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Abstract

An Integrated Circuit Design Framework for Human, Computer, and ML Designers

by

Dan Fritchman

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Vladimir Stojanović, Chair

Analog and custom circuits have long been a bottleneck to the integrated circuit design
process. Automation generation of such circuits has long been a topic of research, but has
failed to break through to popular practice. This work introduces a modular framework
including a cloud-native IC design database, an analog circuit programming framework, a
web-native schematic system, and tools for directed programming and automatic compilation
of semi-custom IC layout. Highlighted applications include wireline transceivers and data
converters, including a recent prototype ADC targeted for neural sensing applications, and
research infrastructure for distributed, machine learning based circuit optimization.
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Chapter 1

Introduction

This is a thesis about integrated circuits, and more specifically about how we design
them. The first and likely most important question should be who cares. ICs were invented
in 1959, roughly 65 years before this writing. The whole field may seem old, or may seem
fairly combed-over for novel research topics. On Fisher and Pry’s ”simple model” [12], now
more commonly known as the s-curve, one might reasonably believe we are more or less at
the top right.

Figure 1.1: Fisher and Pry’s S-Curve of Technological Change [12]

In truth, the field stands to become far more important - and far more ripe for design-level
breakthroughs - in the next 65 years than it was in its first 65.

Why? To date, the primary manifestation of our semiconductor-based information age is
the enablement of software to ”eat” countless fields of endeavor. Over the course of the 20th
century, silicon and CMOS proved the ideal forum for building general-purpose computation
machines. Their general-purpose-ness was their true killer app: it enabled a conceptually new
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layer, shortly thereafter named software, by which they could be redirected to a seemingly
endless variety of tasks.

Moreover, these machines kept getting better, year after year. In 1965’s Cramming More
Components onto Integrated Circuits [40], Gordon Moore introduced the now-famous ”law”
setting the field on an exponential rate of progress for the foreseeable future. But the phrase
Moore’s Law has always been off. The inclusion of the term law, coupled with the fact that
it concerns a complicated scientific-seeming topic, leads people to believe it is some law of
nature, like Newton’s laws of motion or the second law of thermodynamics. Or perhaps
more like Ahmdal’s law, which sets a theoretical limit on a category of abstract quantities
(computer programs).

What Gordon Moore made in truth was a prediction, and one about people. Particularly
the intellectual progress of a group of people driving semiconductor design and fabrication.
He predicted an exponential rate of progress in this field, extending indefinitely into the fu-
ture. Most incredibly, he proved right, for decades on end. Countless inventions and person-
years were required; the ”law” became a sort of self-fulfilling prophecy as the north-star goal
for the field. Later, predicting the end of Moore’s Law became a popular prognostication
game. Strangely for many, including some of the leaders of our field, the notion of it having
an end failed to dispel the idea of its inevitability. No one expects gravity or entropy to
end, much less any time soon. But many accept chip-progress as a fact of nature, somehow
confined to the late 20th century.

Figure 1.2: Patterson and Hennessy’s Depiction of the End of Moore’s Law [22]
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Herbert Stein made a more ironclad eponymous ”law” a few decades later: if something
cannot go on forever, it will stop. So it is with Moore’s great prediction. There is no
definitive accounting for when it ended, but at the time of this writing, the ”Moore Era” is
over. Countless accounts of its wind-down have been offered, including figure 1.2, excerpted
from Patterson & Hennessy’s seminal computer architecture text.

The end of the Moore Era coincided with large swaths of human activity just catching
on to just how useful all this computation could be. And perhaps more impactfully, other
swathes realized that incredibly computation-intensive methods (i.e. those of machine learn-
ing) proved a ways more suitable to a variety of tasks than prior, ”expert” programmed
methods. The combination means one thing: there will be much more need for much more
specialized, task-centric hardware. Where software ”ate” the last era, hardware will eat the
next one. And there is no more free lunch to be dined-out on from a rapidly ever-improving
set of process technologies.

While not especially widespread, this outlook is also not novel. The same Patterson &
Hennessy responsible for cataloging the wind-down shown in figure 1.2 went so far as to
deem the combination of developments the dawn of a ”new golden age” [22]. Whether we
view this as a challenge or opportunity, the world of the coming decades will need far more
customized electronic hardware than that of decades past. Integrated circuits will continue
to be at their core. ICs are also among the most laborious, most capital intensive, most
challenging parts to design - and especially to get right. We will need a lot - perhaps 10x or
100x - more of them.

1.1 The IC Design Process

Integrated circuits are ”integrated” in the sense that more than one - and often in current
practice, more than ten orders of magnitude more than one - circuit component is integrated
in a single silicon die.

The most detailed representation of these circuits, and the sole representation sufficiently
detailed for fabrication, is commonly called layout. IC layout is a chip’s physical blueprint.
The nature of silicon manufacturing allows for representing these blueprints in ”2.5D” terms.
Each silicon wafer is extremely uniform in one of its three axes. This axis extends into and
out of the plane of the die surface, and is commonly referred to as the z-axis. This z-
axis is typically split into a discrete number of layers. These layers refer to a variety of
physical features, such as metal connections, insulators there-between, ion injections which
form transistor junctions, etc. The IC ”x” and ”y” dimensions, in contrast, span the surface
of the die, and are much more free-form to be specified by the IC designer. These two
axes typically allow for nearly free-form closed 2D polygons. An IC blueprint is therefore
conceptually comprised of a list of such polygons, each affixed with a z-axis layer annotation.
Figure 1.3 depicts a typical IC layout visualization.

Figure 1.4 expands this view to the three-dimensional structure that it represents.
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Figure 1.3: Typical IC Layout Visualization. X and Y axes represent dimensions on-die.
Colors represent z-axis layer annotations.

While layout is the sole language comprehensible for IC fabrication, it is generally far
too detailed for much of IC design. The silicon design and closely related electronic design
automation (EDA) software fields have, over time, produced a substantial stack of software,
concepts, and practices which allow for IC-design at far more abstract levels than that of
physical layout. Different subsets of the IC field have proven more and less amenable to
these improvements.

This stack’s second-lowest layer is often called the circuit level. In circuit terms, chips
are made of combinations of primitive components such as MOS transistors and resistors,
and connections between them.

Each circuit component (or element) generally has a short-form conceptual and math-
ematical description (such as ”V = IR”). Their realizations are technology and implemen-
tation specific, often requiring elaborate combinations of the 2.5D layout geometry. For
example MOS transistors include their core conceptual terminal diffusions and gate mate-
rial, but often also include countless performance and yield-enhancing features, especially
at advanced geometries. Linear resistors might similarly be built of any of a number of
materials. It is the inclusion of more than one of these conceptual components that makes
silicon circuits ”integrated”; their ”integration” refers to a prior era, in which each circuit
component would need be a separate element on a circuit board.

In a loose analogy to software, layout is akin to machine code. It is the sole format
understood by the underlying implementation technology (in software, the processor; in
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Figure 1.4: Three-Dimensional IC Blueprint

silicon, the fab). Circuits are then analogous to the assembly language. Each circuit (and
assembly) is specific to its underlying implementation technology.

1.2 The Analog Bottleneck

For decades both software and hardware design have searched for more productive, higher
levels of abstraction. These efforts have proven more and less successful in different sub-
stripes of IC design. The next key layer, popularized in the 1980s, maps roughly to ”C-
level” languages popular for low-level and ”systems” software. Popular hardware description
languages (HDLs) introduced around this time include Verilog and VHDL. Each allow for
technology-independent descriptions of digital circuits. This paradigm also introduces the
logical (rather than the circuit) level as the primary one of simulation and verification.
Discrete-event simulation further enhances the efficiency of this verification paradigm.

In addition to enhancing the efficacy of verification, the digital HDLs provided a dramatic
improvement in workflow to produce layout. In the typical digital back-end flow, HDL code
is transformed into layout by way of an optimizing ”layout compiler”. Designers provide
a combination of register-transfer level (RTL) HDL code, plus a set of physical constraints
and/or goals. These two primary inputs are fed to a compilation pipeline, generally compris-
ing a combination of logic synthesis which translates RTL to gate-level netlists, and ”place
and route” (PnR) layout compilation.
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Notably, the benefits afforded by the 80s-era HDLs accrue to digital circuits, but largely
fail to aid analog ones. Analog circuits escape the logical verification paradigm, and in-
stead rely on the circuit-level concepts such as the solutions to Kirchoff’s laws for veri-
fication. Moreover, analog circuits have escaped the productivity gains of the automatic
layout-compilation pipeline, for reasons covered in detail in later sections of this manuscript.

Analog and custom circuits have accordingly long been acknowledged as a bottleneck in
the IC design process. In the author’s anecdotal experience, analog efforts tend to produce
(notably crude) designer productivity metrics (e.g. transistor-count per designer-month) on
the order of 100-1000x lower than their digital peers. This may be, and in the author’s opinion
is likely to be, the bottleneck to the post-Moore era. Many other research efforts, including
many substantial sources of inspiration here, endeavor to further raise the productivity and
abstraction-level of the digital flow. This work focuses on analog and custom circuits.

1.3 The Likely Role of Open Source

The period during which this work was completed (2020-23) corresponded to something of a
renaissance in open source activity in the silicon field. Ironically IC EDA (and particularly
its outpost here at Berkeley) were pioneers in open-source distribution, particularly that for
industrial-grade applications. SPICE [56] serves as a prime example. The many branches of
SPICE’s family tree have since largely been absorbed into various commercial and in-house
products dotting the IC industry. Open-source then slowly disappeared from the IC field’s
common set of practices.

We note that three related, relevant quantities can in principle be distributed in open-
source form:

1. Open-source design content, i.e. HDL code, circuits, and/or layouts, possibly coher-
ently arranged into instantiable silicon Intellectual Property (IP),

2. Open-source EDA software, the programs required to produce these circuits,
3. Open-source process technology, i.e. the underlying fabrication steps, or the designer

”API” to these technologies, commonly called a Process Design Kit (PDK).

The three are separable in principle, but tightly tied in practice.
The relationship between (2) EDA and (3) fab is particularly tangled. Particularly, most

process-portable EDA software requires an elaborate ”technology setup” set of input - the
details of the technology required by the tool. For digital PnR this often comes in the form of
a technology-LEF, for physical verification (Layout vs Schematic (LVS), Design Rule Checks
(DRC)) it includes countless design rules and detailed specifications of the process. More
important, this fab input is (a) highly laborious (and crucial) to get right, (b) generally
tightly tied to the EDA tool it feeds, and (c) often authored in a language or format which is
proprietary to each tool. While fabs author their ”EDA input”, they are often not at liberty
to publish it. Fabricators understandably focus on the most popular such tools (buoyed by
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relationships with the most popular EDA software providers). Supporting a new suite of
EDA software is no small ask.

Design content is, in principle, the easiest of the three to open-source. Digital design in
HDL (or modern HDLs such as Chisel) are especially amenable. Many research processor
designs - and even a few industrial ones - are accordingly available in open-source distribu-
tion. Analog circuits are much more dependent on their implementation technologies, and
accordingly have seen much less success in open source.

Open source EDA, especially that for digital design, is the subject of a great deal of
academic research. But in every category known to the author, available academic/ open-
source EDA lags commercial offerings, often substantially and in metrics directly relevant to
designers (quality of results, execution time, etc.). More importantly, technology-dependent
open-source EDA suffers from the problems of access to process technologies described a few
paragraphs back.

The tight tying of fab and EDA would seem to drive a desire for open-source process
technology. Such efforts, particularly those of [3], have helped to produce open-source process
design kits from SkyWater Technologies, GlobalFoundries, and IHP Microlectronics. These
efforts have generally been led by third parties and/or communities rather than the fabs
themselves. Paired (and often free) multi-project shuttles have enabled a wide variety of
projects which would not otherwise have been possible.

Despite these laudable efforts, I do not hold much hope for open-source distribution of
silicon process technologies, or even of ”just” their PDKs. Before the open-source release of
SkyWater’s 130nm technology, open-source was clearly highly counter-cultural to the entire
fab space. The other fabs have clearly seen the efforts of the early open-sourcers, especially
SkyWater. And they have hopefully noticed the amount of additional attention driven to
a few roughly two-decades-old technologies. But they have simultaneously observed a more
concerning shift: one in world public policy. A number of nations, notably including the US
and China, have made semiconductor technologies a central focus of new policy initiatives.
The primary impact on the distribution of technology information has been to make it more
constrained. Open-source is essentially the least constrained form of such distribution. Even
if it has not been explicitly banned or prohibited, I expect most fabs have gotten a message,
they are far better off staying away.

I do believe that open-source process technologies will have a helpful role in IC education.
Berkeley’s curriculum includes an unusually great deal of exposure to realistic, modern imple-
mentation technologies, culminating in the ”tape-out course” series detailed in [6] and [15].
These experiences have proven much more difficult for many peer institutions to provide.
Access to these technologies is tightly guarded and costly to maintain. The emergence of (at
least a few) open-source technologies allows for a broader suite of educational opportunities
in realistic implementation technologies, as described in [2].
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1.4 The Roadmap

I believe that our field is far more important than most to the world’s next several decades.
And I think we can - and need to - do it a ways better.

This thesis doesn’t have all the answers. 1 It catalogues what I believe are valuable
contributions to the technology of producing circuits, particularly custom and analog ones,
including their physical layouts. And it attempts to point out a number of what I believe
have been dead ends.

One sub-thesis: many such projects suffer from insisting on attempting to reinvent the
entirety of our industry, each and every time over. I fear this work has not entirely avoided
this trap. One virtue (as defined by its author) is the underlying work’s modularity. While
I am deeply grateful for all of this work’s collaborators both inside and outside of UC
Berkeley, the sheer effort involved pales in comparison to the 65 year history of the IC and
EDA industries, or even their analog sub-fields. This modularity goal has proven valuable
for the several research, corporate, and start-up users who bravely enjoined their fate to this
work, often while it was still on the runway. Many have picked up this effort’s pieces; to my
knowledge, no two have adopted the same set.

A further sub-thesis: making the next rounds of progress will require taking a few steps
back. Particularly, several long-worn ideas need a rethink. We will cover:

• The core data model used to represent IC design content, commonly referred to as the
design database, and a cloud-era substitute.

• The primary design-entry mechanisms for custom and analog circuits. For most of
their history these have been pictures. This thesis argues for, and introduces methods
to, make them better with code instead.

• A re-do of those graphical pictures, for the (smaller number of) cases where we agree
they provide value. Emphasis is placed on portability and sharing.

• A survey of both historical research attempts to, and first-person software attempts
to, rethink the custom layout process. Several are tried, to varying effect. My primary
answer to what works best remains ”it depends”.

• An introduction to ”Machine Learning (ML) for X”, where ”X” becomes circuits.
What does it require for ML techniques to make real contributions to the production
of circuits, layouts, or the software that aids them?

1I have been accused of believing the opposite. But I don’t! It says so, right here in the front!
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Chapter 2

IC Design Databases

2.1 ”Databases” (Ahem) 101

IC design data is commonly represented in ”design databases”. These systems are inspired by
relational database management systems (RDBMS), ubiquitously used throughout modern
server-side applications. IC databases generally look much like the low layers of an RDBMS.
They include a binary format for storing and packing records, and a API for querying and
writing those records. The typical low layers of such an RDBMS are illustrated in Figure 2.1
from our department’s own introductory database systems course.

Figure 2.1: RDBMS Low Layers

Instead of a dedicated query language (e.g. SQL) and accompanying compiler and query-
optimizer, IC databases are typically embedded in a host programming language, and expose

https://cs186berkeley.net/
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an API to manipulate design data in that language. Perhaps the most prominent commercial
example is OpenAccess [14], originally authored by Cadence Design Systems. Perhaps the
most prominent freely available database is OpenDB [51], notable for its centrality to the
OpenROAD project [27].

These databases are optimized to enable efficient offloading of design data between mem-
ory and disk, especially for designs too large to reasonably fit into the former. This goal is
near entirely driven by one application: digital place-and-route layout compilation. For com-
mon digital circuits including millions of gates and associated metadata, the optimization
makes sense. Optimal PnR, and even ”good enough” PnR, includes several NP-complete
sub-problems, and commonly requires industrial-scale resources and days of runtime. With-
out such optimizations, large compilations often fail to complete.

Analog circuits differ in several respects. First and perhaps most importantly: they are
much smaller. Rarely if ever do they contain millions of elements, and infrequently even
thousands.

Second, analog circuits demand to be designed and laid out hierarchically for another
reason: their verification is hierarchical. Their necessary mode of evaluation - the SPICE-
class simulation - is far too slow, and scales far too poorly, to evaluate compound circuits
in useful runtimes. Compound analog circuits such as Radio Frequency (RF) transceivers,
wireline Serializer/Deserializer transceivers (SERDES), data converters, and Phase-Locked
Loops (PLLs) are commonly comprised of subsystems whose simulation-based verification is
far more tractable than that of the complete system.

2.2 ProtoBuf 101

The 21st century advent of widespread cloud computing and accompanying ”hyper-scalar”
cloud-service providers generated something of a renaissance in markup-style ”data lan-
guages”, and in demand for network-serializable data more generally.

Their demands are entirety practical: projects of their scale require hundreds of server-
side programs cooperating and exchanging data. These programs are commonly designed
by hundreds of disparate, largely independent teams, comprising thousands (or tens of thou-
sands) of individual engineers. They have no chance at aligning a tall stack of libraries,
versions, operating system requirements, and other dependencies which would be required
to run on a single machine, in a single program.

Moreover, many of these ”datacenter-scale programs” subsystems have vastly different
resources needs, and different prospects for scaling across usage. Some require specialty
compute resources such as machine learning acceleration, either via graphics processors or
special-purpose silicon. Others, e.g. for data caching, benefit from little compute but greatly
from unusually large memory systems. Others ”scale-out”, requiring little compute, mem-
ory, or other resources per task, but requiring tremendous numbers of copies of that task,
benefitting from near-perfect scaling via hardware parallelism. These subcomponents are
then broken into sub-programs, each of which executes on appropriate hardware, and in
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tailored execution environments. Communication between these components occurs via the
datacenter network.

Protocol buffers (ProtoBuf) [55] were introduced first internally to Google and then as
open-source software to meet these needs of communication between diverse programs ex-
changing rich structured data. The ProtoBuf system principally includes three components:

• An efficient binary wire format,
• A data schema description language (SDL), and
• A paired binding code compiler

Several similar, generally related follow-on projects including Cap’n Proto, FlatBuffers,
and FlexBuffers each take similar high-level approaches. Each includes the three core pro-
tobuf components (binary format, schema language, and compiler), differing in a variety of
trade-offs in schema feature-set and format design. Such projects have proliferated suffi-
ciently to motivate comparative research [44] into their relative performance strengths and
weaknesses, across a variety of data content.

Meta-programs using protobuf begin by ”programming” datatypes in its SDL. This op-
erates much like a programming language in which only struct-definitions are allowed. The
core protobuf structure-type message indicates its intended usage in communication. The
protobuf compiler then accepts this SDL as input, and transforms it into typed ”bindings” in
a diverse set of programming languages, notably including Python, C++, Rust, JavaScript,
and most other popular alternatives. An example protobuf SDL message definition:

syntax = "proto3";

message SearchRequest {

string query = 1;

int32 page_number = 2;

int32 results_per_page = 3;

}

Protocol Buffer messages and its SDL are both strongly typed. Messages include a variety
of built-in primitive types, similar to those of most programming languages. These include
integer and floating-point numeric types, booleans, strings, byte arrays, and user-defined
enumerations. Message types can be nested, holding attributes valued by other messages.
Several common container-types such as sequences (repeated), union types (oneof), and
key-value mappings (map) are also built in. Examples of more of these constructs:

message SearchResponse {

repeated Result results = 1;

}

message Result {

https://capnproto.org/
https://flatbuffers.dev/
https://flatbuffers.dev/flexbuffers.html
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string url = 1;

string title = 2;

repeated string snippets = 3;

}

message SampleMessage {

oneof test_oneof {

string name = 4;

SubMessage sub_message = 9;

}

}

2.3 The VLSIR Design Database Schema

VLSIR is the name of this work’s central design database, and of the broader software
system which operates on it. VLSIR is designed in ProtoBuf. Its design database schema is
authored in the ProtoBuf SDL. A simplified excerpt from the VLSIR schema, defining the
layout.Instance type, is included below.

// # Layout Instance

message Instance {

string name = 1; // Instance Name

Ref cell = 3; // Cell Reference

Point origin = 4; // Origin location

bool reflect = 6; // Reflection

int32 rotation = 7; // Rotation (deg)

}

The VLSIR schema defines such types for circuits, layout, spice-class simulation input and
output, and process technology. The schema format serves as a core exchange medium for
a variety of programs and libraries written in a variety of languages, with varying trade-offs
between designer productivity, performance, and ease of compatibility with related libraries.

2.4 Design of the VLSIR Software System

The broader VLSIR system, schematically depicted in Figure 2.2, is heavily inspired by the
LLVM [31] compiler platform, and by the FIRRTL system ([23], [32]) developed shortly
beforehand by colleagues here at UC Berkeley. Like LLVM and FIRRTL, VLSIR defines a
central design interchange format. Both LLVM and FIRRTL name this layer their Interme-
diate Representation (IR). The name VLSIR is in fact a portmanteau of two acronyms: the

https://github.com/vlsir/vlsir
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Figure 2.2: The VLSIR System

(quite dated) Very Large Scale Integration (VLSI) and intermediate representation. Where
LLVM and FIRRTL’s IRs are defined through the constructs of their respective implemen-
tation languages, VLSIR’s is defined in the protocol buffer SDL. All three projects build this
central data layer for the purposes of decoupling and reusing diverse front and back ends.

The roles of front-ends and back-ends differ somewhat between the three. In LLVM,
a front-end is (more or less) a programming language. The compilers for Rust and C++,
for example, differ principally in the front-end, which translates user-authored code into
LLVM’s core intermediate representations. A back-end is (again, more or less) a target
compiler platform. Examples generally include combinations of the target instruction set
(x86, ARM, RISC-V, etc), and potentially the target OS. FIRRTL has a similar concept of a
front-end, whereas its back-ends are hardware ”elaboration targets”, which might be ASIC
synthesis, FPGAs, or cloud-scale distributed processing environments.

VLSIR’s front-ends are also user-facing programming tools. Generally we have eschewed
designing altogether new languages (or ”DSL”s) and focused on providing libraries in ex-
isting, popular languages. These front ends include libraries for circuit design (chapter 3),
layout design (chapter 5), and several dedicated libraries targeting specific circuit families.
VLSIR’s back-ends are generally its interface to existing EDA software and data formats.
For example, a widely used back end focuses on executing SPICE-class simulation, parsing
and providing its results in schema-defined data structures.

The choice of ProtoBuf affords for a rich diversity of front and back ends, implemented in
a diversity of programming languages and featuring diverse needs for performance, portabil-
ity, and designer productivity. Protobuf’s efficient binary format is especially invaluable for
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VLSIR’s most information-rich set of data: that of IC layout. While [44] finds that alterna-
tive serialization systems can outperform protobuf in space-efficiency and in (de)serialization
runtime, the differences are, on VLSIR’s scale of demands, fairly immaterial. More important
to VLSIR, the protobuf ecosystem and surrounding tools are materially more developed than
the peer systems compared. At the scale of VLSIR’s needs, the shared high-level approach
is what dictates the bulk of performance; relative differences inject second-order effects.

VLSIR Circuits

To illustrate the design of the VLSIR schema, we highlight one of its core subcomponents:
circuit descriptions. VLSIR’s database schema includes a circuit subcomponent which
defines its circuit-level data model. The VLSIR circuit model is intentionally low-level,
similar to that of structural Verilog. The vlsir.circuit components are a core interchange
vessel for most programs using Hdl21, covered in chapter 3.

As in Hdl21 and Verilog, VLSIR’s principal element of hardware reuse is called its Module.
vlsir.circuit.Modules consist of:

• Instances of other Modules, or of ”headers” to externally-defined ExternalModules
• Signals, each of potentially non-unity width. Each vlsir.circuit.Signal is there-
fore similar to the bus or vector of many popular HDLs, or more specifically to the
packed array of Verilog. A subset of Signals are annotated with Port attributes which
indicate their availability for external connections.

• Connections there-between. Since Signals, including those used as Ports, have non-
unit bus widths, combinations to comprise their connections include sub-bus Slices as
well as series Concatenations. This is the principal difference between VLSIR’s model
and that of lower-level models such as common in SPICE languages; signals and ports
are all buses, and therefore can be combined in this variety of ways.

The principal collection of hardware content, vlsir.circuit.Package, is a collection of
Module definitions which may instantiate each other. The VLSIR Package might commonly
be named a ”library” in similar models. Each Package includes a dependency-ordered list
of Modules, as well as the headers to any ExternalModules it requires.

A simplified excerpt of the vlsir.circuit data schema:

//!

//! # vlsir Circuit Schema

//!

syntax = "proto3";

package vlsir.circuit;

import "utils.proto";

// # Package
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// A Collection of Modules and ExternalModules

message Package {

// Domain Name

string domain = 1;

// `Module` Definitions

repeated Module modules = 2;

// `ExternalModule` Headers

repeated ExternalModule ext_modules = 3;

// Description

string desc = 10;

}

// # Port

// An externally-visible `Signal` with a `Direction`.

message Port {

enum Direction {

INPUT = 0;

OUTPUT = 1;

INOUT = 2;

NONE = 3;

}

string signal = 1; // Reference to `Signal` by name

Direction direction = 2; // Port direction

}

// # Signal

// A named connection element, potentially with non-unit `width`.

message Signal {

// Signal Name

string name = 1;

// Bus Width

int64 width = 2;

}

// # Signal Slice

// Reference to a subset of bits of `signal`.

// Indices `top` and `bot` are both inclusive,

// similar to popular HDLs.

message Slice {

// Parent Signal Name

string signal = 1;

// Top Index
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int64 top = 2;

// Bottom Index

int64 bot = 3;

}

// Signal Concatenation

message Concat {

repeated ConnectionTarget parts = 1;

}

// # ConnectionTarget Union

// Enumerates all types that can be

// (a) Connected to Ports, and

// (b) Concatenated

message ConnectionTarget {

oneof stype {

string sig = 1; // Reference to `Signal` (name) `sig`

Slice slice = 2; // Slice into signals

Concat concat = 3; // Concatenation of signals

}

}

// # Port Connection

// Pairing between an Instance port (name)

// and a parent-module ConnectionTarget.

message Connection {

string portname = 1;

ConnectionTarget target = 2;

}

// Module Instance

message Instance {

// Instance Name

string name = 1;

// Reference to Module instantiated

vlsir.utils.Reference module = 2;

// Parameter Values

repeated vlsir.utils.Param parameters = 3;

// Port `Connection`s

repeated Connection connections = 4;

}
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// Module - the primary unit of hardware re-use

message Module {

// Module Name

string name = 1;

// Port List, referring to elements of `signals` by name

// Ordered as they will be in order-sensitive formats,

// such as typical SPICE netlist dialects.

repeated Port ports = 2;

// Signal Definitions, including externally-facing `Port`s

repeated Signal signals = 3;

// Module Instances

repeated Instance instances = 4;

// Parameters

repeated vlsir.utils.Param parameters = 5;

// Literal Contents, e.g. in downstream EDA formats

repeated string literals = 6;

}

// Spice Type, used to identify what a component is in spice

enum SpiceType {

// The default value is implicitly SUBCKT

SUBCKT = 0;

RESISTOR = 1;

CAPACITOR = 2;

INDUCTOR = 3;

MOS = 4;

DIODE = 5;

BIPOLAR = 6;

VSOURCE = 7;

ISOURCE = 8;

VCVS = 9;

VCCS = 10;

CCCS = 11;

CCVS = 12;

TLINE = 13;

}

// # Externally Defined Module

message ExternalModule {

// Qualified External Module Name

vlsir.utils.QualifiedName name = 1;
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// Description

string desc = 2;

// Port Definitions

// Ordered as they will be in order-sensitive formats,

// such as typical SPICE netlist dialects.

repeated Port ports = 3;

// Signal Definitions

repeated Signal signals = 4;

// Params

repeated vlsir.utils.Param parameters = 5;

// Spice Type, SUBCKT by default

SpiceType spicetype = 6;

}

References (or ”pointers”) between HDL objects are excessively common. Each Instance

in a Module needs some form of reference to whatever it should instantiate. Each Slice above
requires some indication as to which parent-Signal it is slicing. Markup-style languages tend
to lack native such reference capabilities. ProtoBuf is no exception. Unlike a typical exe-
cutable programming language model, rich with memory-address-values ”pointers” between
objects, markup languages lack such an implicit address space. Schema-authors are gener-
ally required to design such mechanisms for themselves. VLSIR is no different. Most such
references in VLSIR are string-based. For example the signal (parent) field of each Slice

is not a memory address, or a Signal message itself, but a string-valued ”reference” to its
name.

The core Instance-Module reference-referent pair has a slightly more elaborate form.
Modules may instantiate modules defined outside their parent Package. These ”global” ref-
erences use a domain-qualified name. Each Package includes a (within any given program)
necessarily unique domain name-string. References to modules within the same package
do not require such a domain-qualifier; their parent domain is essentially the implicit de-
fault. References to other packages use a QualifiedName-based combination of domain and
module-name.

// # Domain-Qualified Name

// Refers to an object outside its own namespace,

// at the global domain `domain`.

message QualifiedName {

string domain = 1;

string name = 2;

}

// # Reference

// Pointer to another message,
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// either defined in its own namespace (`local`)

// or another (`external`).

message Reference {

oneof to {

// Local string-valued reference.

// Typically the `name` or similar field of the referent.

string local = 1;

// Domain-qualified external reference

QualifiedName external = 2;

}

}

We envision the VLSIR reference system extending in a few more directions, e.g. to
referents value with web URLs or database primary keys. The flexibility of the union-type
based Reference system makes such expansions straightforward.
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Chapter 3

Analog HDL

The primary high-productivity interface to producing VLSIR circuits and simulations is
the Hdl21 hardware description library. Hdl21 is a Python library, targeted and optimized
for analog and custom integrated circuits, and for maximum productivity with minimum
fancy-programming skill. Hdl21 exposes the root-level concepts that circuit designers know
and think in terms of, in the most accessible programming context available. It is principally
designed as a replacement for the lingua franca of analog and custom circuits - the graphical
schematic.

3.1 A (Somewhat) Brief Intro to Hdl21

Modules

Hdl21’s primary unit of hardware reuse is the Module. It intentionally shares this name with
Verilog’s module and Chisel’s Module, and also bears a strong resemblance to VHDL’s entity
and SPICE’s subckt. Hdl21 Modules are ”chunks” of reusable, instantiable hardware. Inside
they are containers of a handful of hardware types, including:

• Instances of other Modules
• Connections between them, defined by Signals and Ports

• Fancy combinations thereof

An example Module:

import hdl21 as h

m = h.Module(name="MyModule")

m.i = h.Input()

m.o = h.Output(width=8)

https://github.com/dan-fritchman/Hdl21
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m.s = h.Signal()

m.a = AnotherModule()

In addition to the procedural syntax shown above, Modules can also be defined through
a class based syntax by applying the hdl21.module decorator to a class-definition.

import hdl21 as h

@h.module

class MyModule:

i = h.Input()

o = h.Output(width=8)

s = h.Signal()

a = AnotherModule()

The two Module definitions above produce identical results. The declarative style can be
much more natural and expressive in many contexts, especially for designers familiar with
popular HDLs. This class-based syntax is a pattern in Hdl21 usage. The Bundle and Sim

objects covered in subsequent sections also make use of it.

Signals

Hdl21’s primary connection type is its Signal. Hdl21 signals are similar to Verilog’s wire.
Each Signal has an integer-valued bus width field and serves as a multi-bit ”bus”. The
content of Hdl21 signals is not typed; each single-bit slice of a Signal essentially represents
an electrical wire.

A subset of Signals are exposed outside their parent Module. These externally-connectable
signals are referred to as Ports. Hdl21 provides four port directions: Input, Output, Inout,
and None. The last creates a directionless (or direction unspecified) port akin to those of
common spice-level languages.

Creation of Module signal-attributes is generally performed by the built-in Signal, Port,
Input, and Output ”constructor functions”. All of these produce the same Signal type as
output. Signals have additional metadata that indicates their port visibility, direction, and
usage intent. The ”alternate constructors” serve as convenient shorthands for dictating this
metadata, again often more comfortable for designers coming from popular HDLs.

import hdl21 as h

@h.module

class MyModule:

a, b = 2 * h.Input()

c, d, e = h.Outputs(3, width=16)

z, y, x, w = 4 * h.Signal()



CHAPTER 3. ANALOG HDL 22

Connection Semantics

Popular HDLs generally feature one of two forms of connection semantics. Verilog, VHDL,
and most dedicated HDLs use ”connect by call” semantics, in which signal-objects are first
declared, then passed as function-call-style arguments to instances of other modules.

module my_module();

logic a, b, c; // Declare signals

another_module i1 (a, b, c); // Create an instance

another_module i2 (.a(a), .b(b), .c(c)); // Connected by name

endmodule

Chisel, in contrast, uses ”connection by assignment” - more literally using the walrus :=
operator. Instances of child modules are created first, and their ports are directly walrus-
connected to one another. No local-signal objects ever need be declared in the instantiating
parent module.

class MyModule extends Module {

// Create Module Instances

val i1 = Module(new AnotherModule)

val i2 = Module(new AnotherModule)

// Wire them directly to one another

i1.io.a := i2.io.a

i1.io.b := i2.io.b

i1.io.c := i2.io.c

}

Each can be more concise and expressive depending on context. Hdl21 Modules support
both connect-by-call and connect-by-assignment forms.

Connections by assignment are performed by assigning either a Signal or another in-
stance’s Port to an attribute of a Module-Instance.

# Create a module

m = h.Module()

# Create its internal Signals

m.a, m.b, m.c = h.Signals(3)

# Create an Instance

m.i1 = AnotherModule()

# And wire them up

m.i1.a = m.a

m.i1.b = m.b

m.i1.c = m.c
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Instances of Hdl21 Modules provide by-name dot-access to their port objects. This allows
for connect-by-assignment without creating parent-module Signals:

# Create a module

m = h.Module()

# Create the Instances

m.i1 = AnotherModule()

m.i2 = AnotherModule()

# And wire them up

m.i1.a = m.i2.a

m.i1.b = m.i2.b

m.i1.c = m.i2.c

As in Verilog and VHDL, the semantics of calling an Hdl21 module-instance are to provide
it with connections.

# Create a module

m = h.Module()

# Create the Instances

m.i1 = AnotherModule()

m.i2 = AnotherModule()

# Call one to connect them

m.i1(a=m.i2.a, b=m.i2.b, c=m.i2.c)

These connection-calls can also be performed inline, as the instances are being created.

# Create a module

m = h.Module()

# Create the Instance `i1`

m.i1 = AnotherModule()

# Create another Instance `i2`, and connect to `i1`

m.i2 = AnotherModule(a=m.i1.a, b=m.i1.b, c=m.i1.c)

Unlike in many dedicated HDLs, connection-calls can be made ”in pieces”, and can be
”overridden” by further connection-calls.

# Same as above

m = h.Module()

m.i1 = AnotherModule()

# Now only connect part of `i2`

m.i2 = AnotherModule(a=m.i1.a)

# Connect some more

m.i2(b=m.i1.b, c=m.i1.c)

# And change our mind about one

m.i2(c=m.i1.a)
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How Module Works

Many or most Hdl21 Modules are written such that they look like class definitions. They are
not. In truth all modules share the same (Python) type - Module itself. Module is a ”final”
type; it is defined to explicitly disallow sub-typing:

class Module:

# A simplified excerpt from `h.Module`

def __init_subclass__(cls, *_, **__):

raise RuntimeError("Sub-Typing `Module` is not supported")

Aside: as a design philosophy, Hdl21 generally eschews object-oriented practices in its
user-facing interfaces. Several of its central types including Module and Bundlemake this ban
explicit. Hdl21 does make use of OOP techniques internally, and some at the ”power user”
(e.g. PDK package developer) level, primarily for defining its many hierarchy-traversing data
model visitors.

Instead Hdl21 makes heavy use of the decorator pattern, particularly applying decorators
to class definitions of related objects. The module (lower-case) decorator function applied
to so many class bodies does something like:

def module(cls: type) -> Module:

# Create the `Module` object

module = Module(name=cls.__name__)

# Take a lap through the class body,

# add everything to the `Module`

for item in cls:

module.add(item)

# And return the Module

return module

Note the input cls is a type. Python classes are runtime objects which can be manip-
ulated like any other. E.g. they can serve as the argument to functions (as in module) and
can serve as the return value from functions (as done by many Generators). The module

function takes one, trolls through all of its contents, and passes them along to Module.add.
Type checking and schema organization, covered in upcoming sections, and implemented by
add. When used as a class decorator, the type cls only exists during the execution of the
module function body, and is then quickly dropped.

The Python language class-definition semantics have a number of helpful properties in
defining typical hardware content, particularly linked modular sets of data we generally
refer to as ”modules”. The language defines the class body to be an execution namespace
which runs from top to bottom. Assignments in this class-level namespace are immediately
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available both as raw identifiers, and in a ”class dictionary”, a string to value mapping of
all the class-object’s attributes. For example:

class C:

a = 1

b = a + 2

print(C.__dict__)

# {'a': 1, 'b': 3, ...}

This capacity to refer to attributes once they are defined proves particularly handy.
Hardware modules are comprised of a linked, named set of hardware attributes. It is common
to conceptualize this set as a graph, or as various kinds of graphs depending on context. In
both Python’s language-level class body definitions and in Hdl21 modules, the edges between
these graph nodes are the language’s native ”pointers” (references).

It is possible, and even commonplace in comparable pieces of software, to define these
edges otherwise. Common tactics including using name-based string references, paired with
a central repository mapping all available names to their referents. This removes much
of the fluidity of programs using the referents (notably, one must always have a reference
available to the central repository!). And it erodes much of the value provided by the
language’s (somewhat) recently adopted gradual typing, generally borne of IDE aids, linters,
and similar type-system-based programmer aids.

The class-body is a convenient mechanism for defining what Module is at bottom: a
structured collection of these hardware attributes. Each Module’s core data is a nested
namespace of name-value mappings, one per each primary child HDL type, plus one overall
namespace including their intersection. Conceptually Module is:

@dataclass

class Module:

ports: Dict[str, Signal]

signals: Dict[str, Signal]

instances: Dict[str, Instance]

instarrays: Dict[str, InstanceArray]

instbundles: Dict[str, InstanceBundle]

bundles: Dict[str, BundleInstance]

namespace: Dict[str, ModuleAttr] # Combination of all these

Where each Dict[str, X] is a mapping from a string name which is also an attribute of
X. As such, Module doesn’t really do all that much. (I.e. it doesn’t have many methods, and
is almost ”plain old data”.) Module includes only two API methods: add and get. Both
operate on its namespace of HDL attributes. Addition places attributes into their associated
type-based container, after checking them for valid types and naming. Module.get simply
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retrieves them by name. This structured arrangement of Module is nonetheless a central
facet of the Hdl21 data model. Most code which processes it lies elsewhere, in hierarchical
traversals performed by Hdl21’s elaborators, PDK compilers, and other visitors.

Module has one more central feature, directly attributable to its host language’s capa-
bility: its by-name dot-access assignments and references. Python allows types to define
override methods for setting and getting attributes ( setattr and getattr ) which
Hdl21 uses extensively. These by and large route to Module.add and Module.get respec-
tively. Their inclusion is nonetheless a central facet of what makes Hdl21 feel like a native,
dedicated language. Designers accustomed to dedicated HDLs are generally familiar with
making dot-access references, e.g. to hierarchical design objects. Hdl21 makes this a central
part of the process of designing and constructing them. This is also a central motivation for
why the Module API is so minimal. The intent is that module dot-accesses usually refer to
HDL objects, i.e. they are named references to the signals, ports, instances, etc. that the
module-designer has already added.

m = h.Module()

m.inp = h.Input() # __setattr__

m.add(h.Output(name="out")) # `m.add` is a method

print(m.get("inp").width) # As is `m.get`

print(m.out.width) # Most other `m.x`'s refer to its HDL objects

Generators

Hdl21 Modules are (almost) ”plain old data”. The power of embedding Modules in a general-
purpose programming language lies in allowing code to create and manipulate them. Hdl21’s
Generators are functions which produce Modules, and have a number of built-in features
to aid embedding in a hierarchical hardware tree.

In other words:

• Modules are ”structs”. Generators are functions which return them.
• Generators are code. Modules are data.

Generators are python functions, or more specifically wrappers around Python functions
which:

• Accept a single argument, by convention named params, which is an Hdl21 paramclass
(covered in the next section). And,

• Return an Hdl21 Module

@h.generator

def MyFirstGenerator(params: MyParams) -> h.Module:

return h.Module()
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Generator function bodies execute arbitrary Python code, and are free to do whatever
they like: perform complex optimizations, make requests to HTTP servers, query process-
technology parameters, and the like. Generators may define Modules either procedurally, via
the class-style syntax, or with any combination of the two.

@h.generator

def MySecondGenerator(params: MyParams) -> h.Module:

@h.module

class MySecondGen:

i = h.Input(width=params.width)

return MySecondGen

@h.generator

def MyThirdGenerator(params: MyParams) -> h.Module:

# Create an internal Module

@h.module

class Inner:

i = h.Input(width=params.width)

# Manipulate it a bit

Inner.o = h.Output(width=2 * Inner.i.width)

# Instantiate that in another Module

@h.module

class Outer:

inner = Inner()

# And manipulate that some more too

Outer.inp = h.Input(width=params.width)

return Outer

Parameters

Generators must take a single argument, by convention named params, which is a collection
of hdl21.Param objects. Each Param includes a datatype field which is type-checked at
runtime. Each also requires string description desc, forcing a home for designer intent as to
the purpose of the parameter. Optional parameters include a default-value, which must be
an instance of dtype, or a default factory function, which must accept no arguments and
return a value of type dtype.

npar = h.Param(dtype=int, desc="Number of parallel fingers", default=1)
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The collections of these parameters used by Generators are called param-classes, and
are typically formed by applying the hdl21.paramclass decorator to a class-body-full of
hdl21.Params:

import hdl21 as h

@h.paramclass

class MyParams:

# Required

width = h.Param(dtype=int, desc="Width. Required")

# Optional - including a default value

height = h.Param(dtype=int, desc="Height. Optional", default=11)

Each param-class is defined similarly to the Python standard-library’s dataclass. The
paramclass decorator converts these class-definitions into type-checked dataclasses, with
fields using the dtype of each parameter.

p = MyParams(width=8, text="Your Favorite Module")

assert p.width == 8 # Passes. Note this is an `int`, not a `Param`

assert p.text == "Your Favorite Module" # Also passes

A Note on Parameterization

Hdl21 Generators have parameters. Modules do not.
This is a deliberate decision, which in this sense makes hdl21.Module less feature-rich

than the analogous module concepts in existing HDLs (Verilog, VHDL, and even SPICE).
These languages support what might be called ”static parameters” - relatively simple re-
lationships between parent and child-module parameterization. Setting, for example, the
width of a signal or number of instances in an array is straightforward. But more elabo-
rate parameterization-cases are either highly cumbersome or altogether impossible to create.
Hdl21, in contrast, exposes all parameterization to the full Python-power of its generators.

Just what does h.generator. . . do?

One may wonder: just what is the difference between these two functions:

@h.generator

def IsGenerator(params: MyParams) -> h.Module:

m = h.Module()

# ... Add stuff to `m`

return m
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# Same thing, without the `@h.generator` decorator

def NotGenerator(params: MyParams) -> h.Module:

m = h.Module()

# ... Add the same stuff to `m`

return m

In short, these are identical function definitions, one of which is decorated by h.generator
and therefore wrapped in an h.Generator object. In truth, both can work just fine. Ad-
vanced usage in fact tends to mix and match the two, based on the typically (but not always)
helpful aids provided by h.generator. The function IsGenerator is run as-is, without mod-
ification, by the h.Generator wrapper. The generator machinery adds a few facilities, with
the general intent of embedding calls to IsGenerator in a hierarchical hardware tree.

First and foremost are two related tasks: naming and caching. In many use-cases Hdl21
ultimately expects to produce code in legacy EDA formats (Verilog, SPICE, etc) which lack
the namespacing feature of popular modern programming languages. Moreover these formats
tend to reject input in which a module is ”multiply defined”, even if with identical contents.
This might, absent the h.generator’s naming and caching facilities, generate problems for
programs like so:

def G(params: Params) -> h.Module:

m = h.Module()

m.inp = h.Input(width=params.width)

return m

@h.module

class Top:

g1 = G(Params(width=1))

g4 = G(Params(width=4))

Here a function G which creates and returns a parametric Module is called twice to
produce two parametrically different instances. A naive translation to SPICE-level netlist
code might produce something like:

.subckt Top

xg1 g

xg4 g

.ends

.subckt g inp

.ends

* This is the problem case: two identically *named* modules
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.subckt g inp_3 inp_2 inp_1 inp_0

.ends

Hdl21 generators provide a built-in naming facility for managing these conflicts. Gener-
ated modules are named by a few rules:

• If the returned module is anonymous, indicated by a None value for its name field, it
is initially given the name of the generator function. This would be the case for a
generator-version of the function G above.

• If the generator has a non-zero number of parameters, a string representation of the
value of those parameters is then appended to the module name.

The process of uniquely naming each paramclass value similarly has a few rules:

• A small set of built-in Python types are denoted as ”scalars”. These include strings,
built-in numeric types, and options (None-ables) thereof.

• If a parameter class is comprised entirely of scalars, naming attempts to produce a
readable name of the form field1=val1 field2=val2, where each val is the string
representation of the scalar value.

• If either (a) the parameter class includes non-scalar parameters, or (b) attempts to
produce a readable name generate strings of greater than a maximum length, naming
is instead done based on a hash of the parameter values. Keeping the unique name to
a reasonable maximum length is again a constraint of the desire to export into legacy
EDA formats, many of which feature fairly short maximum name lengths.

• Hash-based naming begins by taking a JSON-encoded serialization of the parameter
values. This is then hashed using the MD5 hashing algorithm, with random seeding
(generally used for security) disabled to enable deterministic naming across processes
and runs. The 32 character hex digest is then used as the unique parameter-value
name. Note the JSON serialization step cannot natively be performed by many possible
parameter types, particularly compound objects. These include many Hdl21 objects
which are often valuable as parameters - e.g. Modules and Generators themselves.
Hdl21 includes built-in ”naming only” serialization for these objects, which is used in
the hash-based naming process. This serialization is not intended to be used for any
other purpose. It generally hashes (something like) the definition path of the object
in question, with no regard for its contents. It therefore cannot be used for serializing
those contents.

Examples of the unique naming process:

@h.paramclass

class Inner:

i = h.Param(dtype=int, desc="Inner int-field")

@h.paramclass
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class Outer:

inner = h.Param(dtype=Inner, desc="Inner fields")

f = h.Param(dtype=float, desc="A float", default=3.14159)

i = Inner(11)

print(h.params._unique_name(i))

# "i=11"

o = Outer(inner=Inner(11))

print(h.params._unique_name(o))

# "3dcc309796996b3a8a61db66631c5a93"

Generator’s second task, tightly related to unique-naming, is caching. Caching is most
commonly used as a performance tactic, to avoid re-calculating lengthy and repeated com-
putations. It serves this purpose for Hdl21 generators, especially complex ones. But its
primary goal is elsewhere, again rooted in the desire to export legacy EDA formats with
their lack of namespacing. Consider editing our prior example to make two identical calls to
G:

def G(params: Params) -> h.Module:

m = h.Module(name="G")

m.inp = h.Input(width=params.width)

return m

@h.module

class Top:

g1a = G(Params(width=1))

g1b = G(Params(width=1))

Here the function G is called twice, and produces two modules each with identical internal
content. The naive translation to SPICE-level netlist code might produce something like:

.subckt Top

xg1a g

xg2a g

.ends

.subckt g inp

.ends

* Same problem: two identically *named* modules

.subckt g inp

.ends
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Note that while the modules returned by successive calls to G have identical content,
they are nonetheless distinct objects in memory. Exporting both - particularly, the identical
names of both - to legacy EDA formats would generally produce redefinition errors. Wher-
ever possible, Hdl21 avoids producing identical modules in the first place. Each call to a
Generator is logged and cached. Successive calls to the same function with identical param-
eter values return the same object. This ensures each generator-parameters pair produces
the same module on each call.

Note the use of such caching places a constraint on generator parameters: they must be
hashable to serve as cache keys. Most of Hdl21’s built-in types, e.g. Module, Generator,
and Signal, are built to support such hashing, generally on an ”object identity” basis. This
is of course not the case for all possible parameter values, including many common types
such as the built-in list. Generators with such unhashable parameters can opt out of the
caching behavior via a boolean flag to the generator decorator-function. These generators
then take on responsibility for ensuring that each module produced has a unique name.

Generators third and final task is enforcement. (This may be a feature or a bug per
individual perspective.) Hdl21 was designed in the wake of a number of other academic
analog-design libraries, and had the opportunity to observe their usage. One take-away:
circuit designers are often not experienced programmers, and are accordingly unacquainted
with countless practices that tend to make code more debuggable and understandable, both
by others and by their future selves. Hdl21, and particularly its generator facility, attempts
to enforce a few of these practices. These include:

• Generator parameters must be organized into a type
• Each parameter has a required ”docstring” description
• Each parameter has a required datatype
• Parameter values are type-checked at runtime
• Generator return values (and their annotations) are similarly type-enforced at runtime

The latter practices regarding runtime type-strictness are pervasive throughout Hdl21.
Generator parameters extend these practices to its most prominent user-facing interface.

Prefixed Numeric Parameters

Hdl21 provides an SI prefixed numeric type Prefixed, which is especially common for phys-
ical generator parameters. Each Prefixed value is a combination of the Python standard
library’s Decimal and an enumerated SI Prefix:

@dataclass

class Prefixed:

number: Decimal # Numeric Portion

prefix: Prefix # Enumerated SI Prefix

Most of Hdl21’s built-in Generators and Primitives use Prefixed extensively, for a
key reason: floating-point rounding. It is commonplace for physical parameter values - e.g.

https://www.nist.gov/pml/owm/metric-si-prefixes
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the physical width of a transistor - to have allowed and disallowed values. And those values
do not necessarily land on IEEE floating-point values! Hdl21 generators are often used to
produce legacy-HDL netlists and other code, which must convert these values to strings.
Prefixed ensures a way to do this at arbitrary scale without the possibility of rounding
error.

Prefixed values rarely need to be instantiated directly. Instead Hdl21 exposes a set of
common prefixes via their typical single-character names:

f = FEMTO = Prefix.FEMTO

p = PICO = Prefix.PICO

n = NANO = Prefix.NANO

µ = MICRO = Prefix.MICRO

m = MILLI = Prefix.MILLI

K = KILO = Prefix.KILO

M = MEGA = Prefix.MEGA

G = GIGA = Prefix.GIGA

T = TERA = Prefix.TERA

P = PETA = Prefix.PETA

UNIT = Prefix.UNIT

Multiplying by these values produces a Prefixed value.

from hdl21.prefix import µ, n, f

# Create a few parameter values using them

Mos.Params(

w=1 * µ,
l=20 * n,

)

Capacitor.Params(

c=1 * f,

)

These multiplications are the most common way to create Prefixed parameter values.
hdl21.prefix also exposes an e() function, which produces a prefix from an integer expo-
nent value:

from hdl21.prefix import e, µ

11 * e(-6) == 11 * µ # True

These e() values are also most common in multiplication expressions, to create Prefixed
values in ”floating point” style such as 11 * e(-9).
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VLSIR Import & Export

Hdl21’s hardware data model is designed to be serialized to and deserialized from the VLSIR
circuit and spice schemas. Exporting to industry-standard netlist formats is a particularly
common operation. Hdl21 wraps and exposes all of VLSIR’s supported netlist features and
formats.

import sys

import hdl21 as h

@h.module

class Rlc:

p, n = h.Ports(2)

res = h.Res(r=1 * e(3))(p=p, n=n)

cap = h.Cap(c=1 * e(-6))(p=p, n=n)

ind = h.Ind(l=1 * e(-9))(p=p, n=n)

# Write a spice-format netlist to stdout

h.netlist(Rlc, sys.stdout, fmt="spice")

Spice-Class Simulation

Hdl21 includes drivers for popular spice-class simulation engines commonly used to evaluate
analog circuits. The hdl21.sim package includes a wide variety of spice-class simulation
constructs, including:

• DC, AC, Transient, Operating-Point, Noise, Monte-Carlo, Parameter-Sweep and Cus-
tom (per netlist language) Analyses

• Control elements for saving signals (Save), simulation options (Options), including ex-
ternal files and contents (Include, Lib), measurements (Meas), simulation parameters
(Param), and literal netlist commands (Literal)

The entrypoint to Hdl21-driven simulation is the simulation-input type hdl21.sim.Sim.
Each Sim includes:

• A testbench Module tb, and
• A list of unordered simulation attributes (attrs), including any and all of the analyses,
controls, and related elements listed above.

Example:

import hdl21 as h

from hdl21.sim import *
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@h.module

class MyModulesTestbench:

# ... Testbench content ...

# Create simulation input

s = Sim(

tb=MyModulesTestbench,

attrs=[

Param(name="x", val=5),

Dc(var="x", sweep=PointSweep([1]), name="mydc"),

Ac(sweep=LogSweep(1e1, 1e10, 10), name="myac"),

Tran(tstop=11 * h.prefix.p, name="mytran"),

SweepAnalysis(

inner=[Tran(tstop=1, name="swptran")],

var="x",

sweep=LinearSweep(0, 1, 2),

name="mysweep",

),

MonteCarlo(

inner=[Dc(var="y", sweep=PointSweep([1]), name="swpdc")],

npts=11,

name="mymc",

),

Save(SaveMode.ALL),

Meas(analysis="mytr", name="a_delay", expr="trig_targ_something"),

Include("/home/models"),

Lib(path="/home/models", section="fast"),

Options(reltol=1e-9),

],

)

# And run it!

s.run()

Sim also includes a class-based syntax similar to Module and Bundle, in which simulation
attributes are named based on their class attribute name:

import hdl21 as h

from hdl21.sim import *

@sim

class MySim:
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tb = MyModulesTestbench

x = Param(5)

y = Param(6)

mydc = Dc(var=x, sweep=PointSweep([1]))

myac = Ac(sweep=LogSweep(1e1, 1e10, 10))

mytran = Tran(tstop=11 * h.prefix.PICO)

mysweep = SweepAnalysis(

inner=[mytran],

var=x,

sweep=LinearSweep(0, 1, 2),

)

mymc = MonteCarlo(

inner=[Dc(var="y", sweep=PointSweep([1]), name="swpdc")], npts=11

)

delay = Meas(analysis=mytran, expr="trig_targ_something")

opts = Options(reltol=1e-9)

save_all = Save(SaveMode.ALL)

a_path = "/home/models"

include_that_path = Include(a_path)

fast_lib = Lib(path=a_path, section="fast")

MySim.run()

Note that in these class-based definitions, attributes whose names don’t really matter
such as save all above can be named anything, but must be assigned into the class, not
just constructed.

Class-based Sim definitions retain all class members which are SimAttrs and drop all
others. Non-SimAttr-valued fields can nonetheless be handy for defining intermediate values
upon which the ultimate SimAttrs depend, such as the a path field in the example above.

Classes decorated by sim have a single special required field: a tb attribute which sets the
simulation testbench. A handful of names are disallowed in sim class-definitions, generally
corresponding to the names of the Sim class’s fields and methods such as attrs and run.

Each sim also includes a set of methods to add simulation attributes from their keyword
constructor arguments. These methods use the same names as the simulation attributes (Dc,
Meas, etc.) but incorporating the python language convention that functions and methods
be lowercase (dc, meas, etc.). Example:

# Create a `Sim`

s = Sim(tb=MyTb)



CHAPTER 3. ANALOG HDL 37

# Add all the same attributes as above

p = s.param(name="x", val=5)

dc = s.dc(var=p, sweep=PointSweep([1]), name="mydc")

ac = s.ac(sweep=LogSweep(1e1, 1e10, 10), name="myac")

tr = s.tran(tstop=11 * h.prefix.p, name="mytran")

noise = s.noise(

output=MyTb.p,

input_source=MyTb.v,

sweep=LogSweep(1e1, 1e10, 10),

name="mynoise",

)

sw = s.sweepanalysis(

inner=[tr], var=p, sweep=LinearSweep(0, 1, 2), name="mysweep"

)

mc = s.montecarlo(

inner=[Dc(var="y", sweep=PointSweep([1]), name="swpdc"),],

npts=11, name="mymc",

)

s.save(SaveMode.ALL)

s.meas(analysis=tr, name="a_delay", expr="trig_targ_something")

s.include("/home/models")

s.lib(path="/home/models", section="fast")

s.options(reltol=1e-9)

# And run it!

s.run()

Primitives and External Modules

The leaf-nodes of each hierarchical Hdl21 circuit are generally defined in one of two places:

• Generic Primitive elements, defined by Hdl21. These include transistors, resistors,
capacitors, and other irreducible components.

• ExternalModules, defined outside Hdl21. Such ”module wrappers”, which might al-
ternately be called ”black boxes”, are common for including circuits from other HDLs.

Primitives

Drawing an analogy to general-purpose programming languages, Hdl21’s Primitives are
its ”built-in types”. Figure 3.1 illustrates this comparison. In every typed programming
language (or ”system”), programmers define a data hierarchy of their target domain. Layers
in this hierarchy are often called ”structs” or ”classes”, and ideally map onto the reusable
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entities in the problem domain (e.g. Figure 3.1’ s’ League and Player). The system must
ultimately supply the lowest-level types which fill these hierarchies. Numeric types, strings,
and pointers are common examples. Hdl21’s analogous hierarchy is of Module definitions,
each of which is a ”struct” of hardware content. It similarly must provide the lowest-level
atomic types.

Figure 3.1: Primitives in a Typical Programming Language, and in Hdl21

These atomic elements are Hdl21’s Primitives, provided in its primitives library. The
content of the Hdl21 primitives library strongly resembles that of a typical SPICE simulation
program - MOS and bipolar transistors, passives, ideal sources, and the like. Simulation-level
behavior of these elements is typically defined by the internals of simulation tools and other
EDA software.

Hdl21 primitives come in ideal and physical flavors. The difference is most frequently
relevant for passive elements, which can for example represent either (a) technology-specific
passives, e.g. a MIM or MOS capacitor, or (b) an ideal capacitor. Some element-types have
solely physical implementations, some are solely ideal, and others include both.

The hdl21.primitives library content is summarized in table 3.1.
Most primitives have fairly verbose names (e.g. VoltageControlledCurrentSource,

IdealResistor), but also expose short-form aliases, both in the hdl21 and hdl21.primitives
namespaces. The IdealResistor primitive, for example, is also exported as each of R, Res,
Resistor, IdealR, and IdealRes.
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Name Description Type

Mos Mos Transistor PHYSICAL
IdealResistor Ideal Resistor IDEAL
PhysicalResistor Physical Resistor PHYSICAL
ThreeTerminalResistor Three Terminal Resistor PHYSICAL
IdealCapacitor Ideal Capacitor IDEAL
PhysicalCapacitor Physical Capacitor PHYSICAL
ThreeTerminalCapacitor Three Terminal Capacitor PHYSICAL
IdealInductor Ideal Inductor IDEAL
PhysicalInductor Physical Inductor PHYSICAL
ThreeTerminalInductor Three Terminal Inductor PHYSICAL
PhysicalShort Short-Circuit/ Net-Tie PHYSICAL
DcVoltageSource DC Voltage Source IDEAL
PulseVoltageSource Pulse Voltage Source IDEAL
CurrentSource Ideal DC Current Source IDEAL
VoltageControlledVoltageSource Voltage Controlled Voltage Source IDEAL
CurrentControlledVoltageSource Current Controlled Voltage Source IDEAL
VoltageControlledCurrentSource Voltage Controlled Current Source IDEAL
CurrentControlledCurrentSource Current Controlled Current Source IDEAL
Bipolar Bipolar Transistor PHYSICAL
Diode Diode PHYSICAL

Table 3.1: Hdl21 Primitives Library

ExternalModules

Alternately Hdl21 includes an ExternalModule which defines the interface to a module-
implementation outside Hdl21. These external definitions are common for instantiating
technology-specific modules and libraries. Other popular modern HDLs refer to these as
module black boxes. An example ExternalModule:

import hdl21 as h

from hdl21.prefix import µ
from hdl21.primitives import Diode

@h.paramclass

class BandGapParams:

ratio = h.Param(

dtype=int,

desc="Bipolar Ratio",
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default=8,

)

BandGap = h.ExternalModule(

name="BandGap",

desc="Example ExternalModule, defined outside Hdl21",

port_list=[h.Port(name="vref"), h.Port(name="enable")],

paramtype=BandGapParams,

)

Both Primitives and ExternalModules have names, ordered Ports, and a few other
pieces of metadata, but no internal implementation: no internal signals, and no instances of
other modules. Unlike Modules, both do have parameters. Primitives each have an associ-
ated paramclass, while ExternalModules can optionally declare one via their paramtype at-
tribute. Their parameter-types are limited to a small subset of those possible for Generators,
primarily limited by the need to need to provide them to legacy HDLs.

Primitives and ExternalModules can be instantiated and connected in all the same
styles as Modules:

# Continuing from the snippet above:

params = BandGapParams(ratio=15)

@h.module

class BandGapPlus:

vref, enable = h.Signals(2)

# Instantiate the `ExternalModule` defined above

bg = BandGap(params)(vref=vref, enable=enable)

# ...Anything else...

Process Technologies

Designing for a specific implementation technology (or ”process development kit”, or PDK)
with Hdl21 can use any of (or a combination of) a few routes:

• Instantiate ExternalModules corresponding to the target technology. These would
commonly include its process-specific transistor and passive modules, and potentially
larger cells, for example from a cell library. Such external modules are frequently
defined as part of a PDK (python) package, but can also be defined anywhere else,
including inline among Hdl21 generator code.

• Use hdl21.Primitives, each of which is designed to be a technology-independent
representation of a primitive component. Moving to a particular technology then
generally requires passing the design through an hdl21.pdk converter.
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• Use module-valued parameters to provide the PDK devices as generator arguments.
This tactic is commonly called control inversion, and more specifically control inversion
parameters here.

Hdl21 PDKs are Python packages which generally include two primary elements:

• (a) A library of ExternalModules describing the technology’s cells, and
• (b) A compile conversion-method which transforms a hierarchical Hdl21 tree, mapping
generic hdl21.Primitives into the tech-specific ExternalModules.

Hdl21’s source repository includes the PDK packages for several popular open-source
PDKs, including the academic predictive ASAP7 technology, and the fabricatable SkyWater
130nm technology.

import hdl21 as h

import sky130_hdl21

nfet = sky130_hdl21.modules.sky130_fd_pr__nfet_01v8

pfet = sky130_hdl21.modules.sky130_fd_pr__pfet_01v8

@h.module

class SkyInv:

""" An inverter, demonstrating the use of PDK modules """

# Create some IO

i, o, VDD, VSS = 4 * h.Port()

# And create some transistors!

p = pfet(w=1, l=1)(d=o, g=i, s=VDD, b=VDD)

n = nfet(w=1, l=1)(d=o, g=i, s=VSS, b=VSS)

Process-portable modules can instead use Hdl21 Primitives, which can be compiled to
a target technology:

from hdl21.primitives import Nmos, Pmos, MosVth

@h.module

class Inv:

i, o, VDD, VSS = 4 * h.Port() # Same IO

# And now create some generic transistors!

p = Pmos(w=1*µ, l=1*µ, vth=MosVth.STD)(d=o, g=i, s=VDD, b=VDD)

n = Nmos(w=1*µ, l=1*µ, vth=MosVth.STD)(d=o, g=i, s=VSS, b=VSS)

https://pypi.org/project/asap7-hdl21/
https://pypi.org/project/sky130-hdl21/
https://pypi.org/project/sky130-hdl21/


CHAPTER 3. ANALOG HDL 42

Compiling the generic devices to a target PDK then just requires a pass through the
PDK’s compile() method:

import hdl21 as h

import sky130_hdl21

sky130_hdl21.compile(Inv) # Produces the same content as `SkyInv` above

Hdl21 Generators may alternately choose to accept their Modules, ExternalModules, or
Primitives as parameters. For example:

@h.paramclass

class InvParams:

nmos = h.Param(

dtype=h.Instantiable,

desc="Nmos Module",

default_factory=h.primitives.Nmos,

)

pmos = h.Param(

dtype=h.Instantiable,

desc="Pmos Module",

default_factory=h.primitives.Pmos,

)

@h.generator

def Inv(params: InvParams) -> h.Module:

@h.module

class Inv:

i, o, VDD, VSS = 4 * h.Port() # Same IO

# And now create some (parameterized) transistors!

p = params.pmos(d=o, g=i, s=VDD, b=VDD)

n = params.nmos(d=o, g=i, s=VSS, b=VSS)

return Inv

Here the transistors to be instantiated in Inv are provided as parameters. This is an
excessively handy knock-on effect of Modules, external wrappers thereof, and PDKs all being
rich Python objects: they’re all just more variables in the program. This ”control inversion
parameters” style extends to any target technology, and to the built-in generic primitives.

import sky130_hdl21
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# Create a tech-specific, Sky130 version of that `Inv`

SkyInv = Inv(

# Note these dimensions are still microns!

pmos=sky130_hdl21.modules.sky130_fd_pr__pfet_01v8(w=1, l=1),

nmos=sky130_hdl21.modules.sky130_fd_pr__nfet_01v8(w=1, l=1),

)

Higher-level generators can alternately create Inv with the default built-in generics, later
passing them through a PDK compiler function. Here Inv uses the built-in generic Nmos and
Pmos as default arguments, which can be overridden by each Inv instance.

# Create a version of that inverter with generic transistors,

# but with a non-default threshold voltage

UlvtInv = Inv(

pmos=h.primitives.Pmos(vth=h.MosVth.HIGH),

nmos=h.primitives.Nmos(vth=h.MosVth.HIGH),

)

sky130_hdl21.compile(Inv)

It is common to want such parameters to be any of (a) a Module, (b) an ExternalModule,
with parameter values applied, or (c) a built-in Primitive, again with parameter-values set.
Hdl21 includes a built-in Instantiable union-type which is exactly this:

Instantiable = Union[Module, ExternalModuleCall, PrimitiveCall]

Each of the Call suffixes to ExternalModuleCall and PrimitiveCall indicate the ad-
dition of the parameter values. The ”call” name is a reference to how those parameters
are typically applied. Most generators with such control inversion parameters then use
Instantiable as their datatype.

PDK Corners

The hdl21.pdk package includes a three-valued Corner enumerated type and related classes
for describing common process-corner variations.

Corner = TYP | SLOW | FAST

Typical technologies includes several quantities which undergo such variations. Val-
ues of the Corner enum can mean either the variations in a particular quantity, e.g. the
”slow” versus ”fast” variations of a poly resistor, or can just as often refer to a set of
such variations within a given technology. In the latter case Corner values are often
expanded by PDK-level code to include each constituent device variation. For example
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my.pdk.corner(Corner.FAST) may expand to definitions of ”fast” Cmos transistors, resis-
tors, and capacitors.

Quantities which can be varied are often keyed by a CornerType.

CornerType = MOS | CMOS | RES | CAP | ...

A particularly common such use case pairs NMOS and PMOS transistors into a ”corner
pair”. CMOS circuits are then commonly evaluated at its four extremes, plus their typical
case. These five conditions are enumerated in the CmosCorner type:

@dataclass

class CmosCornerPair:

nmos: Corner

pmos: Corner

CmosCorner = TT | FF | SS | SF | FS

Hdl21 exposes each of these corner-types as Python enumerations and combinations
thereof. Each PDK package then defines its mapping from these Corner types to the content
they include, typically in the form of external files.

PDK Installations and Sites

Much of the content of a typical process technology - even the subset that Hdl21 cares about -
is not defined in Python. Transistor models and SPICE ”library” files are common examples
pertinent to Hdl21. Tech-files, layout libraries, and the like are similarly necessary for related
pieces of EDA software. These PDK contents are commonly stored in a technology-specific
arrangement of interdependent files. Hdl21 PDK packages structure this external content as
a PdkInstallation type.

Each PdkInstallation is a runtime type-checked dataclass which extends the base
hdl21.pdk.PdkInstallation type. Installations are free to define arbitrary fields and meth-
ods, which will be type-validated for each Install instance. Example:

""" A sample PDK package with an `Install` type """

from pydantic.dataclasses import dataclass

from hdl21.pdk import PdkInstallation

@dataclass

class Install(PdkInstallation):

"""Sample Pdk Installation Data"""

model_lib: Path # Filesystem `Path` to transistor models



CHAPTER 3. ANALOG HDL 45

The name of each PDK’s installation-type is by convention Install with a capital I.
PDK packages which include an installation-type also conventionally include an Install

instance named install, with a lower-case i. Code using the PDK package can then refer
to the PDK’s install attribute. Extending the example above:

""" A sample PDK package with an `Install` type """

@dataclass

class Install(PdkInstallation):

model_lib: Path # Filesystem `Path` to transistor models

install: Optional[Install] = None # The active installation, if any

The content of this installation data varies from site to site. To enable ”site-portable”
code to use the PDK installation, Hdl21 PDK users conventionally define a ”site-specific”
module or package which:

• Imports the target PDK module
• Creates an instance of its PdkInstallation subtype
• Affixes that instance to the PDK package’s install attribute

For example:

# In "sitepdks.py" or similar

import mypdk

mypdk.install = mypdk.Install(

models = "/path/to/models",

path2 = "/path/2",

# etc.

)

These ”site packages” are named sitepdks by convention. They can often be shared
among several PDKs on a given filesystem. Hdl21 includes one built-in example such site-
package which demonstrates setting up both built-in PDKs, Sky130 and ASAP7:

# The built-in sample `sitepdks` package

from pathlib import Path

import sky130

sky130.install = sky130.Install(

model_lib=Path("/pdks/sky130") / ... / "sky130.lib.spice"

)

import asap7
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asap7.install = asap7.Install(

model_lib=Path("/pdks/asap7" / ... / "TT.pm"

)

”Site-portable” code requiring external PDK content can then refer to the PDK package’s
install, without being directly aware of its contents. An example simulation using mypdk’s
models with the sitepdks defined above:

# sim_my_pdk.py

import hdl21 as h

import hdl21.sim as hs

import sitepdks as _ # <= This sets up `mypdk.install`

import mypdk

@hs.sim

class SimMyPdk:

# A set of simulation input using `mypdk`'s installation

tb = MyTestBench()

models = hs.Lib(

path=mypdk.install.models, # <- Here

section="ss"

)

# And run it!

SimMyPdk.run()

Note that sim my pdk.py need not necessarily import or directly depend upon sitepdks

itself. So long as sitepdks is imported and configures the PDK installation anywhere in the
Python program, further code will be able to refer to the PDK’s install fields.

Bundles

Hdl21 Bundles are structured connection types which can include Signals and instances of
other Bundles. They can largely be thought of as ”connection structs”. Similar ideas are
implemented by Chisel’s Bundles and SystemVerilog’s interfaces. An example (nested)
Bundle definition:

@h.bundle

class Diff:

p = h.Signal()

n = h.Signal()
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@h.bundle

class Quadrature:

i = Diff()

q = Diff()

Like Modules, Bundles can be defined either procedurally or as a class decorated by the
hdl21.bundle function.

# This creates the same stuff as the class-based definitions above:

Diff = h.Bundle(name="Diff")

Diff.add(h.Signal(name="p"))

Diff.add(h.Signal(name="n"))

Quadrature = h.Bundle(name="Quadrature")

Quadrature.add(Diff(name="i"))

Quadrature.add(Diff(name="q"))

Calling a Bundle as in the calls to Diff() and Diff(name="q") creates an instance of
that Bundle.

Bundle Ports

Bundles are commonly most valuable for shipping collections of related Signals between
Modules. Modules can accordingly have Bundle-valued ports. To create a Bundle-port, set
the port argument to either the boolean True or the hdl21.Visibility.PORT value.

@h.module

class HasDiffs:

d1 = Diff(port=True)

d2 = Diff(port=h.Visbility.PORT)

Port directions on bundle-ports can be set by either of two methods. The first is to set the
directions directly on the Bundle’s constituent Signals. A flipped instance-constructor and
corresponding hdl21.flipped function produce a complementary bundle-instance in which
all directions are swapped, relative to the definition’s directions.

@h.bundle

class Inner:

i = h.Input()

o = h.Output()

@h.bundle

class Outer:
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b1 = Inner()

b2 = h.flipped(Inner())

b3 = Inner(flipped=True)

Here:

• An Inner bundle defines an Input and an Output

• An Outer bundle instantiates three of them
• Instance b1 is not flipped; its i is an input, and its o is an output
• Instance b2 is flipped; its i is an output, and its o is an input
• Instance b3 is also flipped, via its constructor argument

These ”flipping based” bundles require that all constituent signals, including nested ones,
have port-visibility. The rules for flipping port directions are:

• Inputs become Outputs
• Outputs become Inputs
• Inouts and undirected ports (direction=NONE) retain their directions

@h.bundle

class B:

clk = h.Output()

data = h.Input()

@h.module

class X: # Module with a `clk` output and `data` input

b = B(port=True)

@h.module

class Y: # Module with a `clk` input and `data` output

b = B(flipped=True, port=True)

@h.module

class Z:

b = B() # Internal instance of the `B` bundle

x = X(b=b)

y = Y(b=b)

The second method for setting bundle-port directions is with Roles. Each Hdl21 bun-
dle either explicitly or implicitly defines a set of Roles, which might alternately be called
”endpoints”. These are the expected ”end users” of the Bundle. Signal directions are then
defined on each signal’s src (source) and dest (destination) arguments, which can be set to
any of the bundle’s roles.
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@h.roles

class HostDevice(Enum):

HOST = auto()

DEVICE = auto()

@h.bundle

class Jtag:

roles = HostDevice # Set the bundle's roles

# Note each signal sets one of the roles as `src` and another as `dest`

tck, tdi, tms = h.Signals(3, src=roles.HOST, dest=roles.DEVICE)

tdo = h.Signal(src=roles.DEVICE, dest=roles.HOST)

Bundle-valued ports are then assigned a role and associated signal-port directions via
their role constructor argument.

@h.module

class Widget: # with a Jtag Device port

jtag = Jtag(port=True, role=Jtag.roles.DEVICE)

@h.module

class Debugger: # with a Jtag Host port

jtag = Jtag(port=True, role=Jtag.roles.HOST)

@h.module

class System: # combining the two

widget = Widget()

debugger = Debugger(jtag=widget.jtag)

The rules for port-directions of role-based bundles are:

• If the bundle’s role is the signal’s source, the signal is an Output

• If the bundle’s role is the signal’s destination, the signal is an Input

• Otherwise the signal is assigned no direction, i.e. direction=NONE

3.2 Why Use Python? Why Not Use {{X}}?
Custom IC design is a complicated field. Its practitioners have to know a lot of stuff, inde-
pendent of any programming background. Many have little or no programming experience
at all.

Python is renowned for its accessibility to new programmers, largely attributable to its
concise syntax, prototyping-friendly execution model, and thriving community. Moreover,
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Python has also become a hotbed for many of the tasks hardware designers otherwise learn
programming for: numerical analysis, data visualization, machine learning, and the like.

Hdl21 exposes the ideas they’re used to - Modules, Ports, Signals - via as simple of
a Python interface as it can. Generators are just functions. For many, this fact alone is
enough to create powerfully reusable hardware.

Hdl21’s high-level goal is making analog IC designers more productive, through a combi-
nation of (a) improving their design process in the first place, and (b) improving their ability
to share the output of that process.

Alternative modes abound, including:

Schematics

Graphical schematics are the lingua franca of the custom-circuit field. Most practitioners
are most comfortable in this graphical form. (For plenty of circuits, so are Hdl21’s authors,
as detailed in chapter 4.) We think schematics have their place. But we also find that the
overwhelming majority are worth less than zero, and would be dramatically better off as
code. Their most obvious limitation is the difficulty of conveying all sorts of structured,
compound data in their GUI format. Parameterization is a prime example. Structured
connections such as Hdl21 and Chisel’s Bundle types are another.

Netlists (Spice et al)

Each SPICE-class simulator, LVS-checker, and most other EDA tools requiring circuit-level
content have their own notion of a ”netlist language”. There are many similarities: modu-
lar combinations of hardware, usually called ”subcircuits” (subckt), ”cards” for simulation
options or controls, etc. These are generally under-expressive, under-specified, ill-formed
”programming languages”. Their primary redeeming quality is that existing EDA CAD
tools take them as direct input. Hdl21 (in concert with VLSIR) exports the most popular
formats of netlists instead.

(System)Verilog, VHDL, other Existing Dedicated HDLs

The industry’s primary, 80s-born digital HDLs Verilog and VHDL have more of the good
stuff we want here - notably an open, text-based format, and a more reasonable level of
parameterization. And they have the desirable trait of being primary input to the EDA
industry’s core tools. They nonetheless lack the levels of programmability we desire. And
they generally require one of those EDA tools to execute and do, well, much of anything.
Parsing and manipulating them is well-renowned for requiring a high pain tolerance. Again
Hdl21 sees these as export formats. Verilog is supported as a first-class target by the VLSIR
export pipeline.
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Chisel

Explicitly designed for digital-circuit generators at the same home as Hdl21 (UC Berkeley),
Chisel [5] encodes RTL-level hardware in Scala-language classes. It’s the closest of the
alternatives in spirit to Hdl21. And it’s a ways more mature. If you want big, custom,
RTL-level circuits - processors, full SoCs, and the like - you should probably turn to Chisel
instead. Chisel makes a number of decisions that make it less desirable for custom circuits.

The Chisel library’s primary goal is producing a compiler-style intermediate representa-
tion (FIRRTL) to be manipulated by a series of compiler-style passes. We like the compiler-
style IR, as evidenced by the content of Chapter 2. But custom circuits really don’t want
that compiler. The point of designing custom circuits is dictating exactly what comes out -
the compiler output. The compiler is, at best, in the way.

Next, Chisel targets RTL-level hardware. This includes lots of things that would need
something like a logic-synthesis tool to resolve to the structural circuits targeted by Hdl21.
For example in Chisel (as well as Verilog and VHDL), it’s semantically valid to perform
an operation like Signal + Signal. In custom circuits, it’s much harder to say what that
addition-operator would mean. Should it infer a digital adder? Short two currents together?
Stick two capacitors in series?

Many custom-circuit primitives such as individual transistors actively fight the signal-
flow/RTL modeling style assumed by the Chisel semantics and compiler. Again, it’s in the
way. Perhaps more important, many of Chisel’s abstractions actively hide much of the detail
custom circuits are designed to explicitly create. Implicit clock and reset signals serve as
prominent examples.

Above all - Chisel is embedded in Scala. It’s niche, it’s complicated, it’s subtle, it requires
dragging around a JVM. It’s not a language anyone would recommend to expert-designer/
novice-programmers for any reason other than using Chisel. For Hdl21’s goals, Scala itself
is Chisel’s biggest burden.

Other Fancy Modern HDLs

Many recent hardware-description projects have taken (and in many cases, helped inspire)
Hdl21’s big-picture approach - embedding hardware idioms as a library in a modern pro-
gramming language. Most focus on logical and/or RTL-level descriptions, unlike Hdl21’s
structural, custom, and analog focus. Like Chisel, they are likely better choices for other
(large) classes of circuits. These libraries include:

• SpinalHDL
• MyHDL
• Migen
• nMigen
• Magma [52]
• PyMtl [33]
• PyMtl3 [25]

https://www.chisel-lang.org/
https://github.com/SpinalHDL/SpinalHDL
http://www.myhdl.org/
https://github.com/m-labs/migen
https://github.com/m-labs/nmigen
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• Clash [4]

3.3 How Hdl21 Works

Hdl21’s primary goal is to provide the root-level concepts that circuit designers know and
think in terms of, in the most accessible programming context available. This principally
manifests as a user-facing hdl data model, comprised of the core hardware elements - Module,
Signal, Instance, Bundle, and the like - plus their behaviors and interactions. Many
programs will benefit from operating directly on Hdl21’s data model. A prominent example
will be highlighted in chapter 7.

However Hdl21 does not endeavor to reproduce the entirety of the EDA software field in
terms of its data model. Many elements are more recent inventions, borrowed from other
high-level hardware programming libraries, or invented anew in Hdl21 itself. Nor does Hdl21
have access to the internals of many invaluable EDA programs, most of which are commercial
and closed-source, to translate its content into their own. To be useful, Hdl21’s designer-
centric data model must therefore be transformable into existing data formats supported by
existing EDA tools.

These transformations occur in nested layers of several steps. A key component is the
VLSIR data model and its surrounding software suite. The vlsir.circuit schema-package
covered in chapter 2 defines VLSIR’s circuit data model. VLSIR’s model is intentionally
low-level, similar to that of structural Verilog. Hdl21’s transformation from its own data
model to legacy EDA formats is, in an important sense, divided in two steps:

1. Transform Hdl21 data into VLSIR
2. Hand off to the VLSIR libraries for conversion into EDA content

This division, particularly the definition of the intermediate data model, allows the latter
to be reused across a variety of VLSIR-system programs and libraries beyond Hdl21. The
former step - transforming HDL data into VLSIR - is Hdl21’s primary ”behind the scenes”
job. It similarly divides in two:

1. An elaboration step, in which the more complex facets of the Hdl21 data model are
”compiled out”. These include Bundles, instance arrays, and a variety of compound
hierarchical references.

2. An export step, in which the elaborated Hdl21 data is translated into VLSIR’s protobuf-
defined content. This step is fairly mechanical as the elaborated Hdl21 model is de-
signed to closely mirror that of VLSIR, excepting the native differences between a
serializable data language such as protobuf versus an executable model such as in
Python. (Particularly: only the latter has real pointers.)
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Elaboration

Hdl21 elaboration is inspired by popular compiler designs and by Chisel’s elaboration process.
During elaboration a user-design Module or set of Modules are compiled into a simplified
version of the Hdl21 data model suitable for export. Programs using Hdl21 therefore divide
into two conceptual regions:

1. Generation time, which might alternately be called ”user time”. This is when user-
level code runs, constructing hardware content. This informally describes essentially
all Hdl21-user-code, including all this document’s preceding examples.

2. Elaboration time. That hierarchical hardware tree is handed off to Hdl21’s internally-
defined elaboration process. This is where Hdl21 does most of its heavy lifting.

Elaboration consists of an ordered set of elaboration passes. Each elaboration pass is
implemented as a Python class. Many core functions such as common data-model traversal
operations are implemented in a shared base class. Each elaboration pass performs a tar-
geted, highly specific task, over a design hierarchy at a time. Examples include resolving
undefined references, flattening Bundle definitions, and checking for valid port connections.
Elaboration is performed by an Elaborator, which is principally comprised of an ordered
list of such elaboration-pass classes. This enables customization of the elaboration process
by downstream (advanced) usage, e.g. to add custom transformations or extract custom
metrics at arbitrary points in the process.

Elaboration Pass Example

Hdl21’s simplest built-in elaboration pass combats one of the central downsides of building
an HDL-like library in a general-purpose programming language. Particularly, the latter has
many more degrees of freedom in arranging objects and references between them, many of
which produce valid runtime programs but invalid HDL content. To combat many of these
cases, Hdl21 adopts a loose notion of ownership, principally as defined by the Rust language’s
execution semantics, and by popular programming practice which preceded its design.

To illustrate the problem - the following is a perfectly valid (Python) program:

m1 = h.Module(name='m1')

m1.s = h.Signal() # Signal `s` is now "parented" by `m1`

m2 = h.Module(name='m2')

m2.y = m1.s # Now `s` has been "orphaned" (or perhaps "cradle-robbed")

Consider attempting to recreate this in Verilog. Module m1 has a signal s, which because
of the host language’s reference semantics, can also be assigned into the content of module
m2. A dedicated HDL would generally combat this at the syntax layer. Something like so
would generally fail to parse:
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module m1();

logic s; // Declare signal `s`

endmodule

module m2();

assign something = m1.s; // Fail right here: invalid

endmodule

Notably, it remains valid for Hdl21-programs to take other references to HDL objects.
For example:

m1 = h.Module(name='m1')

m1.s = h.Signal() # Signal `s` is now "parented" by `m1`

my_favorite_signals = { "from_m1" : m1.s }

The dictionary my favorite signals includes a reference to the Signal m1.s. This
might commonly be used as external metadata, e.g. for simulation results tracking, or for
guiding a later layout-design program. We can imagine that if all references such as m1.s
were to be produced by Hdl21, it could require their validity at creation time. This is not the
reality of Hdl21’s design. Instead Hdl objects are generally created first, and subsequently
added to owning containers. Slightly reorganizing m1 highlights this:

s = h.Signal(name="s") # Create `s` first

m1 = h.Module(name='m1')

m1.add(s) # Add it to `m1`

my_favorite_signals = { "from_m1" : s }

Hdl21’s rules of ownership are such that:

• Modules are the primary owners of Hdl content
• Instances are owned by Modules
• Each instance connection-target Connectable must be owned by the same Module as
the Instance

• Bundle definitions own their Signals and sub-bundle instances
• Notably these signal-objects are never instantiated elsewhere; they serve as templates
for Connectables added into a Module by the elaboration process.

Long story short: that slight impedance-mismatch in semantics can lead to very confusing
difficulties when attempting to compile and export a module. Hdl21’s built-in answer is its
simplest elaboration pass: Orphanage. Its orphan-test is very simple: each Module-attribute
is annotated with a parent module member upon insertion into the Module namespace.
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Orphan-testing simply requires that for each attribute, this member is identical to the parent
Module. If not, the module is rejected as invalid.

Simplified source code for the orphan-testing elaboration pass:

class Orphanage(ElabPass):

"""# A simplified version of the orphan-checking `ElabPass`.""" "

def elaborate_module(self, module: Module) -> Module:

"""Elaborate a Module"""

# Check each attribute in the module namespace for orphanage.

for attr in module.attrs():

if attr._parent_module is not module:

self.fail()

Here Orphanage is responsible for a single task: checking the parent status of each Hdl
object. The abstract base ElabPass class performs data model traversal, caching, and other
key background tasks, and presents a set of overridable methods such as elaborate module

for its concrete children to implement. The Orphanage pass is run as the first step in each
elaboration process, to check all user-defined HDL objects. It is then run a second time
at the end of the elaboration process, in essence for the elaborator to double-check its own
work.

Most of Hdl21’s built-in elaborators are a ways more complicated. Inline flattening of
class-defined and anonymous Bundles serves as a particularly elaborate example. The built-
in elaboration passes include:

• Orphanage, described above
• InstanceBundles, which expands the ”bundle of instances” constructs, principally the
built-in differential Pair

• ResolvePortRefs, which transforms implicit connections between instances (such as
inst1.port1 = inst2.port2) into explicit signals

• ConnTypes, which checks for validity of each instance connection, including signal and
bundle types

• The aforementioned BundleFlattener, which transforms (potentially nested) bundle
definitions into a flattened set of resolved signals

• ArrayFlattener, which performs a similar task on instance arrays
• SliceResolver, which resolves nested slices and concatenations into their root signals
and dependencies

• Repeat passes through Orphanage and ConnTypes, the latter of which checks validity
of all newly-generated signals and connections, so that it need not be done inline

• A final MarkModules gives each module a reference to its elaborated result
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Customizing the elaboration process generally involves (a) defining new ElabPass classes,
and (b) producing a similar such ordered list of overall passes. A prominent example of such
a customized elaboration will be covered in Chapter 7.
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Chapter 4

Web-Native Schematics

4.1 OK, not all of those schematics are bad

I call this a dinner party test. The setup: you’re at a dinner party. The other people there
are smart - but not your kind of smart. They might be from different fields or backgrounds.
The test: given some artifact of your field, how well can you explain it to them? Better yet,
how well can you explain it to, say, your mom?

Ultimately this is a test of your own understanding, much in the way Richard Feynman
might have evaluated it.

An example such test:

print("Hello World!")

print("Hello Again")

if something:

print("Something is true")

a_number = 5

while a_number > 3:

print(a_number)

a_number = get_a_random_number()

My own explanation: this is a sequence of instructions for your computer to run. Like a
recipe or a novel, it generally flows from top to bottom, executing in order. There are a few
execeptional cases like the if and while clauses which alter control flow - i.e. which part of
the program runs next. They work more like a ”choose your adventure” book, in which the
values of variables in the program determine whether it jumps to, say, page 53 or page 87
next.
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A second example:

Figure 4.1: Test 2

This is several things on several different levels: a flip-flop, a standard logic cell, a layout, a
piece of the open-source SkyWater PDK. The dinner-party version should be clear to readers
of Chapter 1: this is a blueprint. It’s a set of instructions for what to build on a silicon
die. The x and y axes are dimensions across the die surface. The colors represent different
z-axis ”layers”, which can be various layers of metal, places to shoot ion doping infusions,
polysilicon, and a handful of other pieces of the transistor-making stack. This coupled with
some annotations for which color/ layer means what are the necessary instructions for a
fabricator to build this circuit.
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Now, a third, much harder example:

Figure 4.2: Test 3

If you’re reading this, you almost certainly know this is a schematic. I certainly do. Much
of my adult life has been spent making such pictures. But counterintuitively, on some deep
level I really do not know what they are. Why do we find such value in this picture? Why do
I ? How did we decide on those little squiggles of lines which represent the elements? Why
do they also seem to have such intuitive power? What makes it such a clear representation
of the underlying circuit it represents, as compared to so many others - like, say, code? It’s
on some level mysterious, at least to me; it just works.

Hdl21 is largely designed to replace graphical schematics. A central thesis is that most
schematics would be better as code. Based on personal experience as a researcher and
industry practitioner, designing systems and integrated circuits, my experience is that most
schematics are worth less than zero. Not that they shouldn’t exist; most of the bad ones
don’t have much of a choice. But that the limitations of their form do net harm to the
underlying design-task they exist to support.

But there’s still some magic in the good ones.

4.2 What’s a schematic really?

Schematics are, at bottom, graphical representations of circuits. They include both the
circuit-stuff required to populate a netlist or HDL code, as well as visual information about
how the circuit should be rendered. In short: a schematic is two things -

1. A Circuit
2. A Picture
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The ”picture part” generally consists of a set of two dimensional shapes and paths,
generally annotated by purposes such as ”part of an instance”, ”defines a wire”, ”annotation
only”, and the like. In this sense the content of schematics mirrors that of IC layout. Unlike
layout, schematics lack physical meaning of the third (”2.5th”) dimension. Popular schematic
data-formats make use of exactly the very same data structures and models used for layout,
with the z-axis layer annotations repurposed to denote those schematic-centric purposes.
Hierarchy is represented through instances of schematic symbols, which serve as references
to other schematics or of primitive devices.

Typical software manifestations operate by designing a circuit-picture data format, which
includes a combination of HDL-style circuit info with graphical visualization content. This
generally requires at least one associated program, dedicated to (a) rendering the schematics
as pictures, and often to (b) directly editing them in an interactive GUI.

4.3 SVG 101

Scalable Vector Graphics (SVG) [24] is the World Wide Web Consortium (W3C) standard for
two dimensional vector graphics. Along with HTML, CSS, JavaScript, and WebAssembly, it
is one of the five primary internet standards. SVG is an XML-based markup language which
all modern browsers natively support, and includes the capacity for semi-custom content
structure and metadata.

An SVG document is an XML document with a root svg element representing the entirety
of an image. SVG makes use of XML namespaces (xmlns) to introduce element types. Once
the svg namespace has been enabled, documents have access to elements which represent
core two-dimensional graphical elements such as rect, circle, path, and text. Example
SVG content:

<svg version="1.1"

width="300" height="200"

xmlns="http://www.w3.org/2000/svg">

<rect width="100%" height="100%" fill="red" />

<circle cx="150" cy="100" r="80" fill="green" />

<text x="150" y="125" font-size="60" text-anchor="middle" fill="white">

SVG Text

</text>

</svg>

Each graphical element includes a variety of positioning, styling, and customization data,
such as the cx and cy (center) attributes of circle, the width and height attributes of
rect, and the font-size attribute of the text element highlighted above.

SVG documents are hierarchical. Hierarchy is primary enabled through groups. The g

element defines a group of sub-elements. Each group includes a similar set of transformation
and styling attributes which are applied hierarchically to its children.

https://www.w3.org/TR/SVG
https://www.w3.org
https://caniuse.com/svg
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Getting_Started
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Getting_Started
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<svg width="30" height="10">

<g fill="red">

<rect x="0" y="0" width="10" height="10" />

<rect x="20" y="0" width="10" height="10" />

</g>

</svg>

Nodes and groups each include a rich set of transformation capabilities, setting position,
rotation, reflection, skew, and the like. A general-purpose matrix operator allows for the
combination of all of the above in a single statement and operation. These transformations
nest across hierarchical groups. The net transformation of a leaf-level node in a hierarchical
group is the product of the (matrix) transforms of its parents, applied top-down.

<svg xmlns="http://www.w3.org/2000/svg">

<g transform="rotate(-10 50 100)

translate(-36 45.5)

skewX(40)

scale(1 0.5)" >

<g x="10" y="10" width="30" height="20" fill="red"

transform="matrix(3 1 -1 3 30 40)" >

<rect x="5" y="5" width="40" height="40" fill="yellow"

transform="translate(50 50)" />

</g>

</g>

</svg>

4.4 Hdl21 Schematics

That combination of observations drives the primary goals for Hdl21’s paired schematic
system:

• Get into and out of code as quickly and seamlessly as possible.
• Make making the good schematics easy, and make making the bad schematics hard.
• Make reading schematics as easy as possible.

Schematics are SVG Images

Each Hdl21 schematic is an SVG image, and is commonly stored in a .svg suffix file. Example
schematics are pictured in Figure 4.3 and Figure 4.8

SVG’s capacity for semi-custom structure and metadata allows for a natural place to
embed each schematic’s circuit content. Perhaps more important, embedding within a widely
supported general-purpose image format means that schematics are readable (as pictures) by



CHAPTER 4. WEB-NATIVE SCHEMATICS 62

Figure 4.3: Example SVG Schematic

essentially any modern web browser or operating system. Popular sharing and development
platforms such as GitHub and GitLab render SVG natively, and therefore display Hdl21
schematics natively in their web interfaces.

Embedding in SVG also allows for rich, arbitrary annotations and metadata, such as:

• Any other custom vector-graphics, e.g. block diagrams
• Layout intent, e.g. how to position and/or route elements
• Links to external content, e.g. testbenches, related schematics, etc.

In other words, Hdl21 schematics reverse the order of what a schematic is, to be:

1. A Picture
2. A Circuit

The schematic-schema of structure and metadata, detailed later in this document, is
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Figure 4.4: SVG Schematic Rendered by the Web Interface of Popular Software Sharing
Platform github.com

what makes an SVG a schematic.

Schematics are Graphical Python Modules

Each Hdl21 schematic is specified in its entirety by a single .svg file, and requires no external
dependencies to be read. A paired hdl21schematicimporter Python package is designed
to seamlessly integrate them into Hdl21-based programs as ”graphical modules”.

Hdl21 schematics capitalize on the extension capabilities of Hdl21’s embedded language,
Python, which include custom expansion of its module-importing mechanisms, to include
schematics solely with the language’s built-in import keyword.

Given a collocated schematic file named schematic.sch.svg, the module uses schematic

below will import the schematic as a Python module, and make its content available as the
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schematic variable.

# Let's call this code `uses_schematic.py`

# Import the importer-module to activate its magic

import hdl21schematicimporter

# Given a schematic file `schematic.sch.svg`, this "just works":

from . import schematic # <= This is the schematic

Linking with implementation technologies then occurs in code, upon execution of the
schematic as an Hdl21 generator.

The Associated Editor Stack

Reading schematics (as pictures) requires any old computer. Writing them can in principal
be done with general-purpose image editing software (e.g. Inkscape), or even as raw text.
But maintaining their structural validity as schematics, and making them nicer to interact
with as circuits is generally done best in a dedicated editor application.

The Hdl21 schematic system accordingly includes a web-stack graphical editor. It runs
in three primary contexts:

1. As a standalone desktop application,
2. As an extension to the popular IDE VsCode, and
3. As a web application.

Figure 4.5 outlines the overall system. The IDE platform is pictured in Figure 4.6.

Figure 4.5: Hdl21 Schematic System

Some schematic programs are ”visualization-centric” - i.e. those which primarily aid
in debug of post-synthesis or post-layout netlists. A related task is schematic inference -
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Figure 4.6: Schematic Editor, Running in the VsCode IDE Platform

the process of determining the most descriptive picture for a given circuit. While this is
worthwhile for such debugging tasks, Hdl21 schematics focuses on primary design entry of
schematics. We think that schematics are good when drawn, and tend to be bad, or at least
afterthoughts, when inferred.

4.5 The Element Library

Schematics consist of:

• Instances of circuit elements,
• Ports, and
• Wire connections there-between

The element-library holds similar content to that of SPICE: transistors, resistors, capac-
itors, voltage sources, and the like. It is designed in concert with Hdl21’s primitive element
library.

The complete element library is shown in Figure 4.7.
(Figure 4.7 is itself also a valid SVG schematic, rendered by popular authoring platform

overleaf.com’s Latex compilation pipeline.)
Symbols are technology agnostic. They do not correspond to a particular device from

a particular PDK. Nor to a particular device name in an eventual netlist. Symbols solely
dictate:

• How the element looks in the ”schematic picture”
• Its port list
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Figure 4.7: The SVG Schematic Element Library



CHAPTER 4. WEB-NATIVE SCHEMATICS 67

Each instance includes two string-valued fields: name and of.
The name string sets the instance name. This is a per-instance unique identifier, directly

analogous to those in Verilog, SPICE, Virtuoso, and most other hardware description for-
mats. It must be of nonzero length, and for successful Python import it must be a valid
Python-language identifier.

The of string determines the type of device. This is essentially the sole parameter for
each Element. It is of type string, or more specifically ”python code”. The of field is
executed directly in when the schematic is interpreted as an Hdl21 generator. It will often
contain parameter values and expressions thereof.

Examples of valid of-strings for the NMOS symbol:

# In the code prelude:

from hdl21.prefix import µ, n

from hdl21.primitives import Nmos

# Of-string:

Nmos(w=1*µ, l=20*n)

# In the code prelude:

from asap7 import nmos as my_asap7_nmos

# Of-string:

my_asap7_nmos(l=7 * n, w=1 * µ)

Hdl21 schematics include no backing ”database” and no ”links” to out-of-source libraries.
The types of all devices are dictated by code-strings, interpreted by programs which execute
the schematic as code.

For a schematic to produce a valid Hdl21 generator, the result of evaluating each in-
stance’s of field must be:

• An Hdl21 Instantiable, and
• Include the same ports as the symbol

The inverter pictured above roughly translates to the following Python code:

# A code-prelude, covered shortly, executes here.

@h.generator

def inverter(params: Params) -> h.Module:

inverter = h.Module()

inverter.n0 = Nmos(params)(...)

inverter.p0 = Pmos(params)(...)

return inverter

# Both "..."s are where connections, not covered yet, will go.
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Figure 4.8: Example SVG Schematic

Code Prelude

Each schematic includes a code prelude: a text section which precedes the schematic content.
Typically this code-block imports anything the schematic is to use. The prelude is stored in
text form as a (non-rendered) SVG element.

An example prelude:

# An example code-prelude

from hdl21.primitives import Nmos, Pmos

This minimal prelude imports the Nmos and Pmos devices from the Hdl21 primitive-
element library.

Schematic code-preludes are executed as Python code. All of the language’s semantics
are available, and any module-imports available in the executing environment are available.

Naming Conventions

The call signature for an Hdl21 generator function is:

def {{ name }}(params: Params) -> h.Module:
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To link their code-sections and picture-sections together, Hdl21 schematics require special
treatment for each of this signature’s identifiers: name, params, Params, and h.

• The argument type is named Params with a capital P.
• If the identifier Params is not defined in the code prelude, the generator will default to
having no parameters.

• Params must be an Hdl21 paramclass, or will generate an import-time TypeError.
• The argument value is named params with a lower-case p.
• If a string-valued name attribute is defined in the code-prelude, the generator function’s
name is set to this string.

• If not, the generator function’s name is set to that of the schematic SVG file.
• Defining a name which is not a string or is not a valid Python identifier will generate
an import-time Exception.

• The identifier h must refer to the Hdl21 package.
• Think of a ”pre-prelude” as running import hdl21 as h before the schematic’s own
code-prelude.

• Overwriting the h identifier will produce an import-time Python error.
• Re-importing hdl21 as h is fine, as is importing hdl21 by any additional names.

An example code-prelude with a custom Params type:

# An example code-prelude, using devices from PDK-package `mypdk`

import hdl21 as h

from mypdk import Nmos, Pmos

@h.paramclass

class Params:

w = h.Param(dtype=int, desc="Width")

l = h.Param(dtype=int, desc="Length")

Importing

Schematics with .sch.svg file extensions can be imported like any other Python module.
The hdl21schematicimporter package uses Python’s importlib override machinery to load
their content.

An example use-case, given a schematic named inverter.sch.svg:

# Example of using a schematic

import hdl21 as h

from .inverter import inverter # <= This is the schematic

@h.module

class Ring:

https://docs.python.org/3/library/importlib.html
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a, b, c, VDD, VSS = h.Signals(5)

ia = inverter()(inp=a, out=b, VDD=VDD, VSS=VSS)

ib = inverter()(inp=b, out=c, VDD=VDD, VSS=VSS)

ic = inverter()(inp=c, out=a, VDD=VDD, VSS=VSS)

For schematic files with extensions other than .sch.svg, or those outside the Python
source tree, or if (for whatever reason) the import-override method seems too spooky,
hdl21schematicimporter.import schematic() performs the same activity, with a filesys-
tem Path to the schematic as its sole argument:

def import_schematic(path: Path) -> SimpleNamespace

Both import schematic and the import keyword override return a standard-library
SimpleNamespace representing the ”schematic module”. A central attribute of this module
is the generator function, which often has the same name as the schematic file. The Params
type and all other identifiers defined or imported by the schematic’s code-prelude are also
available as attributes in this namespace.

4.6 The SVG Schematic Schema

SVG schematics are commonly interpreted by two categories of programs:

1. General-purpose image viewer/ editors such as Google Chrome, Firefox, and InkScape,
which comprehend schematics as pictures.

2. Special-purpose programs which comprehend schematics as circuits. This category
notably includes the primary hdl21schematicimporter Python importer.

Note the graphical schematic editor is a special case which combines both use-cases. It
simultaneously renders schematics as pictures while being drawn and dictates their content as
circuits. The graphical editor holds a number of additional pieces of non-schema information
about schematics and how they are intended to be rendered as pictures, including their style
attributes, design of the element symbols, and locations of text annotations. This information
is not part of the schematic schema. Any valid SVG value for these attributes is to be treated
as valid by schematic importers.

This section describes the schematic-schema as interpreted for use case (2), as a circuit.

Schematic SVG Root Element

Each Schematic is represented by an SVG element beginning with <svg> and ending with
</svg>, commonly stored in a file with the .sch.svg extension.

Many popular SVG renderers expect ?xml prelude definitions and xmlns (XML names-
pace) attributes to properly render SVG. SVG schematics therefore begin and end with:



CHAPTER 4. WEB-NATIVE SCHEMATICS 71

<?xml version="1.0" encoding="utf-8"?>

<svg width="1600" height="800" xmlns="http://www.w3.org/2000/svg">

<!-- Content -->

</svg>

These XML preludes are not part of the schematic schema, but are included by the
graphical editor.

Size

Schematics are always rectangular. Each schematic’s size is dictated by its svg element’s
width and height attributes. If either the width or height are not provided or invalid, the
schematic is interpreted as having the default size of 1600x800 pixels.

Schematic and Non-Schematic SVG Elements

SVG schematics allow for inclusion of arbitrary non-schematic SVG elements. These might
include annotations describing design intent, links to related documents, logos and other
graphical documentation, or any other vector graphics content.

These elements are not part of the schematic content. Circuit importers are required to

• (a) categorize each element as being either schematic or not, and
• (b) ignore all elements which are non-schematic content

Header Content

SVG schematics include a number of header elements which aid in their rendering as pictures.
These elements are not part of the schematic schema, and are to be ignored by schematic
importers. They include:

• An SVG definitions (<defs>) element with the id hdl21-schematic-defs

• These definitions include the code-prelude, extracted circuit, and other metadata ele-
ments.

• An SVG style (<style>) with the id hdl21-schematic-style

• An SVG rectangle (<rect>), of the same size as the root SVG element, with the id
hdl21-schematic-background. This element supplies the background grid and color.

Coordinates

SVG schematics use the SVG and web standards for their coordinate system. The origin is
at the top-left corner of the schematic, with the x-axis increasing to the right and the y-axis
increasing downward.



CHAPTER 4. WEB-NATIVE SCHEMATICS 72

All schematic coordinates are stored in SVG pixel values. Schematics elements are placed
on a coarse grid of 10x10 pixels. All locations of each element within a schematic must be
placed on this grid. Any element placed off-grid violates the schema.

Orientation

All schematic elements operate on a ”Manhattan style” orthogonal grid. Orient-able ele-
ments such as Instances and Ports are allowed rotation solely in 90 degree increments.
Such elements may thus be oriented in a total of eight distinct orientations: four 90 degree
rotations, with an optional vertical reflection. Reflection and rotation of these elements are
both applied about their origin locations. Note rotation and reflection are not commutative.
If both a reflection and a nonzero rotation are applied to an element, the reflection is applied
first.

These orientations are translated to and from SVG transform attributes. SVG schemat-
ics use the matrix transform to capture the combination of orientation and location. SVG
matrix transforms are specified in six values defining a 3x3 matrix. Transforming by
matrix(a,b,c,d,e,f) is equivalent to multiplying a vector (x, y, 1) by the matrix:

a c e

b d f

0 0 1

Note that this is also equivalent to a multiplication and addition of the vector two-
dimensional vector (x,y):

| a c | | x | + | e |

| b d | | y | | f |

In the schematic Manhattan coordinate system, the vector-location (e,f) may be any
grid-valid point. The 2x2 matrix (a,b,c,d), however, is highly constrained, to eight possible
values which correspond to the eight possible orientations. These eight values are:

a b c d Rotation Reflection

1 0 0 1 0° No
0 1 -1 0 90° No
-1 0 0 -1 180° No
0 -1 1 0 270° No
1 0 0 -1 0° Yes
0 1 1 0 90° Yes
-1 0 0 1 180° Yes
0 -1 -1 0 270° Yes

Any schematic element with an SVG matrix with (a,b,c,d) values from outside this
set is invalid.

https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/transform
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Schematic Content

Each Schematic is comprised of collections of four types of elements:

• Instances of circuit elements
• Wires connecting them
• Port annotations
• Dots indicating located connections

These collections are not ordered or keyed. No element refers to any other by any means,
e.g. name, ID, or other ”pointer”.

Instance

Each Instance includes:

• A string instance name
• A string of, which dictates the type of element to be instantiated
• A kind value from the enumerated Elements list, which serves as pointer to the
Element dictating its pictorial symbol and port list.

• A location dictating the position of its origin in schematic coordinates.
• An orientation dictating its reflection and rotation.

In SVG, each instance is represented by a group (<g>) element. Instance groups are
identified by their use of the hdl21-instance SVG class. The location and orientation of
each instance is stored in its instance-group’s transform attribute.

Each instance-group holds three ordered child elements:

• Another group (<g>) holding the instance’s pictorial symbol.
• The SVG class of this symbol-group serves as indication of the kind of the instance.
• The content of the symbol-group is not part of the schematic schema. Any valid SVG
content is allowed. The schema dictates only that the class attribute indicate the
kind of the instance.

• A <text> element with class hdl21-instance-name holding the instance’s name.
• A <text> element with class hdl21-instance-of holding the instance’s of string.

An example Instance:

<g class="hdl21-instance" transform="matrix(1 0 0 1 X Y)">

<g class="hdl21-elements-nmos">

<!-- Content of the symbol-picture -->

</g>

<text x="10" y="0" class="hdl21-instance-name">inst_name</text>

<text x="10" y="80" class="hdl21-instance-of">inst_of</text>

</g>
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The three child elements are required to be stored in the order (symbol, name, of). The
lack of valid values for any of the three child elements renders the instance invalid. The
presence of any additional children also renders the instance invalid.

Circuit Elements

SVG schematics instantiate circuit elements from a library of pre-defined symbols. Any
paired schematic importer must be aware of this library’s contents, as it dictates much of
the schematic’s connectivity.

The kind field of each Instance serves as a reference to its Element. Each Element

consists of:

• The symbol ”picture”, and
• A list of named, located ports

An example Element, defined in JavaScript syntax:

Element({

kind: ElementKind.Nmos, // The enumerated `kind`

ports: [

// Its ordered, located port list

new Port({ name: "d", loc: point(0, 0) }),

new Port({ name: "g", loc: point(70, 40) }),

new Port({ name: "s", loc: point(0, 80) }),

new Port({ name: "b", loc: point(-20, 40) }),

],

});

Notably each element does not dictate what device appears in an ultimate circuit or
netlist. The of string of each Instance dictates these choices. The element solely dictates
its two fields: the pictorial symbol and the port list.

The complete list of elements is defined in the circuit element library documentation.
The content of the element library - particularly the kinds of elements and their port lists -
is part of the schematic schema, and must be adhered to by any schematic importer.

Wire

Schematic wires consist of orthogonal Manhattan paths. They are represented by SVG group
(<g>) elements, principally including an internal <path> element. Wire groups are indicated
by their use of the hdl21-wire SVG class. Each wire group has two child elements:

• The path element dictating the wire’s shape.
• A text element dictating its wire/ net name.
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An example Wire:

<g class="hdl21-wire">

<path class="hdl21-wire" d="M 100 150 L 100 350 L 200 350" />

<text class="hdl21-wire-name">net1</text>

</g>

Wire vertices are dictated by the SVG path’s d attributes. Each wire vertex must be
located on the schematic’s 10x10 pixel grid. Each wire segment must use a ”Manhattan”
orthogonal routing style, i.e. each point must have either an x or y coordinate equal to that
of the previous point. Wire paths are open in the SVG sense; there is no implicit segment
from the final point back to the first.

Wire-names serve as the mechanism for schematic ”connections by name”. Any two wires
with the same name are be considered connected. There is one special wire-name value: the
empty string, which implies that (a) the wire’s is not explicitly set, and (b) importers are
to assign it a net-name consistent with any other connected element, e.g. a Port or another
Wire.

Port

Schematic Ports appear similar to Instances in both pictorial representation and in SVG
content. Unlike instances they do not add hardware to the circuit represented by the
schematic, but annotate particular Wires as being exposed externally.

Each Port has the following fields:

• A string name

• A kind value from the enumerated PortKind list
• A location dictating the position of its origin in schematic coordinates.
• An orientation dictating its reflection and rotation.

Note these fields are identical to those of Instance, but for the removal of the of string-
field. The semantic content of a schematic Port is dictated fully by its Kind field, which also
dictates its pictorial representation.

In SVG, each Port is represented by a group (<g>) element. Port groups are identified
by their use of the hdl21-port SVG class. The location and orientation of each instance is
stored in its port-group’s transform attribute.

Each port-group holds two ordered child elements:

• Another group (<g>) holding the port’s pictorial symbol.
• The SVG class of this symbol-group serves as indication of the kind of the port.
• The content of the symbol-group is not part of the schematic schema. Any valid SVG
content is allowed. The schema dictates only that the class attribute indicate the
kind of the port.
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• A <text> element with class hdl21-port-name holding the port’s name.

An example Port:

<g class="hdl21-port" transform="matrix(1 0 0 1 X Y)">

<g class="hdl21-ports-input">

<!-- Content of the symbol -->

</g>

<text x="10" y="-15" class="hdl21-port-name">portname</text>

</g>

Valid port names must be non-zero length. All wires connected to a port are assigned a
net-name equal to the port’s name. Any connected wire with a conflicting net-name renders
the schematic invalid. Any wire or connected combination of wires which are connected to
more than one port - even if the ports are identically named - also renders the schematic
invalid.

Connection Dot

Schematic dots indicate connectivity between wires and ports where connections might oth-
erwise be ambiguous. The inclusion of a Dot at any location in a schematic implies that
all Wires passing through that point are connected. The lack of a Dot at an intersection
between wires conversely implies that the two are not connected, and instead ”fly” over one
another.

Dots are represented in SVG by <circle> elements centered at the dot location. Dot
centers must land on the 10x10 pixel schematic grid. Dot-circles are identified by their use
of the hdl21-dot SVG class.

An example Dot:

<circle cx="-20" cy="40" class="hdl21-dot" />

The center location dictating cx and cy attributes are the sole schema-relevant attributes
of a dot-circle. All other attributes such as the radius r are not part of the schema, and may
be any valid SVG value.

While powerful visual aids and a notional part of the schematic-schema, Dots do not have
semantic meaning in schematics. They are entirely a visual aid. Any valid schematic with
any combination of Dots yields an identical circuit with any other combination of Dots.

The primary editor application infers Dots at load time, and uses those stored in SVG as
a check. This process includes:

• Running ”dot inference” from the schematic’s wires, instances, and ports
• Comparing the inferred dot locations with those stored in the SVG
• If the two differ, reporting a warning to the user
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Differences between the inferred and stored dot locations are logged and reported. The
inferred locations are used whether they match or differ.

4.7 Possible Directions

The ”right” way to draw schematics is a popular topic among practitioners. (Engineers also
love to argue about ”right ways” to write software, draw layout, eat ice cream, etc; this one
is no different.) Hdl21 schematics have an opinionated author whose opinions are, to some
extent, embedded in their design. Some of those opinions are more popular than others.

The schematic system’s central premise - designing schematics into a general-purpose
image format, renderable on platforms such as GitHub - has proven uncontroversial. Other
design decisions have generated more contention.

The first is the system’s level of pairing with Hdl21. (This extends all the way to their
name.) The goal of making schematics ”graphical code modules”, designed to be easily
imported into an otherwise code-forward design flow, is not necessarily limited to Hdl21.
Obvious alternatives would include connectivity to popular HDLs such as Verilog, or to
more mature modern HDLs such as Chisel.

Both are future possibilities. For the case of Verilog, or any other HDL that lacks a ded-
icated execution environment, some other program would need to translate SVG schematic
content into something comprehensible by consumers of the HDL-schematic combination.
Among other tasks, this program would require that all schematic parameters be repre-
sentable in Verilog’s (more limited) set of types.

Complications arise in that the desirable forms of this output likely differ between use-
cases. Use cases for a ”code forward” analog design environment - i.e. one in which all but
the lowest level circuits are authored in Verilog, and those instantiating primitives may be
drawn in schematics - would likely desire the schematic contents. Others in mixed-signal
design, where much of the Verilog-driven design components are intended to be fed through
logic synthesis, likely desire only the schematic-based circuit’s external interfaces.

Interfaces to modern HDLs such as Chisel are generally a cleaner fit. These libraries
are embedded in general-purpose programming languages which feature a paired execution
environment, suited to interpreting schematic-content as part of a larger program. Whether
they could be quite as streamlined as the Python override-driven ”just say import” semantics
remains to be seen. Interfaces only slightly heavier-weight certainly would work.

The second (and more contentious) topic of contention is Hdl21 schematics’ refusal to
allow externally-defined symbols. All elements instantiated in Hdl21 schematics are defined
in its built-in element library. Hierarchy is instead the domain of Hdl21 (code).

This was an intentional choice, in furtherance of the goal to ”make making the good
schematics easy, and make making the bad schematics hard”. Schematics tend to be worth
more than the paper they’re printed on when typical practitioners (other than their authors)
understand their contents. A necessary condition is recognizing the symbols. There are
relatively few elements which have both (a) pictorial symbols widely understood by the field,
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and (b) an uncontroversial set of ports. They are the elements of the Hdl21 schematic library.
A wider set of elements - op-amps, oscillators, flip-flops, and the like - meet criteria (a), but
have a wide diversity of IO interfaces. In Hdl21 schematics (as in all other schematic-systems
of which we are aware), symbols dictate instance port-lists.

Disallowing symbol-based hierarchy has a side benefit: it’s much more straightforward to
confine a schematic to a single SVG file. This single-file property is a large part of what makes
schematics renderable by existing platforms such as GitHub. But we could make it work, I
guess. Each schematic would be required to include the symbol-picture of every symbol that
it instantiates, as they currently do for any primitive elements they instantiate. And the
graphical editor would need to be, or at least desirably would be, updated to comprehend
the links between schematics and symbols representing the same circuits. Just where this
linkage would lie - within SVG content, or as separate ”database metadata” - would remain
to be seen. Comprehending schematics as circuits, as by importer programs, would desirably
find this structure as straightforwardly as possible. 1

1The SVG specification includes a paired definitions (<defs>) section and <use> element, intended for
instantiation of repeated content. In principle this would be a desirable place to hold Hdl21 schematics’
element symbol definitions. Doing so would save space in the hypertext content. Sadly we (very quickly)
found that the <defs> and <use> elements are not supported by popular platforms which shall not be named,
such as GitHub.
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Chapter 5

Programming Models for IC Layout

Figure 5.1: The Two Successful Models for Producing IC Layout

In 2018 the Computer History Museum estimated that in the IC industry’s roughly 65
year history, it has shipped over 13 sextillion (1.3 x 1022) total transistors. (That total has
risen dramatically in the few years since.) Essentially all of them have been designed by one
of two methods:

1. ”The digital way”, using a combination of HDL code, logic synthesis, and automatically
placed and routed layout.

https://computerhistory.org/blog/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history
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2. ”The analog way”, using a graphical interface to produce essentially free-form layout
shapes.

5.1 The Digital Way

Layout of digital circuits has proven amenable to automatic generation in countless ways
that analog layout has not. Nearly the entirety of the IC industry’s gains in productivity
and scale, all of the enablement of chips with millions or billions of transistors, is owed to a
stack of software in which designers can:

• Write hardware in C-like HDL code
• Compile an RTL-level subset of this code to logic gates, in a process typically called
logic synthesis

• Place and route a gate-level circuit netlist into physical layout

The combination of logic synthesis and PnR layout serves as a powerful ”hardware com-
piler” from portable HDL code to target silicon technologies. Analogous attempts at the
compilation of analog circuits have generally failed, or at least failed to achieve substantial
adoption. Despite its comparative simplicity (compared to analog), digital ”back end” de-
sign remains a laborious process, often requiring professional teams of hundreds for large
designs.

5.2 The Analog Way

The analog way, in contrast, shares little between circuits. No ”compiler” is invoked to
produce layout from a more abstract description. Instead designers are free to produce
essentially any combination of 2.5 dimensional shapes in a custom graphical environment.
Only an infinitesimally small fraction of possible combinations will conform to a given tech-
nology’s design rules. This is a major part of the effort. Designers are free to produce device
sizing, placement, and routing essentially as they see fit - at the primary cost of needing to
produce it.

Notably, code remains a material part of the analog method; it merely occupies a very
different place in the design hierarchy. Figure 5.2 shows the relationship between code-based
and graphically-based methods in the digital and analog flows. Perhaps counterintuitively,
the two are used in diametrically opposite portions of the design hierarchy. The digital flow
uses code - the combination of a PnR ”layout solver” and designer-dictated constraints - to
produce the upper, ”module” levels of a design hierarchy. Its low levels, principally comprised
of ”standard cell” logic gates, are conversely designed with graphical methods highly similar
to the analog flow. Said analog flow, in contrast, uses these graphical methods for its
”module layers” (e.g. amplifiers, data converters), while relying on code-based parametric
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cells (commonly called ”p-cells”) for its lowest levels (e.g. single transistors or passive
elements).

Why? In short: in modern technologies, the lowest levels are the hardest - both to
optimize, and to meet design-rule correctness in the first place. The digital flow uses hand-
crafted standard logic cells which can be highly tuned and co-designed with the underlying
technology, recognizing that their design effort will be amortized billions of times over. Pro-
ducing analog layout is a lower-volume proposition. It is much more difficult to amortize the
manual production of each low-level transistor polygon. This is generally saved for the most
performance-critical devices, e.g. those in high-speed RF transceivers. Code based ”p-cells”
instead produce these polygons from a set of input parameters similar to those provided to
schematic designers. In addition to schematic-level parameters principally including device
sizing, these programs often add layout-specific parameters such as requirements for segmen-
tation (”multi-fingering”), overlap, abutment, or proximity of contacts. The placement of
and interconnect between these p-cells is then performed in the custom graphical flow.

Figure 5.2: Relationship Between Custom and Programmed Layout Generation in the Digital
and Analog Design Flows
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5.3 The Two Most Tried (and Mostly Failed) Models

Analog and custom circuits have long been identified as a bottleneck in the IC design process.
Research has accordingly long attempted to improve ”the analog way” of producing layout.
Approaches have included:

• Circuit-level synthesis from high-level specifications ([35], [36])
• Libraries for codifying high-level design procedures ([7], [58], [48])
• Dedicated domain-specific languages for high-level layout ([53])
• Sizing optimizers, parametric across circuit families ([18])
• ”Silicon compilers” ([34], [26]) and other circuit-specific compilers, e.g. for datapaths
([42]), SRAMs ([17]), amplifiers ([28])

• Automated place-and-route layout generation, from unannotated analog circuit netlists
([8] [30])

• Novel attempts to make use of the digital place and route pipeline ([57], [20])

Surveys and summaries of these techniques such as [50] have now appeared for more than
three decades. Figure 5.3, originally published in [35] and later extended by Fraunhofer IIS,
catalogs these efforts across time and several axes of their approach.

Figure 5.3: History of analog automation, originally from Martins [35]

These research efforts largely fall into one of two large families:
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• The first, which we name the programmed custom style, conceptually replaces the
layout GUI with an elaborate layout API. Designers then manipulate the content of
layout through writing programs against this interface. The programmed custom style
is covered in depth in chapter 6.

• The second conceptually attempts to map ”the digital way” onto analog circuits. Cen-
trally, automatic place-and-route is used to produce layout content from netlists or
similar circuit-level content. Rather than directly manipulate layout content, design-
ers author circuit-level content (e.g. HDL code, schematics) and a set of constraints
and goals for the analog PnR solver. Such methods are detailed in chapter 7.

While all have made novel research contributions, none have broken through to widespread
adoption. The remainder of this thesis largely attempts to distill the core of each of the ap-
proaches, and introduces two new pieces of software, one pursuing each approach.
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Chapter 6

Programmed Custom Layout

The dominant paradigm for producing analog and custom layout has been ”the analog way” -
drawing essentially free-form shapes in a graphical environment - more or less since such GUIs
have been available. Plenty of systems, primarily from research, have nonetheless recognized
the utility of producing these layouts through code instead. These systems can be thought of
as conceptually replacing the GUI with an elaborate layout API. Each prospective action or
change to be made by clicking or dragging is replaced with an API call. An ”add rectangle”
selection-box might directly translate into an addRectangle() method.

Such systems, particularly those in which designers write programs which manipulate
layout content itself, we refer to as ”programmed custom”. (In chapter 7 we will cover
systems which differ in injecting an intervening layout solver, the input to which is the
principal object of designer-programs.)

Being based in code has advantages in and of itself. Text-based code has proven immea-
surably more effective for sharing, distribution, review and feedback than the typical binary/
graphical layout data that it replaces. Parameterization in the graphical environment is
particularly challenging. Few (if any) environments provide a rich graphical programming
mechanism to turn parameters into parametric layout content. Often if they do, it’s by
escaping into code form.

Code has also proven vastly more amenable to conceptual layering. Frameworks and
libraries can write and expose layers of functions and abstractions, enabling an array of
trade-offs across levels of detail and control. Programs using those libraries can then read-
ily jump between these abstraction layers, deploying the most detailed and verbose where
warranted, and the most efficient everywhere else. Such layering is also common in program-
ming abstractions for layout. The lowest such layer generally manipulates 2.5D geometry
directly, creating and manipulating common shapes (rectangles, polygons, fixed-width paths)
annotated with z-axis ”layer” designations. E.g.:

layout = create_a_layout()

layout.add_a_rect((1, 2), (3, 4), layer=5)

layout.add_a_polygon([(5, 6), (7, 8), (9, 10),], layer=11)
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layout.add_a_path(

[(11, 12), (13, 14), (15, 16),],

width=30,

layer=12)

layout.add_an_instance(

of=some_other_layout,

loc=(11, 12),

)

This simple example includes the next most likely and most common abstraction: hi-
erarchy. Layout ”modules” - which, for whatever reason, have failed to find a culturally
consistent name - are relocatable sets of theses shapes, and instances of other layouts. Each
can then be replicated at varying locations in a larger-scale layout. Many such systems
include capabilities for layout instances to mirror and/ or rotate, either in coarse or fine
increments.

inst = layout.add_an_instance(

of=some_other_layout,

# Transformation properties from `some_other_layout`, to this instance

loc=[11, 12],

reflect=False,

rotation=90,

)

From here, concepts can stack up in a variety of directions. Arrays of repeated elements,
whether instances, shapes, or combinations thereof, are a common addition. GDSII includes
such two-dimensional arrays in the lowest-level, most popular format for design data.

A popular abstraction for higher-level layout injects the notions of tracks and an under-
lying grid. These techniques resemble the conceptual layout-space used by digital PnR. All
connections are driven onto a regular set of available wiring tracks. Typically each connec-
tion layer runs in a single direction, and often these directions are systemically demanded
to alternate layer-by-layer. E.g. if metal layer 5 runs horizontally, this implies that metal
layers 4 and 6 (or whatever the adjacent ones are called) run vertically.

This grid concept can be highly valuable for streamlining the connection-programming
process. Especially so for layout-programs which desire portability, whether between widely
divergent parameters, or most impactfully, across implementation technologies. With grids,
connections no longer need to be programmed in ”raw” geometric coordinates. They instead
refer to indices or other keys into the grid to make reference to desired metal locations.

Several popular programming libraries and frameworks epitomize the programmed-custom
model. Open source libraries such as gdstk and its predecessor gdspy are canonical exam-
ples. While both place some emphasis on the GDSII data and file format (even in their
names), both expose Python APIs to add, manipulate, and query the content of custom

https://github.com/heitzmann/gdstk
https://github.com/heitzmann/gdspy


CHAPTER 6. PROGRAMMED CUSTOM LAYOUT 86

layouts. Gdsfactory and PHIDL [38] expose similar low-level APIs, with higher-level func-
tionality and emphasis tailored to photonic chips and circuits. (Photonics may be a domain
more amenable to the programmed-custom model overall than highly integrated CMOS, as
indicated by the survey in [11].)

The most relevant here at UC Berkeley is the Berkeley Analog Generator, BAG ([7],
[58]), and related projects such as LAYGO [21]. BAG means different things to different
people. One (perhaps founding) view was that BAG codifies the design process which de-
signers tend to very loosely keep collected in memory. This (at least conceptually) includes
selecting circuit architectures, applying sizing decisions, and ultimately producing layout. In
practice, a ways more time, energy, and attention has been dedicated to its efforts to pro-
gram custom layout. BAG endeavors to enable process-portable layout-programs in which a
circuit is codified in a program, and its underlying implementation technology is essentially
a parameter. That technology parameter is quite complex, generally expressed as a large
pile of YAML markup. The portability goals are central to BAG’s usage of such a gridded
layout abstraction.

We also note that ”the analog way” makes its own use of programmed-custom layout. As
illustrated in Figure 5.2, most GUI-drawn custom layout does include programmed-custom
components, for its lowest-level primitives. These low-level layouts are commonly called
parametric cells or p-cells for short. Typical instances produce a single transistor or passive
element, parameterized by its physical dimensions, segmentation, and potentially by more
elaborate criteria such as demands for redundant contacts. These low-level p-cells perform
the highly invaluable task of producing DRC-compliant designs for the lowest, often most
detailed and complicated layers of a technology-stack.

6.1 Programmed Custom Success Stories (Mostly

SRAM Compilers)

The most successful deployments of programmed-custom layout have generally been circuit
family specific. E.g. while a layout-program at minimum produces a single circuit, these
best-use-cases find families of similar circuits over which to find a set of meta-parameters,
enabling the production of a small family. SRAM arrays have probably been the most
successful example. SRAM serves as the primary high-density memory solution for nearly
all of the digital flow, comprising most cache, register files, and configuration of most large
digital SOCs. SRAM is therefore extremely area-sensitive, especially at its lowest and most
detailed design layers. A common workflow uses the custom graphical methods to produce
these ”bit-cells” and similarly detailed layers, while using ”SRAM compiler” programs to
aggregate bits into usable IP blocks. An SRAM compiler is a programmed-custom layout
program. It leverages the fact that large swathes of popular SRAM usage has a consistent
set of parameters: size in bits, word width, numbers of read and write ports, and the like.
The compiler (or what we might call ”generator”) programs generalize over this space and

https://gdsfactory.github.io/
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produce a family of memory IPs.

Figure 6.1: Compute in Memory Concept from [13]

Figure 6.2: Compute in Memory Atom/ Bit-Cell from [13]

The genesis of the layout21 library detailed in section 6.2 was in fact to produce a sim-
ilar set of circuits: ”compute in memory” (CIM, or ”processing in memory”, PIM) circuits
for machine learning acceleration. These circuits attempt to break the typical memory-
bandwidth constraint on machine learning processing, by first breaking the traditional Von
Neumann split between processing and memory. Instead, circuits are arranged in atomic
combinations of processing and memory, e.g. a single storage bit coupled with a single-
bit multiplier. Many research systems have implemented this marriage with analog signal
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Figure 6.3: Compute in Memory Column from [13]

processing, typically performing multiplication via a physical device characteristic, e.g. tran-
sistor voltage-current transfer [9], or that of an advanced memory cell such as RRAM [60]
or ReRAM [59]. Addition and accumulation are most commonly performed either on charge
or current, the two analog quantities which tend to sum most straightforwardly.

Reference [13] details many of the difficulties in using such analog signal processing
techniques. Particularly, while the analog-domain mathematical operations can often be
performed highly effectively, they ultimately must produce digital data to participate in
broader digital systems. These data conversion steps can serve as bottlenecks to both power
and area. Reference [45] provided a lower bound on this ”conversion cost”, based on ap-
plying observed state of the art data converter metrics. But these bounds are likely far too
permissive. Such machine learning acceleration systems rarely feature the trade-offs required
for state of the art data conversion, which often requires highly complex calibration and area
unto itself.

It instead proposes an all digital compute in memory macro, in which each ”atom” is
comprised of a write only SRAM bit cell, plus a single bit ”multiplier” implemented with
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Figure 6.4: Compute in Memory Macro from [13]

a minimum-sized NOR2 gate. Figure 6.1 depicts the compute in memory macro’s atomic
bit-cell and critical building blocks.

Notably, the conclusions of [13] were that programmed-custom layout did not provide
a sufficient benefit to the compute in memory circuit to justify its use over the more com-
mon digital PnR flow. This largely boiled down to a mismatch in layout area between its
two primary functions, compute and memory. Bit for bit, compute is much larger, and
hence mitigates the benefit of tightly coupling its layout in memory. This example from
[13] generalizes across much of the historic usage of the programmed-custom layout model.
Programmed-custom tends to work well for circuits that are highly structured, repetitive,
and parametric. Contemporary work including [29] further extended layout21 to produce
such an SRAM compiler framework in SkyWater’s 130nm open-source technology.

6.2 Layout21’s Layered Design

This work’s primary tool for programmed custom layout design is the layout21 library.
Layout21 is designed to be layered and modular, and to support a modular and diverse set
of layout programming applications. Each conceptual layer general is comprised of (a) an
associated layout data model, and (b) code for manipulating its contents. Its lowest ”raw”
layer directly manipulates geometric layout content in a programming model similar to that
of gdstk or gdsfactory.

https://github.com/dan-fritchman/layout21
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// Simplified `layout21::raw` Data Model

pub struct Layout {

/// Cell Name

pub name: String,

/// Instances

pub insts: Vec<Instance>,

/// Primitive/ Geometric Elements

pub elems: Vec<Element>,

}

pub struct Instance {

/// Instance Name

pub name: String,

/// Cell Definition Reference

pub cell: Ptr<Cell>,

/// Transform: location, reflection, and rotation

pub xform: Xform,

}

pub struct Element {

pub net: Option<NetRef>,

pub layer: LayerRef,

pub purpose: LayerPurpose,

pub shape: Shape,

}

pub enum Shape {

Rect{ p0: Point, p1: Point },

Polygon{ points: Vec<Point> },

Path({ points: Vec<Point>, width: usize, style: PathStyle }),

}

In the layout21::raw model, a layout is comprised of two kinds of entities: layered
geometric elements, and located, oriented instances of other layouts. This ”geometry plus
hierarchy” model largely tracks that of GDSII and of VLSIR’s layout schema. Layout21’s
in-memory format is designed to be straightforwardly translatable to vlsir.layout, and
therefore straightforwardly exchangeable between programs and languages.

Layout21’s design incorporates a second, seemingly easy to miss fact about layout (even
custom layout): it gets big, fast. Perhaps most significant among its principal design deci-
sions, Layout21 is implemented in the Rust [37] language. Rust is a ”systems programming”
language, designed for applications commonly implemented in C or C++. It compiles to
native machine code via an LLVM [31] based pipeline similar to that used by the popular
Clang C compiler. It endeavors to further enable parallel applications via the inclusion of
its ownership and borrowing system, which, among other benefits, produces multi-threaded
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code which is provably race-free at compile time. Layout21 does not, as of this writing, cap-
italize on these parallelism opportunities. But many aspects of its design, notably including
the implementation language from which it begins, are compatible with readily doing so.
More impactfully on Layout21’s usefulness, its host language’s provable memory safety re-
moves large categories of (often fatal) program errors, generally resulting in program-killing
segmentation faults.

Rust’s safety guarantees are nice, and Layout21 benefits (some) from them. But they
are not why Layout21 uses Rust. More so because it has the combination of two attributes
unavailable elsewhere: (1) its speed, and (2) its suite of modern development niceties. Pack-
age management, documentation, unit testing, sharing, and the like - all the semi-technical
facets that actually get code shared - come built in. It also helps that Rust features high ”em-
bedability”, into both low-level languages such as C, and ”slow languages” such as Python
and JavaScript.

There seems to be a time-honored tradition of layout libraries which goes something like:

• Start in a scripting languages. Python, Perl, whatever.
• Designers love it. It’s what they know, and now the can use it for layout.
• Productivity maxes out.
• Then, slowly at first, and quickly later, layouts get bigger. Programs get slower.
• Then much slower.
• Then useless.
• Then the low-level ”extension languages” - generally C or C++ - come in.

This story played out both in the history of BAG, and of gdspy (renamed gdstk to
commemorate the change). Layout21 incorporated this lesson upfront.

Layout21’s approach differs from comparable libraries in a few material respects. Perhaps
most significantly, layout21 treats layout abstracts as first class concepts. Abstracts serve an
analogous role to layout implementations that header definitions serve to implementations,
in programming languages which explicitly separate the two (e.g. C, C++). A programming
function abstract (header) generally specifies:

• (a) An identifier by which to get a handle to the function, generally a name;
• (b) Specifications for the functions arguments. This may include ordering, naming,
and/ or type constraints depending on the language.

• (c) Information about what the function will return. This primarily takes the form of
a type, in languages with typing annotations.

• (d) Any ”special behaviors”. E.g. the possibility of throwing an exception, or a promise
to never do so.

Most vitally: these abstract views are all that callers, i.e. users, of the function ever
need. The remaining implementation - i.e. all the lines of code that do the actual work -
instead serve as its inner implementation.

Layouts and their abstracts have analogous roles. System-level designers, i.e. those
combining packaged chips and PCBs into systems, are deeply familiar with one form of
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abstract layout: the datasheet. Each IC datasheet includes

• (a) A descriptive port list, indicating each IC pin’s function. E.g. ”analog supply”,
”reference clock”, or ”primary output”.

• (b) A physical diagram, indicating the shape and size of each pin, such as that shown
in figure 6.5.

Figure 6.5: Abstract Layout, in the Form of a Packaged IC Datasheet

The abstract view of IC layouts is most popularly expressed in Library Exchange Format
(LEF). LEF is a text-based format which specifies a combination of layout-abstract libraries,
and technology parameters which support them. (The latter subset is often denoted ”tech-
LEF”.) LEF calls its layout-abstract the MACRO. Each MACRO includes:

• An identifier for the macro/ module
• Its physical outline
• A list of (logical) pins and (physical) ports. Each pin may have one or more phys-
ical ports, which are presumed ”strongly” connected within. Each port is specified
with a list of 2.5D shapes similar to those used in layout implementations (rectangles,
polygons, etc.).
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• A list of obstructions. This is formed as another list of 2.5D shapes which are annotated
as ”implementation space”. LEF intent is that higher-level users of the layout abstract
will not interfere with or contact these areas.

• A variety of metadata about the macro (e.g. its usage intent), as well as each pin (e.g.
its direction and intended usage).

Example LEF format content:

MACRO MyCircuit # MACRO (module)

CLASS BLOCK ;

ORIGIN 0 0 ;

SIZE 123.936 BY 125.536 ;

PIN clock

DIRECTION OUTPUT ;

USE SIGNAL ;

PORT

LAYER M4 ;

RECT 122 0.384 123 0.768 ;

END

END clock

# ...

# ...

OBS # obs(tructions), or blockages

LAYER M1 ;

RECT 1.2 0.0 122.736 121.536 ;

LAYER M2 ;

RECT 1.2 0.0 122.736 121.536 ;

LAYER M3 ;

RECT 1.2 0.0 122.736 121.536 ;

END

END MyCircuit

END LIBRARY

Layout21’s ”raw” data model includes a set of types to define layout Abstract. Each is
similar to the analogous concepts in LEF, and to the more general conceptual task of defining
”layout headers”. Simplified versions of the Abstract data model, which uses several core
types from previous excerpts:

pub struct Abstract {

/// Cell Name

pub name: String,

/// Outline

pub outline: Polygon,
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/// Ports

pub ports: Vec<AbstractPort>,

/// Blockages

pub blockages: HashMap<Layer, Vec<Shape>>,

}

pub struct AbstractPort {

/// Net Name

pub net: String,

/// Shapes, with paired [Layer] keys

pub shapes: HashMap<Layer, Vec<Shape>>,

}

Notably layout21’s instances are not of either layout implementations or their abstracts,
but of an association between the two named Cell. Each Cell is a paired set of representa-
tions (or ”views”) of the same underlying physical circuit.

In an unfortunately common practice, layout implementations tend to precede their ab-
stracts. This understandable in a bottom-up design flow, in which layouts are initially built
at primitive device levels, followed by successively higher levels of design hierarchy. In such
practice, one generally does not know where the pins, ports, or blockages will be - much
less where they should desirably be for adjacent circuits - until those circuits are complete.
Which, by definition, is not until roughly when their peers are complete. Plus, specifying
layout abstracts is tedious. Certainly much more so than our analogy to function headers
in programming languages. Layouts (a) tend to have an order or two of magnitude more IO
(e.g. 10s to 100s of pins, as compared to 1s to 10s of function arguments), and (b) specifying
it can be tedious, requiring exact physical coordinates.

So in the bottom-up design flow, abstracts are (a) a huge pain to produce, and (b) not
especially helpful. Understandably, they aren’t often generated. Common practice is instead
to produce layout implementations first, and let ”abstract generation” programs essentially
summarize the implementation.

The fault here is not with the utility of the abstract view per se, but with its clashes
against the bottom-up flow. A central downside of the bottom-up flow is that there is no
practical way to parallelize design effort across hierarchical layers. Layer N of hierarchy can
only reasonably begin when layers (N-1) and down are complete. Parallelization at the same
level of hierarchy is of course possible, presuming independence between peer-blocks. But
more importantly, in a large design team and project, there are only so many equal-layered
sub-designs to parallelize. Moreover the skillsets, background, and interests of designers
varies widely across layers of hierarchy. There is sub-specialization even within custom
layout, especially where it reaches its common boundaries with automatically placed-and-
routed digital layout.

The abstract is the tool that enables parallelizing effort across these hierarchical layers.
Software projects often refer to this practice as interface first or interface-driven develop-
ment. In this style, key system blocks and (notably) their interactions are identified first. In
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the case of a web-scale system this might include the roles of and data exchanged between
client, server, and any other independent executing entities. In the case of custom layout,
these interfaces are physical abstracts. Notably in contrast to ”bottom-up”, this design flow
might errantly be called ”top-down”. It is not. Its entire point is parallelizing effort (and
synchronizing expectations) across levels of hierarchy. Layers both above and below the
initially-defined abstracts then proceed in parallel.

Layout21’s emphasis on abstract layout does not include a generation mechanism from
layout implementations. (I have been asked many times, and kindly declined.) As of this
writing, it also lacks a much more desirable component: an abstract versus implementation
verification tool. In comparison to the ubiquitous layout versus schematic (LVS) comparison,
such a check might be called layout versus abstract (LVA). This would accept the combination
of a layout abstract and implementation (or Cell linking the two) as input, and produce a
boolean result indicating: does the implementation actually implement the abstract? E.g.

• Are the outlines equal?
• Are all pins and ports included?
• Does all port geometry align?
• Does all pin metadata align?
• Are all implementation shapes constrained to be within blockage/ obstruction areas?

Such a tool, potentially in concert with more efficient abstract-specification methods,
would greatly enhance the (rare, but we think better) abstract-driven design flow.

6.3 Tetris Layer

Layout21’s more abstract ”tetris” layer operates on rectilinear blocks in regular grid. Place-
ment is performed through a relative-locations API, while routing is performed through the
assignment of circuit nets to intersections between routing tracks on adjacent layers. Un-
derlying ”tetris blocks” are designed through conventional graphical means, similar to the
design process commonly deployed for digital standard cells. Figure 6.6 schematically illus-
trates the tetris concept, including its rectilinear, edge-connected blocks, and track-based
connectivity semantics.

Tetris Blocks

”Tetris” blocks are named as such because they can be built of a limited set of shapes and
sizes. These include a set of rectilinear shapes similar (but not equal) to the set of convex
rectilinear polygons. Shapes with ”holes” are disallowed, as are those with concave ”inlets”.
Figure 6.7 shows example valid and invalid tetris block shapes.

These allowable block-shapes are designed in concert with Tetris’s connection model and
semantics. Ports are placed on an integer-indexed track grid, on one of four edges (top,
bottom, left, right). The rules for allowable block shapes ensure that the combination of an
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Figure 6.6: Tetris Concept

Figure 6.7: Valid and Invalid Tetris Block Shapes

edge and an (in-range) track index always resolve to a unique and identifiable port location
on the boundary of the cell.

In addition to being of constrained rectilinear shapes, each Tetris layout includes implicit
”blockage” throughout its x-y outline area, and from its topmost z-axis layer down. Each
block therefore owns the entirety of its internal volume; no ”route-through” is permitted.

These rules reduce the space of allowable block-level shapes and outlines, to the benefit
of a substantially streamlined connection model and set of semantics. Tetris layouts are
built atop a background z-axis Stack, conceptually analogous to that of popular digital PnR
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tools, or to the content of popular technology-LEF data. Each Stack principally defines a
set of routing and via layers and rules there-between. Routing is always unidirectional per
layer; all layers are annotated as either horizontal or vertical. Adjacent routing layers are
always of orthogonal routing direction.

The combination allows for each Tetris connection to be specified as a small set of integer
values. Tetris blocks have three allowable categories of locations for ports:

• On the edge of an internal layer, specified by its layer index, a track index, and an
enumerated Side (top, bottom, left, or right)

• On the edge of their z-axis top-layer. These ports include a track index, but also an
indication (in terms of tracks) as to how far into the body of the block the port extends.

• Inside the x-y outline of the block, on its z-axis top layer. These ports are specified as
a series of (x, y) track-valued tuples.

A simplified version of the union-type which defines each Tetris port:

pub enum PortKind {

/// Ports which connect on x/y outline edges

Edge {

layer: usize,

track: usize,

side: Side,

},

/// Ports accessible from bot top *and* top-layer edges

/// Note their `layer` field is implicitly defined as the cell's `metals`.

ZTopEdge {

/// Track Index

track: usize,

/// Side

side: Side,

/// Location into which the pin extends inward

into: (usize, RelZ),

},

/// Ports which are internal to the cell outline,

/// but connect from above in the z-stack.

/// These can be assigned at several locations across their track,

/// and are presumed to be internally-connected between such locations.

ZTopInner {

/// Locations

locs: Vec<TopLoc>,

},

}
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Figure 6.8 schematically captures the valid locations, for a block with a vertical layer N
and horizontal top layer N+1.

Figure 6.8: Valid Tetris port locations

Tetris routing is similarly performed through the specification of a series of integer track
indices. Tetris layout implementations principally consist of:

• Instances of other Placeable objects. These include Instances of other layout-
abstracts, two-dimensional Arrays thereof, and named, located Groups of instances

• Assignments affixing net labels to track-crossings
• Cuts to the track grid

Simplified tetris::Layout:

pub struct Layout {

/// Cell Name

pub name: String,

/// Number of Metal Layers Used

pub metals: usize,

/// Outline shape, counted in x and y pitches of `stack`

pub outline: Outline,

/// Placeable objects, primarily instances

pub places: Vec<Placeable>,

/// Net-to-track assignments

pub assignments: Vec<Assign>,

/// Track cuts
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pub cuts: Vec<TrackCross>,

}

A compilation step transforms these comparatively terse tetris-block objects into the
discrete geometric shapes of layout21’s raw data model.

Tetris Placement

Each relative placement consists of:

• A to-attribute, the referent Placeable object to which the relative placement is made.
This can be an Instance, Array, Group, or similar.

• The Side at which it is placed, relative to to. Sides are enumerated values including
top, bottom, left, and right.

• Alignment, which can be any of (a) any of the values of Side, (b) center, or (c) a pair
of port names. The latter is particularly valuable for streamlined routing of high-value
signals.

• Separation in each of three dimensions. The x and y dimensions are specified in terms
of either (a) a number of primitive pitches in the dimension, (b) a physical distance,
specified in the stack’s units, or (c) the size of another cell. (Z dimension separation
is used for routing, and is specified in terms of a number of layers.)

A simplified version of tetris’s relative placements:

pub struct RelativePlace {

/// Placement is relative `to` this

pub to: Placeable,

/// Placed on this `side` of `to`

pub side: Side,

/// Aligned to this aspect of `to`

pub align: Align,

/// Separation between the placement and the `to`

pub sep: Separation,

}

pub struct Separation {

pub x: Option<SepBy>,

pub y: Option<SepBy>,

pub z: Option<isize>,

}

pub enum SepBy {

/// Separated by distance in x and y, and by layers in z
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Dist(Dist),

/// Separated by the size of another Cell

SizeOf(Ptr<Cell>),

}

pub enum Align {

/// Side-to-side alignment

Side(Side),

/// Center-aligned

Center,

/// Port-to-port alignment

Ports(String, String),

}

Each RelativePlace depends upon one of more other Placeable objects via its to

field. Each Placeable may be placed either relative to another (via a RelativePlace) or
in absolute coordinates, in terms of the primitive pitch grid (via an AbsolutePlace). The
tetris placement resolver takes as input a series of Placeable objects and transforms each
RelativePlace into a resolved AbsolutePlace. Its first step is ordering a dependency graph
between Placeables. This graph must be acyclic for placement to be valid. It must include
at least one AbsolutePlace to serve as a ”root” or ”anchor” element. The resolver does
not produce fully-relative placements, e.g. by assigning an arbitrary location (such as the
origin) to one. Designer input must include at least one absolute placement.

Tetris-Mos Gate Array Circuit Style

In a co-designed circuit style, all unit MOS devices are of a single geometry. Parameteriza-
tion consists of two integer parameters: (a) the number of unit devices stacked in series, and
(b) the number of such stacks arrayed in parallel. The core stacked-MOS cells are physically
designed similar to digital standard cells, including both the active device stack and a com-
plementary dummy device. This enables placement alongside and directly adjacent to core
logic cells, and makes each analog layout amenable to PnR-style automation. Figure 6.9
shows the tetris-MOS layout style in the SkyWater 130 open-source technology.

Figure 6.10 depicts its use in a simple amplifier design.
This style of MOS circuit design has often been called the gate array style, in reference

to its regular pattern of identical devices. The style is much more common and popular in
digital circuits than in analog ones, in which device lengths are commonly varied as a tactic
to enhance analog performance metrics, e.g. intrinsic gain.

The gate array style is however of great value to programmed layout contexts. Allowances
for arbitrary primitive-level device geometry can be incorporated in principle, but tend to
push an even greater burden onto user-level programs to manage physical device dimensions.
This also heavily constrains user-programs capacity for process portability. Many libraries
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Figure 6.9: MOS Stack Design in Standard Logic Cell Style

Figure 6.10: Amplifier Layout in the Tetris Design Style

in the space, Tetris included, instead use an approach dictated by regular grids and regular
primitive-device sizes. Commonly the gate-dimension grid is set to the minimum gate pitch,
or a similar pitch as used by digital circuits.

Regaining the key analog performance metrics of longer-channel MOS devices is then
achieved through gate stacking. This approach recognizes the deep similarities between
MOS transistors of, for example, length L, versus a series combination of ten transistors of
length L/10. In most classical MOS models, especially at analog-domain current-densities
(i.e. far less than the saturation current), the two are functionally identical. Modern device-
engineering techniques make them less identical, but in many cases the series-stack no less
good. (And in many cases, better.)
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The combination of regular gate-array device sizes and gate stacking is central to Tetris’s
programmed-custom model. It is also central to the analog layout-compilation methods
detailed in chapter 7.
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Chapter 7

Compiled (Analog) Layout

Attempts to compile analog and otherwise ”custom” circuit layout are far from new. Re-
search and commercial efforts have included both analog circuit synthesis, e.g. from high-level
specs or other terse descriptions, as well as netlist to layout compilation. Here we focus on
the latter. And we note the popular ”digital way” of producing layout has (a) the same form
as the analog-layout compilation problem: from an input circuit netlist and technology info,
produce a layout implementation, and (b) has ubiquitously succeeded. To make digital IC
layout is essentially synonymous with using automatic PnR.

The vast gulf in success between digital and analog layout automation begs a core ques-
tion: why does PnR work for digital, but fail for analog?

7.1 Why does PnR work for digital, but fail for

analog?

First, PnR compilers typically target synchronous digital circuits, in which a fixed-frequency
clock ”heartbeat” synchronizes all activity. This circuit style is sufficiently ubiquitous to
often be rolled into the common usage of the term ”digital circuits”. Synchronous circuits
offer a simple set of criteria for the circuits’ success or failure: each of its synchronous timing
constraints must be met. Such timing constraints come in two primary flavors:

• Setup time constraints dictate that each combinational logic path complete propagation
within the clock period. This generally manifests as a maximum propagation delay
through any combinational path.

• Hold time constraints demand that each path completes outside of the state elements’
”blind windows”, during which they are subject to errant sampling. This generally
manifests as a minimum propagation delay through any combinational path.

In an important sense for the optimization required in PnR, each and every digital circuit
boils down to something like Figure 7.1. Signal trajectories, commonly called arcs, include
an initial ”launch” state element (shown here as a flip-flop), a combinational logic path,
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and a final ”capture” state element (which also generally serves as the launch element for a
further path).

Figure 7.1: Conceptual view of how the static timing closure problem sees synchronous
digital circuits

This timing closure problem is parameterized by a small set of numbers - principally the
clock period and a few parameters which dictate logic-cell delays (power-supply voltage, pro-
cess ”corner”, etc.). Several other parameters, such as skews throughout the clock network,
inject second-order effects.

Second, timing closure has been proven to be efficiently computable, particularly via
static timing analysis (STA). While transistor-level simulation scales incredibly poorly to
million-transistor circuits, the combination of synchronous digital logic and STA avoids it
altogether. In the STA methodology, the largest circuit which needs direct transistor-level
simulation is the largest standard logic cell. Generally this is on the order of the size of a
flip-flop, or a few dozen transistors. Each element of the logic-cell library is characterized
offline for delay, setup and hold time, and any other relevant timing metrics. These results
are summarized in (typically tabular) static timing models which capture their dependence
on key variables such as capacitive loading or incoming transition times.

With these timing model libraries in tow, STA’s evaluation of timing constraints boils
down to:

• A graph-analysis stage, determining the set of paths between all state elements, and
• Simple arithmetic for totaling up each of their delays.

Both have proven scalable to large circuits.
Third, these delays have easily computable surrogates. In a common example, layout

placers often use total wire length - i.e. the sum of distances between connected elements
- as a quality metric for placements. Other such layout-driven quantities such as specific
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paths’ lengths, metal layer selections, and driver sizes have direct, well-understood effects
on delays, and can be optimized for in a layout-compiler.

In summary:

1. Synchronous logic offers a very straightforward set of pass/ fail measures;
2. Static timing analysis offers an efficient means of computing those measures;
3. Readily available surrogates for STA quantities offer even more efficient means of es-

timating those quantities
4. All of those same methods apply to all synchronous digital circuits.

Contrast this with analog circuits:

1. Virtually no two circuits have the same set of success and failure metrics;
2. Transistor-level simulation is the sole means of evaluating those metrics;
3. Even the production of simulation collateral and metric extraction is highly circuit and

context-specific

In short: fail across the board. Analog circuits have no ”analog” (ahem) to STA which
applies universally and establishes a common success criteria. Each circuit must instead be
evaluated against its own, generally circuit-specific, set of criteria. The success or failure of
a comparator, an LC oscillator, and a voltage regulator each depends on wholly different
criteria.

These criteria also generally lack any efficient surrogates. Their success can generally
only be evaluated through transistor-level simulation. Such simulations scale poorly with
the number of circuit elements, quickly requiring hours to complete on feasible contempo-
rary hardware. Moreover their efficiency is dramatically reduced by the inclusion of parasitic
elements, the very layout information that a PnR solver is attempting to optimize. In-
cluding a sufficiently high-fidelity simulation model for making productive layout decisions
generally means requiring extensive runtimes. Embedding such evaluations in an iterative
layout-optimizer has proven too costly to ever be deployed widely. Machine learning based
optimizers such as BagNET [19] use a combination of wholesale removal of layout elements
(i.e. ”schematic level” simulations) and lower-cost surrogate simulations (e.g. a DC operat-
ing point standing in for a high-frequency response) to evaluate design candidates.

7.2 Ramifications for Analog PnR

Lacking such a global and universal optimization goal has one central ramification: successful
analog PnR must be fed with more targeted and instrumental goals as replacements. Goals
of symmetry across desirably matched devices are a common example. Targets for specific
wire resistances or RC time constants can be another. Needing to break the solver’s targets
into constituent sub-problems requires two related processes to succeed:

• First, someone or something must make this breakdown. Some amount of automa-
tion is possible. The ALIGN [30] and MAGICAL [8] projects particularly focus on
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netlist graph analysis to infer suitable goals for device matching and differential-ness
of signals and instances. Automatic inference of signal priority - e.g. the often orders-
of-magnitude difference in importance between the highest and lowest priority signals
in an analog circuit - is more difficult. Typically this must instead be delegated as a
task for the designer.

• Second, the solver must be able to simultaneously solve all of these constituent subprob-
lems. In many cases they will be highly negatively correlated. Contention for routing
resources, e.g. to reduce resistance or RC time constant, is an obvious example.

Several knock-on problems then follow. It is difficult to confidently produce a set of
constraints for part (1) which assures a design of meeting its parametric goals. (Provably
doing so, with real devices and technologies, is nearly hopeless.) The solver may, perhaps
frequently, find solution-corners in which the sub-problems are solved, but their constituent
goal is not. Much of the process of designing these sub-problems is then likely taken offline.
Instead of specifying ”wire X must have a resistance of less than 10 ohms”, a designer might
perform some offline analysis of her own and specify ”please route wire X on the highest
metal layer available”.

Notably the majority of the constraint and goal languages of popular digital PnR flows
are much more like the latter statement. Except for the central optimization goal and
parameter - closing timing at the specified clock rate - constraints tend to be much more
procedural. ”Place clock buffer A at location (X,Y)” is far more common than, for example,
”place clock buffer A at a point which equalizes its input and output wire delays”. Popular
digital PnR supports thousands of such distinct constraints. Seemingly all would or could
also be relevant for analog circuits. Plus analog circuits have a large space of constraints
and goals of their own, often concerning goals for matching or symmetry.

7.3 Semi-Related: PnR of Digital Logic ”Standard

Cells”

Analog PnR has a semi-analogous sister problem: creation of the cell libraries used by the
digital PnR flow. The digital flow relies on the availability of a library of logic gates which
can execute the core combinational logic functions (e.g. NAND, NOR, INV), sequential data
storage (e.g. flip-flops and latches), and often more elaborate combinations thereof (e.g. and-
or-invert operations or multi-bit storage cells). Common practice is to design these circuits,
or at least their layouts, ”the analog way”, in graphical, polygon-by-polygon mode.

These cells are highly performance, power, and area constrained, and accordingly provide
highly challenging design-rule optimization problems in designing their layouts. This effort
is highly leveraged. Like the bit-cells of widely used SRAM, the most core standard logic
cells are reused billions, sometimes trillions of times over.

Modern standard cell libraries are large, often comprising thousands of cells. Modern
designs also commonly require a variety of such libraries (or at least one even larger library)
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to make trade-offs between power, area, and performance. One set of cells may consistently
choose a higher-performance, higher-power, higher-area design style, while another makes the
opposite trade-off on all three. Mixing and matching of these library level trade-offs often
cannot be done within a single design macro, or the output of a single PnR layout generation,
as libraries making varying trade-offs often feature mutually-incompatible physical designs,
e.g. different cell-height ”pitches”. The aforementioned low-area library may be designed
to a regular pitch of X, while the high-performance library to a pitch of Y, where X / Y is
not a rational number (or at least not a convenient value of one). There has therefore been
a longstanding desire to produce standard cell layouts more automatically, i.e. leveraging
PnR-like techniques.

This problem has many analogies to the analog PnR problem. Standard cells are prin-
cipally comprised of individual transistors, which often feature a diverse set of complex
design rules, highly difficult to a priori encode into a solver. The two problems also differ
in important respects, particularly those of incentives and intent. The desire for maximal
area and power efficiency of standard cells drives a highly optimized design style. This is
generally paired with a similarly stringent optimization criteria for producing their layouts.
Techniques such as (mixed) integer linear programming ((M)ILP) are often deployed, e.g.
in [47] and [54], to produce layouts which provably optimize goals such as minimum area
or maximum transistor-diffusion sharing. The downside is, this scales poorly with circuit
size, and is not especially fast even for small circuits. As noted in [16], ILP based placement
”implicitly explores all possible transistor placements”. Recently research including [46] has
proposed machine learning techniques to aid in searching these spaces.

Analog layouts also have several key differences. Perhaps most importantly, each analog
circuit layout tends to be ”more custom”, less amortized over vast numbers of instances
created by the PnR flow. Each is often custom tuned to its environment, e.g. an op-amp
that is in some sense general-purpose but whose parametric design is highly tuned to its
specific use case.

Moreover, these circuits often lack such clear optimality goals. Perhaps more important,
even if they do have such a goal - e.g. that for ”perfect” symmetry - solutions which achieve
these optima are often fairly evident to designers knowledgeable of the circuit. In other
words, the effort of the optimizer - which tends to be slow, for all but the smallest circuits
- tends to go to waste. Where a standard-cell placer can, or at least is more likely to, find
counterintuitive solutions that can be proven superior, analog PnR is much less likely to
do so. Even when it does, it generally must meet another, highly inscrutable optimality
constraint: the opinion of its analog designer.

7.4 ALIGN

Analog PnR has been a subject of several recent research efforts, many spurred by DARPA’s
CRAFT initiative. The MAGICAL [8] and ALIGN [30]) projects have been among the most
prominent examples. ALIGN is an open-source analog PnR engine, authored by researchers

https://www.darpa.mil/program/circuit-realization-at-faster-timescales
https://github.com/ALIGN-analoglayout/ALIGN-public
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at Intel Labs, the University of Minnesota, and Texas A&M University. It expressly tar-
gets the automation of four broad classes of circuits: low-frequency classical analog, wireline
transceivers, wireless transceiver components, and power delivery components. It is imple-
mented in a combination of Python and modern C++.

Like MAGICAL, ALIGN began with the goal of producing layout from existing, un-
annotated circuit netlists. This goal was in part aimed for porting between technologies. It
quickly developed a JSON-format constraint schema to aid in this process, offering a second
designer-input to inform layout generation. ALIGN’s constraint schema includes facilities
to:

• Create virtual hierarchy, referred to as Groups. Instances within each group are placed
with near each other with increased priority. Matched or differential forms use popular
placement styles such as common-centroid.

• Dictate placement Symmetry between instances, which may include instances of virtual-
hierarchy Groups

• Set relative placement between instances, via constraints to Order their locations,
Align (ahem) them on a particular edge, or combining several such constraints into a
Floorplan

• Request particular metal layers for routing of a given signal
• Request that a given signal be routed on more than one of ALIGN’s routing tracks,
reducing its resistance and RC time constants

And many more.
In addition to PnR, ALIGN performs two related tasks inline:

• First, a set of PnR constraints is inferred from graph analysis of the circuit netlist.
Inferred constraints primarily include those for matching and symmetry between de-
vices.

• Second, primitive device layouts are generated inline. Each ALIGN PDK provides a set
of Python-language parametric layout generators for each primitive device (e.g. transis-
tor) it supports. These primitive-generators are invoked inline during PnR. Each uses
the programmed-custom layout style to produce a detailed (hopefully) DRC-compliant
layout from a terse set of device parameters. This is similar to the approach deployed
by BAG, which similarly executes Python-based primitive-level layout generators in-
line with broader user ”generation” code. It differs from the approach of Layout21 and
digital PnR, both of which require primitive-level layouts be pre-produced before PnR
is to begin.

Our own research team has long had a valuable partnership with Intel. Recent BWRC
research has included IC designs for computer architecture, SERDES, wireless transceivers,
and more implemented in Intel’s process technologies, primarily the popular 16nm FinFET.
The same technology was used for the 2022 and 2023 editions of the educational chips
described in [6] and [15]. This partnership was largely how this work came to consider
analog PnR, and particularly PnR through ALIGN. The 16nm FinFET ALIGN ”PDK”
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developed by the Intel team serves as a central ingredient.

7.5 AlignHdl21

Perhaps in part through realizing many of the difficulties in analog PnR, Berkeley-based
efforts in custom layout automation have largely used the programmed-custom style. The
BAG project serves as a primary example. A combination of user-level adoption of BAG and
firsthand design of layout21 made the challenges of this style clear. Foremost, programmed-
custom layout is extremely complex and verbose, especially to produce routing.

Motivated in part by those challenges, we decided to give analog PnR a fresh look.
Rather than attempting to begin a new PnR engine from scratch, it pairs with and layers
atop ALIGN. Having an analog HDL embedded in a modern programming language serves
as an ideal place to integrate HDL content with the layout-related metadata required to
drive PnR. Figure 7.2 schematically illustrates AlignHdl21’s operation.

Figure 7.2: Hdl21 to Analog PnR Flow

The core input to AlignHdl21-driven PnR is (creatively) named PnrInput. Each in-
cludes:

• An Hdl21 Module,
• An optional, associated Placement, covered in the next section, and
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• An optional list of Constraints. Each is essentially a Python-native version of ALIGN’s
JSON-native constraints.

Figure 7.3 and its associated code excerpt shows an example Module, Placement, and
PnrInput designed to produce layout for the popular StrongArm comparator circuit.

@h.module

class StrongArm:

VDD, VSS = h.PowerGround()

inp, out = 2 * h.Diff()

clk = h.Input()

pclk = params.pclk(g=clk, s=VDD, b=VDD)

pinp = h.Pair(params.pinp)(...)

plat = h.Pair(params.plat)(...)

nlat = h.Pair(params.nlat)(...)

nrst = h.Pair(params.nrst)(g=clk, d=cross)

nout = h.Pair(params.nout)(g=cross, d=out)

pout = h.Pair(params.pout)(g=cross, d=out)

placement = ah.Placement(

ah.Column(

rows=[

StrongArm.pclk,

StrongArm.pinp,

StrongArm.plat,

StrongArm.nlat,

StrongArm.nrst,

StrongArm.nout,

StrongArm.pout,

],

)

)

ah.PnrInput(

module=StrongArm,

placement=placement,

constraints=[ah.ConfigureCompiler()],

)
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Figure 7.3: Example StrongArm Comparator Layout, Compiled from Hdl21 and ALIGN

Placement

AlignHdl21’s Placement dictates relative instance placements in a format similar to popular
GUI programming frameworks. Each placement is a nested series of rows and columns. The
root element of each placement is either a single row or single column. Within each row
(column), each entry can be:

• Any of the target module’s instances. This includes scalar hdl21.Instances as well
as its InstanceArrays and InstanceBundles, most prominently the differential Pair,
or

• A name-based reference to any of these, or to any of the elements of the virtual hier-
archy which can be constructed through ALIGN’s Group functionality, or

• A nested column (row)
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Figure 7.4 schematically illustrate the placement scheme. Each of the leaf-level elements
are Hdl21 instances which map to ALIGN primitive ”generators” 1 or instances of other child
modules.

Figure 7.5 shows a column-based such placement.
Figure 7.6 further highlights the capacity for nesting among placement entities. Each

row consists of a set of entities which may themselves be nested columns, which may in turn
include nested rows. The leaf-level nodes in this graph are Hdl21 instances, or name-based
references to instances.

Figure 7.4: Example Placement

While ALIGN provides both automatic placement and routing, most AlignHdl21 mod-
ules tend to explicitly dictate placement and rely solely on its routing facilities. This is for
two primary reasons. First, transistor-level analog circuits aren’t all that hard to place. De-
signers tend to have a reasonable ideas of what placements suit their circuit and application.
This is especially true when placement can be stated concisely and intuitively, such as by
AlignHdl21’s Placement constructs. Often circuits are designed with particular pitches in
mind, or with desired sides and locations in mind for module ports.

Second, for all but quite small circuits, the ILP-based placement strategy used by ALIGN
can be pretty slow. This time feels particularly poorly spent on circuits for which the designer
has a reasonably placement in mind. Attempts at making use of an alternate analytical placer
proved unsuccessful. Such a strategy, which more closely mirrors common tactics used by
digital PnR, would seem more amenable to larger analog circuits than ILP.

1Adding an N+1th definition for the term
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Figure 7.5: Example Placement

Elaboration

ALIGN performs PnR hierarchically. Parent circuits may instantiate sub-circuits which are
themselves outputs of the same PnR process. These child circuits require the same set of
PnR constraints and guidance as any other, including their parents.

AlignHdl21 transforms a single Module into this hierarchical input via two of Hdl21’s
”pro-mode” features: custom elaboration, and Properties. Hdl21 Modules, Instances,
and most other compound HDL objects support a form of schema-expansion via a Property

system. Each property is a mapping from a string-valued key to a value, which may be any
valid object. Hdl21’s internals do not inspect, type-check, arrange, or in any way constrain
what can be stored in Properties. These decisions are left to the application (or higher-
library-level) using Hdl21. Properties are not exported in any form, not to netlists, or to
simulations, or to VLSIR. They are generally intended to be application-specific additions
to the HDL data model; each is confined to use within its application.

Properties are accessed through a get/ set API, or through the native Python dict

style square-bracket indexing. Properties are not namespaced or in any other way re-
served between user-libraries. Their names must be globally unique, or they risk col-
lisions. Convention dictates that each library setting properties uses keys of the form
{{libname}}.{{propname}}, where libname is the library name, and propname is the un-
qualified name of the property.

AlignHdl21 uses this property system to affix each PnrInput to its target Module.

class PropNames:

# Names of `h.Module` properties

pnr_input: ClassVar[str] = "alignhdl21.pnr_input"



CHAPTER 7. COMPILED (ANALOG) LAYOUT 114

Figure 7.6: Example Placement With Nesting

constraints: ClassVar[str] = "alignhdl21.constraints"

@dataclass

class PnrInput:

module: h.Module

placement: Optional[Placement] = None
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constraints: Optional[List[data.Constraint]] = None

def __post_init__(self):

# (This runs after each instance is created,

# like a custom constructor.)

# Give our `Module` a reference to us as a `Property`.

if PropNames.pnr_input in self.module.props:

raise ValueError(...)

self.module.props.set(PropNames.pnr_input, self)

Hierarchical PnrInput is then extracted from each Module by recursively and hierar-
chically traversing its instances, looking for PnrInput on each. This utilizes both the
Properties extension system and the hierarchy-walking data model traversals common for
Hdl21 PDK compilers.

class PnrWalker(h.HierarchyWalker):

def __init__(self):

self.pnr_inputs: List[PnrInput] = []

self.done: Set[h.Module] = set()

def visit_module(self, module: h.Module) -> h.Module:

if module in self.done:

return module # Already done

# Collect its `PnrInput` if it has one

pnr_input = module.props.get(PropNames.pnr_input)

if pnr_input is not None:

self.pnr_inputs.append(pnr_input)

# And continue with the data model traversal.

for inst in module.everything_instance_like:

self.visit_module(inst.of)

self.done.add(module)

return module

Here PnrWalker recursively collects a dependency-ordered list of PnrInput. The first
element of this list is, by definition, the initial ”root” Module.

Extraction of PnR constraints from natively-annotated Modules is slightly more compli-
cated. Some of the HDL objects which produce constraints do not exist at the beginning
of Hdl21 elaboration - e.g. the signals expanded from nested Bundle definitions. Other
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HDL objects exist at the beginning of elaboration, but not by its end - e.g. those Bundle

instances themselves. AlignHdl21 operates on both, by defining a custom Elaborator and
two elaboration-passes - one intended to be run at the beginning of each elaboration, and
another designed to be run at its end.

class EarlyPass(ElabPass):

def elaborate_module(self, module: h.Module) -> h.Module:

# Check for a `PnrInput` property. If lacking one, we're done.

pnr_input = module.props.get(PropNames.pnr_input)

if pnr_input is None:

return module

# Collect its `PnrInput` into a list of `Constraint`s.

constraints: List[data.Constraint] = []

for ib in module.instbundles.values():

if isinstance(ib, h.Pair):

# Transform each differential `Pair`

# into `Group` and `Symmetric` constraints

if pnr_input.placement is not None:

# Transform `placement` into a further list of constraints

elaborate_placement(pnr_input.placement, constraints, ...)

# ...

# Add the constraint-list as a new property

module.props.set(PropNames.constraints, constraints)

# And send it back

return module

The Early elaboration pass operates on Hdl21’s user-facing data model, including bundles
of signals and instances. It accordingly is responsible for producing most constraints related
to symmetry and grouping. It also translates the potentially nested Placement, which
frequently refers to these compound HDL objects, into a series of corresponding placement
constraints.

The Late elaboration pass receives near-fully elaborated HDL data, in which most com-
pound objects have been compiled out. It is primarily responsible for attributes affixed
to each Signal - e.g. routing requirements, pin locations, and ”usage” intents for power,
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ground, and clock signals. Many of these objects do not exist at the time the Early pass
executes, particularly those produced from bundles and from implicit connections.

Hdl21 elaboration is frequently invoked by other internal processes, outside direct user
control. Invoking SPICE simulation and exporting VLSIR are common examples. It sup-
ports custom elaboration in these contexts by exposing a global, module-scope elaborator,
which user-level code may override. AlignHdl21 does so to enable its constraint-extraction
elaboration.

# Set up our custom hdl21 elaboration.

# Designed to be run at import-time.

# Order of passes:

# - Our `EarlyPass`

# - Most other default elaboration

# - Our `LatePass`

# - The final default step

#

default_passes = Elaborator.default().passes

passes = [EarlyPass] + default_passes[:-1] + [LatePass] + [default_passes[-1]]

# Create our elaborator, and set it as the global default

set_elaborator(Elaborator(passes))

This highlights a limitation of Hdl21’s custom elaboration model: custom elaborators
don’t generally work together. A single Elaborator processes a design hierarchy at a time.
One global such elaborator is used by default, and by most embedded elaboration-calls not
directly invoked by users. A theoretical library incorporating both AlignHdl21 and some
other custom elaboration activity would need to integrate the two itself. To date, no such
combination has been designed.

Compilation to Simulation and Physical Verification

For FinFET technologies including Intel 16nm, ALIGN uses a combination of gate-array lay-
out style and gate-stacking similar to that described in chapter 6. Each ”unit” FinFET is of
identical length. Schematic and netlist-level transistors then layer a ”stack spec” parameter
combination, in which an integer number of copies of the unit FinFET can be arrayed in
either parallel or series. Devices use the common nomenclature for parallel unit-transistors,
”number of fingers” or nf. Series connected devices use a (less common) stack parameter.

@h.paramclass

class AlignFinFetParams:

nfin = h.Param(dtype=int, desc="Number of Fins", default=4)

m = h.Param(dtype=Optional[int], desc="Multiplier", default=None)
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# "Stack spec". At most one can be specified.

# If neither are specified, defaults to `nf=1`.

nf = h.Param(dtype=Optional[int], desc="Parallel fingers", default=None)

stack = h.Param(dtype=Optional[int], desc="Series stacks", default=None)

These are the devices and parameter-spaces against which most AlignHdl21 generators
are written. But they, and particularly their stack series-connections parameter, lacks
compatibility with several key verification programs: notably SPICE simulation and LVS.

Here Hdl21’s notion of compiling into target PDKs comes in handy. Modules for simula-
tion and LVS are produced by a PDK compiler which adds an enumerated Context target.
Valid contexts include ALIGN PnR, spice simulation, and LVS. (The latter two also have
subtle differences in their understanding of the PDK devices.)

Context = ALIGN | LVS | SIM

A dedicated PDK compiler then translates ALIGN-compatible modules into either of the
other two contexts.

class Walker(h.HierarchyWalker):

def visit_external_module_call(

self, call: h.ExternalModuleCall,

) -> h.Instantiable:

""" Visit an `ExternalModule`, potentially replacing it. """

if call.module not in the_align_modules or context == Context.Align:

return call # Unchanged

return self.replace_mos(call) # Replace it

def replace_mos(self, call: h.Instantiable) -> h.Instantiable:

""" Replace a PnR compatible transistor

with one compatible with `context` """

# (Here excerpting only the portion for LVS.)

if params.stack is None:

# Parallel Case.

# Return the unit `ExternalModule` with an `nf` parameter.

# Make a few other parameter-space conversions first

params = intel16_hdl21.MosParams.convert(call.params)

# Get the right (external) module

module = lvs_modules(call.module)

# And return the combination
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return module(params)

# Series Stack Case

# Call our `Stack` generator to array those out.

unit_params = intel16_hdl21.MosParams.convert(call.params)

stack = Stack(unit=lvs_modules(call.module), nser=params.stack)

# `Stack` also uses stuff that needs to be elaborated out.

h.elaborate(stack)

return stack

A paired Stack generator produces a series-stack of nser identical unit transistors. Stack
accepts its unit transistor module as a parameter (i.e. it uses a control inversion parameter)
to allow MOS stacks of any technology or PDK. Notably these include the simulation and
LVS-compatible versions of the target technology.

@h.paramclass

class StackParams:

unit = h.Param(dtype=h.Instantiable, desc="Unit Transistor Device")

nser = h.Param(dtype=int, desc="Number series stacked")

@h.generator

def Stack(p: StackParams) -> h.Module:

"""# Stack Generator

Create a series-stack of `nser` identical `unit` devices."""

# Create the result module, with a Mos-set of ports

m = h.Module()

m.d, m.g, m.s, m.b = deepcopy(h.MosPorts)

# Create the internal source-drain signals

m.i = h.Signal(width=p.nser - 1)

# Create an instance array of `unit` devices

m.units = p.nser * p.unit(

# Primary "stacking action" goes down right here

s=h.Concat(m.s, m.i),

d=h.Concat(m.i, m.d),

# Parallel connections

g=m.g,

b=m.b,

)
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# And return the result

return m

Hdl21’s embedding of hardware generation-code among its background compilation pro-
cesses allows for the creation of modules such as Stack inline. The AlignHdl21 PDK compiler
does so for each instance of an ALIGN-compatible series-stacked FinFET which it must con-
vert into an LVS or simulation-compatible replacement.

This sort of re-use across compilation targets was a central goal of the Chisel and FIRRTL
projects. In their case, output targets tend to be digital implementation platforms: FPGAs,
ASIC back-end flows, or RTL simulation models. In Hdl21 they are process technologies, or
as in this case, subsets of models within a process technology targeting different verification
tasks.
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Chapter 8

Applications

8.1 Neural Sensor ADC in Intel 16nm FinFET

Among its first real-world uses, the combination of Hdl21 and ALIGN were deployed in the
design of a ring oscillator (RO) based ADC intended for neural sensing applications, designed
in Intel’s 16nm FinFET technology.

Ring oscillator based converters operate based on the voltage or current frequency-
dependence of a tunable oscillator. The ADC’s primary input is directed to the RO control
terminal, modulating its frequency. The oscillator output is then sampled and its frequency
is measured, generally by an all-digital frequency detector. RO-ADCs have previously been
used for low-area, low-cost sensors, such as for intra-SoC voltage, temperature, and device
aging measurements. Their footprints are often substantially smaller than most alternate
architectures. They are also highly digital integration friendly, often being made solely of
the same standard-cell-style logic transistors as the SoC’s digital logic.

Like many biological sensors, neural sensors are designed to be implanted in a human
body. They are accordingly stringently power-constrained. A ring oscillator is therefore not
necessarily an obvious fit (at least to me). However contemporary and forthcoming research
has shown they have particular utility when designed in concert with dynamic digital back-
ends, which rely on their analog front-end’s capacity to rapidly change power-performance
trade-offs, including entering extremely low-power states. (This work is, in a sense, a part of
its design process.) ROs cleanly and straightforwardly enable these transitions. While ring
oscillators are generally highly non-linear, a variety of techniques have proven sufficient to
produce ADC resolutions in excess of 10b, sufficient for the neural application.

Figure 8.1 schematically depicts the ADC. It is comprised of a pseudo-differential pair of
sub-ADCs, each of which includes the RO, a phase-sampling comparator array, and a input
resistor network through which the input modulates the RO’s control terminal. Careful se-
lection of the input resistor network was shown in [41] to provide cancellation of second-order
oscillator non-linearity, a vital performance enhancement. Each of the ADC components is
designed to operate at extremely low voltage. Its digital core operates at a nominal 500mV,
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while the analog front-end and oscillator itself runs at 300mV.

Figure 8.1: RO-Based ADC Block Diagram

Figure 8.2 shows the test chip layout. It includes:

• Three single-ended sub-ADCs (at left, nearer top) with varying configurations of ring
oscillator

• A VCO break-out section with bias current DAC (at left, nearer bottom)
• A prototype digital back end (at right)

Figure 8.2: Test Chip Layout

Figure 8.3 shows the VCO breakout section, including the core ring oscillator (at bottom
left), bias current DAC (at top left), output level shifters and drivers (at left), and associated
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ESD protection (at right).

Figure 8.3: VCO Layout

Each of the test chip’s key circuits are generated from the combination of Hdl21 and
ALIGN. Top-level assembly is done ”the analog way”, via a popular graphical custom layout
editor.

Excerpted ADC Circuits

Each oscillator is comprised of a ring-connected set of pseudo-differential delay stages. Stages
use a common, weighted combination of CMOS inverters in forward propagation and positive
feedback configurations to ensure differential operation.

@h.paramclass

class RoStageParams:

uinv = h.Param(dtype=h.Instantiable, desc="Unit Inverter")

ratio = h.Param(dtype=int, desc="Fwd/Cross Ratio", default=4)

@h.generator

def RoStage(params: RoStageParams) -> h.Module:

"""# Pseudo-Diff Ring Oscillator Stage """

@h.module

class RoStage:

# IO

TOP, BOT = h.PowerGround()

NWELL, PSUB = h.PowerGround()

inp = h.Diff(port=True, role=h.Diff.Roles.SINK)

out = h.Diff(port=True, role=h.Diff.Roles.SOURCE)
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# Internal Implementation

## Cross-Coupled Output Inverters

cross = h.Pair(params.uinv)(i=out, o=h.inverse(out), ...)

## Forward Inverters

fwd_p = params.ratio * params.uinv(i=inp.p, o=out.p, ...)

fwd_n = params.ratio * params.uinv(i=inp.n, o=out.n, ...)

# Create PnR placement

placement = ah.Placement(root=ah.Row(cols=[

RoStage.fwd_p, RoStage.cross, RoStage.fwd_n

]))

ah.PnrInput(module=RoStage, placement=placement, ...)

return RoStage

Like most of the ADC’s circuits, the RO stages are designed to be process portable
through the use of control inversion parameters. A separate technology-specific invocation
program applies PDK-compatible devices as parameters to these generators.

The RoStage unit inverter module uinv is arrayed twice in positive feedback and two
times a parametric coupling ratio in the forward configuration. In each oscillator the value
of this ratio is set four.

ADC sampling is performed by an array of dual-tail comparators (or ”sense amps”, or
DTSAs).

@h.generator

def Dtsa(params: Params) -> h.Module:

"""# Dual Tail Sense Amp"""

@h.module

class Dtsa:

# IO

inp = h.Diff(port=True, role=h.Diff.Roles.SINK)

clk = h.Diff(port=True, role=h.Diff.Roles.SINK)

out = h.Diff(port=True, role=h.Diff.Roles.SOURCE)

VDD, VSS = h.PowerGround()

# Implementation

mid = h.Diff()

ntail, ptail = 2 * h.Signal()

# Input Stage

tailn = params.tailn(d=ntail, g=clk.n, ...)
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ninp = h.Pair(params.ninp)(d=h.inverse(mid), g=inp, s=ntail, ...)

pload = h.Pair(params.pload)(d=h.inverse(mid), g=clk.n, ...)

# Output/ Latch Stage

tailp = params.tailp(d=ptail, g=clk.p, s=VDD, b=VDD)

plat = h.Pair(params.plat)(d=h.inverse(out), g=out, s=ptail, ...)

nlat = h.Pair(params.nlat)(d=h.inverse(out), g=out, ...)

# Forwarding between the two

nfwd = h.Pair(params.nfwd)(d=h.inverse(out), g=mid, ...)

return Dtsa

A complete comparator (or ”slicer”, in more serial-link terms) combines such a sense amp
with an SR latch.

@h.paramclass

class SlicerParams:

sa = h.Param(dtype=h.Instantiable, default_factory=Dtsa)

sr = h.Param(dtype=h.Instantiable, default_factory=SrLatch)

@h.generator

def Slicer(params: SlicerParams) -> h.Module:

"""# Slicer"""

@h.module

class Slicer:

# IO

VDD, VSS = h.PowerGround()

inp = h.Diff(port=True, role=h.Diff.Roles.SINK)

out = h.Diff(port=True, role=h.Diff.Roles.SOURCE)

clk = h.Diff(port=True, role=h.Diff.Roles.SINK)

# Internal Implementation

## Slicer

sa = params.sa(inp=inp, clk=clk, VDD=VDD, VSS=VSS)

## SR Latch

sr = params.sr(inp=sa.out, out=out, VDD=VDD, VSS=VSS)

# Create some PnR input

ah.PnrInput(

module=Slicer,
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placement=ah.Placement(root=ah.Column(rows=[Slicer.sa, Slicer.sr])),

constraints=[ah.ConfigureCompiler()],

)

return Slicer

The overall ADC is built of a pseudo-differential pair of instances of half-ADCs. Each
single-ended half-ADC is in turn comprised of a ring of oscillator delay stages, each coupled
with a phase-sampling comparator, plus an input bias resistor divider which drives the ring’s
control terminal.

@h.generator

def RoAdcHalf(params: RoAdcParams) -> h.Module:

"""# RO ADC Half

One side of the pseudo-differential RO ADC."""

@h.module

class RoAdcHalf:

# IO

VDD, VSS = h.PowerGround()

inp = h.Input()

clk = h.Input(desc="Sampling Clock")

samp = h.Output(width=params.nstg, desc="Sampled Output")

# Implementation

res = params.input_res(inp=inp, VSS=VSS)

# This `Ring` is a little different from the one above;

# it has both the delay stages and comparators inside.

ring = Ring(params)(

clk=clk, ctrl=res.out, VDD=VDD, VSS=VSS, samp=samp

)

ah.PnrInput(

module=RoAdcHalf,

placement=ah.Placement(

ah.Column(rows=[RoAdcHalf.res, RoAdcHalf.ring])

),

)

return RoAdcHalf

@h.generator

def RoAdc(params: RoAdcParams) -> h.Module:
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"""

# RO-Based ADC

The top-level pseudo-differential combination of two `RoAdcHalf`s.

"""

@h.module

class RoAdc:

# IO

VDD, VSS = h.PowerGround()

inp = h.Diff(port=True, role=h.Diff.Roles.SINK)

clk = h.Input(desc="Sampling Clock")

samp_p, samp_n = 2 * h.Output(width=params.nstg)

# Implementation

halves = h.Pair(RoAdcHalf(params))(

inp=inp, clk=clk, samp=h.bundlize(p=samp_p, n=samp_n), ...

)

ah.PnrInput(

module=RoAdc,

placement=ah.Placement(

root=ah.Column(rows=[RoAdc.halves.p, RoAdc.halves.n])

),

)

return RoAdc

8.2 Machine Learners Learning Circuits 101

Recent research and commercial EDA has begun to deploy machine learning techniques
throughout the IC design process. Perhaps the most prominent such example is [39]. 1

These techniques are also a prominent research frontier for circuit optimization. Prominent
work has demonstrated reinforcement learning for optimizing transistor-level circuits ([49]),
and translation between both simple and detailed simulations, and between simple versus
detailed circuit details (e.g. schematics versus layout) ([19]).

A central challenge throughout these courses of research has been assembling teams of
collaborators with the requisite combination of skills and interests in two somewhat disparate
fields - circuits and machine learning. Each has a fairly deep silo and set of domain-specific
knowledge and practice. Figure 8.4 schematically depicts these two silos.

1Although a combination of follow up research [10], prominent news reporting and industry publications
cast doubt upon some of its claims. I for one find the Stronger Baselines rebuttal article, which remains
only pseudo-published for. . . reasons. . . quite compelling.

https://www.nytimes.com/2022/05/02/technology/google-fires-ai-researchers.html
https://spectrum.ieee.org/chip-design-controversy
http://47.190.89.225/pub/education/MLcontra.pdf
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Figure 8.4: ML and Circuit Research Silos

The frontiers of machine learning research have expanded at a rapid pace, both enabling
and enabled by a proliferation of high productivity open-source frameworks such as PyTorch
[43] and TensorFlow [1]. ML has also been demonstrated to be of great utility across a
wide range of domains. Image recognition, text recognition, and large language model based
natural language actors serve as prime examples. Machine learning researchers accordingly
have a broad menu of domains towards which to direct their efforts.

Circuits are not the easiest such domain. Much of the requisite knowledge is confined
to a comparatively small number of people. Perhaps more impactfully, IC research is both
highly laborious to set up (complex toolchains with tons of specialty jargon), and worse
still, highly access-controlled. Advanced process technology is the most tightly guarded
ingredient. Recent years have increasingly made silicon PDKs (and lack of sharing them) a
topic of worldwide public policy. Fabs have acted accordingly.

This combination of challenges, plus the opportunities afforded by VLSIR, motivated
the design of the CktGym distributed framework. CktGym and its core Discovery gateway
libraries are schematically depicted in Figure 8.5. CktGym breaks the circuits-ML research
infrastructure into three distinct components:

• A circuit server, which defines a set of circuit generator program endpoints, and exposes
them via HTTP,

• One or more ML client programs. Each performs optimization on one or more of the

https://github.com/BWRC-AMS-ML-Discovery/BwrcAmsMlDiscovery
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circuit-server’s generator endpoints.
• The intervening gateway library, used by both client and server, is provided by Discovery.
Centrally this defines a remote procedure call (RPC) style interface between client and
server.

Figure 8.5: CktGym Framework

Each is designed as a Python library, easing integration with most (really, all) popular
ML frameworks, and with circuit frameworks including VLSIR and BAG.

On one level, CktGym’s motivations mirror those of ProtoBuf and similar markup lan-
guage projects. Circuits-ML programs are ”too big”, less in an overall complexity sense, and
more in that of having two disparate sub-programs. CktGym decouples and distributes the
two, defining an interface in serializable form via JSON and/ or ProtoBuf over HTTP.

Each use-case of CktGym generally breaks down in three:

• One long-running program implements the server. This uses the Discovery libraries to
service HTTP requests and translate them into native Python objects. Instance-specific
code then translates them into circuit generation problems, and passes them along to
the generator frameworks. These server libraries generally run on machines with access
to the requisite silicon process technologies and EDA software, or on machines which
can directly access others which do.

• A library enables client-side ML optimization. This uses Discovery’s RPC via HTTP
client for querying the circuit-server. It also commonly integrates its machine learning
(or other optimization model) framework of choice.
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• A shared package commonly defines the interactions between the two. This is generally
a fairly small set of information, including the names and addresses of the server
endpoints, and schema for the argument and return values of each endpoint.

Like HTTP, the CktGym interface is stateless. Each server request is provided with a
set of circuit-parameters, and returns a corresponding set of results or metrics. Commonly
the former serves as the parameters to a circuit-generator program, i.e. specifying device
sizes, and the latter indicates simulation-based metrics, i.e. summaries of SPICE simulation
results. No other imposition is made upon the circuit-server endpoints, e.g. the level of
detail of circuit they analyze (schematic vs layout based), the underlying tools they use, the
underlying process technology, or anything else.

As of this writing, two such CktGym instances are in operation on UC Berkeley’s research
infrastructure. One is designed to be fully open-source, making use of the freely available
NGSPICE (a continuation of the Berkeley SPICE project). This instance primarily recreates
the reinforcement learning based methods of [49], deploying them to a new and wider array
of circuit optimizations. It uses an unfabricatable (fake) ”PDK” similar to that used by the
open-source version of AutoCkt. The second instance makes use of AlignHdl21 to produce,
extract, and simulate layout on-demand, in Intel’s 16nm FinFET technology.

Example Power of Circuit ”Expert Knowledge”

A common premise in ML-for-circuits research has been optimization of circuit parameter
vectors, which commonly map directly onto the device parameters of a typical circuit netlist.
Figure 8.6 shows an example such transistor-level circuit. This folded-cascode, ”rail to rail”
dual input op-amp consists of 26 transistors. A common approach would be to optimize
this as a 26N variable problem, in which N parameters of each transistor are elements in
the vector. In a common implementation N is equal to one, the width of each transistor,
while all other device parameters are fixed. An ML-based optimizer operating directly on
its device widths therefore needs to jointly optimize these 26 variables. Operating on more
complex device sizes (e.g. including length or segmentation in addition to unit width) further
multiplies this space.

A common and valuable view of this circuit for sake of understanding and learning its
operation breaks it into descriptive, functional sub-sections. Figure 8.7 illustrates a common
such breakdown into four sections: one each for the two input stages, one for the output
stage, and a peripheral, biasing stage.

While the view of figure 8.7 is powerful for understanding, it is not as valuable for design.
Veteran designers of such circuits recognize they are (a) not making 26 independent device
sizing decisions, and (b) not designing four independent sub-sections.

This latter distinction largely hinges on the qualifier independent. This circuit and most
others in the classical analog genre operate based on device matching between pairs and
groups of ostensibly identical transistors. This tactic pairs with both signaling schemes -
primarily the prominence of differential signals in on-die contexts - and with surrounding
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Figure 8.6: Rail to Rail Input Op-Amp

needs such as replica-current biasing. Figure 8.8 groups the op-amp’s devices into these
matched sub-groups.

In total, the rail to rail op-amp in fact includes only six unique unit devices:

• The input pair,
• The bias current sources, and
• The cascodes
• Each in NMOS and PMOS flavors

These devices are then scaled by integer current ratios, for each input pair (herein referred
to as alpha and beta respectively), and to the output stage (gamma). Across each current
branch, current density across each group of devices is fixed; a branch with Nx the current
also has Nx wider transistors. Several bias-current branches which do not directly dictate
the circuit performance are fixed to the input unit current ibias. The two input current
sources are also fixed to identical current values equal to ibias.

These relationships are relevant for both human and ML designers. Embedding this
”expert knowledge” reduces the parameter space from 26 (the number of devices) to 9: six
to set unit device sizes, plus the three current ratios. If more detailed parameterization of
the unit devices is desired (e.g. to set their length as well as width), this advantage grows
similarly.

@h.paramclass
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Figure 8.7: Op-Amp Separated by Descriptive Sections

Figure 8.8: Op-Amp in terms of independent devices and current densities

class FcascParams:
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# Unit device sizes

nbias = h.Param(dtype=int, desc="Bias Nmos Unit Width", default=2)

pbias = h.Param(dtype=int, desc="Bias Pmos Unit Width", default=4)

ncasc = h.Param(dtype=int, desc="Cascode Nmos Unit Width", default=2)

pcasc = h.Param(dtype=int, desc="Cascode Pmos Unit Width", default=4)

ninp = h.Param(dtype=int, desc="Input Nmos Unit Width", default=2)

pinp = h.Param(dtype=int, desc="Input Pmos Unit Width", default=4)

# Current Ratios

alpha = h.Param(dtype=int, desc="Pmos Input Current Ratio", default=2)

beta = h.Param(dtype=int, desc="Nmos Input Current Ratio", default=2)

gamma = h.Param(dtype=int, desc="Output Current Ratio", default=2)

@h.generator

def Fcasc(params: FcascParams) -> h.Module:

# Multiplier functions of the parametric devices

nbias = lambda x: nmos(m=params.nbias * x)

ncasc = lambda x: nmos(m=params.ncasc * x)

ninp = lambda x: nmos(m=params.ninp * x)

pbias = lambda x: pmos(m=params.pbias * x)

pcasc = lambda x: pmos(m=params.pcasc * x)

pinp = lambda x: pmos(m=params.pinp * x)

# Give these some shorter-hands

alpha, beta, gamma = params.alpha, params.beta, params.gamma

@h.module

class Fcasc:

# ...

## Output Stack

pbo = h.Pair(pbias(x=gamma + beta))(...)

pco = h.Pair(pcasc(x=gamma))(...)

nco = h.Pair(ncasc(x=gamma))(...)

nbo = h.Pair(nbias(x=gamma + alpha))(...)

## Input Pairs

## Nmos Input Pair

nin_bias = nbias(x=2 * alpha)(...)

nin_casc = ncasc(x=2 * alpha)(...)

nin = h.Pair(ninp(x=alpha))(...)
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## Pmos Input Pair

pin_bias = pbias(x=2 * beta)(...)

pin_casc = pbias(x=2 * beta)(...)

pin = h.Pair(pinp(x=beta))(...)

return Fcasc

It is possible, and in fact likely, that given sufficient effort machine learning agents will
”learn” this domain knowledge for themselves. There are many such hard-won insights - the
entire concept of differential signaling and matched devices; how these devices are identified
by connection; the fact that each input pair should probably be of identical size. How much
learning effort this will take, remains to be seen.
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Chapter 9

Future Work

All of the software presented in this manuscript is publicly available in open-source form
under the permissive Berkeley BSD license. 1 2 Handfuls of like-minded researchers and
practitioners have adopted its various pieces, often while they remained work in progress.
These real-world use-cases, and particularly those of our own research designs, motivated
countless invaluable improvements and changes of direction over time.

As open-source projects they are living artifacts. Hdl21 and VLSIR are the most mature,
and operate as the most ”real” open-source projects of the bunch, with tactical issue tracking,
consistent test pipelines, automatic test-coverage reviews, and many other common tools
of popular open-source projects. Most importantly they have attracted a subset of user-
contributors outside their original authors who have volunteered their time, thoughts, and
code-contributions. These updates will continue. This manuscript will serve as a snapshot
in time of these projects’ state as they inevitably mature away from it. Potential future
directions for the Hdl21 schematics system are discussed in section 4.7.

Layout remains more open-ended. A central takeaway from this work has been that the
best way to do custom layout is ”it depends”. There has been only one successful model - ”the
analog way”. That may remain the case through the end of the silicon-era roadmap. While
this work explored the programmed-custom and analog PnR attempts at its replacement,
I suspect there is an even more valuable combination of the two to be had. The methods
of ALIGN have proven invaluable for transistor and primitive level layouts. Higher-level
circuits such as data converters, transceivers, or PLLs demand a more hierarchical design
process. This applies both to their physical design and to their verification. Such a combined
workflow could include:

• Layout21’s Tetris style blocks, with enumerable port locations on the edges of their
filled, fully-blocked 3D innards

1Save for the parts with proprietary third-party dependencies, e.g. silicon process technologies.
2AlignHdl21 is, as of this writing, entangled in such a dependency. This will be unwound, and it will be

freely available, soon, at https://github.com/dan-fritchman/AlignHdl21.

https://github.com/dan-fritchman/Hdl21/issues


CHAPTER 9. FUTURE WORK 136

• Analog PnR designing the innards of each, provided with target specs, outlines, and
port locations

• An available combination of automatic and programmatic routing between them
• A fluid combination of code-based and graphical entry means, such as those afforded
by Hdl21 and its paired schematic system, for ”floorplanning” and divvying up these
subproblems

• Feedback including the difficulty of each subproblem. This can include both circuit-
level metrics (e.g. what fraction of area allocated was required, did a given signal have
enough metal resources to have sufficient bandwidth) and execution-level metrics (e.g.
the runtime of the inner-block PnR)

This would require a handful of new components including the graphical floorplanning
facilities, and updates to the analog PnR process to allow designer-fixed outlines and port
locations.

Elsewhere in layout, there is a dark art that went little-discussed in our relevant chapters:
the crafting of low-level, design-rule-compliant primitive device layouts. BAG calls these its
primitives, while many other popular environments call them programmatic cells or p-cells
for short. I have not seen what I would regard as an easy, or automatic, or good way to
create these cells. BAG produces them through a combination of process-portable Python
code and highly detailed YAML-format markup describing each technology. ALIGN and
most popular custom design environments do so through process-specific code. In ALIGN
these ”generators” are Python modules. Layout21’s Tetris takes an approach more akin
to that of digital PnR. It is agnostic as to the source of low-level primitive cells, and even
to their contents. It solely operates on their abstract views, manipulating them essentially
as outlines and located ports. The low-level implementations are commonly either designed
”the analog way” (via GUI) or in programmed-custom style, e.g. using Layout21’s raw layer.

This effort to produce technology-specific low-level layouts is reasonably well amortized,
across all of the devices created in the combination of technology and framework. Nonetheless
it remains a significant burden to starting to use a new framework in a new technology. It
was only for our research partnership with Intel, and for their authoring the initial 16nm
ALIGN primitives, that we took a serious interest in ALIGN-based PnR.

Creation of such cells is therefore a desirable facet of a process-portable framework. Ide-
ally each could be crafted from as little bespoke content (markup, code, countless iterations
through design-rule-checking programs) as possible, and instead leverage the existing PDK
collateral for either digital or analog design. The popular analog design environments sup-
ported by popular commercial PDKs are an unlikely source. Their implementations are
generally within proprietary, tied-in programming languages. More important, these imple-
mentations are often encrypted and unavailable to any but the source fab and target EDA
platform. The digital flow’s collateral may prove more useful. The primary design-rule in-
put to digital PnR is a simplified set of DRC rules, often encoded in LEF format. 3 This

3While we have discussed LEF for abstract-layout libraries, it is also the most popular format for these
streamlined design rules. The latter subset is often referred to as tech-LEF.
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may serve as more valuable guidance, at least to a certain level of details (e.g. determining
suitable transistor pitches from those of the lowest-layer metals). The BFG FGPA generator
project, a founding and motivating use-case of the VLSIR framework, attempts to make
similar streamlined design rules in VLSIR’s protobuf schema. Automatic generation of such
rules remains a future, valuable task. Doing so may prove a relevant space for ML-based
exploration.

The ”cloud-era-ness” of VLSIR and its ProtoBuf-based underpinnings make the prospects
of VLSIR-based web services a readily available possibility. The CktGym machine learning
project serves as an initial example. Further candidates include prospective services for rout-
ing and physical verification (LVS, DRC). Perhaps the most mature such example is VLSIR’s
handling of SPICE simulation. VLSIR-driven SPICE simulation is designed through Proto-
Buf’s native service and rpc definitions, which define procedures callable on a (potentially)
remote machine. This Sim RPC takes a single SimInput message - conceptually the content
of a SPICE ”deck” as input - and returns a SimResult message comprised of waveforms,
measurements, and other simulation results. To date all invocations of the Spice service
have been local, as function-calls within a VLSIR-based Python program. The structure of
its design nonetheless affords a straightforward method to accept simulation requests from
arbitrary programs and machines.

// # The SPICE Service

service Spice {

rpc Sim(SimInput) returns (SimResult);

}

// # Simulation Input

message SimInput {

// # Circuit Input

// The DUT circuit-package under test

vlsir.circuit.Package pkg = 1;

// Top-level module (name)

string top = 2;

// # Simulation Configuration Input

// List of simulator options

repeated SimOptions opts = 10;

// List of circuit analyses

repeated Analysis an = 11;

// Control elements.

repeated Control ctrls = 12;

}

// # Simulation Result

// A list of results per analysis

message SimResult {

https://github.com/growly/bfg
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repeated AnalysisResult an = 1;

}

Our work in machine learning for circuit design, and the application of the framework
presented here towards those ends, is among our least mature contributions. The space to be
explored here is vast, as are its possibilities for improvements. A promising future direction
is detailed in section 9.1.

9.1 ML Designers

Figure 9.1: ML Designer

The combination of VLSIR and CktGym further motivate several new, early-stage direc-
tions in circuits-for-ML research.

We begin by noting that in many works in this nascent area, problem formulations are
of the form: given a fixed circuit topology and fixed figure of merit, find optimum sizes for
each device in the circuit. Moving a new circuit topology or new FOM generally requires
an altogether new agent, each of which requires a training process many-times the length
of its actual task. Attempts at transferring the learning derived from each circuit, where
attempted, are generally limited to highly-correlated cases, such as the differences between
schematic-based and layout-parasitic-annotated versions of the same circuit.
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This is far from how human designers approach the task on several fronts.

• Human designers clearly learn to infer more complex circuits from simpler ones. Core
analog building-blocks such as current mirrors form the basis of larger circuits of various
shapes and sizes.

• Designers are commonly faced with similar design-tasks featuring similar goals, met-
rics, constraints, and/or technologies, and quickly learn to extrapolate between them.
”Porting” of a circuit from one process-technology to another similar technology is a
common example. Designers quickly come to recognize which technologies are ”most
similar”, even if only dimly aware of any specific criteria for similarity. They similarly
learn to extrapolate between metrics, i.e. trading off power for bandwidth, and other
constraints such as area.

• Real design-efforts look less like optimizations. Each generally has constrained re-
sources such as design-time and expertise. Their goals are not of the form ”thou must
find the optimal solution”, but of ”thou must find a solution better than X (and the
more the merrier)”.

In some respects the circuit framing is also forced onto the traditional machine-learning
paradigm. The separation between ”training” and ”inference” is particularly strained. The
notion of a discrete ”training stage” is valuable in several machine-learning contexts:

• (a) Instances of supervised learning, in which a system is foreground-trained, then sub-
sequently not updated while performing (hopefully many) much lower-cost inference-
steps, and

• (b) Instances of transfer learning, for example of a neural-network-based robotics sys-
tem trained in a physics simulator, then transferred into a physical robot.

Analogizing to human agents, these trained ML systems are like Olympic athletes. Their
performance only matters a (sometimes quite small) subset of the time, i.e. on ”game
days”. Once every four years they face a particularly high-leverage competition. The rest
of their time is spent preparing for those big moments. Nothing tracks or cares about their
performance on intermediate ”training days”, except inasmuch as it ultimately effects their
game-day performance. Game-playing reinforcement-learning agents such as AlphaZero have
similar constraints, again due to the dichotomy between ”training time” versus ”game time”.

Most human jobs do not work like this. Janitors, for example, don’t have ”game days”.
They do janitor-ing every day. This work is in part premised on the circuit designer’s task
being more like the janitor than the Olympic athlete. There is no game-day for either; their
contributions at any point in time count the same.

Goals

We endeavor to produce an ML circuit designer which:
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• (a) Does not just provide device sizing for human-provided circuits, but designs circuits
of its own.

• (b) Does so while inferring from related circuits, goals, and constraints.
• (c) Continuously improves upon state-of-the-art designs.
• (d) Accepts new goals and constraints from its human designers.

It includes:

• Programmable circuit goals, each of which includes a test suite, a scalar figure of
merit, and a set of constraints, including both performance requirements (e.g. ”max
power 1mW”) and availability constraints, e.g. the device-set available in a particular
implementation technology.

• A comprehensive database of past goals, attempts, and their results.
• A designer-agent which edits and evaluates circuits through a discrete action-space.
• An overseeing ”boss” which provides the designer-agent with a stream of circuit-goals

The designer-agent’s performance is rewarded against a single metric: performance rel-
ative to the best existing figure-of-merit for the given goal. The designer-agent is therefore
perennially incentivized to create ”state of the art” circuits for each goal.

Separable notions of ”training” and ”inference” break down in this mold. Like the human-
designer, the designer-agent sees no ”game-day” to prepare for. Its circuit-inventions made
on ”training days” are just as valuable as any other. Both the designer-agent and boss
(which may or may not be implemented as an RL agent) run online, indefinitely. Additional
goals can be injected at any time, with priority dictated by the ultimate (human) boss.

The combination is designed to allow the designer-agent to learn along several axes:

• From simple circuits, e.g. current mirror
• From similar test suites, i.e. those for similar circuits
• From same test-benches, similar FOMs
• From similar technologies/ constraints

The Designer-Agent and Her Environment

The designer-agent has a discrete action-space highly similar to that available to a human
designer. It consists of four discrete actions:

• Add a device
• Change a port-connection, on a single device
• Change a parameter-value, again on a single device
• Evaluate the circuit, i.e. run simulations and determine its FOM

Each (but the last) has a small parameter-space:

• Adding a device is parameterized by a device-type, represented as an integer ”device
type ID”.
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• Each constraint-set, generally via an underlying implementation-technology compo-
nent, includes a valid set of devices. Selecting an invalid device-type incurs the mini-
mum reward, and does not modify the circuit.

• Changing a port-connection is parameterized by three integer values: (a) an instance
reference, denoted as an index in the circuit component-list, (b) a port-reference, again
represented as an integer, and (c) the net to be connected, again denoted as an integer,
as common in SPICE-netlist-style representations. An invalid port-reference incurs the
minimum reward, and does not modify the circuit.

• Changing a parameter-value has essentially the same three parameters: (instance,
param (index), new value). Note this implies that all instance-parameters are integer-
valued. An invalid parameter-index again incurs the minimum reward, and does not
modify the circuit.

• The ”evaluate” action has no parameters.

Using Rust-style algebraic-enum syntax, the designer’s action-space then looks something
like:

/// Type Alias for each Index-type

type Index = u8;

/// Designer-Agent's Action Space

enum Action {

AddDevice(Index),

Connect {

instance: Index,

port: Index,

node: u8,

},

SetParam {

instance: Index,

param: Index,

value: u8,

},

Evaluate

}

Actions are encoded similarly to how compilers commonly lay out tagged unions. An
initial integer-value indicates the action-type, while remaining fields dictate their data. The
designer action-space is therefore encodable as a four-integer tuple: one for the discriminant,
and three for the parameters of the largest actions (Connect and SetParam). Actions with
invalid discriminant-values incur the minimum reward, and do not modify the circuit.
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The Environment

The designer-agent’s sole reward function is its circuit’s performance relative to the state of
the art for its task. Like the human designer, it has a wide variety of information to bring
to bear in seeking this reward, and much more information it is either dimly aware of or
altogether unaware of. The entirety of this universe, or environment in RL terms, includes
both the boss-agent and the comprehensive results database, covered in later sections. The
designer-agent’s directly observable subset of the environment includes:

• Its currently-designed circuit, as produced by its prior actions
• Simulation results for its most-recently simulated circuit
• A detailed representation of its current goal, including a circuit representations of the
goal’s testbenches, serialized representations of its constraints, generally in the form of
mathematical inequalities, the serialized figure-of-merit evaluation routine, represented
as an evaluation tree, and the state of the art circuit for its current goal.

Much more of the environment-information would be of use to the designer-agent, and
may be worth adding to its observation-space. High-utility information may include:

• State of the art circuits for similar goals, i.e. those with near-identical constraints or
figures of merit

• Results of its other past circuit evaluations

Expansion of the designer-agent’s observable space is only constrained by its efficiency in
making its own updates. Note that many more tangential relationships, such as ”technology
A is more similar to technology B than technology C”, can in principle be learned into its
network coefficients.

The ”Design Manager”, or Boss-Agent

The designer-agent has a single objective: create the best circuit it can for a given goal.
Selecting these goals is outside her purview, and is the primary task of the ”boss-agent”.
In our human-designer analogy the boss-agent serves as the ”design manager”, determining
towards which goals designer-time should be dedicated, subject to a number of goals and
constraints.

The relationship between the boss-agent and designer-agent occurs in fixed-length design-
attempts, or in RL terms, episodes. The boss-agent provides the designer-agent’s goal and
initial environment, potentially including a suggested circuit, e.g. from similar goals or
similar constraints. This often, but not necessarily, is set identical to the state of the art
circuit for the goal. The boss-agent then allows the designer a fixed number of actions to
improve upon this circuit, then records the final design, its simulated results and figure of
merit. These fixed-length ”design sprints” pattern a human design environment. Where
the human design-manager might assign ”produce the best circuit you can in a month”, the
design-manager-agent assigns ”produce the best circuit you can in N actions”.
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The boss-agent interacts with two long-accumulating datasets: the results database and
goals database. Results are updated after sufficiently successful design-attempts, particularly
those which near or exceed the prior state of the art. Prioritized goals are injected by the
boss-agent’s human designers, and eventually potentially by a larger design community.

The boss-agent’s goal-selection is influenced by:

• Progress. Goals for which the designer-agent is improving upon the state of the art
are prioritized as likely to incur further improvements. Goals for which improvement
has stagnated are deemed more likely to have reached more fundamental constraints.

• Priority. The boss-agent interacts with a goal-database which can be updated at any
time by its human-designers, or eventually by a larger design-community. Each goal
is affixed with (human-dictated) priority-weighting and expectations. Realistically-set
goal-expectations, in values of the goal’s figure-of-merit, allow for the agents to escape
local minima. Typical sources of these expectations would be from human-designed
circuits. Priorities may be set in terms of these expectations, for example a fixed
maximum priority-level until reaching the expectation, then a linearly-decreasing pri-
ority for further performance which exceeds it. An eventual community-driven model
of these priority-weights might include expertise-driven (e.g. reputation-based) or
market-based (e.g. auction) mechanisms for setting these weights.

• Comprehensiveness. Additional emphasis is placed on goals, figures of merit, and
constraint-sets which have been least covered by past design attempts. A prime exam-
ple is the injection of a new process-technology into the available set, and associated
attempts to map each past goal into the technology.

The boss-agent also accepts human-designed circuits. Along with figure-of-merit ex-
pectations, such circuit-suggestions are a primary mechanism for the injection of human
expertise. Each human-recommended circuit is quickly evaluated against any paired goals,
and if improving upon the designer-agent’s state of the art, quickly injected into its observed
environment for those goals.

Both the designer-agent and boss-agent run continuously in a server-style mode. Their
collective task is best interpreted not as one of optimization, but as one of improvement.
No matter their perceived optimality of their circuit-designs to date, the boss-agent will
continue identifying a highest-priority goal, and the designer-agent will continue to attempt
to improve upon it.
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