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ABSTRACT OF THE DISSERTATION

FEATURE PRESERVATION AND NEGATED MUSIC IN

A PHASE VOCODER SOUND REPRESENTATION

by

Theodore R. Apel

Doctor of Philosophy in Music

University of California, San Diego, 2008

Professor Miller Puckette, Chair

This dissertation presents two extensions to the phase vocoder method of sound

analysis and synthesis, as well as an examination of the author’s spectral subtrac-

tion audio works based on the phase vocoder. The phase vocoder technique has

proved to be an effective method of “time stretching” musical sounds, however,

some musical features of the original sounds are not maintained during the trans-

formation. We consider here maintaining two of these aspects: noise levels, and

sub-audio (vibrato and tremolo) characteristics within the phase vocoder. The

noise levels are maintained by determining the “sinusoidality” of each spectral

component, separating the spectral energy into sinusoidal and noise energy based

on these sinusoidality measurements, and modulating the noise based spectrum be-

fore re-synthesizing with the traditional IFFT method. The vibrato and tremolo

(sub-audio modulation) rates of a sound are maintained by modeling each channel

of the phase vocoder in a higher order spectral domain, removing the modulations
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in this domain, and re-imposing them after time-dilation. Finally, several of the

author’s audio works involve use of the phase vocoder representation of sound to

subtract spectral components from a long term average of a time varying sound.

These works will be considered along with their aesthetic motivations and technical

implementations.

xiv



Chapter 1

Introduction

Very gradually slow down a recorded sound to many

times its original length without changing its pitch or

timbre at all.

Steve Reich [76]

1.1 Motivations

The phase vocoder technique is well known for its ability to “time stretch”

a sound. That is, to increase the duration of a sound without changing the com-

ponent frequencies of the sound. Yet the phase vocoder has proven less useful

for more exotic modifications of sound due to limitations in its underlying Fourier

based spectral model. Sinusoidal modeling methods, such as McAulay-Quatieri

sinusoidal modeling, have been developed which overcome these limitations of the

phase vocoder with much success. However, the increased computational load,

complexity, and auditory artifacts of sinusoidal modeling motivate the extensions

to the phase vocoder method presented here.

We introduce two extensions to the phase vocoder method of time stretching

of musical sound to maintain the noise level and retain the original vibrato and

1
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tremolo characteristics. Our noise method is based on encoding the noise level of

each spectral channel and re-imposing this level during synthesis. Our vibrato and

tremolo method is based on a second order representation of sound in which each

time-evolving spectral channel is spectrally modeled to determine the sub-audio

characteristics of a sound. Our methods allow the time-stretching of musical sounds

while maintaining the noise and vibrato/tremolo characteristics of the original

sound without the need for more complex sinusoidal modeling.

In addition we use the phase vocoder sound representation to explore an

aesthetic concept I call “negated music” in a series of sound installations and audio

works. The phase vocoder is shown to be ideally suited for this type of application

because of its potential for real-time implementation.

1.1.1 Advantages and Limitations of the Phase Vocoder

The phase vocoder technique of time-stretching a sound is widely admired

for its quality and detail. In comparison to the time-domain “brassage” techniques

that preceded it, the phase vocoder technique at first appeared to solve the problem

of time-stretching [16]. As the technique became more widely used, due to the

increased computational power of personal computers, its particular characteristics

and limitations become well known, i. e. the coherence of phase is not maintained

after reconstruction, giving the phase vocoder time-stretched sound a reverberant

quality. Methods of minimizing this systemic problem with the technique are

discussed in section 2.3.1.

In addition to the phase incoherence characteristic, the phase vocoder’s

representation of amplitude spectra and phase or instantaneous frequency spectra

presents limitations on the type of meaningful manipulation that can be achieved.

The phase vocoder’s parameters of amplitude and frequency have led many users

to devise manipulation techniques based erroneously on changing individual spec-

tral components independently from their neighboring channels. That is, treating
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the energy of a spectral component as a sinusoidal track that can be freely ma-

nipulated instead of being part of an indivisible array of Fourier transform based

spectral energy. This type of spectral manipulation typically results in unexpected

results and sonic artifacts. For example, silencing a given phase vocoder channel

will result in an incomplete silencing of the spectral component in that channel

as its energy will be partially contained in the adjacent channels. Despite these

characteristics, this type of interpretation of the phase vocoder representation is

advocated consciously by many. Most notably, Trevor Wishart suggests and cata-

logs numerous sonic effects that exploit these types of manipulation [90]. Wishart,

for example, suggests a technique he calls “spectral tracing” in which the spec-

tral channels with the highest amplitude are retained while silencing the adjacent

channels that also contain energy from the same analysis components.

Sinusoidal Modeling

The phase vocoder remains one of the central tools of computer music

composition despite newer methods of spectral analysis and synthesis such as the

additive synthesis sinusoidal model of McAulay and Quatieri [58], the additive

plus noise model (SMS) of Xavier Serra [84], and the enhanced bandwidth model

of Haken, and Fitz [27]. These sinusoidal modeling systems analyze sound as a

series of sinusoidal peaks connected through time. Sound is represented as a series

of “tracks” each of which represent a single sinusoidal component of the analyzed

sound. After sinusoidal analysis, these tracks can be freely manipulated in a much

more perceptually salient manner than those of the phase vocoder. For example, a

track might represent the fundamental frequency of a sound that can be changed

in amplitude or frequency separately from the other spectral components with

predictable results [3]. In addition to these advantages of sinusoidal modeling

systems, extensions to the systems allow the noise components of a sound to be

manipulated in an intuitive manner.
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Without performing any spectral transformations, great care in choosing

several analysis parameters of sinusoidal modeling systems is necessary in order to

achieve results that are as convincing as those of the phase vocoder. Sounds with

large noise components are modeled by the McAulay and Quatieri system as many

short randomly spaced sinusoidal tracks. These tracks produce the characteristic

“noodling” sound of sinusoidal modeling systems. In addition, the noise portion

of an SMS analysis is sometimes perceived as separate from the sinusoidal portion

after synthesis.

Compared to the phase vocoder method, the higher level representations of

sinusoidal modeling have many more possibilities for mis-analyzing a sound, partic-

ularly when a sound is noisy. Side lobes of spectral peaks can be mis-identified as

sinusoidal tracks, peaks can be connected to the wrong peak in subsequent spectral

frames, and significant spectral energy can be lost when peaks are not correctly

identified. In addition, the higher level analysis procedure can take several times

longer than a phase vocoder analysis.

Although working with sinusoidal modeling systems provides significant ad-

vantages for the type of research undertaken here, we restrict ourselves to exten-

sions of the phase vocoder representation of sound due to the above characteristics

of sinusoidal modeling. In fact, our noise analysis synthesis method and our vi-

brato retention system are both inspired by techniques developed with sinusoidal

modeling systems that we are “retrofitting” to the phase vocoder system. We

will see that there are particular difficulties encountered by these phase vocoder

analysis limitations.

1.2 Overview of the Dissertation

This dissertion is organized as follows. Chapter 2 presents the background

of the phase vocoder, the well known phase vocoder technique itself with its ap-

plication to time-stretching musical sounds, and a brief discussion of techniques
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for reducing the artifacts created from phase incoherence. Chapter 3 presents

our sinusoidality analysis and noise synthesis method of retaining noise charac-

teristics of sounds during time-stretching. The chapter surveys existing meth-

ods of sinusoidality analysis, devises new sinusoidality methods, and quantifies

a comparison between them. Example sounds from the system are presented.

Chapter 4 presents our vibrato/tremolo (sub-audio modulation) extraction and re-

introduction method based on a second order spectral analysis. Example sounds

from the technique are presented. Chapter 5 introduces the author’s idea of negated

music with examples of sound installations and audio works that employ this artis-

tic technique. The phase vocoder based technique used for these works is presented,

and artistic examples involving negation are presented in order to contextualize

these works.



Chapter 2

The Phase Vocoder

...composers/programmers are notorious for

“hacking” pvoc frames in ways that would no doubt

horrify dsp engineers, but which almost always

produce musically interesting results.

Richard Dobson [14]

All of the sound manipulation techniques introduced in this dissertation

are based on the Phase Vocoder technique of sound analysis and synthesis. We

here review the relevant background in Stort-Time Fourier Analysis and Phase

Vocoder based musical manipulations. The presentation here is not intended to be

exhaustive or complete, as more rigorous and complete presentations are abundant

in the literature [61, 68, 33, 16, 60, 6, 70, 12].

2.1 Phase Vocoder Background

In 1967 the composer Steve Reich wrote a conceptual musical composi-

tion entitled “Slow Motion Sound,” in which a recorded sound was to be slowed

down without changing its pitch or timbre [76]. At the time, Reich’s piece was

considered conceptual because a sonic realization of it could not be produced.

6
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However, presumably unbeknownst to Reich, a computer based method of realiz-

ing this composition had been developed at Bell Labs the prior year. This method,

called “the phase vocoder,” was introduced by Flanagan and Golden in their paper

“Phase Vocoder” [29]. Flanagan and Golden’s work was an attempt to produce a

compressed representation of speech signals by breaking the signal into frequency

channels that could be encoded with less data then the original signal. The funda-

mental difference between the new phase vocoder and the well-established “channel

vocoder” of Homer Dudley [22], was the calculation of the phase spectra in addition

to the magnitude spectra.

Apart from the computational constraints of 1966, the phase vocoder was

lacking several aspects that would allow it to serve as a practical tool for musical

manipulation. In 1976, Portnoff improved the phase vocoder in several ways;

his implementation explicitly employed the fast Fourier transform (FFT), used

an appropriate windowing function, and pointed out the importance of window

size [66, 67, 68].

In 1978, Andy Moorer suggested that the phase vocoder could be used

specifically for musical applications and implemented a phase vocoder with musical

purposes in mind [61]. As will be seen below, Moorer’s phase vocoder made an

important change from Portnoff’s implementation in the method of calculating the

phase spectrum values. Moorer replaced the inexact phase differentiation method

with a much simpler phase difference calculation.

In addition to introducing a “tracking” phase vocoder, Mark Dolson’s 1982

dissertation entitled, “A Tracking Phase Vocoder and its Use in the Analysis of

Ensemble Sounds,” showed that the Moorer phase difference method was “crucial

to the effective use of the phase vocoder” and that the the old phase-derivative

method was “inevitably a source of error” [15].

By the late 1980’s the phase vocoder was being used regularly in musical

composition. Specifically, Mark Dolson’s phase vocoder in the CARL computer

music software system, by F. Richard Moore, Mark Dolson, et al. [16, 60] and
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later the pvanal and pvoc programs by Dan Ellis in the csound language by Barry

Vercoe [7] were in widespread use.

By the early 1990s the phase vocoder became ubiquitous in computer music

composition. The phase vocoder in Tom Erbe’s “Soundhack” program adapted

the CARL phase vocoder to the simple GUI of the Macintosh computer, allowing

many composers the opportunity to use the tool on their personal computers [25].

Another important advancement in the phase vocoder during the late 1990s was

Richard Dobson’s extensions to the csound phase vocoder, which allowed individual

frequency bins to be manipulated in the csound environment [7]. More recently the

speeds of personal computers have advanced enough to execute the phase vocoder

analysis and synthesis in real time. Interestingly, the most notable use of the

phase vocoder, time-streching, is not an application that is well suited to a real-

time environment. That is, the interesting characteristics of real-time computation

are lost in the inherently non-real-time operation of time-stretching.

2.2 The Phase Vocoder

2.2.1 Fourier Transform

One way of looking at Fourier analysis is to conceive of the analysis as

comparing a periodic signal to sine and cosine waves of various frequencies. This

comparison is achieved mathematically by multiplying the periodic signal by sine

and cosine waves at various frequencies and, for each analysis frequency, accumu-

lating the resultant values. This summation gives a measure of “how much” of

that sinusoidal component is contained in the periodic signal. This procedure can

be carried out in a computer using the discrete Fourier transform (DFT) shown

here,

DFT[x(n)] = X(k) =
1

N

N−1
∑

n=0

x(n)e−iωkn, 0 ≥ k ≥ N − 1 (2.1)
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where x(n) is a digital signal, X(k) is the complex valued spectrum, N is the

number of samples in the transformed signal, and ω = 2π/N . Here we use Euler’s

relation eiθ = cos θ + i sin θ to simplify the addition of the sine and cosine terms.

That is, one complex multiplication by e−iωkn gives us both the sine and cosine

components at that frequency. As can be seen from equation 2.1, a signal x(n) is

multiplied by sine and cosine waves at frequencies k, over each time point in the

analysis range. For each frequency k, results of these multiplications are added

together to produce a measure of how much this frequency is contained in the

original signal. The resulting spectrum X(k) is composed of complex numbers

with the real part of the number storing the co-sinusoidal magnitude measurement

and the imaginary component containing the sinusoidal magnitude measurement.

In order to increase the computational efficency of the discrete Fourier

transform, the fast Fourier transform (FFT) was developed in 1965 by Cooley

and Tukey [11]. The FFT achieves an increase in computational speed by taking

advantage of redundancies in the DFT. The matrix multiplication shown above

can be factored into a product of very sparse matrices that reduces the number of

necessary multiplications. The FFT is most efficient when the number of samples

being transformed is a power of two, but lesser increases in efficiency can also be

found with other lengths.

2.2.2 Windowing

In order to analyze the frequency content of a sound that is changing in

time, a series of FFT’s may be taken. In this section I will look at how this is

achieved through overlapped “windows” of sound. Because the Fourier transform

expects the signal to be a periodic signal, an arbitrary short section of sound

will not necessarly fulfill this requirement because the discontinuities between the

beginning and end of the segment create FFT energy in many other bands based

on the size of the segment. In order to reduce this problem, methods of smoothing
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the end points of the analysis period have been devised. A windowing signal is

multiplied by the analysis signal section in order to smooth out and connect the

two ends of the analyzed sound. This process, of course, modifies the analyzed

signal, but it allows arbitrary length signals to be analyzed such that the spectrum

contains energy in the expected bands. The shape of this windowing function has

been extensively studied and will not be discussed here except to note that the

Hamming and Hanning windows are typical for use with the phase vocoder, the

Hanning window reaching zero at the ends, and the Hamming window not quite

reaching zero.

In addition to modifying the frequency content of a section of sound, the

windowing process creates an amplitude modulation in the re-synthsized sound.

This amplitude modulation can be abated by overlapping the analysis periods.

During resynthesis, the overlapped sections are added together. The more the

windowed analyses are overlapped, the less amplitude modulation will result. Typ-

ically, an overlap factor of two, four, or eight is used.

2.2.3 STFT Frames

At this point we can consider a representation of sound consisting of a

series of windowed and overlapped FFT analyses. We call each of these analyses a

short-time Fourier transform frame (STFT). This representation of sound can be

converted back to a time-domain bit stream by inverse Fourier transforming each

windowed spectrum, dividing it by its window function, and adding the appropriate

overlapped samples. This process does not yet allow us to time-stretch, frequency

shift, or otherwise manipulate a sound. As will be seen, a conversion to polar

coordinates and a careful consideration of the phases of each bin will allow us to

achieve these modifications.
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2.2.4 Instantaneous Frequency

Only one step remains in order to time-stretch a sound with the phase

vocoder. We can think of the time-stretching problem as first calculating new

Fourier transform frames of data between analyzed Fourier frames and then inverse

Fourier transforming the sound with these new frames interspersed between the

analysis frames.

In order to calculate these frames we first convert the complex valued

Fourier transform data into polar coordinates from rectangular coordinates. These

polar coordinates are the magnitude and phase of the spectral components. The

magnitude is calculated by

|X(k)| =
√

Re(X(k))2 + Im(X(k))2. (2.2)

The phase θ(k) of X(k) is calculated by

θ(k) = −arctan

(

Im(X(k))

Re(X(k))

)

, (2.3)

where θ(k) are the principle values of the phase bounded by π and −π. This

bounding will be discussed below.

From this representation, we can calculate a new spectral frame for some ar-

bitrary time position np between two spectra X(n−1)(k) and Xn(k). The new ampli-

tude spectrum |Xnp
| is calculated by interpolating magnitudes between |X(n−1)(k)|

and |Xn(k)|.

|Xnp
| = (1 − p)(|X(n−1)(k)|) + p(|Xn(k)|), (2.4)

where p is the position between frames expressed as a number between 0 and 1.

It is here, finally, that we come to the essence of the phase vocoder. The

new phase spectrum cannot simply be interpolated between the neighboring values

because this would in effect change the rate at which the phase advances. New

phase values must be created that maintain the rate of phase advancement for each

channel. So, the new phase spectrum is calculated by looking at the rate of change
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of the phase in the region, the “instantaneous frequency,” and advancing the phase

an amount that would be advanced at that rate. The instantaneous frequency is

calculated by taking the difference between frames n and (n − 1).

∆θn(k) = θn(k) − θ(n−1)(k) (2.5)

This instantaneous frequency is an approximation of the rate of change of the

phase. In the original phase vocoder, the instantaneous frequency was calculated

by a phase derivative

θ̇n(k) =
Re(Xn(k))Im(Ẋn(k)) − Im(Xn(k))Re(Ẋn(k))

Re(Xn(k))2 + Im(Xn(k))2
, (2.6)

where Im(Ẋn(k)) and Re(Ẋn(k)) are the derivatives of the real and imaginary

components. This method was used by Flanagan and Christensen [28], but is no

longer used because the original phase can be reconstructed exactly using the phase

difference method [15].

Using the phase difference method, each spectral frame of the new phase

value is calculated from the instantaneous frequency ∆θn(k) by summing all the

previous instantaneous frequencies. So, for the new position n,

θn(k) = θ(n−1)(k) + ∆θn(k) (2.7)

where θ(n−1)(k) is the prior output of this equation.

An addition to this procedure must be made because of the bounding be-

tween −π and π of the phase component when the FFT analysis is performed.

This bounding creates incorrect jumps in the instantaneous phase calculation. It

is necessary to create a continuous phase function from the bounded phase func-

tion before any of the above phase calculations are completed. This procedure is

called phase unwrapping, and is performed by adding and subtracting 2π at the

discontinuities in order to make the function continuous [60].
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2.3 Phase Vocoder Extensions

2.3.1 Phase Coherence

There is no objective way of defining a “correct” method of time-stretching

sound because there are many ways of defining auditory time-stretching. While the

phase vocoder method is generally considered satisfactory compared to other meth-

ods such as granular methods, it does have notable characteristics that appear to be

artifacts of the analysis method, and not characteristics of an ideal time-stretched

audio method. As noted by Puckette [71], the phase vocoder analysis/synthesis

process does not maintain relationships between the phases of each bin. Quatieri

uses the term “horizontal coherence” to denote the phase vocoder’s ability to cre-

ate phase functions without discontinuities in time, and “vertical coherence” as

the coherent relationships between phase components at different frequencies. It

is this loss of vertical coherence that is responsible for the phase vocoders “rever-

berant” or “chorused” effect. The slight mistunings between components create

sounds similar to sounds in a reverberant environment.

Independently from each other in 1995, Puckette proposed his “phase-locked

vocoder” [71] and Quatieri, Dunn and Hanna [73] proposed their “instantaneous

invariance” method of maintaining vertical coherence at distinct time instances for

reducing transient smearing.

The instantaneous invariance method of Quatieri et al. works by phase-

synchronizing (or phase-locking) phase components at the specific times when

salient events occur in the sound. This method is well-suited to speech sounds

where the signal is characterized by onsets of speech events, but requires the ex-

plicit computation of event time locations. Duxbury, Davies, and Sandler adapt

this idea of phase coherence at particular transient times to musical signals [24].

Röbel suggests an alternate method of transient detection for use in such systems

based on phase-synchronizing phase components around individual spectral peak
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onsets [77].

Puckette’s phase-locking method, demonstrated below, reduces reverbera-

tion by increasing phase coherence around spectral peaks [71]. The method does

not require peak-picking and avoids any heuristic algorithms in favor of performing

the same operation on all spectral bins.

Laroche and Dolson [47, 46, 48] extended Puckette’s method by explicitly

finding amplitude peaks in the spectrum and using them as a guide to determin-

ing the dominant spectral regions. This method is called “rigid phase-locking.”

Laroche and Dolson report superior results to those of Puckette at the cost of a

more complex algorithm.

Dorran, Lawlor, and Coyle have recently proposed a hybrid method of in-

creasing vertical coherence in the phase vocoder [17]. Their system takes advantage

of limitations of phase coherence perception to nudge phase values closer to a coher-

ent state. They report significant improvement for voice signals over the Laroche

and Dolson method.

Puckette’s Phase-Locking

Puckette notes that a single sinusoid typically centers its energy around 3

or 4 channels in the phase vocoder analysis [71, 72]. A sinc function shaped main

lobe (Dirichlet kernel) of spectral bins all contain significant energy from the single

analyzed sinusoid, and because they represent a single sinusoid, these bins should

ideally have the same phase. Since the phase spectra of a time-stretched sound from

the phase vocoder are calculated with no regard to their vertical coherence, and

the phase values are calculated by accumulating instantaneous frequency values,

they shift and become incoherent with respect to one another. To account for this,

instead of attempting to modify the phase vocoder analysis method, Puckette

applies “a-posteriori constraints to the synthesis phases” [49]. The first step in

Puckette’s method is to calculate a new spectrum that consists of the average
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of each successive complex valued spectral bin k. We will call this new complex

spectrum X(l), where

X(l) =
X(k − 1) + X(k) + X(k + 1)

3
(2.8)

for all k, k = l. Here, each successive spectral bin is in phase. If the time origin of

the FFT is at the beginning of an FFT window, the phase will unwrap in opposite

directions for even and odd bins and every other term in the above equation will

need to be negated. In this equation, the term X(k−1), X(k), or X(k+1) with the

greatest magnitude will have the largest effect on the phases of the new spectrum

X(l). In other words, spectral peaks will tend to impart their phase on nearby

bins.

Finally, the modified phases of X(l) are combined with the original magni-

tude of X(k) to produce the desired rectangular phase-locked spectrum,

X(m) = |X(k)|ei(∠(X(l)). (2.9)

Several other modifications to the phase vocoder technique have been proposed to

impove the analysis or expand the transformational ability of the phase vocoder.

We briefly mention them here.

2.3.2 Other Phase Vocoder Extensions

In addition to the phase coherence technique mentioned above, Laroche

and Dolson suggested that partitioning the amplitude spectra of the STFT around

spectral peaks allows new types of sound transformations. All of the bins associated

with a spectral peak could be transformed together relative to the other sets of

spectral bins [48].

Marchand proposed a method of improving the instantaneous frequency

estimates of the phase vocoder by analyzing the derivatives of the time-domain

signal in addition to the traditional analysis [55]. Marchand suggests that improved
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time resolution can be achieved by employing a shorter analysis window without

a loss of frequency resolution.

Ferreira devises a novel time-stretching algorithm for speech signals in which

the STFT is interpolated along the frequency axis before conversion to the time

domain [26]. A new sampling rate is used to compensate for the change of window

length.

We have now presented the phase vocoder and significant extensions in

a form that is optimal for many musical applications. In the next chapter we

will extend this technique to retain noise characteristics of sound during time-

stretching.



Chapter 3

Sinusoidality Analysis and Noise

Synthesis in a Phase Vocoder

Sound Representation

But even when a musical tone continues with

uniform or variable intensity, it is mixed up, in the

general methods of excitement, with certain noises,

which express greater or less irregularities in the

motion of the air.

Hermann Ludwig Ferdinand von Helmholtz [39]

3.1 Introduction

When a sound is lengthened with the phase vocoder, the noise aspects of the

sound tend to become pitched. Under extreme time lengthening, all noisy aspects

of the original sound are transformed into stable sinusoidal components. This

behavior is consistent with the phase vocoder’s modeling of short-time Fourier

transform (STFT) energy as exclusively sinusoidal energy. The purpose of the

17
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research presented in this chapter is to extend the phase vocoder (PV) represen-

tation of monophonic sounds to allow for the original noise characteristics to be

maintained during PV lengthening and other PV based sound manipulations. In

this chapter, both the analysis and synthesis procedures of the phase vocoder are

expanded in order to maintain the noise aspects of sound.

In order to derive the noise characteristics of sound in a PV representa-

tion, methods of analyzing the “sinusoidality” of STFT channels will be employed.

STFT channels with high sinusoidality are composed of predominantly sinusoidal

energy and should exhibit sinusoidal characteristics during synthesis. STFT chan-

nels with low sinusoidality have predominantly noise energy and should be syn-

thesized with noise characteristics. In this chapter, (i) techniques for measuring

the sinusoidality of STFT channels are surveyed, (ii) modifications to existing as

well as new methods of sinusoidality analysis are presented, (iii) measurements

of sinusoidality are compared, (iv) a new method of combining pitched and noisy

components during PV synthesis is presented, and (v) resultant example sounds

are shown.

3.2 Sinusoidality Analysis

The phase vocoder is built upon the Fourier transform. The Fourier trans-

form analyzes a signal for sinusoidal components, that is, the output consists of

coefficients to a sinusoidal basis function. The sinusoidal nature of Fourier anal-

ysis is ill-suited to the analysis of noisy sounds or sounds with significant noise

components because these components are analyzed as many rapidly varying si-

nusoidal components. While this analysis can be used to reconstruct the original

sound, temporal manipulation of this Fourier energy using phase vocoder tech-

niques typically results in the noise characteristics of the sound taking on a pitched

or sinusoidal character.

In order to alleviate this problem of noisy components of a sound being
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misinterpreted in phase vocoder manipulations, we will attempt to analyze the

phase vocoder representation for its noise characteristics, and to create these noise

levels during a phase vocoder synthesis. This analysis will consist of calculating the

sinusoidality of each Fourier analysis channel and, using this measure, determining

noise levels for each channel during synthesis.

The idea of determining the nature of STFT channel energy for the purpose

of enhancing subsequent noise synthesis is relatively new for musical applications.

Many speech analysis/synthesis methods use a voiced/unvoiced decision making

algorithm as part of the analysis method. These methods have been extended to

calculate the voicing coefficient of individual spectral channels [34]. As we will see,

the idea of voicing coefficients in speech signal processing is very similar to the

idea of the sinusoidality coefficients discussed here. The sinusoidality of an STFT

channel represents the degree to which the energy of each spectral bin consists of

sinusoidal based energy. A low sinusoidality measure indicates that the energy in

that band is based on random or noise signals. Here we will follow the notation

and conventions set by Peeters and Rodet [31] where Γ(n, k) is the sinusoidality

of spectral bin k at time frame n, and Γ(n, k) varies between high sinusoidality of

1 and 0 for low sinusoidality or high-noise content.1 All of the existing and new

sinusoidality measurement algorithms presented here will be scaled to this range.

The sinusoidality analysis methods are based on a FFT window length

of 1024 with a sampling rate of 44 100 Hz. This limits the frequency resolution

between spectral bins to approximately 43 Hz. Many of the sinusoidality analysis

techniques presented here rely on the energy of a single bin coming from a single

spectral component. As polyphonic musical signals may have multiple spectral

components within one spectral bin, the sinusoidality measures presented here will

perform best with monophonic signals or signals that do not have more than one

1Dubnov defines a similar “noisality” in which high noisality denotes random energy in that
band [21]. We will not use this term due to its redundant relationship to our sinusoidality
definition.
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spectral component in a bin.

In the next section existing sinusoidality measures are reviewed and mod-

ified and new sinusoidality measures are presented. Three sinusoidality measures

based on the amplitude spectrum of the STFT are presented, followed by two

sinusoidality measures based on the phase spectrum. Next, a method based on

correlation of the complex STFT spectrum to the window function is presented,

and then a method based on the changes in narrowband temporal envelopes. Fi-

nally, a new method based on the harmonic structure of the sound is presented. In

addition, sinusoidality techniques that are not implemented as part of this study

are briefly surveyed.

3.2.1 Power Spectrum Sinusoidality

The first three sets of sinusoidality coefficients are derived from the ampli-

tude spectrum of the STFT, |Xn(k)|. Our first is a scaled version of the power

spectrum. An estimate of the power spectrum (also known as the power density

spectrum) can be calculated from the periodogram of a signal [38]. The power

spectrum is simply the square of the amplitude spectra, |Xn(k)|2. The idea be-

hind this measure is that peaks in the power spectrum are composed of sinusoidal

energy. If we make the assumption that sinusoidal components of a musical sound

produce peaks in the power spectrum that are higher than peaks produced by noise

components, we can use these peaks as indicators of sinusoidal energy. These sinu-

soidality coefficients can be calculated by simply squaring the amplitude spectrum

and scaling this power spectrum by the highest amplitude in that frame:

Γp(n, k) =
|Xn(k)|2

argmax
k

(|Xn(k)|2)
. (3.1)

Here Γp(n, k) are the power spectrum sinusoidality coefficients for time frame n

and spectral bin k, and max(|Xn(k)|2) is the single highest amplitude bin of each

power spectrum. Γp varies from 1 for the highest peak to 0 for no energy, here
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treated as noise energy.

Scaling the power spectrum in this manner produces sinusoidality coef-

ficients that have at least one value that is set to the maximum value of one

regardless of how much sinusoidal energy is present in the spectral frame. If no si-

nusoidal peaks are present, for example, noise energy is incorrectly scaled to a high

sinusoidality value. Later, this problem is alleviated before synthesis by linearly

scaling all of the sinusoidality values by an overall measure of tonality derived from

the spectral flatness measure in section 3.4 below. However, it should be noted

that this sinusoidality measure, and others that are normalized in this way are

susceptible to this problem.

The assumption that sinusoidal energy peaks are higher than peaks from

noise energy is not true for many musical sounds. For example, the attack portion

of many musical instrument sounds typically contains power spectrum peaks of

noise energy of higher magnitude than the peaks composed of sinusoidal energy.

We will see this confirmed when we compare sinusoidality measures in section 3.3.

3.2.2 Power Persistence Sinusoidality

The next sinusoidality measure is a modification of the power spectrum

technique. The new power persistence sinusoidality measure is calculated by mul-

tiplying each amplitude spectral bin by the two prior amplitude spectral bins for

every channel, and normalizing the result between 0 and 1. Here we have:

Γpp(n, k) =

(
∣

∣X(n−2)(k)
∣

∣

) (
∣

∣X(n−1)(k)
∣

∣

) (
∣

∣X(n)(k)
∣

∣

)

argmax
k

(

(|X(n−2)(k)|)(|X(n−1)(k)|)(|Xn(k)|)
) . (3.2)

Where Γpp(n, k) are the power persistence spectrum sinusoidality coefficients. The

idea here is that amplitude spectral components that remain prominent over three

spectral frames will produce a high sinusoidality value for that channel as sinusoidal

components will tend to be slowly changing relative to noise components. As shown

in section 3.3, this technique appears to create an improved set of sinusoidality



22

coefficients over the power method for sinusoidal signals whose amplitude maxima

are lower than the noise power peaks.

3.2.3 Sigmund Sinusoidality

As part of his pitch tracking algorithm called “Sigmund”, Puckette, identi-

fies spectral peaks of the amplitude spectrum [70]. Puckette zero pads the STFT

spectrum by a factor of two, windows each time frame with a half cosine wave

window, and then declares a spectral peak to exist in bin k when:

|X(k)| > 0.6 (|X(k − 2)| + |X(k + 2)|) . (3.3)

This method of peak identification takes advantage of the difference in magnitude

between a peak and the magnitude of the adjacent valleys in a cosine windowed and

zero padded spectrum. We here adapt the sigmund method to create a sinusoidality

measure for each spectral bin:

Γs(k) =

(

|X(k)|
0.6(|X(k−2)|)(|X(k+2)|)

)

argmax
k

(

|X(k)|
0.6(|X(k−2)|)(|X(k+2)|)

) , (3.4)

where Γs(k) are the power persistence spectrum sinusoidality coefficients. The

results of the sigmund sinusoidality method do not appear to be better than the

power sinusoidality method. As sigmund is designed for identifying spectral peaks,

it may be ill suited for determining sinusoidality coefficients near spectral peaks.

3.2.4 Charpentier Sinusoidality

The phase spectrum of the STFT can also be employed to create sinu-

soidality measures. As will be seen, by using consecutive frames of STFT data the

instantaneous frequency spectra and the phase acceleration spectra can each be

used to create sinusoidality measures. We will look at each of the possibilities in

turn.
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The phase vocoder method calculates an approximation of the instanta-

neous frequencies of spectral components from the difference in phase between

consecutive spectral frames. These frequency values can be thought of as refine-

ments to the nominal center frequency values of each bin. Charpentier devised a

pitch detection algorithm that groups spectral bins based on their similar instan-

taneous frequencies [10]. Charpentier notes that a sinusoid will exhibit energy in

at least three adjacent spectral bins, and that the instantaneous frequency of these

bins will be correlated around the true frequency of that sinusoidal component.

Figure 3.1 shows the amplitude spectrum of a synthetically generated harmonic

sound and the corresponding phase difference spectrum both scaled between 0 and

1. It can be clearly seen that the phase difference values stabilize around the ar-

eas with sinusoidal energy. Dressler [18] formalizes Charpentier’s phase difference
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Figure 3.1: Amplitude spectrum and phase difference spectrum of a harmonic

sound. Visible are the similar phase difference values around the sinusoidal energy

peaks.
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method as a decimal offset κ(k) to the integer bin number k. We derive κ(k) in

terms of phase here. The center frequency f(k) of each spectral bin k can be found

by multiplying k by the sampling rate SR and divided by the hop size N .

f(k) = k

(

SR

N

)

. (3.5)

This offset κ(k) is added to the integer bin number k in equation to calculate the

instantaneous frequency in Hz.

f(k) = (k + κ(k))

(

SR

N

)

. (3.6)

Here κ(k) is calculated from the offset between the measured phase θn(k) and the

expected phase calculated from the prior phase of that bin, here called θ̂n(k). This

offset in radians is:

θ = (θn(k) − θ̂n(k)), (3.7)

We can transform this offset into decimal units of bin by multiplying by N/2πR:

κ(k) =

(

N

2π(SR)

)

(θn(k) − θ̂n(k)). (3.8)

Charpentier uses each value of κ(k) to detect harmonics of a signal by

declaring a bin k to contain a harmonic when κ(k−1) and κ(k+1) are “sufficiently

close” to κ(k). We will interpret Charpentier’s idea by calculating the “spectral

irregularity” of the instantaneous frequency values κ(k).

Spectral Irregularity was devised by J. Krimphoff as a way of quantizing

the overall smoothness of a spectrum [42]:

IRR =
N−1
∑

k=2

∣

∣

∣

∣

|X(k)| −
|X(k−1)| + |X(k)| + |X(k+1)|

3

∣

∣

∣

∣

. (3.9)

From this summation we can see that any three adjacent spectral bins with a

constant slope contribute nothing to the overall irregularity summation. Only

changes in slope over three frames contribute to the spectral irregularity. Our

new measures will create a set of local irregularity coefficients by removing the
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summation over the entire spectrum and calculating irregularity solely for each

spectral bin. In Krimphoff’s formulation across spectral bins, this would be

IRR(k) =

∣

∣

∣

∣

|X(k)| −
|X(k−1)| + |X(k)| + |X(k+1)|

3

∣

∣

∣

∣

, (3.10)

for each bin 2. In our formulation, however, we will look at the local irregularity

of instantaneous frequency and not amplitude. That is:

IRR(k) =

∣

∣

∣

∣

κ(k) −
κ(k−1) + κ(k) + κ(k+1)

3

∣

∣

∣

∣

. (3.11)

Here we can see that three points that cluster around a particular instantaneous fre-

quency value will produce a low irregularity coefficient for that bin, and conversely,

large variations in instantaneous frequency between spectral bins will produce a

larger irregularity coefficient.

We can put this measure into our sinusoidality framework by normalizing

the results and subtracting from one.

Γc(k) = 1 −
IRR(k)

argmax
k

(IRR(k))
. (3.12)

The Charpentier sinusoidality method devised here exhibits the lowest error on

one of our test signals with a single sine tone and broadband noise. This result

will be discussed in section 3.3 below.

3.2.5 Phase Acceleration Sinusoidality

Our second phase spectrum based sinusoidality measure also employes the

phase difference method of instantaneous frequency computation. Settel and Lippe

devised a “band-limited frequency dependent noise gate” as a method of separating

stable STFT channels from non-stable channels [86]. Settel and Lippe suggest that,

“pitched components in the input signal tend to be stable and can thus be indepen-

dently boosted or attenuated.” Their method defines a threshold for changes in the

2Two sinusoidality measures were devised using this local amplitude irregularity both across
bin number and across time. Neither method produced results better than the power spectrum
sinusoidality measure, and the results are not presented here.
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phase vocoder’s instantaneous frequency values between spectral frames. Changes

in instantaneous frequency below a given threshold are considered stable. Because

sinusoidal components should have a relatively constant instantaneous frequency,

these slowly changing components are typically sinusoidal and pitched. A math-

matical presentation of the Settel and Lippe method is presented by Arfib, Keiler,

and Zölzer [6]. Here we formulate this idea in terms of a variable sinusoidality

instead of a threshold for each bin, and in terms of “phase acceleration” because

the difference between instantaneous frequency values can be thought of as the

acceleration of the phases of that frame.

As was shown in chapter 2, the instantaneous frequency is calculated for

each channel from the phase difference between frames n and (n−1) by,

∆θn(k) = θn(k) − θ(n−1)(k) (3.13)

where θ(k) are the principle values of the phase and are bounded by π and −π. The

phase acceleration, ∆∆θn(k), is the difference between the instantaneous frequency

and the prior instantaneous frequency,

∆∆θn(k) = ∆θn(k) − ∆θ(n−1)(k). (3.14)

The above two equations are combined to show the phase acceleration in

terms of phase:

∆∆θn(k) =
(

θn(k) − θ(n−1)(k)
)

−
(

θ(n−1)(k) − θ(n−2)(k)
)

, (3.15)

so that,

∆∆θn(k) = θn(k) − 2θ(n−1)(k) + θ(n−2)(k). (3.16)

We can normalize this phase acceleration to our nominal sinusoidality range of

zero to one to create our final sinusoidality coefficients:

Γpa(n, k) =

(

1 −

(

θn(k) − 2θ(n−1)(k) + θ(n−2)(k)

2π

))p

, (3.17)



27

where Γn(k) is the resultant sinusoidality spectrum for frame n. This spectrum

shows values near 1 for stable channels and values tending toward 0 for unstable

channels. This sinusoidality measure tends to produce sinusoidality coefficients

near one for both stable and non-stable components. The variable p in the above

equation is used to counteract this tendency. By raising each coefficient to a small

integer power of itself, typically p = 4, this overall tendency is significantly abated.

Duxbury, Davies, and Sandler proposed a frequency dependent threshold

to improve the Settel and Lippe method [23]. They note that for any given value

of Γpa, low frequency channels tend to be selected as stable and high frequency

channels selected as non-stable. They alleviate this tendency by choosing a differ-

ent threshold value for each octave sub-band created with six constant-Q filters.

Duxbury reports overcoming the frequency dependency tendency. However, this

method requires setting six threshold values instead of one.

Here we propose a new method of reducing frequency dependency in terms

of our sinusoidality spectrum Γpa(k). In order to reduce the sinusoidality measure

Γpa(k) for high k, we will change the slope of the stability spectrum by multiply-

ing each Γpa(k) by a scaled version of the channel number k. Our new stability

spectrum is:

Γpa(k) =

(

1 −

(

θn(k) − 2θ(n−1)(k) + θ(n−2)(k)

2π

))p

(M)

(

k

kmax

)

, (3.18)

where M is a slope constant with a heuristically determined value of approximately

−1.024. This correction to the stability spectrum avoids the constant-Q filter calcu-

lation and multiple threshold calculations of the Duxbury et al. method. Figure 3.2

shows the phase acceleration sinusoidality coefficients Γpa(k) of a harmonic sound

along with the corresponding power spectrum sinusoidality coefficients Γp(k). The

slope M is set to −1.024 and p = 4.

The phase acceleration sinusoidality measure performs better than the am-

plitude spectrum based sinusoidality measure for sounds with many sinusoidal

components in broadband noise. In addition, it can be multiplied by the power
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Figure 3.2: Phase acceleration sinusoidality coefficients and power spectrum sinu-

soidality coefficients of a harmonic sound.

persistence measure. As we will see in section 3.3, this combined measure performs

well with sinusoidal signals that are rapidly changing in frequency.

3.2.6 Cross-Correlation Sinusoidality

As part of a speech analysis/synthesis system, Griffin and Lim proposed

a method of labeling spectral components of a speech signal as voiced or un-

voiced [34]. This method, based on correlating spectral peaks to the shape of a

windowed sinusoid at target frequencies, was adapted as a sinusoidality measure

by Rodet [78], and its characteristics were studied by Peeters [31]. As the shape

and position of a sinusoid in the spectral domain should ideally match the shape of

the windowing function of the transform translated to match its frequency, the cor-

relation between these spectral shapes should be high for sinusoidal components.
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This idea can be expressed in the frequency domain as:

Γcc(k) =

∣

∣

∣

∣

∣

∣

∑

k,|ω−ωk|<W

X(ωk)H(ω − ωk)

∣

∣

∣

∣

∣

∣

. (3.19)

Here X(ωk) is a STFT frame, H(ω) is the complex spectral window of the sinusoid,

and W is the bandwidth of the sinusoidal spectral window.

Typically, due to its computational complexity the correlation is only per-

formed within a small range W around spectral peaks found by other methods.

In our case, as we have no peak picking method, this correlation is calculated for

all bins k of the STFT. How the cross-correlation method comparisons with other

sinusoidality measures will be presented in section 3.3.

3.2.7 Narrowband Variance Sinusoidality Measure

Hanna and Desainte-Catherine developed a method of detecting sinusoidal

components based on the variance of narrowband temporal envelopes [36, 37].

They suggest that the temporal envelope will vary more for bands that contain

noise than those with sinusoidal components.

Their method operates by creating a series of narrowband filters on the

STFT. These bandpass filters are typically three to 5 bins wide. Each filtered

STFT is converted back to the time-domain by an inverse FFT. The total variance

of each of these filtered segments is then calculated and used to create a variance

spectrum in which channels with high variance represent noisy components and

channels with low variance represent sinusoidal components.

Hanna and Desainte-Catherine’s algorithm features many more details of

implementation that are not presented here or implemented in our version of the

algorithm. Our implementation uses a constant phase spectrum for each narrow-

band calculation and uses a single frame length for the final variance calculations.

Because of these simplifications our results should not be taken as comparable to
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the results presented by Hanna and Desainte-Catherine. Results of our implemen-

tation of this algorithm are presented in section 3.3.

3.2.8 Harmonic Sum Spectrum Sinusoidality

Many voicing decision algorithms for speech signals are based on the har-

monicity of the components of speech [73]. The use of harmonic relationships to de-

termine sinusoidality coefficients is also possible with sinusoidal modeling systems

in which the frequency of individual spectral components is known explicitly [85].

The measure of the overall “harmonicity” of a STFT frame is a common feature,

that typically requires the explicit calculation of a single fundamental frequency

(f0) by peak picking or other technique [80].

As our project here is based on the traditional PV parameters of ampli-

tude, phase and/or instantaneous frequency, those methods that require higher

order analysis such as spectral peak picking or fundamental frequency analysis are

precluded. With these restrictions, we have created a new non-parametric sinu-

soidality analysis technique for STFT frames that relies on the harmonic relation-

ships present in the sound, but without explicit computation of these frequencies.

Musical instrument sounds typically have a predominantly harmonic struc-

ture. The spectral components of a musical tone that are in a harmonic relationship

are the predominantly sinusoidally based energy of a spectral frame. Conversely,

we can consider spectral energy that is not in a harmonic relationship to be noise

based. This is the basis of the sinusoidality coefficient measure presented here.

The harmonic product spectrum (HPS) technique is a method of finding

the fundamental frequency energy of a STFT by combining the energy of the har-

monics with each other at the location of the fundamental frequency [81, 75]. The

harmonic product spectrum is the product of the power spectrum multiplied by

successively compressed versions of the same spectrum. These spectra are down-

sampled along the frequency axis by consecutive integer amounts. The resultant
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product reinforces the amplitude of the fundamental frequency. A related spec-

trum, the harmonic sum spectrum (HSS), with similar output, sums these down-

sampled spectra instead of multiplying them [2]. The harmonic sum spectrum is

given by:

HSS(k) =
K

∑

r=1

|X(kr)|
2 where kr = (r)(k). (3.20)

Here K is the number of down-sampled spectra typically around six.

Conceptually, our proposed method is the reverse of the HSS. To the nor-

malized power spectra we add each integer multiple up-sampled copy of the spec-

tra. These up-sampled spectra are calculated by interpolating new spectra at each

integer multiple of the original spectra. That is:

Γh(k) =

K
∑

r=1

|X(kr)|
r where kr = k/r. (3.21)

Spectral peaks in each of these up-sampled spectra are proportionately wider than

those in the original power spectra. For example, the spectral peaks in the r = 2

spectra are twice as wide as the original. In order to slim these peaks back to

an approximation of their original width, the up-sampled spectra are raised to

increasing powers and normalized to their highest peak. In order to heuristically

calculate this power term, a Hann window is interpolated to twice its length and

raised to integer powers. These are normalized to the original height of the Hanning

window. It was found that the window raised to the 4th power was slightly wider

than the original window and was slightly narrower when raised to the 5th power.

So, the r = 2 spectra would be taken to the 4th power in order to reduce the

width of its peaks to approximate the original width. However, this 4th power

was found to produce banks that are too narrow to use in practice. The first up-

sampled spectrum is set to the 2nd power in our algorithm, and each subsequent

up-sampled length is raised to the next power as can be seen in equation 3.21. This

produces approximately equal width peaks for six to twelve up-sampled spectra

K. Finally, the slope correction devised for the phase acceleration sinusoidality
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method is used to reduce the sinusoidality of higher harmonics.

Figure 3.3 shows a normalized power spectrum sinusoidality for a violin

tone and the corresponding harmonic sum sinusoidality for this spectra. The har-

monics higher than those of the power spectra are visible in the sinusoidality spec-

trum. This sinusoidality measure is applicable for musical instrument sounds with
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Figure 3.3: Power spectrum sinusoidality and harmonic sum sinusoidality for a a

single frame of a violin tone.

harmonic content. Indeed, we will see that it performs well on a synthetically

generated harmonic sound in section 3.3.

3.2.9 Other Sinusoidality Methods

In addition to the methods presented and devised above that have been

implemented for comparison and use with our noise synthesis system, other sinu-

soidality methods have been developed.

Zivanovic, Roebel, and Rodet propose four mutually complementary meth-
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ods of classifying spectral peaks as sinusoidal and noise based [92]. The character-

istics of all bins around a spectral peak are examined to characterize the peak. As

these estimates are not computed for each spectral bin, but for each spectral peak

of the STFT, they are not directly applicable for our application here 3.

Dubnov proposed a sinusoidality coefficient measure which compares the

“bispectra” of the sound with an expected bispectra for a sinusoidal compo-

nent [19]. This method can be considered an extension of the Lim cross-correlation

method into higher order spectra. Dubnov reports results comparable to the Lim

method. Notably here, Dubnov suggests that “It seems difficult to find the true

definition of voicing [sinusoidality] and much emperical listening work is required

in order to determine a good voicing estimator.”

Dubnov proposes another sinusoidality coefficient measure as part of a novel

sinusoidal analysis/synthesis system [21]. This method compares two parametric

spectral estimates calculated not from the STFT, but from LPC filter coefficients.

A comparison between these spectra gives an estimate of sinusoidality at any target

frequency. As this method produces the sinusodality coefficients in terms of LPC

coefficients, it would need to be adapted to produce coefficients in terms of STFT

bin.

We have now completed presenting the sinusoidality coefficients analysis

techniques. The three power spectrum based methods, the two phase spectrum

based methods, the cross-correlation method, a simplified version of the narrow-

band variance method, and the harmonic sum method have been implemented.

We will now present our method of comparing these measures before discussing

3In these methods, the spectrum is partitioned into regions. This partitioning is carried
out by the method proposed by Laroche and Dolson [49]. The minimum value between two
maxima of the STFT amplitude spectra are used as the limit of each group of spectral bins. Of
the four descriptors, the “normalized bandwidth descriptor” appears to be the most salient for
sinusoidality detection as it “can be viewed as a measure of the noise energy in the neighborhood
of a sinusoidal spectral peak.” Although not attempted here, these four methods could be adapted
to a bin by bin sinusoidality coefficient method by assigning the found sinusoidality measure to
all the bins of each peak. However, this method still would be subject to the artifacts of spectral
partitioning and peak picking.
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their strengths for our phase vocoder noise synthesis system.

3.3 Sinusoidality Error Analysis

In this section we will devise a technique for quantifying the error present

in the various sinusoidality analyses. We test the sinusoidality measures with

synthetic sounds using this technique, and suggest which sinusoidality method is

appropriate for differing signals based on these results. Our error analysis method

compares the known power spectrum of sinusoidal components in a synthetic mixed

sinusoid and noise signal to the power spectrum generated by multiplying our

sinusoidality coefficients by the original combined power spectrum being tested.

Other studies of sinusoidality have quantified results in terms of detecting

individual sinusoids in a power spectrum, as their purpose has typically been to

improve the frequency detection of sinusoidal components in a sinusoidal modeling

system [44, 37]. Our method is designed to give an overall measure of the accuracy

of the sinusoidality measures not in terms of detecting sinusoids in a noisy signal,

but of characterizing the energy of each spectral bin as part sinusoidal and part

noisy. This more accurately reflects our use of sinusoidality in a phase vocoder

context.

Each test sound is composed of two separate synthetically synthesized com-

ponents, the sinusoidal component, and the noise component. A PV analysis is

carried out on each of these signals creating the sinusoidal spectra Sn(k) and the

noise spectra Nn(k). These two complex spectra are combined,

S(k) + N(k) = X(k), (3.22)

to create our spectral frames, X(k), for sinusoidal analysis. Next, each of the

different sinusoidality coefficient measures is applied to on each X(k) to create

Γ(k). Next, the estimated sinusoidal amplitude spectrum, |Ŝ(k)|, is calculated by
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scaling the combined amplitude spectrum |X(k)| by the coefficients:

|Ŝ(k)| = Γ(k)|X(k)|. (3.23)

Now we subtract this estimated sinusoidal amplitude spectrum from the true syn-

thetic sinusoid amplitude spectrum,

ǫmissed(k) =







(

|S(k)| − |Ŝ(k)|
)

when
(

|S(k)| − |Ŝ(k)|
)

> 0,

0 when
(

|S(k)| − |Ŝ(k)|
)

< 0,
(3.24)

where ǫmissed(k) is the energy error in sinusoidality estimate due to missed energy

for each spectral bin k. That is, ǫmissed(k) is the energy that is in fact sinusoidal,

but was not found as such by the sinusoidality measure. The total missed energy

error for each frame Tǫmissed is found by summing ǫmissed(k) for all k. Finally, the

missed energy ǫmissed is scaled by the total original sinusoidal energy in order to

express the error independent of the amount of sinusoidal energy present in the

signal:

ǫmissed =
Tǫmissed

|(S(k)|
. (3.25)

The “false” energy error is similarly found by subtracting the true synthetic sinu-

soid amplitude spectrum from the estimated sinusoidal amplitude spectrum,

ǫfalse(k) =







(

|Ŝ(k)| − |S(k)|
)

when
(

|Ŝ(k)| − |S(k)|
)

> 0,

0 when
(

|Ŝ(k)| − |S(k)|
)

< 0,
(3.26)

where ǫfalse(k) is the energy falsely attributed to sinusoidal energy. The total false

scaled error ǫfalse is found in a similar fashion as above, however the false energy

is scaled by the original noise energy:

ǫfalse =
Tǫfalse

|(N(k)|
. (3.27)

The total error ǫ is found by adding the missed energy, Tǫmissed, and the false

energy, Tǫfalse, and scaling by the total energy of both spectra.

ǫ =
Tǫmissed + Tǫfalse

|(N(k)| + |(S(k)|
. (3.28)
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Finally, mean values µ and standard deviations σ are calculated for ǫmissed, ǫfalse,

and ǫ over all spectral frames n.

We have now seen how the synthetic test signals will be employed to evaluate

our sinusoidality measures. Unless otherwise noted, in all of our tests, a sampling

rate of 44 100 Hz, a FFT frame length of 1024, a frame hop size of 256 (overlap

4), and a Hanning window are used. Table 3.1 lists the names and descriptions

of the evaluated sinusoidality measures. Six different synthetic sounds are used to

Table 3.1: Tested Sinusoidality coefficient measures.

Name Method

Zeros Γ0 Zero for each sinusoidality coefficient.
Ones Γ1 One for each sinusoidality coefficient.
Power Γp Scaled power spectrum.
Power Persistence Γpp Product of three amplitude spectra.
Sigmund Γs Puckette amplitude difference method.
Charpentier Γc Irregularity of instantaneous frequency.
Phase Acceleration Γpa Instantaneous frequency difference method.
Phase Acc. × Pow. Per. Γpapp Phase Acceleration times Power Persistence.
Cross-Correlation Γcc Griffin and Lim window correlation method.
Variance Γv Simplified Narrowband Variance method.
Harmonic Sum Γhs Normalized reverse harmonic sum method.

test the sinusoidality measures; (i) a sine tone without noise, (ii) pure noise, (iii)a

sine tone with noise, (iv) 32 unevenly spaced sine tones with noise, (v) a harmonic

sound with noise, and (vi) a sinusoid with time-varying frequency (chirp signal)

with noise. The results of these six tests are presented in table form in appendix A,

and four of these tests are discussed here.

Graph 3.4 shows the sinusoidality error analysis for a single sine tone of

440 Hz with white noise added. The energy of the sine tone is equal to the total

energy of the white noise, that is, the sum of the power spectrum of the sinusoidal

signal is equal to the sum of the power spectrum of the noise signal. In this case,

the sine tone was generated with approximately 20 dB less intensity than the white
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noise. As can be seen in graph 3.4, a set of sinusoidality coefficients that are all

zero, Γ0, produces approximately the same total error as the coefficients set to

all one, Γ1. Graph 3.4 shows the lowest total error, 0.153, for the phase based
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Figure 3.4: Sinusoidality error analysis for a sine tone of 440 Hz with white noise.

The energy of the sine tone is equal to the total energy of the white noise.

Charpentier sinusoidality measure, Γc. The power sinusoidality measure Γp shows

the second lowest total error.

Graph 3.5 shows the sinusoidality error analysis for 32 equal amplitude sine

waves with a random distribution (not harmonic) of frequencies between 40 Hz and

10 000 Hz and white noise. As above, the total energy of the sine tones is equal

to the total energy of the white noise. Here the sine tones were each generated

with approximately 10 dB less intensity than the white noise. With this signal the

power persistence method, Γpp, and the phase acceleration method, Γpa, performed

approximately as well as the power persistence method creating a greater missed

error and the phase acceleration method producing a greater false error.
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Figure 3.5: Sinusoidality error analysis for 32 equal amplitude sine waves with a

random distribution of frequencies between 40 Hz and 10 000 Hz and white noise.

The total energy of the sine tones is equal to the total energy of the white noise.

Graph 3.6 shows the sinusoidality error analysis for a harmonic sound with

a fundamental frequency of 440 Hz and 31 harmonics each generated with 1 dB less

energy than the prior. The energy of the harmonic tone is equal to the total energy

of the white noise. The harmonic sum sinusoidality measure, Γhs, produced the

lowest total error, 0.292, for this harmonic sound. The phase acceleration measure,

Γpa, also performed well relative to the other measures.

Graph 3.7 shows the sinusoidality error analysis for a single sine tone with

time-varying frequency logarithmically changing from 220 Hz to 880 Hz over one

half second. The energy of the time-varying tone is equal to the total energy of the

white noise. The sine tone is generated with approximately 19 dB less intensity

than the white noise. As can be seen in graph 3.7, the sigmund sinusoidality

measure, Γs, has the smallest total error of 0.140. This result is notable because



39

0

0.2

0.4

0.6

0.8

1

Γ0 Γ1 Γp Γpp Γs Γc Γpa Γpapp Γcc Γv Γhs

E
rr

or

Sinusoidality Measure

False error
Missed error

Total error

Figure 3.6: Sinusoidality error analysis for harmonic sound with a fundamental

frequency of 440 Hz and 31 harmonics each generated with 1 dB less energy than

the prior. The energy of the harmonic tone is equal to the total energy of the

white noise.

the sigmund method has not produced a particularly low error for other sample

sounds. Also, notable is the cross-correlation measure’s low total error of 0.218.

Each of these four test signals suggest that different sinusoidality measures

are most effective. The Charpentier and power measures performed well with a

single sine tone in noise. The phase acceleration and power persistence measures

performed well for inharmonic tones in noise. The harmonic sum measure did

indeed perform best for a harmonic tone, but the phase acceleration and cross-

correlation measures also performed well for this sound. The sigmund measure

produced the lowest total error for a time-varying sine tone in noise, followed by

the power measure and cross-correlation method.

The poor performance of the variance measure can be attributed to the

simplifications to the algorithm in our implementation. Further work with this
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Figure 3.7: Sinusoidality error analysis for a single sine tone with time-varying

frequency logarithmically changing from 220 Hz to 880 Hz over one half second.

The energy of the time-varying tone is equal to the total energy of the white noise.

measure should not make these simplifications. The combined measure of phase

acceleration and power persistence, Γpapp did not create a better measure than one

or the other of the measure alone, and it did not produce the least error for any

of the test signals.

We can conclude that none of the sinusoidality measures tested is ideal

for diverse types of sounds. Even when the sounds are restricted to monophonic

tones as discussed above, no one sinusoidality measure presents itself as ideal.

In the following section, methods of adding noise to a PV representation will be

presented that rely on the sinusoidality coefficients for each PV frame in order

to determine the amount of noise to be added to each channel. We employ a

number of different measure depending on the type of sound being analyzed. The

power, power persistence, phase acceleration, cross-correlation, and harmonic sum
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methods are all employed to analyze different sounds.

3.3.1 Spectral Flatness Scaling

Before proceeding to a discussion of our noise synthesis technique, a method

of biasing the sinusoidality coefficients to counteract the effects of the amplitude

scaling is introduced. Theoretically the long-term shape of white noise is flat across

all spectral bands. Using the idea that noisy sounds have a flatter spectral shape

than the peaky shape of pitched sounds, the spectral flatness measure (SFM) was

devised to quantify the overall noisiness of a sound [63, 20]. Unlike the sinusoidality

coefficients calculated for each spectral bin in the above methods, the SFM gives

only a single value that characterizes the noisiness of a signal. Here we will devise

a method of employing the SFM as an overall weighting in order to bias other

sinusoidality coefficient measures. This is especially important when working with

sinusoidality coefficients that are scaled by the maximum value of the spectrum as

discussed in the power sinusoidality section 3.2.1. The SFM is defined as the ratio

of the geometric mean of the amplitude spectra divided by the arithmetic mean of

the amplitude spectra:

SFM =

(

∏N−1
k=0 |X(k)|

)1/N

(
PN−1

k=0
|X(k)|

N

) . (3.29)

The SFM varies from 1 for white noise close to 0 for a very peaky spectrum.

This range is the inverse of the range we are using for our sinusoidality measures.

Our method of biasing other sinusoidality measures uses the SFM as a power

coefficient to each sinusoidality coefficient. The SFM is multiplied by a positive

constant α in order to scale the SFM :

Γbiased(k) =
(

Γ(k)
)(SFM)(α)

, (3.30)

Where Γbiased(k) are the biased sinusoidality coefficients. We can see that a high

SFM (near one) created by noise based signals, decreases the sinusoidality coef-
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ficients and a low SFM increases the sinusoidality measures. Before use in our

noise synthesis system, the sinusoidality coefficients are biased in this way.

3.4 Sinusoid and Noise Phase Vocoder Synthesis

A method of synthesizing time-stretched sounds from phase vocoder analy-

ses and sinusoidality coefficients for each spectral frame is presented in this section.

In this method, the percentage of energy of each spectral bin that is noise-based

is multiplied by a spectral domain noise signal. Before describing our sinusoid and

noise synthesis algorithm, two existing alternative methods will be considered.

A method of segregating spectral energy separates the spectral channels into

two groups, one the “sinusoidal” channels, and the other the “noisal” channels. For

each frame, the individual bins are determined as belonging to one of two groups.

This is the scheme proposed by Lippe and Settle for segregating bins [86, 51].

A threshold is set for each bin over which the bin is labeled as sinusoidal.

Conversely, if the sinusoidal measure is below the threshold, the channel is labeled

as noise based energy. Thus,

Xs(k) = (Γn(k) ≥ T ), (3.31)

where Γn(k) is a frame of sinusoidality measures between 0 and 1 for each channel,

T is a stability threshold between 0 and 1, and Xs(k) is a phase vocoder spectral

frame with only the stable channels above the threshold not set to zero. Noise is

then added to the spectra by a method shown in section 3.4.1. This method is

less suited than the method proposed below because of the sharp cutoffs between

adjacent bins created from the thresholding of energy.

A second method of adding noise to a PV spectrum involves noise mod-

ulation of each spectral bin to a degree determined by the sinusoidality of each

bin. This method provides a single or unified spectral representation, as opposed

to the dual representations of the other methods in which the sinusoidal spectra
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and noise spectra are separated for processing and recombined during synthesis.

This distinction is analogous to the destinction between how noise and sinusoids

are modelled in a dual manner in SMS modelling and how they are represented in

a unified representation in the Fitz “bandwidth enhanced” method [27].

In Fitz’s system the individual sinusoids of a sinusoidal model of sound are

modulated with noise to increase their bandwidth. This process increases the noise

level of each sinusoidal component. While the technique is well suited for creating

a unified representation of noise in sinusoidal modeling synthesis, it is ill sited for

PV based systems in which sinusoidal energy is necessarily spread across several

bins of the spectrum. For example, a single sinusoid in a PV spectra will occupy

at least three consecutive bins. Increasing the noise “bandwidth” of each of these

bins would put energy in adjoining channels.

3.4.1 Dual Model Synthesis

Our method of segregating sinusoidal energy from noise based energy in

a spectral representation divides the energy of each spectral bin into two parts

corresponding to the sinusoidal energy and the noise-based energy. These separated

spectra are processed separately and recombined during synthesis. Figure 3.8

shows our complete analysis synthesis system for time-stretching noise and pitched

sounds. This process is discussed below.

The process starts with the STFT analysis data as a series of amplitude

and phase spectra frames along with corresponding sinusoidality coefficients for

each spectral bin. For each frame n, a new amplitude spectrum is created by using

a sinusoidality coefficient spectra Γn(k) to scale the amount of sinusoidal energy

present in each bin. For each bin k of each spectral frame n,

|Sn(k)| = (Γn(k)) (|Xn(k)|) , (3.32)

where |Sn(k)| is a new magnitude spectrum, here called “sinusoidal magnitude
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Figure 3.8: Sinusoidality analysis and noise synthesis system.
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spectrum”, in which each bin’s amplitude is scaled by the corresponding sinu-

soidality of that bin.

Next, the corresponding “noise magnitude spectrum,” |Nn(k)|, is calculated

by subtracting the sinusoidal magnitude spectrum from the unaltered magnitude

spectrum,

|Nn(k)| = |Xn(k)| − |Sn(k)|. (3.33)

As can be seen here, the original magnitude spectrum can be recreated by adding

the noise magnitude spectrum and the sinusoidal magnitude spectrum.

The noise magnitude spectrum is subject to a large variance in bin ampli-

tude values between spectral frames. While this behavior accurately reflects the

character of noise energy, it produces unwanted sonic artifacts when these random

fluctuations are subject to PV time-stretching. For this reason the noise magnitude

spectra are filtered in order to smooth each channel in time and frequency. The

time frame smoothing is achieved by recursively averaging past frames of |Nn(k)|.

Martin suggests a spectral noise smoothing filter for use on ambient stationary

noise signals [57],

|NSn(k)| = α|NS(n−1)(k)| + (1 − α)|Nn(k)|, (3.34)

where |NSn(k)| is the smoothed noise magnitude spectrum, and the smoothing

constant α is typically set, according to Martin, between 0.9 and 0.95. As the

dynamic character of musical sounds is typically present in the noisy aspects of

sound, we use a smoothing constant of 0.4, which is much smaller than the Martin

suggestion.

In addition to this temporal smoothing, we smooth the noise magnitude

spectrum across bins. This is simply achieved by using a running average of β

bins, where 8 < β > 12,

|NSn(k)| =

∑β/2
l=−β/2 |Nn(k + l)|

β
. (3.35)

Both of these techniques are used to smooth our noise magnitude spectra.
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From here, our smoothed noise magnitude spectra |NSn(k)| are time-stretched

separately from the sinusoidal magnitude spectra above. Since they are only am-

plitude spectra without corresponding phase or instantaneous frequency spectra,

the amplitude spectra are simply interpolated between spectral frames. These new

noise magnitude spectra are then each multiplied by a different STFT analysis of

white noise,

Nn(k) = |NSn(k)|Pn(k), (3.36)

where Pn(k) is a new STFT of white noise for each n of the time stretched sound.

Each new noise spectral frame is added to its corresponding sinusoidal spectral

frame,

Yn(k) = Sn(k) + Nn(k), (3.37)

where Sn(k) is the complex sinusoidal spectral frame produced by a traditional

phase vocoder time stretch of the sinusoidal magnitude spectrum |Sn(k)| with the

original phase and derived instantaneous frequency values. Yn(k) is the resultant

spectral frame that is inverted to the time domain by the IFFT and appropriate

windowing. The final new sound y(n) is shown at the bottom of figure 3.8.

Several differing sounds both musical and environmental were time-stretched

with the new sinusoidality analysis and noise synthesis method. In each case, the

original unaltered sound is followed by a traditional phase vocoder time-stretching

with 8 times the normal length. Then, the new time stretched sound with the

noise characteristics preserved is listed. Table 3.2 lists the sample sounds that can

be found on the website (crca.ucsd.edu/∼tapel/fppv/).

3.4.2 Conclusion

In each case, it can be heard that the generation of noise as part of the

phase vocoder time-stretching creates a sound that more closely resembles the

noise characteristics of the unaltered sound as compared to the traditional phase



47

Table 3.2: Example noise retention phase vocoder time-stretch sounds.

Track Sound Description

1 Sine then Noise Original version of sound
2 Time-scale slowed by 32 with traditional PV
3 Time-scale slowed by 32 with noise maintained
4 2930 Hz and Clicks Original version of sound
5 Time-scale slowed by 8 with traditional PV
6 Time-scale slowed by 8 with noise maintained
7 Brush Roll Original version of sound
8 Time-scale slowed by 8 with traditional PV
9 Time-scale slowed by 8 with noise maintained
10 Breathing Original version of sound
11 Time-scale slowed by 8 with traditional PV
12 Time-scale slowed by 8 with noise maintained
13 Noise and High Tone Original version of sound
14 Time-scale slowed by 8 with traditional PV
15 Time-scale slowed by 8 with noise maintained
16 Sine fade into Noise Original version of sound
17 Time-scale slowed by 8 with traditional PV
18 Time-scale slowed by 8 with noise maintained
19 Pencil Sharpening Original version of sound
20 Time-scale slowed by 8 with traditional PV
21 Time-scale slowed by 8 with noise maintained
22 Wind Original version of sound
23 Time-scale slowed by 8 with traditional PV
24 Time-scale slowed by 8 with noise maintained
25 Rain and Thunder Original version of sound
26 Time-scale slowed by 8 with traditional PV
27 Time-scale slowed by 8 with noise maintained
28 Apple Bite Original version of sound
29 Time-scale slowed by 8 with traditional PV
30 Time-scale slowed by 8 with noise maintained
31 Motorcycle original version of sound
32 time-scale slowed by 8 with traditional PV
33 time-scale slowed by 8 with noise maintained
34 time-scale slowed by 8 with sine part only
45 time-scale slowed by 8 with noise part only
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vocoder time-stretching method. Occasionally, the two parts of the time-stretched

sound, sinusoidal and noise based, do not fuse perceptually as they do in the

original sound. This is no doubt attributable to the dual nature of our synthesis

system. Future work could consist of combining the two modes of synthesis into a

unified method. However, it is my intention to implement the current system in

widely used computer music languages before any further research.



Chapter 4

Vibrato and Tremolo

Preservation during Phase

Vocoder Time-Stretching

Concerning the vibrato modification of a recorded

voice, there are manifold difficulties.

Daniel Arfib and Nathalie Delpart [5]

4.1 Sub-Audio Modulations

We have seen that the noise characteristics of a sound are altered during

phase vocoder (PV) time-stretching. But PV time-stretching also affects the rate

of vibrato and tremolo in musical sounds by slowing them proportionally to the

amount of time-stretching. This behavior is for many applications an acceptable or

preferred outcome. However, in many musical instrument performances, the par-

ticular vibrato and tremolo rates are important acoustic features that are critical

to the musical perception of the performances. These sub-audio rate modulations,

both in amplitude and frequency, are an important part of musical instrument iden-

49
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tification, a performer’s style, and musical expression. By preserving the original

rates of vibrato and tremolo after a sound has been time-scaled, these important

musical perception cues may be retained.

In this chapter we will review the current methods of vibrato and tremolo

analysis in a spectral representation of sound, introduce the relevant background in

second order Fourier transforms and long duration Fourier transforms, and develop

a novel method of maintaining the original vibrato and tremolo rates of a recorded

sound using second order analysis of the phase vocoder representation of sound.

4.2 Existing Methods

Carl Seashore performed extensive study of musical vibrato in the 1930’s,

in which he defined and characterized vibrato and tremolo of western musical in-

struments and voice [83]. He characterizes vibrato as a 4 to 8 Hz pulsation of

pitch, loudness, and timbre, in which pitch change is approximately a semitone,

and in which pitch and amplitude modulation rate are approximately constant.

Seashore classifies both tremolo and vibrato as aspects of a single phenomenon

he calls vibrato. Here we will separate vibrato as only a frequency modulation

phenomenon and tremolo as an amplitude modulation phenomenon. When we

wish to discuss any periodic or quasi-periodic low frequency modulation, whether

amplitude, frequency or a combination or them, we will call them sub-audio modu-

lations. Further discussion of the vibrato and tremolo characteristics of individual

musical instruments can be found in Timmers and Dresian [88].

Research into sub-audio modulation of musical sounds typically involves

automated detection of the existence of vibrato and or tremolo in a musical signal

and estimation of the rate and extent of the modulation. Rossignol et al. suggest

five methods of detecting and estimating the vibrato of a musical signal [79]. Two

of the methods operate on the DFT spectrum of the signal: the first, comparing its

shape to a synthetic spectrum, and the second comparing the shape to the shape at
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a different time. Three other methods operate on the fundamental frequency track,

f0, extracted by various methods, typically from the analytic signal generated

by the Hilbert transform method. This f0 signal is analyzed for its vibrato by

calculating the DFT of the f0 track, by extracting its fundamental frequency, or

by computing the distance between local maxima in the f0 trajectory. This first

of these three methods, was originally developed by Herrera and Bonada [40].

Prior efforts to remove or modify vibrato from a recorded sound are gen-

erally based on sinusoidal analysis synthesis systems, that is, methods based on

the MQ or SMS analysis synthesis systems [74, 84]. However, one method based

on cepstral analysis will be presented here before sinusoidal based methods are

reviewed.

4.2.1 Arfib and Delprat Cepstral Method

Daniel Arfib and Nathalie Delprat suggest a method of vibrato alteration of

a sampled sound based on DFT, cepstral, and Hilbert pitch tracking techniques [4,

5]. Their method decomposes the pitch curve calculated in the cepstral domain

into a mean frequency and an oscillatory frequency. The oscillatory frequency is

modified before recombination with the mean frequency and transformation out of

the cepstral domain.

Specifically, their technique is as follows. Starting with a phase vocoder rep-

resentation of sound, each amplitude spectrum is converted to the cepstral domian.

Each cepstral domain spectrum is separated into two parts (cepstral “liftering”)

consisting of the low coefficients which typically contain the spectral envelope spec-

trum and the high coefficients which contain the so called excitation spectrum. The

amplitude of the excitation spectrum is converted back to the spectral domain, and

the low spectral peaks are used to track the fundamental frequency and the mod-

ulation rate or vibrato. This time varying fundamental frequency is subtracted

from the modulation rate to produce a vibrato rate signal. The frequency and am-
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plitude of this signal is in turn calculated with a Hilbert transform based analytic

signal method. These rates are modified before recombination with the mean fre-

quency and transformation obtained from the cepstral domain. Finally, the inverse

cepstrum is combined with the original phase estimates of the phase vocoder to

create a new sound. They report successful alteration of vibrato rates with errors

produced from the pitch detection method and extraction of the vibrato.

4.2.2 Maher and Beauchamp Vibrato Method

Maher and Beauchamp created a method of removing vibrato from vocal

sound recordings based on the MQ sound representation [52]. In their system, the

frequency of sinusoidal analysis tracks are smoothed to remove the vibrato. The

system uses frequency modulated wavetables to synthesize tones with vibrato, but

does not allow for modification of vibrato rates or re-introduction of vibrato to

time stretched sounds. However, it does appear to be the first time that vibrato

had been modified independently of other musical parameters in a sampled sound.

4.2.3 Marchand and Raspaud Order-2 Modeling

A recent system proposed by Sylvian Marchand and Martin Raspaud cre-

ates a second order sinusoidal system [56] that is conceptually similar to Schu-

macher’s 2DFT analysis introduced below. Their method analyzes the sinusoidal

tracks of a sinusoidal modelling system using sinusoidal analysis, i.e. each ampli-

tude and frequency track of a sinusoidal analysis is in turn analyzed as a series of

sinusoidal tracks. This method is used in a time-stretching algorithm which pre-

serves the vibrato and tremolo of the recorded sound. As the modulations of each

amplitude and frequency spectral track follow the sub-audio variations in each

track, a sinusoidal analysis of each of these partials will capture this sub-audio

modulation.

Their method uses the standard method of time-stretching with a sinusoidal
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model, (i.e., interpolating between the amplitude and frequency of spectral track

peaks) performed in this new second order domain. As these tracks do not represent

the amplitude and frequency of spectral energy, but rather, the amplitude and

frequency of individual amplitude and frequency tracks. As will be seen, the idea

of a second order spectral representation will be used in our PV based system

presented below.

4.3 Related DFT Techniques

Before our sub-audio retention method is presented, two signal analysis

techniques that are incorporated into the method will be reviewed. In our system,

the 2DFT second order analysis technique of Schumacher will be expanded to

an analysis synthesis system by using the long-term discrete fourier transform

(LTDFT) of Hammer and Sundt in the second order domain.

4.3.1 Schumacher 2DFT Analysis

Robert Schumacher defined the 2DFT method of analyzing low frequency

and sub-audio periodicities [82]. His method performs a single DFT along each

of the time channels of the spectrogram of a sound. The amplitude spectrum of

this second order DFT shows the spectrum of the low frequency and sub-audio

periodicity of each channel of the input sound. Averaging the second order DFTs

across all of the first order spectral channels produces a spectrum in which low fre-

quency and sub-audio amplitude modulation of the original sound can be identified

as spectral peaks. Schumacher used this method to analyze the aperiodicities in

periodic waveforms. Schumacher’s 2DFT analysis method will serve as part of the

analysis, transformation, synthesis system developed here to maintain sub-audio

modulation rates. As will be seen, the 2DFT analysis allows us to model sub-

audio amplitude modulations as spectral peaks that are maintained during phase
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vocoder time-stretching operations.

4.3.2 Long-Term Discrete Fourier Transform

The idea that a single Fourier Transform can be performed over long dura-

tions of time-variying sound in order to create novel transformations was formalized

by Øyvind Hammer and Henrik Sundt [35]. Their research was inspired by the

composition “Z” by Paul Pignon in which a single DFT was taken from a guitar

and saxophone improvisation, and manipulations to the DFT coefficients were per-

formed before inverting the DFT. Hammer and Sundt call this transformation the

long-term discrete fourier transform or LTDFT and suggest several manipulations

that are possible in this domain. Among these, they suggest (i) remapping ampli-

tude spectra values to differing bins in order to create time dispersion of frequency

bands or frequency sweeps and (ii) multiplying the phase spectra by a constant

in order to move frequency bands in time. Most all of the manipulations in the

LTDFT domain create sounds which disrupt the integrity of the original sonic

events. That is, sounds become unrecognizable because their frequency compo-

nents have been moved to radically different locations in the output sound. Unlike

the phase vocoder representation of sound as amplitude and frequency spectra

which localize sonic events in time, the LTDFT does not encode time in a per-

ceptually relevant manner. This makes it it particularly difficult to predict the

outcome of transformations performed in the LTDFT domain.1

We will see in our sub-audio modulation retention method that applying

the idea of the LTDFT in a higher order context helps us to model the globally

relivant vibrato and tremolo rates. In general, a technique that produces abstract

sounds in the first order LTDFT domain produces a useful model of sub-audio

1My experiments performing transformations in the LTDFT domain confirm this difficulty.
Nevertheless, I have found that setting the LTDFT phase spectra to a constant produces inter-
esting abstract sonic textures and that randomizing the phase creates a constant droning sound
that has all the frequency content of the original sound. I use both of these techniques in my
own compositional work. This technique will be discussed further in chapater 5.
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modulation in a higher-order domain.

4.4 Second-order PV based Sub-Audio Modula-

tion System

We are now in a position to introduce our sub-audio modulation analy-

sis/synthesis method based on the 2DFT analysis and LTDFT analysis/synthesis

methods.

The phase vocoder typically employes a frame length of 512 or 1024 samples.

Using a sampling rate of 44 100 Hz and a frame length of 1024 samples, the lowest

frequency, f , that can successfully be analyzed is found by

f =
SR

N
=

44 100

1024
= 43.066 Hz. (4.1)

Sub-audio frequencies are not captured explicitly as energy in low-frequency bins

but as a pattern of changes across multiple spectral frames. The frame length

required to capture modulations as low as 4 Hz, is

N =
SR

f
=

44 100

4
= 11 025 samples. (4.2)

A phase vocoder analysis with such a long frame length will smear note onsets

and transients under sound transformation such as time-stretching. However, a

phase vocoder with this frame length does model sub-audio modulations as spec-

tral energy, and consequently PV time-stretching extends these frequencies at their

original rates. If the sound to be analyzed is legato or does not have sharp tran-

sients this method may be appropriate.

In order to maintain the frame rate of a traditional phase vocoder and

analyze sufficiently long periods of sound to characterize sub-audio modulation, we

analyze each spectral channel of a PV analysis with a single long DFT (LTDFT). In

each of these “2LTDFT” spectra the sub-audio modulation can typically be seen as
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a prominent peak in the 4 to 8 Hz range. As will be seen, this method allows us to

modify or remove the sub-audio modulation by manipulating this 2LTDFT peak.

Our method operates by (i) removing the energy in 2LTDFT bins, (ii) PV time-

stretching the unmodulated result, (iii) performing another 2LTDFT analysis of

the lengthened sound, (iv) and imposing the shape of the original sub-audio energy

on the 2LTDFT spectra. The analysis/synthesis system is now presented in detail

along with results from differing sound types.

4.4.1 Removal of Sub-Audio Modulation

This section will present our method of sub-audio modulation removal as

the first step in a three-part process of removing the sub-audio modulation, time-

stretching the sound with the modulation removed, and adding the modulation

back into this time-stretched version of the sound. As noted above, the removal

and re-introduction of sub-audio modulation is performed in a second order spectral

domain. This domain allows us to model and manipulate the sub-audio modulation

of an audio signal. Fig 4.1 shows all the components of the second order analy-

sis/synthesis system. The first step in our removal algorithm is a phase vocoder

analysis, as shown in chapter 2. Windowed and overlapped FFT frames are cal-

culated, the complex rectangular spectra are converted to amplitude and phase

spectra, and the instantaneous frequency is calculated for each spectral bin with

the phase difference method. As discussed in chapter 2, we call the amplitude spec-

trum |Xn(k)|, and the instantaneous frequency spectrum ∆θn(k) for time frame n

and bin number k.

Typically, higher order spectral analysis considers the spectral frame as

the indivisible object of further analysis. For example, cepstral analysis performs

a second DFT on the Spectral frame after calculating the log magnitude of the

spectrum [64]. Instead we will consider the time-evolution of each spectral channel

as our indivisable objects for further analysis, not the spectral frame. In order to
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Figure 4.1: sub-audio analysis/synthesis method.

emphasize that the frame number n is the independent variable, the k amplitude

channels are denominated |Xk(n)|, and the instantaneous frequency channels are

notated ∆θk(n). We now analyze each of these amplitude and frequency channels

using a single FFT for each channel. Each second order spectrum of the amplitude
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channel is defined as,

X̂a(k, m) = DFT
(

|Xk(n)|
)

, (4.3)

where X̂a(k, n) is the complex valued spectrum of each amplitude channel k and

frequency bins m, and the hat symbol is borrowed from cepstral processing to

denote a higher order spectra. Hereafter, we will call these spectra the “2LTDFT

amplitude spectra” following Schumacher’s nomenclature for defining the second

order spectrum of amplitude channels. It is worth noting here that these 2LTDFT

amplitude spectra are complex valued and can be converted to their corresponding

amplitude, |X̂a(k, m)|, and phase, ∆θ̂a(k, m), spectra if necessary. It is also worth

noting that it is relatively easy to confuse the amplitude spectra of a frequency

channel with the phase spectra of an amplitude channel or other combination of

first and second order spectra.

As the arctangent function necessary to calculate phase from the complex

spectrum produces principal values that are bounded by π and−π, the instanta-

neous frequency calculations are also bounded to this range. In order to calculate

the corresponding second-order spectra of the frequency channels, the instanta-

neous frequencies must be transformed into a continuous function by unwrapping

since discontinuities in the instantaneous frequency channels would be interpreted

as false periodicities or noise in our 2LTDFT frequency analysis. After frequency

unwrapping, each second order spectrum of the frequency channel is defined as,

X̂f (k, m) = DFT
(

∆θf (k, n)
)

, (4.4)

where X̂f(k, m) is similarly the complex valued spectrum of each frequency chan-

nel, defined here as the 2LTDFT frequency spectrum.

The center frequency of each of the 2LTDFT bins can be calculated as

fk =
SR

(H)(N)
(4.5)

where SR is the sampling rate of the sampled sound, H is the hop overlap of the

first-order window and N is the number of of frames in the first-order spectra.
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As an example, Figure 4.2 shows a time-domain signal of a saxophone note with

prominent tremolo and vibrato. Visible in the 3 second sample is the slow am-

plitude variation at approximately 4 Hz. Figure 4.3 shows one amplitude channel
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Figure 4.2: Saxophone sound showing amplitude modulation.

(channel 10) after the phase vocoder analysis of this same saxophone sound, and

Figure 4.4 shows the corresponding unwrapped instantaneous frequency channel.

These two figures clearly show the sub-audio modulation that will be modeled by

the 2LTDFT analysis.

Figure 4.5 shows the 2LTDFT amplitude spectrum of the amplitude chan-

nel. As can be seen in these figures a prominent spectral peak at approximately bin

number 16 is visible. The center frequency for this bin is approximately 4 Hz. This

spectral shape consisting of a large DC component and a prominent spectral peak

around the vibrato and tremolo rate is characteristic of many musical instruments

which feature this low frequency modulation.

We can now remove this low frequency modulation by “spectrally filtering”
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Figure 4.3: A single amplitude channel (channel 10) of the phase vocoder analysis

of saxophone sound showing amplitude modulation.

each of the 2LTDFT frequency and amplitude spectra. Spectrally filtering simply

means changing the amplitude of the complex spectral bins. Our method consists

of multiplying each 2LTDFT spectrum by an inverted Hamming window centered

at the 2LTDFT bin with the maximum sub-audio frequency component, i.e. the

peak of the sub-audio modulation in the 2DFT spectra. Figure 4.6 shows the same

amplitude of an 2LTDFT amplitude spectra after an inverted Hamming window

centered on the modulation peak is multiplied by the spectrum. As can be seen, the

energy in the peak bins is reduced to zero. This method smoothes the transitions to

the adjacent bins of the 2LTDFT spectra. The original unmodified 2LTDFT bins

are stored separately for use in re-introducing modulation after time-stretching.

The set of 2LTDFT amplitude spectra and 2LTDFT frequency spectra are

then each converted back to the first-order spectral representation by the inverse

FFT. Again, we note that this is a single global operation over the entire length
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Figure 4.4: A single frequency channel (channel 10) of the phase vocoder analysis

of saxophone sound showing frequency modulation.

of the spectral channels. No windowing or overlapping is performed to transform

to or from the 2LTDFT domain. These new amplitude and frequency channels

are now in the standard phase vocoder representation of amplitude and frequency

channels which can be transformed back to a time-domain sound by means of phase

accumulation, inverse FFT, windowing, and overlapping. When these steps are

taken, the resultant sound has the sub-audio tremolo and vibrato removed. Here,

we will not convert back to a time-domain sound, but rather continue working

with the new sound in PV form.

4.4.2 De-modulated Lengthening

Next, a traditional phase vocoder time-stretch of this now “de-modulated”

sound is performed. As the sound is already in a first-order phase vocoder represen-

tation, the initial steps of spectral analysis and instantaneous frequency calculation
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Figure 4.5: Amplitude of 2DFT amplitude spectrum of a single amplitude channel.

are already preformed. All that is necessary is to calculate the new phase frames by

phase advancement and calculate the amplitude frames by interpolation as shown

in chapter 2. Stretch factors or 2, 4, and 8 are used for computational efficiency

in our examples.

4.4.3 Re-introducing Modulation

The final step of our method is to re-introduce sub-audio modulation at the

original rate to our de-modulated and lengthened phase vocoder channels Yk(n).

As above, each amplitude and frequency channel is transformed into the second-

order 2LTDFT format by taking the FFT of each channel across time. Again,

the instantaneous frequency values are unwrapped in time to make a continuous

function before the FFT is performed. These new 2LTDFT spectra will be longer in

proportion to the amount of time-stretching. Consequently, the original 2LTDFT

sub-modulation bins cannot be directly combined into our new 2LTDFT spectra.
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Figure 4.6: Amplitude of 2LTDFT amplitude spectrum of a single amplitude chan-

nel after removal of modulation.

In order to add the original modulation rate to the 2LTDFT spectra, the

original 2LTDFT bins representing the sub-audio modulation are interpolated to

fit the corresponding spectral length in the new longer 2LTDFT spectra. This

interpolated peak is substituted for the existing data in the new range of bins.

Figure 4.7 shows these bins interpolated over the new longer 2LTDFT length and

substituted for the original 2LTDFT bins in the modulation range. After substi-

tuting the new interpolated 2LTDFT values, the inverse FFT can be performed

on each spectral channel in order to return to the first-order phase vocoder repre-

sentation of sound. Phase accumulation followed by the standard phase vocoder

inversion is employed to generate the new sound. This sound exhibits the long

term development, pitch and timbre of the orignal sound slowed by the new factor

but with the original tremolo and vibrato rates maintained. Figure 4.8 a shows

the final 3 second saxophone sound stretched to 6 seconds, where the original 4 Hz

amplitude modulation rate is evident from a visual inspection.



64

0

1000

2000

3000

4000

5000

6000

7000

8000

20 40 60 80 100 120 140 160 180 200

A
m

p
li

tu
d

e

2DFT amplitude spectra in bin number

Figure 4.7: Amplitude of 2DFT amplitude spectrum of a single amplitude channel

with addition of interpolated modulation bins.

4.5 Algorithm Examples

The algorithm was tested on several synthetic and musical signals with dif-

fering length, tremolo, and vibrato characteristics. Five example sounds are shown

here which illustrate some of the features of the second-order analysis synthesis sys-

tem. The demonstrations allow auditory evaluation of the algorithm to evaluate

the efficacy and qualities of the method.

Unless otherwise mentioned all sound samples are monophonic and were

sampled or generated at 44 100 Hz. A Hamming window is used for the first-order

FFT with a window size of 1024 and a first-order FFT overlap factor between

windows of 4. Table 4.1 lists the sample sounds that can be found on the website

(crca.ucsd.edu/∼tapel/fppv/).

Sound example 1 in table 4.1 is a 3 second synthetically generated amplitude

modulated sine tone which simulates a typical musical tremolo rate. It is generated
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Figure 4.8: Time-stretched Saxophone sound showing original amplitude and fre-

quency modulation.

with a 1000 Hz carrier frequency, a 5 Hz amplitude modulating frequency, and a

0.5 modulation depth. Sound example 2 in table 4.1 is the sound after 8 2LTDFT

amplitude spectrum bins centered at bin 18 are removed. Sound example 3 in

table 4.1 is sound example 2 stretched by a factor of 2 using a standard first order

phase vocoder. Sound example 4 represents the sound after the original sub-audio

amplitude modulation is imposed on example 3. In this example, the vibrato rate

matches that of the original sound, but a time varying change in the vibrato can

be heard. This unwanted variation has two parts, (i) glitching artifacts at the

very beginning and end of the sound, and (ii), a gradual reduction in tremolo

depth toward the middle and thereafter a gradual increase in tremolo depth to

the end of the sound. Both of these problems are attributable to the phases

of the 2LTDFT amplitude spectrum. When the phase spectrum of the 2LTDFT

amplitude spectrum is altered by the addition of the interpolated bins from the first
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Table 4.1: Example sub-audio modulation rate retention sounds.

Track Sound Description

1 Sine with AM A synthetically generated Tremolo sound (AM sound)
2 Sound with sub-audio amplitude modulation removed
3 Sound with modulation removed and lengthened by 2
4 Sound lengthened by 2 with modulation re-imposed.
5 Sine with FM A synthetically generated vibrato sound (FM sound)
6 Sound with sub-audio frequency modulation removed
7 Sound with modulation removed and lengthened by 2
8 Sound lengthened by 2 with modulation re-imposed
9 Saxophone A saxophone tone
10 Sound with sub-audio modulation removed
11 Sound with modulation removed and lengthened by 2
12 Sound lengthened by 2 with modulation re-imposed
13 Sound lengthened by 2 with traditional phase vocoder
14 Violin A violin tone
15 Sound with sub-audio frequency modulation removed
16 Sound with modulation removed and lengthened by 2
17 Sound lengthened by 2 with modulation re-imposed
18 Sound lengthened by 2 with traditional phase vocoder
19 Flute A flute tone
20 Sound with sub-audio amplitude modulation removed
21 Sound with modulation removed and lengthened by 2
22 Sound lengthened by 2 with modulation re-imposed
23 Sound lengthened by 2 with traditional phase vocoder

2LTDFT, the evolution of the tremolo’s depth is altered. The tremolo’s frequency

remains fixed because it is determined by the amplitude spectra of the 2LTDFT

amplitude spectra. Attempts to alleviate this problem by randomizing the phases

of the 2LTDFT amplitude spectra or leaving these phases unaltered resulted in

sounds with less distinct tremolo characteristics, and it remains unclear how these

artifacts can be reduced. We will see this problem in the other sound examples

presented below.

Sound examples 5 through 8 in table 4.1 are the same sequence of sound

manipulations for a frequency modulated sine tone which simulates a typical mu-



67

sical vibrato rate. Example 5 has a 1000 Hz carrier frequency, a 5 Hz frequency

modulating frequency, and a 0.5 modulation depth. In this case, it can be seen

that the problems with the phase of the 2LTDFT spectrum, discussed above, also

produce perceptually salient artifacts in the resultant sound. The beginning and

ending part of sound example 8 have no frequency modulation. However, the cen-

tral portion of the sound has the correct rate of modulation as derived from the

original sound.

Sound examples 9 through 12 in table 4.1 are the same sequence of manipu-

lations for the saxophone sound pictured in the algorithm above. In this case, both

the vibrato and tremolo were removed and re-imposed on the lengthened version

of the sound. Although the artifacts discussed above can be heard in the version in

which the modulation has been removed (example 10), the artifacts appear to be

much less apparent than in the sine wave examples, when the vibrato and tremolo

are re-imposed. This may be due to the relative complexity of the sound which

masks the flaws in the process. Sound example 13 is a traditional phase vocoder

time-stretching of the saxophone sound in which the slowing of the tremolo can be

heard.

Sound examples 14 through 18 in table 4.1 represent a violin tone subjected

to the same procedure. In this case only the 2LTDFT frequency spectrum was

manipulated and not the 2LTDFT amplitude spectrum. As with the saxophone

example, the artifacts are less perceptible than in the synthetic examples. Sound

example 18 is a traditional phase vocoder time-stretch of the violin sound.

Sound examples 19 through 23 in table 4.1 represent a flute tone subjected

to the process. As with the saxophone example, both the vibrato and tremolo

characteristics are retained. In this case, the short glitching at the beginning and

ending are present, but the variation in tremolo and vibrato depth appear absent.
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4.6 Conclusions

We have seen that a method based on a higher order analysis of phase

vocoder channel modulations can be used to alter the vibrato and tremolo charac-

teristics of a sampled monophonic musical instrument sound. Our sample sounds

show that the method is able to retain the tremolo and vibrato rates of musical

sounds with fairly stable vibrato and tremolo rates. The method achieves better

results on sounds which have prominent tremolo and less well with sounds with

prominent vibrato. This may be attributable to our ability to more easily perceive

inappropriate pitch changes than amplitude changes as discussed in the examples

section above. The method was unsuccessful at manipulating vibrato and tremolo

on human singing tones due to the added complication of formant frequencies

present in the human voice.

The current version of the software precludes testing the algorithm on sig-

nificantly longer sounds than the examples presented due to the computational

complexity. Future versions of the software could be developed for more efficient

computer languages and machines which would allow testing of the techniques

efficacy on longer musical phrases.

A related line of research might be in devising other sonic transformations

that are effectively carried out in the second order sound representation presented

here.



Chapter 5

Negated Music

I unwrote that drawing because I was trying to write

one with the other end of the pencil that had an

eraser.

Robert Rauschenberg [41]

5.1 Introduction

This chapter concerns erasure and negation in the development of my own

creative work involving what I call “negated music.” Unlike the previous two

chapters, this chapter will not introduce a new extension to the phase vocoder for

musical uses. Instead, a particular artistic technique involving the phase vocoder

spectral representation will be used for the author’s own creative work. This

chapter will first review works of art, both sonic and visual, involving negation and

erasure with an emphasis on themes and ideas that have influenced my work in this

area. Next, I discuss four of my sound works that trace my evolving engagement

with the idea of negation with respect to my sound installations, sound sculptures,

and conceptual audio works. This discussion will cover the technical procedures

for their creation and the novel uses of the phase vocoder sound representation in

69
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the implementation of these works.

5.2 Erasure Based Visual Art

In 1953 Robert Rauschenberg persuaded Willem de Kooning to give him

one of his drawings. Rauschenberg spent one month and forty erasers erasing the

drawing, and claimed the finished erasure as his own original art work. This work

consists of a paper which is covered with smudges created by an eraser. Art critic

Calvin Tomkins discusses this work as a symbolic destruction of a leading artist

father figure by a younger artist [89, 30]. However, Rauschenberg maintained that

the work simply was intended to determine “whether a drawing could be made out

of erasing” [9], yet Rauschenberg found his prior attempts at erasing his own works

of art to be unsatisfactory compared to the completed Erased de Kooning Drawing.

Rauschenberg’s drawing points out that the marks left after an erasure tend to

paradoxically highlight the original missing object. This heightened attention to

the un-erased original makes the object of erasure significant to the success of

works of art involving erasure. The choice of object of erasure is of paramount

importance to the success of erasure based works of art.

The artistic use of erasure has been a subject of interest with the increases

in digital photographic editing capability. Lev Manovich argues that the advent

of digital manipulation of photographs has not caused a fundamental shift in the

way we perceive photographic reality [54]. He instead suggests that digital pho-

tographic manipulation is part of a tradition of artistic and cultural manipulation

of images that has existed long before digital techniques. Manovich cites Soviet

era political photographs in which people have been removed as examples of this

image making tradition. The relative ease of digital manipulation techniques has,

nevertheless, allowed photographic artists to create works whose artistic content is

based primarily on the removal of parts of a photographic image or objects within

the image. The American artists Anthony Aziz and Sammy Cucher create pho-
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tographic portraits in their Dystopia Series of 1995 in which the subject’s facial

features (mouth, eyes, ears, nasal passages) are digitally erased [13]. The erasure

in this case consists of creating simulated flesh that takes the place of the missing

features. The effect is striking, not because the figure has become more anony-

mous, but because the figure retains its individuality despite the horrific nature

of the simulated mutilation. A similar technique is carried out by Venezuelian

artist Alexander Apóstol in a series of photographs of urban buildings in which

the doors and windows have been digitally removed [65]. The buildings become

abstract monuments by the removal of the signs of their human use, and the ef-

fect is to heighten the inhuman nature of these buildings. Here erasure focuses

our attention on latent characteristics of the buildings that would otherwise be

unknown.

Charles Cohen’s Buff series of photographs from 2001 to 2003 are different

from the Aziz/Cucher and Apóstol photographs in that the photographic reality

is decidedly broken in his removal of human figures from photographs that were

originally pornographic [65]. Figures are removed as if by razor blade, leaving a

pure white space occupying the location the figures had occupied. These negative

spaces give a clear indication of the positioning and activity of the figures but give

a new meaning to the images based on the negation of their prior use.

5.3 Erasure Based Sound Art

John Cage’s well known silent piece 4’ 33” was preceded three years earlier

by an unrealized electronic work he proposed in 1948. He proposed the concept of

a piece called Silent Prayer in his article “A Composer’s Confessions” as [69]:

. . . to compose a piece of uninterrupted silence and sell it to the
Muzak Co. It will be 4 1/2 minutes long - these being the standard
lengths of “canned” music, and its title will be “Silent Prayer.” It
will open with a single idea which I will attempt to make as seductive
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as the color and shape or fragrance of a flower. The ending will
approach imperceptibility.

Although this piece is usually understood in the context of Cage’s developing ideas

about musical silence [69, 43], we can also think of Silent Prayer as an erasure of

the Muzak that would otherwise have been played in retail and public spaces.

Looking at this piece in relation to the idea that erasure and negation-based works

of art are only significant in relation to the objects of erasure, the silence of Silent

Prayer can be understood as a simple condemnation of the ubiquitous presence

of particular types of recorded music in retail and public spaces. It appears that

Cage’s notion that silencing creates an aural space for listening to sounds that

would otherwise be obscured is not yet present in Silent Prayer.

In 1996, the artist Jeremy Millar, while attempting to copy an audio tape of

an interview he had conducted with the novelist J. G. Ballard, instead accidentally

erased the master tape [13]. Millar now plays this erased tape as an artwork.

With close listening one can perceive that something had been recorded on the

tape, but is now inaccessible. The meaning of the erased silence of the Millar

tape is different from that in Cage’s Silent Prayer. Whereas Cage intended an

erasure of the unwanted Muzak, Millar intends an attentive and regretful listening

to the static byproduct of the unintended erasure. We are left concentrating on

the Ballard interview despite its absence.

Matt Rogalsky’s composition S, (2002) is a 24 CD set of “silence” created

by editing out the words of 24 consecutive hours of a BBC 4 radio broadcast [45].

Each CD contains the electronically compiled “harvest” of the sounds of the gaps

between the words from a single hour of radio broadcast. Unlike the Millar inter-

view, which draws attention to the audio material that is missing, Rogalsky’s era-

sure brings out the meaningful qualities of the sonic detritus that is left unerased.

Referring to a later work of Rogalsky that uses the same technique, Jan Allen sug-

gests that “the silences might signal hesitation; more often they stage emphasis.

[the silences are] the zone in which what is suppressed or unsaid may be appre-



73

hended” [1]. Rogalsky’s silences are understood here as linguistically rich sources

of unspoken semantic content made prominent through their juxtaposition.

5.4 Towards a Negated Music

The previous sections have shown that erasure can be a significant artistic

technique in contemporary visual and aural arts. The impulse toward negation

in the arts does not always take the form of erasure. Sonic musical negation has

evolved from a metaphorical or emotional negation, as in Cage’s Silent Prayer, to

the electronically mediated acoustic negations of Millar, Rogalsky, and the negation

based sound works presented below

Musical theorists have speculated on what the nature of a negated sound

might be. In his 1893 article “The Music of Negation,” J. A. Fuller Maitland points

out that one of music’s expressive shortcoming’s is its inability to “bring before

us the absence of certain features; it can tell us what the heroine of an opera is

feeling, but it is powerless to suggest what she is not going through” [53]. In 1922,

Alexander Brent-Smith explained this shortcoming in terms of a lack of a sound

that signals the negative in its presence [8]. He presents the example of setting

to music a poem by Elroy Flecker: “Mute is battle’s brazen horn, that rang for

Priest and King.” Brent-Smith states that “if [the composer] does not somehow

suggest the horn the thought is incomplete, and if he as much as suggests a horn the

thought is incorrect.” He concludes that “not until music has discovered one single

sound that shall negative [sic] its assertions” will this type of musical dilemma be

solved. Presumably when it is found, this single negative sound would be played

before, concurrently, or after the sounds that suggest horns in the composition. I

believe Brent-Smith’s suggestion of a sound which can negate its own evocative

qualities or those of another sound is the first such speculation on the potential

existence of an actual negated sound.

In 1974, Frederick Taylor posited a system of musical logic that could make
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more apparent what “can be meaningfully examined and critized” in a musical

composition [87]. Peter Gibbins argues against Taylor’s system of musical logic as

a method of increasing our understanding of musical structure, pointing out that

one of the shortcomings of Taylor’s system is its lack of a concept of negation, and

that mathematical negation is a key element in any system of logic [32]. Gibbins,

like Brent-Smith above, acknowledges the difficulty of conceiving of a negated

sound that would exist in a system of musical logic:

It is difficult to see what the negation of a sound segment could
be, for it would have to be some other sound segment. If we argue
that consistency is the primitive notion and that a negation of a
sound-segment is a second sound-segment inconsistent with the first,
we are led to the result that y may be a negation of x while x may
not be a negation of y. A ‘negation’ with this property is at best
a peculiar sort of negation. For a sound-segment may have two
‘negations’ which are also ’negations’ of one another [32].

Gibbins clearly gives serious consideration to the idea that a negated sound could

exist as a sonic phenomenon and not just as a byproduct of musical notation

manipulations. While it may be unclear what sonic “consistency” might be to

Gibbins, his idea that a sound may have multiple negations is relevant to our

understanding of the erasure based sound works of Cage, Millar and Rogalsky, as

well as to the negated music concept presented below.

Stan Link discusses many possible meanings and functions of musical silence

in his essay “Much Ado about Nothing” [50]. One of these meanings is that musical

silence signifies absence or nothingness. Link states “quietness evokes nothingness

as pointedly as human perception might allow.” Later, Link wonders if silence

is the “only token of negation in musical contexts.” He also asks, “can negation

involve sound as well as silence?” Link, like Brent-Smith and Gibbins, does not

provide a recipe for producing a negated sound, but does suggest that the function

of such a sound would be to “make us notice nothing,” that is, a sound “which

is blank regarding cognitive content – mute at its core.” Unlike Brent-Smith’s
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negated sound which would evoke the opposite of the meaning of the sound, or

Gibbin’s negated sound which would complete a system of musical logic, Link’s

negated sound would, like musical silence, evoke the idea of absence or nothingness.

My intention with the following sound works is to create a sonic realization

of these ideas about how a negated sound might have meaning by creating my own

technique for producing negated sounds. While the negated sounds in each work

may not achieve these specific goals of the authors discussed above, they provide

a first material instantiation of a negated sound.

5.5 Negation Based Sound Works

In this section the author’s own soundworks involving negated sound will be

presented to show the author’s evolving technical and conceptual idea of negated

sound.

5.5.1 Irresonance

Irresonance (2004) is a sound installation that uses feedback to resonate

eight small brass tubes. One of these tubes is shown in Figure 5.1. Each of these

1 cm diameter tubes is mounted to the wall of an exhibition space and is equipped

with a small piezoelectric loudspeaker at the bottom of the tube. The tubes are

connected to each other via a single series connection, so that only a single strand

of bare wire connects each tube to the next. This connection is shown in Figure 5.2.

Each of these tubes is a different length, with the shortest being 20 cm and the

longest 80 cm, and is topped with a flame dispersion cap designed for a bunsen

burner. The differing lengths of the tubes, along with these bunsen burner tops,

give each tube its unique resonant characteristics.

In addition to this primary visual component of the work, there are a num-

ber of hidden electronic components. A single microphone located near the center
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Figure 5.1: One tube of Irresonance sound installation.

of the installation space is placed near the ceiling. This microphone is meant to

go unnoticed by the viewers and listeners. In addition, a computer, a preamplifier,

and an audio amplifier are concealed in an adjacent space.

Irresonance functions as a live interactive sound installation, whose sound

is constantly changing. The sound is influenced by the resonant characteristics of

the tubes, the ambient sounds of the space, any sounds made by a viewer/listener

in the space, and the state of the audio processing network in the computer. The

main sonic idea of Irresonance is the creation of an acoustic feedback loop between

the speakers in the tubes and the microphone in the space. The familiar high

frequency howl of an electro-acoustic sound system that is feeding back on itself

is carefully controlled by computer processing between the microphone and the

speakers. At all times, the loudest frequency present in the mix of sounds captured
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Figure 5.2: Installation view of Irresonance sound installation.

by the microphone is subtracted from the spectral domain representation of the

sound. This results in a constantly shifting sound produced by the tubes because

the computer combats the highly resonant tendencies of the different tubes. The

title of the installation irresonance is a word that is no longer in regular use, and

means, “lacking resonance”. Here the tube with the loudest resonant frequency

are removed from the mix of sounds produced, or “irresonated.”

Even though each of the transducers in the tubes are activated by the same

signal, the sounds produced by each tube are quite different. The resonance of

each tube effectively filters frequencies that are not at a resonant frequency of that

tube. In this way, a spatial component of the installation is created with only a

single channel audio system. By giving the transducing element individual resonant

characteristics, they create their own distinctive localized sonic developments in

response to a single combined source.

The computer processing for this installation is performed in real time by

Max/MSP [91]. The main irresonating function of the patch is carried out by
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reducing to zero the spectral bins around the fundamental frequency for each

spectral frame. The fundamental frequency is determined by use of the fiddle∼

object of Puckette [59]. The frequency in hertz is converted and rounded to the

spectral bin number corresponding to its spectral position in units of bin. For each

spectral frame, the amplitude of this bin and its two adjacent bins on each side

is set to zero. This new amplitude spectrum is combined with the original phase

spectrum and transformed back to the time domain.

In addition to this removal of the most prominent spectral energy, the

signal is compressed in dynamic range. The process not only prevents the sound

from becoming too loud or too soft, but also allows softer tones to become more

prominant in the spectrum.

This installation was my first work that deals with the idea of negating

spectral components of a sound. The idea began as a method of controlling feed-

back in the installation, and grew into the primary way of creating a spatial and

time evolving form in the installation. This negating of spectral components de-

velops into the concept of negated music in the following installations and audio

works discussed below.

5.5.2 Inverse Music Box

This section will describe the author’s sound sculpture Inverse Musicbox

(2005) and describe its relationship to negated music. The Inverse Music Box

sculpture is based on a Sankyo paper strip manivelle music box mechanism. The

Sankyo paper strip music box was invented by Komatsu Fumito and Tashiro Kazuo

in 1968.1 The sounding tines of this music box are activated by holes punched

in paper cards that are fed through the mechanism by a hand crank.2 In the

Inverse Music Box the manivelle mechanism is attached to the top of a 1930s

1An interesting history of the Sankyo music box can be found in Murakami [62].
2This type of music box uses a “manivelle” mechanism, as differentiated from a spring or

electric motor mechanism.
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era “Sonora” tube radio external speaker cabinet, which is attached to a wall.

The Sankyo mechanism is designed to produce twenty distinct chromatic pitches.

In this sculpture the paper cards are permanently arranged in a loop through

the mechanism. Figure 5.3 shows the Inverse Music Box installed. In addition

Figure 5.3: Inverse Music Box sound sculputre.

to these visible mechanical aspects, the sculpture features a hidden computer,

speaker, and microphone. Mounted inside the Sonora speaker box is a modern

loudspeaker, and a piezoelectric microphone is mounted directly underneath the

music box mechanism. The cabling for both of these transducers runs to a hidden

computer.

A viewer/listener is invited to turn the hand crank to advance the cards

and trigger the notes, Notes can also be added with the hole punch provided. The

inversion of this piece is performed by the hidden electronics. Instead of each

note of the music box simply being amplified by the speaker, each struck note is
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subtracted spectrally from the sound the speaker is making and each of the twenty

notes that is not plucked remains sounding. For example, if a chord of three notes

is plucked, the sound produced by the speaker consists of a chromatic tone mass

of the remaining seventeen tones. Only by triggering all 20 tones simultaneously

does the speaker remain silent.

A real-time Max/MSP patch is used to calculate the “negated sounds” of

this sculpture. The patch consists of two parts: a note onset detection unit, and a

spectral subtraction unit. The note onset unit uses a simple amplitude thresholding

function to create a trigger when any note or combination of notes is activated.

The sound produced by the patch is created in the spectral domain. Without

any triggered input sound, the patch creates a static droning sound from a single

STFT of all the twenty notes playing simultaneously. In order to make sure that

this spectrum contained all the frequencies of each note, this STFT was artificially

constructed by summing the STFT of each individual note played separately. In

order to create a continuous droning sound with this single STFT, the phases are

advanced with the traditional phase vocoder method and combined with the static

amplitude spectrum.

Each time a new note sets off the amplitude threshold trigger, the STFT

taken at the time of the trigger is subtracted from this static combined amplitude

spectrum. This new amplitude spectrum is now used to create the droning sound

until a new note is triggered. Each time a note or combination of notes is triggered,

it is subtracted from the original combined amplitude spectrum. The result is a

continuous tone which suddenly changes to a new state that is missing any plucked

note from its complex.

The Inverse Music Box makes a connection between the physical removal

or subtraction of material in a musical score via a hole punch and the idea of

removal of notes as a sonic phenomenon. Here the dual absence of the note, both

in the paper card and the sonic complex, paradoxically draws attention to that

note. The user removes the note from the paper and hears its removal from the
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sound.

5.5.3 Whiteout

Whiteout (2007) is a sound sculpture consisting of a handmade paper loud-

speaker, an mp3 player, and a site-specific sound. The square speaker cone is

approximately 50 cm on each side and is composed of a sheet of thick, pulpy, and

rigid paper, attached to the wall by four push pins in the corners. Figure 5.4 shows

the Whiteout installation. An approximately 3 cm diameter loudspeaker is affixed

Figure 5.4: Whiteout sound sculpture.

to the center back of the paper. The paper becomes the speaker “cone” since it

is attached directly to the voice coil of the speaker. A small amplifier and mp3

player are connected to this speaker and are mounted nearby on the wall.

Each time the sculpture is installed in a new location, a new sound is

created to be played at that location using the following method. A recording of

approximately five minutes is made of the ambient sounds of the installation space.

This recording is transformed into the LTDFT domain as discussed in Chapter 4.
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The LTDFT domain is simply a single FFT of the entire five minute sound. The

amplitude and phase spectra are calculated from the LTDFT, and a transformation

is made to the phase spectrum before recombining it with the unaltered amplitude

spectrum. This new LTDFT sound is converted back to the time domain by an

inverse FFT. As discussed by Hammer and Sundt, completely randomizing the

phase spectrum results in a virtually un-changing drone sound with the amplitude

of spectral components proportional to their overall presence during the five minute

recording. In order to create a sound that is unrecognizable in relation to its

original time evolution, like the drone sound, but has some spectral evolution, an

ad hoc method of modifying the phase spectrum was devised via experimentation.

This consists of squaring each value of the phase spectrum and wrapping the new

phase values between 0 and 2π. Many other arbitrary transformations to the

LTDFT phase spectrum are possible as outlined by Hammer and Sundt [35]. This

squaring method has no particular significance beyond providing an interesting

balance between change and stasis in the resultant sound.

The idea of this piece is to mirror the undifferentiated visual field of the

slightly textured white paper to the continuous and slightly undulating sound

created from all the sound present in the space. The white of the paper can be

thought of as a combination of all the colors present in the space, and similarly

the sound is a combination of all the sonic frequencies present in the space. This

piece does not feature a negated component, but introduces the important sonic

“ground” concept that is necessary in subsequent works.

5.5.4 Negated Music Series

The project Negated Music Series (2008) consists of a series of short video

works. Each video is between 40 seconds and 1 minute 20 seconds in duration,

and each consists of a single continuous shot in which a sonic event is accompanied

by a soundtrack created by the use of the negated music process. Negated music
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is created from the average of all the sounds present during the entire recording,

minus the sound that is happening at each moment in time. A technical description

of the conceptual idea of negated music is presented below.

Negative music is a combination and refinement of two concepts presented

above. The spectral subtraction idea of the Inverse Music Box and the long

term average sound technique of Whiteout are combined. The signal processing

method employed in the Negated Music Series is as follows: (i) the LTDFT of the

original sound recorded concurrently with the video taping session is performed;

(ii) the phase spectrum of this LTDFT is randomized; (iii) the inverse LTDFT

is calculated using this new randomized phase spectrum; this creates a droning

sound whose spectral content is proportional to the frequency content present over

the entire duration of the sound; (iv) a phase vocoder analysis of both the original

and the averaged sound is performed; (v) the amplitude spectrum of each STFT

frame of the original is then subtracted from the STFT amplitude spectrum of the

averaged sound to generate a new set of STFT amplitude spectra, (spectral bins

whose difference is less than zero are set to zero in this new amplitude spectrum);

and (vi) the new amplitude spectra are combined with the original phase spectra

and transformed back to the time domain. Figure 5.5 shows this process as a

flowchart. This process results in an abstract changing sound that can be thought

of as one possible negation of a sound made audible by placing it in a context of

the average of the sound.

The video works of the Negated Music Series examine the sounds of musical

instruments and objects by showing video of an object in relation to the audio that

has been subject to the negated music process. The project is conceived of as an

open ended set of videos constructed in this manner. Currently eight videos are

completed. They are: Accordion, Clarinet, Clock Chimes, Drum, Player Piano,

Spinning Mobile, Toy Piano, and Wind Chimes. Further discussion of three of

these are presented here.

The Drum video is a good introduction to the sonic nature of the negated
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music process. The video depicts a snare drum for 22 seconds followed by a drum

hit. This is the only perceptible sonic event that happens in the original video.

The negated music process produces a sound that is continuous throughout the

entire video, and contains all of the spectral components of the snare drum sound.

When the drum is hit, this sound is subtracted from the averaged sound to quiet

the sound during the hit. This video and soundtrack clearly shows the inverse

nature of the negating process.

The Clarinet video exhibits other aspects of the process. In this video a

single E flat tone is held for an entire breath, there is a brief pause, followed by

another E flat held tone. During these tones, the player was purposely tuning the

note sharp and flat at different times. After processing, the tone can be heard

as a quiet high frequency sound during the original note’s times, and as a tone

much like the original clarinet E Flat during the breath rest in the middle. This

again shows the inverse relationship to traditional sound production that exists

with this technique. Figure 5.6 shows one frame of the Clarinet video. The Toy

Figure 5.6: Clarinet video.

Piano video shows the inside mechanism of a toy piano music box that is playing

the song “Cielito Lindo.” Here we can hear the individual negated notes as we

see them struck in the piano. This process results in a ghostly impression of the

original melody with the original rhythm intact. Figure 5.7 shows one frame of
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Figure 5.7: Toy Piano video.

the Toy Piano video.

The Negated Music Series is a piece of musical conceptual art, as opposed

to a musical composition. As such, it is also intended to reference the ideas of nega-

tion in twentieth century art and music more broadly than our narrow discussions

of musical negation presented here. Many twentieth century art movements can be

seen as negations: abstract art’s negation of the figure, conceptual art’s negation of

the art object, minimalism’s negation of self expression, and musical minimalism’s

negation of musical development. Musical works take place through the contin-

uous unfolding of sound through time. The specific conception of sonic negation

presented here highlights the absent presence of a sound. The new sounds negate

the continuous presence of sound and through this process suggest a negation of

music’s primary condition of existence.



Appendix A

Sinusoidality Error Analysis

Six different synthetic sounds are used to test the sinusoidality measures;

(i) a sine tone without noise, (ii) pure noise, (iii)a sine tone with noise, (iv) 32

unevenly spaced sine tones with noise, (v) a harmonic sound with noise, and (vi)

a sinusoid with time-varying frequency (chirp signal) with noise.

Table A.1: Sinusoidality error analysis for 440 Hz sine wave with no noise.

False Error Missed Error Total Error

Method µ σ µ σ µ σ

Zeros – – 1.000 0.000 1.000 0.000
Ones – – 0.000 0.000 0.000 0.000
Power – – 0.366 0.000 0.366 0.000
Power Persistence – – 0.508 0.055 0.508 0.055
Sigmund – – 0.719 0.040 0.719 0.040
Charpentier – – 0.023 0.035 0.023 0.035
Phase Acceleration – – 0.007 0.068 0.007 0.068
Phase Acc. × Power Per. – – 0.433 0.063 0.433 0.063
Cross-Correlation – – 0.481 0.000 0.481 0.000
Variance – – 0.587 0.030 0.587 0.030
Harmonic Sum – – 0.733 0.018 0.733 0.018

87
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Table A.2: Sinusoidality error analysis for white noise only.

False Error Missed Error Total Error

Method µ σ µ σ µ σ

Zeros 0.000 0.000 – – 0.000 0.000
Ones 1.000 0.000 – – 1.000 0.000
Power 0.211 0.030 – – 0.211 0.030
Power Persistence 0.043 0.016 – – 0.043 0.016
Sigmund 0.235 0.035 – – 0.235 0.035
Charpentier 0.272 0.017 – – 0.272 0.017
Phase Acceleration 0.890 0.043 – – 0.890 0.043
Phase Acc. × Power Per. 0.120 0.030 – – 0.120 0.030
Cross-Correlation 0.251 0.026 – – 0.251 0.026
Variance 0.090 0.014 – – 0.090 0.014
Harmonic Sum 0.268 0.037 – – 0.268 0.037

Table A.3: Sinusoidality error analysis for a sine tone of 440 Hz with white noise.

The energy of the sine tone is equal to the total energy of the white noise.

False Error Missed Error Total Error

Method µ σ µ σ µ σ

Zeros 0.000 0.000 1.000 0.000 0.516 0.004
Ones 0.984 0.003 0.004 0.003 0.491 0.005
Power 0.001 0.001 0.366 0.002 0.189 0.002
Power Persistence 0.000 0.001 0.561 0.165 0.288 0.084
Sigmund 0.000 0.000 0.721 0.037 0.557 0.058
Charpentier 0.181 0.036 0.122 0.064 0.153 0.045
Phase Acceleration 0.491 0.015 0.038 0.078 0.262 0.038
Phase Acc. × Power Per. 0.000 0.000 0.495 0.190 0.254 0.096
Cross-Correlation 0.006 0.006 0.481 0.006 0.251 0.007
Variance 0.103 0.018 0.854 0.073 0.491 0.041
Harmonic Sum 0.217 0.010 0.489 0.002 0.358 0.006
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Table A.4: Sinusoidality error analysis for 32 equal amplitude sine waves with a

random distribution of frequencies between 40 Hz and 10 000 Hz and white noise.

The total energy of the sine tones is equal to the total energy of the white noise.

False Error Missed Error Total Error

Method µ σ µ σ µ σ

Zeros 0.000 0.000 1.000 0.000 0.513 0.013
Ones 0.859 0.012 0.050 0.010 0.517 0.009
Power 0.007 0.003 0.695 0.059 0.371 0.033
Power Persistence 0.003 0.002 0.607 0.099 0.336 0.055
Sigmund 0.017 0.003 0.665 0.042 0.359 0.024
Charpentier 0.101 0.009 0.690 0.039 0.435 0.024
Phase Acceleration 0.420 0.020 0.158 0.081 0.325 0.039
Phase Acc. × Power Per. 0.001 0.001 0.655 0.090 0.360 0.049
Cross-Correlation 0.054 0.012 0.693 0.049 0.406 0.024
Variance 0.050 0.011 0.913 0.020 0.524 0.011
Harmonic Sum 0.118 0.016 0.644 0.066 0.417 0.043
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Table A.5: Sinusoidality error analysis for harmonic sound with a fundamental

frequency of 440 Hz and 31 harmonics each generated with 1 dB less energy than

the prior. The energy of the harmonic tone is equal to the total energy of the

white noise.

False Error Missed Error Total Error

Method µ σ µ σ µ σ

Zeros 0.000 0.000 1.000 0.000 0.545 0.006
Ones 0.867 0.017 0.042 0.012 0.496 0.009
Power 0.002 0.001 0.755 0.012 0.417 0.010
Power Persistence 0.001 0.001 0.929 0.027 0.512 0.017
Sigmund 0.002 0.000 0.824 0.013 0.556 0.019
Charpentier 0.147 0.034 0.509 0.047 0.359 0.025
Phase Acceleration 0.411 0.020 0.142 0.124 0.301 0.062
Phase Acc. × Power Per. 0.000 0.001 0.862 0.052 0.475 0.031
Cross-Correlation 0.027 0.005 0.746 0.035 0.425 0.018
Variance 0.001 0.001 0.885 0.004 0.489 0.010
Harmonic Sum 0.145 0.008 0.387 0.022 0.292 0.016
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Table A.6: Sinusoidality error analysis for a single sine tone with time-varying

frequency logarithmically changing from 220 Hz to 880 Hz over one half second.

The energy of the time-varying tone is equal to the total energy of the white noise.

False Error Missed Error Total Error

Method µ σ µ σ µ σ

Zeros 0.000 0.000 1.000 0.000 0.503 0.032
Ones 0.986 0.005 0.004 0.003 0.500 0.033
Power 0.001 0.001 0.363 0.067 0.185 0.043
Power Persistence 0.001 0.001 0.527 0.201 0.271 0.119
Sigmund 0.001 0.001 0.280 0.111 0.140 0.054
Charpentier 0.134 0.014 0.473 0.355 0.313 0.190
Phase Acceleration 0.503 0.018 0.295 0.292 0.409 0.146
Phase Acc. × Power Per. 0.000 0.001 0.635 0.248 0.325 0.142
Cross-Correlation 0.011 0.025 0.424 0.109 0.218 0.056
Variance 0.105 0.017 0.956 0.058 0.533 0.024
Harmonic Sum 0.133 0.017 0.419 0.080 0.279 0.038
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