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Downlink Asynchronous Non-Orthogonal Multiple
Access with Quantizer Optimization

Xun Zou, Student Member, IEEE, Mehdi Ganji, Student Member, IEEE, and Hamid Jafarkhani, Fellow, IEEE

Abstract—In this letter, we study a two-user downlink asyn-
chronous non-orthogonal multiple access (ANOMA) with limited
feedback. We employ the max-min criterion for the power
allocation and derive the closed-form expressions for the upper
and lower bounds of the max-min rate. It is demonstrated that
ANOMA can achieve the same or even higher average max-
min rate with a lower feedback rate compared with NOMA.
Moreover, we propose a quantizer optimization algorithm which
applies to both NOMA and ANOMA. Simulation results show
that the optimized quantizer significantly improves the average
max-min rate compared with the conventional uniform quantizer,
especially in the scenario with a low feedback rate.

Index Terms—Asynchronous non-orthogonal multiple access,
limited feedback, quantizer optimization

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been regarded
as one of the key technologies to meet the challenges of the
next generation wireless communications. The key feature of
NOMA is that different users’ signals can share the same
time and frequency resources. The NOMA consists of power-
domain NOMA, code-domain NOMA, and the joint design of
both [1]. In power-domain NOMA, the superposition coding
and the successive interference cancellation (SIC) are utilized
for multi-user transmission and detection, respectively.

Recently, a novel scheme called asynchronous NOMA
(ANOMA) has been proposed to further improve the per-
formance of NOMA, for example, in the uplink system [2]
and the cooperative network [3]. In ANOMA, the intentional
introduction of timing mismatch at the transmitter and the
oversampling technique at the receiver result in the sampling
diversity [2–4]. It has been demonstrated that ANOMA out-
performs NOMA in terms of the throughput performance, the
power consumption, etc. Moreover, the time asynchrony has
also been exploited in multi-user transmit beamforming [5].

The channel state information (CSI) plays a critical role in
optimizing the system performance. At the transmitter side,
the CSI is employed to conduct the adaptive power/rate allo-
cation and generate the beamforming vectors in multiple-input
multiple-output (MIMO) systems. In time-division duplexing
(TDD) systems, the channel reciprocity is exploited by the
base station (BS) to utilize the CSI estimated via the uplink
training. In frequency-division duplexing (FDD) systems, a
prevailing technique is using the limited feedback from users.

The authors are with the Center for Pervasive Communications and
Computing, Department of Electrical Engineering and Computer Science,
University of California, Irvine, CA, 92697 USA (email: {xzou4, mganji,
hamidj}@uci.edu). This work was supported in part by the NSF Award CCF-
1526780.

The NOMA with limited feedback has been studied in the
existing literature, for example, the one-bit feedback scheme
in the massive MIMO NOMA systems [6] and the multi-
user single antenna systems [7], and the scalar quantizer
design in downlink power-domain NOMA [8]. To the best
of our knowledge, the analysis of limited feedback schemes
in ANOMA systems and the optimal quantizer design for
NOMA/ANOMA are still absent. In fact, the limited feed-
back design in NOMA/ANOMA systems is more challenging
compared with that in the orthogonal multiple access (OMA)
scenario, e.g., in [9]. It is because the CSI of each user
not only affects its own but also other users’ performance
due to the inter-user interference (IUI) ingrained in the non-
orthogonal transmission. In more details, the CSI is used for
both allocating powers and determining the SIC order, which
further complicates the rate expressions and the system design.

In this letter, we consider a downlink ANOMA system with
limited feedback. We employ the max-min criterion for the
power allocation and the scalar quantizer for channel quan-
tization, respectively. We derive the closed-form expressions
for the upper and lower bounds of the max-min rate. It is
manifested that ANOMA can achieve the same or even higher
average max-min rate with a lower feedback rate compared
with NOMA. Moreover, we propose a quantizer optimization
method which applies to both NOMA and ANOMA systems.
A gradient descent algorithm is designed to optimize the
quantization levels. Simulation results show that a higher
average max-min rate is achieved by using the optimized
quantizer compared with the conventional uniform quantizer
in [8], especially for the low-rate feedback scenario.

II. PRELIMINARIES

A. NOMA and ANOMA
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Fig. 1: Downlink scenario with limited feedback.

In this letter, we consider a two-user downlink system
shown in Fig. 1 where the signals for Users 1 and 2 are
superimposed and then transmitted by the BS. Both BS and
users are equipped with a single antenna. As shown in Fig. 2,
a timing mismatch of τT is intentionally added between the
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Fig. 2: Illustration of the superimposed signal in ANOMA.

superimposed signals, where 0 < τ < 1 and T is the symbol
interval. Let p(t) represent the pulse shape. The transmitted
signal is given by S1[i]p(t− iT ) +S2[i]p(t− iT − τT ) where
Su[i], u = 1, 2, is the ith symbol transmitted to User u. We
assume that users know τ perfectly since it can be decided a
priori, for example, to be the asymptotically optimal value of
τ = 0.5 [2, 3]. The block fading channel model is employed.
At the receiver, the composite signal is sampled at iT and
(i+τ)T after matched filtering. This sampling method is called
“oversampling” and the details have already been presented
in [2, 3]. For the sake of brevity, we omit it in this work.
If τ = 0, ANOMA degrades to NOMA and the received
samples at iT and (i + τ)T are identical. The number of
received samples is doubled in ANOMA (τ 6= 0) compared
with NOMA, which then results in sampling diversity [2–4].

We assume that Users 1 and 2 denote the strong and weak
users, respectively, i.e., |h1|2 > |h2|2. User 1 employs the
block-wise SIC [3], i.e., first detects the block of the signal for
User 2, removes it, and then detects its own signal. As shown
in [3], for a relatively large block length and the rectangular
pulse shape, the rates of Users 1 and 2 with perfect CSI are
given by

Rstrong(H1) = log2 (1+αPH1) , (1)

and (2) at the bottom of this page, Hi = |hi|2 is the channel
gain of User i, Q = 2τ(1− τ), P is the total transmit power
of BS, α ∈ (0, 1) is the power coefficient for the strong user
(User 1 in this case), i.e., the powers allocated to Users 1
and 2 are αP and (1 − α)P , respectively. Note that NOMA
can be considered as a special case of ANOMA, simply by
setting τ = 0 in (2). It has been shown that Rweak in ANOMA
is higher than that in NOMA while Rstrong is the same for
ANOMA and NOMA [3].

B. Limited Feedback

q0 q1 qN-2 qN-1

x0 x1

Fig. 3: Illustration of a scalar quantizer.

In this letter, we assume that CSI is perfectly estimated by
users and fed back to the BS via an error and delay-free link.

For example, in Fig. 1, User 1 knows h1 and quantizes the
channel gain H1 as H̃1 = q(|h1|2) using a scalar quantizer q,
and then sends it back to the BS. The BS determines the power
coefficient α and the order of SIC according to the feedback.
If H̃1 > H̃2 (H̃1 < H̃2), User 1 (User 2) is notified to conduct
SIC. If H̃1 = H̃2, BS can randomly assign one user to utilize
SIC. Without loss of generality, we assume that User 1 will
be notified to conduct SIC if H̃1 = H̃2.

As shown in Fig. 3, we employ a scalar quantizer with
N = 2b quantization levels, q0, · · · , qN−1, where b is the
number of bits used in a quantization codeword. b is also
defined as the feedback rate per user. The quantized value
for a given x is calculated by

q(x) =

{
qi, qi ≤ x < qi+1, i = 0, · · · , N − 2,
qN−1, x ≥ qN−1.

(3)

For example, in Fig. 3, x0 and x1 are quantized as q0

and qN−1, respectively. In this work, the quantizer is used
to quantize the positive channel gain. Thus, we set q0 = 0.

The BS transmits the signals to users based on the rates
which are calculated according to the quantized channel gains.
For example, if H̃1 > H̃2, the BS transmits to User 1 with
the rate of Rstrong(H̃1) while the actual channel capacity is
Rstrong(H1). Note that the proposed quantizer is designed to
satisfy q(x) ≤ q in order to avoid outage, i.e, to guarantee that
the transmission rates do not exceed the channel capacities.
It is trivial to derive that Rstrong(H̃1) ≤ Rstrong(H1) if
H̃1 ≤ H1 and Rweak(H̃2) ≤ Rweak(H2) if H̃2 ≤ H2, which
indicates that the quantizer in (3) avoids outage.

III. POWER ALLOCATION

To attain fairness among users, we employ the max-min
criterion for the power allocation, i.e., the power is allocated
to users such that the minimum rate is maximized. The optimal
power coefficient α∗ is given by

α∗ = arg
α

max min {Rstrong, Rweak} . (4)

According to (1) and (2), it is trivial to show that Rstrong

is an increasing function of α and Rweak is a decreasing
function of α. Intuitively, if User 1 is the strong user, by
increasing α (i.e., allocating more power to User 1 and less
power to User 2), Rstrong increases and Rweak decreases, and
vice versa. As a result, the optimal power coefficient α∗ can
be obtained by solving Rstrong = Rweak. According to [8],
the optimal α in NOMA is given by

α∗N =
2H̃min√

(H̃1+H̃2)2+4PH̃1H̃2H̃min+H̃1+H̃2

, (5)

where H̃min = min
{
H̃1, H̃2

}
is defined to incorporate

the rate expressions for both H̃1 ≥ H̃2 and H̃1 < H̃2.

Rweak(H2) = log2

(
1 + PH2 + α(1− α)P 2H2

2Q+
√

[1 + PH2 + α(1− α)P 2H2
2Q]2 − α2(1− α)2P 4H4

2Q
2

2(1 + αPH2)

)
. (2)
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α∗A(z) =
2H̃min√

(H̃1+H̃2 − zPH̃2
minQ)2+4H̃min(PH̃1H̃2 + zPH̃2

minQ)+H̃1+H̃2 − zPH̃2
minQ

. (7)

If User 1 employs SIC, the max-min rate of NOMA is
given by log

(
1 + α∗NPH̃1

)
according to (1). If User 2

employs SIC, the max-min rate is given by log
(

1 + α∗NPH̃2

)
.

To summarize, the max-min rate of NOMA is expressed
by R∗N(H̃1, H̃2) = log

(
1 + α∗NPH̃max

)
where H̃max =

max
{
H̃1, H̃2

}
.

The optimal power coefficient for ANOMA, α∗A, is pre-
sented in the following theorem.

Theorem 1: The optimal power coefficients of NOMA and
ANOMA, α∗N and α∗A, respectively, satisfy the following
inequality

α∗N ≤ α∗A(0.5) ≤ α∗A ≤ α∗A(1), (6)

where the equal sign is achieved when τ = 0. The expression
for α∗A(z) is given by (7) on the top of this page.

Proof: See Appendix A.
Since the general expression for α∗A is intractable for further

analysis, α∗A(0.5) and α∗A(1) provide the simple lower and
upper bounds of α∗A, respectively. Compared with (5), (7)
introduces an extra term zPH̃2

minQ. By setting τ = 0,
Q = 0 and then (7) coincides with (5). The max-min rate of
ANOMA is given by R∗A(H̃1, H̃2) = log

(
1 + α∗APH̃max

)
∈[

log
(

1 + α∗A(0.5)PH̃max

)
, log

(
1 + α∗A(1)PH̃max

)]
.

The average max-min rate is expressed by

E [R∗] =

N1−1∑
i=0

N2−1∑
j=0

∫ qi+1,1

qi,1

∫ qj+1,2

qj,2

R∗(qi,1, qj,2)

· f1(H1)f2(H2)dH1dH2, (8)

where fi(Hi) is the distribution function of User i’s channel
gain, qj,i represents the jth quantization level of the quantizer
used by User i, and R∗ can be R∗N or R∗A. Note that the average
max-min rate for the limited feedback is upper bounded by that
for the full-CSI case, i.e.,

E [R∗]<R
∗ 4

=

∫ ∞
0

∫ ∞
0

R∗(H1,H2)f1(H1)f2(H2)dH1dH2. (9)

Let us define the quantization distortion as D [R∗] = R
∗ −

E [R∗].
Corollary 1: ANOMA can achieve the average max-min

rate of NOMA with a lower feedback rate.
Proof: Let us define q and q′ as two quantizers which

can be given by (3) but with different quantization levels.
According to Theorem 1, ANOMA achieves a higher max-
min rate compared with NOMA. Thus, R

∗
N < R

∗
A and

E [R∗N] < E [R∗A] by using the quantizer q. The quantizer
q′ is designed such that the ANOMA using q′ achieves
the same average max-min rate as the NOMA using q,
i.e., E [R∗A]

′
= E [R∗N] < E [R∗A]. For ANOMA, using the

quantizer q′ results in a higher distortion compared with using

q, i.e., D [R∗A]
′

= R
∗
A − E [R∗A]

′
> D [R∗A] = R

∗
A − E [R∗A].

According to the rate-distortion theory, there is a trade-off
between the distortion and the quantization rate (equivalent
to the feedback rate in this work). A lower distortion can be
achieved by using a quantizer with a higher feedback rate
and vice versa. As a result, the quantizer q′ can have a lower
feedback rate compared with q. ANOMA using q′ can achieve
a lower feedback rate while keeping the same average max-
min rate as NOMA using q. The proof is complete.

IV. SCALAR QUANTIZER OPTIMIZATION

The scalar quantizer shown in (3) is completely charac-
terized by the quantization levels. Our goal is to optimize
the quantization levels to maximize the average max-min rate
E [R∗], i.e.,

[q∗1,q
∗
2] = arg

[q1,q2]

maxE [R∗] ,

s.t. q0,i < q1,i < · · · < qNi−1,i, i = 1 or 2. (10)

Since R
∗

is not a function of quantization levels, (10)
is equivalent to minimizing the distortion D[R∗]. In
what follows, we propose a gradient descent algorithm
to optimize the quantization levels. Let E [R∗]i,j denote
the (i, j)th term of E [R∗] in (8), i.e., E [R∗]i,j =

R∗(qi,1, qj,2)
∫ qi+1,1

qi,1

∫ qj+1,2

qj,2
f1(H1)f2(H2)dH1dH2. E [R∗]i,j

is a function of qi,1, qi+1,1, qj,2, and qj+1,2. The gradients
of E [R∗]i,j in terms of qi,1 and qi+1,1 are calculated by

∂E [R∗]i,j
∂qi,1

=

[
∂R∗(qi,1, qj,2)

∂qi,1

∫ qi+1,1

qi,1

f1(H1)dH1

−R∗(qi,1, qj,2)f1(qi,1)]

∫ qj+1,2

qj,2

f2(H2)dH2, (11)

∂E [R∗]i,j
∂qi+1,1

=R∗(qi,1, qj,2)f1(qi+1,1)

∫ qj+1,2

qj,2

f2(H2)dH2, (12)

respectively. Similarly, we can derive
∂E[R∗]i,j
∂qj,2

and
∂E[R∗]i,j
∂qj+1,2

.
Based on the gradients, we propose the quantizer optimization
algorithm in Algorithm 1. At each iteration, E [R∗] does not
decrease which is guaranteed by the gradient descent. Besides,
E [R∗] is upper bounded by a constant as shown in (9). Hence,
Algorithm 1 converges as the number of iterations increases.

The computation complexity of Algorithm 1 is O(N1N2)
where N1 and N2 are the number of quantization levels
for Users 1 and 2, respectively. Furthermore, the maximum
quantization level of the conventional uniform quantizer is
set manually according to certain criterion. For example,
in [8], the maximum quantization level is determined by
considering the quantization loss. The advantage of optimizing
the quantization levels is that the maximum quantization level
can also be optimized using Algorithm 1 with no manual
intervention, which will be shown in the next section.
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Algorithm 1 Algorithm to optimize the scalar quantizer.

1: Initialize the step size ∆, the maximum number of itera-
tions Imax, the number of quantization levels for User 1
N1 and that for User 2 N2, the iteration count I = 0.

2: Initialize the quantization levels q1 =
[0, q1,1, · · · , qN1−1,1,∞], q2 = [0, q1,2, · · · , qN2−1,2,∞]

3: while I < Imax do
4: Initialize ER = 0, dq1 = [0, · · · , 0]1×(N1+1), dq2 =

[0, · · · , 0]1×(N2+1).
5: for i = 2, · · · , N1 do
6: for j = 2, · · · , N2 do
7: ER = ER + R∗(q1[i], q2[j])

∫ q1[i+1]

q1[i]

∫ q2[j+1]

q2[j]

·f1(H1)f2(H2)dH1dH2.
8: dq1[i] = dq1[i] +

∂E[R∗]i,j
∂qi,1

.

9: dq2[j] = dq2[j] +
∂E[R∗]i,j
∂qj,2

.
10: if i 6= N1 then
11: dq1[i+ 1] = dq1[i+ 1] +

∂E[R∗]i,j
∂qi+1,1

.
12: end if
13: if j 6= N2 then
14: dq2[j + 1] = dq2[j + 1] +

∂E[R∗]i,j
∂qj+1,2

.
15: end if
16: end for
17: end for
18: q1 = q1 + ∆ ∗ dq1, q2 = q2 + ∆ ∗ dq2, I = I + 1.
19: end while

1 2 3 4 5 6 7 8 9 10

No. of feedback bits per user

0.5

1

1.5

2

A
v

er
ag

e 
m

ax
-m

in
 r

at
e 

(b
it

/c
h

an
n

el
 u

se
)

NOMA

NOMA, full-CSI

ANOMA, lower bound

ANOMA, lower bound, full-CSI

ANOMA, upper bound

ANOMA, upper bound, full-CSI

Fig. 4: The average max-min rate vs. the number of feedback bits
per channel for NOMA and ANOMA systems.

V. SIMULATION RESULTS

In this section, we present simulation results for
NOMA/ANOMA systems with limited feedback. In our sim-
ulations, we employ the complex Gaussian channel model.
Therefore, the channel gain follows the exponential distribu-
tion. We assume that H1 ∼ Exp(0.5) and H2 ∼ Exp(1).
We set the total transmit power of the BS P = 10 and
τ = 0.5 since it has been proved in [2, 3] that τ = 0.5 is the
asymptotically optimal value to maximize the user throughput.
For comparison, we employ the uniform quantizer proposed
in [8] where the maximum quantization level L is derived by
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Fig. 5: The average max-min rate vs. the iteration count for NOMA
and ANOMA systems.
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Fig. 6: The quantization levels for NOMA and ANOMA systems
when 3 bits are used to quantize the channel gain.

solving L = 1
λ∆ log

(
1
∆

)
, λ is the parameter of the exponential

distribution, and ∆ is the quantization bin width.
Fig. 4 shows how the average max-min rate changes as a

function of the number of feedback bits per user using the
uniform quantizer. As the number of feedback bits increases,
the average max-min rate converges to the full-CSI rate
calculated by (9). Besides, using the same number of feedback
bits, the upper bound of the max-min rate for ANOMA is
always higher than its lower bound, which is then higher than
that for NOMA. Equivalently, to achieve the same or even
higher average max-min rate, ANOMA needs less feedback
bits compared with NOMA, which verifies Corollary 1.

Fig. 5 shows how the average max-min rate in NOMA
and ANOMA systems changes as the quantizer optimization
algorithm runs. We employ the 3-bit quantizer for each channel
and the lower bound of the max-min rate for ANOMA as an
example. As the number of iterations increases, the average
max-min rate converges. For the full-CSI case, the optimized
quantizer, and the uniform quantizer, the average max-min rate
for ANOMA is always higher than that for NOMA.

Fig. 6 presents the optimal quantization levels when 3 bits
(i.e., 23 = 8 quantization levels) are used. First, it is shown that
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the optimal quantization levels are non-uniform. The range of
the quantization levels for User 1 with a larger mean channel
gain is wider than that of User 2. Furthermore, the quantization
levels optimized using the upper and lower bounds of the max-
min rate for ANOMA are very similar to each other and also
close to those for NOMA.

VI. CONCLUSION

In this letter, we considered a two-user downlink ANOMA
system with limited feedback. We reveal the advantage of
ANOMA over NOMA in terms of the feedback rate. Further-
more, the quantizer optimization method is proposed for both
ANOMA and NOMA to further improve the average max-min
rate. Considering more than two users in the ANOMA systems
is an interesting topic for the future work.

APPENDIX A
PROOF OF THEOREM 1

Proof: When τ = 0, Q = 0 which then results in α∗N =
α∗A(x) for any finite x. For τ 6= 0, we first prove Theorem 1
for the case of H̃1 ≥ H̃2. The case of H̃1 < H̃2 SIC will
be discussed later. By setting Rstrong(H̃1) = Rweak(H̃2), we
obtain

2[1 + α∗AP (H̃1 + H̃2) + (α∗A)2P 2H̃1H̃2]

=

√
[1+PH̃2+α∗A(1−α∗A)P 2H̃2

2Q]2−[α∗A(1−α∗A)]2P 4H̃4
2Q

2

+ 1 + PH̃2 + α∗A(1− α∗A)P 2H̃2
2Q. (13)

By cancelling out the square root, (13) becomes a quartic
equation. The optimal power coefficient α∗A is one root of
the quartic equation which can be given by the general
formula for quartic roots. However, it is intractable for further
analysis. Therefore, we derive the upper and lower bounds to
approximate the actual value of α∗A.

For the upper bound, since [1+PH̃2+α
∗
A(1−α∗A)P 2H̃2

2Q]2−
(α∗A)2(1−α∗A)2P 4H̃4

2Q
2 < [1+PH̃2+α∗A(1−α∗A)P 2H̃2

2Q]2,
(13) becomes

1+α∗AP (H̃1+H̃2)+(α∗A)2P 2H̃1H̃2

<1+PH̃2+α∗A(1−α∗A)P 2H̃2
2Q, (14)

which results in

α∗A<α
∗
U
4
=2H̃2/

[
H̃1+H̃2 − PH̃2

2Q

+

√
(H̃1+H̃2−PH̃2

2Q)2+4H̃2(PH̃1H̃2+PH̃2
2Q)

]
. (15)

For the lower bound, as [1+PH̃2+α∗A(1−α∗A)P 2H̃2
2Q]2−

(α∗A)2(1−α∗A)2P 4H̃4
2Q

2 > [1+PH̃2]2,

2[1+α∗AP (H̃1+H̃2)+(α∗A)2P 2H̃1H̃2]

> 2(1+PH̃2) +α∗A(1−α∗A)P 2H̃2
2Q. (16)

Then, we obtain

α∗A> α∗L
4
= 2H̃2/

[
H̃1+H̃2 −

PH̃2
2Q

2

+

√√√√(H̃1+H̃2−
PH̃2

2Q

2

)2

+4H̃2

(
PH̃1H̃2+

PH̃2
2Q

2

) . (17)

If H̃1 < H̃2, i.e., User 2 employs SIC, we can also derive
the expressions for α∗L and α∗U by setting Rstrong(H̃2) =
Rweak(H̃1). In fact, α∗L and α∗U for H̃1 < H̃2 are given
by simply switching H̃1 and H̃2 in (15) and (17). Both
α∗L and α∗U can be incorporated into a general expression
in (7) by introducing a parameter z, i.e. α∗L = α∗A(0.5) and
α∗U = α∗A(1).

To show the inequality in (6), let us define g(x) =√
(H̃1+H̃2 − xPH̃2

minQ)2+4H̃min(PH̃1H̃2 + xPH̃2
minQ)+

H̃1+H̃2 − xPH̃2
minQ which is the denominator in (7). Then,

∂g(x)

∂x
= −PH̃2

minQ (1+

H̃1 + H̃2 − H̃min(2 + xPH̃minQ)√
(H̃1+H̃2−xPH̃2

minQ)2+4H̃min(PH̃1H̃2+xPH̃2
minQ)

 .

If H̃1 + H̃2 − H̃min(2 + PH̃minQx) > 0, it is obvious that
∂g(x)
∂x < 0. Otherwise,

− H̃1 − H̃2 + H̃min < 0 < PH̃1H̃2

=⇒4H̃min(−H̃1 − H̃2 + H̃min + xPH̃2
minQ)

< 4H̃min(PH̃1H̃2 + xPH̃2
minQ)

=⇒|H̃1 + H̃2 − H̃min(2 + xPH̃minQ)|

<

√
(H̃1+H̃2−xPH̃2

minQ)2+4PH̃min(H̃1H̃2+xH̃2
minQ),

which also results in ∂g(x)
∂x < 0. Therefore, α∗A(x) increases

with x. Thus, α∗N = α∗A(0) < α∗A(0.5) < α∗A < α∗A(1). The
proof is complete.
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