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Generalizing Functions in Sparse Domains
Pablo León-Villagrá Christopher G. Lucas

School of Informatics, University of Edinburgh, United Kingdom

Abstract

We propose that when humans learn sets of relationships they
are able to learn the abstract structure or type of a family of re-
lationships, and exploit that knowledge to improve their ability
to learn and generalize in the future, especially in the face of
sparse or ambiguous data. In two experiments we found that
participants choose patterns and extrapolate in ways consistent
with sets of previously learned relations, as measured by ex-
trapolation judgments and forced-choice tasks. We take these
results to suggest that humans can detect shared abstract re-
lations and apply this learned regularity to perform rapid and
flexible generalization.
Keywords: generalization, function learning, transfer

Introduction
Many everyday situations require us to generalize from past
experience, even if we are faced with a specific problem we
have never seen before. For example, in cooking, one reg-
ularly has to infer the relationship between ingredients, ra-
tios or quantities, like the amount of sweetener and resulting
pleasantness of a dessert, and generalize this relation to new
recipes or ingredients. Often, we learn a general relationship
that helps us understand related problems. If we learn that
as we increase the amount of sugar in a recipe, the sweetness
will not change immediately, then increases rapidly and then
saturates, one can use this knowledge to reason about similar
relationships, as when deciding how much xylitol to add to a
cake.

Our example requires two types of generalization. The
first, sometimes called transfer or transfer learning, involves
transferring information about a relationship between two
quantities to help us understand a new and different relation-
ship. The second, extrapolation, involves understanding a
single relationship and extrapolating to new instances or data
points within, e.g., to new amounts of xylitol. The latter de-
pends on the former – our past experiences shape the induc-
tive biases we bring to a new problem.

Transfer learning expands the task the human learner faces
and requires further-reaching and more abstract inferences.
Given a set of prediction tasks, how can we capitalize on sta-
tistical regularities to aid future prediction? If the tasks ex-
hibit some shared structure, learning a representation captur-
ing this latent structure of the environment (Gershman & Niv,
2010), or learning which aspects of a task change (R. C. Wil-
son & Niv, 2012) can enable the learner to perform wide-
ranging and data-efficient generalization.

The value of transferring knowledge across different tasks
is receiving growing attention in machine learning commu-
nities. For example, abstract learning and transfer have been
successfully applied to challenging control tasks (Hamrick et
al., 2017). From a cognitive science perspective, the study of
such general learning mechanisms has a long tradition, e.g.,

Harlow (1949). Research in this tradition has highlighted how
hierarchical representations can allow for the “blessing of ab-
straction” (Gershman, 2017), where abstract knowledge is ac-
quired faster than detailed information. In recent years sev-
eral proposals have been put forward on how hierarchical and
structured inductive biases can be acquired through develop-
ment and how they allow for rapid generalization (Goodman
et al., 2008; Tenenbaum et al., 2011).

The second type of generalization has been widely stud-
ied in psychology, most commonly in classification tasks in
which participants have to learn to predict class labels for
unknown objects or entities. Similarly, tasks in which the
target to be learned is a continuous quantity have been stud-
ied in the domain of function learning research. Research
in function learning has emphasized particular human in-
ductive biases. For example, humans learn functions more
quickly if the relationship is linear (Brehmer, 1976), and
struggle with cyclic functions (Bott & Heit, 2004; Kalish,
2013). More importantly, human extrapolations are strongly
biased towards linear relationships, in particular positive lin-
ear functions (Brehmer, 1976; DeLosh et al., 1997; Buse-
meyer et al., 1997; McDaniel & Busemeyer, 2005; Kalish
et al., 2004). While this line of research emphasizes simple
types of functions, results from experiments with less taxing
memory demands have shown that a wide variety of relation-
ships can be learned and inform extrapolation (Lucas et al.,
2015; A. G. Wilson et al., 2015; Schulz et al., 2017; León-
Villagrá et al., 2018).

In function learning, the hierarchical and abstract repre-
sentation of the learned relationships has traditionally been
reduced to mechanisms that allow generalizing a mapping
from criterion to targets. Multiple proposals have been put
forward for the nature of these mappings, ranging from
rule–like parametric forms (Carroll, 1963; Brehmer, 1976),
associative, neuronal network architectures, and hybrids
thereof (Busemeyer et al., 1997).

Here we will adopt a general perspective and express the
task as Gaussian process regression. A Gaussian process
specifies a distribution over functions f (x)∼GP(µ,k), where
µ(x) = E[ f (x)] and k is the covariance kernel. The kernel
specifies a similarity measure over x and allows us to express
abstract beliefs about the shape of the function, such as pe-
riodicity or smoothness. Gaussian processes have been suc-
cessful in accounting for both the flexibility in learning, as
well as long-range extrapolations (Lucas et al., 2015).

While Gaussian processes allow us to express inductive bi-
ases for functions in flexible, non-parametric fashion, only
recently more attention has been given to structural and hi-
erarchical aspects of function generalization. This work has
emphasized the importance of inductive biases over different
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function types (Lucas et al., 2015), the compositional struc-
ture of functions (Schulz et al., 2017), or the generalization of
functions into dimensions outside the learned space (Lucas et
al., 2012).

Here we expand on this line of research and propose that
when humans learn relationships they do not maintain sets
of data, parametrizations or fixed parametric forms, but that
they form flexible and abstract hypothesis spaces. Based on
this abstract encoding, we suggest, they are able to capital-
ize on statistical co-occurrences of abstract information about
the type of relationship learned. As a result, repeated expo-
sure to similar functions should result in learning about the
shared type of relationship, as well as its relevant features.
Such exposure should then facilitate extrapolation in sparse
contexts and allow far-ranging generalization. We hypothe-
size that this application of past knowledge does not simply
amount to remembering previous data, but extrapolation de-
pends on the induced function type and adapted to the context
at hand.

Experiment 1
In this first experiment, we examine if participants prefer
functions consistent with the previously learned function type
and its shared, defining, features. We train participants on
three sets of samples from the same type of function and
assess if they subsequently choose extrapolations in concor-
dance with this type and parameters.

Participants
The study was self-certified in accordance with the School of
Informatics Ethics Guidelines. We recruited 99 participants
(Mage = 32.1, SDage = 10.87, 34 female, 65 male) on Ama-
zon Mechanical Turk. Participants had to have more than 50
approved HITs and an approval rate of 95% or larger. They
received $0.55 for participation and took an average of 7 min-
utes (M = 6.46, SD = 5.19) to complete the experiment. Par-
ticipants were randomly assigned to one of the six conditions
(nCos1 = nLin2 = nOu1 = 17, nCos2 = nLin1 = nOu2 = 16).

Procedure
Participants were instructed that they would learn the rela-
tionship between two substances, substance x, and substance
y. They were told that they would be presented with three
sets of patterns, each depicting one realization of the same
relationship and that they would have to predict the relation-
ship for 10 new points. They also received a visual depiction
explaining how they would predict the points. They were in-
structed that they would see one more pattern from the same
relationship, consisting of three points. Then they were in-
structed to select the pattern from six options that most likely
depicted the learned relationship.

Training Phase Each training block took the form of an ex-
trapolation task, where participants saw scatterplots and had
to guess the value of the substance on the y-axis in an extrap-
olation range, by selecting the height of the corresponding

value on the plot. Participants were shown the correct value
as feedback for one second, and, if their choice deviated by
±0.025 or more of the true value, had to readjust their selec-
tion. Training blocks were presented in randomized order.
Choice Phase After the training blocks, there was a forced-
choice task where participants saw the three-point pattern and
read that this pattern belonged to the same relationship as the
training. Then they saw with six scatterplot patterns, corre-
sponding to one conditional sample for each of the six ker-
nels, in randomized order. Participants had to select the pat-
tern that they deemed the most likely extrapolation for the
learned relationship. After the choice tasks, participants com-
pleted a short demographic survey.

Materials

The functions in the six conditions corresponded to sam-
ples from Gaussian Processes (GPs), with three different
types of kernels and mean functions, each with two distinct
parametrizations, see Table 1. To allow for characteristic pe-
riodic samples, we elected a “pure” cosine kernel, cos with
k(r) = σ× cos(r), r(x,x′) = (x−x′)2

`2
q

, with an additional in-

tercept. We generated linear samples from a linear kernel
lin with explicit slope and intercept terms. Finally, we used
a Ornstein-Uhlenbeck kernel (OU) with an additional inter-
cept, to generate non-smooth samples. The noise variance
was fixed to 0.01 for all GPs.
Training Sets We generated the training data by sampling
three sets of 35 points each in the range 0.05–0.95 for each of
the six conditions. The first 25 points constituted the evidence
provided in each training set. Participants had to extrapolate
the target value for the last 10 points and received feedback
for their choices. To ensure that samples were clearly percep-
tible and the samples were distinct (within function type and
between function types) we generated a set of 20 candidate
patterns for the 18 sets. We then selected samples from these
candidates for which all points were in the presentation range
[0,1], that were ≥ 0.05 of the three transfer points, and re-
jected uncharacteristic samples1. For a full list of kernels and
kernel parametrizations, see Table 1, for the training data and
the conditional samples, see Figure 1.
Forced Choices In the transfer set three points, x =
{0.05,0.1,0.2}, y = {0.475,0.525,0.5} were. These points
were selected to be inconsistent with any of the training ma-
terials, in terms of specific point locations. We then gener-
ated three samples conditional on the transfer points for each
of the six functions. Participants received one of these three
samples at random for each of the six kernels in the forced
choice task.

1For example, OU samples that did not exhibit any discontinu-
ities and thus looked visually identical to linear relationships, or cos
samples that had very low amplitudes.
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Figure 1: Top row: Training data in the six conditions. For each condition, there were three data sets to be learned. Participants
received the first 25 points and had to extrapolate for the 10 remaining points, dashed is the cutoff between presented evidence
and training. Bottom row: Samples that constituted the forced-choice options in Experiment 1 & 2. Samples were generated
by the particular GP, conditional on the three points in the transfer set.

Table 1: Kernels and kernel parameters generating the train-
ing data. For all models we set σnoise = 0.01.

Kernel variance lengthscale β0 β1
Lin1 0.02 – 0.35 0.47
Lin2 0.02 – 0.7 -0.47
Cos1 0.05 0.1 0.5 –
Cos2 0.05 0.04 0.5 –
OU1 0.01 1 0.5 –
OU2 0.08 1 0.5 –

Results

Error Rates

The training functions differed considerably in their mean ab-
solute errors (MAEs)2, as well in the change of error over
blocks, see Table 2.

Only for conditions with linear functions did errors differ
significantly between the first and the last block, t(42.94) =
2.21, p = .0323. For OU conditions, errors were lower for
the last block, but did not differ significantly, t(62.21) =
0.95, p = 0.345. For periodic conditions, error was again
lower for the last block, but blocks did not differ significantly
t(57.17) = 0.66, p = .509. The two OU and periodic con-
ditions were highly heterogeneous. While errors for the low
variance condition Ou1 decreased over blocks, errors in Ou2
remained high. Equally, while errors in Cos1 decreased, er-
rors for Cos2 remained high throughout training. For error
rates for all conditions, see Figure 2.

2All MAEs were calculated on extrapolations before the partici-
pant had received feedback for that particular value.

3All tests are two-sided, unequal variance t-tests. For means and
SDs, see Table 2

Table 2: MAEs for functions and blocks in Experiment 1
MAEb1 SDb1 MAEb2 SDb2 MAEb3 SDb3

Lin .02 .01 .02 > 0.01 .02 > 0.01
OU .05 .02 .06 .03 .05 .03
Cos .06 .05 .06 .06 .05 .04

1 2 3
Block

0

0.1

0.2

M
A

E

Condition
Lin1
Lin2

Ou1
Ou2

Cos1
Cos2

Figure 2: MAEs and 95% confidence intervals for each con-
dition in Experiment 1.

Selecting an Extrapolation Pattern
About 35% of the participants selected the choice corre-
sponding to the correct function type and parametrization.
Both for positive and negative linear training conditions, the
proportion of chosen true functions was significantly larger
than chance (1/6), Lin1 = 44%, p = .01, Lin2 = 53%, p <
.0014. For periodic functions, Cos2 was selected significantly
above chance, Cos2= 50%, p = .002, but Cos1was not, Cos1
= 12%, p = .802. Instead, participants mostly selected the

4All tests are one-sided, exact Binomial tests.
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other periodic function. The proportion of generally periodic
functions over the alternatives for condition Cos1 was signif-
icantly above chance (1/3), Cos1 = 59%, p < .027.

For OU conditions, Ou1 was not selected significantly
above chance, Ou1 = 18%, p = .556, nor did participants pre-
fer OU functions in general, Ou1 = 47%, p = .172.

However, participants trained on Ou2 selected the true pat-
tern at rates significantly higher than chance Ou2 = 38%,
p = .05. For all participant choices, see Figure 5.
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Figure 3: Confusion matrix for choices in Experiment 1
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Figure 4: Confusion matrix for the generating functions and
the choices presented in Experiment 1.

We also calculated the confusion matrix resulting from the
likelihood assigned to each of the presented samples for each
of the functions generating the materials. We then converted
these likelihoods into proportions via the softmax function5.

5We also evaluated these proportions for a model with an addi-

While the model consistently favors the true generating func-
tion and does not produce preferences resembling the partici-
pants’ choices, some interesting parallels are apparent. First,
both kernels resulting in the strongest preference for the true
function (Cos2 and Lin2) also correspond to conditions with
fairly peaked human preferences. In contrast, kernels result-
ing in more dispersed likelihoods, and as a result, lower pref-
erence for the true function (Ou1, Ou2) resemble the sys-
tematic preferences for alternative functions by human par-
ticipants. For a confusion matrix displaying the asymmetric
choices of participants, see Figure 3, for model confusions,
see Figure 4.

Experiment 2
In Experiment 1, participants were able to select from a set
of candidates realizations corresponding to the learned type
of function and, in many cases, the specific features of the
set of training examples. In this control experiment, we con-
trasted participants’ choices in Experiment 1 with a condition
in which no training was provided.

Participants
We recruited 50 participants (Mage = 34.7, SDage = 10.53, 25
female, 24 male, 1 other) on Amazon Mechanical Turk. Par-
ticipants received $0.2 for participation and took an average
of 1.5 minutes, (M = 1.46, SD = 6.05) to complete the exper-
iment.

Procedure
Participants were instructed that they would be presented with
a relationship between two substances, consisting of three
pairs of values. Then they were instructed that they would
have to select a pattern from six options that most likely de-
picted the relationship. The choices were the same as in Ex-
periment 1.

Results
In the absence of training data participants preferred periodic
functions over OU and linear, Lin1 = 10%, Lin2 = 0%, Ou1 =
18%, Ou2 = 14%, Cos1 = 28%, Cos2 = 30%, see also Figure 1.
Given the low rates of choices of Lin1 and the high propor-
tion of chosen periodic functions, these results suggest that
participants interpreted the three points presented as gener-
ated from a deterministic, non-monotonic relationship, rather
than a low-noise linear or low-variance OU relationship.

These results suggest that the strong preference for peri-
odic samples in Experiment 1 did not solely result from the
training but were also reflective of a higher preference to as-
cribe periodicity to the test points.

Experiment 3
We have shown that participants can use the knowledge ac-
quired in the training sets, to inform their choices about which

tional temperature parameter T that we fitted to the human choices.
Unsurprisingly, this temperature parameter was estimated to be low,
T ≈ 10, and produce less peaked distributions.
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Figure 5: The selected choices (correct choice in orange) for Experiment 1 and Experiment 2 (Control). Participants generally
selected the function type and parametrization consistent with their training. When instead they preferred other options they
mostly selected samples from the same type of function. Without training, participants favored periodic and OU.

particular type of function generated the data. However, it
is possible that these choices do not reflect participant’s true
belief about the underlying functions, but are merely best
guesses given a set of unsatisfactory options. In this last ex-
periment, we will analyze if these choices correspond to ac-
tual extrapolation behavior.

Participants

We recruited 91 participants (Mage = 30.53, SDage = 6.941,
34 female, 57 male) on Amazon Mechanical Turk. Partic-
ipants received $0.65 for participation and took an average
of 10 minutes (M=10.29, SD=10.56) to complete the exper-
iment. Participants were randomly assigned to one of the 6
conditions (nCos1 = nCos2 = nLin1 = 15, nLin2 = nOU1 = 16,
nOU2 = 14).

Procedure & Materials

Instructions and training were identical to Experiment 1.
However, instead of the forced-choice task participants per-
formed an extrapolation task. In the extrapolation task, partic-
ipants received the same three points that generated the con-
ditional samples in experiment 1 and had to extrapolate for 30
values of x, without feedback, following the same procedure
as in the training sets. The 30 extrapolation criteria were the
same as the ones used to generate the forced-choice patterns
in Experiment 1.

Results
Error Rates

As in Experiment 1, conditions differed considerably in their
MAEs, as well in the decrease in error, depending on the par-
ticular function, see Table 3, for errors, see Figure 6. In con-
trast to Experiment 1, errors in conditions with linear func-
tions did not differ significantly between the first and the last
block t(56.04) = 0.81, p= .423. Neither did errors differ sig-
nificantly in OU conditions, t(50.13) = 0.37, p = .716. How-
ever, errors for periodic conditions differed significantly be-
tween the first and the last block, t(42.62) = 2.38, p = .022.
As in Experiment 1 most conditions exhibited very low er-
rors. In contrast Cos2 and Ou2 were characterized by large
MAEs. For error rates for all conditions, see Figure 6.

Table 3: MAEs in Experiment 3.
Function MAEb1 SDb1 MAEb2 SDb2 MAEb3 SDb3
Lin 0.03 0.02 0.02 0.02 0.02 0.02
OU 0.06 0.03 0.05 0.04 0.05 0.05
Cos 0.09 0.08 0.06 0.04 0.05 0.04

1 2 3
Block

0

0.1

0.2
M

A
E

Condition
Lin1
Lin2

Ou1
Ou2

Cos1
Cos2

Figure 6: MAEs and 95% confidence intervals for each con-
dition in Experiment 3.

Extrapolating

Visual inspection of the extrapolation strongly suggested that
variances between OU-, frequencies for periodic- and slopes
for linear conditions reflected training functions, see Figure 1.
To evaluate if these patterns were also well aligned with
the generating models, and if samples reflected the differ-
ences in function parametrization, we performed maximum-
likelihood estimation (MLE) for each individual participant
and each generating GP. We then used the type of the gener-
ating GP with the highest likelihood to predict which training
samples the participant had been assigned to. This approach
allowed us to evaluate if the experimental manipulation re-
sulted in extrapolation patterns consistent with the generat-
ing GPs. Our classification procedure classified 22 out of
30 participants in the OU conditions correctly, a proportion
that was significantly larger than expected by chance (1/3),

2116



0 1
0.0

0.5

1.0
Lin1

0 1

Lin2

0 1

Ou1

0 1

Ou2

0 1

Cos1

0 1

Cos2

Figure 7: Participant extrapolations in Experiment 3. Extrapolations closely matched the learned type of function and its
detailed parametrization, see Figure 1

pOU < .0016. In the periodic conditions, 17 out of 30 par-
ticipants were classified correctly, pCos = .007. However, for
linear samples, only 10 out of 31 participants were classified
correctly, pLin = .617. For the full confusion matrix, see Fig-
ure 8.
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Figure 8: Confusion matrix for the proportion of participants
assigned to each model. Our method was able to accurately
recover which type of function participants were trained on
for OU and periodic, but not linear conditions.

To compare the inferred parametrizations across training
conditions of one function type, we contrasted the parameters
obtained via MLE for the true model. For linear functions,
the MLE parameters for slopes differed significantly be-
tween conditions, MLin1 = 0.2, SDLin1 = 0.25, MLin2 =−0.1,
SDLin2 = 0.34, t(27.49) = 2.82, p = .0097, with the signs of
the inferred slopes matching the training. Neither intercept,
variance or noise estimates differed significantly between
conditions (all p > .1). The inferred parameters for variance
in the OU conditions did not differ significantly, but were re-
flective of differences in training, MOU1 = 0.002, SD= 0.002,
MOU2 = 0.007, SDOU2 = 0.008, t(15) = −1.95, p = .071.

6All tests are one-sided, exact Binomial tests.
7All tests in this section are unequal variance, two-sided t-tests.

The inferred length scale did not differ significantly between
conditions, but was slightly higher for OU1, MOU1 = 0.38,
SDOU1 = 0.39, MOU2 = 0.21, SDOU2 = 0.28, t(26.31)= 1.46,
p = .157. Both intercept and noise estimates did not differ
significantly between conditions (all p > .5). The inferred
parameters for periodic conditions did not differ significantly
for length scale, MCos1 = 0.08, SDCos1 = 0.06, MCos2 = 0.08,
SDCos2 = 0.1, t(22.47) = 0.27, p = .79. Instead, conditions
differed significantly for variance MCos1 = 0.02, SDCos1 =
0.02, MCos2 = 0.01, SDCos2 = 0.01, t(20.1) = 2.25, p = .036.
Estimates for intercepts and noise were not significantly dif-
ferent between conditions (all p > 0.1).

Discussion
We found evidence that participants choose patterns and ex-
trapolate in ways consistent with the learned function type.
Furthermore, contrasting the extrapolations in the transfer set
within function conditions, suggested that these patterns dif-
fered in ways consistent with our experimental manipulation.

While participants’ judgments generally reflected the func-
tions they learned during training, our results also highlight
characteristic human biases. In the Cos1 condition, partici-
pants preferred high-frequency periodic samples over the true
low-frequency samples. Similarly, participants in the Ou1
conditions, preferred the higher variance samples, or even pe-
riodic samples over the trained low-variance samples. One
explanation for this biases could be that people have a strong
preference for particular functions because these parametriza-
tions are well adapted to environmental regularities. As a re-
sult, these functions would be robust and applicable to a wide
range of task in the environment. This explanation would be
consistent with recent results in human exploration, where
participants exhibited a tendency to undergeneralize spatial
correlations, but this undergeneralization resulted in compa-
rable or even better performance than a ground-truth match-
ing model (Wu et al., 2018).

To better describe these characteristic human biases and
explore their potential rational grounding, future research
should more closely examine which statistical patterns can
be generalized and under which circumstances these general-
izations are performed. For example, while our experiment
imposed that all patterns followed the same relationship, in
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reality this information is rarely available. Thus, future re-
search should examine under which circumstances task reg-
ularities are inferred to be similar, and what kinds of notions
of similarity can guide these generalizations. One exciting
prospect is to link notions of hierarchical- and compositional
representations and function generalization. We are currently
exploring how such compositional regularities can aid trans-
fer and generalization in sparse domains.
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