and sediment half-

lives spanned from 17 to 161 days(45).  
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In all validation scenarios for surface water, we considered only validation datasets 

with more than 2 observations. In sediment, where substantially fewer monitoring data are 

available, all validation datasets were considered. 

To select metrics of accuracy for chemical concentrations, careful consideration must 

be made. Metrics can penalize errors differently across predicted magnitudes. Yet, typical 

environmental concentrations of pesticides vary by orders of magnitude, as do the 

environmentally relevant concentrations at which ecotoxicological impacts occur; a common 

range is parts per trillion to parts per one hundred. Additionally, the data required to 

parameterize fate and transport models are compiled from unique sources whose data 

availability, scale, and support units for field observations range widely. For instance, climate 

stations are tens to hundreds of miles apart and pesticide application data is available at the 

field level. Accuracy measures independent of the scale of analysis are thus required (e.g., 

relative errors)(68).  

We sought metrics that hold significance when dealing with data that spans various 

orders of magnitude, and exhibit symmetry concerning the mean, treating errors of over and 

underpredictions with equal bias. Another desired quality was the ability to help gauge the 

tool's capability to predict concentrations at the upper end of the observed data spectrum, 

which holds substantial importance for the health of various species. Selected metrics include 

log-transformed accuracy ratios and signed symmetric percent bias(68).  

The accuracy ratio of median, maximum, and 99th percentile predictions for a 

pesticide, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,  is calculable from their respective percentiles 𝑋𝑋 as: 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝑝𝑝𝑖𝑖𝑉𝑉𝑝𝑝(𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻 𝑝𝑝𝐺𝐺𝐼𝐼𝑝𝑝𝑝𝑝𝐼𝐼𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑖𝑖𝐺𝐺𝐼𝐼,   𝑋𝑋)
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐼𝐼𝑝𝑝𝑖𝑖𝑉𝑉𝑝𝑝(𝐺𝐺𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝑝𝑝𝐻𝐻 𝑝𝑝𝐺𝐺𝐼𝐼𝑝𝑝𝑝𝑝𝐼𝐼𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝𝑖𝑖𝐺𝐺𝐼𝐼,   𝑋𝑋)

    3.6.1 
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The accuracy of median predictions evaluates the EFT’s ability to predict typical conditions. 

The accuracy of maximum predictions helps to understand the model’s ability to predict the 

most hazardous concentrations observed for chemicals and to evaluate the reliability of 

predicted ranges. For the 99th percentile of predictions, we compared it to the maximum 

observed concentration. This was conducted to evaluate if 99th percentile predictions more 

accurately predict observed maxima, provided predicted concentrations encompass each day 

of the simulation period, and observations do not.  

When considering accuracy ratios, it is useful to produce a log-transformed accuracy 

ratio, 𝑅𝑅. The log transformation ensures the metric is symmetric for over and under-

predictions(68). 𝑅𝑅 is calculable from paired observed concentrations and as: 

𝑅𝑅 = exp��𝐻𝐻𝐸𝐸𝑚𝑚𝑝𝑝�𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� �� 3.6.2 

Log-transformed accuracy ratios are helpful for comparing the error of individual 

prediction and observation pairs. However, due to the EFT predicting irrigation schedules 

which produce runoff, and the actual schedules being unknown, we do not compare observed 

data to predicted concentrations at the daily time-step (for single prediction and observation 

pairs). Instead, we evaluate the accuracy ratio of median, maximum, and 99th percentile 

predictions for the simulation period.  

Considering the log-transformed accuracy ratios, we can calculate the symmetric 

percentage bias metric, which is interpreted similarly to the mean absolute error percentage 

but penalizes under and over-predictions equally. This measure also uses a sign function to 

indicate whether the predictions are typically over or under(68). We calculate the signed 

symmetric percentage bias of the percentiles, 𝜁𝜁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, of predictions as: 
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𝜁𝜁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 100 ∗ 𝑝𝑝𝐸𝐸𝑚𝑚𝐸𝐸 �median(𝐻𝐻𝐸𝐸𝑚𝑚𝑝𝑝�𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�� ∗ (exp (�𝐸𝐸𝑝𝑝𝑎𝑎𝐸𝐸𝐻𝐻𝐸𝐸(𝐻𝐻𝐸𝐸𝑚𝑚𝑝𝑝�𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�)�  − 1) 

 3.6.3 

When comparing predictions to observations, our analysis considered predicted data 

with concentrations surpassing the median limit of quantification (LOQ) of observations. 

This decision was driven by the model's ability to predict concentrations that are below the 

level at which pesticides can be detected in monitoring campaigns.  

3.3 Results 

3.3.1 Predicted Environmental Concentrations – Validation 

To evaluate the model's ability to predict aquatic risks, we compared predictions of 

pesticide concentrations in runoff and eroded sediment in two investigations. First, we 

focused on creeks which receive runoff from agricultural land within the Orestimba and 

Alisal and second, we examined predictions of pesticide concentrations in agricultural 

ditches across the BDW study extent.  

The evaluation of the EFT predictions for dissolved concentrations of pesticides in 

the Orestimba and Alisal Creeks revealed the symmetric signed bias of median pesticide 

concentrations (𝜁𝜁𝑚𝑚𝑝𝑝𝐻𝐻) and 99th percentile (𝜁𝜁99) predictions to be 35% and 140% respectively. 

The majority of the predicted median concentrations fell within a factor of 3.1 of the 

observed data and 0.14 μg/L of the observed median, demonstrating good agreement between 

typical predictions and observations (Figure 3 (a-b) and Table 1). Typical prediction bias of 

pesticide median concentrations was comparable to the bias of a study evaluating 

concentrations of chlorpyrifos and diazinon with SWAT in the Orestimba watershed, whose 

percent bias was 25% and 35%, respectively(20). 
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Examining the 1 in 10-year maximum predicted concentration accuracy of pesticides 

for the simulation period, the symmetric signed percent bias, 𝜁𝜁𝑚𝑚𝑉𝑉𝑇𝑇, was 356%. Taking into 

account that the model predicts concentrations for every day of the simulation period while 

observations are based on substantially more restricted temporal extents, this level of 

agreement is reasonable. Relative to a study demonstrating SWAT to be an effective model 

for simulating concentrations over large extents for a single pesticide, atrazine, the EFT was 

able to capture 78% of the observed maximum concentrations of the 44 pesticides 

investigated, while SWAT captured 50% of observed maximum for atrazine(69). Moreover, 

the magnitude of bias of maximum predictions for the pesticides evaluated was similar to that 

observed for atrazine, -369%. However, it's important to note that the SWAT model 

generally produced predictions that were lower than the actual maximum concentrations. The 

EFT predictions were also in line with the standards set by the USEPA. The EFT predictions 

were also within the range of what the USEPA deems acceptable, an order of magnitude to 

be acceptable(70). This acceptable range is notably broad, and this can be attributed to the 

wide variety of environmental concentrations encountered, as well as the numerous 

environmental processes at play. 

Results of predicted medians in agricultural ditches demonstrated improved 

agreement relative to the Orestimba and Alisal Creeks which receive runoff from 

undeveloped and agricultural lands (Figure 2). The 𝜁𝜁𝑚𝑚𝑝𝑝𝐻𝐻 of predictions was -1.04%, with 

most predictions within a factor of 2.6 and 0.01 μg/L of observed (Figure 3 (c) and Table 2). 

For 99th percentile and maximum predictions, close agreement was also observed, with 

symmetric signed percent biases of 173% and 212% respectively.  
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a) 

 

b) 

 
c) 
Figure 3 (a-b). Dissolved predicted and observed concentrations of pesticides within the a) 
Orestimba Creek, b) Alisal Creek. Whole water concentration c) within agricultural ditches 
across the BDW study extent. From left to right in each boxplot, we depict the observed 
concentrations, predicted concentrations above the median limit of quantification for the 
pesticide, and all predicted concentrations. Of the pesticides evaluated, the pesticides with 
the greatest number of observations are shown.  
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Table 1. Comparison between observed and predicted environmental concentrations (PECs) 
in the dissolved phase for the Orestimba and Alisal Creeks; pesticides with risk quotients 
(RQ) greater than one are in bold. 
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Table 2. Comparison between observed and for predicted environmental concentrations 
(PECs) in whole water for agricultural ditches across the study extent; pesticides with risk 
quotients (RQ) greater than one are in bold. 
 

 

For benthic sediment evaluations, we also conducted separate validation efforts for 

the Orestimba/Alisal watersheds and the BDW study extent, although the same sample types 

were available. Separate validations were conducted owing to creeks in the Orestimba and 

Alisal watersheds receiving runoff from both large undeveloped areas and agricultural 

development (Figure 2), while the agricultural ditches evaluated across the study extent 

predominantly receive agricultural runoff.  

Analyzing predictions for the benthic sediment, we observed a 𝜁𝜁𝑚𝑚𝑝𝑝𝐻𝐻 of -28.8%, and 

𝜁𝜁99 of 255%. Most of the median predicted concentrations align with observed data and were 

within a factor of 2.4 and 1.4 μg/kg. Notably all but one validation dataset observation range 
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was encompassed by predictions, demonstrating considerable agreement, see Figure 4 (a-b) 

and Table 3.  

However, when we examined the 1 in 10 year predicted maximum concentrations of 

the simulation period, a 𝜁𝜁𝑚𝑚𝑉𝑉𝑇𝑇 of 1030% was observed. This indicates that for most pesticides, 

there was a difference greater than an order of magnitude for maximum predicted 

concentrations when compared to the observed maximum. The typical accuracy of these 

predictions exceeds the USEPA criteria of acceptability of an order of magnitude (1000%) 

and demonstrates the benthic sediment edge-of-field submodule predictions to be overly 

conservative for agricultural streams. It’s worth noting that for pesticides with high 

partitioning coefficients for organic carbon, like lambda-cyhalothrin, observed concentrations 

in California's agricultural ditches have fallen within the range of the maximum predicted 

concentrations, parts per one thousand, during the simulation period and monitoring data may 

not have captured peak concentrations(35). The reason for the greater inaccuracy of 

predictions in stream sediments, compared to surface water, could be linked to the slow 

mixing of ditch sediments and stream sediments compared to the water column of ditches 

and streams. 

 

a) 
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b) 

 

c) 

Figure 4 (a-c). Concentrations of pesticides observed and predicted in benthic sediments 
within a) the Orestimba Creek, b) the Alisal Creek, and c) agricultural ditches across the 
study extent. Of the pesticides evaluated, we illustrate the three pesticides in each area with 
the greatest number of observations. From left to right, the observed concentrations, 
predicted concentrations above the median limit of quantification for the pesticide, and all 
predicted concentrations.  
 

The 𝜁𝜁𝑚𝑚𝑝𝑝𝐻𝐻 of EFT predictions was -62.7%, and the 𝜁𝜁99 for pesticides was 162%. The 

EFT demonstrated a tendency to underpredict sample medians, however, close agreement 

was observed with most prediction medians within a factor of 1.6 of and 1.5 μg/kg of 

observed concentrations. Furthermore, recall that we considered validation datasets with as 

few as one observation in sediment due to data paucity, which may account for the under 
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prediction of observed medians. For the 1 in 5-year maximum predicted concentrations of 

agricultural ditch sediments, predictions were agreeable relative to observed, with a 𝜁𝜁𝑚𝑚𝑉𝑉𝑇𝑇 of 

184%, see Figure 4(c) and Table 3.  

Table 3. Validation datasets for benthic sediment predicted environmental concentrations 
(PECs) for the Orestimba and Alisal Creeks, as well as agricultural ditches across the study 
extent.  
 

 

3.3.2 Aquatic Risks and Sources 

In the analysis of aquatic risks for the BDW, three metrics were taken into account, 

the RQs, days of exceedance, and RIs. The RQ reflects the ratio between the water body 

concentration and toxic concentration. RQs exceeding one indicate concentrations surpassing 
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adverse effects for aquatic organisms on specific days. The days of exceedance, a metric that 

tallies the days when concentrations within an HRU surpass the adverse effect concentration, 

quantifies the number of events where concentrations in HRUs pose risks to aquatic life 

(RQ>1). The RI consolidates risk impacts for the diverse sources or taxa under investigation 

simultaneously and is weighted based on the size of the analysis area. Importantly, while 

RQs and exceedance days reveal specific risks, RIs offer a comparative perspective and can 

highlight the relative magnitude of impact that may exist to numerous sources and target taxa 

simultaneously.  

We begin by exploring the RInet for the analysis period, which provides a high-level 

overview of which sources per cultivated hectare contributed the greatest risk to fish, water 

column invertebrates, nonvascular and vascular aquatic plants for the simulation period. We 

observed that for the water column, 80% of the RInet was concentrated in 9% of the 

watersheds (Figure 5(a)). The RInet for all pesticides, application sites, and watersheds 

predicted the greatest proportion of impact to investigated taxa, from greatest to least, for 

water column invertebrates (81%), vascular plants (16%), nonvascular plants (3%), and fish 

(0.3%). 
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a)                                                       b) 

 
c)                                                       d) 

Figure 5 (a-d). a) The net risk index (RInet) for all investigated taxonomic groups fish, 
invertebrates, nonvascular and vascular aquatic plants; (b-d) illustrate example spatial 
insights that can be gleaned from the study extent for specific taxonomic groups, using 
invertebrates in the water column as an example. For the simulation period 2016-2020, b) 
portrays maximum risk quotients predicted for invertebrates by watershed, c) highlights the 
sum of days of exceedance observed in watersheds, and d) displays HRU specific days of 
exceedance across the study extent. 
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In terms of direct indices of risk, RQs and exceedance events, the results 

demonstrated a consistent pattern across the taxonomic groups investigated within the water 

column. The order of impact, from the highest impacted taxonomic group to the least, 

mirrored what was observed for the RInet (invertebrate > vascular plants > nonvascular plants 

>fish). Summaries of risk indices and quotients for the BDW study extent can be reviewed in 

Table 4, details for exceedance events can be reviewed in Table 5, and the spatial 

distribution of risk for all pesticide RQs and exceedance events for the highest impacted 

taxonomic group, water column invertebrates, can be viewed in Figure 5. It's important to 

note that the EFT’s reporting of exceedance events is comprehensive, covering each HRU for 

every day of the simulation period. Consequently, the number of exceedance events may 

surpass the total number of days in the simulation period.  
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Table 4. Pesticides contributing to 99% of the net risk index (RInet) over the simulation 
period (2016-2020) in surface waters of the BDW study extent, and their maximum predicted 
risk quotient (RQ) on any day of the simulation. 
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Table 5. Pesticides contributing to 99% of the net risk index (RInet) in agricultural ditches of 
the BDW study extent, and their predicted exceedance events to investigated taxa. 
 

 

Alongside predicted risks, an assessment of observed concentrations obtained from 

monitoring campaigns within the study area revealed an RQ > 1 for agricultural ditches in the 

study region. This was evident in 14 out of the 23 observations present in the validation 

datasets. The EFT accurately predicted observed exceedances, with the exception of 

pendimethalin. Additionally, the EFT predicted another pesticide to surpass health 

benchmarks, metolachlor, which was not observed in monitoring data.  

 A key aim of the development of the EFT was to enable the simultaneous evaluation 

of the many pesticides in use. To explore the significance of accounting for cumulative risks 
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in runoff, we compared the predicted maximum RQcum to the maximum RQ of individual 

pesticides in watersheds across the study extent. Results of the analysis, a one-way, paired t-

test (α=0.95), demonstrated that for each taxonomic group, the maximum RQcum was 

significantly greater than the individual pesticide maximum RQs (p-value < 1E-10, df=207). 

For 50% of watersheds, the maximum RQcum for fish, invertebrates, nonvascular and vascular 

aquatic plants was greater than the maximum RQ of any pesticide by 370%, 540%, 690%, 

and 820%, respectively. 

Finally, to evaluate the importance of leveraging tools like the EFT to address the 

issue of unobservable pesticide risks due to limitations in analytical sensitivity, we explore 

the frequency with which monitoring data are unable to capture aquatic health benchmarks 

considered in this investigation. When examining all pesticide monitoring data employed for 

validation purposes in the BDW, 42% of samples had a LOQ above the health benchmark. 

This indicates that the monitoring campaigns might have overlooked identifying aquatic risks 

that were actually present had the concentrations on the specific monitoring day not been as 

high. Additionally, when reviewing all sample analyses of pesticides within agricultural 

ditches in California from 2016-2020, a notable portion—2,356 out of 12,447 (~20%)—in 

the CDPR SURF database exhibited LOQ values surpassing effect thresholds. For the highest 

impact pesticide of the investigation, lambda-cyhalothrin (see Table 4 and 5), 100% of 

sample LOQs were greater than the effect threshold (USEPA Aquatic Life Benchmark for 

invertebrates(71)), and risks could go undetected in any of the samples analyzed.  
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3.3.3 Sources 

Within the study area, our observations revealed that a substantial proportion of 

toxicity was attributed to a relatively small number of sources. Among different application 

site types, we found that 80% of the overall risk to aquatic taxa in the water column stemmed 

from merely 10% of the site types (Table 6). Similarly, among the pesticide-active 

ingredients applied during the simulation period, a mere 2.5% accounted for 80% of the RInet, 

lambda-cyhalothrin, imidacloprid, indaziflam, and bifenthrin. Three of the four highest-

impact active ingredients (RInet) were insecticides and were most toxic to invertebrates in the 

water column. The fourth, indaziflam, is an herbicide that is most toxic to vascular plants. 

The relative rank of pesticides by impact varied, depending on the metric considered, yet 

pesticides predicted to have a relatively high or low impact were consistent across evaluated 

risk metrics (Table 4 and 5).  

In terms of applied active ingredients, our observations highlighted that lambda-

cyhalothrin triggered the highest number of exceedance events in any HRU for water column 

invertebrates and fish (Figure 6). However, the remainder of high-impact pesticides for 

invertebrates and fish differed. Similarly, for aquatic nonvascular and vascular aquatic plants, 

the greatest number of exceedance events observed in any HRU were attributable to the same 

active ingredient, diuron, while the remainder of high-impact pesticides differed.   
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a) 

 
b) 
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c) 

 
d) 

Figure 6. The maximum number of exceedance events for each taxonomic group evaluated 
within any Hydrologic Response Unit (HRU) across the study area; only pesticides with 
exceedance events are shown. This count is provided for a) fish, b) water invertebrates, c) 
nonvascular plants, and d) vascular plants. 
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With respect to application site types, we observed that per application area, the site 

type flowers/nursery/Christmas trees contributed the greatest RInet. However, in the review of 

exceedance events for any of the investigated taxa, the greatest number were observed for 

alfalfa, walnuts, grapes, and almonds; this is likely attributable to their greater area of 

cultivation.   

The Environmental Release Tool(16), a complementary tool to the EFT in the 

Pesticide Mitigation Prioritization Model, also predicts the relative environmental impact of 

application sites and pesticides using the same pesticide use reports as the EFT but only 

considers applied toxicity. The applied toxicity is defined as the amount of pesticide 

introduced into the environment, adjusted for its toxicity to the priority species of the 

investigation. Notably, for the BDW study extent and investigated taxonomic groups in this 

investigation, the Environmental Release Tool identifies nut orchards and alfalfa as the most 

significant application sites in terms of impact, in alignment with the EFT. Similarly, the 

pesticides lambda-cyhalothrin and bifenthrin are predicted as having the highest 

environmental impact when their applied toxicity is considered, as is also predicted by the 

EFT. The Environmental Release Tool was also able to predict 50% of the top ten predicted 

high-impact sites and 40% of the top ten high-impact pesticides. Although it's crucial to 

simulate how specific pesticides behave in the environment to predict aquatic risks, these 

results emphasize the importance of data on the sources of toxicity in enhancing our grasp of 

aquatic threats. 
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Table 6. Sources of risk by site type, ordered by greatest to least for their net risk index 
(RInet) to taxa residing in the water column. Additionally, we summarize the number of 
exceedances of risk quotients for the site type in any HRU, calculated at the daily time-step. 

 

 

3.4.0 Discussion 

When working on a large scale, it is common to encounter limited or no data on the 

instream characteristics of waterbodies and observed concentrations of the numerous 

pesticides in use, which are essential for calibration purposes. In response, the EFT was 

developed and evaluated for accuracy in predicting pesticide concentrations in surface water 

environments vulnerable to pesticide impacts (smaller systems predominantly impacted by 
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agriculture) from runoff, lateral flow, and eroded sediment concentrations. Relative to the 

widely used model SWAT (7–9), which has been employed in over 2,000 peer-reviewed 

publications and has nearly 70,000 citations(72), similar observations in accuracy for 

predicting the range of environmental concentrations in watersheds dominated by agricultural 

runoff were observed for a calibrated simulation at the watershed level(20), and as an 

uncalibrated large multi-watershed simulation(69) (see Section 3.3.1). However, the EFT has 

important advantages that enable users to understand the risks of hundreds of pesticides 

within a single simulation, analyze cumulative risks, and identify primary sources of 

pesticide risks at large scales where many required data describing instream characteristics 

are unavailable.   

Validation efforts undertaken for the EFT revealed predictions to have close 

agreement for the range of concentrations observed in surface water and sediment validation 

datasets. The majority of median predictions in runoff and benthic sediment of agricultural 

ditches in the BDW study extent were within 0.01 ug/L and 1.5 μg/kg of surface waters and 

sediments, respectively. Furthermore, regarding high-impact pesticides like lambda-

cyhalothrin and bifenthrin, which exhibit low toxicity thresholds, the EFT was able to predict 

median concentrations within 0.002 ug/L or less of observed. The accuracy demonstrates the 

EFT to be capable of facilitating pragmatic assessments of even very low environmental 

concentrations at which these compounds elicit harmful effects(45,71) – effects that presently 

elude detection within standard monitoring campaigns. 

The EFT also offers potential assistance in monitoring efforts by addressing a key 

challenge: capturing the most impactful runoff events. Traditional monitoring often struggles 

in this regard due to uncertainties surrounding the timing of these events and the substantial 
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resources required for planning and funding monitoring campaigns. Consequently, 

campaigns are frequently scheduled as routine activities, potentially leading to the oversight 

of peak runoff occurrences(73). Moreover, resource constraints frequently hinder 

comprehensive analyses of the array of pesticides that could be present. Additionally, the 

quantification of pesticides in suspended sediments and bed sediment is carried out at much 

lower frequencies, resulting in an incomplete picture of pesticide risks in these 

environments(74).  

Given these challenges with monitoring and observations of pesticides in aquatic 

environments, the EFT emerges as a valuable tool to support risk assessment. It achieves this 

by not only predicting environmental concentrations, but via producing results that inform 

the prioritization of monitoring and mitigation efforts. The EFT conveys essential risk 

information regarding the number of days where pesticide concentrations surpass levels 

associated with adverse health effects across diverse watersheds. It also identifies specific 

pesticides and application sites that have the most significant impact on aquatic 

environments. Notably, the tool stands out for its unique ability to highlight the cumulative 

risks posed by the multitude of pesticides entering surface waters and sediments. This is of 

importance because, over the simulation period, the cumulative maximum risk quotient, 

compared to that of individual pesticides, was typically more than half an order of magnitude 

higher for the investigated taxa. Through these functions, the EFT offers a strategic means to 

prioritize monitoring initiatives and risk reduction opportunities. 

Approaches that may be taken to apply tool knowledge to reduce pesticide risks in 

aquatic ecosystems include consideration of chemical alternatives or prioritizing locations for 

the integration of practices to reduce contaminant burdens, such as detention ponds.  To 
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illustrate the EFT’s ability to support decisions for chemical alternatives for mitigating high-

impact pesticide risks, consider the case of pesticide applications on almond orchards in the 

BDW.  Bifenthrin was identified by the EFT to be the primary contributor to the RInet for the 

analysis period. On almond orchards, bifenthrin is frequently used to combat mite 

infestations. Utilizing the results generated by the EFT in combination with an available 

chemical alternatives database, such as that of the University of California Agricultural and 

Natural Resources(75), an alternative such as bifenazate can be chosen that effectively 

targets mites while posing a lower aquatic risk. Bifenazate requires similar application 

frequencies, yet if all applications of bifenthrin were displaced by bifenazate for the BDW 

study area and simulation period, at the recommended application rate, aquatic risks would 

be reduced by 106-fold for fish and ~28,000-fold for aquatic invertebrates per treated hectare. 

The EFT can prove a valuable asset to risk assessments; however, the tool has 

important limitations. The EFT is not designed to predict risks in waterbodies not dominated 

by agricultural runoff or chronic pesticide risks, which are key components of a 

comprehensive risk assessment. The tool is designed to understand risks in vulnerable 

waterways, sources of risk, and the frequency with which acute risks to diverse taxa may 

occur from pesticide loads introduced in runoff, lateral flow, and eroded sediment. Moreover, 

some classes of pesticides are moderately to highly volatile or ionizable, which require 

consideration of additional processes that contribute to the presence of these chemicals in the 

environment, which are not currently considered. However, many pesticides in use are non-

ionizable and have low volatility, which includes insecticides with the highest reported 

toxicity in the USEPA Aquatic Life Benchmarks database(71), as well as the most widely 
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used active ingredient classes of insecticides pyrethroids, neonicotinoids, and 

organophosphates.  

3.5 Conclusion 

Assessing the impacts of pesticides across the diverse and dynamic conditions found 

in agricultural landscapes is essential, especially as new use strategies or information about 

their toxicity becomes available. The EFT is designed for conducting high-resolution risk 

analyses of pesticides over extensive areas, helping to understand existing and potentially 

unknown concerns related to their transport, persistence, and risk in aquatic environments. 

Furthermore, predictive tools like the EFT play a crucial role in supporting monitoring 

campaigns. This is particularly important for understanding the risks posed to non-target 

aquatic organisms which share high sensitivity with pests targeted by widely used pesticides 

but for whose effect levels currently remain undetectable in most monitoring campaigns, 

such as for pyrethroids. The tool aids in identifying areas where pesticides may have a 

significant impact on various species and determines the main sources of risk. In regions 

where risks are prevalent, the EFT serves as a strategic resource for conducting more detailed 

risk assessments, prioritizing the implementation of management practices, and focusing 

mitigation strategies. 
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