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ABSTRACT OF THE DISSERTATION

Deconvolution of immunome and degradome repertoires using computational
proteomics

by

Stefano R. Bonissone

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2015

Professor Pavel A. Pevzner, Chair
Professor Steven Briggs, Co-Chair

In recent years, we have seen the advent of high-throughput sequencing technologies,

providing us with the unprecedented ability to query DNA, RNA, and proteins. We have wit-

nessed the vast variability of molecules at the level of sequences. Disentangling this molecular

variability, and describing the array of changes to molecules, is critical to understanding certain

biological processes. This dissertation asks questions about certain functions, e.g., immune

response and N-terminal events, and attempts to ascertain any patterns in the data.

While the N-terminus may seem like an innocuous portion of translated proteins, it

in fact, harbors great variability. Despite all proteins starting with a methionine (Met), many

lose this first residue, to N-terminal methionine excision (NME), exposing the second residue.

xv



Additionally, some proteins gain an acetyl group to the N-terminus. These N-terminal post-

translational modifications (PTMs) make up the N-terminome.

Another biological process that introduces variability is that of the immune repertoire.

B-cells, responding to an antigen, produce heavy and light chain proteins to form an antibody.

These antibodies are comprised of three gene-segments, termed V, D, and J. Unlike typical

exonic splicing events, VDJ somatic recombination occurs at the genomic level within B-cells.

Additionally, somatic hypermutation (SHM) introduces a very large number of mutations. Thus,

the population of B-cells will produce a large variety of antibody heavy and light chains, in an

attempt to target an antigen. This immunoglobulin repertoire forms part of the immunome that

we attempt to characterize in different projects.
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Chapter 1

Introduction

Bioinformatics is driven by the data we are able to generate. High-throughput technolo-

gies have enabled the creation of numerous experiments probing DNA, RNA, and proteins.

New assays modifying these underlying technologies enable exploring new hypothesis, and

frequently, require new computational tools. This environment provides a wealth of existing

datasets, and an ever changing arsenal of new experimental approaches with which to ask

questions.

With these new high-throughput technologies, we are now able to characterized and

quantify the vast variability at the molecular level. These molecular repertoires can be captured

and analyzed using different approaches. In this dissertation, repertoires from the N-terminome

and immunome are examined.

1.1 N-terminome

The N-terminus of proteins harbors a great deal of variability, despite all translated

proteins begin with a methionine. N-terminal methionine excision (NME) is the process of

removing this initiating methionine, exposing the second residue to the N-terminus. Additional

post-translational modifications (PTMs) occur on the N-terminus, in particular N-terminal

acetylation, which will be discussed in the dissertation.

1
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Chapter 2 explores N-terminal methionine excision by employing comparative protege-

nomics approaches to analyze millions of tandem mass-spectra (MS/MS), across 57 different

organisms. The comparative genomics postulate, that function suggests conservation, is applied

to proteomic searches.

In this project, whole cell lysates from many different bacterial and eukarotyes were

analyzed using tandem mass-spectrometry. These experiments did not enrich for the N-terminus,

but instead relied on the whole cell capture of proteins. The lack of enrichment obviously only

allows us to examine those proteins which are captured by the mass-spectrometer, favoring

those medium and high-abundance proteins. While this bias may be problematic for some

hypothesis, for exploring NME specificity it did not pose a challenge.

1.2 Immunome

The immunoglobulin gene is of particular interest since it can target a multitude of

pathogens, and provides a critical line in our body’s immune system. As a result, a recombinant

version can be engineered to a specific target, providing potential therapeutic uses. However,

identifying a candidate antibody from which to start is a difficult task.

Immunoglobulin sequencing (Ig-seq) is an assay targeting immunoglobulin transcripts,

and allows for the querying of an antibody repertoire; the overall process is depicted in

Figure 1.1. The heavy or light chain transcripts from B-cells are targeted, amplified, and

sequenced, to provide a measure of the resulting antibody repertoire.

The resulting Ig-seq reads are remarkably diverse due to the extreme variability of

immunoglobulins themselves. Both tools described in Chapters 3 and 4 address this variabil-

ity. Chapter 3 provides a means of identifying the original, germ-line, composition of each

immunoglobulin read. While Chapter 4 provides a way of organizing Ig-seq data, and better

searching for peptides in MS/MS data of immunoglobulins.
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B-cell isolation

5’ AAAAA

mRNA purification

PCR amplification
of Ig transcript

Paired-end sequencing of
Ig variable region

Figure 1.1: Immunoglobulin sequencing diagram. B-cells are isolated, transcripts
purified, amplified, and ultimately sequenced. The heavy or light chains can be targeted
using this approach.

1.3 Outline

Chapter 2 focuses on the N-terminome and uses a comparative proteogenomic approach

to ask the the question about the function of N-terminal methionine excision (NME), and the

role it plays in protein degradation.

Chapter 3 describes the problem of identifying germline V, D, J gene-segments from

antibody transcript sequencing. This operation is a critical first step to analyzing the antibody

response as queried by immunoglobulin sequencing (Ig-seq).

Chapter 4 continues to address the problem of antibody repertoire analysis, by introduc-

ing a tool to perform clustering and error correction of Ig-seq reads. Further, database search

of mass-spectra from antigen pulldowns is performed to reveal the ability to identify antibody

repertoires at the proteomic level.

Chapter 5 examines tumor specific features: tumor mutations and tumor infiltrating

lymphocytes (TILs) by measuring immunoglobulin peptides from infiltrating B-cells. Here

mutations and immunoglobulin peptides are compared to find differences across colorectal

tumor subtypes. Additionally, TILs are also considered in the context of transcripts. These
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antibody transcripts present at the tumor site are assembled, and isotypes are analyzed for

similarities across tumor samples and differences between normal samples when available.

Colon and breast cancers are investigated.



Chapter 2

N-terminal post-translational

modifications

2.1 Comparative proteogenomics

2.1.1 Introduction

Although methionine is used to initiate protein synthesis for essentially all proteins, it is

subsequently removed in a large percentage of cases, either by cleavage of an N-terminal signal

peptide (as part of cellular translocation mechanisms or precursor activations) or by the action

of specific methionine aminopeptidases (MetAPs). Approximately two-thirds of the proteins

in any proteome are potential substrates for the latter N-terminal methionine excision (NME),

and MetAPs appear in all organisms from bacteria to eukaryotes [GBM04]. The second, or P2,

amino acid in protein substrates is crucially important for NME since MetAP specificity mainly

depends on the nature of this residue, a selectivity that is conserved across all species [GBM04,

AB88, FMP+06, MSG06, BBW98]. These enzymes generally excise the N-terminal Met when

the second residue is Gly, Ala, Ser, Thr, Cys, Pro, or Val [FMP+06, HEL+87, MG08], which

are the amino acids smallest in size (based on radius of gyration of the side chain [Lev76]).

NME is a necessary process for proper cell functioning; it is included in the minimal genome

5
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set of eubacteria [HPG+99]. Eukaryotes contain two MetAPs derived from a version in bacteria

(MetAP1), and another found in archea (MetAP2) [AKH+95]. Just as the deletion of MetAP

eubacteria is lethal, the deletion of both MetAPs in yeast is also lethal [LC95].

In 1988, Arfin and Bradshaw [AB88] observed that the specificity of NME coincided

with that of the N-end rule (NER) [BFV86, Var96], a ubiquitin-dependent protein degradation

process that is based on the recognition of N-terminal residues. The stabilizing residues for

the NER include Gly, Ala, Ser, Cys, Thr, Pro, and Val and, with the exception of Met, the

destabilizing residues are all found to be in the class of P2-residues that are not substrates

for the MetAPs. This suggested that NME acts to release Met from proteins whose stability

is unaffected by the NER creating at the same time a second class of proteins, who have the

potential for regulated turnover downstream of the co-translational processing, when, and if, the

N-terminal Met is subsequently removed by a mechanism other than the co-translational action

of the MetAPs. However, despite extensive studies, this type of programmed protein turnover

(requiring downstream removal of Met) has not been demonstrated to occur. An implication of

this correlation is that exposing of the stabilizing residues may also contribute to increasing

their lifetime.

The stabilizing residues exposed by the action of the MetAPs can be further modified.

The most extensive of these reactions is N-terminal acetylation (NTA), which can occur on

as much as 70-80% of the mass of the soluble protein in eukaryotes. Although the specificity

of the N-acetyltransferase (NAT) responsible is not as rigid as the MetAPs, the principal

substrates in the stabilizing class are usually the four smallest residues (Gly, Ala, Ser, and

Thr) [HEL+87, PFHJ85]. A second class of NATs can also modify the retained Met when

the adjacent residues are Asp, Glu or Asn [PNT+99]. The functional importance of this

modification (in either case) is not known although it has been suggested that it may exert a

protective effect against spurious aminopeptidase cleavages. Recently, Hwang et al., [HSV10]

have extended the NER to include Nα-acetylated termini as also destabilizing thus providing

another possible function for this modification. In contrast, to date, very few instances of
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Nα-acetylation have been observed in bacteria. Other modifications can also occur in both

eukaryotes and prokaryotes although they are generally much more limited in scope.

The specificity of the MetAPs suggest an apparent connection between NME and

protein degradation. However, this connection has never been examined using high-throughput

mass spectrometric data or a comparative genomics approach; thus it remains unclear whether

exposing these stabilizing residues contributes to increasing protein half-life and thus represents

a primary purpose of NME . (The connection between NME and NER in bacteria, which

has an NER with a somewhat different profile [TSRV91], is even more obscure.) Recent

studies provide some examples where disruption of NME via a single-residue substitution in

the P2 position causes protein degradation [PS02, WB99, GVM03]; however, some of these

experimental results are in conflict with the NER [Var96]. Giglione et al., [GVM03] have

shown that NME triggers degradation of D2 protein in Caenorhabditis reinhardtii in the PSII

complex after replacing the second (stabilizing) Thr residue by another amino acid to prevent

NME. This replacement results in early degradation of D2 and instability of the PSII complex.

From this, Giglione et al. [GVM03] postulated that NME determines protein life-span via

currently unknown machinery. However, since Bachmair et al. [BFV86] classified Met as

a stabilizing residue, it is not entirely clear why substituting one stabilizing residue (Met)

by another one (Gly, Ala, Ser, Cys, Thr, Pro, or Val) should affect protein stability and the

substitution may have other deleterious effects that are manifested in different ways.

The logic for analyzing NME and NER is shown in Figure 2.1 NME exposes 7 different

residues as new N-termini of proteins. The natural conclusion that has become a dogma of

NME is that these 7 residues are exposed for a functional reason. The broad scope of NME

suggests a universal reason that surpasses any particular protein’s role. In turn the comparative

genomics postulate (function suggests conservation) leads to the conclusion that the 7 residues

should be evolutionarily conserved at position P2 of proteins. However, since only 2 out of

the 7 residues are conserved, we argue that one of the two assumptions in Figure 2.1(a) must

be incorrect and put forth the alternative logic depicted in Figure 2.1(b), which matches our
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analysis across dozens of species. According to this logic, NME accomplishes the goal of

exposing Ala and Ser by exposing all residues with side chains smaller or comparable in size

to Ala and Ser (G, T, V, P, C). These residues are thus inconsequential players that are not

functionally important (and are not evolutionarily conserved) at P2.

(a) (b)

Figure 2.1: Two alternative cases for NME function. (a) NME exposes 7 residues to
be new N-termini of proteins. Since this is presumably for some functional reason,
the conventional assumption is that all 7 residues must have functional importance as
N-termini. By the comparative genomics postulate (as defined in the text), evolutionary
conservation of all 7 at P2 should be observed. If all of these residues are not conserved,
one of the two assumptions must be incorrect; either not all 7 residues are important or
the comparative genomics postulate is invalid. (b) Given that the comparative genomics
postulate holds, and only 2 of the 7 residues are of functional importance as N-termini,
then the other 5 residues are inconsequential players and only these two residues should
be evolutionarily conserved.

In this report, we examine the connection between the specificity of NME and stabilizing

residues of NER. In doing so, datasets from bacteria (including 112 million mass spectrometric

spectra from 57 species), yeast, and mammals, were analyzed for N-terminal peptides both

with respect to the excision (or not) of initiator Met residues and the distribution of P2-residues.

The results reveal a strong preference of Ala and Ser as P2-residues. However, this process

does not appear to be linked to the NER other than being generally compatible with it. These
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studies also demonstrate a much greater than expected number of Nα-acetylation events in

some bacteria.

2.1.2 Methods

Spectral Datasets

A tandem mass spectrometry (MS/MS) dataset from Saccharomyces cerevisiae was

utilized in the analysis of NME and other post-translational modifications (PTMs). Six mil-

lion spectra were analyzed, searched against an S.cerevisiae database, yielding 410 protein

identifications with N-terminal evidence.

In addition, 112 million spectra from 57 different bacterial organisms were searched to

provide a large dataset containing 16511 classifiable proteins. InsPecT [TSF+05] was used for

searching the spectra followed by the MS-generating function approach (MSGF), as detailed in

Kim et al. [KGP08] to filter for significant identifications at a false discovery rate (FDR) of 1%.

Further description of this dataset is presented in Text S1.

N-terminal PTM search

Of the available 57 datasets from bacterial organisms, 47 were searched for all N-

terminal modifications (including unexpected ones) across 68 million spectra. In order to

identify PTMs occurring on the N-terminus of proteins, MSGF [KGP08] was utilized. Given a

protein p in proteome P, the first tryptic cut of p was taken as the peptide to search. Therefore,

the N-terminus of the peptide was the N-terminus of p, while the C-terminus was either K or R.

In addition to searching for this peptide, the initial Met was removed and the Met-less version

was also searched. So should |P| denote the number of proteins in the proteome P, there are

M = 2∗ |P| peptides to search.

Each of the M peptides was paired with each available spectrum for the organism in

question. Therefore, with N different spectra, one obtained M ∗N potential peptide-spectra

matches (PSM) to test. For each PSM, there will likely be a difference in parent mass of
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the spectrum and of the peptide. This difference, or offset, was concatenated to the peptide

annotation as an N-terminal modification to be searched. As a result our search represents a

blind (or universal) search for PTM [TTZ+05] that allows us to find unexpected PTMs.

For most bacteria, M is between 1,000 and 8,000, while N varies greatly. However,

there are frequently 40 million to 400 million PSMs with accompanying spectral probabilities.

Only those PSMs with spectral probabilities less than 1.0×10−10 were retained as statistically

significant. This greatly reduced the number of PSMs, and potential PTMs, to consider.

A permutation test was used to determine over-representation of Nα-acetylated Ser-

proteins from the 248 proteins found by MS/MS data in yeast containing evidence of N-terminal

acetylation. This test was performed by considering all proteins in S.cerevisiae with Ala, Ser,

or Thr at position 2. Of all proteins satisfying that constraint, 248 proteins were randomly

selected. Counts for the number of proteins with Ala, Ser, and Thr at P2 were determined

for each iteration. This process of randomized sampling was iterated 10,000 times to obtain

a null distribution. Thresholds for 5% and 1% were then determined using the conservative

Bonferroni correction for the tests of the three residues.

Sequelogs

In order to test if NME was critical for a function of a specific protein, its sequelogs

from related species must be analyzed (in this report the term sequelog from [Var04] is used

instead of the commonly used term ortholog). The protein sequence data used for comparing

sequelogs were compiled into three sets: bacteria, yeast, and mammal. The bacterial dataset

comprises 19 Shewanella species (1860 proteins had sequelogs in all species). The yeast

dataset comprised seven Saccharomyces species (1502 proteins had sequelogs in all species)

obtained from the Saccharomyces Genome Database (http://downloads.yeastgenome.org/). The

mammalian dataset was composed of six species: human, chimpanzee, macaque, cow, opossum,

and rat, obtained from the MSOAR project (http://msoar.cs.ucr.edu/). There were 7934 proteins

that had sequelogs in all species. Sequelog mappings for each dataset were obtained from each
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respective project. A protein was included in a particular dataset if there existed a sequelog in

all species considered in the dataset in question. No further annotations or processing were

performed to determine or modify the provided sequelog mapping.

2.1.3 Results

NME Specificity

Large-scale mass spectrometric studies [GTJ+07] have confirmed that NME occurs

with nearly 100% efficiency from proteins containing Gly, Ala, Ser, Thr, Cys, Pro, and Val

as the P2-residues, which provides the simplest rule for predicting NME. More detailed

studies [FMP+06, MG08] have devised rules for NME prediction that utilize the amino acids

in positions 2 and 3. The simple rule (that classifies a protein as NME-positive if P2 is in

X where X = {G,A,P,S,T,V,C}) results in an 8% error rate, most of which represents false

positives (96 of 107 errors are false positives). The accuracy of this simple prediction rule on

the Shewanella MS/MS dataset is acceptable, given that some of the errors may reflect false

positive peptide identifications rather than a shortcoming of the rule.

As part of these analyses, an MS/MS dataset consisting of ≈112 million spectra from

57 different bacteria generated at Pacific Northwest National Laboratory were examined (see

[FMS+10] for a detailed description of this dataset). 6811 N-terminal peptides representing

Met retention and 9700 representing Met removal (16511 peptides in total) were identified.

This is the largest dataset of N-terminal peptides analyzed to date. Figure 2.2(a) and 2.2(b)

represent the logos for peptides with retained and cleaved Met, respectively. Table S1, located

in Text S1, summarizes the organisms searched and the results obtained.

Interestingly, these analyses also revealed previously unknown variability in NME

specificity across different species. An example of a species with a less specific NME (with 8

rather than 7 residues in the second position that trigger NME) is shown in Figure 2.3, which

compares NME specificities in Brachybacterium faecium, Escherichia coli, and Deinococcus

radiodurans. Asn is exposed in 20 of 22 cases, in contrast to the standard NME specificity that
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(a)

(b)

Figure 2.2: Sequence motifs for the first ten residues of each protein determined by
MS/MS. (a) 6811 samples which retained Met and (b) 9700 samples where Met was
cleaved.

conventionally includes this residue in the group of non-MetAP substrates. However, it is con-

sistent with the observations of Walker and Bradshaw [WB99] that yeast MetAP1 could readily

cleave a synthetic peptide with a Met-Asn N-terminus. Deinococcus radiodurans and various

Geobacter species show a different variance where, contrary to the usual MetAP substrate

profile, NME retains rather than removes Met before Thr. This is unlikely to be an artifact since

the same effect is observed in all Geobacter species in this dataset, which includes Geobacter

metallireducens, Geobacter sulfurrereducens, and Geobacter uraniireducens. Another smaller

but significant variation in NME specificity relates to Val P2-residues where Met is mainly

retained rather than excised in ≈30% of the species considered (cleavage specificity is less

than 50%). Therefore, while the simple MetAP specificity is a good overall predictor for most

species, there is some flexibility observed in some species. This poses an opportunity for NME

predictor software, such as the TERMINATOR web server [MTV+08], to improve and reflect

these variations in NME specificity (currently all eubacteria are assumed to have the same

NME specificity).
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Figure 2.3: Comparison of MetAP specificities in Brachybacterium faecium, E.coli,
and Deinococcus radiodurans. B. faecium, E.coli, and D. radiodurans significantly
differ in NME specificity (Met occurring before Asn was released in 90% of cases in B.
faecium ). The specificity of D. radiodurans differs from expected with very few Thr
residues exposed (only 10 of 82 samples).

N-terminal modifications

A typical MS/MS experiment identifies only a fraction of all tryptic peptides (and hence

only a fraction of those derived from the N-terminus) and the accuracy of MS/MS-based peptide

identification tools further deteriorates while detecting modified (e.g., acetylated) peptides

(see [HGR+10] for complications in identification of N-acetylated peptides). Therefore, the

acetylation status of most proteins cannot be inferred from a typical MS/MS experiment.

Mass spectrometry data for S. cerevisiae were searched for PTMs (Figure 2.4). Nα-

acetylation is a common PTM in yeast proteins, with Ser, Ala, Gly, and Thr being the acetylated

residues when the initiating Met is cleaved [Wal06]. Indeed, of the 270 Nα-acetylated sites

found in S. cerevisiae by mass spectrometry, 197 are on Ser, 31 on Ala, and 20 on Thr. Permu-

tation tests revealed that only Ser is significantly over-represented in these PTM observations,

the only residue with a p-value less than 0.01 (see Methods). In addition, Figure 2.4(d) shows

that Nα-acetylation prefers Ser-proteins since Thr- and Ala-proteins increase in frequency
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(a) (b)

(c) (d)

Figure 2.4: Results from PTM searches in Saccharomyces cerevisiae. (a) Breakdown of
NME, non-NME, and NME+NTA (NME and Nα-acetylation) events. Approximately
65% of N-terminal events in yeast were found to be N-acetylations. (b) Residue break-
down of the P2 position of proteins that underwent NME+NTA. Ser is strongly favored
in yeast, much as Ser-conservation is also pronounced in yeast. (c) 221 identifications of
only NME+NTA proteins show that Ser dominates the composition. (d) The intersection
between NME+NTA and NME-only show a wide distribution among NME residues.
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when considering the intersection of Nα-acetylation and NME-only events. While proteins

with N-terminal Ser, Ala, Thr, and Gly are all Nα-acetylated in yeast, N-temrinal Ser-proteins

appear to be heavily favored.

Serine is favored in S.cerevisiae, however, it is not universally favored for Nα-acetylation

events. Helbig et al. [HGR+10] provide mass spectrometry evidence for Nα-acetylation in

human cells, showing a strong preference for Ala. In the same study, the Nα-acetylation profile

for Drosophila melanogaster was also shown to differ, with Met, Ala, and Ser nearly equally

represented. The bacterial Nα-acetylation data in Table 2.1 and Figure 2.5 also show a slightly

different profile, still with Ala and Ser as prominent residues.

Widespread N-terminal acetylation in bacteria

Acetylation is currently viewed as a rare modification in bacteria. In previous studies

with in E. coli five different Nα-acetylated proteins were identified: ribosomal subunits S18 and

S5 [YISI87], L12 [TMYI89], along with SecB [SSRS96], and elongation factor Tu [ACD+80].

Utilizing the dataset of bacterial organisms, blind PTM searches detected many Nα-acetylated

proteins in multiple organisms, although certainly not all.

Figure 2.6 shows the potential PTMs as the number of occurrences of a particular mass

shift. Mass shifts of -131 correspond to a loss of Met (i.e. an NME event) while a shift of

0 signifies the retention of the initial Met residue; these are expected events. The surprising

number of -89 mass shifts, corresponding to a loss of Met (-131) along with the addition of an

acetyl group (+42), was considered indicative of Nα-acetylation. A protein was considered to

be Nα-acetylated if it was observed with this offset within 1Da.

Figure 2.5(a) diagrams the findings of NME-only, non-NME, and NME proteins that

also undergo Nα-acetylation (NME+NTA), using this un-targeted PTM search method. There

is considerable overlap between NME-only and NME+NTA sets, suggesting that many proteins

undergoing NTA do not require this modification, or require both (as with ribosomal protein

L7/L12 in E.coli). Figure 2.5 summarizes the overall P2 residue distribution of NME events
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Table 2.1: Nα-acetylation P2 residue breakdown using a 1.0×10−10 spectral probabil-
ity threshold and described filtering procedures, using the definition as: −89± 1Da
neighborhood.

orgnum Organism G A S C T P V D N L I Q E H M F K Y W R Σ

005 Anaeromyxobacter dehalogenans 0 1 - - - - 1 - - - - - - - - - - - - - 2
007 Actinosynnema mirum DSM 3 8 33 - 60 3 2 2 - - - - - - - - - - - - 111
013 Anabaena variabilis ATCC 29413 1 23 39 - 71 5 26 - 4 3 3 - 1 - - - 1 1 - 1 179
014 Arthrobacter FB24 1 14 95 - 124 3 4 - - 1 - 1 - - 1 - - - - - 244
017 Bacillus anthracis 2 12 3 - 1 1 4 - 1 1 - - - - - - - - - - 25
019 Brachybacterium faecium DSM4810 1 9 47 - 90 4 - - 1 1 - - - - - - - - - - 153
021 Chloroflexus aurantiacus 1 18 40 - 51 - 7 - 6 - 2 - - - 1 - - - - - 126
028 Cyanobacterium synechocystis 2 9 10 - 11 1 8 - - - 1 - - - - - - - - - 42
033 Cyanothece PCC7424 0 4 4 - 13 - 14 - - - 1 - - - - - - - - - 36
034 Cyanothece PCC7425 0 3 4 - 12 - 2 - - 1 2 - - - - - - - - - 24
036 Cyanothece PCC8801 1 6 5 - 18 - 9 1 - - 6 - - - - - - - - - 46
039 Dethiosulfovibrio peptidovorans DSM11002 0 - 1 - - - - - - - - - - - - - - - - - 1
041 Deinococcus radiodurans 0 5 19 - 122 - - - - - - - - - 1 - - - - - 147
042 Desulfovibrio vulgaris 2 22 35 - 16 13 3 1 - - - - - 1 - - 1 - - 2 96
044 Ehrlichia chaffeensis 1 2 1 - 2 - - - - - - - - - - - - - - 1 7
046 Escherichia coli BL21 0 1 9 - 2 - - 2 - - 1 - - - - - 1 - - 1 17
050 Geobacter metallireducens GS15 4 4 11 - 1 1 - 1 - - - - - - - - - 1 - - 23
051 Geobacter sulfurreducens 1 2 3 - - 2 - 1 - - - 1 1 - - - - - - - 11
052 Geobacter uraniireducens RF4 1 5 6 - - 2 - 1 1 - - 1 1 - - 2 - - - - 20
055 Heliobacterium modesticaldum Ice1 1 4 8 - 3 2 2 - - - 1 - 1 - - - - - - - 22
061 Kineococcus radiotolerans SRS30216 1 13 115 - 75 - 4 1 2 1 1 - - - 2 - - - - 1 216
075 Nakamurella multipartita DSM44233 0 3 26 - 61 - - 1 2 1 - - 1 - - - - - - - 95
080 Pelobacter carbinolicus 0 - - - - - - - - - - - - - - - - - - - 0
087 Pelagibacter ubique HTCC1002 0 - 11 - - 1 - - - 1 - - - - - - - - - - 13
092 Roseiflexus castenholzii DSM13941 1 22 32 - 24 - - - - - 1 - - - 1 - - - - - 81
094 Rhodopseudomonas palustris TIE1 1 14 22 - 7 8 1 - 4 - - 1 - - 2 - - - - - 60
099 Salmonella typhi 2 22 33 - 9 5 1 2 4 - 1 - - - 1 - - - - - 80
100 Shewanella amazonesis SB2B 0 3 2 - - - - - - - - - - - - - - - - - 5
101 Shewanella baltica OS155 0 8 7 - 2 2 - 3 1 - - 1 - - - 1 - - - - 25
102 Shewanella baltica OS185 0 11 10 1 - 1 - - - 1 - - - - - 1 1 - - 1 27
103 Shewanella baltica OS195 0 7 - - - - - - - - 1 - - - - - - - - - 8
104 Shewanella baltica OS223 0 2 3 - - - - - - - - - - - - - - - - - 5
106 Shewanella denitrificans OS217 1 1 2 - - - - - 1 - - - - - - 1 - - - - 6
107 Shewanella frigidimarina 0 10 8 - 1 1 - - 2 - - - - - - - - - - - 22
108 Syntrophobacter fumaroxidans MPOB 0 5 2 - - 1 - 1 - - - - - - - - - - - - 9
109 Slackia heliotrinireducens DSM20476 0 1 - - - - - - - - - - - - - - - - - - 1
110 Sanguibacter keddieii 0 9 55 - 83 2 1 - - - - - - - - - - - - - 150
111 Stackebrandtia nassauensis DSM44728 1 2 8 - 13 1 - - - - - - - - - - - - - - 25
114 Shewanella putrefaciens CN32 0 5 2 - 1 - - - - - - - - - - - - - - - 8
117 Shewanella ANA3 0 5 - - - - - - - - - - - - - - - - - - 5
121 Shewanella MR4 0 5 2 - - 1 - - - - - - - - - - - 1 - - 9
122 Shewanella MR7 0 4 2 - - - - - - - - - 1 - - - - - - - 7
124 Shewanella W3 18 1 0 4 3 - - - - - - - - - - - - - - - - - 7
126 Synechococcus PCC7002 1 7 13 - 19 2 14 - - - 1 - - - - 1 - - - - 58
135 Xylanimonas cellulosilytica DSM15894 2 29 99 - 135 4 5 2 2 1 - - - - - - - - - - 279
136 Yersinia enterocolitica 0 3 14 - 1 1 1 - 1 - 1 1 - - - - - - - - 23
138 Yersinia pestis CO92 0 4 5 - 1 2 - - - - - - - - - - - - - - 12
139 Yersinia pseudotuberculosis 0 6 29 1 4 1 - - - - 2 - - - 1 - 1 - - - 45

Σ 32 357 878 2 1033 70 109 19 32 12 25 6 6 1 10 6 5 3 0 7 2613
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(a) (b)

(c) (d)

Figure 2.5: Distribution of identifications in 45 different bacterial organisms. Any
proteins appearing in both sets are only counted once. Residues with greater than or
equal to 1% representation are labeled in each pie chart. (a) Aggregation of Venn
diagrams of N-terminal PTM runs on 68 million bacterial spectra across 45 organisms.
Of the 2613 NME+NTA, 8933 NME, and 6613 non-NME identifications, the only
considerable overlap is across NME+NTA and NME, which is expected. A Venn
diagram for each organism was constructed, and the counts for each set and overlapping
sets were aggregated into this larger diagram. Sequelog relationships were not taken
into account in the diagrams creation. 16% of bacterial N-terminal events were found to
be N-acetylations. (b) 8933 NME events with Ser, Ala, and Thr well represented. (c)
2613 Nα-acetylation identifications (NME+NTA) where Ser, Ala, and Thr are again
the major residues. (d) The intersection between NME+NTA and NME yields 1216
identifications, comprising mostly of Ser and Thr.
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Figure 2.6: Offset counts for the range of -150 to +150 in A.variabilis. NME events are
represented as peaks located at -131, NME and Nα-acetylation at -89. Retention of Met
(no NME event) is represented by a peak at 0.

and NME+NTA events from Table 2.2 and Table 2.1, respectively. It was observed that Ser is

well represented in both groups, showing that it is an important component of NME. Table 2.1

shows the breakdown of amino acids at position P2 of each protein with observed NME and

NTA. Ala, Ser, and Thr showed a strong tendency for losing the initial Met and for being

acetylated. Table 2.2 shows the same amino acid breakdown for P2 of identified NME events

using this same MSGF approach.

While Thr is highly represented in these N-acetylated identifications, seen in Fig-

ure 2.5(c), no such elevated Thr-conservation at position P2 was observed in the Shewanella

dataset. This could be due to a more complicated role of Thr in Nα-acetylated proteins, or a

reduced role of NTA in the Shewanella organisms compared to other bacteria (data not shown).

Unfortunately, sequelogs are difficult to determine for distantly related bacterial organisms,

preventing further analysis of conservation in bacteria.
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Table 2.2: NME P2 residue breakdown using a 1.0×10−10 spectral probability threshold
and described filtering procedures, using the definition as: −131±1Da neighborhood.

orgnum Organism G A S C T P V D N L I Q E H M F K Y W R Σ

005 Anaeromyxobacter dehalogenans 4 29 19 - 1 15 - - - - - - - - - - - - - - 68
007 Actinosynnema mirum DSM 7 34 52 - 35 20 5 - 3 - - 1 - - - - 2 1 - - 160
013 Anabaena variabilis ATCC 29413 10 70 76 - 69 38 20 1 6 1 7 1 1 - 2 1 - - - - 303
014 Arthrobacter FB24 15 107 149 - 150 50 14 9 16 2 3 1 4 1 2 - 2 - - - 525
017 Bacillus anthracis 17 23 29 - 23 5 4 2 3 2 2 1 2 - 1 1 4 - - - 119
019 Brachybacterium faecium DSM4810 8 63 57 - 64 37 3 2 19 2 1 - - 1 - - 1 1 - - 259
021 Chloroflexus aurantiacus 1 4 5 - 2 6 1 1 3 1 1 - 1 - - - 3 - - 1 30
028 Cyanobacterium synechocystis 7 47 55 - 51 17 17 - 7 1 - - - - - - 1 - - - 203
033 Cyanothece PCC7424 5 20 49 - 38 21 14 1 4 1 - - - - 1 1 2 - - - 157
034 Cyanothece PCC7425 7 27 36 - 34 15 1 1 3 - - - - - - - 1 - - - 125
036 Cyanothece PCC8801 4 24 40 - 26 10 5 - 1 - - - - - - - 1 - - - 111
039 Dethiosulfovibrio peptidovorans DSM11002 7 13 32 - 18 10 2 1 - - 1 - - - 1 - 4 1 - 1 91
041 Deinococcus radiodurans 4 24 51 - 41 15 1 - - 1 - - - - 3 - 3 - - 3 146
042 Desulfovibrio vulgaris 6 46 77 - 27 26 4 4 - - - - - - 1 - 1 - 1 - 193
044 Ehrlichia chaffeensis 1 4 14 - 3 2 3 1 3 - - - - - - 1 1 - - - 33
046 Escherichia coli BL21 3 39 66 - 21 8 2 - 1 - - - - - 1 1 1 - - 1 144
050 Geobacter metallireducens GS15 9 42 55 - 13 15 - 1 3 1 - - - - 2 - - - - - 141
051 Geobacter sulfurreducens 13 50 69 1 14 20 3 1 1 - 3 1 4 - - 4 3 - - 1 188
052 Geobacter uraniireducens RF4 25 109 126 1 36 46 9 1 3 1 4 1 5 - 1 5 11 - - 1 385
055 Heliobacterium modesticaldum Ice1 9 17 21 - 14 8 3 - - - - - - - - 1 - - - - 73
061 Kineococcus radiotolerans SRS30216 11 75 142 1 105 61 14 3 9 2 1 1 - - - - - - 1 5 431
075 Nakamurella multipartita DSM44233 10 36 45 - 68 19 5 2 1 2 - - - 1 - 1 1 - - 1 192
080 Pelobacter carbinolicus 1 12 13 - 1 3 - 1 - - 1 - - - - - - - - - 32
087 Pelagibacter ubique HTCC1002 2 19 58 - 13 10 1 2 4 - - - 1 - - 1 2 - - - 113
092 Roseiflexus castenholzii DSM13941 2 29 30 - 18 23 - 2 1 1 2 1 1 1 2 - 1 - - - 114
094 Rhodopseudomonas palustris TIE1 2 61 68 - 79 16 4 3 12 - - - 1 - 1 - - - - - 247
099 Salmonella typhi 6 83 137 1 83 22 9 1 12 1 4 1 4 3 6 5 12 3 - 3 396
100 Shewanella amazonesis SB2B 8 37 68 - 24 9 2 1 1 1 1 1 - 1 - 2 3 - - - 159
101 Shewanella baltica OS155 6 64 107 - 58 17 3 1 12 - 2 - - 2 1 1 5 1 - 1 281
102 Shewanella baltica OS185 7 58 109 - 57 18 4 1 7 - - - - - 2 2 3 - - 1 269
103 Shewanella baltica OS195 5 32 64 - 32 11 - 1 4 - 2 - - - - 2 4 - - - 157
104 Shewanella baltica OS223 3 34 77 - 42 9 - - 3 - - 1 - - 1 1 1 - - - 172
106 Shewanella denitrificans OS217 3 33 83 - 37 10 1 - 3 - - - - - 2 1 - 1 - 1 175
107 Shewanella frigidimarina 4 33 79 - 36 10 1 2 4 2 2 - - 2 - 2 6 1 - - 184
108 Syntrophobacter fumaroxidans MPOB 4 32 21 - 6 10 2 - 2 - - - - - 2 - 1 - - - 80
109 Slackia heliotrinireducens DSM20476 8 58 27 - 34 22 3 1 - - - - 1 - - - - - - - 154
110 Sanguibacter keddieii 12 52 82 - 100 31 8 2 5 3 2 - 2 - - - - - - - 299
111 Stackebrandtia nassauensis DSM44728 12 32 63 - 67 23 3 1 26 2 - - - - - - - - - - 229
114 Shewanella putrefaciens CN32 5 42 72 - 42 11 2 - 2 - 1 - - - 1 1 2 - - - 181
117 Shewanella ANA3 6 42 64 - 33 11 - - 2 - 1 - - - - 1 2 - - - 162
121 Shewanella MR4 4 42 69 - 33 8 - - - - 1 - - - - 1 3 - - - 161
122 Shewanella MR7 3 41 62 - 31 13 1 - 2 - 2 - - - - 1 2 - - 1 159
124 Shewanella W3 18 1 4 46 69 - 36 8 2 - - - 1 - - - 2 1 1 - - - 170
126 Synechococcus PCC7002 6 44 56 - 38 17 14 1 4 - 3 2 - 1 1 1 1 - - 1 190
135 Xylanimonas cellulosilytica DSM15894 19 76 81 - 120 65 15 5 10 6 4 1 - - - - 3 - - 5 410
136 Yersinia enterocolitica 2 25 28 - 10 3 4 1 5 1 8 3 3 1 1 3 2 2 - 2 104
138 Yersinia pestis CO92 1 13 27 - 7 5 2 - 1 - 2 - - - 3 - - - - - 61
139 Yersinia pseudotuberculosis 4 34 62 - 22 12 4 5 8 3 12 5 6 3 - 6 5 3 - 3 197

Σ 322 1977 2941 4 1912 861 215 62 216 37 74 22 36 17 40 48 101 14 2 32 8933



20

NME-conserved Proteins

In order to observe NME importance using comparative genomic approaches, we made

certain assumptions about the sequence data.

Postulate 1 (Comparative genomics postulate): If a protein undergoes NME in one

species and it is essential for its function, then related proteins in other species are likely to

undergo NME as well. A protein is called (strongly) NME-conserved if its related proteins

(sequelogs) across all studied species also undergo NME. Alternatively, a protein can be called

mostly NME-conserved if most of its sequelogs (statistically significant increase as compared

to null hypothesis) also undergo NME. This fuzzier definition would also capture functional

importance regarding NME, but would add additional complexity to our analysis. We opt for a

strict definition of (strongly) NME-conserved through the remainder of the text.

Postulate 2: Finding X-residues in all sequelogs of a protein is statistically surprising

unless NME is truly important for the function of the protein. While similar to the first axiom,

it is distinct from it since the first one specifies a general relation among sequelogs, and this one

relates X-residues to NME and describes the type of signal we should observe from proteins

that require NME.

Postulate 3: The baseline compares X-residues at P2 with X-residues at P3, P4, and P5.

Since X-residues at P2 are related to NME, and presumably only NME, those at P3, P4, and P5

are not related to NME but are instead related to each individual protein’s function. These three

positions can be used as a baseline for the background of expected X-residue statistics.

Our statistic for X-residues is now defined as follows: For a protein P (having sequelogs

in all species) and a position i, define X(P, i) as the number of species in which the amino acid

at position i is an X-residue. X(P, i) can vary from 0 to the number of species, n. The number of

proteins with X(P, i) = t defines count(t, i) (count(t, i) varies from 0 to the number of proteins,

k). Since we care about proteins with X-residues at P2 across all n species, as per postulates 1

and 2, the statistics we compute are count(n,2), count(n,3), count(n,4), and count(n,5). In

order to obtain an estimate on each statistic’s variance, bootstrap analysis is applied to each



21

data set using 10,000 iterations.

(a)

(b)

Figure 2.7: Mean NME-conserved protein counts are shown for P2 through P5 for
bacterial, yeast, and mammalian datasets. An NME-conserved protein is one containing
the residue at the position in question (2 through 5) in X across all sequelogs of that
protein. All values are obtained from bootstrap estimated mean and standard deviation
of each statistic. (a) The set of residues considered is defined as X = {G,A,S,P,V,T,C}.
It is evident that P2 contains a larger number of NME-conserved than P3-P5. (b)
NME-conserved protein counts, without Ala and Ser, are shown for P2 through P5
for the three datasets. Here the X set does not contain Ala and Ser, and is defined as
X = {G,P,V,T,C}. Not including Ala and Ser in X produces no elevated counts at P2
compared to P3, P4, and P5. This suggests that the boost in NME-conserved counts
seen in (a) can be attributed to the Ala and Ser residues.
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The mean counts for each dataset are shown in Figure 2.7(a), for the Shewanella dataset

there are 375 such proteins for position 2, in contrast to only 162 for position 3. This is a

significant increase in conservation of X-residues at the position directly affecting NME. Similar

trends are observed in yeast and mammalian species, also seen in Figure 2.7(a). Yeast shows

a similar pattern with ≈300 more proteins with perfectly conserved X-residues at position 2

as compared to other positions. The mammalian species also show a large difference (≈500

proteins) between position 2 and other positions. Furthermore, the differences in X-residue

counts between positions 2 compared to 3, 4, and 5 cannot be attributed to variance in the

statistic used.

The higher conservation of X-residues at the second position, seen in all datasets in

Figure 2.7(a), compared to Figure 2.7(b), indicates that NME may be functionally critical for

some proteins and provides a candidate list of such proteins. Proteins whose sequelogs in all

species have an X-residue in the second position are designated as NME-conserved proteins.

Conservation of Ala- and Ser- as the P2-residue in proteins

After analyzing for group conservation of all seven X-residues at initial positions of

the proteins (checking whether the second residue in each sequelog is an X-residue), analyses

of individual amino acids (instead of the set X) at the second position and comparison to

the conservation at the third position (where conservation is not expected) as a control were

performed. Figure 2.8 and Table 2.3 show that Ala is conserved among all Shewanella species

in 79 proteins at position 2 but only in 14 proteins at position 3. Ser is conserved in 75 proteins

at position 2 but only in 16 proteins at position 3. Conservation levels of other amino acids

are rather similar between positions 2 and 3, suggesting that proteins with Ala and Ser in the

P2 position may be the important targets for NME in Shewanella. Since Ala and/or Ser are

exceptionally well-conserved, it is reasonable to assume that NME affects the function of these

proteins (if one accepts the comparative genomics postulate).
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Figure 2.8: Conservation of residues are shown for P2 through P5 for datasets from
(a) Shewanella (b) Saccharomyces (c) mammalian. Ala and Ser are by far the most
conserved in P2 across all three datasets. The number of proteins with Ala in the second
position in Shewanella, Saccharomyces, and the mammalian datasets are 79, 24, and
541, respectively. The number of proteins with Ser in P2 in Shewanella, Saccharomyces,
and mammalian datasets are 75, 130, and 268, respectively.
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(a)

(b)

(c)
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Table 2.3: Conservation of single amino acids for Shewanella sequence data set (posi-
tions 2 and 3). Ala and Ser (shown in bold) are by far the most conserved residues in
the 2nd position.

AminoAcid P2 P3
G 11 11
A 79 14
S 75 16
P 16 17
V 6 25
T 21 20
C 3 2
L 39 52
I 28 45
N 21 16
D 13 19
Q 20 20
K 58 55
E 19 21
M 1 1
H 6 8
F 14 27
R 23 28
Y 7 17
W 3 4

Table 2.4: Conservation of single amino acids for Saccharomyces sequence data set
(positions 2 and 3). Ser (shown in bold) is by far the most conserved residue in the 2nd
position.

AminoAcid P2 P3
G 18 13
A 24 15
S 130 13
P 15 9
V 14 8
T 10 10
C 1 0
L 25 18
I 1 12
N 11 9
D 13 6
Q 3 10
K 14 19
E 3 4
M 0 0
H 2 4
F 11 14
R 7 33
Y 1 10
W 1 2

Ala and Ser also exhibit much higher conservation at the second position as compared
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Table 2.5: Conservation of single amino acids for mammalian sequence data set (po-
sitions 2 and 3). Ala (shown in bold) is by far the most conserved residue in the 2nd
position.

AminoAcid P2 P3
G 168 119
A 541 186
S 268 190
P 116 81
V 60 64
T 90 104
C 15 29
L 94 171
I 24 25
N 53 59
D 97 93
Q 28 55
K 67 97
E 177 138
M 25 30
H 18 17
F 39 49
R 45 121
Y 19 24
W 19 29

to other N-terminal positions indicating that they are specifically required here (rather than

in a few initial positions) and suggests that this elevated conservation is relevant to NME.

Shewanella, yeast, and mammalian species all show much higher levels of conservation for Ala

and/or Ser in the second position compared to other residues. The one exception to this pattern

is seen for Lys in Shewanella, Figure 2.8(a), where Lys is elevated at P2 and P3 compared to

P4 and P5. This violates our third postulate, and is therefore considered to not be an NME

relevant pattern.

This trend of Ala/Ser importance appears again in Figure 2.7(b), which displays X-

residue conservation across bacterial, yeast, and mammalian datasets. For the data in this figure,

Ala and Ser are removed from the X set, i.e. X = {G,P,T,C,V} and there is little change in the

level of conservation from P2 to P3, P4 or P5 for sequelogs within each dataset. Most of the

change from P2 to P3, P4 or P5, of which there is little, can be accounted for by variability of

the statistic. Comparing Figure 2.7(a) to 2.7(b) shows that Ala and Ser are responsible for the

elevated levels of conservation at position 2 for these sequelogs.
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2.1.4 Conclusion

Although it has been known for some time that protein synthesis is essentially univer-

sally initiated with Met [JH70], it has only become appreciated over the intervening years that

this residue is subsequently removed from a considerable portion of the proteins actively syn-

thesized in any given organism. Much of this NME for cytoplasmic and nuclear proteins occurs

as a co-translational event catalyzed by specific MetAPs [BBW98]. There are two classes of

these enzymes but both have quite similar substrate profiles [AKH+95]. In a eukaryote such

as yeast, the number of proteins predicted to lose or retain the initiator Met (on an individual

gene basis) is nearly equal; however, based on protein mass, a great preponderance of soluble

proteins undergo this modification and are, moreover, then Nα-acetylated.

The functional purposes of NME are poorly understood and there are several possible

reasons that NME is such an essential process. In the first place, it has been argued that NME

allows the rapid recycling of Met to keep the levels of the intracellular pools at an adequate

level for the many roles that this amino acid plays in addition to its involvement in protein

synthesis (both as an initiator and as a constituent residue). Met is generally relatively scarce

and the recovery of most (on a mass basis) of the Met expended in initiating protein synthesis

is certainly likely to be beneficial to the cell. However, this ascribed role for NME begs the

question of why Met is recovered from only a subset and not all proteins. The answer, while

likely complex, may be that having two classes of protein (those that lose their Met and those

that do not) is desirable for other reasons. Indeed, it is possible that primordial MetAPs did

not make the distinction between these two substrate types and Met was recovered from all

synthesized proteins. However, if this was the case, evolution altered these enzymes to their

present day specificity very early on and these changes were adopted in all life forms that are

presently known. There are few biological processes that show this level of conservation in

all living organisms. Walker and Bradshaw [WB99] demonstrated that NME specificity in

vitro can be changed (by site-directed mutagenesis of yeast MetAP1) to expand the number of

P2-residues that allowed Met removal, so even within the present MetAPs there is no structural
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reason to prevent the development of an enzyme (through mutation and natural selection) that

has a broader and possibly comprehensive substrate profile. The fact that this did not happen

suggests additional roles for NME and the need for the two classes of protein that it generates.

By the same token, being able to expand the specificity does not ensure that it would

be possible to further close down the repertoire of substrates. It may well be that the substrate

specificity that the present day MetAPs display is basically at the lower limit (in terms of

the size of the P2-residue) that nature can engineer with this scaffold. This may explain the

dominance of Ala/Ser substrates (controlled by evolutionary pressure on the second position)

while still allowing the five or so additional substrates that are also cleaved.

A second proposed function of NME is linked to protein stability/degradation. Thus,

the profile of NME produced by MetAP action fits, at least in eukaryotes, to that dictated by the

NER. This suggests, given the very early development of MetAP specificity, that the recognition

component of the NER that binds certain N-terminal residues to allow the polyubiquitinylation

and subsequent proteasomal degradation evolved to be compatible with it, rather than the other

way around. As such, the removal of Met (from the 7 amino acids with the smallest side chains)

is not so much a stabilizing event as it is a permissive one, i.e. these N-termini are simply

ignored by the NER machinery. Since there is a singular lack of evidence that the proteins in

the non-NME class are ever subsequently degraded via the NER (after exposure downstream of

the destabilizing residues), it suggests that the role of NER is to capture and destroy mis-folded

and/or damaged proteins, spuriously formed fragments and any other peptidic detritus that

may arise in the course of other cellular activities rather than as part of programmed protein

degradation. Recently, Hwang et al. [HSV10] have revised the original NER by showing that

Nα-acetylation can produce N-termini that are also recognized by the germane ubiquitin ligase

and thus arguing now that NER is really a quality control mechanism for protein stoichiometry

in the cell. They also conclude that it mainly functions as a scavenger for improperly folded

proteins.

A third raison d’etre for NME is the preparation of the N-terminus for further post-
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translational modification. For purposes of this discussion, no strong distinction is drawn

between co- and post-translational events. In eukaryotes, Nα-acetylation is a prominent

modification of four of the seven residues exposed by NME but is certainly not the only one.

In addition, the initiator Met is acetylated when the P2-residue is Asp, Glu or Asn [PNT+99].

Hwang et al. [HSV10] have recently reported that 5 residues (Ala, Val, Ser, Thr, Cys) are the

primary sites of NTA after NME and argue that they should now be considered destabilizing

residues in the NER. However, in an extensive study of Nα-acetylation by mass spectrometry,

it was shown that Ala and Ser account for 89% of all the proteins modified by acetylation

that are NME targets in Homo sapiens, implying that Nα-acetylation of Val, Cys, and even

Thr is also rare in eukaryotes [HGR+10]. The NATs responsible for NTA (the NatA, NatB,

and NatC complexes) have been studied in a variety of eukaryotic organisms [PAS09]. NatA

modifies Ala, Ser, Gly, and Thr so it requires NME to prepare its substrates. Knockdown of

Naa10 (previously Ard1, standardization introduced [PAS09]) and Naa15 (previously Nat1),

which comprise NatA, in Caenorhabditis elegans resulted in embryonic lethality [SKW+05].

The human NatA complex has also been shown to be important in apoptosis as shown in

Naa10 (previously hARD1) and Naa15 (previously NATH) knockdowns in human HeLa

cells [MSEE02]. The necessity of NatA in yeast is less clear-cut. Polevoda et al. [PNT+99]

produced deletion mutants of Naa10/Naa15 (previously ard1 and nat1, of the NatA complex),

Naa20 (previously Nat3, of the NatB complex), and Naa30 (previously Mak3, of the NatC

complex), all of which are viable; however, all display negative phenotypes.

The extensive occurrence of this reaction in eukaryotes suggests that it is an important

modification. However, there is little evidence for any direct role of this group in any function.

It may be that it is involved in, as yet unidentified, protein-protein interactions perhaps through

a specific binding motif such as found for other PTMs. Alternatively it may contribute generally

to the cellular environment by blocking a significant number of α-amino groups to prevent

non-enzymatic glycation with reducing sugar metabolites (which would make these energy rich

compounds unavailable for catabolic breakdown). It seems not to be significantly involved, as
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was once proposed, in stabilizing proteins against spurious aminopeptidase attack.

In contrast, modifications such as N-myristoylation clearly have functional conse-

quences. This modification has been shown to be important for a small subset of proteins,

and it is estimated that 0.5% of eukaryotic proteins undergo this modification [MSEE02]. The

functional role of NME is unlikely to be strongly connected to N-myristoylation as only a

small percentage of proteins undergo this addition and even fewer require it for proper protein

function. Also, N-myristoylation is not as universal as NME since it does not occur in bacte-

ria. The analyses herein (Table 2.5) reveal some over-conservation of Gly in mammals (168

Gly-conserved proteins for the second position as compared to 119 Gly-conserved proteins for

the third position). However, this 40% increase provides a somewhat weaker support for the

functional role of Gly as compared to 190% increase for Ala. Therefore, while Gly-conserved

proteins undoubtedly exist, their modest amount of over-conservation does not allow one to

conclude that exposing Gly is an important role of NME.

The inclusion of the commonly acetylated N-termini in the NER [HSV10] significantly

changes the original model. The N-termini now considered to be degrons compose 18 of 20

residues, including 5 of 7 X-residues: A, V, S, T, and C, leaving out only X-residues G and

P due to the fact that they are rarely Nα-acetylated (in yeast). We argue that if G and P are

not considered degrons, then V, T, and C should also be removed from the degron list due to

their rare acetylation state, (seen in Figure 2.4). This leaves Ala and Ser as degrons that are

heavily Nα-acetylated in yeast, suggesting that the predominant removal of Met and subsequent

acetylation of Ala and Ser combine to provide a principal role for NME and the connection to

the NER degradation pathway.

One explanation for the conservation of Ala and Ser might be the influence of the

underlying nucleotide sequences of the Met and second codon. The Kozak consensus RccATGG

is a regulatory motif playing an important role in the initiation of translation in vertebrate and

some other eukaryotes [Koz89]. Since the Kozak consensus (where ATG represents the first

codon in the protein) suggests that the second codon starts with G, it might be expected that
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there would be higher levels of Ala at P2 in vertebrates due to the frequency of G at the first

position of Ala codons. However, by using much larger datasets than available to Kozak at

the time the rule was formulated, Xia [Xia07] showed that, contrary to the Kozak rule, there

is no link between G at the fourth position and translation initiation efficiency. Xia further

suggested that it is the presence of specific amino acids at P2 that led Kozak to (erroneously)

conclude that G at position 4 affects the translation efficiency. The observations reported

herein that Ala and/or Ser are universally over-represented in the second position in nearly all

species cannot be explained by the Kozak consensus rules since it is not universal, e.g., it is not

applicable to bacteria and does not extend beyond the first codon in fruit flies. Yeast consensus

codons UC[U/C] as reported in Hamilton et al. [HWdB87] also appear not to be in support of

translation initiation efficiency (shown in Text S2).

It is appropriate to emphasize that the goal of this study was to detect whatever statisti-

cally significant differences might occur between the second and third positions that could offer

insight into NME function. Indeed, the fact that Ser/Ala have elevated levels of conservation

at P2 in species as diverse as bacteria and humans illustrates that there exists an enormous

evolutionary pressure for retaining them in the second position. Since this analysis reveals no

over-conservation for 18 out of 20 amino acids, it can be argued that exposure of Ala and/or

Ser by NME defines its key function.

While this study reveals only two over-conserved residues in the second position in

the species studied, it cannot be ruled out that additional residues (e.g., Thr) may be over-

conserved in other species. However, the 7 seemingly equivalent residues (with respect to NME

specificity) clearly have vastly different evolutionary patterns suggesting that some of them

(e.g., Ala and Ser) play an important functional role while others may represent inconsequential

players. Thus, NME appears to be a mechanism evolved to resolve the “conflict” between the

uniformity of the translation initiation mechanism and the variety of functions affecting the

N-termini of proteins.
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Chapter 3

Immunoglobulin classification

3.1 Introduction

The antibody molecule is comprised of two pairs of two distinct proteins: the heavy and

light chains. In humans, there exist a single heavy chain locus, and two light chain loci. These

heavy and light chains pair with one another to form a ‘Y’ shaped protein structure. The tips of

this immunoglobulin (Ig) molecule interact and bind to different antigens within one’s body,

signaling an immune response. Unlike typical transcripts within eukaryotic cells, the heavy and

light chain transcripts are not directly taken from exonic segments of the individual’s genome.

Instead, there are three distinct classes of exon-esque gene-segments, termed the variable

(V), diversity (D), and joining (J) gene-segments. Each of these classes of gene-segments

contains many different variants encoded in an individual’s genome. The light chain transcript

contains only V and J gene-segments, while the heavy chain transcript contains V, D, and J

gene-segments. Both heavy and light chains also contain a constant (C) gene-segment that does

not contribute to combinatorial diversity.

Unlike typical exonic splicing, that is precise, somatic recombination of antibody

gene-segments is inexact with the exonuclease removing several base-pairs from each end of

the gene-segments. Ligation of D to J, and subsequently DJ to the V gene-segment, is also

33
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imprecise with deoxynucleotidyl transferase (TdT) incorporating non-templated base pairs into

the resulting gene [DYP+84]; a process known as V(D)J recombination. In addition to the

variability induced by somatic recombination, somatic hypermutation (SHM) events introduce

additional deviations from germline gene-segments. The end result of this process is a B-cell

that produces a single type of antibody, a monoclonal antibody (mAb). This increased variability

allows for a larger search space of antibody configurations to be explored for specificity to a

particular antigen. While this is advantageous from the perspective of our immune system’s

adaptability to foreign substances, analysis of these highly variable immunoglobulin genes

becomes difficult.

Repertoire construction forms the basis for the analysis of antibodies; characterizing

the pool of gene-segments that were selected for a particular antigen. A prerequisite step for

repertoire analysis is the labeling of V, D, and J gene-segments for the read of each heavy and

light chain. This VDJ labeling problem can be described as the following: given reference

gene-segment sets V , D, J , and a read, return the “most likely” labels v ∈ V , d ∈ D, and

j ∈ J for this read. Despite this problem being easily described, it remains unclear how to

design an adequate and easy-to-compute likelihood estimator for VDJ classification. As a

result, this classification can be difficult and error prone, particularly for the heavy chain. While

all described approaches also operate on the light chain, we focus on the heavy chain due to its

difficulty in correctly identifying composite gene-segments.

Existing tools for repertoire characterization rely on aligning reads against the reference

sequences of V, D, and J gene-segments from the organism in question [WJW+09, ALC+11,

CPZ+12, JHW+13]. This strategy is exemplified by IMGT-VQUEST [BLG08] (the most

widely used VDJ classification tool) and other tools [VCK06, GMJ+07, WWZ+08, YMMO13,

SCLR+04, OLNLB06]. Most of these tools rely on an iterative approach where first the

best matching V gene-segment is identified, then J, and finally D. This specific order of

alignments (from V to J to D gene-segment) is appealing because it starts from the longest

(and thus resulting in the most confident alignment) gene-segment and ends with the shortest
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(and thus resulting in the least confident alignment) gene-segment. However, it also suffers

from uncertainties in alignment (there are usually multiple optimal alignments) and sequential

dependencies in the iterative alignment (at each step, previously matched nucleotides are

removed from future alignments).

To address this sequential dependency bias shortcoming, we describe a colored de

Bruijn graph based approach, which leverages the current understanding of V(D)J structuring

of antibody transcripts. Similarly to recent attempts to remove biases of previous alignment-

based approaches in genomics applications, we now introduce the concept of de Bruijn graph

to immunoinformatics. Iqbal et al., 2012 [ICT+12] introduced the colored de Bruijn graph

for identifying variants across genomes, we repurpose this approach for use with antibodies.

The resulting algorithm IgGraph does away with the sequential nature of iterative alignment,

and provides accurate labeling of reads. IgGraph is shown to perform well on both real

immunoglobulin sequencing (Ig-seq) datasets, and simulated datasets with varying levels of

deviations from reference gene-segments. At the same time, we show that the problem of

VDJ classification is far from being resolved as the leading tools produce remarkably different

results when applied to large Ig-seq datasets.

3.2 Colored antibody graph for antibody classification

3.2.1 Methods

Antibody sequencing and the CDRs

The transcripts of the heavy/light chains can be sequenced using reverse primers

located in the constant regions, and forward primers located at different positions of the

different V gene-segments. Sequencing of these transcripts can then be performed after PCR

amplification. The VDJ region of heavy chains is approximately 110 amino acids (330bp),

which is why the previous literature favored the Roche 454 platform due to its larger read lengths
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of approximately 450bp. However, with Illumina’s increasing read length and throughput,

recent and future studies face the challenge of analyzing large repertoires with millions of

reads [SBK+15].

The heavy and light chains have three subsequences, termed complementary determining

regions (CDRs) due to the role they play in defining a particular antibody’s antigen binding

specificity. These CDRs, denoted CDR1, CDR2, and CDR3, while located along the length of

each immunoglobulin chain, are in close spacial proximity at the physical ‘tips’ of the antibody

structure. The location at the junction, along with exonucleotide chewback and non-templated

nucleotide addition, all contribute to the larger variability in CDR3 length. Since CDR1 and

CDR2 are located entirely within the V gene-segment, they are only subjected to somatic

hypermutation.

V/D/J antibody segments

213 V, 30 D, and 13 J gene-segments are annotated as functional (and complete) in the

international ImMunoGeneTics (IMGT) database [RHM+13]. Of these 213 V gene-segments,

many are allelic variants of one another; differing in a few nucleotides from another allelic

variant of the same gene. High similarity between these allelic variants adds complexity to

the problem of VDJ classification. Even after collapsing allelic variants to their consensus

sequences (that results in only 55 consensus V gene-segments), there are still many similar

fragments between these consensus sequences. Figure 3.1(a) visualizes similarities between

213 V gene-segments and Figure 3.1(b) visualizes similarities between 55 consensus V gene-

segments.

Simulating antibodies

To generate simulated data that properly represent the challenge of VDJ labeling

from reads, we needed to simulate the VDJ somatic recombination events that drive the

diversity of the CDR3 region of antibodies. Unfortunately, there are no publicly available



37

 0

 50

 100

 150

 200

 0  50  100  150  200
 0

 20

 40

 60

 80

 100

 120

 140

(a)

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50
 0

 20

 40

 60

 80

 100

 120

 140

(b)

Figure 3.1: Edit distances between (a) 213 human V gene-segments (alleles) and (b) 55
consensus V gene-segments. The consensus V gene-segments illustrate that, even after
collapsing highly similar allelic variants into consensus V gene-segments, many of the
55 consensus V gene-segments remain similar to each other.

antibody simulators, despite many existing tools having used simulated antibody sequences to

demonstrate performance [ALC+11, VCK06, WWZ+08]. To this end, a simulated monoclonal

antibody (smAb) is generated by the process detailed in Supplementary Figure A.1: selecting a

V, D, and J gene-segment to comprise our smAb; exonuclease chewback on the 3’ V, 5’ and

3’ D, and 5’ J segments; and finally non-templated nucleotide addition to these same regions.

To simulate these biological processes, empirical distributions for exonuclease chewback

length [JGSC04], as well as composition and length distributions for non-templated nucleotide

additions [BHM83], were used. Using this process to create a smAb, we are able to generate

datasets with labeled V/D/J segments with simulated biological diversity.

These smAbs can then be sampled using a read simulator, to further introduce se-

quencing errors. The Grinder [AWR+12] read simulator can be used to generate Illumina and

454 reads. Additionally, we also want to generate datasets of smAbs with a fixed number of

deviations from the germline sequence, i.e., mutations. To this end, positions along the V gene-

segment were selected from a distribution of mutations created from 23,051 annotated IMGT

sequences. These positions were selected without replacement to ensure a fixed divergence

from germline references. The V, D, and J gene-segments from human were collected from the

IMGT database [RHM+13] as the basis for the simulation of each smAb.
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Canonical antibody graph

The canonical antibody graph is created by constructing a de Bruijn graph of each

set of V, D, and J gene-segments, and creating an artificial joining of nodes at the V/D and

D/J segments. Figure 3.2 shows multiple versions of this graph for different parameters k.

The differences when creating the canonical antibody graph with either all alleles (left), or all

consensus gene-segments (right), is shown. The arcs in this graph are colored blue for V gene-

segments, green for D gene-segments, and red for J gene-segments. The arcs artificially joining

gene-segments are colored black. This canonical antibody graph was created for three values

of k to show the connectivity between the different sets of reference gene-segments. The graph

constructed with k = 13 shows sharing of k-mers between V and D gene-segments, as well as

amongst different V genes. The parameterization of k = 13 results in a very complicated graph,

this complexity of the visual representation is partially exacerbated by the graph visualization

layout algorithm. It is the relative comparison of complexity between the graphs in Figure 3.2

that is meaningful.

Antibody graph

Given a set of reads R from mAbs, we construct the de Bruijn graph (termed antibody

graph) over the k-mers of these reads in the following manner. Nodes in this graph represent all

(k−1)-mers over the set of reads R . Nodes u,v are connected by a directed edge (arc) (u,v) if

u is a prefix, and v is a suffix of some k-mer in a read from R . More on applications of the de

Bruijn graphs for assembly can be found in [CPT11].

We can also incorporate IMGT reference gene-segments into the antibody graph. Refer-

ence gene-segments C can be added to the antibody graph, and considered as ‘colored’ reads.

For example, the human antibody graph has 213 + 30 + 13 = 256 colors (corresponding to 213

V, 30 D, and 13 J gene-segments). In comparison, the mouse antibody graph has 242 V, 27 D,

and 8 J gene-segments, for a total of 277 colors. A total of |C | reference gene-segments are

added to the antibody graph in a similar manner as the (virtual) reads, with an additional data
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(a) k = 13, all variants

(b) k = 21, all variants

(c) k = 51, all variants

(d) k = 13, only genes

(e) k = 21, only genes

(f) k = 51, only genes

Figure 3.2: The canonical antibody graph for different values of k (arcs corresponding to
the V, D, and J gene-segments are colored blue, green, and red, respectively) constructed
for all alleles (left) and all consensus gene-segments (right). All non-branching paths
are collapsed to a single arc, and at each junction, a dummy node is created to connect
V gene-segments to D gene-segments, and D gene-segments to J gene-segments, these
arcs are colored black. These graphs are constructed with k = 13 ((a) and (d) ), k = 21
((b) and (e) ), and k = 51 ((c) and (f) ). (b) shows V, D, and J gene-segments completely
separated, while (a) shows considerably more sharing of arcs in the V segments, and
some shared in the D gene-segments. Increasing the value of k (c) greatly simplifies the
relationship among V gene-segments. This is not a feasible parameter for our purposes
(as no D segments are captured) but does show the complexity of V gene-segments. In
the case of k = 51, the graph becomes disconnected (and green edges disappear) since
it exceeds the length of the longest D gene-segment.
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structure. Each arc along a reference read path i is assigned the color ci ∈ C . A hash of arcs to

a set of colors, HC , is maintained as each reference sequence is added to the graph. The hash

can then be queried given an arc e, e.g., HC [e] = {c1,c3,c4}, to retrieve all the colors present

on that arc. Edges from reads are assigned a special, “non-colored” symbol representing their

lack of color (shown as black edges in subsequent examples).

The antibody graph incorporating reference gene-segments is termed the colored an-

tibody graph. This graph represents the sequenced mAb repertoire and their similarity to

reference gene-segments, an idealized depiction of this graph is shown in Figure 3.3.

V segments D segments J segments

Figure 3.3: Colored antibody graph. An idealized colored antibody graph built over the
reads, with reference gene-segments represented as distinct colors. Imperfect overlay of
reference gene-segments at V/D and D/J segments is common. Also detectable is the
divergence of V-segments from their references, helpful in determining differences in
CDR1 and CDR2 regions.

Color profile

The coloring of the antibody graph relies on common structures in de Bruijn graphs

referred to as bulges and tips [CPT11] that will help us to repaint black edges into colors

corresponding to reference gene-segments. Given a set of reference gene-segments C , a |C |×n

color profile matrix C can be constructed for a read of length n, representing the associations of

each color to each position of the read. At first glance, it is unclear how to assign new colors to

arcs on the black path TCC→ CCG→ CGC→GCA→ CAG in Figure 3.4. However, one can
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note that this path forms a bulge with the colored path TCC→ CCA→ CAC→ ACA→ CAG

that we will use for coloring the black path as described below. A similar approach is applied

to tips, such as ATA→ TAT. Construction of the color profile matrix is accomplished by

considering each color ci ∈ C , and traversing each arc e from read r, noting when ci ∈HC [e].

This condition determines the value at C[ci][e], the cell in the color profile matrix for the color

and position, which is updated to note the match/mismatch with color ci at the position of arc e.

Figure 3.4 shows an example graph with C = {red,blue,green}, and a single read depicted with

black arcs. In this example, read arcs (in black) TAT→ATC, ATC→ TCC, and CAG→AGG

are shared with different reference segments, the contents of HC for these arcs are shown in the

Figure. It is worthy to note in this example that reference segments share arcs, e.g., red and

green sharing three arcs, something that is common for allelic variants of V gene-segments.

This color profile represents an abstraction for scoring the reference gene-segments to a read r.

Color propagation

Deviations from reference gene-segments create bulges and tips [PTT04, ZB08]. A

bulge is created when a read deviates from a reference gene-segment and is not near either

end. A tip is created when this deviation occurs near either end of a reference gene-segment

or read. The assignment of each color to the read can be greatly affected by bulges and tips

between a read and a colored reference sequence. This particularly effects V gene-segments

due to somatic hypermutations, as such, we must ensure the color propagates through these

arcs such that small differences between a read and a gene segment do not result in a “loss

of color”. Bulges arising from mutations in the V gene-segments are traversed, and the color

profile is adjusted accordingly. Figure 3.5a shows color propagation for a de Bruijn graph

constructed with k = 5 when a single reference segment (red arc color), and a single read (black

arcs), have a single nucleotide variation between them. Above each red arc is the arc marginal

(last nucleotide of the corresponding k-mer) for the reference, similarly, below each black arc

is the marginal for the read.
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Figure 3.4: An example antibody graph with three reference segments, colored by red,
blue, and green arcs. A single read is shown here with black arcs. The color hash HC is
shown for the three arcs from the read that are shared with reference gene-segments,
TAT→ATC, ATC→TCC, and CAG→AGG. Bulge/tip traversal and color assignment
is shown below the graph. E.g., to obtain the matching for the green reference, the
green/black bulge is traversed, and marginals are aligned. Tips are also traversed, shown
here with red and blue references. Matching/mismatching nucleotides are noted for
each colored reference to the read at the bottom of the figure. Matches are noted with a
•, and mismatches with a -.
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The information contained in the arc marginal aids us in creating the color profile of

a read. In our example (Figure 3.5a), this matrix is of dimension 1×10, since we have only

a single color in our set of colors C = {red}, and a fragment represented by 10 arcs. Two

different color profiles are shown in Figure 3.5a, a ‘Raw’ and a ‘Propagated’. These color

profiles are shown with red/black rectangles denoting matches/mismatches over each position

i.e., each arc marginal. If we merely traverse the arcs of the read, we would obtain the color

profile ‘Raw’ showing five mismatches, colored black, in C. If we instead traverse the bulge,

i.e., traverse both the read and reference paths, we obtain the subsequences of the read and

reference over the bulge. These subsequences can then be aligned to fill in the color profile and

only report a single mismatch, shown as ‘Propagated’ in Figure 3.5a. A similar propagation is

performed for tips from the read/reference that could be caused by mutations in the first and/or

last k base pairs. Figure 3.4 depicts the traversal of bulges and tips, and their subsequent color

propagation. The full color profile, after color propagation, is shown at the top of the figure,

aligned with the arcs of the read.

Using the colored antibody graph, we label each read’s V, D, and J gene-segments for

repertoire analysis. Figure 3.5(b) depicts a single read, shown in black, with multiple colored

reference gene-segments sharing some subsequences. A single read, can be traversed to create

the color profile for that read. This profile consists of all the colors that paint the path of the

read, i.e., all the reference gene-segments that share some k-mer with the read. Figure 3.5(c)

shows the 9×n color profile matrix C for the example represented by the nine (3 V, 3 D, and

3 J) reference gene-segments, and n positions. From this color profile matrix, we can select

the top m scoring gene-segments for each V, D, and J gene-segment set. Scoring each row of

this matrix, by a variety of scoring schemes described below, will allow us to select the top

gene-segments.
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GATC ATCC TCCA CCAC

CACT ACTG CTGG TGGG

CACC ACCG CCGG CGGG

GGGT GGTT GTTA

Read C A C T G G G T T A

Reference C A C C G G G T T A

Raw C

Propagated C

(a)

(b)

V1
V2
V3
D1

D2

D3

J1
J2
J3

(c)

Figure 3.5: Color propagation and colored antibody graph with single read. (a) Color
propagation example. Two sequences with a single nucleotide difference between
them; GATCCACTGGGTTA (read shown by black edges) and GATCCACCGGGTTA
(reference shown by red edges). The de Bruijn graph in this example is created with
k = 5. Edges shared between the two sequences are colored red and black. A single
nucleotide difference creates 5 mismatches in the color profile of this read, shown as the
‘Raw’ C. IgGraph traverses this bulge and propagates the color to reduce the number of
mismatches to the single nucleotide difference, shown as ‘Propagated’ C. (b) A single
read (shown in black) along with V, D, and J gene-segments shown as different colors.
Shared k-mers between the read and different gene-segments are shown as merged paths,
while divergences are shown as bulges and tips. (c) The 9×n color profile matrix for the
example is shown. Each row represents one of nine gene-segments, and each column is
a different position in the read. From this matrix, we can score each row to select the V,
D, and J labels for the read.
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Scoring the color profile

To utilize the color profile C, a scoring scheme must be defined. A simple scoring

scheme with match and mismatch values can be used for the D and J gene-segments, as they

exhibit far fewer mutations. In this simple case, the most popular color can be selected as

the reference label. The V gene-segments frequently contain many mutations, some having

known associated motifs [RK92, DFFL98, CGPvV06]. Rogozin and Kolchanov, 1992 [RK92]

first exposed the RGYW motif, and Doerner et. al.,1998 [DFFL98] showed the inverse

motif, WRCY also promotes mutations. As a result, the simple scoring does not leverage

this additional information and thus does not perform well on V gene-segments. However,

this information can be easily incorporated into the model to improve gene-segment labeling.

Mutations in the V gene-segments are known to be positionally dependent [CGPvV06], with

fewer occurring in framework regions, and more in CDR regions. This is incorporated with

discovered 4-mer motifs into a probabilistic score. At each position in the scoring matrix, i,

there is an event of either a mutation or a match. There is an associated l-mer bi and a read

position pi. From these, the probability of an event m ∈ {match,mutation} is P(m|bi, pi). We

compute the probability of the read r, given each reference R ∈ V , with each reference being

equally likely as P(r|R) = Πall positions i in the referenceP(m|bi, pi).

The computation of P(r|R) can be performed over a row R of color profile C, C[R].

Each column i of C[R][i] provides us with positional information, pi, and its surrounding

sequence context. In the uncommon cases when bulge/tip color propagation is unable to resolve

differences in the sequences, we must assume that all differences arise from mutations without

any reference sequence context. This is computed for all references in the V gene-segment set

V .

The probabilities for mutation and matching events are computed from 23,051 human

IMGT annotated sequences, resulting in 67,108 mutation events and 1,487,059 matching events.

Any events that include an indel from the alignment of read to reference are discarded. Once

probabilities for each reference (i.e., color) are computed, a rank score is associated with each
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color. The top ranked colors, cumulatively comprising a certainty cutoff, are all awarded a tie

for top rank. Each other color is assigned the rank of its probability; only the top ranked colors

are returned..

3.2.2 Results

Datasets

In order to test the labeling performance of the IgGraph, two approaches were utilized:

simulating datasets of smAbs with varying levels of divergence, and testing on three Ig-seq

datasets. Comparison on simulated datasets is deemed as supervised since ground truth labels

are known. Comparison on Ig-seq datasets is computed on similarity of predictions by different

tools since ground truth cannot be known; i.e., unsupervised evaluation.

Obtaining true labels for real data, (like the Stanford S22 dataset) is difficult and error

prone. We thus include Stanford S22 dataset as an example of real Ig-seq data, all of which are

shown in Table 3.1, and compare predictions on it in an unsupervised manner.

While the datasets of real Ig-seq data are invaluable, they are likely to be biased in

favor of certain V/D/J gene-segments selected for by the immune system (Supplementary

Figure A.5). This bias is not a desirable property when benchmarking a tool. Rather, we wish to

test performance on all combinations of gene-segments, so an ideal dataset will have a uniform

distribution of VDJ usage (Supplementary Figure A.7). The simulated dataset was generated

by using V, D, and J gene-segments from human reference gene-segments, using the method

described in Figure A.1. The distributions of exonuclease chewback, nucleotide additions, and

V(D)J combinations, are represented across the datasets. Furthermore, each dataset included

a fixed number of mutations per smAb, testing the ability to perform VDJ classification at

varying degrees of divergence from the reference gene-segment. Considering a single read,

it can be labeled by one, or more, reference gene-segments. Ideally, only a single segment

should be returned. However, there are occasions when exonuclease chewback makes unique
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identification infeasible. We select the maximum number of gene-segments to return, above

which we return no label (Supplementary Figures A.8 and A.9).

Table 3.1: Table of datasets used for benchmarking. Simulated datasets are evaluated
in a supervised manner, and real datasets are compared in an unsupervised manner.

Dataset sequencing # unique entries size (MB)
Simulated Ig simulated 2 000 1.1MB
Stanford S22 [JBGC10] Roche 454 13 153 3.4MB
Mouse Ig-seq [HGH+14] Illumina MiSeq 204 462 80.0MB
Human Ig-seq [SBK+15] Illumina MiSeq 3 099 967 1 173.0MB

We attempted to benchmark as many tools as possible, and while many exist [GMJ+07,

BLG08, YMMO13, WWZ+08, SCLR+04, VCK06, OLNLB06], few are available for down-

load, and only IgBlast is able to be run on the large number of sequences produced by current

Ig-seq experiments. This is likely the cause for why so many analyses of Ig-seq experi-

ments produce their own approaches to VDJ classification [WJW+09, JWP+11, ALC+11,

WBL+13, HGH+14]. Even for IgBlast, while scaling well to process millions of Ig-seq

reads, its output was not immediately usable and a wrapper parser had to be written to

convert its output to a more concise format. Other tools only provide a web based inter-

face [BLG08, OLNLB06, SCLR+04] which have varying limitations on the number of se-

quences; none of which could handle the mouse or human Ig-seq datasets, listed in Table 3.1.

The lack of usable, efficient, and standardized tools suggest the potential usefulness of IgGraph

for this increasingly used analysis of Ig-seq datasets.

Performance on Ig-seq datasets

In order to compare the predicted classes of various tools, we separate comparisons

on labeled data (i.e., simulated data) and unlabeled data (i.e., Ig-seq datasets). Comparisons

on labeled data are supervised, and reported as accuracy. Unlabeled data is compared in an

unsupervised manner and reported as the Jaccard index over two sets A and B, computed

as J(A,B) = |A∩B|
|A∪B| . Both alleles and genes are compared using the Jaccard index [Jac08],
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as are partitions. Clusters based on the junction sequences, as reported by the tools, are

compared using the Fowlkes-Mallows index [FM83]. Further explanation of the tool used for

this comparison is described in the supplement.

Table 3.2 shows the runtimes of different tools over the datasets. iHMMune was not

run on the Stanford S22 dataset since predictions were provided [JBGC10]. The unsupervised

comparison of all pairs of tools is shown in Table 3.3. The full pairwise comparisons for the

Stanford S22 dataset are shown in Figure A.6. Predictions between IgGraph and IgBlast are

very similar for J alleles/genes, while slightly less similar for V alleles/genes. The predictions

for D alleles/genes are where the two tools diverge the most, but the difference in clone

partitioning is very divergent for the Stanford S22 dataset, but similar for the mouse Ig-seq

dataset.

Table 3.2: Table of runtimes for each tool on the datasets tested. iHMMune-align was
not run on the Stanford S22 dataset, but was analyzed using the published predictions.
iHMMune-align was not run on the Mouse Ig-seq and Human Ig-seq datasets due to its
high estimated run time from its time per entry on the smAb 2k dataset.

Dataset tool CPU time (sec) time per entry (sec)

Simulated Ig
IgGraph 54 0.027
IgBlast 151 0.075
iHMMune 3724 1.862

Stanford S22
IgGraph 191 0.014
IgBlast 641 0.048
iHMMune NA NA

Mouse Ig-seq
IgGraph 10311 0.050
IgBlast 20114 0.098

Human Ig-seq
IgGraph 99813 0.032
IgBlast 367545 0.118

Performance on simulated datasets

To evaluate the performance of IgGraph in the case when somatic hypermutations

(SHM) are prevalent, we generated simulated datasets of smAbs with increasing numbers of

mutations, ranging from zero up to 30. In these datasets, a mutation is a change to a non-
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Table 3.3: Table of Ig-seq datasets showing pairwise comparision using unsupervised
evaluation criteria. Criteria for allele and gene levels is Jaccard index, while Fowlkes-
Mallows is used to compare the clone clusterings.

Alleles Genes
Dataset Tools IGHV IGHD IGHJ Total Clone cluster IGHV IGHD IGHJ Total

Stanford S22
IgBlast - IgGraph 0.944 0.824 0.983 0.774 0.153 0.960 0.824 0.983 0.787
IgBlast - iHMMune 0.739 0.878 0.921 0.696 - 0.903 0.889 0.923 0.862

iHMMune - IgGraph 0.814 0.771 0.921 0.674 - 0.913 0.781 0.923 0.766
Mouse Ig-seq IgBlast - IgGraph 0.948 0.426 0.947 0.426 0.997 0.948 0.426 0.947 0.426
Human Ig-seq IgBlast - IgGraph 0.936 0.583 0.951 0.526 0.563 0.945 0.594 0.954 0.541

germline nucleotide with uniform probability, it is not meant to simulate true motifs found

within antibodies. Mutations were selected only along the V gene-segment, as sampled from

our mutation distribution obtained from IMGT data. Figure 3.6(a) shows the V gene-segment

performances of each mutation dataset with an even number of mutations (datasets with an odd

number are used for parameter selection, Supplementary Figure A.9) when the divergence from

the germline increases. The difference in performance between these parameterizations with

varying k-mer sizes correlates with the complexity of the canonical antibody graph shown in

Figure 3.2. With more nodes shared with using the smaller k, reconstruction is more difficult.

The green curve shows the performance of IgBlast on these same datasets when run with

default parameters. While IgGraph with k = 21 and k = 15 outperform IgBlast, the k = 11

parameterization does underperform when reference divergence is increased.

One option is to provide multiple values of k for the different V, D, and J gene-segments;

since larger values for k perform better for V and J, while smaller values of k are required

for recovering many D gene-segments. This can be done by creating the graph for each gene-

segment type, and one or more reads, as described previously. The resulting accuracies, for

pairs of values of k for V/J and D, on a simulated dataset are shown in Figure A.12.

VDJ partitioning comparison

Partitioning an input read into the germline gene-segments is a useful output for VDJ

classification. To adequately compare the similarity in partitioning between the tools, a dataset

of 7,532 antibody sequences was downloaded from the IMGT database. This approach of using
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Figure 3.6: Labeling and partitioning comparison. (a) shows the accuracy of IgGraph
for V gene-segments when a fixed number of mutations are inserted in each smAb V
gene-segment. Only datasets with an even number of mutations are plotted. The blue,
orange, and yellow curves represent IgGraph results with parameterizations of k = 21,
k = 15, and k = 11, respectively. The green curve represents the IgBlast tool run with
default parameters. (b) Jaccard index over partitions. The similarity of the partitioning
for range sets of V, VJ, and VDJ gene-segments are measured by computing the Jaccard
index for predictions from IgGraph and IgBlast, for each sequence.

a collection of unlabeled, experimentally derived, sequences, for comparison was employed

in previous approaches [GMJ+07, YMMO13]. This set was selected by collecting all fully

annotated, human heavy chain antibody sequences in the IMGT database whose length ranged

from 350bp to 500bp.

Figure 3.6(b) shows the similarities in partitioning between IgBlast and IgGraph as the

Jaccard index between the partitioning ranges considered. For each tool, each range of positions

for V, D, and J is considered a set, and the Jaccard index over two sets A and B is computed,

J(A,B) = |A∩B|
|A∪B| . While there are differences between the two tools where the partitions are

drawn, they are largely similar. As the difficulty in labeling gene-segments increases, so too do

the differences between the reported partitions.
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3.2.3 Conclusion

We presented a new IgGraph approach to VDJ gene-segment labeling for immunoglob-

ulin transcripts. Our colored antibody graph departs from the alignment based methods (IMGT,

SoDA, IgBlast, and others) and HMM-based methods (iHMMune-align). Recently, colored

de Bruijn graphs have been used to identify genomic variants [ICT+12], we repurpose and

extend this idea to identify immunoglobulin gene-segments. Further, our approach utilizes a

scoring model for V gene-segments that considers mutation motifs and position dependence,

something that many other tools do not model. iHMMune-align is one of the few that explicitly

model known mutation motifs, however they do so in a static fashion. Our scoring is based

on probabilities learned from IMGT data, discovering known, and potentially novel, mutation

motifs.

We have shown that our approach performs well on simulated datasets and on real Ig-seq

datasets. While this approach performs well, it does have its limitations, namely the reliance on

sufficiently large k-mers. This is of concern particularly for small D gene-segments, as there

must be some k-mers that match on these segments that have been shortened by exonuclease

chewback. However, selecting too small a value for k to ensure coverage on D gene-segments

can create an overly complicated graph, potentially connecting k-mers in V gene-segments to

those in J gene-segments. While we do not observe any significant reductions in performance

in either our simulated datasets or real ones due to this, this can limit the potential applications,

namely to T-cell receptors (TCR). TCRs share the same V/D/J structure as immunoglobulins,

but in human have only two D gene-segments, 12bp and 16bp long. While some approaches

may claim to recover these D gene-segments, our colored antibody graph will likely be unable

to as long as exonuclease chewback sufficiently reduces its length.
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Chapter 4

Immunoproteogenomics

4.1 Antibody repertoire construction and

immunoproteogenomics analysis

4.1.1 Methods

Antibody repertoires

If we view an antibody as a center of a cluster formed by reads derived from this

antibody, then construction of a repertoire corresponds to a difficult clustering problem with

many closely located centers so that the radius of a cluster may exceed the distance from one

cluster to another one. Since the standard clustering techniques (like k-means clustering) are

not applicable to such problems ([PEP04]), we have designed IGREPERTOIRECONSTRUCTOR,

a novel algorithm for constructing antibody repertoires.

Each antibody in an antibody repertoire is characterized by its sequence and abundance;

estimated by the number of reads derived from this antibody (Figure 4.1b). The complexity of

the antibody repertoire mirrors the complexity of the immune system, e.g., clonal selection leads

to a highly uneven distribution of abundances of antibodies ([Bur76]). Abundant antibodies

mutate and yield new antibodies that share the same VDJ recombination pattern, but differ only

53
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by somatic hypermutations. As a result, the antibody repertoire contains a mixture of closely

related antibodies with differing abundances. The abundances of ≈ 2.3 million antibodies in

our dataset vary from 1 to ≈ 33,000 with the most abundant antibody representing ≈ 1% of all

reads.

B-cell isolation

5’ AAAAA

mRNA purification

PCR amplification
of Ig transcript

Paired-end sequencing of
Ig variable region

(a) (b)

read-pairs Ig-seq reads

x 3

x 3

x 1

unique Ig-seq
reads

x 3

x 4

clustered Ig-seq
reads

Stitch Collapse Cluster

(c)

CDR3

Clone 1

Clone 2

Clone 3

Partition

(d)

Figure 4.1: (a) An overview of immunoglobulin (Ig-seq) sequencing. Briefly, B-cells
are isolated; transcripts are purified; antibody heavy (or light) chain are amplified by
PCR; and finally paired-end sequencing of the Ig variable region is performed on the
amplified Ig transcript molecules. (b) An antibody repertoire containing five different
antibodies (shown on the left) is characterized by a set of pairs <sequence, abundance>
(shown on the right). For example, the abundance of the “red” antibody is 3. (c) The
varying levels of sequence information. First, the paired reads are stitched together to
form contiguous reads. These reads are then compressed to unique reads with count
information, and finally clustered reads. E.g., the red and blue unique reads (with counts
3 and 1) are clustered into a single cluster with count 4 because they represent reads
(with errors) derived from the same antibody. (d) Reads are partitioned according to
identical CDR3 sequences (shown in the black rectangles). Each resulting cluster of
antibodies is referred to as a clone.

The major challenge in constructing antibody repertoires is the identification of all

reads that are derived from a single antibody. If reads were error-free, we would simply group

together reads that are identical (up to small shifts) into unique reads to generate an antibody

repertoire. In reality, reads are error-prone necessitating error-correction of reads prior to any
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analysis. IGREPERTOIRECONSTRUCTOR error-corrects reads; partitions them into clusters;

and computes the consensus sequence and abundance of each antibody. Figure 4.1c depicts

the different levels of clustering performed by IGREPERTOIRECONSTRUCTOR. First, we

computationally stitch paired-end reads of Ig molecules to derive the contiguous Ig-seq reads.

Subsequently, the Ig-seq reads are grouped together to provide unique Ig-seq reads. Finally,

the unique reads are clustered to obtain clustered Ig-seq reads (antibodies). In addition, we can

represent antibodies according to the somatically recombined B-cell from which they originate,

i.e., their clonality. We define an antibody clone as the set of all antibodies in the repertoire

with the same CDR3 sequence (as determined by IgBlast ([YMMO13]). Figure 4.1d diagrams

this clone identification process. A clone is trivial if it consists of a single cluster and non-trivial

otherwise. The sharp distribution of clone sizes (Figure A1) can be attributed to B-cell response

to an antigen, i.e., clonal selection ([WJW+09]).

Limitations of existing error correction tools

At first glance, it appears that the problem of error-correction in immunosequencing

is not unlike the problem of error-correction in genome assembly ([PTW01]). However,

popular error-correction tools (e.g., Quake ([KSS10]) or BayesHammer ([NKA13]), that were

optimized for genome assembly, are not suited for immunosequencing data. Indeed, Ig-seq

data contain a large number of sequences differing by very few mismatches or indels, and

feature the extremely uneven coverage of various antibodies by reads (since abundances of

antibodies differ by orders of magnitudes). Both Quake and BayesHammer start by identifying

solid k-mers in reads (that are likely to be present in the genome) and use them to correct

reads. However, to find solid k-mers, Quake uses the read coverage, an approach that is not

applicable in the case of immunosequencing with highly variable abundances. In contrast,

BayesHammer (part of the SPAdes assembler, [BNA+12]) was designed to assemble single cell

sequencing data with uneven coverage. However, it is also not applicable to immunosequencing

since an antibody repertoire yields numerous similar, correct, k-mers from different antibodies
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(Figure A2). BayesHammer is unable to distinguish these correct k-mers from similar incorrect

k-mers derived from the same antibody.

Hamming graph for analyzing immunosequencing data

IGREPERTOIRECONSTRUCTOR uses the idea of the Hamming graph for error correction

([MSKP11, NKA13]) to correct Illumina reads. With the emergence of longer (250-nt) Illumina

reads in 2013 (until 2013, Illumina technology generated shorter reads that did not fully cover

the variable region of antibodies), it is now possible to interrogate repertoires using accurate

high-throughput Illumina technology. Our focus in this paper is repertoire reconstruction using

Illumina technology rather than the less accurate and lower throughput 454 technology that

dominated previous immunoproteogenomics studies. The Hamming distance d(s1,s2) between

sequences s1 and s2 of equal length is defined as the number of positions where the symbol in

s1 differs from a symbol in s2 (Figure A3a). We extend the concept of Hamming distance to

any two sequences (including sequences with different lengths) by considering all sufficiently

long overlaps between sequences s1 and s2 (longer than the default value δ), and computing the

Hamming distance between the overlapping parts. We define d̃(s1,s2) as the minimum of such

distances (Figure A3b). We define the Hamming Graph HG(Strings) as the complete weighted

graph whose vertices correspond to a collection of sequences Strings and the weight of the

edge (s1,s2) is equal to H̃D(s1,s2). The Bounded Hamming Graph, denoted HG(Strings,τ),

is a subgraph of the Hamming Graph where edge (s1,s2) exists iff d̃(s1,s2) ≤ τ. The time-

and space-efficient construction of large Hamming Graphs is a challenging problem that was

addressed in [NKA13] and adapted in IGREPERTOIRECONSTRUCTOR. Note that compared to

Hammer ([MSKP11]) and BayesHammer ([NKA13]), we construct the Bounded Hamming

Graph on the entire reads (rather than on k-mers) and use the generalized Hamming distance.
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Repertoire construction and search for dense subgraphs

We construct an antibody repertoire by partitioning reads into clusters that correspond

to the same antibody. Our goal is to place reads differing by sequencing errors into the same

cluster, while placing reads corresponding to different antibodies into different clusters. This

becomes difficult since the number of errors in a read from a given cluster may be larger than

the number of differences between antibodies from different clusters. We define the antibody

sequence as the consensus of reads in a cluster, and its abundance as the number of reads in a

cluster.

Since Illumina reads have a small indel rate, the generalized Hamming distance between

reads from the same cluster should be low. We thus construct the Bounded Hamming Graph

HG(Reads,τ) from all reads. Our analysis revealed that the generalized Hamming distance

for most Ig-seq reads, originating from the same antibody, does not exceed 3 and that many

antibodies form complete, or nearly complete, subgraphs of the Bounded Hamming Graph with

τ = 3 (see Appendix A). Ideally, we would like to choose τ in such a way that HG(Reads,τ) is

a clique graph, i.e., a graph where each connected component is a complete subgraph (clique).

In reality, the large connected components of the Bounded Hamming Graph often have

a more complex structure. Given a connected component with m edges and n vertices, we

define its edge fill-in as the ratio of the number its edges (m) to the maximal possible number

of edges in the graph on n vertices (n · (n−1)/2). Fig. 4.2a presents a connected component of

the Bounded Hamming graph with edge fill-in 0.25 (τ = 3). The lion’s share of large connected

components in the Bounded Hamming Graph (i.e., components with more than 100 vertices)

have similar structures characterized by small edge fill-ins; the average edge fill-in for large

components is 0.32 (Fig. A4). Additional analysis of the connected components reveals that the

nearly all of them (98.6%) consist of dense (complete or nearly complete) subgraphs connected

by very few edges. Most vertices in these dense subgraphs correspond to error-prone reads

derived from a single antibody or from highly similar antibodies differing from each other by a

small number of somatic hypermutations.
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(a) (b)

Figure 4.2: (a) A connected component with 107 vertices and 1426 edges in the
Bounded Hamming graph with τ = 3 (fill-in is 0.25). The sizes of vertices are propor-
tional to their degrees. (b) Clusters constructed as result of vertex decomposition of the
Bounded Hamming Graph. Vertices of the same colors define the dense subgraphs in the
decomposition (the colors are coordinated with Figure 4.3 (bottom right)). IGREPER-
TOIRECONSTRUCTOR constructs 42 clusters but 35 of them are trivial, i.e., are induced
by a single read. Sizes and edge fill-ins (in brackets) of the remaining 7 non-trivial
clusters are: 2 (1.0), 3 (1.0), 6 (1.0), 8 (1.0), 12 (1.0), 18 (0.9), and 23 (0.9).

Thus, the first step in constructing an antibody repertoire is solving a very large instance

of the Corrupted Cliques Problem: finding the smallest number of additions and removals of

edges that transform the Bounded Hamming Graph into a clique graph. While there exist a

number of algorithms for solving the Corrupted Cliques Problem (such as CAST [BDSY99]),

they are too slow for the Bounded Hamming Graphs with many vertices. We thus developed a

different approach for analyzing the Bounded Hamming Graph that is based on transforming

it into a triangulated graph (i.e., a graph where every cycle of length longer than three has a

chord) rather than a clique graph using the Minimum Fill-in Problem ([GJ79]).

Repertoire construction and Minimum Fill-in Problem

The minimum fill-in edge-set for a graph is the edge-set of minimal size whose addition

turns this graph into a triangulated graph. We are interested in triangulated graphs because

maximal cliques in these graphs can be generated in polynomial time ([GHP95]) and because

maximal cliques in the triangulated Bounded Hamming Graph help to reveal dense subgraphs

of the original Bounded Hamming Graph (see Appendix B for details).
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While the Minimum Fill-in Problem is NP-complete ([Yan81]), there exist efficient ap-

proximation algorithms for solving it, e.g., METIS algorithm ([KK99]). The METIS algorithm

is based on the equivalence between triangulated graphs and perfect elimination orderings. A

perfect elimination ordering in a graph is such an ordering of its vertices that, for each vertex v,

v and the vertices following it in the order, form a clique, an example shown in Figure A11d. A

graph is triangulated if and only if it has a perfect elimination ordering ([RTL76]). METIS finds

an ordering that generates an approximation of a minimum fill-in edge set and this ordering

can be used for finding cliques in the triangulated graph ([GHP95]). As we mentioned above,

these cliques correspond to dense subgraphs in the original graph. To construct maximal dense

subgraphs, we additionally merge subgraph connected by many edges.

IGREPERTOIRECONSTRUCTOR solves the Minimum Fill-in Problem in the Bounded

Hamming Graph using METIS and converts its solution into a list of dense subgraphs in the

original Bounded Hamming Graph. Note that some of the resulting dense subgraphs may

share vertices forcing us to assign these shared vertices to one of the dense subgraphs. To

assign a vertex v to a single dense subgraph, we select a subgraph with maximum number of

vertices adjacent to v. Thus, dense subgraphs generated by METIS provide us with a vertex

decomposition of the Bounded Hamming Graph. A vertex decomposition of the graph in

Fig. 4.2a is shown in Fig. 4.3 (top right). Analysis of all found subgraphs in the decomposition

of the Bounded Hamming Graph reveals that the lion’s share of them have high edge fill-ins

(the average edge fill-in is 0.94), thus confirming that IGREPERTOIRECONSTRUCTOR indeed

finds dense subgraphs of the Bounded Hamming Graph. The histogram of edge fill-in for all

subgraphs in this decomposition is shown in Fig. A5.

Dense subgraphs correspond to clusters of Ig-seq reads representing either identical

or very similar antibodies (i.e., antibodies differing by very few substitutions). However, to

construct the antibody repertoire, we need to further partition some of the dense subgraphs

(that correspond to multiple antibodies) into subgraphs corresponding to single antibodies. To

illustrate this challenge, consider the SHM-triggering patterns RGYM/WRCY ([RK92]) and
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define an edge in the Bounded Hamming Graph as an SHM-edge if at least one mismatch on this

edge conforms to the RGYM/WRCY motif. Fig. 4.3 (bottom left) shows the Bounded Hamming

Graph where the SHM-edges are highlighted in orange. This coloring reveals that the yellow

dense subgraph in Fig. 4.3 (upper right)) corresponds to two similar antibodies rather than to

a single one (Fig. 4.3 (bottom right)). Indeed, the multiple alignment of reads corresponding

to the yellow subgraph shows a mismatch in the CDR1 region which separates reads into two

groups (right panel of Fig. 4.3). Thus, we need to develop an algorithm for splitting constructed

dense subgraphs by detection of SHMs. The final solution is shown in Fig. 4.3 (bottom right)

and illustrated in Fig. 4.2b. See Appendix C for more details on splitting dense subgraphs,

and Appendices D and E on benchmarking of IGREPERTOIRECONSTRUCTOR on real and

simulated antibody Ig-seq datasets.

Immunoproteogenomics search

The previous immunoproteogenomics studies ([CBZ+12, SBP+12, BHW+14]) con-

ducted searches on a database of unique Ig-seq reads that we refer to as unique reads database.

We argue that a better option is the antibody repertoire database (formed by centers of clus-

ters constructed by IGREPERTOIRECONSTRUCTOR) as it eliminates many sequencing errors.

Furthermore, to assess the divergence from reference gene-segments, a dataset of canonical

V, D, and J gene-segments was searched, this database is termed the canonical VDJ database.

In order to obtain peptide identifications from the constant region, we also included all 41

intact variants of the constant region, obtained from the IMGT repository ( [LGG+09]). These

sequences are concatenated to the VDJ database.

Proteomic searches were conducted using MS-GF+ ([KGP08, KP14]) on partially

digested peptides (e.g., for trypsin, semi-tryptic peptides were considered). The false discovery

rate (FDR) was controlled by selecting a MS-GF+ threshold of spectral probabilities such that

we maintained a 1% FDR. Figure A6 shows the distribution of spectral probabilities for the

target and decoy datasets.
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52                      <-------- CDR1 --------> 100

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CCGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTACCTATGAT

CTGAGACTTTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCTGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

CTGAGACTCTCCTGTTCAGCCTCTGGATTCACCTTCAGTAGCTATGAT

*.******.********.**********************.*******

                                       RGYM

Weighted Hamming graph 
(tau = 3)

RGYM/WRCY patterns 
(orange)

Dense subgraphs of 
Hamming graph

Final decomposition of 
Hamming graph

Figure 4.3: Construction of the antibody repertoire based on the decomposition of
the Bounded Hamming Graph into dense subgraphs. (Top left) The adjacency matrix
of the Bounded Hamming Graph shown in Fig. 4.2a. Each element in the matrix
corresponds to a pair of vertices x and y and is colored green if the edge (x,y) is
presented in the graph. (Top right) Decomposition of the Bounded Hamming Graph
into dense subgraphs (highlighted by different colors). Edges connecting vertices from
different dense subgraph are colored in grey. (Bottom left) The adjacency matrix
with edges corresponding to SHM-triggering patterns RGYM/WRCY highlighted in
orange. This coloring reveals that that the big yellow subgraph in the upper right matrix
consists of two subgraphs that differ from each other by SHMs. (Bottom right) The
final decomposition of the Bounded Hamming Graph takes into account the multiple
alignment of reads corresponding to the same subgraph in the decomposition and breaks
the large yellow subgraph (top right sub-figure) into two smaller subgraphs highlighted
in yellow and blue. The multiple alignment of ”yellow” and ”blue” reads from these
smaller subgraphs is shown on the right (limited to positions 52–100). Note that all
“yellow” reads are similar to each other and all “blue” reads are similar to each other
(the differences are highlighted in red and likely represent sequencing errors). However,
there exists a systematic difference (C/G mismatch within RGYM pattern in CDR1
region) between “yellow” and “blue” reads that allows IGREPERTOIRECONSTRUCTOR

to split the large yellow subgraph in top right subfigure into two smaller ones.

Blind modification searches were performed using MODa ([NBP12]), allowing for a

single modification with mass between -200Da and 200Da. Peptides with at least one enzymatic

end were considered and a 1% FDR was enforced.

As discussed in [BHW+14], immunoproteogenomics searches require new algorithmic

and statistical approaches since the standard peptide identification algorithms were not designed
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for searches in large and highly repetitive immunoproteogenomics databases. We argue that yet

another key difference between the standard and immunoproteogenomics searches is that, in

the latter case, after constructing the antibody repertoire, we have information about antibody

abundances. Since higher-abundance antibodies are better candidates for spectral searches than

lower-abundance antibodies (despite limited correlation between genomics- and proteomics-

derived abundances), we partition all antibodies into layers according to their abundances. The

rationale for such partitioning is that higher-abundance antibodies form much smaller protein

databases than lower-abundance antibodies. For example, there are 1564, 10,782, and 48,564

antibodies with abundances in the intervals from 100 to 30,000, from 10 to 99, and from 2 to

9, respectively. This contrasts with 2,267,863 singleton antibodies with abundance 1. Thus,

since E-values of PSMs rapidly deteriorate with the increase in the database size ([GBKP11]),

we partition all antibodies into 4 layers (according the abundance intervals specified above) and

employ a separate 1% FDR control, for each layer, based on selecting a spectral probability

threshold in MS-GF+. Note that our multi-layer approach is very different from the two-stage

MS/MS search approach with logical dependencies between two stages. Since there are no

such dependencies in the multi-layer approach, the controversy about the statistical foundations

of the two-stage approach ([GBKP11]) does not extend to our multi-layer approach.

4.1.2 Results

Datasets

We have benchmarked IGREPERTOIRECONSTRUCTOR on multiple Mi-Seq and Orbi-

trap datasets generated at Genentech. Below we only describe the results for a single heavy

chain dataset. Similarly to BayesHammer, the running time of IGREPERTOIRECONSTRUCTOR

is dominated by the construction of the Bounded Hamming graph (≈ 5 hours for the heavy

chain dataset). All further steps (finding and splitting dense subgraphs, etc) take less than 30

minutes on a single thread. Mass-spectrometry searches and subsequent cluster/clone peptide
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assignment take ≈ 8 hours to complete.

Ig-seq dataset. The Ig-seq library contains overlapping paired-end reads that cover the

variable region of heavy chain (3.83 million 250-nt long reads with average insert size 366

nucleotides). We pre-process the immunosequencing library by merging overlapping paired-

end reads, and removing contaminants as described in Appendix F. After pre-processing,

IGREPERTOIRECONSTRUCTOR generated 2,925,095 unique reads, 2,406,121 clustered reads,

and 586,341 clones. See Appendix G for the analysis of contaminants.

Spectral dataset. We analyzed CID tandem mass-spectra generated using the following

digestive enzymes; AspN (21,385 spectra), chymotrypsin (24,956 spectra), trypsin (26,740

spectra), and elastase (20,604 spectra). Enzymes with differing cleavage specificity improve

coverage over the length of the antibody sequence. We searched spectral datasets against

the protein databases derived from the antibody repertoire. 3-frame translations were created

for each antibody in the repertoire, and any frames containing a stop codon were discarded;

165,675 antibodies (≈ 7%) had a stop codon in all frames.

Analysis of antibody repertoires

Below we compare the repertoires formed by unique reads and by IGREPERTOIRECON-

STRUCTOR. To compare the repertoires, we used various metrics measuring cluster sizes (#

clusters, # singletons (single-element clusters), max cluster size, # clusters of size exceeding X

(where X is a parameter)) as well as metrics based on CDR3 analysis. Table 4.1 illustrates that

IGREPERTOIRECONSTRUCTOR generates a rather different (more compact) representation of

antibodies than the set of unique reads used in previous immunoproteogenomics studies.
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Figure 4.4: (a) Distribution of exclusivity scores of antibodies. (b) PSM coverage
along positions of each cluster. Positions of CDR1, CDR2, and CDR3 shown in gray
as determined for a single cluster. Coverage is normalized for shared peptides using
their exclusivity scores. (c) Origin of identified peptides. For each identified peptide, a
representative cluster sequence was used to determine from which reference segment
it originated; V, D, or J. Each peptide is classified as V-, D-, or J-peptide depending
on whether it overlaps with segments marked as V, D, or J regions for the heavy chain
sequence (peptides spanning more than one region, e.g., V and J, are classified as both
V-peptides and J-peptides).
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Table 4.1: Comparison of the antibody repertoire generated by IGREPERTOIRECONSTRUCTOR
with the set of unique reads (heavy chain immunosequencing data). The avg clone divergence
metric is computed as the fraction of the number of columns in the multiple alignment of all
antibodies in a clone that have mutations or indels. The avg non-trivial clone divergence shows
the average clone divergence computed over all non-trivial clones.

Unique reads IGREPERTOIRECONSTRUCTOR

# clusters 3,099,967 2,328,773
# singletons 3,027,123 2,267,863

max cluster size 2203 33,021
# clusters (> 10) 5532 12,346
# clusters (> 50) 377 3571
# clusters (> 500) 7 206

# clones 602,536 538,928
# non-trivial clones 151,612 132,431

avg non-trivial clone size 15.64 12.90
max clone size 30,571 15,977

avg non-trivial clone divergence 0.21 0.23

Peptide identifications

Table 4.2 shows the number of identified peptides and PSMs. Modified peptides are

considered identical to those without modifications should their sequences be the same; and

hence are not counted when considering unique peptides. Surprisingly, many peptides from

antibodies are captured only in modified form (e.g., we do not identify the unmodified variants

of these peptides) implying that previous immunoproteogenomics studies likely missed many

peptides. Note the large number of peptides identified only with modifications (i.e., unmodified

versions of these peptides were not identified) suggesting that future immunoproteogenomics

searches should include search for PTMs. Overall, we identify nearly 13% of all spectra when

performing restrictive PTM searches at 1% FDR. The number of identified peptides is further

boosted when employing a multi-layer strategy, noted by the “layer” column in the table. Blind

modification search was performed on the trypsin dataset only (since MODa is not designed

for spectral datasets generated with other digestive enzymes). MODa identified 3334 PSMs

with modifications, corresponding to 970 peptide IDs; 815 of which were identified only by

the blind modification search. It brings the total percentage of identified spectra to ≈ 22.6%

at 1% FDR ([CBZ+12] identified 6% of spectra at 2% FDR). See Appendix H on specific

modifications found by our blind search. Figure 4.4c shows the breakdown of the origin of
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each identified peptide.

Table 4.2: Peptides and PSMs identified by MS-GF+. The number of peptide identifications
at an 1% FDR cutoff for each spectral dataset. For example, a 1% FDR cutoff corresponds
to a spectral probability cutoff of 1.4E-08 for AspN, 2.3E-10 for chymotrypsin, 7.5E-10 for
trypsin, and 3.8E-10 for elastase datasets, when searching antibodies with the constant region
appended, and restrictive PTM search. The total column shows the number of total peptides,
or PSMs, across the four different mass-spectrometry datasets. The total % column shows
the percentage of identified spectra, among all spectra. The “layer” column denotes the type
of search; single layer (s), or multi-layer (m). The restrictive MS-GF+ searches for post-
translational modifications (PTMs) were conducted by searching for carbamidomethyl (C+57)
as a fixed modification, oxidation of methionine, oxidation (single and double) of tryptophan,
and N-terminal pyroglutamate (Q-17, E-18) as optional modifications.

Peptides PSMs
Database Layer PTM AspN chymo trypsin elastase total AspN chymo trypsin elastase total total %
repertoire m X 814 1706 2505 776 5801 2665 4989 10021 1786 19461 20.77%
repertoire s X 832 1441 2291 628 5192 1881 2365 6675 878 11799 12.59%
repertoire s 61 636 1756 357 2810 89 896 3753 377 5115 5.46%
constant region s 279 205 109 107 700 865 583 933 286 2667 2.85%
canonical VDJ s 25 122 122 69 338 115 441 618 173 1347 1.44%

Assigning peptides to multiple antibodies

Interestingly, only 67,124 antibodies (2.6% of all antibodies) did not encode any iden-

tified peptide. Moreover, as expected, these are mainly antibodies with minimal abundance 1

(total abundance of these 67,124 antibodies is 73,764 and maximal abundance is 300). This

(surprisingly) low number of antibodies with no peptide evidence is due to the fact that many

identified peptides map to multiple antibodies. As a result, the number of antibodies A in

a repertoire R encoding a peptide P is often large. We define exclusivity score of a peptide

as exclusivity(P,R) = 1/number of antibodies in R encoding P and exclusivity score of an an-

tibody as exclusivity(A,R) = ∑all peptides P mapping to A exclusivity(P,R). The exclusivity

score distribution of the antibodies, seen in Figure 4.4a, shows few antibodies having peptides

exclusive to them alone (only 1472 antibodies with exclusivity(A,R)> 1.0). Figure 4.4b shows

the peptide coverage over the position of each clone. Figure A8 illustrates the peptide coverage

of a single clone (the grayed out ranges show CDR3).
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Correlation between Ig-seq and MS/MS abundances

To compare the relation between peptides and their Ig-seq counterparts, we introduce

the notions of total Ig-abundance and maximal Ig-abundance of a peptide. Total (maximal)

Ig-abundance of a peptide is the total (maximal) abundance of antibodies that encode this

peptide. Figure A9a shows the relation of the total Ig-abundance for each peptide to its spectral

count (number of PSMs). Figure A9b shows a histogram of spectral peptide counts binned over

maximal Ig-abundance for each peptide. A strikingly large number of peptides, 2702, can be

attributed to singleton antibodies. The remarkable lack of correlations between genomics-based

and proteomics-based abundances further amplifies the concern first expressed in [CBZ+12].

Figure A9c shows the correlations between clone abundances measured by MS/MS and Ig-seq

(compare with Figure A7 that measures antibody, rather than clone, abundance). These plots

show the difference when considering the unit of a repertoire (antibody), and the unit of antibody

evolution (the clone) raising the concern that Ig-seq data do not adequately represent antibody

abundances. When considering only the antibodies, there is no correlation with the mass-

spectrometry evidence, as previously reported by [CBZ+12]. However, when considering the

amalgam of antibodies forming each clone, a moderate correlation emerges (ρ = 0.5687614).

One possible explanation is that certain antibodies, within highly expressed clones, are not

captured by mass-spectrometry.

4.1.3 Conclusion

Our study is the first to validate the constructed antibody repertoires (by using com-

plementary proteomics data) that confirmed that IGREPERTOIRECONSTRUCTOR generates

accurate repertoires. With an accurate tool for constructing antibody repertoires, we can move

to studies of evolution of antibody repertoires, the analysis that has not been possible in the past.

Since analysis of antibody repertoires is not unlike analysis of repeat subfamilies, the existing

algorithms for analyzing repeat evolution ([PEP04, CB09]) can be applied to study evolution

of antibodies. We also addressed the problem of peptide identification in large and highly
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repetitive databases by designing multi-layer immunoproteogenomics search algorithm. Finally,

we revealed an alarming lack of correlation between NGS-based and MS-based quantitation of

antibodies (consistent with [CBZ+12]) and proposed a way to partially restore this correlation

by considering clone abundances rather than individual antibody abundances.
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Chapter 5

Cancer immunoglobulin proteogenomics

5.1 Tumor infiltrating lymphocytes

Cancer is a complex disease, embodied by the heterogeneity of clones at the tumor

site. It is further complicated by the fact that the tumor sample is additionally comprised of

non-tumor host cells. This tumor microenvironment also harbors a variety of immune cell

infiltrates, including: T-cells, macrophages, dendritic cells, and B-cells. Such infiltrates where

shown to be found in pan-cancer analysis [RSW+15]. These tumor infiltrating lymphocytes

(TILs) represent the adaptive immune systems attempt at targeting and eliminating tumors.

Obviously, this system breaks down and can allow for cancers to progress and proliferate.

The following chapter will investigate TILs from tumor samples, specifically the im-

munoglobulins produced by B-cells. These infiltrating immunoglobulins can provide us with

a snapshot of if/when the host can create clonally expanded antibodies, and their potential

prognostic value. Additionally, understanding similarities in repertoire response and isotype

switching can provide new insights into the immune systems role in this tumor microenviron-

ment.

69
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5.2 Proteogenomic analysis of colorectal cancer reveals mu-

tations and immunoglobulin peptides

5.2.1 Introduction

Cancer is marked by a progression of somatically acquired genomic lesions. Recent

availability of advanced genomic technologies has led to deep insights into the molecular

basis of the disease and a better understanding of the mutations that drive the progression of

these diseases [KFMS12, BBB+11, MBC+12]. The impact of mutations at the protein level,

however, is not as well understood.

To close this gap in understanding, recent studies, including recent publications from

the Clinical Proteomic Tumor Analysis Consortium (CPTAC) [cpt], are focusing on ana-

lyzing cancer tissue using proteomic (mainly mass spectrometry based) technologies and

workflows, with large-scale direct comparisons between transcript and proteomic expression

patterns [ZWW+14]. The results confirm large differences between protein and transcript

expression and underscore the need for robust proteomic technologies, particularly in the iden-

tification of ‘variant’ peptides as translational evidence for genomic events such as mutations,

splicing, structural variation, and others. As peptides are typically identified by comparing

acquired spectra against theoretical spectra from candidate peptides, a customized database

of candidate peptides must be created to include variants observed in genomic tumor samples.

The term proteogenomics often refers to the search of mass spectra against these specialized

databases [WCM+14, WCN+14, CSH+14, CB10].

Despite many proteogenomic methods having been recently proposed [LDZ10, LSM+11,

WSW+12, WZ13, Fea11], serious methodological challenges remain. While the initial goal of

the CPTAC [cpt] colon cancer study has been delivered [ZWW+14], the use of more sophis-

ticated approaches can enable additional discoveries from this existing cancer dataset. Most

proteogenomic methodologies focus on identifying single amino-acid polymorphisms (SAP)

by adding peptides that capture the alternative allele [ZWW+14, LDZ10, LSM+11, WSW+12,
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WZ13, Fea11]. However, a large portion of mutational variants, such as insertions, deletions,

substitutions, fusion genes, and immunoglobulin genes, are not captured systematically by such

an approach. In some cases, transcript evidence is used as a means of reducing the reference

database size, while ignoring their potential of identifying novel mutation forms [ZWW+14].

In other cases, small transcript data-sets are used to mine junction peptides, without a robust

framework for handling available big data-sets of Next Generation Sequencing (NGS) data.

For colorectal cancer, the single TCGA [MBC+12] (The Cancer Genome Atlas) project alone

lists more than 1300 RNA-seq data-sets ( 5.31 TB).

In our approach, we attempt to address the limitations of previous proteogenomic meth-

ods namely, computational scaleability, false discovery controls, and novel variant detection.

We started by building a comprehensive and compact database that non-redundantly stores

variant peptide information through a proteogenomic compaction of multiple RNA-seq datasets.

To achieve this compression without loss of sensitivity, we use a graph based approach to

model junction and variant peptides. From this representation, we derive a compact linear

database [WCM+14, WCN+14]. This approach results in a considerable reduction in database

size; from 348 GB of RNA-seq alignments, to a compact proteomic database of 888 MB.

In addition to reducing database size, a crucial step is controlling the number of false

positive identifications. We demonstrate how the ‘richness’ (defined below) of the database

determines the false discovery rat, and extend our own previous approaches [CPS+08, CB10,

CSH+14, WCN+14] to develop a conservative strategy for proteogenomic event handling

and multi-stage false discovery control. We observe that the use of improper false discovery

rate (FDR) strategies, such as traditional combined methods, leads to the overestimation of

novel peptide identifications. These can result in over 47.44% of actual FDR when calculated

separately. The proposed multi-stage FDR strategy strictly maintains FDR to the desired

rate (1%). Moreover, the proteogenomic event handling method eliminates the multiple

counting of identifications of identical mutational variants. This removes ambiguity in reporting

novel findings through the downstream proteogenomic analysis. From 2,367 novel peptide
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identifications, we reported 1,884 proteogenomic events by grouping compatible peptides and

utilizing peptides with ambiguous genomic locations only as supporting evidence. These are in

addition to the 130,640 known peptides that were also identified.

In addition to improving the identification of proteogenomic events, we also introduce a

novel approach to identify rearranged immunoglobulin genes, a task that has been infeasible in

proteogenomic studies to date. While the role of T-lymphocytes in tumor immunology is well

understood [NGS03, Nel10], recent reports have also highlighted the role of B-cells, which

also aggregate in tumors. Once there, they form germinal centers, undergo class switching, and

differentiate into plasma cells [ONI+09]; producing multiple antibodies which are part of the

proteome extracts. However, they remain unexplored because standard databases are unable to

represent the highly divergent sequences induced by the B-cell differentiation. We developed

a customized RNA-seq antibody database, using a combination of mapped RNA-seq reads,

and partial assemblies using de Bruijn graphs [PTW01, ZB08, CPT11]. These customized

databases permit the identifications of tumor antibodies, and explore their potential role in the

molecular characterization of colorectal cancers. Surprisingly, our result showed that 56.37%

of our novel proteogenomic event identifications were from immunoglobulin gene database

search. This result underscores the importance of our proposed immunoglobulin peptide search

when analyzing cancer samples, adding a new host-immune dimension to our analysis.

The value of proteomic evidence over transcript, or genomic evidence has been debated,

with recent reports supporting the complementary information available from proteomic data.

Our proteogenomic pipeline maintains summary level information in the transcript derived

databases that allow for seamless querying of the relative frequencies of specific variants

in DNA/transcript data. Through the reanalysis of 90 distinct colorectal tumors from the

CPTAC project, we also addressed questions regarding recurrent somatic mutations in tumor

genomes. As the result, we have identified 2.3×more variations compared to the initial CPTAC

study [ZWW+14]. Moreover, it should be noted that by applying conventional FDR strategy,

15.3× additional novel identifications were found which includes 96.25% of RNA expressed
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mutations from the initial CPTAC colon cancer study [ZWW+14].

5.2.2 Results

The CPTAC colorectal cancer data-set. MS/MS spectra of Adenocarcinoma (COAD) and

Rectum Adenocarcinoma (READ) were downloaded from CPTAC data portal [cpt], for a total

of 12,827,616 spectra collected from 90 distinct tumor samples.

Proteogenomic database creation for splice junction and mutation search. We acquired

RNA-seq data where available for the CPTAC samples, from the TCGA [BBB+11, KFMS12]

repository (90 overlapping samples, 151.08 GB of sequence data), and used it to create

specialized splice junction databases. We separated junction variants and mutational variants

into separate databases. In the case of junction variants, mapped reads were used to identify

recurrent junctions and mutations, and specialized FASTA formatted databases were developed

encoding all coding region and junction information, while ignoring mutational data to create

a compact database (1.43 GB) encoding 1,245,069 novel splice junctions, and 85.29% of all

known splicing events. In case of mutational variants, single nucleotide variant (SNV) and short

substitution/insertion/deletion information from the RNA-seq alignments (from TCGA project),

encoded in VCF files, were also used to construct an 1.14 GB MutationDB FASTA database

encoding putative variant peptides. The compact databases, critical to maintaining a low FDR,

can be attributed to (a) building a splice-graph to encode junctions in a non-redundant fashion,

and (b) creating a specialized FASTA database derived from the splice-graph to enable efficient

database search (see online methods, and our previous approaches [WCM+14, WCN+14]).

Extended proteogenomic database for immunoglobulin peptide search. The database

construction for immunoglobulin genes is more challenging, as the antibodies are the result

of genomic recombination, splicing, and non-templated DNA insertion, making it difficult to

map them to the standard reference sequence. As illustrated in Figure 5.1, we developed a

customized proteogenomic database targeted to IG gene peptide identifications.
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Figure 5.1: Illustration of proteogenomic database construction for immunoglobulin
peptide identifications.

First, in order to select immunoglobulin related RNA-seq reads, we employed a two-step

procedure for selecting reads for the IgH locus. For the first pass, we filtered and retained

all reads mapping to the IgH locus. The majority of these reads mapped to the constant (C)

and variable (V) gene-segments. Additionally, we retained unmapped reads with 10-mers

that matched to the V, D, J, or 5’ end of C reference gene-segments, and matched additional

filters (online methods). This set of remaining reads was referred to as the putative IgH read

set. While not very stringent, the filtering eliminated most non-IgH originating reads. Further

pruning was performed on the de Bruijn graph data structure.

We constructed the de Bruijn graph using k-mers from these reads in the following

manner: Nodes in this graph represent all (k−1)-mers over the putative IgH read set. Nodes

u,v in set V are connected by a directed edge (arc) (u,v) ∈ E if u is a prefix, and v is a suffix

of some k-mer in a read. This graph G = (V,E) is termed the repertoire graph, as it is built

over the putative IgH read set. Figure C.1(b) displays an example of the de Bruijn graph

built on 6-mers from the two sequences shown, while a value of k = 21 is used to construct

the repertoire graph. More detailed explanations of de Bruijn graphs as a data-structure for

assembly can be found elsewhere [CPT11].

Next, paths in the repertoire graph were converted to a compact FASTA formatted

protein database using a specialized algorithm that guarantees sensitivity while keeping the

database as compact as possible [WCM+14]. The specialized IG gene database derived
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from the larger corpus of 150Gb RNA-seq reads was only 467Mbp. Table C.1 shows the

overall statistics of the database sizes and number of genomic variations encoded in our final

proteogenomic database. The complete search also used a database of “known-proteins” from

Ensembl [FAA+13] (version GRCh37.70).

MS-MS search results. A ‘target-decoy’ based FDR strategy is commonly deployed to

control the false discovery rate of peptide identifications. The traditional approach to FDR

calculation [EG07] creates a single, combined target database, and a similar-sized reversed

(or permuted), decoy database to estimate the false-discovery rate. This leads to a distortion

in proteogenomic searches, where the novel variant databases can be very large, but have a

smaller fraction of identifications with a higher false positive rate.

To understand the behavior of FDR controls on databases of different sizes, consider a

database of a specific size, and richness α, where the richness corresponds to the fraction of

peptide spectrum matches (PSMs) that are correctly mapped to the peptide. Thus, the value of

α is high for known proteins, but low for many of the variant encoding databases. let C, I,T,D

be randomly chosen peptides spectrum match scores from correct, incorrect, target-database,

and decoy-database PSMs. These random variables are distributed according to fC, fI, fT , and

fD respectively. Further, let FC(x) =
∫

∞

u=x fC(u)du denote the cumulative tail probability. To

control the FDR, we would like to identify the minimum threshold τ such that

FD(τ)

FT (τ)
≤ 0.01 (5.1)

where 0.01 (1%) is the desired FDR. We assume that fD(x) = fI(x) for all x, and note that

fT (x) = α fC(x)+(1−α) fI(x)
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Integrating and substituting, the goal is to find a minimum threshold τ s.t.

FD(τ)

FT (τ)
=

FI(τ)

α ·FC(τ)+(1−α) ·FI(τ)
≤ 0.01 (5.2)

Denominator of known-protein DB is larger than that of proteogenomic DB, and vice versa

for the numerator. Therefore, if the proteogenomic DB has larger size and poor quality, then

the FDR of known-protein DB is always smaller than FDR of proteogenomic DB, so the

same cut-off cannot be applied to the different databases (see online methods and data). We

employed a conservative, multi-stage strategy [WCN+14] with a 1% FDR cut-off at each stage.

The databases were searched in a specific order, starting with a ‘known protein’ database first,

followed by Ig Database, SpliceDB, MutationDB, and six-frame in order. Spectra that passed

the FDR threshold in an earlier database were not considered for subsequent searches (see

online methods). Figure C.3 shows a comparison of the two strategies, where the combined

strategy results in more identifications, but with a higher false-discovery rate for the novel

(variant) peptides.

The 12,827,616 Adenocarcinoma (COAD) and Rectum Adenocarcinoma (READ)

tumor MS/MS spectra were searched against the known protein and specialized proteogenomic

database using MSGF+ [KMB+10]. The multi-stage search resulted in 130,640 known peptide

identification (5,673,517 PSMs) and 1,416 aberrant peptides (14,484 PSMs) at 1% PSM level

FDR cut-off. The extended immunoglobulin database search for IG peptides yielded 439

distinct peptides (58,778 PSMs) from the constant region, and 951 peptides (7,091 PSMs)

from the variable regions.

Comparisons with different MS/MS database search approaches. We benchmarked our

search against previous searches of the same MS data, including Zhang et al. [ZWW+14] who

used their own databases (CanProVar), and against a second search-tool using Comet [EJH13]

on our specialized databases as a control. The Comet results [EJH13] showed 357 novel

peptide identifications while 70.86% of the peptide overlapped with MSGF+[KMB+10] results



77

(Figure C.4). In generating novel events reported in this paper, we used the union set of both

MSGF+ [KMB+10] and Comet [EJH13] peptide identification results, adding an additional

104 peptides. In general, our tools are agnostic to the choice of a specific search-tools

In comparing against CanProVar results (Figure 5.2), we note that in both the multi-

stage and combined-search, we predicted an excess of junction peptides and IG peptides. These

were ignored by previous approaches due to the challenge in identification. The number of

mutations were comparable in both studies, with 276 overlapping mutations. Among the

mutated peptides predicted by CanProVar alone, 290 were not represented in our database as

their databases included public sources encoding variation [FBB+11, SWK+01, MBC+12],

while our customized databases study were created directly from matching sample RNA-seq

data-set. The remaining missed identifications were mainly due to FDR controls (211 of 230)

and could have been discovered via the ‘combined’ FDR search, but at the cost of a higher

false-discovery rate (Figure 5.2b).

Figure 5.2: (a) Comparison of aberrant peptide identifications against previous findings
using multi-stage FDR (b) Comparison of overlapping aberrant peptide identifications
using combined FDR. Our proteogenomic database was created from raw RNA-seq
alignments from TCGA repository and database used in Zhang et al. [ZWW+14] is
created from SNV informations reported by dbSNP [SWK+01], COSMIC [FBB+11],
and TCGA somatic mutation calls [MBC+12].
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Peptide identifications to proteogenomic events. Novel variations were grouped by loca-

tions and automatically classified into distinct events (see methods). Peptides mapping to

two locations were used only to support other events, ensuring that each event had at least

one uniquely mapping peptide. Grouped novel peptide identifications with reading frame

compatibility are shown in the following section with specific proteogenomic examples.

Comparisons in protein versus genomic level mutation analysis. Initial comparisons be-

tween the expression and recurrence of variant peptides suggested significant differences

[ZWW+14]. As we did not have matched proteomic data from normal samples, we used an

earlier study from TCGA [MBC+12] to call somatic variations. The TCGA study paired 224

of 243 tumor samples with matched blood samples, while the MS data had 90 samples that

overlapped with TCGA, and 61 also had matched blood. We identified 108 SNV mutations and

1 insertion that were called somatic in the TCGA study, and compared their recurrence with

versus genomic mutations.

Figure 5.3(a) shows the top 30 most frequently mutated genes reported by the TCGA

study [MBC+12]. However, these genes have extremely low protein expression (as mea-

sured by spectral counts) even for non-mutated peptides (Figure 5.3(b)). In contrast, the

most recurrent proteins with somatic mutations have variable recurrence using RNA expres-

sion (Figure 5.3(c)), but the list identifies many genes of interest. However, genes such

as TNC [TSK+13], HSPG2 [JC03], PML [VSP+12], GBP-1 [BLLO+13], TF [SLW+09],

NES [TNI+07], have all been implicated in colorectal tumor angiogenesis.
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Figure 5.3: (a) Genes containing most frequent somatic mutations reported by the
TCGA study. (b) RefSeq identified spectra per gene in 10 based log scale. Most
frequently mutated genes in DNA level are under expressed in protein level. COL6A3
had 35463 spectra counts, TTN (188), KRAS (71), DMD (76), SYNE1 (43), LRP1B
(37), ANK2 (59), and rest of the DNA level highly mutated genes had less than 25
spectra counts. (c) Percentage of samples containing identified protein mutations in
TCGA reported most frequently genes. While most of the DNA level top frequently
mutated genes were under expressed in protein level, we observed that some genes
showed even higher mutation frequencies across samples in protein level.
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Peptide identifications from immunoglobulin rearrangements. Our search also resulted

in a large number of IG peptides, including 439 peptides (58,778 PSMs) mapping to the IG

constant region, and 1,094 peptides (8,701 PSMs) IG variable regions (see online methods).

Figure C.5 shows an example of peptides supporting specific V(D)J recombinations. The

complexity of these peptides suggests that there could be bias in their discovery patterns. To

test for bias, we compared the IG peptide spectral counts to RNA-seq data, and observed a

strong correlation (Figure C.6(a)). The high correlation extended to spectral counts between

heavy and constant regions in each sample (Figure C.6(a); ρ = 0.77). Finally, while there is

variation in the location of IG constant region peptides, all regions with tryptic digestion sites

are well sampled (Figure C.6(c)). As there is no specific bias, we used the data to investigate

IG peptide concentrations within cancer-subtypes. As mature antibodies are expressed only

in differentiated lymphocytes, the excess of IG peptides is indicative of an immune response

mediated by B-lymphocyte infiltration in the tumor cells. While the role of T-lymphocytes in

tumor immunology is well understood [NGS03], the role of B-cells is still being elucidated,

although some reports suggest that B-cells aggregate in tumors [Lin13, NSM+12], where they

form germinal centers, undergo class switching, and differentiate into plasma cells [Nel10,

ONI+09].

Distribution of IG peptides across colorectal subtypes. The CPTAC study classified the

90 samples into five subtypes, marked ‘A’ through ‘E’ [ZWW+14] based on expression patterns.

Figure 5.3 shows the plot of IG gene peptide spectra counts (normalized by the total number

of known spectra identifications in each group) between each sample subtypes. In addition,

MS/MS data-set from normal colon/rectal [KPG+14] tissue, and colon cell-line [FSL+13]

were used as controls. We observed that IG peptide identification rate in all sub-types were

similar to the normal sample compared to the majority of cancer samples (except samples

within group ‘C’) while cell-line sample showed a markedly smaller number of IG peptide

identifications. The one exception was the significant over-expression of IG peptides in subtype

‘C’ (p-value < 0.0001,χ2 = 2927.71), comprising of samples that are hypermutated, and
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microsatellite instability (MSI) high. Moreover, samples in subtype ‘C’ also show high overlap

with the both ‘stem-like’ and ‘colon cancer subtype3’ group defined by the Sadanandam et

al. [SLH+13] and De et al. [DSEMWJ+13]. Our results suggest that a strong immune response

could be a molecular marker of CRC sub-types.

Figure 5.3: Percentage of IG gene peptide identifications in each sample normalized by
the number of known peptide identifications across sample subtypes. This percentile
ratio is calculated by dividing the number of known peptide identifications from the total
number of IG peptide identifications within each sample. (ratio = (# of IG peptides) / (#
of known peptides) * 100) Different kinds of IG gene segments are colored. Subtype
C (sample groups showing both hypermutation and CIMP characteristics) showed
comparably high number of IG gene peptide identification compared to other sample
subtypes. Chi-squared test of this plot showed p-value < 0.0001,χ2 = 2927.71.

We also tested the distribution of somatic mutations across samples sub-types (Fig-

ure C.7) and observed slightly higher frequency of somatic mutation identifications in subtype

‘B’ (p-value < 0.0001,χ2 = 40.39). In the initial TCGA [MBC+12] and CPTAC [ZWW+14]

colon cancer study, samples in both ‘B’ and ‘C’ subtypes are reported as hypermutated while

group ‘C’ is characterized as showing both MSI-high within hypermutated samples. Our

results support this partitioning based on differential distribution of variant peptides in the two

sub-types.
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Identifying mutated peptides for follow-up. The TCGA transcript analysis largely iden-

tified somatic mutations with low recurrence except for a few key genes. Moreover, the

recurrently mutated genes (e.g., APC) are tumor suppressors, and had reduced protein expres-

sion; the mutations are therefore not seen in the proteome. Thus, we focused here on identifying

SNV mutations and other events that were not highly recurrent, but together, could be part of

targeted proteomic studies characterizing colorectal cancer sub-types.

Our study revealed 679 identified substitutions, of which 108 SNV mutation overlapped

with the TCGA reported somatic mutations in colon cancer samples and 424 SNV mutations

are reported in dbSNP.

Exemplars of Somatic SNV mutations. The tumor suppressor SMAD4 mediates the TGF-

beta signaling pathway suppressing epithelial cell growth, and inactivation of the Smad4

gene through an intragenic mutation occurs frequently in association with malignant progres-

sion [MK03, Liu01]. We identified a single PSM

‘VPSSCPIVTVDGYVDPSGGD;H;FCLGQLSNVHR’ (R361H, Figure C.8) supporting a

known mutation in colorectal cancer [FBB+11], appearing with low frequency in transcript

data (7 of 243 TCGA samples).

The wildtype KRAS gene is required for drug efficacy in metastatic colorectal can-

cer [AWP+08]. We identified a known, low-frequency, mutated peptide, ‘LVVVGAG:D:VGK’

(G12D, Figure C.9) in 4 of 90 proteome samples, matching the low transcript frequency (25 of

243 transcript samples).

Expression of the polymeric immunoglobulin receptor (pIgR), a transporter of polymeric

IgA and IgM, is commonly increased in response to viral or bacterial infections, linking innate

and adaptive immunity. Abnormal expression of pIgR in cancer was also observed [ATW+11].

We identified a mutation (Figure C.11) with strong overlapping peptide identification. We also

identified overlapping peptides in FGA gene, which has been propsoed as a marker for other

cancers [TLG+12].
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Alternative splice junctions. We categorized the identified splice junctions as ‘novel’ when

both splice sites does not overlap with any known splice junctions, while ‘alternative’ junctions

indicate that at least one splice site is shared with any existing known junctions. We identified

97 novel splice junctions and 11 alternative splice junctions. Figure C.12 shows an example of

alternative splice junction peptide ‘VKEENPE:G:PPNANEDYR’ in STK39 (a cellular stress

response pathway gene [PBH+14]) along with its spectral alignment.

Deletions. Figure C.13 shows an example of mutated peptide identified with the presence of

deletion (from 4 deleted peptides in total) in the Ladinin-1 gene across 6 samples. A related

SNV mutation of the peptide ‘K.NLPSLA:E:QGASDPPTVASR.L’ (K−>E) was also reported

by TCGA [MBC+12] colon cancer somatic mutation calls with 10,711 read depth.

Fusion genes. Figure C.14 shows a possible gene fusion region (selected from total 8 possible

gene fusion peptide identifications) where two junctional peptides are identified accross two

different genes (HBA1 and HBA2). Two fusion peptide shown in this region had unique

genomic location and total 15 spectra counts from two protein samples. These hemoglobin

related genes act as anti-oxidants, attenuating oxidative stress-induced damage in cervical

cancer cells [LWW+13].

5.2.3 Conclusion

We present here a systematic pipeline for identifying mutated peptides in cancer fo-

cusing on many challenging issues such as a compact, integrated transcript derived database

for searching, FDR controls, and event calling. In addition, we also developed customized

databases for searching for IG peptides allowing us to quantify the antibody response to cancer.

Our results follow other results in suggesting a significant gap between genomic versus

protein level mutation identifications, mediated on the fact that recurrent mutations in tran-

scripts may not be observed in the proteome due to reduced protein expression of the mutated

gene. Thus, the development of protein based biomarkers must be prefaced by proteome
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related studies. The mutations observed during transcription and translation have different

characteristics. However, a pipeline such as ours which searches a comprehensive database of

transcript derived mutations against spectra allows for a joint exploration of the proteogenomic

space.

The significant number of peptide identifications in immunoglobulin regions point

to active immunoglobulin responses within certain sub-types of cancer, and provide a new

direction towards molecular sub-typing of cancer. Implicitly, our results can also lead to an

analysis of antibody sub-type switching, and predicting the host response to infections. These

will be fully investigated n future studies.

Finally, the proteogenomic analysis leads to the identification of a number of aberration

peptide identifications that will serve as candidates for targeted studies of tumor subtyping and

tumor progression.

5.3 Immunoglobulin assemblies from TILs

5.3.1 Introduction

Tumor infiltrating lymphocytes

Immune cell infiltrates into tumors is a well studied phenomenon due to their potential

for identifying tumor cells, as well as to understand how the immune system fails to eradicate

the tumor. While tumors evade the immune system, these infiltrating cells have been used

as a prognostic indicator for some cancers [BHAH+13, NSM+12]. These tumor infiltrating

lymphocytes (TILs) have largely been studied in the context of T-cells, however, recent studies

suggest that infiltrating B-cells may provide insights as well [Nel10, LM12, Lin13, WLM+14,

MRTM14, KGJ+13].

While the role of B-cell infiltrates is being investigated [LM12, WLM+14, KGJ+13],

it is not being done so at the level of molecular sequences. There are few examples of studies
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Table 5.1: Enosi characterization of aberrant events. 61 samples out of 90 had blood
(normal) samples available as a matched reference. Using DNA level normal) sample
mutation calls, we were able to distinguish 106 somatic and 298 germline mutations
among 650 substitutions. (246 substitutions remained uncategorized due to the absence
of normal reference samples)

Type of novel findings # of novel findings
Somatic substitution 106

Germline substitution 298
Uncategorized substitution 246

Somatic insertion 1
Uncategorized insertion 3

Deletion 4
Transcript gene 10

Fusion gene 5
Translated-UTR 16

Alternative splice 11
Novel splice 91

Exon boundary 6
Frame shift 4
Novel exon 2
Novel gene 4

Reverse strand 1
Pseudo gene 14

IG gene variable region 1,062

performing sequence analysis of infiltrating B-cells [CTK+01], as such, this relm remains

largely uncharacterized. High throughput sequencing of immunoglobulins has now become

feasible, therefore representing the T-cell and B-cell repertoires at the nucleotide level is now

a reality. Unfortunately, no tools exist for the purpose of utilizing general RNA-Seq data for

the analysis of T-cell receptors (TCR) or immunoglobulins (Ig). General tools for short read

RNA-Seq data will be unable to identify many reads originating from these regions due to the

high divergence from germline references.

Immunoglobulin sequencing

High throughput sequencing of immunoglobulin transcripts from B-cells was pioneered

in model organisms [WJW+09, JWP+11]. Immunoglobulin sequencing (Ig-seq) has now
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become a viable approach to studying human immunoglobulin repertoires at the molecular

level [ALC+11, JHW+13, VSW+13, LVGM+14]. Earlier Ig-seq studies relied on Roche 454

sequencing to provide sufficiently long reads to cover the variable region of the antibody;

this came at the cost of lower throughput and sparser coverage of the repertoire. Illumina

read lengths are now sufficiently long to cover the entire variable region when overlapping

paired-end reads are used [SBK+15].

Ig-seq has been employed in humans to study the antibody response to vaccine anti-

gens [JHW+13, VSW+13, LVGM+14]. This is a very powerful way to view the changing

immune system, and has the potential for identifying antibody candidates. However, Ig-seq

has not been applied to studying tumor infiltrates; perhaps because their potential has not been

fully described, or due to the variable nature with which they are observed.

While no such Ig-seq data has been created, many RNA-Seq experiments have been

performed on primary tumor samples to examine the expression patterns, or identify fusion

transcripts. These RNA-Seq experiments seek to understand the molecular basis of cancers by

probing the transcriptome. However, since conducted on primary tumors these samples contain

tumor cells, host cells, as well as immune infiltrates. A recent study extensively characterized

T-cell cytolytic activity across TCGA cancer samples [RSW+15]; showing that molecular

signatures for T-/B-cells can be identified from RNA-Seq. We will use this general approach of

using primary tumor RNA-Seq data to reconstruct and analyze a targeting component of the

immune system: the antibody molecule.

Ig-mining

While characterizing tumor infiltrates from general RNA-Seq has been shown possi-

ble [RSW+15, GNL+15]; obtaining immunoglobulin variable regions from short read data is

not the same task. In order to extract B-cell immunoglobulin transcripts from such general

experiments using short read data, we cannot rely on standard tools. Such immunoglobulin

mining (Ig-mining) from short read data, will require a different approach.
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Standard read mapping tools will miss the majority of reads from antibody transcripts

due to the high divergence from reference; yet it is this divergence that is of particular interest!

To overcome this shortcoming, we have developed TILAPIA which works by: 1) recruiting

unmapped reads potentially originating from the immunoglobulin heavy chain (IGH) locus,

together with those already mapping; 2) the de Bruijn graph over these recruited reads is

created and pruned; 3) antibody variable regions are assembled from the de Bruijn graph. These

assembled antibody variable regions can then be analyzed in the same manner as data obtained

from Ig-seq.

Here we describe the tool TILAPIA: Tumor Infiltrating Lymphocyte Analysis Performed

by Immunoglobulin Assembly. In addition to describing TILAPIA, we will justify the special-

ized antibody assembler on simulated data, and present results on 397 colon cancer samples.

We further show that B-cell infiltrate response differs from colon to breast cancer with regards

to isotype switching.

5.3.2 Methods

Datasets

Colon cancer dataset

Sequencing data of mRNA from 397 human colon cancer tumor tissues were down-

loaded from The Cancer Genome Atlas (TCGA) [N+12]. Clinical, pathology, and slide

metadata files associated with these samples were also downloaded and used in the analysis.

344 samples are retained for further analysis of the constant region, based on the number of

mapping reads (Supplemental Figure D.1).

Breast cancer dataset

Sequencing data of mRNA from human breast tissue, previously analyzed [VGR+14],

were downloaded from the NCBI short read archive (SRP042620). BAM files were gener-
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ated from the downloaded FASTQ files that were aligned to human reference HG19 using

the STAR aligner [DDS+13]. For expression analysis, a count matrix was computed using

HTSeq [APH14], and differential expression computed using DESeq2 [LHA14]. 141 samples

were used in total: 42 triple negative breast cancer primary tumors (TNBC); 42 Estrogen recep-

tor positive and HER2 negative primary tumors (ER+); 30 uninvolved breast tissue samples

adjacent to ER+ tumors, 21 uninvolved breast tissue samples adjacent to TNBC tumors; and

5 breast tissue samples from reduction mammoplasty procedures on patients with no known

cancer.

Mass-spectrometery dataset

The data used for mass-spectrometry analysis consists of mRNA sequencing data

from 73 human colon and rectal tumor tissues were downloaded from The Cancer Genome

Atlas (TCGA), of which 44 are colon cancer, and 29 are rectal cancer. Mass-spectrometry

datasets from these same samples were obtained from The Clinical Proteomic Tumor Analysis

Consortium (CPTAC). These samples were analyzed at a proteome-level scale in a previous

study [ZWW+14].

Filtering IGH locus from RNA-Seq data

Since the majority of mRNA sequenced are from tumor cells of the colon, we must

filter out only those reads mapping to the immunoglobulin heavy chain (IGH). Any transcript

mapping to the IGH locus would suggest that it originated from a B-cell, specifically a tumor

infiltrating B-cell (TIB). Typical mapping procedures, e.g., bowtie, will miss many transcripts

from the IGH variable region due to the imprecise junction of V/D and D/J gene-segments, and

high somatic mutation rates of the IGHV gene-segments. Figure 5.4(a) shows the potentially

missed reads from a somatically recombined heavy chain transcript as grayed out, while

mapping reads as darker. This shows that we can obtain mapping reads for some parts of the

V gene-segment, and the constant region, but will need a different approach for the junction
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Figure 5.4: Immunoglobulin mining overview. (a) Read mapping example. Standard
reference mapping approaches will fail to properly recruit many reads from antibodies
due to the highly variable nature of these transcripts. (b) IGH reconstruction. Outlines
the approach used by TILAPIA for reconstructing antibody transcripts from short read
data, in a sample that is a mixture of tumor, normal, and immune cells.

region and highly mutated areas of the V gene-segment.

Figure 5.4(b) shows the approaches used for reconstructing the IGH locus. Starting

with a BAM file for the RNA-Seq experiment for an individual sample, a series of l-mer filters

are applied to retain reads only pertaining to the IGH locus. These reads are used to construct

the de Bruijn graph of the expressed IGH transcripts, termed the repertoire graph. Finally, the

heavy chain transcripts are assembled from the graph.

Variable region assembly and analysis

To obtain IGH transcripts, we must assemble them from the read data. All unmapped

reads are filtered for matches to l-mers in the V, D, J, and C gene-segment references. Those

with matches are retained, along with mapping reads, to construct the de Bruijn graph. Pruning

of this graph is performed to remove errors. The resulting repertoire graph is then assembled to

obtain near full length transcripts.
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Filtering for variable region

Starting from an RNA-Seq sample, reads that are likely to pertain to the IGH locus

are filtered out. The full filtering procedure is outlined in Algorithm 4 in the supplement. All

reads mapping to the IGH locus (chr14:105566277-106879844) are retained, and combined

with all unmapped reads. This subset of reads is then filtered for quality by: removing any

reads containing an ‘N’; removing any reads with a mean quality value below 25; remove any

reads without any l-mers matching V, D, J, and C reference l-mers. Any retained reads are then

trimmed based on quality values from both the 5’ and 3’ ends. Bases with quality values below

10 are trimmed from both ends of the read and if more than 66% of the read is trimmed in this

manner, then the read is discarded. All retained reads are putative IGH reads, and retained in

set R for assembly. Figure D.1 shows the number of variable region and constant region reads

retained over the colon cancer data sets.

Selection of l for the l-mer filter is an important step. The l parameter presents a tradeoff

between sensitivity (selecting reads from true V, D, J, and C gene-segments), and specificity

(missing reads due to high variability from somatic hypermutation and recombination). One

way to approach this tradeoff is to select the smallest l that has an acceptable false positive

rate of including reads. This can be represented by spurious reference l-mer hits to each read

(described in the Figure D.7 and Supplemental section: Modeling spurious l-mer matches).

Repertoire graph construction

The putative IGH read set R is used as input to construct the de Bruijn graph GIg =

(V,E), termed the repertoire graph, over k-mers of these reads. Nodes in this graph represent

all (k− 1)-mers over the set of reads R. Nodes u,v ∈ V are connected by a directed edge

(u,v) ∈ E if there exists some k-mer in a read, contained in R, whose prefix is u and suffix is v.

Algorithms using de Bruijn graphs have been applied to genomic assembly [PTW01,

ZB08], transcriptomic assembly [GHY+11, PLY+13], as well as meta-genomic assembly [PLYC11].

Transcript assembly algorithms such as Trinity [GHY+11] or IDBA-tran [PLY+13] could be
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used to assemble IGH transcripts. These assemblers make certain simplifying assumptions,

that work on the majority of loci. Unfortunately, the IGH locus violates many of these sim-

plifications. For example, Trinity [GHY+11] exhaustively enumerates branching paths to a

predefined depth cutoff. This is to ensure that the correct transcript is assembled. This works

when branches are uncommon; repertoire graphs have many branches, so this strategy will miss

many antibody contigs (Figure D.2).

Once the repertoire graph GIg is constructed, error correction can be employed. Similar

approaches to transcript assemblers [GHY+11, PLY+13] are employed. Tip clipping/bubble

removal is performed using a proportional coverage heuristic. Additionally, a uniform coverage

rule is applied after tip/bulge simplification to remove any very low coverage tips that will not

be able to be incorporated into contigs.

The repertoire graph is further simplified by retaining only the largest connected

component within the graph. This largest component is assumed to represent the IGH locus

due to the pruning/recruiting of reads mostly pertaining to this locus. Retaining the largest

connected component removes many small, spurious, components likely created by reads that

erroneously passed the filters.

Repertoire graph assembly

The main difference between the assembly approach using the repertoire graph and

other transcript assemblers rests in two simple aspects. Since a relatively low number of reads,

compared to the total, are considered, we can retain all read information on edges in the graph.

Additionally, the heuristics used to determine which which branches to be considered differs.

It is common for a branch to be considered only when a significant number of nucleotides

overlap on each side of the branching node. Otherwise, the approach is similar to that used for

IDBA-tran.

When considering the heaviest path between source and sink nodes, the reads are

considered for determining coverage over the edges on the path. Edges continuing from
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previous heaviest paths are considered as candidates, and those with the most overlap in

continuing reads are retained. Reads starting from the candidate arc are given a lower weighted

score. At each node, the n heaviest paths are retained. Nodes are processed in topological order.

Full details can be found in Supplement Algorithms 3 and 4.

VJ labeling and analysis

Labeling of assembled antibodies was performed using IgBlast [YMMO13]. An e-value

threshold of 10−10 was employed to reduce poor labeling. Mismatches in the V gene-segment

were noted and are used for mutation analysis.

For each sample, all 52∗6 = 312 VJ pairs are quantified by aggregating the effective

read count from eXpress [RP13], for each VJ labeled transcript, into a vector v. For a sample i,

we obtain a vector vi of counts for each VJ pair. Each vi is unity normalized v̂i =
vi−min(vi)

max(vi)−min(vi)

to facilitate comparisons across samples.

Clustering is performed on unity normalized VJ vectors, comparing two samples of V

gene expressions using cosine distance and Ward clustering metric. VJ clusters are plotted by

summing each v̂i for all samples i, and representing each V-J pair using the unity normalized

expression.

VJ permutation test

A permutation test was carried out to determine if the most abundant VJ pairs were

observed significantly more than random. Each sample i considered has a representing vector

of VJ pair abundances, vi. To determine the null distribution of VJ clusters represented as a

set of unity transformed VJ abundances, each v̂i was randomly shuffled, effectively relabeling

the abundance of each VJ pair for sample i. This was performed for all samples, and the

corresponding VJ clusters were computed as described above.

The maximum valued VJ cluster from each iteration is noted in the cumulative count

vector c. E.g., if the maximum valued VJ cluster is k for an iteration, c0:k are incremented by
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one. After 10,000 iterations, c contains a distribution for the maximum VJ value expected by

chance. We can then select the cutoff at a 0.01 level by selecting the largest index j whose

cumulative sum from j to 312 is below this threshold. In other words, select the largest j such

that satisfies ∑
312
i= j ci ≤ 100.

Constant region analysis

Constant region mapping

Reads that map to the IGH constant region genes, e.g., IgG1, IgG2, IgA1, IgA2, IgM,

etc, are used for the analysis of isotype abundance, and analysis of mutations along the constant

region. These reads are determined by mapping of the read to the reference segments using

bowtie, and selecting the reference with the fewest number of mismatches. If there is a tie, both

(or multiple) reference are assigned the read, but with a fractional value of 1/n, for n matching

references. The constant region mapping for breast cancer samples was performed differently,

described previously, to better accommodate a differential expression analysis.

Mutations in constant region

The analysis of mutations on the constant region is carried out by identifying which

mutation positions are observed within each sample. A position is deemed as containing a

mutation if it cannot be explained by the error rate of sequencing. This is done by calculating

the probability of it coming from the distribution of noise, modeled by a binomial distribution,

seen in equation 5.3.

P(x|n, p) =
(

n
x

)
px(1− p)(n−x) (5.3)

Here, n is the coverage at the position in question, x are the number of mutated

sequences, and p is the probability of an error, set at 0.01. Equation 5.3 will provide the

probability of observing x substitutions, from a coverage of n, from errors. Any positions below



95

a 0.05 cutoff, are deemed significant. Bonferroni correction is employed, applied to tests for all

positions across all constant gene-segments.

5.3.3 Results
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Figure 5.5: (a) Isotype distribution in colon cancer. The relative abundances among 344
samples is shown, sorted according to IgG1. (b) Isotype distribution in breast cancer,
split according to ER+, Uninvolved ER+, and reduction (Red.) samples.

The constant region of antibody chains are far less variable than their V, D, and J gene-

segments. As such, standard mapping of reads to references can be performed. Additionally,

analysis of mutations from mapped reads is performed as described in Methods:IGH constant

region. The relative proportion of each isotype in colon cancer is shown in Figure 5.5(a),

depicting a clear split between IgA’s and IgG’s (Supplemental Figure D.4(a) and D.4(b)).

Furthermore, IgG1 is shown to be dominant among the IgG isotypes. The breast cancer dataset,

originally from Varley et. al., 2014 [VGR+14], contains two tumor subtypes (ER+ and TNBC);

along with uninvolved tissues for each, intended as a control. An additional 5 breast reduction

mammoplasties are included, intended as an additional negative control. The proportion of

Ig constant regions in breast cancer is shown in Figure 5.5(b), sorted according to IgG4. The
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subtype proportions in breast cancer are less variable, however there is an increase in relative

IgG4 expression in ER+ compared to uninvolved and reduction samples.

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−2

0

2

−5.0 −2.5 0.0 2.5 5.0
PC1

P
C

2

Sample type
● ER+

Reduction
Uninv ER+

(a)

 0.000

−2.277

−6.229

−1.498

 0.000

−0.828

−1.279

 0.000

 0.000

 0.000

 0.000

−2.334

−2.092

−0.108

 0.000

−0.418

−0.456

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

 0.000

IGHA1

IGHA2

IGHD

IGHE

IGHG1

IGHG2

IGHG3

IGHG4

IGHM

LDHA

tu
m

or
−n

or
m

al

tu
m

or
−r

ed
uc

no
rm

al−
re

du
c

G
en

e

−6

−4

−2

0
log10(p−value)

(b)

IGHA1 IGHA2 IGHD IGHE IGHG1 IGHG2 IGHG3 IGHG4 IGHM LDHA

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●●

●

●

●

●
● ●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●●

●●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●
●
● ●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●

●

●
●●

●

● ●
●

●

●
●

●

●

● ●●

●

●

0

5

10

15

ER+

Unin
v E

R+

Red
uc

tio
n

ER+

Unin
v E

R+

Red
uc

tio
n

ER+

Unin
v E

R+

Red
uc

tio
n

ER+

Unin
v E

R+

Red
uc

tio
n

ER+

Unin
v E

R+

Red
uc

tio
n

ER+

Unin
v E

R+

Red
uc

tio
n

ER+

Unin
v E

R+

Red
uc

tio
n

ER+

Unin
v E

R+

Red
uc

tio
n

ER+

Unin
v E

R+

Red
uc

tio
n

ER+

Unin
v E

R+

Red
uc

tio
n

lo
g 1

0 
E

xp
re

ss
io

n

(c)

Figure 5.6: (a) Principle component analysis of breast cancer samples using only
IGH constant region genes. Samples shown are ER+, Uninvolved ER+, and reduction
mammoplasty. (b) Bonferroni corrected p-values for the T-test of each gene, for each
pair of sample type. (c) Violin plot of IGH constant region expression (log10) for ER+,
Uninvolved ER+, and reduction mammoplasty samples.

The experimental setup from Varley et. al., 2014 allows us to verify if the adjacent

uninvolved tumor samples can be considered a reasonable control for measuring infiltrate
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response. It also allows us to compare the immune response to two, clearly defined, tumor

subtypes in breast cancer. After normalization of RNA-Seq expression across samples was

performed, IGH constant region genes were extracted, and used for analysis. Additionally, a

single housekeeping gene, LDHA, is shown as a negative control. Figure 5.6(a) shows the first

two principle components (representing 50% and 23% of the variance, respectively) of IGH

constant region genes for ER+, uninvolved ER+, and reduction mammoplasty samples. Most

of the ER+ samples group with one another, separate from the uninvolved ER+ and reduction

samples. While this grouping is not as clear as that with all normalized genes (Supplementary

Figure D.5), it does suggest that there is an IGH specific response to this tumor subtype.

Further, there appears to be little difference between uninvolved ER+ and reduction samples,

for both IGH genes (Figure 5.6(a)) and all genes (Supplementary Figure D.5), suggesting that

uninvolved tissues can be considered a proper control when measuring IGH infiltrate response.

The p-values of pairwise comparisons of each gene to different samples, using a T-test

with Bonferroni multiple testing correction, is shown in Figure 5.6(b). The same comparison

is visualized using a violin plot in Figure 5.6(c). These show that for the ER+ subtype, IgG4

exhibits a significantly higher response for the tumor when compared to the adjacent tissue,

and reduction mammoplasty. No such distinction can be drawn from the TNBC samples

(Supplemental Figure D.6).

This observed increase of IgG4 levels is present in breast cancer, but absent in our

colon cancer samples. However, increases in relative IgG4 levels have been reported for

melanoma [KGJ+13] and shown to be a potential immune escape mechanism of the tumor.

This effect is described by Karagiannis et. al., 2013 showing that IgG4 competes with IgG1 for

FcγRI activation, reducing tumoricidal activity.

Deviations in constant regions and mass-spectrometry evidence

From all reads mapping to an IGH constant gene-segment in the colon cancer samples,

Figure 5.7(a) shows the relative abundance of each isotype, ordered by IgA. This plot shows
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Figure 5.7: (a) IGH constant region read counts. (b) Spectral count of IGH constant
region tryptic peptides. The IgG plot is reproduced from Woo et. al., 2015 [WCB+15].
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a clear delineation between IgG and IgA. The spectral counts, for all samples, along the

positions of IgG, IgA1, and IgA2 are shown in Figure 5.7(b). Tryptic peptides of lengths 7 to

35 are grayed out. The absolute abundance of IgG genes eclipses that of IgA, however, closer

inspection shows that the majority of IgA1 is never sampled by mass-spectrometry, particularly

the C-terminal end. This poor sampling of IgA1 is in contrast to to all tryptic peptides highly

covered in the IgG subfamily, and nearly all tryptic peptides covered in IgA2, at much lower

abundances.
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Figure 5.8: (a) Stacked bar plot of positions with mutations, and the number of samples,
out of 74, that are significant. (b) Motif of mutation positions in IgA1, IgA2, and IgG3.

While the variable region of the IGH transcript is highly mutated by somatic hypermu-

tation events, we observe many substitutions along this constant region as well. Differentiating

read errors from true substitutions is important, and we take a statistical approach, described in

the methods section. Figure 5.8(a) shows, for each position (bp), the stacked bar plot of the

number of samples with significant substitution at that position, for each isoform. Figure 5.8(b)

shows the sequence logos centered around positions with significant substitutions, that occur in

more than 10 samples. IgA1 and IgA2 show nearly identical motifs, and fall within the known

motif for somatic hypermutation, WRCY. IgG3, was the only IgG gene-segment containing a

motif, however, it does not correspond to any known pattern and is a weaker signal than those
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from IgA1 and IgA2, seen in Figure 5.8(b).

Immunoglobulin tumor repertoire

Once assembling, quantifying, and labeling is performed, the resulting variable regions

can be clustered. Figure 5.11 shows the heatmap and clustering of the V gene-segments, and

the VJ pairings as a dot plot, across 160 samples. Samples with few reads recruited for the

variable region were unable to produce assemblies, another example of the heterogeneous

nature of immune response to tumors.

Despite typical heterogeneity in strength of response, measured by recruited reads,

Figures 5.9, 5.10, and 5.11 show that across samples, there are commonalities in B-cell

responses. Figure 5.9 shows distinct clusters around V gene-segments IGHV3-11, IGHV3-23,

and IGHV3-30. No discernible pattern with cancer subtype emerges (subtype derived from

cluster labels from Broad firehose), shown below dendrogram.

Figure 5.10 shows the VJ pairs across all colon samples. The pairwise VJ plot is created

by summing the normalized vectors of VJ expression, across all samples (see Methods). The

aggregate suggests that certain germline preferences may exist in the colon; IGHV3-11, IGHV3-

23, and IGHV3-30 all pair with IGHJ4, and are common across many samples. All three of

these pairs are significantly elevated compared to chance when performing a permutation test

(see Methods). No iteration of the permutation test yielded VJ pairs with such high counts. This

germline preference may not be related to tumor specificity, but could merely be a preference

seen at a population level.

Mutations along antibody V gene-segments can improve specificity and determine how

long the clone has been selected. Figure 5.11(a) shows the distribution of mutations along each

V gene-segment, partitioned among samples with the most prevalent VJ pairs. This distribution

shows that most transcripts contain approximately ten mutations, while many contain nearly 30.

The density of mutations for each partition is shown in Figure 5.11(b). Two of the prominent

partitioning are bimodal in nature.
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Figure 5.9: V gene clustering. Clustering of unity normalized V gene expression across
samples using cosine distance and Ward clustering metric.
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Figure 5.10: VJ pairs across samples. Aggregate of normalized expression of VJ pairs
across colon cancer samples, showing that some VJ pairs are over-represented.
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Figure 5.11: (a) Mutation distribution. Distribution of mutations along V gene-segments
with samples partitioned according to the four largest VJ pairs. (b) Density of mutations.
The density of mutations for each partition of VJ pairs.

5.3.4 Conclusion

The precise role immune infiltrates play in the tumor microenvironment remains un-

clear [LM12, KGJ+13], this is especially true for B-cells. While some studies suggest a

potential benefit [BHAH+13], others hint at a negative correlation with outcome [KGJ+13].

We focused on immunoglobulin heavy chains as a marker for infiltrating B-cells, and found

differences in isotype switching of the constant region between colon and breast cancers. The

relative abundances of isotypes also differed dramatically between colon and breast cancer.

In addition to differences in isotype abundances, we found considerably higher expression of

IgG’s over IgA’s at the proteomic level. Additionally, we identified several common hotspots for

mutations in constant regions, across many samples, that do not correspond to allelic variants.

These mutation hotspots, found in the IgA isotype, correspond to a known mutation motif for

somatic hypermutation [RK92, DFFL98]. While this evidence does not prove that somatic

hypermutation occurs in the constant region, further investigation is warranted. Prior work

shows that the constant region can affect antigen binding affinity [PMD+00, MTE+02], so
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mutations to this region could be of interest.

While we consider immune infiltrates from existing datasets, similar analysis have been

performed recently [RSW+15, GNL+15], although their focus had been on other immune cell

types. In addition to considering antibody heavy chain constant regions, we additionally show

how to reconstruct the variable regions of infiltrating B-cell secretions. An informatic tool,

TILAPIA, is presented and benchmarked to show sensitivity in reconstructing immunoglobulin

transcripts. Additionally we perform analysis of reconstructed repertoires of heavy chains

across colon cancer.

One novelty to this approach, beside the re-purposing RNA-Seq experiments, is the abil-

ity to leverage the large cohorts of sequenced tumor samples from projects such as the TCGA.

This allows us to compare reconstructed repertoires from many individuals, a population-level

comparison that is not feasible for targeted immunosequencing experiments. We observed

significant similarities in germline usage across multiple individuals. It is, however, difficult

to determine if these similarities are due to convergence to a tumor antigen, or preferences

at a population level. While we did not observe any correlations between germline usage

and tumor subtype, we were able to characterize the mutation profiles of these reconstructed

immunolgobulins. Additional studies performing Ig-seq on these tumor infiltrates could yield

interesting results, and provide a more complete view of the tumor response repertoire.
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Chapter 6

Conclusion

Over the course of this dissertation, the repertoires of the N-terminus and immunoglob-

ulin population where characterized. The proteogenomic approaches employed allowed us to

identify many events occurring post-transcriptionally or somatically. In Chapter 2, proteoge-

nomics was used to elucidate the post-translational N-terminal events, specifically N-terminal

methionine excision (NME) and N-terminal acetylation. These events introduce variability

into the otherwise homogenous start of a protein. This induced N-terminal repertoire was then

analyzed and used to argue for NME’s true function: to reveal Ala and Ser residues to the

N-terminus, possibly for N-terminal acetylation. Additionally, this approach showed that the

N-terminal repertoire was more diverse in bacteria that previously thought, since N-terminal

acetylation should no longer be considered a rare event for bacteria.

In Chapter 3 a tool for characterizing the immunoglobulin repertoire for analysis was

presented. This colored de Bruijn graph approach allowed for identification of germline

gene-segment use, despite the high level of divergence. Additionally, it also provided a faster

alternative to current tools.

Chapter 4 presented a project in the proteogenomics of immunoglobulins. Here, the

immunoglobulin repertoires were characterized at the level of transcripts (as is most commonly

performed), and at the proteomic level. The proteomic information of the repertoire showed

104
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even more variety in the form of post-translational modifications; more than was shown in a

previous study in rabbit [BHW+14].

Chapter 5 also presented the immunoglobulin repertoire, but at a different scale and in

response to a tumor. While the somatic mutations from the tumor were also described in detail,

and could also be considered as a repertoire of neoantigens, I focus on the immunoglobulin

peptides and transcripts that were identified.

The chapter showed that B-cell infiltrates can exhibit an observable immunoglobulin

repertoire, and show changes to isotype switching relating to cancer types. This approach to

mining existing datasets for immunoglobulins (Ig-mining), can be contrasted with the deeper

querying of the repertoire from Ig-seq experiments in Table 6.1.

Table 6.1: Comparing Ig-seq to Ig-mining approaches.

IgSeq Ig-mining
Procedure Amplify/purify Whole cell RNA-seq/MS
Depth High Low
# samples Low High
Antigen known vaccine unknown tumor
Examples Cheung et al., 2012,

Sato et al., 2012
Woo et al., 2015

While Ig-mining was approached by developing new methods for existing data, the

result suggests that using targeted experiments, e.g., Ig-seq, to study this phenomenon could be

beneficial. Indeed, the same targeted approaches to studying the immune repertoire, as described

in Chapter 3 and 4, could be used to study the repertoire in a tumor microenvironment. Such a

study would provide deeper coverage to the local repertoire at the tumor microenvironment.

This would allow for a deeper analysis of repertoire at the tumor-immune boundary, and could

be further extended into a proteogenomic framework by attempting to purify immunoglobulin

proteins using anti-IgG antibodies (e.g., Protein A, Protein G). An identical framework as that

presented in Chapter 4 could then be used to identify, and characterize, potential tumor specific

antibodies.



Appendix A

Supplement to Immunoglobulin

classification

Algorithm description

Algorithm 1 Overview of the IgGraph algorithm
Inputs:
R : set of mAb reads
k: k-mer length
Output: L: |R |×3 matrix of most likely V/D/J labelings of each read

1: procedure IGGRAPH(R ,k)
2: G←ANTIBODY-GRAPH(R ,k) . create de Bruijn graph over mAbs
3: G,HC ←ADD-REFERENCES(G,V ,D,J ) . add V, D, and J
4: for all r ∈ R do
5: for all X ∈ {V ,D,J } do
6: CX ←COLOR-PROFILE(G,r,X ,HC )
7: L[r][X ]←maxx∈X ∑iCX [x][i]
8: end for
9: end for

10: return L
11: end procedure

The functions ANTIBODY-GRAPH() and ADD-REFERENCES() create an antibody graph,

and add colored reference sequences, as are described in the Methods section of the main text.

The selection of labels is shown in line 7 as taking simple maximum of the sum of columns
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of a specific row j of a color profile matrix C. This is the simplest form, and is improved

by selecting thresholds for V gene-segments, as described in the main text and Supplemental

Figures A.8 and A.9.

Algorithm 2 Get color profile for a read r, given a set of reference gene-segments C , and
colored antibody graph G
Inputs:
r read
C : set of reference gene-segments
G: colored antibody graph
Output: C: |C |×n color profile matrix, where n is the maximum length of a read

1: procedure COLOR-PROFILE(G,r,C )
2: P← a1a2 . . .an . get path of read r
3: for all c ∈ C do
4: for i← 1 . . .n do
5: if c ∈HC [ai] then
6: C[c][ai]← score[match]
7: else if c /∈HC [ai] then
8: C[c][ai]← score[mismatch]
9: end if

10: end for
11: C[c]←PROPAGATE-COLOR(P,c,r,C[c]) . Traverse bulges for color
12: end for
13: return C
14: end procedure

The PROPAGATE-COLOR() function traverses bulges, performs alignment, and propa-

gates color; as described in Figure 5 of the main text.
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Simulating Antibody Sequences

V segments D segments J segments

Select segments

V12 D3 J5

Exonuclease chewback

V12 D3 J5

Non-templated addition

V12 D3 J5

Sequencing simulation

V12 D3 J5

Mutation simulation

V12 D3 J5

Figure A.1: Diagram of antibody simulation procedure. From pools of V, D, and J
gene-segments, one of each is selected for a single smAb. Exonuclease chewback, and
non-templated nucleotide additions, are performed based on empirical distributions.
Finally, the read data can be generated from the smAb using a sequencing simulator
for Roche 454, Illumina, or bypassing sequencing simulator altogether. The Roche 454
simulator can introduce homopolymer insertions and deletions, represented here by blue
stars and red diamonds, respectively. Alternatively, the simulated antibodies can obtain
mutations along the V gene-segment, shown as green circles.

Mutation distribution

Figure A.2 shows the probability of mutating the first 275 positions of a V gene-segment.

This distribution was computed from the 23,051 IMGT annotated sequences; as described in

the main text. It was used for creating datasets with a given number of mutations, sampled

from this distribution, without replacement.

Scoring V segments

Somatic hypermutation occurs primarily in V gene-segments, and can have an effect

on their labeling. A simple scoring approach can be taken for D and J gene-segments, with



109

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0%

1%

2%

3%

Position

M
u
ta
ti
on

fr
eq
u
en
cy

(%
)

Figure A.2: Distribution of mutations along V gene-segments (CDR3 region is not
included). Positions from 0 to 275 are shown on the x-axis, and the y-axis shows the
mutation frequency at a given position on the human dataset described in the main text.
This mutation distribution shows peaks representing CDR1 and CDR2 regions, and lower
probability of mutations in framework regions. The positions are purposefully truncated
since deviations from the reference are difficult to attribute to somatic hypermutation
events, or to recombination events near the 3’ end of the V gene-segment.

match/mismatch penalties, but when considering somatic hypermutation events, sequence

properties and positional information must be taken into account. Considering only sequence

properties, e.g., 4-mer motifs, ignores a strong signal that mutations occur primarily in CDR1

and CDR2. While only considering position can obviously over-call mutations as well.

We consider both 4-mer motifs and position in our scoring method. For the sake of

simplicity, below we assume that the references R and read r are aligned to the same position. In

reality, these can differ, an we can tolerate a shift in the read or reference. We wish to compute

the probability of observing read r, given reference R, written as: P(r|R) = ΠiP(ai|bi, i), for a

nucleotide in the read ai and an l-mer in the reference bi, at position i.

If we instead consider mutations and not nucleotides ai, then we can write the probability

of a read r given a reference R as: P(r|R) = ΠiP(m|bi, i), for m = mut representing a mutation

(i.e., mismatch) and m = ¬mut representing a match to reference. This turns into:



110

P(m|bi, i) =
P(bi, i|m)P(m)

∑
n∈{mut,¬mut}

P(bi, i|n)P(n)
(A.1)

where the probability of a mutation can be the aggregate of non-matching identities at

the jth position of 4-mer bi, denoted b j
i .

Unfortunately, the data used to compute the conditional joint probability P(bi, i|m =

mut) is sparse when using 67,108 mutation events. To remedy this, we simplify the joint

probability to P(bi, i|m) = P(bi|m)P(i|m), resulting in the form:

P(m|bi, i) =
P(bi|m)P(i|m)P(m)

∑
n∈{mut,¬mut}

P(bi|n)P(i|n)P(n)
(A.2)

whose probabilities can be easily computed from the data. This is the same relaxation

that is performed for Naive Bayes classifiers to avoid the curse of dimensionality. Further,

counts from data used to compute the conditional probability, P(i|m = mut), are modified to

smooth the counts. A window of 5 downstream, and 5 upstream positions is used to compute

the local average count. This smoothing is to overcome any effects caused by indels in the

alignment of the IMGT database.

Plotting P(m=mut|bi, i), sorting each 4-mer according to the sum across their positions,

provides Figure A.3(a). The top 40 4-mers are shown in Figure A.3(b). These plots clearly

show strong favoring of some 4-mers in CDR1 and CDR2.

Alternate model

The probabilistic model used in IgGraph is detailed in the Supplemental section: Scoring

V segments. This is ostensibly a Naive Bayes model, trained on the dataset described in the main

text for predicting matching or mutated base pairs in the V gene-segment. For completeness,
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Figure A.3: Probabilities of mutation for a given 4-mer and position. Shown are all
4-mers, across positions from 10 to 300, sorted according to the sum of mutation values
across all positions for each 4-mer. The mutation value in each square of the heatmap
represents the probability of a mutation at that position, for that 4-mer. (a) All sorted
4-mers reveal CDR1, CDR2, and CDR3 regions. (b) The top 40 4-mers show which
motifs are favored in each region.

this model’s performance is shown using 5-fold cross-validation on the described dataset in

Figure A.4. Performance of 4-mers, 5-mers, and 6-mers are shown. Due to a large class

imbalance, ≈ 4% samples are mutations, SMOTE [CBHK02] is employed to over-sample the

minority class, while down-sampling the majority class. This class redistribution is performed

only on each fold’s training set, while the fold’s test set remain unchanged.

Validating and evaluating predicted classifications

In order to assess the similarity of predicted VDJ classifications of antibody reads, we

separate this task into two components: supervised and unsupervised comparisons. Supervised

comparisons consist of comparing the predictions to ground truth labels. This supervised

validation uses simulated reads since there is no guaranteed way of determining the true

antibody references from immunoglobulin sequencing data.

There is also value in assessing the similarity of tools prediction on real data, despite

the uncertainty of true labels. In this unsupervised comparison, the similarity of predictions

between different tools is assessed.
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Figure A.4: Receiver operating characteristic (ROC) curve for different models. The
ROC curve on 5-fold cross-validated dataset for Naive Bayes using different size k-mers
as input. The training datasets are re-sampled using SMOTE [CBHK02], while the
testing sets are unmodified.

Comparing the classifications of V, D, J, and total segments at the gene and allele level

are performed using the Jaccard index. The junction sequence is compared for absolute equality,

since this is often used to characterize the distribution of sizes across repertoires.

Additionally, comparing the clone partitioning is important to determine if different

tools would cluster reads into the same, or different, clones which could drastically impact

downstream analysis of clone evolution. Clone partitioning can be compared using indices

for comparing clustering algorithms, specifically the Rand index, Jaccard index [Jac08], and

Fowlkes-Mallows index [FM83]. These three indices can be computed by comparing pairs of

points (i.e., reads), and determining if partition A has clustered them together (1) or separate

(0). Similarly, a 1 or 0 can be assigned to the same pair of points for partitioning B. Thus, each

pair of points can be in one of the four categories: n11 for A and B both placing the pair in the

same cluster; n00 for both A and B placing the pair in separate clusters; n10 for A placing them

together while B separates them; and n01 for A separating them while B places them together.
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When A is viewed as the predicted clustering and B as the ground truth, n11, n00, n10, n01 can

be viewed as true positives, true negatives, false positives, and false negatives, respectively.

With this formulation, we can compute any of the Rand, Jaccard, or Fowlkes-Mallows

indices. However, due to the nature of clone abundances in Ig-seq datasets containing many

clones, this results in many clusters. The Rand index will be skewed due to the high number

of different clusters. As such, the Fowlkes-Mallows (FM) index [FM83] provides us with an

alternative. The FM index is computed as:

FM =
n11√

(n11 +n01)∗ (n11 +n10)
(A.3)

and can be interpreted as the geometric mean of the precision in recall in a supervised set-

ting. In our setting the geometric mean can normalize differences in scale between the two

partitionings, while still providing a similarity comparison. A tool for simplified compari-

son of predicted labels, partition ranges, and clonal clusterings is provided as IgVALVE (Ig

Vdj Antibody Labeling Validation and Evaluation). IgVALVE will compute accuracy in a

supervised setting, i.e., when using simulated reads; or can compare predictions using the

Jaccard index and Fowlkes-Mallows index, as described above, in an unsupervised setting

when labels are not available. The validation and evaluation tool IgVALVE is available for use

at: https://bitbucket.org/sbonisso/ig valve

Stanford S22 VJ analysis

Analyzing the VJ pairings of labeled heavy/light chains can provide an idea of the

distribution for the selection of which V and J are favored within a population of B-cells.

When comparing different V/D/J labeling tools, this can help show the differences in labeling.

The Stanford S22 dataset from [JBGC10] is used to highlight differences between tools. The

predictions from IgBlast, IMGT, and SoDA are taken from the online resource 1, and IgGraph

was run with k = 21 since only V and J gene-segments were sought. This returns slightly

1http://www.emi.unsw.edu.au/˜ihmmune/IGHUtilityEval/eval help datasets.php
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better results for V/J gene-segments as a longer k is more robust for the longer segments, but

obviously, misses D segments that are smaller than this parameter. The values in Figure A.5

below are computed by counting VJ pairs for which a prediction for both exists, and if more

than one gene-segment is predicted, each predicted label is given an equal proportion of the

read. Meaning, if three V segments are predicted for a single read, each obtains 0.33 points.

This seeks to normalize for predicting many gene segments. The values for each VJ pair are

then log2 transformed for easier comparison.
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Figure A.5: VJ pairs for IgBlast, IMGT, SoDA, and IgGraph. The V and J gene-
segments are index on the x-axis and y-axis, respectively. Each cell represents a V-J
pair, and shows the log transformed count indicated by the colorbar.

Figure A.5 shows the distributions of VJ pairings for various tools. One element to note

is how IgBLAST, seen in Figure A.5(a), dilutes its predictions across multiple allelic variants.
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Figure A.6: Comparison of predictions from different tools on the Stanford S22 dataset.
Similarity is measured by the Jaccard index in predictions of (a) V, (b) D, (c) J, and (d)
total.
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Benchmarking

Table A.1 compares performance of various tools for VDJ classification and illustrates

that IgGraph performs well for all gene-segments. While the error percentage is higher

for V gene-segments, this could potentially be further improved with a more sophisticated

scoring model than the one we employed. One detail to note, is that, like for most other VDJ

classification tools, the majority of errors are mispredictions of allelic variants. These types

of errors particularly difficult to distinguish, but our approach (along with most others) is

able to correctly identify the correct genotype. An example of a typical error is shown in

Supplementary Figure A.10.

Table A.1: Table of error percentages on Stanford S22 dataset reproduced
from [JBGC10] with the colored antibody graph (IgGraph) appended. The errors
shown are the percentage of incorrect allelic variant reported, and the percentage of
incorrect gene reported; a rarer event than incorrect allelic variant. The total column
represents the percentage of sequences that include an incorrect gene or allele for either
the V, D, or J gene-segments. The results for IgGraph shown are with k = 11 and m = 2.

Alleles Genes
Citation Utility IGHV IGHD IGHJ Total IGHV IGHD IGHJ
[GMJ+07] iHMMune-align 3.21 2.21 1.95 7.11 0.21 1.27 0.0
[BLG08] IMGT 4.90 5.09 1.55 10.87 0.22 2.81 0.0
[YMMO13] IgBLAST 3.84 3.96 0.85 8.39 0.75 2.16 0.0
[WWZ+08] Ab-origin 4.06 7.94 2.53 13.74 0.22 5.53 0.0
[SCLR+04] JOINSOLVER 6.17 6.93 1.24 7.89 0.86 4.92 0.0
[VCK06] SoDA 2.68 6.82 1.50 10.37 0.29 6.63 0.0
[OLNLB06] VDJSolver 6.87 1.96 0.71 9.09 0.48 0.79 0.0

IgGraph 5.47 0.93 0.65 6.07 0.15 0.82 0.0

Table A.2 benchmarks performance of IgGraph for different values of k-mer sizes (k)

along with different sizes of l-mers used for scoring. While increasing k improves performance

labeling V gene-segments, the l-mer used influences the performance. Similarly to Figure 3.1,

the left part of the table referes to 213 alleles, while the right part refers to 55 genes.

Simulated dataset VJ distribution

The simulated dataset with no mutations, described in the main text, is visualized in

Figure A.7 by showing the distribution of counts for all VJ pairs.
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Table A.2: Table of error percentages for V gene-segments on Stanford S22 dataset for
different parameterizations of IgGraph, and different sized l-mers for scoring. Errors
involving an incorrect gene, and errors for an incorrect allelic variant, are shown.

Alleles Genes
Parameters 4-mers 5-mers 6-mers 4-mers 5-mers 6-mers

k = 11 7.65 5.47 8.90 0.12 0.15 0.74
k = 15 6.32 4.29 7.67 0.09 0.10 0.68
k = 21 5.94 3.95 7.51 0.09 0.08 0.68

 0

 2

 4

 6

 8

 10

 12

 0  50  100  150  200

J

V

 0

 2

 4

 6

 8

 10

Figure A.7: VJ pairs represented in the simulated antibody dataset containing no
mutations. The V and J gene-segments are index on the x-axis and y-axis, respectively.
Each cell represents a V-J pair, and shows the log transformed count indicated by the
colorbar.
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Threshold determination

To select the maximal number of labels to return for each gene segment, the mean

accuracy of labelings, varying the threshold for maximal labels, m, is plotted. Providing an

additional option allows for improved accuracy, without providing a long candidate list. Manual

inspection showed that these improvements are typically in cases where the gene segment is

indistinguishable from a different allelic variant. Based on this plot, we select a threshold of 3

for human.
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Figure A.8: Mean accuracy of labeling each class of gene segments on human dataset
using colored antibody graph with k = 11. Providing even a single alternative expla-
nation, i.e. a threshold of 2, improves the accuracy greatly, particularly for D gene
segments, while there are diminishing returns for additional options.

The threshold m determines the maximal number of gene-segment labels to report, but

we allow for 0 to m labels to be reported for each read. This is based on the probabilistic

score of each label. Rather than simply selecting the top m scoring labels, we select the top

m scoring labels that cumulatively exceed a threshold t. This means that if there are m+ 1

labels that cumulatively do not exceed t, no label is reported. Conversely, if a single label

exceeds t, despite m = 2, only that single label is reported. This threshold t is not a user tunable

parameter, and was selected by identifying the threshold at which there were diminishing
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returns correctly identified labels. Figure A.9 shows, for each threshold, the ratio between

the number of correctly identified gene-segments at that threshold compared to the previous

threshold. The threshold when the delta plateaus and/or drops below 1.0 is how a t = 0.8 is

selected for use in all datasets; all mutation datasets with an even number of mutations and the

Stanford S22 dataset.. The curves are generated over the mutation datasets with an odd number

of mutations, each curve in gray, and their average shown in red.
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Figure A.9: Change in correctly labeled samples when varying the threshold. Each
gray curve represents a single dataset with a fixed number of odd mutations, and the
red curve is the mean across all used datasets. Thresholds are varied and the change in
number of correctly labeled samples is shown on the y-axis. The threshold at which the
change plateaus or drops below 1.0 is selected.
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Analysis of common errors

One common error IgGraph commits on the Stanford S22 dataset is calling IGHV3-

33*01 as IGHV3-33*06, an example of this error is shown in Figure A.10 below. The beginning

of the read matches perfectly with IGHV3-33*01, at position 166 of the read, where the SNP

that distinguishes IGHV3-33*01 from IGHV3-33*06 occurs, the nucleotide matches IGHV3-

33*06. This is labeled as IGHV3-33*01, however, the 4-mer surrounding the mismatch is

not among the most prevalent 4-mers from the training dataset, and as such, receives a low

probability. Disambiguating such a labeling is difficult to perform, with significant confidence,

in favor of either gene-segment.

IGHV3-33*06 ............................................. 172
IGHV3-33*01 ............................................. 172
read AGGGGCTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTAATA 45

IGHV3-33*06 ............................................. 217
IGHV3-33*01 ............................................. 217
read AATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAG 90

IGHV3-33*06 ............................................. 262
IGHV3-33*01 ............................................. 262
read ACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAG 135

SNP
↓

IGHV3-33*06 .................................A---- 296
IGHV3-33*01 ..............................G..A---- 296
read CCGAGGACACGGCTGTGTATTACTGTGCGAAAGTATCG 173

↑
junction start

Figure A.10: Alignment of read and reference sequences. This alignment shows a
read from the Stanford S22 dataset and reference gene-segments IGHV3-33*01 and
IGHV3-33*06. This read has ground truth labeling as IGHV3-33*01, and IgGraph
assigns it as IGHV3-33*06. Distinguishing between these two is difficult due to the
SNP at position 293 of IGHV3-33*01.

Selectng the k-mer size

The selection of k can have consequences on performance, and must be chosen carefully.

Here, we show how k can negatively impact the antibody graph by creating cycles, or loops,

bridging two segments of the antibody that are far away from each other. For example, if

a (k-1)-mer is shared between a V segment and a J segment, this can bridge the two gene-
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segments and cause difficulties in assigning a label. Figure A.11 shows the mean number of

shared k-mers across all 99,450 human, 4,290 rabbit, and 52,272 mouse combinations of VDJ

gene-segments.
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Figure A.11: The effect of varying k over the average number of shared k-mers per
antibody transcript. All values of k between 4 and 25 where computed, and each curve
is truncated at the value of k where all k-mers are unique within each transcript.

Each curve ends where there no longer exist any shared k-mers among any possible

re-arrangement of VDJ gene-segments. This shows that a selection of k=18 would ensure no

sharing for any dataset, this selection for k will miss some D gene-segments in human and

mouse. For this reason, we are willing to tolerate some redundancy and can see that smaller

selections for k can be tolerated. This plot is a simplification of the scenario since it does not

take into account non-templated nucleotides and how they may affect k-mer sharing. This is

particularly possible since these nucleotides are GC rich.
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gene-segments. Accuracy for total V, D, and J segments over a dataset of 2000 simulated
antibody reads is shown. Standard scoring was used.
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Figure B.1: Clone size distribution of Ig-seq.
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Figure B.2: Histograms of k-mer coverage distribution for k = 21,121,221, and 321
illustrate that the coverage of the antibody repertoire by short k-mers is orders of
magnitude higher compared to the coverage by long k-mers. Note that the y-axis is
given in logarithmic scale.

s1 CAGGTCTGATGCAGTCTGGGACTTAGCTGGGGCGCT
s2 CAGGTCTGGTGCAATCTGGGACTGAGCTGGGTCGCT

d(s1, s2) = 3

(a)

s1 CTCAGGTCTGATGCAGTCTGGGACTTAGCTGGGGCGCT
s2   CAGGTCTGGTGCAATCAGGGACTGAGCTGGGTCGCTA

d(s1, s2) = 4

(b)

Figure B.3: Hamming distance d(s1,s2) (a) and generalized Hamming distance d̃(s1,s2)
(b). Note that d(s1,s2) and d̃(s1,s2) for sequences s1 and s2 of equal length are not
necessarily the same.

The Hamming graph bound selection

The important question is how to select the bound τ while constructing the Bounded

Hamming Graph HG(Strings,τ). The input to IGREPERTOIRECONSTRUCTOR is overlapping

paired-end reads that are merged into single reads covering the variable region of the antibody

(about 400 nt). If sequencing errors in reads (the error rate in Illumina reads is ≈ 1%) are not

corrected by merging, the merged read are expected to contain ≈ 4 errors on average. Thus,

unless the rate of sequencing errors is reduced by the merging procedure, two merged reads are
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Figure B.4: Histogram of the distribution of edge fill-ins computed for 721 large
(≥ 100 vertices) connected components of the Bounded Hamming graph with τ = 3.
The average size of components with edge fill-ins > 0.7 is 151.

Figure B.5: Histogram of edge fill-in distribution for non-trivial dense subgraphs
constructed from 721 large (≥ 100 vertices) connected components. The total number
of the constructed non-trivial dense subgraphs is 15,996.

expected to have ≈ 4+4 = 8 mismatches on average. Unfortunately, the threshold τ = 8 will

not work for error-correction in immunosequencing since different antibodies often differ by

less than 8 mismatches (Figure B.10).

However, it turns out that our algorithm benefits from the fact that most errors are

concentrated at the ends of reads resulting in merged reads with significantly higher accuracy

than the accuracy of the original paired-end reads (see Appendix B). To estimate the average
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Figure B.6: Spectral probability distributions of target/decoy identifications for each
spectral dataset.

Figure B.7: Scatterplot of NGS-based and MS-based abundances of antibodies (cluster
size vs. spectral count). Pearson correlation ρ = 0.007544031.

number of errors in the merged reads, we extracted reads corresponding to the known contami-

nant (Streptococcus pneumoniae) in our Ig-seq dataset and aligned them to the Streptococcus

pneumoniae genome. It turned out that 96% of merged reads differ from the reference genome

by at most 1 mismatch (98% of merged reads differ from the reference genome by at most 2

mismatches). Thus, we have selected the bound τ = 3 for constructing the Bounded Hamming

Graph.
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Q....Q................A...S...D.Y.N.I..........I.Y..SSGRTMY...F.............K..F.....V..D...M.............................. 123
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Q....Q................A....S..SCG.H.....................N...................K..F.....V..D...M.............................. 123

︸ ︷︷ ︸
CDR3

Figure B.8: Alignment of sequences of a single clone with peptide evidence. The 11
antibodies with most peptide evidence within this clone are aligned to one another to
show the sequence diversity, while the antibody with most peptide evidence is omitted.
Identified peptides for the omitted sequence are shown above the alignment. The CDR3
region is noted, and shown in gray box. Positions differing from the sequence with
peptide evidence shown are noted, positions agreeing with the omitted sequence are
shown as a dot.
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Figure B.9: Scatterplot of genomics-based and proteomics-based abundances. Cluster
size compared to spectral counts of each cluster; Pearson correlation ρ = 0.007544031.
(a) The total Ig-abundance compared against the spectral count for all peptide. Pearson
correlation ρ = 0.1724002. (b) Histogram of peptide IDs by the maximal Ig-abundance
of each peptide. (c) Spectral count of each clone, related to clone size; Pearson
correlation ρ = 0.5687614. The spectral count of a clone is the total number of PSMs
originating from all antibodies within that clone. Normalization of spectra for shared
peptides is not performed in these plots.

Dense subgraphs and cliques in triangulated graph

Fig. B.11a shows a triangulated graph G containing three dense subgraphs, yellow,

green, and violet. Fig. B.11b shows a clique overlap graph of G where vertices correspond

to maximal cliques in G and edges connect cliques that share vertices. The weight of an edge
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(a)

(b)

Figure B.10: (a) An alignment of reads corresponding to three similar antibodies
(highlighted in blue, violet, and green). For the sake of simplicity, we show error-free
reads. For comparison, (b) shows the alignment of reads originating from the same
antibody, that contain randomly located errors in reads.

is the number of vertices shared between two cliques. A clique tree is defined as a maximum

spanning tree of the clique overlap graph (Fig. B.11c). Fig. B.11d show a perfect elimination

order for the graph from Fig. B.11a. Fig. B.11e shows the vertex elimination process for the

same graph.

Dense subgraphs are formed by mutliple cliques in the clique tree. For example, vertices

from the dense yellow subgraph can be found among four nodes from the the clique tree. To

construct dense subgraphs, we merge maximal cliques connected by many edges. E.g., we

merge two yellow cliques resulting in a subgraph on 5 vertices with a high edge fill-in.

Note that some of the resulting dense subgraphs may share vertices forcing us to assign

these shared vertices to one of the dense subgraphs. To assign each vertex v to a single dense

subgraph, we select a the subgraph that has the maximum number of vertices adjacent to v

among all subgraphs containing v.
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Figure B.11: A triangulated graph (a), its clique graph (b) and its clique tree (c). (d)
perfect elimination order for the triangulated graph in (a). (e) the vertex elimination
process for the triangulated graph in (a).
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Splitting dense subgraphs using SHM detection

In practice, SHMs associate with various patterns ([DBB+97]) making it difficult to

apply the approach for breaking dense subgraphs described in the main text. To bypass this

complication, we define the notion of a mutation-edge-set as the set of all edges corresponding

to a given mutation. We further define an SHM as a mutation whose mutation-edge-set splits

the subgraph (cluster of reads) into relatively large sub-clusters. Thus, IGREPERTOIRECON-

STRUCTOR attempts to split each constructed dense subgraph by identifying SHMs. The

split subgraphs revealed by this final step define the reads contributing to each antibody in

the antibody repertoire. Below we explain how IGREPERTOIRECONSTRUCTOR splits dense

subgraphs by identifying SHMs.

To design our splitting rule, we aligned reads from each dense subgraph. For each

column i in the alignment, we define counti and f ractioni and the count and fraction of

second most frequent nucleotide in the i-th column. We define thresholds countmin (the default

value is 4) and f ractionmin (the default value 0.01) and limit our attention to all columns with

surprisingly fractions of the second most frequent nucleotides ( f ractioni > f ractionmin) among

columns where there is substantial number of this nucleotides (counti > countmin). We further

refer to such columns as SHM columns and split all dense subgraph that have SHM columns.

While it may appear that the default value countmin = 0.01 is too small to distinguish SHMs

from sequencing errors, we note that it applies to stitched Ig-seq reads that feature rather small

error rates (0.0022 on average).

Overall, we detected 18,097 such columns distributed over 4126 dense subgraphs

constructed by IGREPERTOIRECONSTRUCTOR (25.79% percent of all dense subgraphs). Fig-

ure B.12a presents the scatter plot of (counti, f ractioni). Figure B.12b shows the histogram of

the distribution of the counti values.
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(a) (b)

Figure B.12: (a) the scatter plot of pairs (counti, f ractioni) for filtered alignment
columns using thresholds countmin = 4 and f ractionmin = 0.01. The area of a circle is
proportional to the value of counti. Colors of circles are individual for each alignment
column. (b) the histogram of the distribution of the counti values.

Evaluating the constructed repertoires

We evaluate the constructed repertoire by checking whether the Ig-Seq reads from the

same cluster exhibit variations typical for errors in reads (as expected from correctly constructed

clusters) or variations typical for incorrectly constructed clusters formed by multiple antibodies.

In order to analyze the pattern of variations, we align reads from each cluster and compute

the distribution of positions of mismatches along the length of the reads. If this distribution

is roughly uniform (as expected from sequencing errors), we conclude that the cluster is

constructed correctly. However, if this distribution reveals some peaks (e.g., peaks in CDR

regions), we conclude that two different antibodies were merged into a single cluster.

Fig. B.13 shows a histogram of mismatch positions averaged over all clusters. Since this

distribution is rather uniform (except for peaks in the beginning and end of reads typical for the

error profile of Illumina reads), we conclude that most clusters correspond to a single antibody.

In contrast, the distribution of variations for antibody clones (groups of multiple antibodies

with the same CDR3) shows pronounced peaks in CDR1 and CDR2 regions indicating that the
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clones are formed by multiple antibodies (Fig. B.17).

Figure B.13: Histogram of distribution of the relative mismatch positions for the
constructed antibody clusters.

Benchmarking IGREPERTOIRECONSTRUCTOR on simulated

immunosequencing data

In order to check accuracy of IGREPERTOIRECONSTRUCTOR, we generated small

simulated immunosequencing data set using IGSIMULATOR ([SLL15]) with the following pa-

rameters: # base sequences = 10,000, # mutated sequences = 100,000 and expected repertoire

size = 1,000,000. The simulated repertoire contains 105,438 clusters (size of the maximal

cluster is 112, number of singletons is 10,025). Experiments showed that IGREPERTOIRECON-

STRUCTOR accurately recovers clusters in the simulated repertoire except for several small

clusters broken into singletons in the constructed repertoire.

Ig-seq data preprocessing

Read merging. IGREPERTOIRECONSTRUCTOR works with single reads that cover the entire

variable regions of antibodies. These reads are generated by merging the paired-end Illumina
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reads.

Since paired reads in our dataset have average insert size 366 nt (Figure B.14a), they

are expected to overlap by ≈ 250+250−366 = 134 nt. After finding the overlap, we merge

the two reads within a read-pair into a single merged read that is expected to cover the entire

variable region of antibody. This procedure results in a significant reduction of error rates.

Since the accuracy of Illumina reads drops towards the end of reads, we take advantage of the

overlapping region and form its consensus by selecting the nucleotide with maximal quality

value at each position in the overlap. Figure B.14b shows the difference in error rates before

and after merging.

Contamination clean-up. We used IgBlast ([YMMO13]) to align merged reads to Ig germline

database and removed reads that have alignment with E-value exceeding 0.001. We further

filtered reads and assembled them with SPAdes assembler ([BNA+12]) resulting in 10 contigs

(Table B.1). Blast alignments of constructed contigs show that filtered reads were correctly

classified as contamination and can be safely removed from the Ig-seq library.

(a) (b)

Figure B.14: (a) shows histogram of merged read length distribution. (b) shows the
average quality of reads before (red) and after (blue) merging, and illustrates that
merging of overlapping reads significantly improves their quality.
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Table B.1: Contigs assembled from reads filtered as contaminants. The table shows
length, coverage and the best Blast alignment for each contig from assembly.

ID Length (nt) Coverage Blast alignment
1 1512 1.2 Escherichia coli genome assembly FHI92
2 1195 25.4 Homo sapiens major histocompatibility complex
3 959 1.9 Escherichia coli genome assembly FHI89
4 929 1.0 Homo sapiens protein tyrosine phosphatase
5 827 29.0 Homo sapiens O-sialoglycoprotein endopeptidase
6 868 1.3 Escherichia coli genome assembly FHI89
7 780 1.3 Homo sapiens immunoglobulin heavy locus (IGH)
8 734 1.0 Homo sapiens B lymphoid tyrosine kinase (BLK)
9 722 31.0 Homo sapiens uncharacterized LOC102725417

10 240 14.7 Homo sapiens long non-coding RNA

Contaminated reads analysis

We used the fact that some our Ig-seq libraries contain contaminants to estimate the

average error rate of the paired-end and merged Ig-seq reads. We identified reads corresponding

to the genome of Streptococcus sp. VT 162 and aligned both paired-end, and merged, reads to

the reference genome. The average number of mismatches per read is 0.85 and 0.22 for the

paired-end and merged reads, respectively. Figure B.15 shows that the overlapping parts of the

merged reads contain fewer errors as compared to paired-end reads.

Blind modification search results

Figure B.16 shows the prevalence of modifications over different peptide sets; those

observed only with a modification Figure B.16a and B.16b, and those observed both with and

without the modification Figure B.16c and B.16d.

MODa identified many PTMs with offsets -17/-18, +16, and +42Da. The 17Da and

18Da losses can be explained as pyroglutamic acid, occurring on Q and E, particularly on the

N-terminus. The 16Da gains are nearly all located on methionine and tryptophan, consistent

with oxidation. While some of the 42Da gains occur on serines consistent with acetylation,

the majority occur on cystines. These are likely the result of N-isopropyl iodoacetamide
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(a) (b)

Figure B.15: Analysis of the error rate of Ig-seq libraries using reads from contaminants.
(a) shows the histogram of mismatches number per read distribution. (b) shows the
histogram of mismatches position distribution. Since the length of merged reads is not
fixed, we compute the position of the mismatch as the distance to the nearest start from
the overlapping reads. Thus, positions of mismatches are normalized from 1 to 250.

(NIPCAM), since cystines are searched with a fixed +57Da offset.

The PTMs with offset +1Da identified by MODa are largely attributed to asparagine (N),

which could signify a mutation to isoleucene/leucine (I/L). MODa found many modifications

on tryptophan (W) centered around offsets of +32Da, +16Da, and +5Da, all of which can

be attributed to oxidations of tryptophan. Additional prominent offsets were +12Da gain on

glycine (G), and -9Da loss on arginine (R), both seen in Figure B.16b. A 9Da loss on R can be

explained as a mutation to phenylalanine (F). However, the addition to G cannot be explained

with common modifications or mutations.

Validating antibody repertoires

The effect from IGREPERTOIRECONSTRUCTOR is evident when comparing the peptides

identified from the unique reads database and the antibody repertoire. Only 0.6% of peptides

identified from the unique reads database do not appear in the antibody repertoire. This

demonstrates that IGREPERTOIRECONSTRUCTOR rarely over-corrects reads implying that
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Figure B.16: Modifications of peptides identified only with that modification, or with
and without the modification. (a) Histogram of offsets over 1099 peptides with only
modifications, (b) and their breakdown by residue. (c). 1051 out of these 1497 peptides
were not identified in restrictive MS/MS searches. Computed on 544 peptides with
observed non-modified and modified versions, (d) along with residue breakdown.

hardly any information is lost as the result of error correction and that the antibody repertoire is

a better option for immunoproteogenomics searches than the previously used the unique reads
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database.

To further evaluate the constructed repertoires, we performed additional analysis of

CDR3 regions. Differing antibody clusters with shared CDR3 sequence (and V region labeling)

partition all antibodies into clones. We refer to the capacity of the clone as the number of

antibodies composing it.

Since coincidence of CDR3 region of two unrelated antibodies is an unlikely event,

there are two possible explanations for non-trivial clones: (i) erroneous partitioning of reads

from the same antibody into multiple clusters due to insufficient error correction, and (ii) correct

clustering of multiple differing antibodies into multiple clusters with the same CDR3. In the

latter case, since these multiple antibodies were not exposed to diversity mechanisms (such as

SHM) in their CDR3 region, we expect that variations in these antibodies dominate in CDR1

and CDR2 regions.

To test whether the case (ii) holds, we used CLUSTAL W, version 2.0 ([LBB+07]) to

align all antibodies within a clone, and to identify the variable positions in all non-trivial clones.

Figure B.17 shows the histogram of the variable positions for the constructed heavy chain

repertoire. Since the peaks in the histograms are located at approximate positions of CDR1

and CDR2 regions, we conclude that most non-trivial clones indeed were formed by related

and diversified antibodies (rather than by errors in clustering). See Appendix B for the peptide

coverage over the CDR3 region.

Coverage of CDR3 region by peptides

Peptide coverage of antibodies and clones is of interest since it can provide us with

direct proteomic evidence of which antibodies/clones are specific to the introduced antigen. Of

particular interest is the peptide coverage over the region which defines clonality; the CDR3

region. Figure B.18 shows the coverage distribution for each clone over the CDR3 region and

reveals that often very few residues are being covered at the junction of CDR3 region. However,
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Figure B.17: Histogram of the mutated positions among non-trivial clones. Mutated
positions are computed as relative positions of columns in multiple alignment of anti-
bodies from each clone corresponding to a mismatch or an indel. The histogram was
cut off at the right border of the CDR3 region. Red vertical bars correspond to positions
of CDRs as specified in [Mur12].

few clones have high coverage over the entire region (99 clones with 90% or more coverage).

Additional representations of clone coverage are shown in Figure B.19.
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Figure B.18: Peptide coverage distribution of CDR3.



139

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000
Clone ID

C
ov

er
ag

e 
%

(a)

0

500000

1000000

1500000

2000000

2500000

0 50 100 150 200
pos

co
ve

ra
ge

(b)

Figure B.19: (a) Clones sorted by percent coverage of the CDR3 region by peptides.
(b) Peptide coverage over positions of each antibody. No normalization of coverage is
performed.



Appendix C

Supplement to Proteogenomic analysis of

colorectal cancer

Table C.1: Database statistics. Total 90 RNA-seq BAM files which matches with the
tumor samples used in the study of Zhang et al. [ZWW+14] were used in creating
proteogenomic database. Using total 348 GB of BAM files, 2.57 GB of FASTA
formatted protein database were created. By removing all FASTA headers (containing
sample and genomic coordinate information), we searched total 888 MB of amino acid
sequence characters. Final proteogenomic database contained, 605,171 substitutions,
20,263 deletions, 1,130 insertions, and 1,245,069 novel splice junctions.

DB attributes Statistics

RNA-seq # of samples 90
input files BAM size 348 GB

MutationDB FASTA size 2.57 GB
Protein DB IG DB FASTA size 467 MB

Total AA searched 888 MB
Novel splice 1,245,069

# of mutations Deletions 20,263
encoded in DB Insertions 1,130

Substitutions 605,171

140
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V D J CC

(a)

(b)

Figure C.1: (a) Potentially missed (in RNA-seq read alignment) reads from a somati-
cally recombined heavy chain transcript as greyed out, while mapping reads as darker.
(b) Example de Bruijn graph showing how differences in sequence manifest as dif-
ferences in topology. In this example k = 6, and a single homopolymer difference is
shown.

Figure C.2: Multistage-FDR strategy. Every spectrum will be searched against the
known peptide database first, and are reported as a known peptides. In following stages,
only the unidentified portion of the spectra are searched and assigned a new FDR
threshold. Similar procedure is applied in the following order: Splice DB→Mutation
DB→ Sixframe DB→ Immunoglobulin DB.
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(a) (b)

Figure C.3: In order to calculate the accurate FDR separately in known and novel
peptide identifications in combined FDR strategy, we explicitly distinguished and
parsed out the PSMs resulted from known target and known decoy versus novel target
and novel decoy database from the concatenated PSM list. (a) Number of known
peptide identifications obtained by applying combined FDR versus multi-stage FDR.
(b) Number of novel peptide identifications applying combined versus multi-stage FDR.
We observed that the actual FDR threshold has been distorted significantly in both novel
and known peptide identifications when combined FDR strategy is applied.
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Figure C.4: Comparison between results obtained using MSGF+ and Comet MS/MS
search tools. MSGF+ [KMB+10] showed more peptide identification results in both
known (Ensembl [FAA+13] protein database) and novel (proteogenomic database)
protein search with significant overlap.
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Table C.2: Statistics of identified novel events using combined FDR 1% cut-off. This
statistics was generated by applying conventional combined FDR strategy. We obtained
large number of novel peptide identifications compared to the result from multi-stage
FDR strategy. However, as stated earlier, we reason that traditional combined FDR
strategy could distort the FDR threshold significantly especially in novel peptide identi-
fications.

Type of novel findings # of novel findings

Substitutions 2,090
Insertion 9
Deletion 7
IG gene 428

Transcript gene 587
Fusiton gene 99

TranslatedUTR 376
Alternative splice 239

Novel splice 2,355
Exon boundary 76

Frame shift 1,516
Novel exon 523
Novel gene 733

Reverse strand 1,578
Pseudo gene 197
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Figure C.5: (a) Example of peptide identifications resulted from immunoglobulin re-
arrangements. We have identified clusters of peptides spanning junctions of V(D)J
recombinations. (b) Diagram illustrating the peptide identifications of V(D)J recombi-
nation junctions. We identified clusters of peptides in IG region which connects various
V(D)J segments.
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Figure C.6: (a) Plot of RNA-seq read counts from IG variable region versus IG constant
region. We observed high correlation between RNA-seq reads that mapped to IG
constant region versus variable region (filtered out using IG filter used in this study). (b)
Spectra counts of peptide identifications from IG constant versus variable region. 90
protein samples overlapping with TCGA samples are plotted. We also observed a high
correlation in peptide spectra counts in IG variable versus constant regions. (c) Plot
of spectra counts covering IgG constant region. All possible tryptic terminus ranging
between 7-35 amino acids are greyed out. We identified a large number of spectra
covering all possible tryptic terminus in this region.
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Figure C.7: Percentage of peptide identifications with somatic mutations in each sample
normalized by the number of known peptide identifications across sample subtypes. This
percentile ratio is calculated by dividing the number of known peptide identifications
from the total number of IG peptide identifications within each sample. (ratio = (#
of IG peptides) / (# of known peptides) * 100). Subtype B (sample groups showing
hypermutation and non-CIMP characteristics) showed comparably high number of
somatic mutations identified through peptide compared to other sample subtypes. Chi-
squared test of this plot showed p-value < 0.0001,χ2 = 40.39.
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(a) Alignment of identified spectra with somatic mutation in gene SMAD4.

(b) UCSC Genome Browser plot of identified somatic mutation.

Figure C.8: Identification of somatic mutation in gene SMAD4. This mutation had 1
spectra count with unique genomic location and 15 RNA-seq read depth. This mutation
is also reported as somatic mutation in 7 different samples from TCGA colon cancer
study [MBC+12], and overlapping mutation existed in COSMIC [FBB+11] database.
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(a) Alignment of identified spectra with somatic mutation in gene KRAS

(b) UCSC Genome Browser plot of identified somatic mutation in gene KRAS.

Figure C.9: Identification of somatic mutation in gene KRAS. TCGA colon cancer
study [MBC+12] reported this mutation as ‘somatic’ in 25 different colon cancer
samples and also reported by COSMIC [FBB+11] and dbSNP [SWK+01]. Peptide
‘LVVVGAG:D:VGK’ (G−>D) had 1 spctra count and unique genomic location.
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(a) Three identified spectra alignments indicating an identical SNV mutation in gene FGA

(b) UCSC Genome Browser plot of identified somatic mutation in gene FGA.

Figure C.10: Identification of somatic mutation in gene FGA. 3 overlapping peptide
sequences had total 4 spectra counts and unique genomic locations. This SNV location
is reported by both COSMIC [FBB+11] and dbSNP [SWK+01].
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(a) Two identified spectra indicating an identical SNV mutation in gene PIGR

(b) UCSC Genome Browser plot of identified SNV mutation in gene PIGR.

Figure C.11: Identification of somatic mutation in gene PIGR. Total spectra count of
both peptide was 137 and RNA-seq read depth of this mutation was 11005. We found
these two mutated peptides in a single protein sample that was categorized as subtype
‘C’ (subtype with high-IG peptide identification rate). Matching mutation of this region
were found in both COSMIC [FBB+11] and dbSNP [SWK+01].
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VKEENPE:G:PPNANEDYRJunction Peptide:

(a) Identified spectra with alternative splice junction

(b) UCSC Genome Browser plot of identified alternative splice junction

Figure C.12: Identified alternative splice junction peptide. Peptide
‘VKEENPE:G:PPNANEDYR’ (junction existing in the middle of amino acid
‘G’) had 11 spectra counts (with unique genomic location) and total 386 RNA-seq reads
were mapped to this alternative splice junction.
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(a) Identified spectra with deletion

(b) UCSC Genome Browser plot of identified deletion.

(c) Two different adjacent SNV mutations in LAD1 gene located within the same exon with
identified deleted peptide.

Figure C.13: Identified deletion and two neighboring SNP mutated peptides. This
peptide with deletion had 7 spectra counts (across 6 different tumor protein samples)
with unique genomic location and 996 RNA-seq read depth (across 10 different tumor
DNA samples). Additionally, two SNV mutations were further identified within the
same exon. All mutations found in this exon had external supporting evidences from
dbSNP. SNV mutation of the peptide ‘K.NLPSLA:E:QGASDPPTVASR.L’ (K−>E)
was also reported by TCGA [MBC+12] colon cancer somatic mutation calls with
10,711 read depth.
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(a) Identified spectra indicating possible gene fusion

(b) UCSC Genome Browser plot of possible fusion gene identifications

Figure C.14: Identified fusion gene peptides. This shows a possible gene fusion region
where two junctional peptides are identified accross two different genes (HBA1 and
HBA2). Two fusion peptide shown in this region had unique genomic location and total
15 spectra counts. HBA1 and HBA2 are Hemoglobin related genes.



Appendix D

Supplement to Immunoglobulin

assemblies from TILs

Algorithm description

Algorithm 3 Overview of TILAPIA Ig assembly
b INPUTS:
B: BAM file of RNA-seq reads
l: l-mer length
k: k-mer length
OUTPUT:
A: Set of assembled Ig sequences

1: procedure IG-ASSEMBLY(B, l, k)
2: Rm←GET-IGH-MAPPED-READS(B)
3: Ru←GET-UNMAPPED-READS(B)
4: R′← Rm∪Ru . Join mapped and unmapped reads
5: R←FILTER-IG-READS(R′, l)
6: GIg←CREATE-IG-GRAPH(R,k)
7: A←ASSEMBLE-IG(GIg)
8: end procedure

The methods GET-IGH-MAPPED-READS(B) and GET-UNMAPPED-READS(B) are sim-

ple commands to the samtools package for extracting reads from the BAM file B. R′←Rm∪Ru

joins the mapped and unmapped reads, while the internal workings of the call to method

155
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CREATE-IG-GRAPH(R,k) is described in the main text in the Methods section. The methods

FILTER-IG-READS(R′, l) and ASSEMBLE-IG(GIg) are described below.

Algorithm 4 Filtering procedure
INPUTS:
R′: subset of RNA-seq reads
l: l-mer length
EXTERNAL DATA STRUCTURES:
R : set of concatenated V, D, J, and first 75bp of C, reference sequences
OUTPUT:
R: subset of high-quality, potential, IgH reads

1: procedure FILTER-IG-READS(R′, l)
2: R←{}
3: Rl ←ALL-l-MERS(R )
4: for all r ∈ R′ do
5: if N ∈ r then SKIP end if
6: if mean-qual(r) ≤ 25 then SKIP end if
7: Cl ←ALL-l-MERS(r)
8: if Cl ∩Rl = /0 then SKIP end if
9: r′← TRIM-READ(r)

10: R← R∪{r′}
11: end for
12: return R
13: end procedure
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Figure D.1: IgH read counts. (a) Reads mapping to the IgH constant region. (b) Filtered
reads with l-mer matches to either the V, D, J, or first 75bp of the constant region. (c)
Scatterplot of constant region reads to those of the variable region for each sample, with
a fitted line.
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Figure D.2: Sensitivity on simulated data. Shown are the sensitivities on simulated data
using different assemblers for a repertoire of 30 simulated antibodies, distributed ac-
cording to the exponential distribution shown. The sensitivities are over 30 independent
datasets, with each monoclonal rank shown independently. Sensitivity is measured by
(a) sequence identity, and (b) VJ labeling.
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Figure D.3: Variable read count by VJ pair. Shown are the three most prominent VJ
pairings, and the distribution of their read count in the variable region. The remaining
samples are shown as the rest group. No bias is seen in these partitioning of samples.
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Figure D.4: (a) Isotype distribution in colon cancer. The relative abundance of isotypes
among 344 samples is shown, sorted according to IgA. (b) Isotype subclass distribution.
The same samples, and sorting, in (a), showing each isotype subclass.
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Figure D.5: Principle components analysis of ER+ samples using all genes with non-
zero variance.
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Figure D.6: Triple negative breast cancer (TNBC) IGH isotype responses.
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Modeling spurious l-mer matches

Spurious l-mers in the filtering procedure can be modeled by a binomial distribution.

The set of l-mers from the concatenation of V, D, J, and C reference gene-segments R , is

Rl ←All-l-mers(R ). The probability of an l-mer matching by random chance is pl =
|Rl |
4l . So

the probability of any l-mer match within a read of size n is:

n−l

∑
i=1

(
n− l

i

)
pi

l(1− pl)
n−l−i (D.1)

The values of equation D.1 for various values of l is shown in Figure D.7(a) for read lengths of

35 and 75. The largest l that has an acceptable value of false positives (less than 0.01) is l = 13

for both read lengths. Figure D.7(b) shows the number of reads retained on a single dataset for

various values of l.
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Figure D.7: (a) Probability of a spurious l-mer match within a read, for different read
lengths. (b) Number of reads retained for different odd values of l on a single dataset.
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M Röder, J Finell, H Häntsch, S J M Jones, M Jones, F Piano, K C Gunsalus,
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