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Abstract

Although process data indicate that people often rely on sim-
plifying processes when choosing between risky options, cur-
rent models of heuristics cannot predict people’s choices very
accurately. To address this apparent paradox, it has been pro-
posed that people might adaptively choose from a toolbox
of simple strategies. But which strategies are contained in
this toolbox? And how do people decide when to use which
decision strategy? Here, we develop a model according to
which the decision maker selects a decision strategy for a given
choice problem rationally from a toolbox of strategies; the con-
tent of the toolbox is estimated for each individual decision
maker. Using cross-validation on an empirical data set, we find
that this model of strategy selection from a personal adaptive
toolbox predicts people’s choices better than any single strat-
egy (even when it is allowed to vary across participants) and
better than previously proposed toolbox models. Our model
comparisons show that both inferring the content of the tool-
box and rational strategy selection are critical for accurately
predicting people’s risky choices. Furthermore, our analysis
reveals considerable individual differences in the set of strate-
gies people are equipped with and how they choose among
them; these individual differences could partly explain why
some people make better choices than others. These findings
represent an important step towards a complete formalization
of the notion that people select their cognitive strategies from
a personal adaptive toolbox.
Keywords: decision making; bounded rationality; strategy se-
lection; heuristics; computational modeling

Introduction
How do people make decisions under risk? This question
is commonly studied by asking people to choose between
gambles as in “Would you prefer a 20% chance of winning
$1000 (Gamble A) or a 95% chance of of winning $200
(Gamble B)?” According to expected utility (EU) theory (von
Neumann & Morgenstern, 1944), people should evaluate all
possible outcomes that each available action might have and
weight them by their respective probabilities. Empirical re-
search, however, has demonstrated that human decision mak-
ing systematically deviates from EU theory (e.g., Kahneman
& Tversky, 1979). These deviations are commonly inter-
preted as an indication of human irrationality. Recent work,
however, suggests that they could also reflect people’s ratio-
nal use of limited cognitive resources (Lieder & Griffiths,
2019; Griffiths, Lieder, & Goodman, 2015).

To date, the most prominent descriptive theory of risky
choice is cumulative prospect theory (CPT; Tversky & Kah-
neman, 1992). CPT accounts for many violations of EU the-
ory by postulating that people’s decision mechanisms sys-
tematically distort the stated probabilities (i.e., overweighting
rare and underweighting common events) and payoffs (di-
minishing sensitivity to additional increases in the outcome
as the outcome gets larger, and an amplification of losses
relative to gains). Interpreted as a cognitive process model,
CPT predicts that information is processed exclusively within
each option and that the information processing is identical
across all problems. Process-tracing studies, however, show
that people often compare options along individual attributes
and that the processing varies across problems. These process
data are instead consistent with processing policies of sim-
ple heuristics (Payne & Braunstein, 1978; Pachur, Hertwig,
Gigerenzer, & Brandstätter, 2013) such as the lexicographic
heuristic, that usually only looks at each gamble’s most prob-
able outcome while ignoring all other possible outcomes. Yet,
model comparisons have found that assuming that people use
a single heuristic across all problems, no single heuristic pre-
dicts risky choices nearly as well as CPT (Glöckner & Pachur,
2012).

One way to resolve this apparent paradox is to postulate
that people are equipped with a toolbox of several, often
heuristic, strategies and that they use different strategies on
different trials. This raises the question of which strategies
their toolbox is equipped with and how people select be-
tween them. Previous work on strategy selection has found
that people adapt their strategy use to the structure of individ-
ual choice problem and the situation’s requirements for speed
versus accuracy (Payne, Bettman, & Johnson, 1988). The ra-
tional strategy-selection model by Lieder and Griffiths (2017)
captures this adaptive flexibility as well as the variability and
the learning-induced changes in people’s strategy selection.
It does not, however, specify the set of strategies from which
people select among. To address this question, Scheibehenne,
Rieskamp, and Wagenmakers (2013) developed a hierarchical
Bayesian measurement model for inferring the contents of the
cognitive toolbox. This model, however, assumes that peo-
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ple’s tendency to select a given strategy is not systematically
related to the choice problem at hand and the requirements of
the current situation. Strategy selection, however, has been
shown to be sensitive to problem-specific features (Payne et
al., 1988).

Here we develop an integrative model of risky choice with
a personal adaptive toolbox. Our approach combines infer-
ring the content of a person’s cognitive toolbox with a ratio-
nal model of strategy selection (Lieder & Griffiths, 2017). We
validate this approach using a large empirical data set of risky
choice data collected by Glöckner and Pachur (2012), test-
ing it against single strategies, non-adaptive toolbox models,
and CPT. Our model constitutes the first complete formaliza-
tion of the notion that strategies are selected from a personal
adaptive toolbox. It thereby enables more accurate inferences
on people’s cognitive toolbox than was previously possible,
and we find that it predicts people’s choices better than single
strategies as well as other existing toolbox models.

The outline of this paper is as follows: We start by describ-
ing 11 extant (heuristic) strategies for risky choice, which
might be contained in people’s toolbox of decision strate-
gies. We then introduce our computational model of the adap-
tive toolbox theory as well as several competitors. Next,
we present a cross-validation method for inferring the set
of strategies considered by an individual decision maker.
We then evaluate our adaptive toolbox model against sin-
gle strategies, non-adaptive toolbox models, and CPT. Fi-
nally, we apply our model to estimate the content of people’s
toolboxes—thereby elucidating why some people make better
decisions than others. In closing, we discus the implications
of our findings for the debate on human rationality as well as
directions for future work.

Heuristics as Models of Risky Choice
A number of different strategies have been proposed as mod-
els of how people make decisions under risk. Following
Glöckner and Pachur (2012), we consider the following ten
heuristic strategies: the priority heuristic (PH), better-than-
average (BTA), tallying (TALLY), probable (PROB), mini-
max (MINI), maximax (MAXI), lexicographic (LEX), equal-
weight (EQW), least-likely (LL), and most-likely (ML).
These heuristics cover a wide range of processing assump-
tions that differ in important aspects, such as whether they
focus exclusively on the payoffs (BTA, TALLY, EQW, MINI,
MAXI) or process both outcomes and probabilities (PH,
PROB, LEX, LL, ML). For example, the minimax heuris-
tic chooses the gamble with the highest minimum outcome
and the least-likely heuristic identifies each gamble’s worst
outcome and then chooses the gamble with the lowest prob-
ability of the worst outcome.1 Additionally, we include the
weighted-additive strategy (WADD), which chooses the gam-
ble with the highest expected payoff. Each of these strategies
breaks ties between gambles by choosing randomly. We con-

1The equiprobable heuristic was not considered as it makes the
same choice predictions as the equal-weight heuristic

sider eleven simple models of risky choice according to which
all people use one single strategy (either PH, BTA, TALLY,
PROB, MINI, MAXI, LEX, EQW, LL, ML, or WADD) to
make all their risky choices. Relaxing the assumption that
all decision makers use the same strategy, we also tested a
more flexible model (BEST), according to which each person
might use a different strategy. That is, the BEST model has
one parameter per person that encodes their strategy and has
to be fitted to their choices.

Toolbox Models of Decision Making
According to the notion of an adaptive toolbox, each person
is equipped with multiple strategies and employs them adap-
tively. In this section, we present three types of toolbox mod-
els that differ in whether the contents of the toolbox are in-
ferred or assumed to be known and in their assumptions about
how strategies are selected.

Strategy Selection Based on a Rational Cost-Benefit
Analysis (RCBA)
Simulation studies by Payne et al. (1988) have shown that
adaptively choosing between simple strategies can allow peo-
ple to make many good decisions even when only little time
is available. Assuming that decision makers are aware of the
relevant properties of the choice problem (e.g., the magni-
tude of the possible outcomes), contextual factors (e.g., time
pressure), and the speed and accuracy characteristics of the
strategies in their toolbox, the adaptive decision maker (Payne
et al., 1988) should choose strategies according to a rational
cost-benefit analysis.

Building on the theory of rational metareasoning (Russell
et al., 1991), the rational cost-benefit analysis (RCBA) model
assumes that the expected payoff of making decision i us-
ing strategy h is integrated with the expected cost of the time
T (h, i) that it would take to do so. Together, they yield an
estimate of the Value of Computation (VOC), defined as

VOC(h, i) = E [R(i,h(i))]−δ ·T (h, i), (1)

where R(i,h(i)) is the payoff of decision h(i) that strategy
h would make in situation i, and T (h, i) is the time it takes
strategy h to make that decision. The balance between these
two factors is determined by the relative opportunity cost δ.
To model how long it takes to execute each strategy (i.e., the
cost), we decompose the strategy into elementary informa-
tion processes (EIPs) as introduced by Johnson and Payne
(1985). Specifically, when a strategy is used to make a deci-
sion in a given choice problem, the number of EIPs required
is recorded as T (h, i). The RCBA model has two free param-
eters that can be estimated to accommodate individual differ-
ences: the set of available strategies H in the toolbox and the
relative opportunity cost δ. For a given choice problem the
strategy with the highest VOC in the toolbox is selected to
make the choice.
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Rational Strategy Selection Learning (RSSL)
The assumption of a full cost-benefit analysis for each strat-
egy, as assumed by the RCBA, may be unfeasible for a bound-
edly rational mind. However, it might be possible to approx-
imate the VOC. As one possible approach to do such an ap-
proximation, the rational strategy selection learning (RSSL)
model assumes that the mind learns to predict each strategy’s
VOC based on the features of the choice problem at hand
(Lieder & Griffiths, 2017). Specifically, the RSSL model as-
sumes that people predict both the expected payoff and the
expected time cost for each strategy (which are important
for then determining the strategy’s VOC) at a given prob-
lem based on a weighted sum of the features of the choice
problem, such as the maximum probability or the range of
outcomes; the weights for the estimation, in turn, are learned
from the payoffs and decision times of past choices (with the
latter is determined based on the number of EIPs the chosen
strategy performed). The learning process is simulated us-
ing Bayesian linear regression and stochastic predictions are
made by sampling from the posterior distribution.

The free parameters of the RSSL model are the number of
samples drawn to predict the performance of each strategy, ζ,
the set of strategies H, the opportunity cost δ and the amount
of prior experience Λ (i.e., on how many choice problems the
predictive models were trained on). For the latter parameter
we assume that participants are equipped with some amount
of prior experience in making choices using their strategies;
hence we let the RSSL model learn from Λ randomly gener-
ated pairs of gambles prior to applying it to our participants’
choices.

Toolbox Models Without Adaptive Strategy
Selection
To assess how the assumption of rational strategy selection
contributes to the predictive accuracy of the adaptive toolbox
models introduced above, we evaluate them against simpler
toolbox models that chooses strategies randomly for a given
choice problem (rather than adaptively based on characteris-
tics of the problems). In our first null model (NULL-TB1),
every time a decision is made a strategy is selected from
the set of 11 strategies introduced above. Our second null
model (NULL-TB2) is like the first one except that the set
of strategies it selects from is estimated on a participant-by-
participant basis. Our third null model (NULL-TB3) extends
the second one by allowing some strategies to be chosen more
frequently than others. Specifically, following Scheibehenne
et al. (2013), each strategy h is selected with probability θh,
which is estimated from the participant’s choices.

Cumulative Prospect Theory
According to CPT, the outcomes xi of a gamble are trans-
formed into subjective values according to the value function

v(xi) = xα
i if xi ≥ 0 (2)

v(xi) =−λ · xα
i if xi < 0, (3)

with an outcome sensitivity parameter α ∈ [0,2] that mod-
ulates the curvature of the value function and captures that
people’s sensitivity to changes in a payoff depend on its mag-
nitude. Values of α < 1 entails a concave value function with
diminishing sensitivity to larger outcomes.

The probabilities p of the cumulative probability distri-
bution function are transformed according to the probability
weighting function

w(p) =
pγ

(pγ +[1− pγ])1/γ
, (4)

whose shape is determined by the parameter γ ∈ [0,2], which
is defined separately for gains and losses. The shape of the
probability weighting function reflects the degree of nonlin-
ear distortion when the probabilities are mapped onto deci-
sion weights. Values of γ< 1 entail an inverse S-shaped prob-
ability weighting function, indicating a reduced sensitivity to
probabilities in the middle range and a relative amplification
of the sensitivity to differences among extreme probabilities.
The overall valuation of a gamble is determined by multiply-
ing each of the subjective values of the gamble’s outcomes xi
by a decision weight πi that follows from the weighted cumu-
lative probabilities of obtaining an outcome at least as good
as xi if the outcome is positive, and at least as bad as xi if the
outcome is negative (for details see Tversky & Kahneman,
1992), and then summing the products:

V = ∑
i

πi · v(xi). (5)

To derive the probability that gamble A is chosen over gamble
B we apply the softmax choice rule to the gambles’ subjec-
tive values V ; this choice rule which has a choice sensitivity
parameter φ (for details see Glöckner & Pachur, 2012).

Next, we describe the data set and our approach to evaluate
the models introduced in the previous sections.

Data
We evaluated our models using data collected by Glöckner
and Pachur (2012), who presented 64 participants with a set
of 276 two-outcome gamble problems. The payoffs of the
gambles ranged from −1000 to 1200 and the set of gam-
bles consisted of pure gain (all payoffs> 0), pure loss (all
payoffs < 0), and mixed (both positive and negative payoffs)
gambles. The presentation of the gamble problems was dis-
tributed over two sessions that were one week apart (i.e., there
are 138 choices from each session). For more information,
see Glöckner and Pachur (2012).

Model Evaluation
We evaluated the predictive accuracy of each of the models
using a simplified cross-validation method (Friedman, Hastie,
& Tibshirani, 2001). Specifically, for each model a score was
calculated indicating how often it correctly predicted the par-
ticipants’ choices on a held-out test set, that was not used to fit
the model’s parameters. The predictive accuracy for a given
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participant was computed by averaging the model’s perfor-
mance in forward prediction (i.e., fitting the model on choice
data from Session 1 (t1) and testing it on data from Session 2
(t2)) and backward prediction (i.e., fitting choices from t2 and
testing on data from t1). To perform forward-prediction and
backward-prediction, the data set was split into three subsets:
a training set, a validation set, and a test set. The training set
was used to fit the parameters (e.g., the subjective time cost
δ) of a given sub-model (e.g., a strategy selection model with
a particular set of strategies). The validation set was used
to select among sub-models based on unbiased estimates of
their generalization errors (e.g., to select the model’s tool-
box). The test set was used to obtain an unbiased estimate
of the selected sub-model’s generalization error that could be
compared to the performance of the other models.

Model Fitting and Prediction
Given a set of choice problems and the corresponding choices
made by an individual, we fitted each model’s parameters by
maximizing the proportion of gambles from the training set
for which the model’s predicted choice agreed with the par-
ticipant’s choice. The model parameters were estimated using
participants’ choices from t1 and then used to predict choices
from t2—and vice versa. For forward-prediction, we used the
138 gamble problems and choices from t1 (training set) and
split the gamble problems and choices from t2 into a valida-
tion set comprising 103 problems and a test set comprising 35
problems. Backward prediction was performed in the same
way as forward prediction except with t1 and t2 reversed.

BEST model For the BEST model, according to which
each participant uses a single strategy across all choice
problems, we determined for each participant the strategy
that achieved the highest accuracy (in terms of overlapping
choices) on the training set choices and the validation set.

RCBA We estimated each participant’s set of strategies H
along with their subjective time cost δ using the following
procedure: In the first step, H included only the strategy h1
with the highest accuracy on the validation set. Next, we de-
termined which strategy h2, if added, would result in the set
of two strategies with the highest predictive accuracy on the
validation set. In doing so, we estimate δ by optimizing the
accuracy of each candidate sub-model on the training set us-
ing Bayesian adaptive directed search (BADS) (Acerbi & Ma,
2017). We then proceeded to evaluate toolboxes that added
a third strategy to the toolbox and re-estimated δ until tool-
boxes containing up to 11 strategies had been evaluated. That
is, we estimated a set Hk of k strategies for each 1 ≤ k ≤ 11
and estimated each participant’s toolbox by the set Hkmax for
which our model achieved the highest predictive accuracy on
the validation set.

RSSL As described above, to define a toolbox of strate-
gies, the RSSL model estimates each strategy’s VOC based

on previous experience with gamble problems. To simulate
this experience, we first randomly generated pairs of two-
outcome gambles; their payoffs and probabilities were sam-
ples from the uniform distributions Unif([−1000,1200]) and
Unif([0,1]) respectively. The amount of prior experience (Λ)
was set to 20000 gamble problems. Each choice problem
was represented by a feature vector comprising the maxi-
mum probability of each gamble, the payoffs associated with
the maximum probability (i.e., the most likely outcome), the
ranges of payoffs within each gamble, and the range of pay-
offs across both gambles. These features were then used to
predict the strategy’s accuracy and effort for the problem at
hand. The number of predictions ζ sampled from the poste-
rior was set to 3. The parameters H and δ for the rational
cost-benefit analyses model (which the RSSL shares with the
RCBA model) were estimated following the same iterative
procedure as described for the RCBA model.

Null models The Null-TB1 model has no free parameters.
For the models NULL-TB2 and NULL-TB3 we estimated the
set of strategies H using the same procedure as for the RCBA
model. For NULL-TB3, we estimated the proportion param-
eters θ1...θ|H| for a toolbox H by solving the constrained opti-
mization problem to maximize the expected accuracy of par-
ticipants’ choices.

Cumulative prospect theory CPT’s parameters were fitted
to minimize G2 based on the observed choices in the respec-
tive session. To reduce the risk of being stuck in local min-
ima, we first conducted a grid search to identify the 20 best-
fitting combinations of parameter values; these combinations
were then used as starting values for subsequent optimization
using the simplex method. For prediction, we derived deter-
ministic choice predictions from CPT.

Results
Predictive Accuracy
Figure 1 shows how accurately single strategies, simple tool-
box models, adaptive toolbox models, and CPT predicted
the risky choices in the test set. Out of the eleven single
strategies, WADD and minimax predicted people’s choices
best, with 65.8% and 61.3% accuracy, respectively. Relax-
ing the assumption that all participants use the same strat-
egy and instead inferring a potentially different strategy for
each participant (i.e., the BEST model) increased predictive
accuracy to 69.4%, which is significantly higher than that
of the best-performing single strategy WADD (t(34) = 2.90,
p = .004). The simplest toolbox model Null-TB, which
chooses randomly among all the strategies, was less predic-
tive of people’s choices than the BEST model (57.5% vs.
69.4%, t(34) = −8.79, p < .001). Its predictive accuracy
increased, however, when we allowed the content of the tool-
box to be estimated for each participant separately (65.7%
vs. 57.5%, t(34) = 6.66, p < .001). Additionally estimating
the relative frequency with which each strategy is selected

2381



TALL
EQW LL

MAXI
MINI ML

LEX
PROB

PRIOR BTA
WADD Best

Null-T
B
Null-T

B2

Null-T
B3

RCBA
RSSL

CPT

Models

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y
0.544 0.558

0.485 0.473

0.613

0.526
0.56 0.554 0.538 0.525

0.658
0.694

0.575

0.657 0.662

0.733
0.686

0.769

Figure 1: Comparison of how accurately each model predicted people’s choices in the validation set. The single-strategy models
are shown in blue, toolbox models in orange, and CPT in green.

independently of the problem (Null-TB3) further improved
the toolbox model’s predictive accuracy to 66.2% vs. 65.7%
(t(34) = 0.46, p = .64). While the benefit of this choice
problem-unspecific strategy-selection mechanism was rather
small; adding an adaptive, problems-specific selection mech-
anism to the RCBA model drastically improved the accuracy
of the toolbox approach to 73.3% vs. 65.7% (t(34) = 6.50,
p< .001). The RSSL model, which approximates the rational
cost-benefit analysis of strategy selection using the features
of the choice problems as predictive cues, did not perform as
well as the RCBA model (68.6%).

Critically, the RCBA model predicted people’s choices bet-
ter than the best-performing single strategy WADD (t(34) =
8.80, p < .001) and the BEST model (t(69) = 3.02, p =
.003). This suggests that decision makers indeed adaptively
choose from a personal toolbox of strategies when solving a
sequence of different choice problems.

The RCBA model also achieved higher predictive accu-
racy than all null models, NULL-TB (t(34) = 15.51, p <
.001), NULL-TB2 (t(34) = 6.51, p < .001) and NULL-TB3
(t(34) = 7.56, p < .001). These results corroborate the use-
fulness of combining inference about the content of the tool-
boxes with a model of how people’s strategy choices are in-
formed by the specific requirements of each individual deci-
sion. This finding strongly supports adaptive toolbox theo-
ries of human decision-making (Gigerenzer & Selten, 2002)
in general and the idea of an adaptive personal toolbox in
particular. Despite the substantial improvement in predictive
accuracy we achieved by combining inference on the toolbox
with adaptive strategy selection, the resulting RCBA model
predicted people’s choices not as well as CPT (73.3% vs.
76.9%, t(34) = 3.03, p = .003). While the RCBA model may
thus not capture all aspects of how people make decisions, it
being a process model still affords many practical advantages
for understanding people’s choices that cannot be obtained
by modeling the choices with CPT (but see Pachur, Suter,

& Hertwig, 2017). For example, the estimated contents of
the toolbox and estimated parameters of the strategy selection
mechanism provide a window onto the cognitive mechanisms
underlying risky choice and how they vary across individuals.

Comparing Predicted and Actual Performance
Next, we compared the models and people in terms of their
performance of their risky choices. Performance here is mea-
sured as the average expected value (EV) of the chosen gam-
bles. WADD achieved an EV of 149.02, which therefore rep-
resents the upper bound on how well one could perform in
this task. The RCBA model predicted a higher performance
than what was actually observed for people’s choices (143.41
vs. 130.83, t(69) = 5.57, p < .001). CPT, on the other hand,
predicted a lower performance than people actually achieved
(113.1 vs. 130.8, t(69) = 5.68, p < .001). The performance
of the RSSL model and the toolbox model Null-TB3 fell in
between, with 124.83 EV and 126.81 EV, respectively, and
were closer to people’s actual performance. These findings
suggest that while people may not choose strategies opti-
mally, they may still be substantially more resource-rational
than CPT would make us believe.

Which Strategies Are In The Adaptive Toolbox?
Given our finding that the best-suited model to predict peo-
ple’s choices is the RCBA model, we next analyze its es-
timated parameters H and δ. Figure 3 shows how many
strategies were in the estimated toolboxes of all participants.
28.91% of all toolboxes included 4 strategies, and 60.15% of
all toolboxes included between 3 and 5 strategies. The aver-
age toolbox size was 4.3.

Next, we counted how often each of the eleven strategies
was included in the estimated toolboxes (see Figure 2). In-
terestingly, with 79.68% and 71.09% WADD and minimax
are the most frequently included strategies in the toolboxes.
These two strategies also predicted people’s choices most ac-
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curately (see Figure 1).
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Figure 2: Percentage of cases each strategy was included in
the toolboxes estimated by the RCBA model.

Minimax is especially useful as a risk-minimizing strategy
when the probabilities of the possible outcomes are similar.
The high inclusion rate of WADD suggests that at least when
there are only two choices with only two possible outcomes,
maximizing expected value is a viable and cognitively feasi-
ble strategy.

Furthermore, our results suggest that individual differences
in decision quality might be due to the fact that different peo-
ple are equipped with different toolboxes. For example, par-
ticipants whose inferred toolbox included WADD performed
better (144.59 EV) than participants whose inferred toolboxes
did not include WADD (140.52 EV). Conversely, participants
whose toolboxes were estimated to contain minimax achieved
a lower performance than participants who did not use mini-
max (140.99 EV vs. 152.91 EV). These observations suggest
that inferences obtained with the RCBA model can shed light
on why and how people make the choices that they make. Ad-
ditionally, our analysis identified another source of individual
differences in decision performance: people’s subjective cost
of their time and effort. Specifically, our parameter estimates
revealed a negative rank correlation between performance (in
terms of EV) and the subjective opportunity cost δ (Spear-
man’s ρ(62) = −0.58, p < .001), reflecting that higher op-
portunity costs favour less resource-intensive strategies even
when they lead to less accurate decisions.

Finally, we found that the estimated size and content of the
toolbox and the objective opportunity cost together explained
27% of the variance in individual differences in performance
(R2 = 0.27, F(21,106) = 2.25, p < .001).
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Figure 3: Toolbox sizes estimated by the RCBA model.

Discussion
We presented a model that represents the first complete for-
malization of the adaptive toolbox metaphor of human judg-

ment and decision making (Gigerenzer & Selten, 2002). Our
personal adaptive toolbox model predicted people’s risky
choices better than single strategies, non-adaptive toolbox
models, or adaptive toolbox models that assume that all de-
cision makers have the same strategies in their toolbox. Fur-
thermore, the mechanistic nature of our model makes it pos-
sible to draw inferences about the cognitive architecture and
processes underlying people’s decisions. Furthermore, unlike
CPT, our rational model of strategy selection can be applied
to a wider range of domains, including inferential problems,
such as those used by Gigerenzer and Goldstein (1996), by
adapting the set of strategies (which can be deterministic or
stochastic) and the reward function.

The success of the model that chooses strategies accord-
ing to a rational cost-benefit analysis provides additional sup-
port for the view that people make rational use of their lim-
ited cognitive resources (Griffiths et al., 2015; Lieder & Grif-
fiths, 2019). Our model is an important step towards reverse-
engineering the mechanisms underlying the adaptive flexibil-
ity of human decision-making and individual differences in
risky choice. But the mechanisms by which people efficiently
approximate its rational cost-benefit analysis and the resulting
suboptimalities need be investigated further before any defi-
nite conclusions can be drawn.

Future work will revisit the comparison with CPT using
more complex decision problems, including problems with
many alternatives and many possible payoffs (Payne et al.,
1988), where people’s selective processing of only a small
subset of the available information might have a notable im-
pact on their choices. We will also compare our models to
other psychologically plausible models of risky choice in-
cluding the utility-weighted sampling model (Lieder, Grif-
fiths, & Hsu, 2018) and decision-field theory (Busemeyer &
Townsend, 1993; Rieskamp, 2008; Bhatia, 2014) and apply
likelihood-based model selection methods.

Future work will refine the strategy selection learning
model with more realistic assumptions about decision mak-
ers’ prior experience and the features they use to predict the
performance of their strategies. In particular, future refine-
ments of this model might take into account that people’s
strategy choices are informed by them learning from how well
each strategy worked when they previously used it in the real
world. This prior experience could be simulated by training
the RSSL model on choice problems that are more like those
that people encounter in everyday life (e.g., in having more
possible outcomes and larger differences between the alterna-
tives’ expected values). The eleven strategies considered here
are unlikely to cover all the decision mechanisms people use.
Hence, we will consider additional strategies derived from
resource-rational analysis (Lieder & Griffiths, 2019; Lieder,
Krueger, & Griffiths, 2017; Gul, Krueger, Callaway, Griffiths,
& Lieder, 2018) and process tracing.
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