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Abstract

Motivation: Tumor-specific antigen (TSA) identification in human cancer predicts response to immunotherapy and
provides targets for cancer vaccine and adoptive T-cell therapies with curative potential, and TSAs that are highly
expressed at the RNA level are more likely to be presented on major histocompatibility complex (MHC)-I. Direct
measurements of the RNA expression of peptides would allow for generalized prediction of TSAs. Human leukocyte
antigen (HLA)-I genotypes were predicted with seq2HLA. RNA sequencing (RNAseq) fastq files were translated into
all possible peptides of length 8–11, and peptides with high and low expressions in the tumor and control samples,
respectively, were tested for their MHC-I binding potential with netMHCpan-4.0.

Results: A novel pipeline for TSA prediction from RNAseq was used to predict all possible unique peptides size 8–11
on previously published murine and human lung and lymphoma tumors and validated on matched tumor and con-
trol lung adenocarcinoma (LUAD) samples. We show that neoantigens predicted by exomeSeq are typically poorly
expressed at the RNA level, and a fraction is expressed in matched normal samples. TSAs presented in the proteo-
mics data have higher RNA abundance and lower MHC-I binding percentile, and these attributes are used to dis-
cover high confidence TSAs within the validation cohort. Finally, a subset of these high confidence TSAs is
expressed in a majority of LUAD tumors and represents attractive vaccine targets.

Availability and implementation: The datasets were derived from sources in the public domain as follows:
TSAFinder is open-source software written in python and R. It is licensed under CC-BY-NC-SA and can be down-
loaded at https://github.com/RNAseqTSA.

Contact: kunhuang@iu.edu or kai.he@osumc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Background

Neoantigen identification in human cancer predicts response to im-
munotherapy and provides targets for cancer vaccines and adoptive
T-cell therapies (McGranahan et al., 2016; Ott et al., 2017; Sahin
et al., 2017). Traditional pipelines for identifying neoantigens rely
on identifying somatic alterations from exome sequencing data and
predicting the binding affinity of all possible resulting mutated pep-
tides (Hundal et al., 2016); however, there are several pitfalls to this
approach. First, these methods are insensitive to post-transcriptional

alterations that can produce antigens, such as intron retention, edit-
ing, and RNA fusions (Smart et al., 2018; Yang et al., 2019; Zhang
et al., 2018). Second, DNA sequencing-based methods may be of
limited utility in tumors with low mutation burden (Löffler et al.,
2019) that do not contain a sufficient number of neoantigens for
vaccine development. These tumors may particularly benefit from
the inclusion of non-mutated tumor-specific antigens (TSAs), such
as those utilized as vaccine targets to produce tumor regression in
melanoma (Sahin et al., 2020).
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These challenges can be overcome by incorporating RNA
sequencing (RNASeq) data, however, the incorporation of RNASeq
data into neoantigen discovery algorithms has previously functioned
to filter out neoantigens from lowly expressed genes (Hundal et al.,
2016). This is based on evidence that RNA expression of peptide-
encoding transcripts can predict major histocompatibility complex
(MHC) presentation. A limitation of this approach is that RNASeq
reads encoding the actual mutated peptides are not quantified, and
it is unclear how well gene and mutant peptide RNA expressions
correlate (Löffler et al., 2019). Laumont et al. (2018) proposed a
method that bypassed exome sequencing to directly quantify TSAs
from RNASeq experiments by matching RNA k-mers in tumor and
control samples; however, this method does not account for the pos-
sibility that a peptide can be produced by multiple RNA sequences.
A method by Chong et al. (2020) accurately detected non-canonical
shared and personal antigens using a proteogenomics approach, but
their method is not sensitive to the full range of somatic alterations
seen in cancer.

Here, the authors describe TSAFinder, a pipeline to overcome these
limitations by translating RNASeq reads into all possible small peptides
and testing each peptide for tumor specificity and MHC-binding affin-
ity. TSAFinder is sensitive to any genomic or post-transcriptional alter-
ation and directly quantifies TSA RNA expression within a tumor.
TSAFinder performed favorably to a prior method by Laumont et al.
at discovering TSAs in a proteogenomics dataset, and we further imple-
mented TSAFinder on The Cancer Genome Atlas (TCGA) lung adeno-
carcinoma (LUAD) dataset and discovered a small set of TSAs that is
present in a majority of patients (Collisson et al., 2014).

2 Materials and methods

2.1 Data collection
RNAseq fastq files associated with Laumont et al. (2018) were
downloaded from NCBI GSE111092. RNAseq data for the TCGA
LUAD cohort were downloaded from the secure TCGA data portal.

2.2 Detection of TSAs from RNAseq fastq files
The algorithm takes as input paired RNAseq fastq files for matched
tumor and control samples. First, seq2HLA is used to impute human
leukocyte antigen (HLA)-I genotypes on the tumor sample (Boegel
et al., 2012). Second, all fastq files are translated using three-frame
translation into peptides of size, k. Here, 8�k�11. Third, lists of
peptides are filtered as follows:

D
ðL� kþ 1Þ
L� 8þ 1

� P

2�109
; (1)

where D is the prespecified tumor depth constant (here set to 10 000
for tumor and 2 for control samples), L is the number of peptides
encoded in an entire read (RNAseq read length divided by 3,
rounded down), k is the peptide size and P is the total number of
peptides translated from the RNAseq sample. Fourth, the remaining
peptides in the matched control sample are used to filter out non-
tumor-specific TSAs from the list of highly expressed tumor pepti-
des. Peptides containing stop codons are not considered for further
analysis; however, upstream stop codons do not preclude peptide
discovery by TSAfinder, allowing for the discovery of peptides pro-
duced by cryptic start sites. Finally, netMHCpan-4.0 is used to cal-
culate binding affinities to yield a final list of TSAs with scores
below a rank of 0.5%, corresponding to ‘strong’ binders in the
netMHCpan output (Jurtz et al., 2017). All results were produced
using Python 2.7 and R 3.5 in a Linux-based operating system. The
code was also tested using Python 3.6 and R 4.0.5.

2.3 Annotation of TSAs
The list of TSAs was interrogated for their coding location as follows.
The RNAseq reads encoding each peptide are saved from the algo-
rithm above. For each peptide, the encoding reads are assembled into
contiguous segments (contigs). For bases in which there is disagree-
ment between reads encoding the same peptide, the base with the

most read coverage is used in the final contig sequence. Each contig is
searched against the reference genome with BLASTþ (Camacho
et al., 2009). In this study, we allow for up to two misaligned bases
and up to one alignment gap. For contigs that map incompletely
against the reference genome, ends of length sufficient to include
peptide-encoding bases are re-searched with BLASTþ to annotate
contigs spanning splice junctions and fusion events. Mismatches and
gaps in the BLASTþ output are annotated as variants and insertions/
deletions, respectively. The variant sequence outputs can be submitted
to variant annotation pipelines as a .vfc file with minimal alteration.
Finally, gene and exon annotation were performed using the gencode
v22 annotation gtf file. The gtf.load R function processes any gtf file
for use in this pipeline. To validate the presence of a Ros1 fusion
event in the luc2 sample, independent fusion detection was run with
STAR-Fusion v1.9.1 with default parameters (Haas et al., 2017).

2.4 Search for neoantigens in a reference proteome
A unique peptide database for 8�k-mer � 11 sized peptides was
created as follows. Protein sequences in fasta format were down-
loaded from protein databank (Berman et al., 2000; rcsb.org).
Duplicate protein sequences were removed. Each protein was then
broken down into each possible peptide and unique peptides were
added to the reference peptidome. ExomeSeq predicted neoantigens
were downloaded from The Cancer Immunome Atlas (Charoentong
et al., 2017; tcia.at). To obtain RNA expression of each mutant pep-
tide, the neoantigens were searched against the list of peptide
expressions created for each tumor and control sample.

2.5 Custom proteomics database search
Proteomics peak list (.mgf) files from the Laumont et al. (2018)
were searched against two types of databases: a custom sample-
specific peptide database and either SwissProt human or mouse
entries (depending on the sample) from a database downloaded on
April 8, 2019 (human¼20 418 entries; mouse¼17 016 entries). In
each case, sequence reversed entries were concatenated to the data-
base to allow false discovery rate (FDR) estimation (Elias and Gygi,
2007). The custom sample-specific peptide data consists of all pepti-
des in the tumor sample that met the threshold for ‘high’ expression
in our RNAseq TSA algorithm (see above explanation of expression
thresholding). Data were searched with no digestion enzyme specifi-
city allowing for 8 ppm tolerance on precursor ions and 20 ppm tol-
erance for fragment ions. Variable modifications considered were
oxidation of methionine, pyroglutamate formation from peptide N-
terminal glutamine and protein N-terminal acetylation (SwissProt
databases only). Results were thresholded at a 1% peptide FDR level
based on target: decoy database searching results.

2.6 High confidence, high coverage TSA discovery
The TSA information for each of the 39 patients was imported into
R. Duplicate TSAs were counted for each patient and the number of
patients with each TSA was counted. Criteria were set for high confi-
dence peptides by comparing the median expression and MHC-I
binding percentile between presented and non-presented peptides in
the Laumont et al. lung cancer samples. To generate a set of TSAs
that maximized coverage of patients, we developed a greedy set cover-
age algorithm as follows. First, the list of TSAs is ranked by the num-
ber of patients expressing the TSA, and the top TSA is selected. The
selected TSA is removed from the peptide list, and the patients cov-
ered by that TSA are removed from the patient pool. Next, TSAs are
re-ranked by the number of remaining uncovered patients expressing
each TSA, and the top TSA is selected. This process is repeated until a
majority of patients are covered. The R function is included in the
Supplementary Material. Using this simple algorithm, we identified a
set of ‘optimal TSAs’ for our cohort of 39 LUAD patients. We ran
this algorithm using various TSA inclusion criteria.

3 Results

3.1 Alignment-free detection of TSAs from RNAseq
To quantify sample-specific peptides directly from an RNAseq fastq
file, each line of the fastq file was translated via three-frame
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translation into each possible peptide of a given size (8–11 length
peptides for MHC-I binding prediction). The output of this step was
a list of unique peptides and their frequencies (Fig. 1). To obtain
tumor-specific peptides, the list of peptides produced from the
tumor was compared with a list produced from a control sample (or
samples) and filtered by expression. HLA A, B and C genotypes
were predicted from the fastq file using the seq2HLA algorithm
(Boegel et al., 2012), and MHC-I binding predictions for the result-
ing list of peptides were predicted with netMHCpan4.0 (Jurtz et al.,
2017). The final output of these steps is a list of unique peptides, the
abundance of the RNAseq reads that encode them, and their pre-
dicted MHC-I binding affinities.

To further understand the source of these peptides, the RNAseq
reads encoding each TSA were assembled into contigs and matched
to the reference genome with BLASTþ (see Section 2). For contigs
with partial matches to the genome, the non-mapping ends were re-
searched through BLASTþ to allow for mapping of contigs spanning
splice junctions. This allowed the algorithm to annotate splice or fu-
sion variants. Next, mismatches and gapped alignments are anno-
tated to detect mutational, editing, insertion or deletion events.
Finally, protein coding annotations are added. An example of the
annotation output is included in Supplementary Table S1.

To benchmark TSAFinder’s performance, we reanalyzed
RNAseq samples from a previously published TSA detection method
with available RNAseq and MHC-I purified proteomics data.
Predicted TSAs were discovered in two murine and seven human
tumor samples (Supplementary Table S2). Non-zero RNA expres-
sion of 40/40 (100%) of putative TSAs called by Laumont et al.
were observed by TSAFinder; however, only 3/40 (7.5%) were
called as TSAs by TSAFinder (Fig. 2A). The proposed TSAs rejected
by TSAFinder were either observed in too few reads in the tumor
samples (25/40, 62.5%) or too many reads in the control samples
(12/40, 30%) based on thresholds used (see Section 2). For example,
eight of the proposed TSAs described by Laumont et al. as having
zero control expression had non-zero control expression by
TSAFinder (Fig. 2B). The difference in expression is likely due to
TSAFinder’s detection of reads with varying sequences that encode
identical peptides, whereas Laumont et al. required exactly match-
ing RNA sequences.

To directly compare the performance of the two methods, we
searched the proteomics data produced by Laumont et al. using cus-
tom peptide databases composed of predicted peptides that met the
cutoff for high expression within the tumor RNAseq samples, as
well as a reference peptide database (see Section 2 and

Fig. 1. Algorithm for exhaustive TSA detection from RNAseq. (top left) RNAseq reads are converted to all possible 8–11 mers by three-frame translation in both tumor and

normal samples. (top middle) Peptides are compared between tumor and normal samples to find highly expressed tumor-specific k-mers. (middle left-to-right) HLA-I genotypes

are called and peptides are tested for their ability to bind MHC-I proteins to find TSAs. (bottom) Common TSAs are identified in cohorts of patients and evaluated for their

characteristics

Fig. 2. Comparison with a previous study. (A) Peptide tumor RNA expression by Laumont et al. versus TSAFinder in 40 TSAs discovered by Laumont et al. (B) Peptide control

RNA expression by Laumont et al. versus TSAFinder in 40 TSAs discovered by Laumont et al. (C) Number of TSAs discovered in the proteomics data at varying RNA expres-

sion thresholds. The purple line represents the linear regression in (A) and (B)
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Supplementary Tables S3–S17). After excluding TSAs discovered by
Laumont et al. with non-zero expression in the control sample, we
compared the ability of each algorithm to detect TSAs at a given
tumor expression threshold (Fig. 2C). At high expression thresholds,
both algorithms performed similarly; however, our algorithm begins
to discover a larger number of TSAs with looser thresholding. At the
lowest threshold used, TSAFinder discovered 30 peptides in 9
samples.

In the murine samples, only one peptide was called a TSA by both
methods (VNYLHRNV in the el4 sample). Of note, Laumont et al.
showed superior survival of mice immunized to VNYLHRNV than
other predicted TSAs when challenged with el4 tumor cells.
Additionally, we identified two peptides in the ct26 sample that were
not identified in Laumont et al., both of which mapped to viral proteins.
Two peptides were identified in total in the human hematologic malig-
nancy samples, SLTALVFHV in samples 07H103 and 12H018, and
SQGPQVPPR in 12H018. In two of the hematologic malignancy sam-
ples, 10H080 and 10H118, no TSA candidates were identified in the
proteomics data. Multiple TSAs were identified in three lung cancer
samples, including TSAs from Mucin 5 in two of the samples. The luc6
sample expressed six TSAs that mapped to immunoglobulin heavy
chain variable loci. Multiple studies have shown aberrant expression of
immunoglobulin genes in cancer cells, and these may represent attract-
ive vaccine targets given their high level of variability and limited ex-
pression to select cell types (Hu et al., 2008). Of note, luc2 expressed a
peptide from the Ros1 protein, which is frequently involved in an onco-
genic fusion event in LUAD. The luc2 RNAseq sample was independ-
ently tested for fusion events and found to not have a Ros1 fusion event
(see Section 2).

3.2 TSAs of TCGA LUADs
A total of 57 patients’ matched tumor-control RNAseq fastq files
were downloaded from the TCGA LUAD cohort. Of the 57 patients,
39 (68.4%) were able to be HLA typed successfully with seq2HLA
and were followed up for further analysis. An average of 292 438
345 and 286 968 034 peptides were discovered in tumor and
matched adjacent non-cancerous tissue control samples, respectively
(Supplementary Fig. S1). To minimize the calling of TSAs that were
expressed in the patient-specific adjacent lung tissue or human non-
lung, non-cancerous tissue, peptides expressed in both the adjacent

non-cancerous tissue and the human thymic epithelial cells from
Laumont et al. were excluded from further analysis. Filtering TSAs
with matched control and thymic epithelial cells has been shown to
increase specificity (Ehx et al., 2021). In total, 73 096 TSAs encod-
ing 8–11 mers were identified, with an average of 1874 TSAs identi-
fied per patient (Fig. 3A and Supplementary Fig. S2). 42 586/73 096
(58%) unique TSAs were able to be aligned to the reference genome
(see Section 2 and Supplementary Fig. S3). As in Laumont et al.,
most of the TSAs aligned to non-protein-coding regions (35 996/42
586, 84.5%; Fig. 3B). Most TSAs were 9 or 10 mers, driven by
higher likelihood of binding versus 8 and 11 mers (8.5% and 3.5%
of 9 and 10 mers were strong binders, whereas 1.5% and 1.2% of 8
and 10 mers were strong binders; Supplementary Fig. S4). The total
number of TSAs per patient did not correlate with the predicted neo-
antigen burden (R2 ¼ 0.060; Supplementary Fig. S5). We further
tested genomic mappings of the peptide-encoding RNA sequences
for single nucleotide variants, insertions, and deletions. Only a mi-
nority of the TSAs mapped to genomic regions imperfectly, (7003/
42 586, 16.4%) the majority of which contained single nucleotide
variants (6775/7003, 96.7%; Fig. 3C).

3.3 RNAseq reads encoding neoantigenic peptides are

present in control samples
The utility of neoantigens jointly depends on peptide expression and
a lack of immune tolerance. To compare TSAs discovered by
TSAFinder against neoantigens discovered from previous methods,
we searched for neoantigens discovered from WES data by The
Cancer Immunome Database (TCIA) within our peptide expression
experiments. We first tested for RNA evidence of peptide expression
by searching our tumor peptide lists. The average numbers of total
neoantigens and those with non-zero expression were 177.6 and
42.8 (42.8/177.6, 28.1%), respectively. This is in agreement with
the predicted non-zero gene-level RNA expression of 30–40% neo-
antigens in lung cancer (Rosenthal et al., 2019). Despite frequent
non-zero expression of neoantigens, the average non-zero expression
was 15.6 reads per sample, suggesting an overall low expression,
given that the minimum expressed TSA in this cohort was seen in 57
reads per sample. Only 8/6928 (0.11%) neoantigens were called
TSAs in our dataset. We assessed the appropriateness for using gene

Fig. 3. Features of TSAs discovered in the TCGA LUAD cohort. (A) The number of TSAs discovered in each tumor sample. (B) The genomic location type of each TSA. (C)

The mutation status of TSAs

Fig. 4. RNAseq expression of neoantigens in tumor and control TCGA LUAD samples. (A) Histogram of neoantigenic peptides’ RNAseq expression (log2). The lowest TSA

threshold for any patient is shown by a vertical purple line. (B) Neoantigenic peptides’ RNAseq expression in control versus tumor TCGA LUAD samples
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expression as a surrogate for TSA expression and found that for the
1555 neoantigens that have corresponding gene-level expressions
quantified, the correlation between gene-level expression and
peptide-encoding counts is low (R2 ¼ 0.028).

Immune tolerance to neoantigens can occur when the mutant
peptide is in fact expressed in a non-mutated protein. Accordingly,
the RNA expression of neoantigens in matched control tissue was
quantified, and non-zero expression was found in 47/6928 (0.68%)
neoantigens. No neoantigens were both found in control tissue and
a reference k-mer database (see Section 2). Neoantigens with high
expression in control tissue also tend to be highly expressed in tumor
tissue, suggesting that the expression of these neoantigens may be
driven by non-mutated peptide expression in tumor tissue, rather
than true neoantigen expression (Fig. 4B).

3.4 A small set of TSAs are present in a majority of

LUAD tumors
TSAs across the 39 patients were mapped to 1711 unique genes, and
511 of these genes were observed in at least 2 patients
(Supplementary Fig. S6). The most commonly observed genes were
XAGE1A and XAGE1B (24/39, 61.5%). The most frequently
observed TSAs come from antisense strands within the XAGE1A/B
genes (Supplementary Fig. S7).

Next, the proteomics data were used as a training set to iden-
tify high-confidence TSAs. Twenty-four peptides were identified
both as TSAs by our algorithm and MHC-I bound peptides in the
proteomics validation data in the Laumont et al. lung cancer sam-
ples. High RNA expressions of peptides and high MHC-I binding
affinities have been shown to be predictive of neoantigen presen-
tation (Wells et al., 2020), so we compared these values among
presented TSAs and unpresented TSAs, all of which were included
in the proteomics database search (Fig. 5A and B). Presented
TSAs had nearly twice the median RNA expression of unpre-
sented TSAs (2714.5 versus 1659.0 median expressions for pre-
sented and unpresented, respectively, Fig. 5A). Similarly,
presented TSAs had a median binding affinity of 0.10 percentile
(binders were defined as having a binding affinity less than second

percentile), while unpresented TSAs had a median affinity of
0.94. Further, presented TSAs mapped with high fidelity to the
reference peptidome, indicating that unaligned TSAs were unlike-
ly to be presented.

A greedy set coverage algorithm was developed to identify small
sets of peptides as potential vaccine targets (see Section 2).
TSAFinder identified six peptides that were observed (satisfying the
expression, alignment and MHC-I binding criteria) in 26/39
(66.7%) of the TCGA LUAD tumors (Table 1).

4 Discussion

Here, we presented a method to identify TSAs in matched disease-
control RNAseq samples. In contrast to the RNA k-mer quantifying
method presented by Laumont et al., TSAFinder directly quantifies
peptides, which has the added advantage of being able to compare
peptides that are produced by non-identical RNA sequences. This
could allow for enhanced detection of peptides from hypermutated
regions, such as immunoglobulin variable regions, and may explain
our discovery of several TSAs therein. This feature explains the ex-
istence of several TSAs with zero matched normal RNA k-mer ex-
pression by the method presented by Laumont et al. that had non-
zero peptide expression by TSAFinder.

The strength of TSAFinder is directly proportional to the repre-
sentativeness of the control RNAseq sample used to filter out
immuno-tolerant peptides. To limit the false positive identification
of TSAs produced by sequencing artifacts, we recommend a signifi-
cant RNA expression threshold and a control RNAseq sample pro-
duced with the same sequencing library preparation. A patient-
matched non-cancerous control sample allows for the filtration of
patient or population-specific mutations, such as single nucleotide
polymorphisms. Here, we found that a portion of exomeSeq pre-
dicted neoantigens were encoded by RNA in control tissues. In add-
ition, the expression of many sequences is both temporally and
geographically regulated, and therefore, while there was zero ex-
pression of a peptide-coding sequence in our matched lung tissue,
there may be non-zero expression in other tissues and at different
stages of development. To minimize false-positive TSA identifica-
tions, samples of human thymic epithelial cells were additionally
used to filter out immuno-tolerant peptides. Previous studies have
used gene expression in non-cancerous tissues to filter out immuno-
tolerant peptides, but we showed that the number of RNAseq reads
encoding peptides does not correlate well with gene abundance
(Laumont et al., 2018; Perna et al., 2017). Other non-diseased tissue
sample databases, such as the genotype-tissue expression project
(gtexportal.org), could be used as a more representative control
dataset. We recommend the use of both a non-diseased tissue sample
database and a patient-matched non-cancerous tissue sample.

Although TSAFinder was developed to discover cancer vaccine
targets, it fundamentally discovers differentially expressed sequences

Table 1. High confidence, high coverage TSAs

TSA Gene TCGA patients (n¼ 39)

TRVPEVWIL XAGE1A/B 15

FLDPHSHPF CPS1 4

VLWQHPPLA MUC5B 6

EPATRVPEVW XAGE1A/B 14

IFFNIGENL NT5DC1 4

SPSGPMRNF GPX2 antisense 6

Fig. 5. RNA expression and MHC-I binding affinity in presented and unpresented TSAs. (A) Expression measured in peptide counts (log2) and (B) Minimum MHC-I binding

affinity from netMHCpan
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of RNA encoding a specific peptide. Therefore, it could be applied
to any disease mediated by immunogenic peptides, such as auto-
immune diseases driven by the recognition of tissue-specific MHC-I-
bound peptides. For example, TSAFinder could discover peptides
for inclusion in tolerance-inducing vaccines (Krienke et al., 2021).
Further, TSAFinder exhaustively discovers all potentially expressed
peptides (prior to post-translational modifications) and could there-
fore be applied to catalogue the potential proteome of any given
RNAseq sample—allowing for the discovery of peptides created
from non-canonical reading frames and complex genomic rearrange-
ments that are difficult to align. Finally, an important application of
TSA vaccines may be in patients with low neoantigen burden. For
example, a recent phase Ib neoantigen vaccine trial excluded all
patients with fewer than 50 predicted non-synonymous somatic
mutations, indicating the need for more inclusive vaccine generation
protocols (Ott et al., 2020).
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