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Abstract

Toward Trustworthy Scientific Inquiry and Design with Machine Learning

by

Clara Wong-Fannjiang

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor Jennifer Listgarten, Co-chair

The last decade has witnessed rapid development and deployment of machine-learning sys-
tems across science. Such systems can supply predictions about scientific phenomena far
more quickly and cheaply than gold-standard experiments, and are being used in efforts
to both discover scientific knowledge and design new biomolecules. However, an important
question remains unanswered: since machine-learning systems make errors, how can we use
them in a trustworthy way for scientific discovery and design? This dissertation takes steps
toward helping to ensure that the biomolecules we design and the scientific conclusions we
draw using machine learning can be trusted.

We begin in the setting of machine learning-based design. The goal in this setting is to
propose novel objects such as proteins, small molecules, or materials with desired properties,
in a way that is guided by machine-learning models of such properties. Toward addressing
model trustworthiness for design, we propose (i) a method for learning models that accounts
for the distribution shifts inherent to design, and (ii) a method for constructing statistically
valid confidence sets for the properties of objects designed using machine learning.

Finally, we examine the trustworthy use of machine learning for drawing scientific conclu-
sions. In particular, we consider the increasingly relevant setting of treating predictions
made by machine-learning systems as “data” in estimating quantities of scientific inter-
est. We propose prediction-powered inference, a novel statistical framework for constructing
valid confidence sets in this setting, which enables researchers to incorporate evidence from
machine-learning systems into their scientific inquiry in a standardized and principled way.
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Test all things; hold fast what is good.
– 1 Thessalonians 5:21
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Chapter 1

Introduction

Machine-learning systems are increasingly being used as inexpensive, high-throughput prox-
ies for gold-standard scientific experiments. In the design of proteins, small molecules, and
materials, for example, predictions made by machine-learning models are used to inform the
design of objects with desired novel properties. In scientific inquiry, predictions are being
used to draw scientific conclusions, in domains ranging from proteomics [127, 145] and ge-
nomics [77, 139] to the neurobiology of aging [142] and anthropogenic effects on food web
complexity [132]. Though the predictive power of modern machine-learning systems gives us
reason to be optimistic about these developments, an uncomfortable truth remains: predic-
tions contain errors. Obtaining predictions from a machine-learning system is simply not the
same as obtaining data from a gold-standard experiment. How, then, can one leverage such
predictions to make trustworthy decisions—both in designing novel objects, and in drawing
scientific conclusions? This dissertation takes a small step toward tackling this question.

The unifying theme and title of this work did not emerge until my last year in graduate
school, as is perhaps true of many dissertations. Without a doubt I have found the most
challenging—and rewarding—aspect of graduate school, beyond the technical training, to
be the process of discovering and owning one’s personal style in research. As I have always
been intrigued by the origin stories of creative work, I wrote this introduction as an abridged
version of how the three chapters of this dissertation—which are based on works co-authored
with Anastasios N. Angelopoulos, Stephen Bates, Michael I. Jordan, Jennifer Listgarten, and
Tijana Zrnic [92, 131, 144]—came to be. The ideas presented here are as much theirs as they
are mine.

Chapters 1 & 2: Machine learning-based design

When I started graduate school in the fall of 2018, it was evident that the use of machine-
learning systems in science was here to stay—not just for making predictions, but for draw-
ing conclusions and make consequential decisions using those predictions. I had the vague
thought that I wanted to study the unique problems that arise from this development, but
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I needed a concrete instantiation in which to ground my thinking. A year of conversations
with one of my co-advisors, Jennifer Listgarten, convinced me that machine learning-based
protein design was a compelling setting. It didn’t hurt that the same fall, Frances Arnold
won the Nobel Prize in Chemistry for pioneering directed evolution, an approach that mim-
ics natural selection in the laboratory in order to design enzymes and other proteins with
enhanced functionality. Her group had also begun leveraging machine-learning methods to
further facilitate the design of proteins with enhanced properties [41, 75, 85].

In parallel, the use of machine learning for design—the specification of novel objects with
desired properties—was emerging in a number of other fields, including the design of small
molecules [63, 68, 73] and materials [72]. The aspiration in these settings is often to design
novel, desirable objects given a single batch of data. For example, given a fixed data set—
say, of different enzyme sequences paired with experimental measurements of their catalytic
activity on a certain reaction—can one propose novel enzyme sequences that are even more
catalytically active, without collecting further data? One approach for attempting this is to
fit a predictive model to the data, and then run some design algorithm that consults that
model in order to propose objects believed to have the desired properties [63, 68, 72, 73, 85,
110, 122]. The first two chapters of this dissertation tackle questions that emerge with this
approach. For concreteness, these are described next in the context of protein design, but
the ideas apply broadly to machine learning-based design in other domains.

How should one learn a predictive model for design?

Since the goal of protein design is to find novel properties unobserved in known proteins,
designed proteins must come from a different distribution than the training proteins—what
we call the design distribution. Though distribution shifts arise in many machine learning
settings, what is unique about the design setting is that the shift is purposely induced rather
than passively observed; we revisit this idiosyncrasy in the next chapter. Due to this shift,
the model’s predictions must be trustworthy over regions of protein space “away from” the
training proteins—in particular, regions characterized by the design distribution, as well
as regions the design algorithm examines en route to deciding the design distribution. If
one knew the design distribution in advance, then one could deploy strategies for fitting the
model to be accurate over the designed rather than the training proteins [12, 27, 37–39]. The
chicken-and-egg dilemma, however, is that one does not know the distribution of designed
proteins until after the predictive model has been learned, as the latter dictates the former.
Nevertheless, can one try to anticipate and account for plausibly relevant distribution shifts?

Many design algorithms move through protein space in an iterative fashion to search for
promising proteins, where each move induces, either implicitly or explicitly, an intermediary
distribution of proteins currently under consideration [90]. In the first chapter, we describe a
strategy for relearning the predictive model in lockstep with such design algorithms—without
access to new data—such that it is more accurate over each intermediary distribution [92].
We first formalize machine learning-based design as a game between the predictive model
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and the design algorithm, rather than as an optimization problem, which naturally gives rise
to this strategy.

How can one quantify predictive uncertainty in design?

Although I believe there are significant, underexplored benefits to addressing distributional
shift in machine learning-based protein design, our work [92] felt unsatisfying for a few
reasons. One, which would mark a turning point in my research, was the realization that
far more effort had been invested in developing machine-learning methods to try to design
proteins more effectively, than in assessing how likely any such strategy was to be effective.
Given how costly—in terms of time, money, resources, and personnel—the synthesis and
experimental characterization of designed proteins can be, it seemed the latter warranted
more attention. In particular, the pursuit of novelty requires any design algorithm to consider
regions of sequence space away from the training data, but these regions are precisely where
any learned model is least trustworthy. Given this dilemma, when one uses a machine-
learning model to design novel proteins, how can one trust the model’s predictions for the
designed proteins?

Around this time in 2020, my co-advisor, Michael Jordan, directed his reading group to
work through a short series of papers on conformal prediction, an approach for predictive
uncertainty quantification under a frequentist lens [23, 143]. Conformal prediction methods
produce confidence sets for test points that satisfy a frequentist notion of statistical validity
called coverage: the sets are guaranteed to contain the true label of the test point with
high probability. It was a fitting topic for the beginning of the pandemic lock-down, when
uncertainty about the future abounded.

It was also serendipitously timely for me. Conversations with two colleagues, Anastasios
Angelopoulos and Stephen Bates, led to an exploration of how to extend conformal prediction
to the machine learning-based design setting, which resulted in the work in Chapter 2 [131].
Although conformal prediction has been extended to handle various distribution shifts [84,
91, 112, 119, 126], the technical challenge in our setting was that the test (i.e., design)
distribution is chosen based on the training data, such that the training and test data
are dependent rather than simply drawn independently from different distributions. We
formalized this shift as a generalization of the common covariate shift [12] and dubbed it
feedback covariate shift (FCS), which turns out to describe a panoply of settings beyond
machine learning-based design, including active learning and adaptive experimental design.
Finally, we extended conformal prediction to provide coverage under FCS, taking heavy
inspiration from the technical machinery developed by Tibshirani et al. [84] for handling
covariate shift. The resulting method provides coverage for objects designed using learned
models, for any model class and any design algorithm that one deems appropriate.

The jury is still out on whether Bayesian or frequentist notions of uncertainty better serve
the purposes of machine learning-based design—or, more realistically, what distinguishes the
settings in which one is more suitable the other. My own convictions change by the month.
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Chapter 3: Trustworthy scientific inquiry using

predictions as data

Our work in [131] led to conversations with Tijana Zrnic, in which we pivoted from thinking
about how machine-learning predictions affect design to how such predictions affect scientific
conclusions—in particular, the estimation of quantities of scientific interest. Personally, I
was deeply inspired by the works of Bludau et al. [127] and Vaishnav et al. [139], in which
predictive models were developed not just for the intermediary goal of improving various
performance metrics, but to draw novel scientific conclusions using the resulting predictions.
Bludau et al. [127] used Alphafold-predicted protein structures, in place of scarce gold-
standard experimental structures, to quantify associations between structural features and
regulatory biochemical modifications of proteins. Vaishnav et al. [139] used a transformer
model trained to predict gene expression induced by regulatory DNA sequences to study how
gene expression levels change under different types of evolution. These works inspired the
following question: how can one estimate a quantity of scientific interest—say, the median
gene expression level of promoter sequences naturally found in yeast—using predictions,
rather than gold-standard data, in a way that is statistically valid?

Our work on this question led to prediction-powered inference [144], described in Chap-
ter 3, a framework for performing valid statistical inference when one has access to just a
small amount of gold-standard data, but a large amount of “imputed data” comprising pre-
dictions. A common use case we foresee is when a scientist wishes to leverage predictions from
an already-trained model in the literature, such as AlphaFold [116], as additional evidence
toward a scientific conclusion. The task the model was originally trained for need not exactly
match the problem at hand; as long as its predictions are somewhat informative about the
gold-standard quantity of interest, our framework can use them to effectively increase sample
size for inference, while preserving validity. For example, large language models have been
trained for next-token prediction on databases of naturally occurring protein sequences. A
protein sequence’s likelihood under such models has been shown to correlate with how well
it performs its native function [117, 136, 137], even though these models were not explicitly
trained to predict this quantity. Prediction-powered inference could enable one to use such
predictions to study populations of protein variants in a statistically valid way.

Spiritually, prediction-powered inference enables scientists to more effectively build upon
data collected by the research community, as distilled into trained models that yield in-
formative predictions. As such, we hope the framework will help accelerate the process of
trustworthy, machine learning-assisted scientific inquiry.
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Chapter 2

Autofocused surrogates for design

The material in this chapter is based on work co-authored with Jennifer Listgarten [92].1

2.1 Surrogates for design

The design of objects with desired properties, such as novel proteins, molecules, or materials,
has a rich history in bioengineering, chemistry, and materials science. In these domains,
design has historically been performed through iterative, labor-intensive experimentation
[65] (e.g., measuring protein binding affinity) or compute-intensive physics simulations [35]
(e.g., computing low-energy structures for nanomaterials). Increasingly, however, attempts
are being made to replace these costly and time-consuming steps with cheap and fast calls
to a predictive model, trained on labeled data [72, 75, 85, 86, 110]. Herein, we refer to such
a model as a surrogate, and assume that acquisition of training data for the surrogate is
complete, as in [68, 72, 73, 75, 110].2 The key issue addressed by our work is how best to
train a surrogate for use in design, given fixed training data.

In contrast to the traditional use of predictive models, design is distinguished by the
fact that it seeks solutions—and therefore, will query the surrogate—in regions of the design
space that are not well-represented by the surrogate’s training data. If this is not the
case, the design problem is easy in that the solution is within the region of the training
data. Furthermore, one does not know beforehand which parts of the design space a design
procedure will navigate through. As such, a major challenge arises when an surrogate is

1We rectify two major terminology choices from the original work. First, the original use of “oracle” to
refer to a predictive model has been replaced with “surrogate”, to avoid misinterpretation of the former as
the ground truth. Second, “model-based design” has been replaced with simply “design”. “Model” in the
original usage of “model-based design” referred to a density model from which designed objects are sampled,
but it is perhaps (understandably) more likely to be misinterpreted as referring to the predictive model (i.e.
the surrogate, formerly the oracle). We do not believe any clarity in exposition is lost from simplifying this
phrase to “design”.

2For many applications in protein, molecule, and material design, even if one performs iterative rounds
of data acquisition, at some point, the acquisition phase concludes due to finite resources.
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employed for design: its outputs, including its uncertainty estimates, become unreliable
beyond the training data [57, 76]. Successful design using surrogates thus involves an inherent
trade-off between the need to stay “near” the training data in order to trust the surrogate,
and the need to depart from it in order to make improvements. While trust region approaches
have been developed to help address this trade-off [76, 110], herein, we take a different
approach and ask: what is the most effective way to use a fixed, labeled dataset to train a
surrogate for design?

Contributions We develop a novel approach for surrogate-based design that specifies
how to update the surrogate as the design space is explored—what we call autofocusing the
surrogate. In particular, we (i) formalize surrogate-based design as a non-zero-sum game, (ii)
derive a surrogate-updating strategy for seeking a Nash equilibrium, and (iii) demonstrate
empirically that autofocusing holds promise for improving surrogate-based design.

2.2 Model-based optimization for design

Design problems can be cast as seeking points in the design space, x ∈ X , that with high
probability satisfy desired conditions on a property random variable, y ∈ R. For example, one
might want to design a superconducting material by specifying its chemical composition, x,
such that the resulting material has critical temperature greater than some threshold, y ≥ yτ ,
or has maximal critical temperature, y = ymax. We specify the desired properties using a
constraint set, S, such as S = {y : y ≥ yτ} for some yτ . The design goal is then to solve
argmaxx P (y ∈ S | x). This optimization problem over the inputs, x, can be converted to
one over distributions over the design space. Specifically, model-based optimization (MBO)
seeks the parameters, θ, of a “search model”, pθ(x), that maximizes an objective that bounds
the original objective [20, 90]:

max
x

P (y ∈ S | x) ≥ max
θ∈Θ

Epθ(x)[P (y ∈ S | x)] = max
θ∈Θ

Epθ(x)

[∫
S

p(y | x)dy
]
. (2.1)

The original optimization problem over x, and the MBO problem over θ, are equivalent when
the search model has the capacity to place point masses on optima of the original objective.
Reasons for using the MBO formulation include that it requires no gradients of p(y | x),
thereby allowing the use of arbitrary surrogates for design, including those that are not
differentiable with respect to the design space and otherwise require specialized treatment.
MBO also naturally allows one to obtain not just a single design candidate, but a diverse
set of candidates, by sampling from the final search distribution (whose entropy can be
adjusted by adding regularization to Eq. (2.1)). Finally, MBO introduces the language of
probability into the optimization, thereby allowing coherent incorporation of probabilistic
constraints such as implicit trust regions [76]. The search model can be any parameterized
probability distribution that can be sampled from, and whose parameters can be estimated
using weighted maximum likelihood estimation (MLE) or approximations thereof. Examples
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include mixtures of Gaussians, hidden Markov models, variational autoencoders [54], and
Potts models [46]. Notably, the search model distribution can be over discrete or continuous
random variables, or a combination thereof.

Herein, we focus on the use of MBO to solve design problems. In particular, we study
surrogate-based design, by which we mean efforts to solve Eq. (2.1) by replacing costly and
time-consuming queries of the ground truth3, p(y | x), with calls to a trained regression
model (i.e., surrogate), pβ(y | x), with parameters, β ∈ B. Given access to a fixed dataset,
{(xi, yi)}ni=1, the surrogate is typically trained once using standard techniques and thereafter
considered fixed [61, 68, 72, 73, 75, 76, 79, 110]. In what follows, we describe why such a
strategy is sub-optimal and how to re-train the surrogate in order to better achieve design
goals. First, however, we briefly review a common approach for performing MBO, as we will
leverage such algorithms in our approach.

Solving model-based optimization problems

MBO problems are often tackled with an Estimation of Distribution Algorithm (EDA) [6,
13], a class of iterative optimization algorithms that can be seen as Monte Carlo expectation-
maximization [90]; EDAs are also connected to the cross-entropy method [8, 10] and reward-
weighted regression in reinforcement learning [32]. Given a surrogate, pβ(y | x), and an
initial search model, pθ(t=0) , an EDA typically proceeds at iteration t with two core steps:

1. “E-step”: Sample from the current search model, x̃i ∼ pθ(t−1)(x) for all i ∈ {1, . . . ,m}.
Compute a weight for each sample, vi := V (Pβ(y ∈ S | x̃i)), where V (.) is a method-
specific, monotonic transformation.

2. “M-step”: Perform weighted MLE to yield an updated search model, pθ(t)(x), which
tends to have more mass where Pβ(y ∈ S | x) is high. (Some EDAs can be seen as per-
forming maximum a posteriori inference instead, which results in smoothed parameter
updates [76].)

Upon convergence of the EDA, design candidates can be sampled from the final search
model if it is not a point mass; one may also choose to use promising samples from earlier
iterations. Notably, the surrogate, pβ(y | x), remains fixed in the steps above. Next, we
motivate a new formalism for surrogate-based design that yields a principled approach for
updating the surrogate at each iteration.

2.3 Autofocused surrogates for design

The common approach of substituting the surrogate, pβ(y | x), for the ground-truth, p(y | x),
does not address the fact that the surrogate is only likely to be reliable over the distribution

3We refer to the ground truth as the distribution of direct property measurements, which are inevitably
stochastic due to sensor noise.
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from which its training data were drawn [33, 40, 57]. To address this problem, we now
reformulate the surrogate-based design problem as a non-zero-sum game, which suggests an
algorithmic strategy for iteratively updating the surrogate within any MBO algorithm.

Surrogate-based design as a game

When the objective in Eq. (2.1) is replaced with a surrogate-based version,

argmax
θ∈Θ

Epθ(x)[Pβ(y ∈ S | x)], (2.2)

the solution to the surrogate-based problem will, in general, be sub-optimal with respect to
the original objective that uses the ground truth, P (y ∈ S | x). This sub-optimality can be
extreme due to pathological behavior of the surrogate when the search model, pθ(x), strays
too far from the training distribution during the optimization [76].

Since one cannot access the ground truth, we seek a practical alternative wherein we can
leverage a surrogate, but also infer when the values of the ground-truth and surrogate-based
objectives (in Eq. (2.1) and Eq. (2.2), respectively) are likely to be close. To do so, we
introduce the notion of the surrogate gap, defined as Epθ(x)[|P (y ∈ S | x)− Pβ(y ∈ S | x)|].
When this quantity is small, then by Jensen’s inequality the surrogate-based and ground-
truth objectives are close. Consequently, our insight for improving surrogate-based design is
to use the surrogate that minimizes the surrogate gap,

argmin
β∈B

OracleGap(θ, β) = argmin
β∈B

Epθ(x)[|P (y ∈ S | x)− Pβ(y ∈ S | x)|]. (2.3)

Together, Eq. (2.2) and Eq. (2.3) define the coupled objectives of two players, namely the
search model (with parameters θ) and the surrogate (with parameters β), in a non-zero-sum
game. To attain good objective values for both players, our goal will be to search for a Nash
equilibrium—that is, a pair of values (θ∗, β∗) such that neither can improve its objective
given the other. To do so, we develop an alternating ascent-descent algorithm, which alter-
nates between (i) fixing the surrogate parameters and updating the search model parameters
to increase the objective in Eq. (2.2) (the ascent step), and (ii) fixing the search model pa-
rameters and updating the surrogate parameters to decrease the objective in Eq. (2.3) (the
descent step). In the next section, we describe this algorithm in more detail.

Practical interpretation of the surrogate-based design game. Interpreting the use-
fulness of this game formulation requires some subtlety. The claim is not that every Nash
equilibrium yields a search model that provides a high value of the (unknowable) ground-
truth objective in Eq. (2.1). However, for any pair of values, (θ, β), the value of the surrogate
gap provides a certificate on the value of the ground-truth objective. In particular, if one
has a surrogate and search model that yield a surrogate gap of ϵ, then by Jensen’s inequality
the ground-truth objective is within ϵ of the surrogate-based objective. Therefore, to the
extent that we are able to minimize the surrogate gap, Eq. (2.3), we can trust the value
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of our surrogate-based objective, Eq. (2.2). Note that a small, or even zero surrogate gap
only implies that the surrogate-based objective is trustworthy; successful design also entails
achieving a high surrogate-based objective, the potential for which depends on an appropriate
surrogate class and suitably informative training data (as it always does for surrogate-based
design, regardless of whether our framework is used).

Although the surrogate gap as a certificate is useful conceptually for motivating our
approach, at present it is not clear how to estimate it. In our experiments, we found that
we could demonstrate the benefits of autofocusing without directly estimating the surrogate
gap, relying solely on the principle of minimizing it. We also note that in practice, what
matters is not whether we converge to a Nash equilibrium, just as what matters in empirical
risk minimization is not whether one exactly recovers the global optimum, only a useful
point. That is, if we can find parameters, (θ, β), that yield better designs than alternative
methods, then we have developed a useful method.

An alternating ascent-descent algorithm for the surrogate-based
design game

Our approach alternates between an ascent step that updates the search model, and a descent
step that updates the surrogate. The ascent step is relatively straightforward as it leverages
existing MBO algorithms. The descent step, however, requires some creativity. In particular,
for the ascent step, we run a single iteration of an MBO algorithm as described in Section 2.2,
to obtain a search model that increases the objective in Eq. (2.2). For the descent step, we
aim to minimize the surrogate gap in Eq. (2.3) by making use of the following observation
(proof in Section 2.8).

Proposition 1. For any search model, pθ(x), if the surrogate parameters, β, satisfy

Epθ(x)[DKL(p(y | x) || pβ(y | x))] =
∫
X
DKL(p(y | x) || pβ(y | x)) pθ(x)dx ≤ ϵ, (2.4)

where DKL(p || q) is the Kullback-Leibler (KL) divergence between distributions p and q, then
the following bound holds:

Epθ(x)[|P (y ∈ S | x)− Pβ(y ∈ S | x)|] ≤
√

ϵ

2
.

As a consequence of Proposition 1, given any search model, pθ(x), a surrogate that
minimizes the expected KL divergence in Eq. (2.4) also minimizes an upper bound on the
surrogate gap. Our descent strategy is therefore to minimize this expected divergence. In
particular, as shown in the Section 2.8, the resulting surrogate parameter update at iter-
ation t can be written as β(t) = argmaxβ∈B Ep

θ(t)
(x)Ep(y|x)[log pβ(y | x)], where we refer to

the objective as the log-likelihood under the search model. Although we cannot generally
access the ground truth, p(y | x), we do have labeled training data, {(xi, yi)}ni=1, whose
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labels come from the ground-truth distribution, yi ∼ p(y | x = xi). We therefore use impor-
tance sampling with the training distribution, p0(x), as the proposal distribution, to obtain
a now-practical surrogate parameter update,

β(t) = argmax
β∈B

1

n

n∑
i=1

pθ(t)(xi)

p0(xi)
log pβ(yi | xi). (2.5)

The training points, xi, are used to estimate some model for p0(x), while pθ(t)(x) is given by
the search model. We discuss the variance of the importance weights, wi := pθ(xi)/p0(xi),
shortly.

Together, the ascent and descent steps amount to appending a “Step 3” to each iteration
of the generic two-step MBO algorithm outlined in Section 2.2, in which the surrogate is
retrained on re-weighted training data according to Eq. (2.5). We call this strategy aut-
ofocusing the surrogate, as it retrains the surrogate in lockstep with the search model, to
keep the surrogate likelihood maximized on the most promising regions of the design space.
Pseudo-code for autofocusing can be found in the Algs. 1 and 2. As shown in the experiments,
autofocusing tends to improve the outcomes of design procedures, and when it does not, no
harm is incurred relative to the naive approach with a fixed surrogate. Before discussing
such experiments, we first make some remarks.

Remarks on autofocusing

Controlling variance of the importance weights. It is well known that importance
weights can have high, even infinite, variance [51], which may prevent the importance-
sampled estimate of the log-likelihood from being useful for retraining the surrogate ef-
fectively. That is, solving Eq. (2.5) may not reliably yield surrogate parameter estimates
that minimize the log-likelihood under the search model. To monitor the reliability of the
importance-sampled estimate, one can compute and track an effective sample size of the
re-weighted training data, ne := (

∑n
i=1wi)

2/
∑n

i=1w
2
i , which reflects the variance of the im-

portance weights [51]. If one has some sense of a suitable sample size for the application at
hand (e.g., based on the surrogate model capacity), then one could monitor ne and choose
not to retrain when it is too small. Another variance control strategy is to use a trust region
to constrain the movement of the search model, such as in [76], which automatically controls
the variance (see Proposition 2.8.1). Indeed, our experiments show how autofocusing works
synergistically with a trust-region approach. Finally, two other common strategies are: (i)
self-normalizing the weights, which provides a biased but consistent and lower-variance esti-
mate [51], and (ii) flattening the weights [33] to wα

i according to a hyperparameter, α ∈ [0, 1].
The value of α interpolates between the original importance weights (α = 1), which pro-
vide an unbiased but high-variance estimate, and all weights equal to one (α = 0), which is
equivalent to naively training the surrogate (i.e., no autofocusing).

Surrogate bias-variance trade-off. If the surrogate equals the ground truth over all
parts of the design space encountered during the design procedure, then autofocusing should
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not improve upon using a fixed surrogate. In practice, however, this is unlikely to ever be the
case—the surrogate is almost certain to be misspecified and ultimately mislead the design
procedure with incorrect inductive bias. It is therefore interesting to consider what autofo-
cusing does from the perspective of the bias-variance trade-off of the surrogate, with respect
to the search model distribution. On the one hand, autofocusing retrains the surrogate using
an unbiased estimate of the log-likelihood over the search model. On the other hand, as the
search model moves further away from the training data, the effective sample size available
to train the surrogate decreases; correspondingly, the variance of the surrogate increases. In
other words, when we use a fixed surrogate (no autofocusing), we prioritize minimal vari-
ance at the expense of greater bias. With pure autofocusing, we prioritize reduction in bias
at the expense of higher variance. Autofocusing with techniques to control the variance of
the importance weights [33, 48] enables us to make a suitable trade-off between these two
extremes.

Autofocusing corrects design-induced covariate shift. In adopting an importance-
sampled estimate of the training objective, Eq. (2.5) is analogous to the classic covariate
shift adaptation strategy known as importance-weighted empirical risk minimization [33,
48]. We can therefore interpret autofocusing as dynamically correcting for covariate shift
induced by a design procedure, where, at each iteration, a new “test” distribution is given
by the updated search model. Furthermore, we are in the fortunate position of knowing
the exact parametric form of the test density at each iteration, which is simply that of the
search model. This view highlights that the goal of autofocusing is not necessarily to increase
exploration of the design space, but to provide a more useful surrogate wherever the search
model does move (as dictated by the underlying method to which autofocusing is added).

2.4 Related work

Surrogate-based design in the fixed-data setting is gaining prominence in several applica-
tion areas, including the design of proteins and nucleotide sequences [61, 76, 79, 95, 110],
molecules [63, 68, 73], and materials [43, 72]. Within such work, the danger in extrapolating
beyond the training distribution is not always acknowledged or addressed. In fact, proposed
design procedures often are validated under the assumption that the surrogate is always
correct [61, 63, 73, 79, 97]. Some exceptions include Conditioning by Adaptive Sampling
(CbAS) [76], which employs a probabilistic trust-region approach using a model of the train-
ing distribution, and [110], which uses a hard distance-based threshold. Similar in spirit to
[76], Linder et al. regularize the designed sequences based on their likelihood under a model
of the training distribution [97]. In another approach, a variational autoencoder implicitly
enforces a trust region by constraining design candidates to the probabilistic image of the
decoder [68]. Finally, Kumar & Levine tackle design by learning the inverse of a ground-
truth function, which they constrain to agree with a surrogate, so as to discourage too much
departure from the training data [95]. None of these approaches update the surrogate. How-
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ever, autofocusing is entirely complementary to and does not preclude the additional use of
any of these approaches. For example, we demonstrate in our experiments that autofocusing
improves the outcomes of CbAS, which implicitly inhibits the movement of the search model
away from the training distribution.

Related to the design problem is that of active learning in order to optimize a function,
using for example Bayesian optimization [47]. Such approaches are fundamentally distinct
from our setting in that they dynamically acquire new labeled data, thereby more readily
allowing for correction of surrogate modeling errors. In a similar spirit, evolutionary al-
gorithms sometimes use a “surrogate” model of the function of interest (equivalent to our
surrogate), to help guide the acquisition of new data [45]. In such settings, the surrogate
may be updated using an ad hoc subset of the data [50] or perturbation of the surrogate
parameters [36]. Similarly, a recent reinforcement-learning based approach to biological se-
quence design relies on new data to refine the surrogate when moving into a region of design
space where the surrogate is unreliable [89].

Offline reinforcement learning (RL) [96] shares similar characteristics with our problem
in that the goal is to find a policy that optimizes a reward function, given only a fixed
dataset of trajectories sampled using another policy. In particular, offline model-based RL
leverages a learned model of dynamics that may not be accurate everywhere. Methods in
that setting have attempted to account for the shift away from the training distribution
using uncertainty estimation and trust-region approaches [44, 67, 100]; importance sampling
has also been used for off-policy evaluation [14, 59].

As noted in the previous section, autofocusing operates through iterative retraining of the
surrogate in order to correct for covariate shift induced by the movement of the search model.
It can therefore be connected to ideas from domain adaptation more broadly [40]. Finally,
we note that mathematically, surrogate-based design is related to the decision-theoretic
framework of performative prediction [99]. Perdomo et al. formalize the phenomenon in
which using predictive models to perform actions induces distributional shift, then present
theoretical analysis of repeated retraining with new data as a solution. Our problem has
two major distinctions from this setting: first, the ultimate goal in design is to maximize an
unknowable ground-truth objective, not to minimize risk of the surrogate. The latter is only
relevant to the extent that it helps us achieve the former, and our work operationalizes that
connection by formulating and minimizing the surrogate gap. Second, we are in a fixed-data
setting. Our work demonstrates the utility of adaptive retraining even in the absence of new
data.

2.5 Experiments

We now demonstrate empirically, across a variety of both experimental settings and MBO
algorithms, how autofocusing can help us better achieve design goals. First we leverage an
intuitive example to gain detailed insights into how autofocus behaves. We then conduct a
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Figure 2.1: Illustrative example of autofocusing for design. Panels (a-d) show detailed
snapshots of the MBO algorithm, CbAS [76], with and without autofocusing (AF) in each panel. The vertical
axis represents both y values (for the surrogate and ground truth) and probability density values (of the
training distribution, p0(x), and search distributions, pθ(t)(x)). Shaded envelopes correspond to ±1 standard
deviation of the oracles, σβ(t) , with the surrogate expectations, µβ(t)(x), shown as a solid line. Specifically,
(a) at initialization, the surrogate and search model are the same for AF and non-AF. Intermediate and final
iterations are shown in (b-d), where the non-AF and AF oracles and search models increasingly diverge.
Grayscale of training points corresponds to their importance weights used for autofocusing. In (d), each star
and dotted horizontal line indicate the ground-truth value corresponding to the point of maximum density
of the final search model, indicative of its usefulness for design (higher is better). The values of (σϵ, σ0)
used here correspond to the ones marked by an × in Figure 2.2, which summarizes results across a range of
settings. Panels (e,f) show the search model over all iterations without and with autofocusing, respectively.

detailed study on a more realistic problem of designing superconducting materials. Code for
our experiments is available at https://github.com/clarafy/autofocused_oracles.

An illustrative example

To investigate how autofocusing works in a setting that can be understood intuitively, we
constructed a one-dimensional design problem where the goal was to maximize a multi-modal
ground-truth function, f(x) : R→ R+, given fixed training data (Figure 2.1a). The training
distribution from which training points were drawn, p0(x), was a Gaussian with variance, σ2

0,
centered at 3, a point where f(x) is small relative to the global maximum at 7. This captures
the common scenario where the surrogate training data do not extend out to global optima

https://github.com/clarafy/autofocused_oracles
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Figure 2.2: Improvement from autofocusing for a range of settings of the illus-
trative example. Each colored square shows the improvement (averaged over 50 trials) conferred by
autofocusing (AF) for one setting, (σϵ, σ0), of, respectively, the standard deviations of the training distribu-
tion and the label noise. Improvement is quantified as the difference between the ground-truth objective in
Eq. (2.1) achieved by the final search model with and without AF. A positive value means AF yielded higher
ground-truth values (i.e., performed better than without AF), while zero means it neither helped nor hurt.
Similar plots to Figure 2.1 are shown for other settings in Figures 2.3, 2.4.

of the property of interest. As we increase the variance of the training distribution, σ2
0, the

training data become more and more likely to approach the global maximum of f(x). The
training labels are drawn from p(y | x) = N (f(x), σ2

ϵ ), where σ2
ϵ is the variance of the label

noise. For this example, we used CbAS [76], an MBO algorithm that employs a probabilistic
trust region. We did not control the variance of the importance weights.

An MBO algorithm prescribes a sequence of search models as the optimization proceeds,
where each successive search model is fit using weighted MLE to samples from its predecessor.
However, in our one-dimensional example, one can instead use numerical quadrature to
directly compute each successive search model [76]. Such an approach enables us to abstract
out the particular parametric form of the search model, thereby more directly exposing
the effects of autofocusing. In particular, we used numerical quadrature to compute the
search model density at iteration t as p(t)(x) ∝ Pβ(t)(y ∈ S(t) | x)p0(x), where S(t) belongs

to a sequence of relaxed constraint sets such that S(t) ⊇ S(t+1) ⊇ S [76]. We computed
this sequence of search models in two ways: (i) without autofocusing, that is, with a fixed
surrogate trained once on equally weighted training data, and (ii) with autofocusing, that
is, where the surrogate was retrained at each iteration. In both cases, the surrogate was of
the form pβ(y | x) = N (µβ(x), σ

2
β), where µβ(x) was fit by kernel ridge regression with a

radial basis function kernel and σ2
β was set to the mean squared error between µβ(x) and

the labels (see Section 2.9 for more details). Since this was a maximization problem, the
desired condition was set as S = {y : y ≥ maxx µβ(x)} (where µβ(x) = 0.68 for the initial
surrogate). We found that autofocusing more effectively shifts the search model toward the
ground-truth global maximum as the iterations proceed (Figure 2.1b-f), thereby providing
improved design candidates.

To understand the effect of autofocusing more systematically, we repeated the experiment
just described across a range of settings of the variances of the training distribution, σ2

0, and
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of the label noise, σ2
ϵ (Figure 2.2). Intuitively, both these variances control how informative

the training data are about the ground-truth global maximum: as σ2
0 increases, the training

data are more likely to include points near the global maximum, and as σ2
ϵ decreases, the

training labels are less noisy. Therefore, if the training data are either too uninformative
(small σ2

0 and/or large σ2
ϵ ) or too informative (large σ2

0 and/or small σ2
ϵ ), then one would not

expect autofocusing to substantially improve design. In intermediate regimes, autofocusing
should be particularly useful. Such a phenomenon is seen in our experiments (Figure 2.2).
Importantly, this kind of intermediate regime is one in which practitioners are likely to find
themselves: the motivation for design is often sparked by the existence of a few examples
with property values that are exceptional compared to most known examples, yet the design
goal is to push the desired property to be more exceptional still. In contrast, if the true
global optimum already resides in the training data, one cannot hope to design anything
better anyway. However, even in regimes where autofocusing does not help, on average it
does not hurt relative to a naive approach with a fixed surrogate (Figure 2.2 and Section 2.5).

Designing superconductors with maximal critical temperature

Designing superconducting materials with high critical temperatures is an active research
problem that impacts engineering applications from magnetic resonance imaging systems
to the Large Hadron Collider. To assess autofocusing in a more realistic scenario, we used
a dataset comprising 21, 263 superconducting materials paired with their critical tempera-
tures [69], the maximum temperature at which a material exhibits superconductivity. Each
material is represented by a feature vector of length eighty-one, which contains real-valued
properties of the material’s constituent elements (e.g., their atomic radius and valence). We
outline our experiments here, with details deferred to the Section 2.9.

Unlike in silico validation of a predictive model, one cannot hold out data to validate a de-
sign algorithm because one will not have ground-truth labels for proposed design candidates.
Thus, similarly to [76], we created a “ground-truth” model by training gradient-boosted re-
gression trees [69, 74] on the whole dataset and treating the output as the ground-truth expec-
tation, E[y | x], which can be called at any time. Next, we generated training data to emulate
the common scenario in which design practitioners have labeled data that are not dense near
ground-truth global optima. In particular, we selected the n = 17, 015 training points from
the dataset whose ground-truth expectations were in the bottom 80th percentile. We used
MLE with these points to fit a full-rank multivariate normal, which served as the training
distribution, p0(x), from which we drew n simulated training points, {xi}ni=1. For each xi we
drew one sample, yi ∼ N (E[y | xi], 1), to obtain a noisy ground-truth label. Finally, for our
surrogate, we used {(xi, yi)}ni=1 to train an ensemble of three neural networks that output
both µβ(x) and σ2

β(x), to provide predictions of the form pβ(y | x) = N (µβ(x), σ
2
β(x)) [62].

We ran six different MBO algorithms, each with and without autofocusing, with the
goal of designing materials with maximal critical temperatures. In all cases, we used a full-
rank multivariate normal for the search model, and flattened the importance weights used for
autofocusing to wα

i [33] with α = 0.2 to help control variance. The MBO algorithms were: (i)
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Table 2.1: Designing superconducting materials. We ran six different MBO methods, each
with and without autofocusing. For each method, we extracted those samples with surrogate expectations
above the 80th percentile and computed their ground-truth expectations. We report the median and maxi-
mum of those ground-truth expectations (both in degrees K), their percent chance of improvement (PCI, in
percent) over the maximum label in the training data, as well as the Spearman correlation (ρ) and root mean
squared error (RMSE, in degrees K) between the surrogate and ground-truth expectations. Each reported
score is averaged over 10 trials, where, in each trial, a different training set was sampled from the training
distribution. “Mean Diff.” is the average difference between the score when using autofocusing compared to
not. Bold values with one star (*) and two stars (**), respectively, mean p-values < 0.05 and < 0.01 from
a two-sided Wilcoxon signed-rank test on the 10 paired score differences between a method with autofocus
and without (’Original’). For all scores but RMSE, a higher value means autofocusing yielded better results
(as indicated by the arrow ↑); for RMSE, the opposite is true (as indicated by the arrow ↓).

Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓ Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓
CbAS DbAS

Original 51.5 103.8 0.11 0.05 17.2 57.0 98.4 0.11 0.01 29.6
Autofocused76.4 119.8 3.78 0.56 12.9 78.9 111.6 4.4 0.01 24.5
Mean Diff. 24.9** 16.0** 3.67** 0.51** -4.4** 21.9** 13.2** 4.2** 0.01 -5.1*

RWR FB

Original 43.4 102.0 0.05 0.92 7.4 49.2 100.6 0.14 0.09 17.5
Autofocused71.4 114.0 1.60 0.65 12.7 64.2 111.6 0.86 0.49 11.1
Mean Diff. 28.0** 12.0** 1.56** -0.27** 5.4** 15.0** 11.0** 0.73** 0.40** -6.4**

CEM-PI CMA-ES

Original 34.5 55.8 0.00 -0.16 148.3 42.1 69.4 0.00 0.27 27493.2
Autofocused67.0 98.0 1.69 0.13 29.4 50.2 85.8 0.01 0.52 9499.8
Mean Diff. 32.6** 42.3* 1.69* 0.29 -118.9** 8.1* 16.3* 0.01 0.25* -17993.5*

Conditioning by Adaptive Sampling (CbAS) [76]; (ii) Design by Adaptive Sampling (DbAS)
[76]; (iii) reward-weighted regression (RWR) [32]; (iv) the “feedback” mechanism proposed
in [79] (FB); (v) the cross-entropy method used to optimize probability of improvement
(CEM-PI) [47, 76]; and (vi) Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[26]. These are briefly described in the Section 2.9.

To quantify the success of each algorithm, we did the following. At each iteration, t,
we first computed the surrogate expectations, Eβ(t) [y | x], for each of n samples drawn from
the search model, pθ(t)(x). We then selected the iteration where the 80th percentile of these
surrogate expectations was greatest. For that iteration, we computed various summary
statistics on the ground-truth expectations of the best samples, as judged by the surrogate
from that iteration (i.e., samples with surrogate expectations greater than the 80th percentile;
Table 2.1). See Algorithm 3 for pseudocode of this procedure. Our evaluation procedure
emulates the typical setting in which a practitioner has limited experimental resources, and
can only evaluate the ground truth for the most promising candidates [72, 75, 85, 110].

Across the majority of evaluation metrics, for all MBO methods, autofocusing a method
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provided a statistically significant improvement upon the original method. The percent
chances of improvement (PCI, the percent chances that the best samples had greater ground-
truth expectations than the maximum label in the training data), expose the challenging
nature of the design problem. All methods with no autofocusing had a PCI less than 0.14%,
which although small, still reflects a marked improvement over a naive baseline of simply
drawing n new samples from the training distribution itself, which achieves 5.9 × 10−3%.
Plots of design trajectories from these experiments, and results from experiments without
variance control and with surrogate architectures of higher and lower capacities, can be found
in Figures 2.6, 2.7, 2.8 and Tables 2.2, 2.3, 2.4.

2.6 Discussion

We have introduced a new formulation of surrogate-based design as a non-zero-sum game.
From this formulation, we developed a new approach for design wherein the surrogate—
the predictive model that replaces costly and time-consuming laboratory experiments—is
iteratively retrained so as to “autofocus” it on the current region of design candidates under
consideration. Our autofocusing approach can be applied to any design procedure that uses
model-based optimization. We recommend using autofocusing with an MBO method that
uses trust regions, such as CbAS [76], which automatically helps control the variance of the
importance weights used for autofocusing. For autofocusing an MBO algorithm without a
trust region, practical use of the surrogate gap certificate and/or effective sample size should
be further investigated. Nevertheless, even without these, we have demonstrated empirically
that autofocusing can provide benefits.

Autofocusing can be seen as dynamically correcting for covariate shift as the design
procedure explores design space. It can also be understood as enabling a design procedure
to navigate a trade-off between the bias and variance of the surrogate, with respect to
the search model distribution. One extension of this idea is to also perform surrogate model
selection at each iteration, such that the model capacity is tailored to the level of importance
weight variance.

Further extensions to consider are alternate strategies for estimating the importance
weights [48]. In particular, training discriminative classifiers to estimate these weights may
be fruitful when using search models that are implicit generative models, or whose likelihood
cannot otherwise be computed in closed form, such as variational autoencoders [48, 78]. We
believe this may be a promising approach for applying autofocusing to biological sequence
design and other discrete design problems, which often leverage such models. One can also
imagine extensions of autofocusing to gradient-based design procedures [61]—for example,
using techniques for test-time surrogate retraining, in order to evaluate the current point
most accurately [104].
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2.7 Pseudocode

Algorithm 1 gives pseudocode for autofocusing a broad class of model-based optimization
(MBO) algorithms known as estimation of distribution algorithms (EDAs), which can be seen
as performing Monte-Carlo expectation-maximization [90]. EDAs proceed at each iteration
with a sampling-based “E-step” (Steps 2 and 3 in Algorithm 1) and a weighted maximum
likelihood estimation (MLE) “M-step” (Step 4; see [90] for more details). Different EDAs
are distinguished by method-specific monotonic transformations V (·), which determine the
sample weights used in the M-step. In some EDAs, this transformation is not explicitly
defined, but rather implicitly implemented by constructing and using a sequence of relaxed
constraint sets, S(t), such that S(t) ⊇ S(t+1) ⊇ S [8, 10, 76].

Algorithm 2 gives pseudocode for autofocusing a particular EDA, Conditioning by Adap-
tive Sampling (CbAS) [76], which uses such a sequence of relaxed constraint sets, as well
as M-step weights that induce an implicit trust region for the search model update. For
simplicity, the algorithm is instantiated with the design goal of maximizing the property of
interest. It can easily be generalized to the goal of achieving a specific value for the property,
or handling multiple properties (see Sections S2-3 of [76]).

Use of [.] in the pseudocode denotes an optional input argument with default values.

2.8 Proofs and derivations

Proof of Proposition 1. For any distribution pθ(x), if

Epθ(x) [DKL(p(y | x) || pϕ(y | x))] ≤ ϵ,

then it holds that

Epθ(x)

[
|P (y ∈ S | x)− Pϕ(y ∈ S | x)|2

]
≤ Epθ(x)

[
δ(p(y | x), pϕ(y | x))2

]
≤ 1

2
Epθ(x) [DKL(p(y | x) || pϕ(y | x))]

≤ ϵ

2
.

where δ(p, q) is the total variation distance between probability distributions p and q, and
the second inequality is due to Pinsker’s inequality. Finally, applying Jensen’s inequality
yields

Epθ(x) [|P (y ∈ S | x)− Pϕ(y ∈ S | x)|] ≤
√

ϵ

2
.
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Algorithm 1 Autofocused model-based optimization algorithm

Input: Training data, {(xi, yi)}ni=1; surrogate model class, pβ(y | x), with parameters, β,
that can be estimated with MLE; search model class, pθ(x), with parameters, θ, that can
be estimated with weighted MLE or approximations thereof; desired constraint set, S (e.g.,
S = {y | y ≥ yτ}); maximum number of iterations, T ; number of samples to generate, m;
EDA-specific monotonic transformation, V (·) (see Section 2.9 for examples).
Initialization: Obtain p0(x) by fitting to {xi}ni=1 with the search model class. For the
search model, set pθ(0)(x) ← p0(x). For the surrogate, pβ(0)(y | x), use MLE with equally
weighted training data.
Output: Sequence of search models, {pθ(t)(x)}Tt=1, and sequence of samples,

{(x̃(t)
i , . . . , x̃

(t)
m )}Tt=1, from all iterations. One may use these in a number of different ways.

For example, one may sample design candidates from the final search model, pθ(T )(x), or

use the most promising candidates among {(x̃(t)
i , . . . , x̃

(t)
m )}Tt=1, as judged by the appropriate

surrogate (i.e., corresponding to the iteration at which the candidate was generated).

1: for i = 1, . . . , T do
2: Sample from the current search model, x̃

(t)
i ∼ pθ(t−1)(x),∀i ∈ {1, . . . ,m}.

3: vi ← V (Pβ(t−1)(y ∈ S | x̃(t)
i )), ∀i ∈ {1, . . . ,m}

4: Fit the updated search model, pθ(t)(x), using weighted MLE with the samples,

{x̃(t)
i }mi=1, and their corresponding EDA weights, {vi}mi=1.

5: Compute importance weights for the training data,
wi ← pθ(t)(xi)/pθ(0)(xi), i = 1, . . . , n.

6: Retrain the surrogate using the re-weighted training data,

β(t) ← argmax
β∈B

1

n

n∑
i=1

wi log pβ(yi | xi).

7: end for

Derivation of the descent step to minimize the surrogate gap

Here, we derive the descent step of the alternating ascent-descent algorithm described in
Section 2.3. At iteration t, given the search model parameters, θ(t), our goal is to update the
surrogate parameters according to

β(t) = argmin
β∈B

Ep
θ(t)

(x)[DKL(p(y | x) || pβ(y | x))].
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Algorithm 2 Autofocused Conditioning by Adaptive Sampling (CbAS) [76]

Input: Training data, {(xi, yi)}ni=1; surrogate model class, pβ(y | x) with parameters, β,
that can be estimated with MLE; search model class, pθ(x), with parameters, θ, that can be
estimated with weighted MLE or approximations thereof; maximum number of iterations,
T ; number of samples to generate, m; [percentile threshold, Q = 90].
Initialization: Obtain p0(x) by fitting to {xi}ni=1 with the search model class. For the
search model, set pθ(0)(x) ← p0(x). For the surrogate, pβ(0)(y | x), use MLE with equally
weighted training data. Set γ0 = −∞.
Output: Sequence of search models, {pθ(t)(x)}Tt=1, and sequence of samples,

{(x̃(t)
i , . . . , x̃

(t)
m )}Tt=1, from all iterations. One may use these in a number of different ways

(see Algorithm 1).

1: for i = 1, . . . , T do
2: Sample from the current search model, x̃

(t)
i ∼ pθ(t−1)(x),∀i ∈ {1, . . . ,m}.

3: qt ← Q-th percentile of the surrogate expectations of the samples, {µβ(x̃
(t)
i )}mi=1

4: γt ← max{γt−1, qt}
5: vi ← (p0(x̃

(t)
i )/pθ(t−1)(x̃

(t)
i ))Pβ(t−1)(y ≥ γt | x̃(t)

i ),∀i ∈ {1, . . . ,m}
6: Fit the updated search model, pθ(t)(x), using weighted MLE with the samples,

{x̃(t)
i }mi=1, and their corresponding EDA weights, {vi}mi=1.

7: Compute importance weights for the training data,
wi ← pθ(t)(xi)/pθ(0)(xi), i = 1, . . . , n.

8: Retrain the surrogate using the re-weighted training data,

β(t) ← argmax
β∈B

1

n

n∑
i=1

wi log pβ(yi | xi).

9: end for

Note that

β(t) = argmin
β∈B

Ep
θ(t)

(x)

[∫
R
p(y | x) log p(y | x)dy −

∫
R
p(y | x) log pβ(y | x)dy

]
= argmax

β∈B
Ep

θ(t)
(x)

[∫
R
p(y | x) log pβ(y | x)dy

]
= argmax

β∈B
Ep

θ(t)
(x)Ep(y|x)[log pβ(y | x)].

We cannot query the ground truth, p(y | x), but we do have labeled training data,
{(xi, yi)}ni=1, where xi ∼ p0(x) and yi ∼ p(y | x = xi) by definition. We therefore lever-
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Algorithm 3 Procedure for evaluating MBO algorithms in superconductivity
experiments. For each MBO algorithm in Tables 2.1, 2.2, 2.3, 2.4, the reported scores were
the outputs of this procedure, averaged over 10 trials. Recall that µβ(t)(x) := Eβ(t) [y | x]
denotes the expectation of the surrogate model at iteration t, while E[y | x] denotes the
ground-truth expectation.

Input: Sequence of samples, {(x̃(t)
i , . . . , x̃

(t)
m )}Tt=1, from each iteration of an MBO algorithm;

their surrogate expectations, {(µβ(t)(x̃
(t)
i ), . . . , µβ(t)(x̃

(t)
m ))}Tt=1; percentile threshold, Q = 80.

Output: median(µGT,best),max(µGT,best), ρ, PCI, RMSE

1: for i = 1, . . . , T do
2: Compute qt ← Q-th percentile of the surrogate expectations, {µβ(t)(x̃

(t)
i )}mi=1.

3: end for
4: tbest ← argmaxt qt (pick the best iteration)

5: I ← {i ∈ {1, . . . ,m} : µβ(tbest)(x̃
(tbest)
i ) ≥ qtbest} (pick best samples from best iteration)

6: µGT,best ← {E[y | x̃tbest
i ] : i ∈ I}

7: µGT ← (E[y | x̃tbest
1 ], . . . ,E[y | x̃tbest

m ])
8: µsurrogate ← (µβ(tbest)(x̃

tbest
1 ), . . . , µβ(tbest)(x̃

tbest
m ))

9: PCI← 100 · 1
|I|
∑

i∈I 1[E[y | x̃
tbest
i ] > maximum label in training data)]

10: ρ← Spearman(µGT, µsurrogate)
11: RMSE← RMSE(µGT, µsurrogate)

age importance sampling, using p0(x) as the proposal distribution, to obtain

β(t) = argmax
β∈B

Ep0(x)Ep(y|x)

[
pθ(t)(x)

p0(x)
log pβ(y | x)

]
. (2.6)

Finally, we instantiate an importance sampling estimate of the objective in Eq. (2.6) with
our labeled training data, to get a practical surrogate parameter update,

β(t) = argmax
β∈B

1

n

n∑
i=1

pθ(t)(xi)

p0(xi)
log pβ(yi | xi). (2.7)

This update is equivalent to fitting the surrogate parameters, β(t), by performing weighted
MLE with the labeled training data, {(xi, yi)}ni=1, and corresponding weights, {wi}ni=1, where
wi := pθ(t)(xi)/p0(xi).

Variance of importance weights

The estimate of the log-likelihood used to retrain the surrogate, Eq. (2.7), is unbiased, but
may have high variance due to the variance of the importance weights.
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CbAS naturally controls the importance weight variance. Design procedures that
leverage a trust region can naturally bound the variance of the importance weights. For
instance, CbAS [76], developed in the context of a surrogate with fixed parameters, β,
proposes estimating the training distribution conditioned on S as the search model:

pθ(x) = p0(x | S) = Pβ(S | x)p0(x)/P0(S), (2.8)

where P0(S) =
∫
Pβ(S | x)p0(x)dx. This prescribed search model yields the following im-

portance weight variance.

Proposition 2.8.1. For pθ(x) = p0(x | S), it holds that

Varp0(x)

(
pθ(x)

p0(x)

)
=

1

P0(S)
− 1.

That is, so long as S has non-neglible mass under data drawn from the training distribu-
tion, p0(x), we have reasonable control on the variance of the importance weights. Of course,
if P0(S) is too small, this bound is not useful, but to have any hope of successful data-driven
design it is only reasonable to expect this quantity to be non-negligible. This is similar to
the experimental requirement, in directed evolution for protein design, that the initial data
exhibit some “minimal functionality” with regards to the property of interest [86].

Proof. The variance of the importance weights can be written as

Varp0(x)

(
p0(x | S)
p0(x)

)
= d2(p0(x | S)||p0(x))− 1,

where d2(p0(x | S)||p0(x)) = Ep0(x)[(p0(x | S)/p0(x))2] is the exponentiated Rényi-2 diver-
gence. Then we have

Varp0(x)

(
pθ(x)

p0(x)

)
= d2(p0(x | S)||p0(x))− 1 =

1

p0(S)
− 1,

where the second equality is due to the property in Example 1 of [55].

This variance yields the following expression for the population version of the effective
sample size:

n∗
e :=

nEp0(x) [pθ(x)/p0(x)]
2

Ep0(x) [(pθ(x)/p0(x))
2]

=
n

Ep0(x) [(pθ(x)/p0(x))
2]

= nP0(S).

Furthermore, CbAS proposes an iterative procedure to estimate pθ(x). At iteration t, the
algorithm seeks a variational approximation to p(t)(x) ∝ Pβ(S

(t) | x)p0(x), where S(t) ⊇ S.
Since P0(S

(t) | x) ≥ P0(S | x), the expressions above for the importance weight variance and
effective sample size for the final search model prescribed by CbAS translate into upper and
lower bounds, respectively, on the importance weight variance and effective sample size for
the distributions p(t)(x) prescribed at each iteration.
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2.9 Experimental details

Illustrative example

Ground truth and surrogate. For the ground-truth function f : R → R+, we used
the sum of the densities of two Gaussian distributions, N1(5, 1) and N2(7, 0.25). For the
expectation of the surrogate model, µβ(x) := Eβ[y | x], we used kernel ridge regression with
a radial basis function kernel as implemented in scikit-learn, with the default values for
all hyperparameters. The variance of the surrogate model, σ2

β := Varβ[y | x], was set to the
mean squared error between µβ(x) and the training data labels, as estimated with 4-fold
importance-weighted cross-validation when autofocusing [33].

MBO algorithm. We used CbAS as follows. At iteration t = 1, . . . , 100, similar to [76],
we used the relaxed constraint set S(t) = {y : y ≥ γt} where γt was the tth percentile of
the surrogate expectation, µβ(x), when evaluated over x ∈ [0, 10]. At the final iteration,
t = 100, the constraint set is equivalent to the design goal of maximizing the surrogate
expectation, S(100) = S = {y : y ≥ maxx µβ(x)}, which is the surrogate-based proxy to max-
imizing the ground-truth function, f(x). At each iteration, we used numerical quadrature
(scipy.integrate.quad) to compute the search model,

p(t)(x) =
Pβ(t)(y ∈ S(t) | x) p0(x)∫
X Pβ(t)(y ∈ S(t) | x) p0(x)

.

Numerical integration enabled us to use CbAS without a parametric search model, which
otherwise would have been used to find a variational approximation to this distribution [76].
We also used numerical integration to compute the value of the design objective (Eq. (2.1))
achieved by the final search model, both with and without autofocusing.

Additional plots and discussion

For all tested settings of the variance of the training distribution, σ2
0, and the variance of the

label noise, σ2
ϵ , autofocusing yielded positive improvement to the design objective (Eq. (2.1))

on average over 50 trials (Figure 2.2). For a more comprehensive understanding of the effects
of autofocusing, here we pinpoint specific trials where autofocusing decreased the objective,
compared to a naive approach with a fixed surrogate. Such trials were rare, and occurred
in regimes where one would not reasonably expect autofocusing to provide a benefit. In
particular, as discussed in Section 2.5, such regimes include when σ2

0 is too small, such that
training data are unlikely to be close to the global maximum, and when σ2

0 is too large,
such that the training data already include points around the global maximum and a fixed
surrogate should be suitable for successful design. Similarly, when the label noise variance,
σ2
ϵ , is too large, the training data are no longer informative and no procedure should hope

to perform well systematically. We now walk through each of these regimes.
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(a) Example trial with low-variance training distribution and no label noise, (σ0, σϵ) = (1.6, 0).

(b) Example trial with low-variance training distribution and high label noise, (σ0, σϵ) = (1.6, 0.38).

Figure 2.3: Effect of autofocusing (AF) compared to without (non-AF) for low-
variance training distributions and varying amounts of label noise. Each row shows
snapshots of CbAS in a different experimental regime, from initialization (leftmost panel), to an intermediate
iteration (middle panel), to the final iteration (rightmost panel). As in Figure 2.1, the vertical axis represents
both y values (for the surrogate and ground truth) and probability density values (of the training distribution,
p0(x), and search distributions, pθ(t)(x)). Shaded envelopes correspond to ±1 standard deviation of the
oracles, σβ(t) , with the surrogate expectations, µβ(t)(x), shown as a solid line. Greyscale of training points
corresponds to their importance weights used in autofocusing. In the rightmost panels, for easy visualization
of the final search models achieved with and without AF, the stars and dotted horizontal lines indicate the
ground-truth values corresponding to the points of maximum density.

When σ2
0 was small and there was no label noise, we observed a few trials where the final

search model placed less mass under the global maximum with autofocusing than without.
This effect was due to increased standard deviation of the autofocused surrogate, induced
by high variance of the importance weights (Figure 2.3a). When σ2

0 was small and σ2
ϵ was

extremely large, a few trials yielded lower final objectives with autofocusing by insignificant
margins; in such cases, the label noise was overwhelming enough that the search model did
not move much anyway, either with or without autofocusing (Figure 2.3b). Similarly, when
σ2
0 was large and there was no label noise, a few trials yielded lower final objectives with

autofocusing than without, by insignificant margins (Figure 2.4a).
Interestingly, when the variances of both the training distribution and label noise were
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(a) Example trial with high-variance training distribution and no label noise (σ0, σϵ) = (2.2, 0).

(b) Example trial with high-variance training distribution and high label noise (σ0, σϵ) = (2.2, 0.38).

Figure 2.4: Effect of autofocusing (AF) compared to without (non-AF) for high-
variance training distributions and varying amounts of label noise. Continuation of
Figure 2.3.

high, autofocusing yielded positive improvement for all trials. In this regime, by encouraging
the surrogate to fit most accurately to the points with the highest labels, autofocusing
resulted in search models with greater mass under the global maximum than the fixed-
surrogate approach, which was more influenced by the extreme label noise (Figure 2.4b).

As discussed in Section 2.5, in practice it is often the case that 1) practitioners can
collect reasonably informative training data for the application of interest, such that some
exceptional examples are measured (corresponding to sufficiently large σ2

0), and 2) there
is always label noise, due to measurement error (corresponding to non-zero σ2

ϵ ). Thus,
we expect many design applications in practice to fall in the intermediate regime where
autofocusing tends to yield positive improvements over a fixed-surrogate approach (Figure
2.2, Table 2.1).

Designing superconductors with maximal critical temperature

Pre-processing. Each of the 21, 263 materials in the superconductivity data from [69] is
represented by a vector of eighty-one real-valued features. We zero-centered and normalized
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Figure 2.5: Training distribution and initial surrogate for designing superconduc-
tors. Simulated training data were generated from a training distribution, p0(x), which was a multivariate
Gaussian fit to data points with ground-truth expectations below the 80th percentile. The left panel shows
histograms of the ground-truth expectations of these original data points, and the ground-truth expectations
of simulated training data. The right panel illustrates the error of an initial surrogate used in the exper-
iments, by plotting the ground-truth and predicted labels of 10, 000 test points drawn from the training
distribution. The RMSE here was 7.31.

each feature to have unit variance.

Ground-truth model. To construct the model of the ground-truth expectation, E[y |
x], we fit gradient-boosted regression trees using xgboost and the same hyperparameters
reported in [69], which selected them using grid search. The one exception was that we used
200 trees instead of 750 trees, which yielded a hold-out root mean squared error (RMSE) of
9.51 compared to the hold-out RMSE of 9.5 reported in [69]. To remove collinear features
noted in [69], we also performed feature selection by thresholding xgboost’s in-built feature
weights, which quantifies how many times a feature is used to split the data across all trees.
We kept the sixty most important features according to this score, which decreased the
hold-out RMSE from 9.51 when using all the features to 9.45. The resulting input space for
design was then X = R60.

Training distribution. To construct the training distribution, we selected the 17, 015
points from the dataset whose ground-truth expectations were below the 80th percentile
(equivalent to 73.8 degrees Kelvin, compared to the maximum of 138.3 degrees Kelvin in
the full dataset). We used MLE with these points to fit a full-rank multivariate normal,
which served as the training distribution, p0(x), from which we drew n = 17, 015 simulated
training points, {xi}ni=1, for each trial. For each xi we drew one sample, yi ∼ N (E[y | xi], 1),
to obtain a noisy ground-truth label. This training distribution produced simulated training
points with a distribution of ground-truth expectations, E[y | x], reasonably comparable to
that of the points from the original dataset (Figure 2.5, left panel).
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Surrogate. For the surrogate, we trained an ensemble of three neural networks to max-
imize log-likelihood according to the method described in [62] (without adversarial exam-
ples). Each model in the ensemble had the architecture Input(60) → Dense(100) →
Dense(100) → Dense(100) → Dense(100) → Dense(10) → Dense(2), with elu nonlin-
earities everywhere except for linear output units. Out of the range of hidden layer numbers
and sizes we tested, this architecture minimized RMSE on held-out data. Each model was
trained using Adam [56] with a learning rate of 5×10−4 for a maximum of 2000 epochs, with
a batch size of 64 and early stopping based on the log-likelihood of a validation set. Across
the 10 trials, the initial oracles had hold-out RMSEs between 6.95 and 7.40 degrees Kelvin
(Figure 2.5, right panel).

Autofocusing. During autofocusing, each model in the surrogate ensemble was retrained
with the re-weighted training data, using the same optimization hyperparameters as the ini-
tial surrogate, except early stopping was based on the re-weighted log-likelihood of the valida-
tion set. For the results in Table 2.1, to help control the variance of the importance weights,
we flattened the importance weights to wα

i where α = 0.2 [33] and also self-normalized them
[51]. We found that autofocusing yielded similarly widespread benefits for a wide range of
values of α, including α = 1, which corresponds to a “pure” autofocusing strategy without
variance control (Table 2.2).

MBO algorithms. Here, we provide a brief description of the different MBO algorithms
used in the superconductivity experiments (Tables 2.1, 2.2, 2.3, 2.4, Figures 2.6, 2.7, 2.8).
Wherever applicable, we anchor these descriptions in the notation and procedure of Algo-
rithm 1.

• Design by Adaptive Sampling (DbAS) [76]. A basic EDA that anneals a sequence of
relaxed constraint sets, S(t), such S(t) ⊇ S(t+1) ⊇ S, to iteratively solve Eq. (2.2). At
iteration t, DbAS uses

V (x̃
(t)
i ) = Pβ(t−1)(y ∈ S(t) | x̃(t)

i ).

• Conditioning by Adaptive Sampling (CbAS) [76]. Seeks to estimate the training distri-
bution conditioned on the desired constraint set S (Eq. (2.8)). Similar mechanistically
to DbAS, as it involves constructing a sequence of relaxed constraint sets, but also
incorporates an implicit trust region based on the training distribution. At iteration
t, CbAS uses V (x̃

(t)
i ) = (p0(x̃

(t)
i )/pθ(t−1)(x̃

(t)
i ))Pβ(t−1)(y ∈ S(t) | x̃(t)

i ). See Algorithm 2;
non-autofocused CbAS excludes Steps 7 and 8.

• Reward-Weighted Regression (RWR) [32]. An EDA used in the reinforcement learning
community. At iteration t, RWR uses

V (x̃
(t)
i ) = v′i/

m∑
j=1

v′j,
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where v′i = exp(γEβ(t−1) [y | x̃(t)
i ])) and γ > 0 is a hyperparameter.

• “Feedback” Mechanism (FB) [79]. A heuristic version of CbAS, which maintains sam-
ples from previous iterations to prevent the search model from changing too rapidly.
At Step 4 in Algorithm 1, FB uses samples from the current iteration with surrogate
expectations that surpass some percentile threshold, along with a subset of promising
samples from previous iterations.

• Cross-Entropy Method with Probability of Improvement (CEM-PI) [76]. A baseline
EDA that uses the cross-entropy method [8, 10] to maximize the probability of im-
provement, an acquisition function commonly used in Bayesian optimization [47]. (At

iteration t, CEM-PI uses V (x̃
(t)
i ) = 1[Pβ(t)(y ≥ ymax | x̃(t)

i ) ≥ γt], where ymax is the max-
imum label observed in the training data, and, following the cross-entropy method,
γt is some percentile of the probabilities of improvement according to the surrogate,
{Pβ(t)(y ≥ ymax | x̃(t)

i )}mi=1.)

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [26]. A state-of-the-art
EDA developed for the special case of multivariate Gaussian search models. We used
it to maximize the probability of improvement according to the surrogate,

Pβ(t)(y ≥ ymax | x̃(t)
i ).

CbAS, DbAS, FB, and CEM-PI all have hyperparameters corresponding to a percentile
threshold (for CbAS and DbAS, this is used to construct the relaxed constraint sets). We
set this hyperparameter to 90 for all these methods. For RWR, we set γ = 0.01, and for
CMA-ES, we set the step size hyperparameter to σ = 0.01.

Additional experiments

Importance weight variance control. To see how much importance weight variance
affects autofocusing, we conducted the same experiments as Table 2.1, except without flat-
tening the weights to reduce variance (Table 2.2). For CbAS, DbAS, RWR, FB, and CEM-PI,
autofocusing without variance control yielded statistically significant improvements to the
majority of scores, though with somewhat lesser effect sizes than in Table 2.1 when the
weights were flattened with α = 0.2. For CMA-ES, the only significant improvement autofo-
cusing rendered was to the Spearman correlation between the surrogate and the ground-truth
expectations. Note that CMA-ES is a state-of-the-art method for optimizing a given objec-
tive with a multivariate Gaussian search model [26], which likely led to liberal movement of
the search model away from the training distribution and therefore high importance weight
variance.

Surrogate capacity. To see how different surrogate capacities affect the improvements
gained from autofocusing, we ran the same experiments as Table 2.1 with two different surro-
gate architectures. One architecture had higher capacity than the original surrogate (hidden
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(a) CbAS.

(b) DbAS.

Figure 2.6: Trajectories of DbAS and CbAS without (left) and with (right) auto-
focusing for designing superconducting materials. Trajectories are shown for one example
of the trials used to compute Table 2.1. At each iteration, we extract the samples with surrogate expec-
tations greater than the 80th percentile. For these samples, solid lines give the median surrogate (green)
and ground-truth (indigo) expectations. The shaded regions capture 70 and 95 percent of these quantities.
The RMSE at each iteration is between the surrogate and ground-truth expectations of all samples. The
horizontal axis is sorted by increasing 80th percentile of surrogate expectations (i.e., the samples plotted at
iteration 1 are from the iteration whose 80th percentile of surrogate expectations was lowest). This ordering
exposes the trend of whether the surrogate expectations of samples were correlated to their ground-truth
expectations. Four more algorithms are shown in Figures 2.7,2.8.
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(a) RWR.

(b) FB.

Figure 2.7: Trajectories of RWR and FB without (left) and with (right) autofo-
cusing for designing superconducting materials. Continuation of Figure 2.6.

Table 2.2: Designing superconducting materials without importance weight vari-
ance control. Same experiments and caption as Table 2.1, except with α = 1 (no flattening of the
importance weights to control variance).

Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓ Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓
CbAS DbAS

Original 51.5 103.8 0.11 0.05 17.2 57.0 98.4 0.11 0.01 29.6
Autofocused73.2 116.0 2.29 0.56 12.8 69.4 109.9 0.68 0.01 27.4
Mean Diff. 21.8** 12.2** 2.18** 0.51** -4.4** 12.4** 11.5** 0.58** 0.01 -2.2

RWR FB

Original 43.4 102.0 0.05 0.92 7.4 9.2 100.6 0.14 40.09 17.5
Autofocused68.5 113.4 1.34 0.63 14.2 63.4 110.8 0.63 0.49 11.2
Mean Diff. 25.1** 11.5** 1.30** -0.29** 6.8** 14.2** 10.2* 0.50** 0.40** -6.3**

CEM-PI CMA-ES

Original 34.5 55.8 0.00 -0.16 148.3 42.1 69.4 0.00 0.27 27493.2
Autofocused59.5 89.1 0.39 0.02 46.9 45.1 70.7 0.00 0.50 27944.9
Mean Diff. 25.0* 33.3* 0.39* 0.18 -101.4** 3.1 1.2 0 0.22* 451.7
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(a) CEM-PI.

(b) CMA-ES.

Figure 2.8: Trajectories of CEM-PI and CMA-ES without (left) and with (right)
autofocusing for designing superconducting materials. Continuation of Figure 2.6.

layer sizes of (200, 200, 100, 100, 10) compared to (100, 100, 100, 100, 10); Table
2.3), and one one had lower capacity (hidden layer sizes of (100, 100, 10); Table 2.4).
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Table 2.3: Designing superconducting materials with higher-capacity model. Same
experiments and caption as Table 1, except using a surrogate architecture with hidden layers 200→ 200→
100→ 100→ 10.

Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓ Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓
CbAS DbAS

Original 48.3 100.8 0.05 0.03 19.6 55.3 98.6 0.025 -0.02 32.1
Autofocused 79.0 119.4 4.35 0.55 13.5 81.6 113.3 5.33 0.01 27.0
Mean Diff. 30.7** 18.6** 4.30** 0.52** -6.1** 26.4** 14.8** 5.30** 0.03 -5.1

RWR FB

Original 36.5 81.3 0.00 -0.24 55.5 47.8 101.5 0.09 0.06 18.3
Autofocused 73.4 114.8 2.05 0.72 12.7 63.5 113.1 0.58 0.58 10.7
Mean Diff. 36.9** 33.4** 2.05** 0.97** -42.8** 15.7** 11.7** 0.49** 0.51** -7.5**

CEM-PI CMA-ES

Original 48.2 58.3 0.00 0.09 271.4 39.0 63.1 0.00 0.26 6774.6
Autofocused 64.5 84.1 0.48 -0.14 61.07 53.1 79.0 0.01 0.48 10183.7
Mean Diff. 16.3 25.9* 0.48 -0.22 -210.3 14.1* 15.9* 0.01 0.23 3409.1

Table 2.4: Designing superconducting materials with lower-capacity model. Same
experiments and caption as Table 1, except using a surrogate architecture with hidden layers 100→ 100→
10.

Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓ Median ↑ Max ↑ PCI ↑ ρ ↑ RMSE ↓

Original 0.06 46.8 98.5 -0.03 23.8 0.02 56.3 97.7 0.00 37.0
Autofocused1.4 67.0 114.3 0.52 13.0 1.3 72.5 108.4 0.04 27.6
Mean Diff. 1.3** 20.2** 15.8** 0.55** -10.9** 1.3** 16.2** 10.7** 0.03 -9.4**

RWR FB

Original 0.00 30.9 76.8 -0.33 83.5 0.04 47.2 100.4 0.02 19.9
Autofocused0.68 66.0 112.6 0.57 18.3 0.43 58.2 111.4 0.50 12.3
Mean Diff. 0.68** 35.1** 35.8** 0.90** -65.2** 0.40** 11.0** 11.0** 0.48** -7.6**

CEM-PI CMA-ES

Original 0.00 36.3 46.2 -0.01 382.4 0.00 36.9 62.3 0.10 9587.1
Autofocused0.04 53.9 71.3 -0.04 210.8 0.00 43.9 80.0 0.29 40858.6
Mean Diff. 0.04 17.6 25.1* -0.03 -171.6 0 7.0* 17.7* 0.19** 31271.5**
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Chapter 3

Conformal prediction under feedback
covariate shift for biomolecular design

The material in this chapter is based on work co-authored with Stephen Bates, Anastasios
N. Angelopoulos, Jennifer Listgarten, and Michael I. Jordan [131].

3.1 Uncertainty quantification under feedback loops

Consider a protein engineer who is interested in designing a protein with high fitness—
some real-valued measure of its desirability, such as fluorescence or therapeutic efficacy. The
engineer has a data set of various protein sequences, denoted Xi, labeled with experimental
measurements of their fitnesses, denoted Yi, for i = 1, . . . , n. The design problem is to
propose a novel sequence, Xtest, that has higher fitness, Ytest, than any of these. To this end,
the engineer trains a regression model on the data set, then identifies a novel sequence that
the model predicts to be more fit than the training sequences. Can she trust the model’s
prediction for the designed sequence?

This is an important question to answer, not just for the protein design problem just
described, but for any deployment of machine learning where the test data depends on the
training data. More broadly, settings ranging from Bayesian optimization to active learning
to strategic classification involve feedback loops in which the learned model and data influence
each other in turn. As feedback loops violate the standard assumptions of machine learning
algorithms, we must be able to diagnose when a model’s predictions can and cannot be
trusted in their presence.

In this work, we address the problem of uncertainty quantification when the training and
test data exhibit a type of dependence that we call feedback covariate shift (FCS). A joint
distribution of training and test data falls under FCS if it satisfies two conditions. First,
the test input, Xtest, is selected based on independently and identically distributed (i.i.d.)
training data, (X1, Y1), . . . , (Xn, Yn). That is, the distribution of Xtest is a function of the
training data. Second, PY |X , the ground-truth distribution of the label, Y , given any input,
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Figure 3.1: Feedback covariate shift. In the left graph, the blue distribution represents the
training input distribution, PX . The dark gray line sandwiched by lighter gray lines represents the mean
± the standard deviation of PY |X , the conditional distribution of the label given the input, which does not
change between the training and test data distributions (left and right graphs, respectively). The blue dots
represent training data, Z1:n = {Z1, . . . , Zn}, where Zi = (Xi, Yi), which is used to fit a regression model
(middle). Algorithms that use that trained model to make decisions, such as in design problems, active
learning, and Bayesian optimization give rise to a new test-time input distribution, PX;Z1:n

(right graph,
green distribution). The green dots represent test data.

X, does not change between the training and test data distributions. For example, returning
to the example of protein design, the training data is used to select the designed protein,
X test; the distribution of X test is determined by some optimization algorithm that calls the
regression model in order to design the protein. However, since the fitness of any given
sequence is some property dictated by nature, PY |X stays fixed. Representative examples of
FCS include:

• Algorithms that use predictive models to explicitly choose the test distri-
bution, including the design of proteins, small molecules, and materials with favorable
properties, active learning, adaptive experimental design, Bayesian optimization, and
machine learning-guided scientific discovery.

• Algorithms that use predictive models to perform actions that change a
system’s state, such as autonomous driving algorithms that use computer vision
systems.

We anchor our discussion and experiments by focusing on protein design problems. However,
the methods and insights developed herein are applicable to a variety of FCS problems.
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Quantifying uncertainty with valid confidence sets

Given a regression model of interest, µ, we quantify its uncertainty on an input with a
confidence set. A confidence set is a function, C : X → 2R, that maps a point from some
input space, X , to a set of real values that the model considers to be plausible labels.1

Informally, we will examine the model’s error on the training data in order to quantify its
uncertainty about the label, Ytest, of an input, Xtest. Formally, using the notation Zi =
(Xi, Yi), i = 1, . . . , n and Ztest = (Xtest, Ytest), our goal is to construct confidence sets that
have the frequentist statistical property known as coverage.

Definition 1. Consider data points from some joint distribution, (Z1, . . . , Zn, Ztest) ∼ P.
Given a miscoverage level, α ∈ (0, 1), a confidence set, C : X → 2R, which may depend on
Z1, . . . , Zn, provides coverage under P if

P (Ytest ∈ C(Xtest)) ≥ 1− α, (3.1)

where the probability is over all n+ 1 data points, (Z1, . . . , Zn, Ztest) ∼ P.

There are three important aspects of this definition. First, coverage is with respect to
a particular joint distribution of the training and test data, P , as the probability state-
ment in Eq. (3.1) is over random draws of all n + 1 data points. That is, if one draws
(Z1, . . . , Zn, Ztest) ∼ P and constructs the confidence set for Xtest based on a regression
model fit to (Z1, . . . , Zn), then the confidence set contains the true test label, Ytest, a fraction
of 1−α of the time. In this work, P can be any distribution captured by FCS, as we describe
later in more detail.

Second, note that Eq. (3.1) is a finite-sample statement: it holds for any number of
training data points, n. Finally, coverage is a marginal probability statement, which averages
over all the randomness in the training and test data; it is not a statement about conditional
probabilities, such as P(Ytest ∈ C(Xtest) | Xtest). We will call a family of confidence sets, Cα,
indexed by the miscoverage level, α ∈ (0, 1), valid if they provide coverage for all α ∈ (0, 1).

When the training and test data are exchangeable (e.g., independently and identically
distributed), conformal prediction is an approach for constructing valid confidence sets for
any regression model [11, 23, 71]. Though recent work has extended the methodology to cer-
tain forms of distribution shift [84, 91, 112, 118, 119], to our knowledge no existing approach
can produce valid confidence sets when the test data depends on the training data. Here,
we generalize conformal prediction to the FCS setting, enabling uncertainty quantification
under this prevalent type of dependence between training and test data.

Our contributions

First, we formalize the concept of feedback covariate shift, which describes a type of distri-
bution shift that emerges under feedback loops between learned models and the data they

1We will use the term confidence set to refer to both this function and the output of this function for a
particular input; the distinction will be clear from the context.
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operate on. Second, we introduce a generalization of conformal prediction that produces
valid confidence sets under feedback covariate shift for any regression model. We also in-
troduce randomized versions of these confidence sets that achieve a stronger property called
exact coverage. Finally, we demonstrate the use of our method to quantify uncertainty for
the predicted fitness of designed proteins, using several real data sets.

We recommend using our method for design algorithm selection, as it enables practi-
tioners to identify settings of algorithm hyperparameters that achieve acceptable trade-offs
between high predictions and low predictive uncertainty.

Prior work

Our study investigates uncertainty quantification in a setting that brings together the well-
studied concept of covariate shift [12, 22, 33, 40] with feedback between learned models
and data distributions, a widespread phenomenon in real-world deployments of machine
learning [58, 99]. Indeed, beyond the design problem, feedback covariate shift is one way of
describing and generalizing the dependence between data at successive iterations of active
learning, adaptive experimental design, and Bayesian optimization.

Our work builds upon conformal prediction, a framework for constructing confidence sets
that satisfy the finite-sample coverage property in Eq. (3.1) for arbitrary model classes [9,
23, 144]. Though originally based on the premise of exchangeable (e.g., independently and
identically distributed) training and test data, the framework has since been generalized
to handle various forms of distribution shift, including covariate shift [84, 118], label shift
[119], arbitrary distribution shifts in an online setting [112], and test distributions that are
nearby the training distribution [91]. Conformal approaches have also been used to detect
distribution shift [93, 105, 108, 134, 135, 138, 146].

We call particular attention to the work of Tibshirani et al. [84] on conformal prediction
in the context of covariate shift, whose technical machinery we adapt to generalize conformal
prediction to feedback covariate shift. In covariate shift, the training and test input distri-
butions differ, but, critically, the training and test data are still independent; we henceforth
refer to this setting as standard covariate shift. The chief innovation of our work is to for-
malize and address a ubiquitous type of dependence between training and test data that is
absent from standard covariate shift, and, to the best of our knowledge, absent from any
other form of distribution shift to which conformal approaches have been generalized.

For the design problem, in which a regression model is used to propose new inputs—such
as a protein with desired properties—it is important to consider the predictive uncertainty
of the designed inputs, so that we do not enter “pathological” regions of the input space
where the model’s predictions are desirable but untrustworthy [76, 92]. Gaussian process
regression (GPR) models are popular tools for addressing this issue, and algorithms that
leverage their posterior predictive variance [16, 47] have been used to design enzymes with
enhanced thermostability and catalytic activity [52, 113]. Despite these successes, it is not
clear how to obtain practically meaningful theoretical guarantees for the posterior predictive
variance, and consequently to understand in what sense we can trust it. Similarly, ensembling
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strategies such as [62], which are increasingly being used to quantify uncertainty for deep
neural networks [76, 87, 92, 98], as well as uncertainty estimates that are explicitly learned
by deep models [121] do not come with formal guarantees. A major advantage of conformal
prediction is that it can be applied to any modelling strategy, and can be used to calibrate
any existing uncertainty quantification approach, including those aforementioned.

3.2 Conformal prediction under feedback covariate

shift

Feedback covariate shift

We begin by formalizing feedback covariate shift (FCS), which describes a setting in which
the test data depends on the training data, but the relationship between inputs and labels
remains fixed.

We first set up our notation. Recall that we let Zi = (Xi, Yi), i = 1, . . . , n, denote n
independently and identically distributed (i.i.d.) training data points comprising inputs,
Xi ∈ X , and labels, Yi ∈ R. Similarly, let Ztest = (Xtest, Ytest) denote the test data point.
We use Z1:n = {Z1, . . . , Zn} to denote the multiset of the training data, in which values are
unordered but multiple instances of the same value appear according to their multiplicity.
We also use the shorthand Z−i = Z1:n \ {Zi}, which is a multiset of n − 1 values that we
refer to as the i-th leave-one-out training data set.

FCS describes a class of joint distributions over (Z1, . . . , Zn, Ztest) that have the depen-
dency structure described informally in the Introduction. Formally, we say that training and
test data exhibit FCS when they can be generated according to the following three steps.

1. The training data, (Z1, . . . , Zn), are drawn i.i.d. from some distribution:

Xi
i.i.d∼ PX ,

Yi ∼ PY |Xi
, i = 1, . . . , n.

2. The realized training data induces a new input distribution over X , denoted P̃X;Z1:n to
emphasize its dependence on the training data, Z1:n.

3. The test input is drawn from this new input distribution, and its label is drawn from
the unchanged conditional distribution:

Xtest ∼ P̃X;Z1:n

Ytest ∼ PY |Xtest .

The key object in this formulation is the test input distribution, P̃X;Z1:n . Prior to collect-
ing the training data, Z1:n, the specific test input distribution is not yet known. The observed
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training data induces a distribution of test inputs, P̃X;Z1:n , that the model encounters at test
time (for example, through any of the mechanisms summarized in the Introduction).

This is an expressive framework: the object P̃X;Z1:n can be an arbitrarily complicated
mapping from a data set of size n to an input distribution, so long as it is invariant to
the order of the data points. There are no other constraints on this mapping; it need not
exhibit any notion of smoothness, for example. In particular, FCS encapsulates any design
algorithm that makes use of a regression model fit to the training data, Z1:n, in order to
propose designed inputs.

Conformal prediction for exchangeable data

To explain how to construct valid confidence sets under FCS, we first walk through the
intuition behind conformal prediction in the setting of exchangeable data, then present the
adaptation to accommodate FCS.

Score function. First, we introduce the notion of a score function, S : (X × R) × (X ×
R)m → R, which is an engineering choice that quantifies how well a given data point “con-
forms” to a multiset of m data points, in the sense of evaluating whether the data point
comes from the same conditional distribution, PY |X , as the data points in the multiset.2 A
representative example is the residual score function, S((X, Y ), D) = |Y −µD(X)|, where D
is a multiset of m data points and µD is a regression model trained on D. A large residual
signifies a data point that the model cannot easily predict, which suggests it does not obey
the input-label relationship present in the training data.

More generally, we can choose the score to be any notion of uncertainty of a trained
model on the point (X, Y ), heuristic or otherwise, such as the posterior predictive variance
of a Gaussian process regression model [52, 113], the variance of the predictions from an
ensemble of neural networks [62, 87, 98], uncertainty estimates learned by deep models [88],
or even the outputs of other calibration procedures [70]. Regardless of the choice of the score
function, conformal prediction produces valid confidence sets; however, the particular choice
of score function will determine the size, and therefore, informativeness, of the resulting
sets. Roughly speaking, a score function that better reflects the likelihood of observing the
given point, (X, Y ), under the true conditional distribution that governs D, PY |X , results in
smaller valid confidence sets.

Imitating exchangeable scores. At a high level, conformal prediction is based on the
observation that when the training and test data are exchangeable, their scores are also
exchangeable. More concretely, assume we use the residual score function, S((X, Y ), D) =
|Y −µD(X)|, for some regression model class. Now imagine that we know the label, Ytest, for

2Since the second argument is a multiset of data points, the score function must be invariant to the
order of these data points. For example, when using the residual as the score, the regression model must be
trained in a way that is agnostic to the order of the data points.
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the test input, Xtest. For each of the n+ 1 training and test data points, (Z1, . . . , Zn, Ztest),
we can compute the score using a regression model trained on the remaining n data points;
the resulting n+ 1 scores are exchangeable.

In reality, of course, we do not know the true label of the test input. However, this
key property—that the scores of exchangeable data yield exchangeable scores—enables us to
construct valid confidence sets by including all “candidate” values of the test label, y ∈ R,
that yield scores for the n+1 data points (the training data points along with the candidate
test data point, (Xtest, y)) that appear to be exchangeable. For a given candidate label,
the conformal approach assesses whether or not this is true by comparing the score of the
candidate test data point to an appropriately chosen quantile of the training data scores.

Conformal prediction under FCS

When the training and test data are under FCS, their scores are no longer exchangeable,
since the training and test inputs are neither independent nor from the same distribution.
Our solution to this problem will be to weight each training and test data point to take
into account these two factors. Thereafter, we can proceed with the conformal approach of
including all candidate labels such that the (weighted) candidate test data point is sufficiently
similar to the (weighted) training data points. Toward this end, we introduce two quantities:
(1) a likelihood ratio function, which will be used to define the weights, and (2) the quantile
of a distribution, which will be used to assess whether a candidate test data point conforms
to the training data.

The likelihood ratio function for an input, X, which depends on a multiset of data points,
D, is given by

v(X;D) =
p̃X;D(X)

pX(X)
, (3.2)

where p̃X;D and pX denote the densities of the test and training input distributions, re-
spectively, and the test input distribution is the particular one indexed by the data set,
D.

This quantity is the ratio of the likelihoods under these two distributions, and as such, is
reminiscent of weights used to modify various statistical procedures to accommodate stan-
dard covariate shift [22, 33, 84]. What distinguishes its use here is that our particular
likelihood ratio is indexed by a multiset and depends on which data point is being evaluated
as well as the candidate label, as will become clear shortly.

Consider a discrete distribution with probability masses p1, . . . , pn located at support
points s1, . . . , sn, respectively, where si ∈ R and pi ≥ 0,

∑
i pi = 1. We define the β-quantile

of this distribution as

Quantileβ

(
n∑

i=1

pi δsi

)
= inf

{
s :
∑
i:si≤s

pi ≥ β

}
,
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where δsi is a unit point mass at si.
We now define the confidence set. For any score function, S, any miscoverage level,

α ∈ (0, 1), and any test input, Xtest ∈ X , define the full conformal confidence set as

Cα(Xtest) =

{
y ∈ R : Sn+1(Xtest, y) ≤ Quantile1−α

( n+1∑
i=1

wy
i (Xtest) δSi(Xtest,y)

)}
, (3.3)

where

Si(Xtest, y) = S(Zi, Z−i ∪ {(Xtest, y)}), i = 1, . . . , n,

Sn+1(Xtest, y) = S((Xtest, y), Z1:n),

which are the scores for each of the training and candidate test data points, when compared
to the remaining n data points, and the weights for these scores are given by

wy
i (Xtest) ∝ v(Xi;Z−i ∪ {(Xtest, y)}), i = 1, . . . , n,

wy
n+1(Xtest) ∝ v(Xtest;Z1:n),

(3.4)

which are normalized such that
∑n+1

i=1 wy
i (Xtest) = 1.

In words, the confidence set in Eq. (3.3) includes all real values, y ∈ R, such that the
“candidate” test data point, (Xtest, y), has a score that is sufficiently similar to the scores of
the training data. Specifically, the score of the candidate test data point needs to be smaller
than the (1−α)-quantile of the weighted scores of all n+1 data points (the n training data
points as well as the candidate test data point), where the i-th data point is weighted by
wy

i (Xtest).
Our main result is that this confidence set provides coverage under FCS (see Section 3.5

for the proof).

Theorem 1. Suppose data are generated under feedback covariate shift and assume P̃X;D

is absolutely continuous with respect to PX for all possible values of D. Then, for any
miscoverage level, α ∈ (0, 1), the full conformal confidence set, Cα, in Eq. (3.3) satisfies the
coverage property in Eq. (3.1), namely, P(Ytest ∈ Cα(Xtest)) ≥ 1− α.

Since we can supply any domain-specific notion of uncertainty as the score function, this
result implies we can interpret the condition in Eq. (3.3) as a calibration of the provided
score function that guarantees coverage. That is, our conformal approach can complement
any existing uncertainty quantification method by endowing it with coverage under FCS.

We note that although Theorem 1 provides a lower bound on the probability P(Ytest ∈
Cα(Xtest)), one cannot establish a corresponding upper bound without further assumptions
on the training and test input distributions. However, by introducing randomization to
the β-quantile, we can construct a randomized version of the confidence set, Crand

α (Xtest),
that is not conservative and satisfies P(Ytest ∈ Crand

α (Xtest)) = 1− α, a property called exact
coverage. See Theorem 3 for details.
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Estimating confidence sets in practice. In practice, one cannot check all possible
candidate labels, y ∈ R, to construct a confidence set. Instead, as done in previous work
on conformal prediction, we estimate Cα(Xtest) by defining a finite grid of candidate labels,
Y ⊂ R, and checking the condition in Eq. (3.3) for all y ∈ Y . Algorithm 4 outlines a generic
recipe for computing Cα(Xtest) for a given test input; see Section 3.2 for important special
cases in which Cα(Xtest) can be computed more efficiently.

Algorithm 4 Pseudocode for approximately computing Cα(Xtest)

Input: Training data, (Z1, . . . , Zn), where Zi = (Xi, Yi); test input, Xtest; finite grid of
candidate labels, Y ⊂ R; likelihood ratio function subroutine, v(· ; ·); and score function
subroutine S(·, ·).
Output: Confidence set, Cα(Xtest) ⊂ Y .
1: Cα(Xtest)← ∅
2: Compute v(Xtest;Z1:n)
3: for y ∈ Y do
4: for i = 1, . . . , n do
5: Compute Si(Xtest, y) and v(Xi;Z−i ∪ {(Xtest, y)})
6: end for
7: Compute Sn+1(Xtest, y)
8: for i = 1, . . . , n+ 1 do
9: Normalize wy

i (Xtest) according to Eq. (3.4)
10: end for
11: qy ← Quantile1−α

(∑n+1
i=1 wy

i (Xtest) δSi(Xtest,y)

)
12: if Sn+1(Xtest, y) ≤ qy then
13: Cα(Xtest)← Cα(Xtest) ∪ {y}
14: end if
15: end for

Relationship with exchangeable and standard covariate shift settings. The
weights assigned to each score, wy

i (Xtest) in Eq. (3.4), are the distinguishing factor between
the confidence sets constructed by conformal approaches for the exchangeable, standard co-
variate shift, and FCS settings. For exchangeable training and test data, these weights are
simply 1/(n + 1). To accommodate standard covariate shift, where the training and test
data are independent, these weights are also normalized likelihood ratios—but, importantly,
the test input distribution in the numerator is fixed, rather than data-dependent as in the
FCS setting [84]. That is, the weights are defined using one fixed likelihood ratio func-
tion, v(·) = p̃X(·)/pX(·), where p̃X is the density of the single test input distribution under
consideration.

In contrast, under FCS, observe that the likelihood ratio that is evaluated in Eq. (3.4),
v(·;D) from Eq. (3.2), is different for each of the n+1 training and candidate test data points
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and for each candidate label, y ∈ R. To weight the i-th training score, we evaluate the like-
lihood ratio of Xi where the test input distribution is the one induced by Z−i ∪ {(Xtest, y)},

v(Xi;Z−i ∪ {(Xtest, y)}) =
p̃X;Z−i∪{(Xtest,y)}(Xi)

pX(Xi)
.

That is, the weights under FCS take into account not just a single test input distribution,
but every test input distribution that can be induced when we treat a leave-one-out training
data set combined with a candidate test data point, Z−i ∪ {(Xtest, y)}, as the training data.

To further appreciate the relationship between the standard and feedback covariate shift
settings, consider the weights used in the standard covariate shift approach if we treat PX;Z1:n

as the test input distribution. The extent to which PX;Z1:n differs from PX;Z−i∪{(Xtest,y)},
for any i = 1, . . . , n and y ∈ R, determines the extent to which the weights used under
standard covariate shift deviate from those used under FCS. In other words, since Z1:n and
Z−i∪{(Xtest, y} differ in exactly one data point, the similarity between the standard covariate
shift and FCS weights depends on the “smoothness” of the mapping from D to P̃X;D. For
example, the more algorithmically stable the learning algorithm through which P̃X;D depends
on D is, the more similar these weights will be.

Input distributions are often known in the design problem. The design problem is
a unique setting in which we have control over the data-dependent test input distribution,
PX;D, since we choose the procedure used to design an input. In the simplest case, some
design procedures sample from a distribution whose form is explicitly chosen, such as an
energy-based model whose energy function is proportional to the predictions from a trained
regression model [110], or a model whose parameters are set by solving an optimization
problem (e.g., the training of a generative model) [73, 76, 80, 92, 101, 107, 114, 120, 124].
In either setting, we know the exact form of the test input distribution, which also absolves
the need for density estimation.

In other cases, the design procedure involves iteratively applying a gradient to, or oth-
erwise locally modifying, an initial input in order to produce a designed input [61, 68, 97,
103, 109, 111]. Due to randomness in either the initial input or the local modification rule,
such procedures implicitly result in some distribution of test inputs. Though we do not have
access to its explicit form, knowledge of the design procedure can enable us to estimate it
much more readily than in a naive density estimation setting. For example, we can simulate
the design procedure as many times as is needed to sufficiently estimate the resulting density,
whereas in density estimation in general, we cannot control how many test inputs we can
access.

The training input distribution, PX , is also often known explicitly. In protein design
problems, for example, training sequences are often generated by introducing random sub-
stitutions to a single wild type sequence [76, 110, 111], by recombining segments of several
“parent” sequences [31, 52, 75, 113], or by independently sampling the amino acid at each po-
sition from a known distribution [124, 140]. Conveniently, we can then compute the weights
in Eq. (3.4) exactly without introducing approximation error due to density ratio estimation.
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Finally, we note that, by construction, the design problem tends to result in test input
distributions that place considerable probability mass on regions where the training input
distribution does not. The further the test distribution is from the training distribution in
this regard, the larger the resulting weights on candidate test points, and the larger the
confidence set in Eq. (3.3) will tend to be. This phenomenon agrees with our intuition about
epistemic uncertainty: we should have more uncertainty—that is, larger confidence sets—in
regions of input space where there is less training data.

Efficient computation of confidence sets under feedback covariate
shift

Using Algorithm 4 to construct the full conformal confidence set, Cα(Xtest), requires com-
puting the scores and weights, Si(Xtest, y) and wy

i (Xtest), for all i = 1, . . . , n + 1 and all
candidate labels, y ∈ Y . When the dependence of P̃X;D on D arises from a model trained
on D, then naively, we must train (n+1)×|Y| models in order to compute these quantities.
We now describe two important, practical cases in which this computational burden can
be reduced to fitting n + 1 models, removing the dependence on the number of candidate
labels. In such cases, we can post-process the outputs of these n+ 1 models to calculate all
(n + 1) × |Y| required scores and weights (see Alg. 6 for pseudocode); we refer to this as
computing the confidence set efficiently.

In the following two examples and in our experiments, we use the residual score function,
S((X, Y ), D) = |Y − µD(X)|, where µD is a regression model trained on the multiset D. To
understand at a high level when efficient computation is possible, first let µy

−i denote the
regression model trained on Zy

−i = Z−i ∪ {(Xtest, y)}, the i-th leave-one-out training data
set combined with a candidate test data point. The scores and weights can be computed
efficiently when µy

−i(Xi) is a computationally simple function of the candidate label, y, for
all i—for example, a linear function of y. We discuss two such cases in detail.

Ridge regression. Suppose we fit a ridge regression model, with ridge regularization hy-
perparameter γ, to the training data. Then, we draw the test input vector from a distribution
which places more mass on regions of X where the model predicts more desirable values,
such as high fitness in protein design problems. Recent studies have employed this relatively
simple approach to successfully design novel enzymes with enhanced catalytic efficiencies
and thermostabilities [30, 31, 110].

In the ridge regression setting, the quantity µy
−i(Xi) can be written in closed form as

µy
−i(Xi) =

[(
XT

−iX−i + γI
)−1

XT
−iY

y
−i

]T
Xi (3.5)

=

(
n−1∑
j=1

Y−i;jA−i;j

)T

Xi + (AT
−i;nXi)y,
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where the rows of the matrix X−i ∈ Rn×p are the input vectors in Zy
−i, Y

y
−i = (Y−i, y) ∈ Rn

contains the labels in Zy
−i, the matrix A−i ∈ Rn×p is defined as A−i =

(
XT

−iX−i + γI
)−1

XT
−i,

A−i;j denotes the j-th column of A−i, and Y−i;j denotes the j-th element of Y−i.
Note that the expression in Eq. (3.5) is a linear function of the candidate label, y.

Consequently, as formalized by Alg. 6, we first compute and store the slopes and intercepts
of these linear functions for all i, which can be calculated as byproducts of fitting n+1 ridge
regression models. Using these parameters, we can then compute µy

−i(Xi) for all candidate
labels, y ∈ Y , by simply evaluating a linear function of y instead of retraining a regression
model on Zy

−i. Altogether, beyond fitting n + 1 ridge regression models, Alg. 6 requires
O(n · p · |Y|) additional floating point operations to compute the scores and weights for all
the candidate labels, the bulk of which can be implemented as one outer product between
an n-vector and a |Y|-vector, and one Kronecker product between an (n × p)-matrix and a
|Y|-vector.

Gaussian process regression. Similarly, suppose we fit a Gaussian process regression
model to the training data. We then select a test input vector according to a likelihood that
is a function of the mean and variance of the model’s prediction; such functions are referred
to as acquisition functions in the Bayesian optimization literature.

For a linear kernel, the expression for the mean prediction, µy
−i(Xi), is the same as for

ridge regression (Eq. (3.5)). For arbitrary kernels, the expression can be generalized and
remains a linear function of y (see Section 3.7 for details). We can therefore mimic the
computations described for the ridge regression case to compute the scores and weights
efficiently.

Data splitting

For settings with abundant training data, or model classes that do not afford efficient compu-
tations of the scores and weights, one can turn to data splitting to construct valid confidence
sets. To do so, we first randomly partition the labeled data into disjoint training and calibra-
tion sets. Next, we use the training data to fit a regression model, which induces a test input
distribution. If we condition on the training data, thereby treating the regression model as
fixed, we have a setting in which (1) the calibration and test data are drawn from different
input distributions, but (2) are independent (even though the test and training data are
not). Thus, data splitting returns us to the setting of standard covariate shift, under which
we can use the data splitting approach in [84] to construct valid split conformal confidence
intervals (see Section 3.6).

We also introduce randomized data splitting approaches that give exact coverage; see
Section 3.6 for details.
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3.3 Simulated protein design experiments

To demonstrate practical applications of our work, we turn to examples of uncertainty quan-
tification for designed proteins. Given a fitness function3 of interest, such as fluorescence, a
typical goal of protein design is to seek a protein with high fitness—in particular, higher than
we have observed in known proteins. Historically, this has been accomplished in the wet lab
through several iterations of expensive, time-consuming experiments. Recently, efforts have
been made to augment such approaches with machine learning-based strategies; see reviews
by Yang et al. [86], Sinai & Kelsic [102], and Wu et al. [123] and references therein. For
example, one might train a regression model on protein sequences with experimentally mea-
sured fitnesses, then use an optimization algorithm or fit a generative model that leverages
that regression model to propose promising new proteins [30, 52, 75, 76, 85, 89, 97, 110, 113,
122, 124]. Special attention has been given to the single-shot case in which we are given just
a single batch of training data, due to its obvious practical convenience.

The use of regression models for design involves balancing (1) the desire to explore regions
of input space far from the training inputs, in order to find new desirable inputs, with (2)
the need to stay close enough to the training inputs that we can trust the regression model.
As such, estimating predictive uncertainty in this setting is important. Furthermore, the
training and designed data are described by feedback covariate shift: since the fitness is
some quantity dictated by nature, the conditional distribution of fitness given any sequence
stays fixed, but the distribution of designed sequences is chosen based on a trained regression
model.4

Our experimental protocol is as follows. Given training data consisting of protein se-
quences labeled with experimental measurements of their fitnesses, we fit a regression model,
then sample test sequences (representing designed proteins) according to design algorithms
used in recent work [110, 124] (Fig. 3.2). We then construct confidence sets with guaran-
teed coverage for the designed proteins, and examine various characteristics of those sets to
evaluate the utility of our approach. In particular, we show how our method can be used
to select design algorithm hyperparameters that achieve acceptable trade-offs between high
predicted fitness and low predictive uncertainty for the designed proteins. Code reproducing
these experiments is available at https://github.com/clarafy/conformal-for-design.

Design experiments using combinatorially complete fluorescence
data sets

The challenge when evaluating in silico design methods is that in general, we do not have
labels for the designed sequences. One workaround, which we take here, is to make use of

3We use the term fitness function to refer to a particular property that can be exhibited by proteins,
while the fitness of a protein refers to the extent to which it exhibits that property.

4In this section, we will use “test” and “designed” interchangeably when describing data. We will also
sometimes say “sequence” instead of “input,” but this does not imply any constraints on how the protein is
represented or featurized.

https://github.com/clarafy/conformal-for-design
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Figure 3.2: Single-shot protein design. The gray distribution represents the distribution of
fitnesses under the training sequence distribution. The blue circles represent the fitnesses of three training
sequences, and the goal is to propose a sequence with even higher fitness. To that end, we fit a regression
model to the training sequences labeled with experimental measurements of their fitnesses, then deploy some
design procedure that uses that trained model to propose a new sequence believed to have a higher fitness
(green circle).

combinatorially complete protein data sets [83, 85, 122, 128], in which a small number of
fixed positions are selected from some wild type sequence, and all possible variants of the
wild type that vary in those selected positions are measured experimentally. Such data sets
enable us to simulate protein design problems where we always have labels for the designed
sequences. In particular, we can use a small subset of the data for training, then deploy a
design procedure that proposes novel proteins (restricted to being variants of the wild type
at the selected positions), for which we have labels.

We used data of this kind from Poelwijk et al. [83], which focused on two “parent”
fluorescent proteins that differ at exactly thirteen positions in their sequences, and are iden-
tical at every other position. All 213 = 8, 192 sequences that have the amino acid of either
parent at those thirteen sites (and whose remaining positions are identical to the parents)
were experimentally labeled with a measurement of brightness at both a “red” wavelength
and a “blue” wavelength, resulting in combinatorially complete data sets for two different
fitness functions. In particular, for both wavelengths, the label for each sequence was an
enrichment score based on the ratio of its counts before and after brightness-based selection
through fluorescence-activated cell sorting. The enrichment scores were then normalized so
that the same score reflects comparable brightness for both wavelengths.

Finally, each time we sampled from this data set to acquire training or designed data, as
described below, we added simulated measurement noise to each label by sampling from a
noise distribution estimated from the combinatorially complete data set (see 3.8 for details).
This step simulates the fact that sampling and measuring the same sequence multiple times
results in different measurements.



CHAPTER 3. CONFORMAL PREDICTION UNDER FEEDBACK COVARIATE
SHIFT FOR BIOMOLECULAR DESIGN 47

Protocol for design experiments

Our training data sets consisted of n data points, Z1:n, sampled uniformly at random from
the combinatorially complete data set. We used n ∈ {96, 192, 384} as is typical of realistic
scenarios [52, 75, 85, 110, 122]. We represented each sequence as a feature vector containing
all first- and second-order interaction terms between the thirteen variable sites, and fit a
ridge regression model, µZ1:n(x), to the training data, where the regularization strength was
set to 10 for n = 96 and 1 otherwise. Linear models of interaction terms between sequence
positions have been observed to be both theoretically justified and empirically useful as
models of protein fitness functions [83, 128, 133] and thus may be particularly useful for
protein design, particularly with small amounts of training data.

Sampling designed sequences. Following ideas in [110, 124], we designed a protein by
sampling from a sequence distribution whose log-likelihood is proportional to the prediction
of the regression model:

p̃X;Z1:n(Xtest) ∝ exp(λ · µZ1:n(Xtest)), (3.6)

where λ > 0, the inverse temperature, is a hyperparameter. Larger values of λ result in
distributions of designed sequences that are more likely to have high predicted fitnesses
according to the model, but are also, for this same reason, more likely to be in regions of
sequence space that are further from the training data and over which the model is more
uncertain. Analogous hyperparameters have been used in recent protein design work to
control this trade-off between exploration and exploitation [101, 110, 124, 147]. We took
λ ∈ {0, 2, 4, 6} to investigate how the behavior of our confidence sets varies along this trade-
off.

Constructing confidence sets for designed sequences. For each setting of n and λ,
we generated n training data points and one designed data point as just described T = 2000
times. For each of these T trials, we used Alg. 6 to construct the full conformal confidence
set, Cα(Xtest), using a grid of real values between 0 and 2.2 spaced ∆ = 0.02 apart as the
set of candidate labels, Y . This range contained the ranges of fitnesses in both the blue and
red combinatorially complete data sets, [0.091, 1.608] and [0.025, 1.692], respectively.5

We used α = 0.1 as a representative miscoverage value, corresponding to coverage of
1 − α = 0.9. We then computed the empirical coverage achieved by the confidence sets,
defined as the fraction of the T trials where the true fitness of the designed protein was

5In general, a reasonable approach for constructing a finite grid of candidate labels, Y, is to span an
interval beyond which one knows label values are impossible in practice, based on prior knowledge about
the measurement technology. The presence or absence of any such value in a confidence set would not be
informative to a practitioner. The size of the grid spacing, ∆, determines the resolution at which we evaluate
coverage; that is, in terms of coverage, including a candidate label is equivalent to including the ∆-width
interval centered at that label value. Generally, one should therefore set ∆ as small as possible, subject to
one’s computational budget.
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within half a grid spacing from some value in the confidence set, namely, min{|Ytest−y| : y ∈
Cα(Xtest)} ≤ ∆/2. Based on Theorem 1, assuming Y is both a large and fine enough grid
to encompass all possible fitness values, the expected empirical coverage is lower bounded
by 1 − α = 0.9. However, there is no corresponding upper bound, so it will be of interest
to examine any excess in the empirical coverage, which corresponds to the confidence sets
being conservative (larger than necessary). Ideally, the empirical coverage is exactly 0.9, in
which case the sizes of the confidence sets reflect the minimal predictive uncertainty we can
have about the designed proteins while achieving coverage.

In our experiments, the computed confidence sets tended to comprise grid-adjacent can-
didate labels, suggestive of confidence intervals. As such, we hereafter refer to the width
of confidence intervals, defined as the grid spacing size times the number of values in the
confidence set, ∆ · |Cα(Xtest)|.

Results

Here we discuss results for the blue fluorescence data set. Analogous results for the red
fluorescence data set are presented in Section 3.8.

Effect of inverse temperature. First we examined the effect of the inverse temperature,
λ, on the fitnesses of designed proteins (Fig. 3.3a). Note that λ = 0 corresponds to a uniform
distribution over all sequences in the combinatorially complete data set (i.e., the training
distribution), which mostly yields label values less than 0.5. For λ ≥ 4, we observe a consid-
erable mass of designed proteins attaining fitnesses around 1.5, so these values of λ represent
settings where the designed proteins are more likely to be fitter than the training proteins.
This observation is consistent with the use of this and other analogous hyperparameters to
tune the outcomes of design algorithms [101, 110, 124, 147], and is meant to provide an
intuitive interpretation of the hyperparameter to readers unfamiliar with its use in design
problems.

Empirical coverage and confidence interval widths. Despite the lack of a theoretical
upper bound, the empirical coverage does not tend to exceed the theoretical lower bound of
1−α = 0.9 by much (Fig. 3.3b), reaching at most 0.924 for n = 96, λ = 6. Loosely speaking,
this observation suggests that the confidence intervals are nearly as small, and therefore as
informative, as they can be while achieving coverage.

As for the widths of the confidence intervals, we observe that for any value of λ, the
intervals tend to be smaller for larger amounts of training data (Fig. 3.3c). Also, for any
value of n, the intervals tend to get larger as λ increases. The first phenomenon agrees
with the intuition that training a model on more data should generally reduce predictive
uncertainty. The second phenomenon arises because greater values of λ lead to designed
sequences with higher predicted fitnesses, which the model is more uncertain about. Indeed,
for λ = 4, n = 96 and λ = 6, n ∈ {96, 192}, many confidence intervals contain the entire
range of fitnesses in the combinatorially complete data set. In these regimes, the regression
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model cannot glean enough information from the training data to have much certainty about
the designed protein.

Comparison to standard covariate shift Deploying full conformal prediction as pre-
scribed for standard covariate shift (SCS) [84], a heuristic with no formal guarantees in
this setting, often results in more conservative confidence sets than those produced by our
method (Fig. 3.3). To understand when the outputs of these two methods will differ more or
less, we can compare the forms of the weights that both methods introduce on the training
and candidate test data points when considering a candidate label.

First, recall that for both feedback covariate shift (FCS) and SCS, the weight assigned
to the i-th training score is a normalized ratio of the likelihood of Xi under a test input
distribution and the training input distribution, pX , namely:

v(Xi;Z−i ∪ {(Xtest, y)}) = p̃X;Z−i∪{(Xtest,y)}(Xi)/pX(Xi),

v(Xi) = p̃X;Z1:n(Xi)/pX(Xi),

for FCS and SCS, respectively. For FCS, the test input distribution, p̃X;Z−i∪{(Xtest,y)}, is
induced by a regression model trained on Z−i ∪ {(Xtest, y)}, and therefore depends on the
candidate label, y, and also differs for each of the n training inputs. Consequently, for FCS
the weight on the i-th training score depends on the candidate label under consideration,
y. In contrast, for SCS the test input distribution, pX;Z1:n , is simply the one induced by the
training data, Z1:n, and is therefore fixed for all training scores and all candidate labels.

Note, however, that the SCS and FCS weights depend on data sets, Z1:n and Z−i ∪
{(Xtest, y)}, respectively, that differ only in a single data point: the former contains Zi,
while the latter contains (Xtest, y). Therefore, the difference between the weights—and the
resulting confidence sets—is determined by how sensitive the mapping from data set to test
input distribution, D → p̃X;D (given by Eq. (3.6) in this setting), is to changes of a single data
point in D. Roughly speaking, the less sensitive this mapping, the more similar the FCS and
SCS confidence sets will be. For example, using more training data (e.g., n = 384 compared
to n = 96 for a fixed λ) or a lower inverse temperature (e.g., λ = 2 compared to λ = 6
for a fixed n) results in more similar SCS and FCS confidence sets (Figs. 3.3d, 3.7, 3.10).
Similarly, using regression models with fewer features or stronger regularization also results
in more similar confidence sets (Figs. 3.8, 3.9, 3.11).

One can therefore think of and use SCS confidence sets as a computationally cheaper
approximation to FCS confidence sets, where the approximation is better for mappings
D → p̃X;D that are less sensitive to changes in D. Conversely, the extent to which SCS
confidence sets are similar to FCS confidence sets will generally reflect this sensitivity. In
our protein design experiments, SCS confidence sets tend to be more conservative than their
FCS counterparts, where the extent of overcoverage generally increases with less training
data, higher inverse temperature (Figs. 3.3d, 3.7), more complex features, and weaker regu-
larization (Figs. 3.8, 3.9).
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Figure 3.3: Quantifying uncertainty for designed proteins (blue fluorescence). (a)
Distributions of labels of designed proteins, for different values of the inverse temperature, λ, and different
amounts of training data, n. Labels surpass the fitness range observed in the combinatorially complete data
set, [0.091, 1.608], due to additional simulated measurement noise. (b) Empirical coverage, compared to the
theoretical lower bound of 1−α = 0.9 (dashed gray line), and (c) distributions of confidence interval widths
achieved by full conformal prediction for feedback covariate shift (our method) over T = 2000 trials. In
(a), and (c), the whiskers signify the minimum and maximum observed values. (d) Distributions of Jaccard
distances between the confidence intervals produced by full conformal prediction for feedback covariate shift
and standard covariate shift [84]. (e, f) Same as (b, c) but using full conformal prediction for standard
covariate shift.

Using uncertainty quantification to set design procedure hyperparameters. As
the inverse temperature, λ, in Eq. (3.6) varies, there is a trade-off between the mean predicted
fitness and predictive certainty for designed proteins: both mean predicted fitness and mean
confidence interval width grow as λ increases (Fig. 3.4a). To demonstrate how our method
might be used to inform the design procedure itself, one can visualize this trade-off (Fig. 3.4)
and use it to decide on a setting of λ that achieves both a mean predicted fitness and degree of
certainty that one finds acceptable, given, for example, some resource budget for evaluating
designed proteins in the wet lab. For data sets of different fitness functions, which may be
better or worse approximated by our chosen regression model class and may have different
amounts of measurement noise, this trade-off—and therefore, the appropriate setting of λ—
will be different (Fig. 3.4).

For example, protein design experiments on the red fluorescence data set result in a less
favorable trade-off between mean predicted fitness and predictive certainty than the blue
fluorescence data set: the same amount of increase in mean predicted fitness corresponds to a
greater increase in mean interval width for red compared to blue fluorescence (Fig. 3.4a). We
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Figure 3.4: Comparison of trade-off between predicted fitness and predictive cer-
tainty for red and blue fluorescence. (a) Trade-off between mean confidence interval width and
mean predicted fitness for different values of the inverse temperature, λ, and n = 384 training data points.
(b) Empirical probability that the smallest fitness value in the confidence intervals of designed proteins ex-
ceeds the true fitness of one of the wild-type parent sequences, mKate2. (c) For n = 384 and λ = 6, the
distributions of both confidence interval width and predicted fitnesses of designed proteins.

might therefore choose a smaller value of λ when designing proteins for the former compared
to the latter. Indeed, predictive uncertainty grows so quickly for red fluorescence that, for
λ > 2, the empirical probability that the smallest value in the confidence interval is greater
than the true fitness of a wild type sequence decreases rather than increases (Fig. 3.4b) which
suggests we may not want to set λ > 2. In contrast, if we had looked at the mean predicted
fitness alone without assessing the uncertainty of those predictions, it grows monotonically
with λ (Fig. 3.4a), which would not suggest any harm from setting λ to a higher value.

In contrast, for blue fluorescence, although the mean interval width also grows with λ,
it does so at a much slower rate than for red fluorescence (Fig. 3.4a); correspondingly, the
empirical frequency at which the confidence interval surpasses the fitness of the wild type
also grows monotonically (Fig. 3.4b).

We can observe these differences in the trade-off between blue and red fluorescence even
for a fixed value of λ. For example, for n = 384, λ = 6 (Fig. 3.4c), observe that proteins
designed for blue fluorescence (blue circles) mostly lie in a flat horizontal band. That is,
those with higher predicted fitnesses do not have much wider intervals than those with lower
predicted fitnesses, except for a few proteins with the highest predicted fitnesses. In contrast,
for red fluorescence, designed proteins with higher predicted fitnesses also tend to have wider
confidence intervals.
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Design experiments using adeno-associated virus (AAV) capsid
packaging data

In contrast with Section 3.3, which represented a protein design problem with limited
amounts of labeled data (at most a few hundred sequences), here we focus on a setting in
which there is abundant labeled data. We can therefore employ data splitting as described
in Section 3.2 to construct confidence sets, as an alternative to computing full conformal
confidence sets (Eq. (3.3)) as done in Section 3.3. Specifically, we construct a randomized
version of the split conformal confidence set (Section 3.6), which achieves exact coverage.

This subsection, together with the previous subsection, demonstrate that in both
regimes—limited and abundant labeled data—our proposed methods provide confidence sets
that give coverage, are not overly conservative, and can be used to visualize the trade-off
between predicted fitness and predictive uncertainty inherent to a design algorithm.

Protein design problem: AAV capsid proteins with improved packaging ability

Adeno-associated viruses (AAVs) are a class of viruses whose capsid, the protein shell that
encapsulates the viral genome, are a promising delivery vehicle for gene therapy. As such, the
proteins that constitute the capsid have been modified to enhance various fitness functions,
such as the ability to enter specific cell types and evade the immune system [28, 49, 64].
Such efforts usually start by sampling millions of proteins from some sequence distribution,
then performing an experiment that selects out the fittest sequences. Sequence distributions
commonly used today have relatively high entropy, and the resulting sequence diversity can
lead to successful outcomes for a myriad of downstream selection experiments [111, 124].
However, most of these sequences fail to assemble into a capsid that packages the genetic
payload [53, 64, 82]—a function called packaging, which is the minimum requirement of a
gene therapy delivery mechanism, and therefore a prerequisite to any other desiderata.

If sequence distributions could be developed with higher packaging rate, without compro-
mising sequence diversity, then the success rate of downstream selection experiments should
improve. To this end, Zhu & Brookes et al. [124] use neural networks trained on sequence-
packaging data to specify the parameters of sequence distributions that simultaneously have
high entropy and yield sequences with high predicted packaging ability. The sequences in
this data varied at seven promising contiguous positions identified in previous work [49],
and elsewhere matched a wild type. To accommodate commonly used DNA synthesis pro-
tocols, the authors parameterized their sequence distributions as independent categorical
distributions over the four nucleotides at each of twenty-one contiguous sites, corresponding
to codons at each of the seven sites of interest.

Protocol for design experiments

We followed the methodology of Zhu & Brookes et al. [124] to find sequence distribu-
tions with high mean predicted fitness—in particular, higher than that of the commonly
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used “NNK” sequence distribution [49]. Specifically, we used simulated data based on their
high-throughput data, which sampled millions of sequences from the NNK distribution and
labeled each with an enrichment score quantifying its packaging fitness, based on its count
before and after a packaging-based selection experiment. We introduced additional simulated
measurement noise to these labels, where the parameters of the noise distribution were also
estimated from the pre- and post-selection counts, resulting in labels ranging from −7.53 to
8.80 for 8, 552, 729 sequences (see Section 3.8 for details).

We then randomly selected and held out one million of these data points, for calibration
and test purposes described shortly, then trained a neural network on the remaining data
to predict fitness from sequence. Finally, following [124], we approximately solved an opti-
mization problem that leveraged this regression model in order to specify the parameters of
sequence distributions with high mean predicted fitness. Specifically, let {pϕ : ϕ ∈ Φ} denote
the class of sequence distributions parameterized as independent categorical distributions
over the four nucleotides at each of twenty-one contiguous sequence positions. We set the
parameters of the designed sequence distribution by using stochastic gradient descent to
approximately solve the following problem:

ϕλ = argmin
ϕ∈Φ

DKL(p
⋆
λ||pϕ) (3.7)

where p⋆λ(X) ∝ exp(λ·µ(X)), µ is the neural network fit to the training data, and λ ≥ 0 is an
inverse temperature hyperparameter. After solving for ϕλ for a range of inverse temperature
values, λ ∈ {1, 2, 3, 4, 5, 6, 7}, we sampled designed sequences from pϕλ

as described below,
then used a randomized data splitting approach to construct confidence sets that achieve
exact coverage.

Sampling designed sequences. Unlike in Section 3.3, here we did not have a label for
every sequence in the input space—that is, all sequences that vary at the seven positions of
interest, and that elsewhere match a wild type. As an alternative, we used rejection sampling
to sample from pϕλ

. Specifically, recall that we held out a million of the labeled sequences.
The input space was sampled uniformly and densely enough by the high-throughput data
set that we treated 990, 000 of these held-out labeled sequences as samples from a proposal
distribution (that is, the NNK distribution) and were able to perform rejection sampling to
sample designed sequences from pϕλ

for which we have labels.

Constructing confidence sets for designed sequences. Note that rejection sampling
results in some random number, at most 990, 000, of designed sequences; in practice, this
number ranged from single digits to several thousand for λ = 7 to λ = 1, respectively. To
account for this variability, for each value of the inverse temperature, we performed T = 500
trials of the following steps. We randomly split the one million held-out labeled sequences
into 990, 000 proposal distribution sequences and 10, 000 sequences to be used as calibration
data. We used the former to sample some number of designed sequences, then used the latter
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to construct randomized staircase confidence sets (Alg. 5) for each of the designed sequences.
The results we report next concern properties of these sets averaged over all T = 500 trials.

Results

Effect of inverse temperature. The inverse temperature hyperparameter, λ, in Eq. (3.7)
plays a similar role as in Section 3.3: larger values result in designed sequences with higher
mean true fitness (Fig. 3.5a). Note that the mean true fitness for all considered values of the
inverse temperature is higher than that of the training distribution (the dashed black line,
Fig. 3.5a).

Empirical coverage and confidence set sizes. For all considered values of the inverse
temperature, the empirical coverage of the confidence sets is very close to the expected
value of 1− α = 0.9 (Fig. 3.5b, top). Note that some designed sequences, which the neural
network is particularly uncertain about, are given a confidence set with infinite size (Fig. 3.5b,
bottom). The fraction of sets with infinite size, as well as the mean size of non-infinite sets,
both increase with the inverse temperature (Fig. 3.5b, bottom), which is consistent with our
intuition that the neural network should be less confident about predictions that are much
higher than fitnesses seen in the training data.

Using uncertainty quantification to set design procedure hyperparameters. As
in Section 3.3, the confidence sets we construct expose a trade-off between predicted fitness
and predictive uncertainty as we vary the inverse temperature. Generally, the higher the
mean predicted fitness of the sequence distributions, the greater the mean confidence set size
as well (Fig. 3.5c).6 One can inspect this trade-off to decide on an acceptable setting of the
inverse temperature. For example, observe that the mean set size does not grow appreciably
between λ = 1 and λ = 4, even though the mean predicted fitness monotonically increases
(Fig. 3.5b, bottom, 3.5c); similarly, the fraction of sets with infinite size also remains near
zero for these values of λ (Fig. 3.5b, bottom). However, both of these quantities start
to increase for λ ≥ 5. By λ = 7, for instance, more than 17% of designed sequences are
given a confidence set with infinite size, suggesting that pϕ7 has shifted too far from the
training distribution for the neural network to be reasonably certain about its predictions.
Therefore, one might conclude that using λ ∈ {4, 5} achieves an acceptable balance of
designed sequences with higher predicted fitness than the training sequences and low enough
predictive uncertainty.

6The exception is the sequence distribution corresponding to λ = 2, which has a higher mean predicted
fitness but on average smaller sets than λ = 1. One likely explanation is that experimental measurement
noise is particularly high for very low fitnesses, making low-fitness sequences inherently difficult to predict.
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Figure 3.5: Quantifying uncertainty for designed adeno-associated virus (AAV)
capsid proteins. (a) Mean true fitness of designed sequences resulting from different values of the
inverse temperature, λ ∈ {1, 2, . . . , 7}. The dashed black line is the mean true fitness of sequences drawn from
the NNK sequence distribution (i.e., the training distribution). (b) Top: empirical coverage of randomized
staircase confidence sets (Section 3.6) constructed for designed sequences. The dashed black line is the
expected empirical coverage of 1 − α = 0.9. Bottom: fraction of confidence sets with infinite size (dashed
gray line) and mean size of non-infinite confidence sets (solid gray line). The set size is reported as a fraction
of the range of fitnesses in all the labeled data, [−7.53, 8.80]. (c) Trade-off between mean predicted fitness
and mean confidence set size for λ ∈ {1, 2, . . . , 7}. The dashed black line is the mean predicted fitness for
sequences from the training distribution.

3.4 Discussion

The predictions made by machine learning models are increasingly being used to make con-
sequential decisions, which in turn influence the data that the models encounter. Our work
presents a methodology that allows practitioners to trust the predictions of learned models
in such settings. In particular, our protein design examples demonstrate how our approach
can be used to navigate the trade-off between desirable predictions and predictive certainty
inherent to design problems.

Looking beyond the design problem, the formalism of feedback covariate shift (FCS)
introduced here captures a range of problem settings pertinent to modern-day deployments
of machine learning. In particular, FCS often occurs at each iteration of a feedback loop—for
example, at each iteration of active learning, adaptive experimental design, and Bayesian
optimization methods. Applications and extensions of our approach to such settings are
exciting directions for future investigation.
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3.5 Proofs

Proof of Theorem 1

Data from feedback covariate shift (FCS) are a special case of what we call pseudo-
exchangeable7 random variables.

Definition 2. Random variables V1, . . . , Vn+1 are pseudo-exchangeable with factor functions
g1, . . . , gn+1 and core function h if the density, f , of their joint distribution can be factorized
as

f(v1, . . . , vn+1) =
n+1∏
i=1

gi(vi; v−i) · h(v1, . . . , vn+1),

where v−i = v1:(n+1) \ vi,8 each gi(·; v−i) is a function that depends on the multiset v−i (that
is, on the values in v−i but not on their ordering), and h is a function that does not depend
on the ordering of its n+ 1 inputs.

The following lemma characterizes the distribution of the scores of pseudo-exchangeable
random variables, which allows for a pseudo-exchangeable generalization of conformal predic-
tion in Theorem 2. We then show that data generated under FCS are pseudo-exchangeable,
and a straightforward application of Theorem 2 yields Theorem 1 as a corollary. Our tech-
nical development here builds upon the work of Tibshirani et al. [84], who generalized
conformal prediction to handle “weighted exchangeable” random variables, including data
under standard covariate shift.

The key insight is that if we condition on the values, but not the ordering, of the scores,
we can exactly describe their distribution. The following proposition is a generalization of
arguments found in the proof of Lemma 3 in [84]; the subsequent result in Lemma 1 is a
generalization of that lemma.

Proposition 2. Let Z1, . . . , Zn+1 be pseudo-exchangeable random variables with a joint den-
sity function, f , that can be written with factor functions g1, . . . , gn+1 and core function h.
Let S be any score function and denote Si = S(Zi, Z−i) where Z−i = Z1:(n+1) \ {Zi} for
i = 1, . . . , n+ 1. Define

wi(z1, . . . , zn+1) ≡
∑

σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

, i = 1, . . . , n+ 1, (3.8)

7The name pseudo-exchangeable hearkens to the similarity of the factorized form to the pseudo-likelihood
approximation of a joint density. Note, however, that each factor, gi(vi; v−i), can only depend on the values
and not the ordering of the other variables, v1, . . . , vi−1, vi+1, . . . , vn, whereas each factor in the pseudo-
likelihood approximation also depends on the identities (i.e., the ordering) of the other variables.

8With some abuse of notation, we denote z−i = z1:(n+1) \ zi whenever possible, as done here, but use
z−i = z1:n \ zi whenever we need to append a candidate test point, as done in the main text and in Theorem
2 below. In either case, we will clarify.
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where the summations are taken over permutations, σ, of the integers 1, . . . , n + 1. For
values z = (z1, . . . , zn+1), let si = S(zi, z−i) and let Ez be the event that {Z1, . . . , Zn+1} =
{z1, . . . , zn+1} (that is, the multiset of values taken on by Z1, . . . , Zn+1 equals the multiset of
the values in z). Then

Sn+1 | Ez ∼
n+1∑
i=1

wi(z1, . . . , zn+1) δsi .

Proof. For simplicity, we treat the case where S1, . . . , Sn+1 are distinct almost surely; the
result also holds in the general case, but the notation that accommodates duplicate values
is cumbersome. For i = 1, . . . , n+ 1,

P(Sn+1 = si | Ez) = P(Zn+1 = zi | Ez)

=

∑
σ:σ(n+1)=i f(zσ(1), . . . , zσ(n+1))∑

σ f(zσ(1), . . . , zσ(n+1))

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(zσ(1), . . . , zσ(n+1))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(zσ(1), . . . , zσ(n+1))

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(z1, . . . , zn+1)∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j)) · h(z1, . . . , zn+1)

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

= wi(z1, . . . , zn+1).

Lemma 1. Let Z1, . . . , Zn+1 be pseudo-exchangeable random variables with a joint density
function, f , that can be written with factor functions g1, . . . , gn+1 and core function h. Let
S be any score function and denote Si = S(Zi, Z−i) where Z−i = Z1:(n+1) \ {Zi} for i =
1, . . . , n+ 1. For any β ∈ (0, 1),

P

{
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi

)}
≥ β,

where wi(z1, . . . , zn+1) is defined in Eq. (3.8).

Proof. Assume for simplicity of notation that S1, . . . , Sn+1 are distinct almost surely (but
the result holds generally). For data point values z = (z1, . . . , zn+1), let si = S(zi, z−i) and
let Ez be the event that {Z1, . . . , Zn+1} = {z1, . . . , zn+1}. By Proposition 2,

Sn+1 | Ez ∼
n+1∑
i=1

wi(z1, . . . , zn+1) δsi ,
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and consequently

P

(
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(z1, . . . , zn+1) δsi

)∣∣∣∣∣Ez

)
≥ β,

by definition of the β-quantile; equivalently, since we condition on Ez,

P

(
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi

)∣∣∣∣∣Ez

)
≥ β.

Since this inequality holds for all events Ez, where z is a vector of n + 1 data point values,
smoothing gives

P

(
Sn+1 ≤ Quantileβ

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi

))
≥ β.

Lemma 1 yields the following theorem, which enables a generalization of conformal pre-
diction to pseudo-exchangeable random variables.

Theorem 2. Suppose Z1, . . . , Zn+1 where Zi = (Xi, Yi) ∈ X × R are pseudo-exchangeable
random variables with factor functions g1, . . . , gn+1. For any score function, S, and any
miscoverage level, α ∈ (0, 1), define for any point x ∈ X :

Cα(x) =

{
y ∈ R : Sn+1(x, y) ≤ Quantile1−α

(
n+1∑
i=1

wi(Z1, . . . , Zn, (x, y)) δSi(x,y)

)}
,(3.9)

where Si(x, y) = S(Zi, Z−i ∪ {(x, y)}) and Z−i = Z1:n \ Zi for i = 1, . . . , n, Sn+1(x, y) =
S((x, y), Z1:n), and the weight functions wi are as defined in Eq. (3.8). Then Cα satisfies

P (Yn+1 ∈ Cα(Xn+1)) ≥ 1− α,

where the probability is over all n+ 1 data points, Z1, . . . , Zn+1.

Proof. By construction, we have

Yn+1 ∈ Cα(Xn+1) ⇐⇒

Sn+1(Xn+1, Yn+1) ≤ Quantile1−α

(
n+1∑
i=1

wi(Z1, . . . , Zn+1) δSi(Xn+1,Yn+1)

)
.

Applying Lemma 1 gives the result.
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Finally, Theorem 1 follows as a corollary of Theorem 2. Denoting Zn+1 = Ztest and
Z−i = Z1:(n+1) \{Zi}, observe that data, (Z1, . . . , Zn+1), under FCS are pseudo-exchangeable
with the core function

h(z1, . . . , zn+1) =
n+1∏
i=1

pX(xi) pY |X(yi | xi),

and factor functions gi(zi; z−i) = 1 for i = 1, . . . , n and

gn+1(zn+1; z1:n) =
p̃X;z1:n(xn+1) pY |X(yn+1 | xn+1)

pX(xn+1) pY |X(yn+1 | xn+1)
=

p̃X;z1:n(xn+1)

pX(xn+1)
= v(xn+1; z1:n)

where v(·; ·) is the likelihood ratio function defined in Eq. (3.2). The weights, wi(z1, . . . , zn+1),
in Eq. (3.8) then simplify as

wi(z1, . . . , zn+1) =

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑

σ

∏n+1
j=1 gj(zσ(j); z−σ(j))

=

∑
σ:σ(n+1)=i

∏n+1
j=1 gj(zσ(j); z−σ(j))∑n+1

k=1

∑
σ:σ(n+1)=k

∏n+1
j=1 gj(zσ(j); z−σ(j))

=

∑
σ:σ(n+1)=i gn+1(zσ(n+1); z−σ(n+1))∑n+1

k=1

∑
σ:σ(n+1)=k gn+1(zσ(n+1); z−σ(n+1))

=

∑
σ:σ(n+1)=i gn+1(zi; z−i)∑n+1

k=1

∑
σ:σ(n+1)=k gn+1(zk; z−k)

=
n! · gn+1(zi; z−i)∑n+1

k=1 n! · gn+1(zk; z−k)

=
v(xi; z−i)∑n+1

k=1 v(xk; z−k)
.

These quantities are exactly the weight functions, wy
i , defined in Eq. (3.4) and used in

the full conformal confidence set in Eq. (3.3): wy
i (Xtest) = wi(Z1, . . . , Zn, (Xtest, y)) for i =

1, . . . , n + 1. That is, Eq. (3.3) gives the confidence set defined in Eq. (3.9) for data under
FCS. Applying Theorem 2 then yields Theorem 1.

A randomized confidence set achieves exact coverage

Here, we introduce the randomized β-quantile and a corresponding randomized confidence
set that achieves exact coverage. To lighten notation, for a discrete distribution with
probability masses w = (w1, . . . , wn+1) on points s = (s1, . . . , sn+1), where si ∈ R and
wi ≥ 0,

∑n+1
i=1 wi = 1, we will write Quantileβ(s, w) = Quantileβ(

∑n
i=1wiδsi). Observe
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that Quantileβ(s, w) is always one of the support points, si. Now define the β-quantile
lower bound :

QuantileLBβ (s, w) = inf

s :
∑
i:si≤s

wi < β,
∑
i:si≤s

wi +
∑

j:sj=Quantileβ(s,w)

wj ≥ β

 ,

which is either a support point strictly less than the β-quantile, or negative infinity. Fi-
nally, letting QFβ(s, w) and LFβ(s, w) denote the CDF of the discrete distribution at
Quantileβ(s, w) and QuantileLBβ(s, w)), respectively, the randomized β-quantile is a
random variable that takes on the value of either the β-quantile or the β-quantile lower
bound:

RandomizedQuantileβ(s, w) =

QuantileLBβ(s, w) w. p.
QFβ(s,w)−β

QFβ(s,w)−LFβ(s,w)
,

Quantileβ(s, w) w. p. 1− QFβ(s,w)−β

QFβ(s,w)−LFβ(s,w)
.

(3.10)

We use this quantity to define the randomized full conformal confidence set, which, for
any miscoverage level, α ∈ (0, 1), and x ∈ X is the following random variable:

Crand
α (x) = {y ∈ R : S((x, y), Z1:n) (3.11)

≤ RandomizedQuantile1−α(s(Z1, . . . , Zn, (x, y)), w(Z1, . . . , Zn, (x, y))
}

where s(Z1, . . . , Zn, (x, y)) = (S1, . . . , Sn, S((x, y), Z1:n) and Si = S(Zi, Z−i ∪ {(x, y)}) for
i = 1, . . . , n, and w(Z1, . . . , Zn, (x, y)) = (wy

1(x), . . . , w
y
n+1(x)) where wy

i (x) is defined in
Eq. (3.4). Note that for each candidate label, y ∈ R, an independent randomized β-quantile
is instantiated; some values will use the β-quantile as the threshold on the score, while the
others will use the β-quantile lower bound. Randomizing the confidence set in this way yields
the following result.

Theorem 3. Suppose data, Z1, . . . , Zn, Ztest, are generated under feedback covariate shift
and assume P̃X;D is absolutely continuous with respect to PX for all possible values of D.
Then, for any miscoverage level, α ∈ (0, 1), the randomized full confidence set, Crand

α , in
Eq. (3.11) satisfies the exact coverage property:

P(Ytest ∈ Crand
α (Xtest)) = 1− α, (3.12)

where the probability is over Z1, . . . , Zn, Ztest and the randomness in Crand
α .

Proof. Denote Zn+1 = Ztest and Z = (Z1, . . . , Zn+1). For a vector of n+1 data point values,
z = (z1, . . . , zn+1), use the following shorthand:

Qβ(z) = Quantileβ(s(z), w(z)),

Lβ(z) = QuantileLBβ(s(z), w(z)),

Rβ(z) = RandomizedQuantileβ(s(z), w(z)),

QFβ(z) = QFβ(s(z), w(z)),

LFβ(z) = LFβ(s(z), w(z)).
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As in the proof of Lemma 1, consider the event, Ez, that {Z1, . . . , Zn+1} = {z1, . . . , zn+1}.
Assuming for simplicity that the scores are distinct almost surely, by Proposition 2

S(Zn+1, Z1:n) | Ez ∼
n+1∑
i=1

wi(z1, . . . , zn+1) δS(zi,z−i),

and consequently

P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez)

= P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez,R1−α(z) = Q1−α(z)) · P(R1−α(z) = Q1−α(z) | Ez)+

P(S(Zn+1, Z1:n) ≤ R1−α(z) | Ez,R1−α(z) = L1−α(z)) · P(R1−α(z) = L1−α(z) | Ez)

= P(S(Zn+1, Z1:n) ≤ Q1−α(z) | Ez) ·
(
1−

QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

)
+

P(S(Zn+1, Z1:n) ≤ L1−α(z) | Ez) ·
QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

= QF1−α(z) ·
(
1−

QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

)
+ LF1−α(z) ·

QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)

= −
(
QF1−α(z)− LF1−α(z)

)
·

QF1−α(z)− (1− α)

QF1−α(z)− LF1−α(z)
+QF1−α(z)

= −QF1−α(z) + (1− α) +QF1−α(z)

= 1− α.

Since we condition on Ez, we equivalently have

P(S(Zn+1, Z1:n) ≤ R1−α(Z) | Ez) = 1− α,

and since this equality holds for all events Ez, where z is a vector of n+1 data point values,
taking an expectation over Ez yields

P(S(Zn+1, Z1:n) ≤ R1−α(Z)) = 1− α.

Finally, since

Yn+1 ∈ Crand
α (Xn+1) ⇐⇒ S(Zn+1, Z1:n) ≤ R1−α(Z),

the result follows.

Note that standard covariate shift is subsumed by feedback covariate shift, so Theorem
3 can be used to construct a randomized confidence set with exact coverage under standard
covariate shift as well.
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3.6 Data splitting

In general, computing the full conformal confidence set, Cα(x), using Alg. 4 requires fitting
(n+1)×|Y| regression models. A much more computationally attractive alternative is called
a data splitting or split conformal approach [17, 71], in which we (i) randomly partition the
labeled data into disjoint training and calibration data sets, (ii) fit a regression model to
the training data, and (iii) use the scores that it provides for the calibration data (but not
the training data) to construct confidence sets for test data points. Though this approach
only requires fitting a single model, the trade-off is that it does not use the labeled data
as efficiently: only some fraction of our labeled data can be used to train the regression
model. This limitation may be inconsequential for settings with abundant data, but can be
a nonstarter when labeled data is limited, such as in many protein design problems.

Here, we show how data splitting simplifies feedback covariate shift (FCS) to standard
covariate shift. We then use the data splitting method from Tibshirani et al. [84] to produce
confidence sets with coverage; the subsequent subsection shows how to introduce random-
ization to achieve exact coverage.

To begin, we recall the standard covariate shift model [12, 22]. The training data,
Z1, . . . , Zn where Zi = (Xi, Yi), are i.i.d. from some distribution: Xi ∼ PX , Yi ∼ PY |Xi

for i = 1, . . . , n. A test data point, Ztest = (Xtest, Ytest), is drawn from a different input dis-
tribution but the same conditional distribution, Xtest ∼ P̃X , Ytest ∼ PY |Xtest , independently
from the training data. In contrast to FCS, here the test input cannot be chosen in a way
that depends on the training data.

Returning to FCS, suppose we randomly partition all our labeled data into disjoint train-
ing and calibration data sets. Let µ denote the regression model fit to the training data; we
henceforth consider µ as fixed and make no further use of the training data. As such, without
loss of generality we will use Z1, . . . , Zm to refer to the calibration data. Now suppose the
test input distribution is induced by the trained regression model, µ; we write this as P̃X;µ.
Observe that, conditioned on the training data, we now have a setting where the calibration
and test data are drawn from different input distributions but the same conditional distribu-
tion, PY |X , and are independent of each other. That is, data splitting returns us to standard
covariate shift.

To construct valid confidence sets under standard covariate shift, define the following
likelihood ratio function:

v(x) =
p̃X;µ(x)

pX(x)
, (3.13)

where pX and p̃X;µ refer to the densities of the training and test input distributions, respec-
tively. We restrict our attention to score functions of the following form [143]:

S(x, y) =
|y − µ(x)|

u(x)
. (3.14)
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where u is any heuristic, nonnegative notion of uncertainty; one can also set u(x) = 1 to
recover the residual score function. Note that, since we condition on the training data and
treat the regression model as fixed, the score of a point, (x, y), is no longer also a function
of other data points. Finally, for any miscoverage level, α ∈ (0, 1), and any x ∈ X , define
the split conformal confidence set as

Csplit
α (x) = µ(x)± q · u(x),

q = Quantile1−α

(
m∑
i=1

wi(x) δSi
+ wn+1(x) δ∞

)
,

(3.15)

where Si = S(Xi, Yi) for i = 1, . . . ,m and

wi(x) =
v(Xi)∑m

j=1 v(Xj) + v(x)
, i = 1, . . . ,m, (3.16)

wm+1(x) =
v(x)∑m

j=1 v(Xj) + v(x)
.

For data under standard covariate shift, the split conformal confidence set achieves coverage,
as first shown in [84].

Theorem 4 (Corollary 1 in [84]). Suppose calibration and test data, Z1, . . . , Zm, Ztest, are
under standard covariate shift, and assume P̃X;µ is absolutely continuous with respect to PX .
For score functions of the form in Eq. (3.14), and any miscoverage level, α ∈ (0, 1), the split
conformal confidence set, Csplit

α (x), in Eq. (3.15) satisfies the coverage property in Eq. (3.1).

To achieve exact coverage, we can introduce randomization, as we discuss next.

Data splitting with randomization achieves exact coverage

Here, we stay in the setting and notation of the previous subsection and demonstrate how
randomizing the β-quantile enables a data splitting approach to achieve exact coverage. For
any score function of the form in Eq. (3.14), any miscoverage level, α ∈ (0, 1), the randomized
split conformal confidence set is the following random variable for x ∈ X :

Crand,split
α (x) = {y ∈ R : S(x, y) (3.17)

≤ RandomizedQuantile1−α ((S1, . . . , Sm, S(x, y)), (w1(x), . . . , wm+1(x)))
}
,

where the randomized β-quantile, RandomizedQuantileβ is defined in Eq. (3.10), Si =
S(Xi, Yi) for i = 1, . . . ,m, and wi(·) for i = 1, . . . ,m+1 is defined in Eq. (3.16). Observe that
for each candidate label, y ∈ R, an independent randomized β-quantile is drawn, such that
the scores of some values are compared to the β-quantile while the others are compared to the
β-quantile lower bound. The exact coverage property of this confidence set is a consequence
of Theorem 3.
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Corollary 1. Suppose calibration and test data, Z1, . . . , Zm, Ztest, are under standard covari-
ate shift, and assume P̃X;µ is absolutely continuous with respect to PX . For score functions of
the form in Eq. (3.14), and any miscoverage level, α ∈ (0, 1), the randomized split conformal
confidence set, Crand,split

α (x), in Eq. (3.17) satisfies the exact coverage property in Eq. (3.12).

Proof. Since standard covariate shift is a special case of FCS, the calibration and test data
can be described by FCS where P̃X;D = P̃X;µ for any multiset D. The randomized split con-
formal confidence set, Crand,split

α , is simply the randomized full conformal confidence set,
Crand

α , defined in Eq. (3.11), instantiated with the scores S((x, y), Z1:m) = S(x, y) and
S(Zi, Z−i ∪ {(x, y)}) = S(Zi) for i = 1, . . . ,m, and weights resulting from P̃X;D = P̃X;µ

for all D. The result then follows from Theorem 3.

While we only need to fit a single regression model to compute the scores for data splitting,
naively it might seem that in practice, we need to approximate Crand,split

α (x) by introducing
a discrete grid of candidate labels, Y ⊂ R, and computing a randomized β-quantile for |Y|
different discrete distributions. Fortunately, we can construct an alternative confidence set
that also achieves exact coverage, the randomized staircase confidence set, Cstaircase

α , which
only requires sorting m scores and an additional O(m) floating point operations to compute
(see Alg. 5).

At a high level, its construction is based on the observation that for any x ∈ X and
y ∈ R, the quantity P(y ∈ Crand,split

α (x)), where the probability is over the randomness in
Crand,split

α (x), is a piecewise constant function of y. Instead of testing each value of y ∈ R, we
can then construct this piecewise constant function, and randomly include entire intervals
of y values that have the same value of P(y ∈ Crand,split

α (x)).
Fig. 3.6 illustrates this observation, which we now explain. First, the discrete distribution

in Eq. (3.17) has probability masses w1(x), . . . , wm+1(x) at the points S1, . . . , Sm, S(x, y),
respectively. Given the values of the m calibration data points and the test input, x, all
of these quantities are fixed—except for the score of the candidate test data point, S(x, y).
That is, the only quantity that depends on the value of y is S(x, y), which is the location
of the probability mass wm+1(x); the remaining m support points and their corresponding
probability masses do not not change with y.

Now consider the calibration scores, S1, . . . , Sm, sorted in ascending order. Observe that
for any pair of successive sorted scores, S(i) and S(i+1), the entire interval of y values such
that S(x, y) ∈ (S(i), S(i+1) belongs to one of three categories: S(x, y) ≤ β-quantile lower
bound (of the discrete distribution with probability masses w1, . . . , wm+1 at support points
S1, . . . , Sm, S(x, y)), S(x, y) = β-quantile, or S(x, y) > β-quantile. An interval of y values
that belongs to the first category is deterministically included in Crand,split

α (x), regardless
of the randomness in the randomized β-quantile (color-coded green in Fig. 3.6), while an
interval that belongs to the last category is deterministically excluded (color-coded purple
in Fig. 3.6). The only y values whose inclusion is not deterministic are those in the second
category (color-coded teal and blue), which are randomly included with the probability, given
in Eq. (3.10), that the randomized β-quantile equals the β-quantile. Consequently, we can
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Algorithm 5 Randomized staircase confidence set
Input: Miscoverage level, α ∈ (0, 1); calibration data, Z1, . . . , Zm, where Zi = (Xi, Yi); test input, Xtest;
subroutine for likelihood ratio function, v(·), defined in Eq. (3.13); subroutine for uncertainty heuristic, u(·);
subroutine for regression model prediction, µ(·).
Output: Randomized staircase confidence set, C = Cstaircase

α (Xtest).

1: for i = 1, . . . ,m do ▷ Compute calibration scores
2: Si ← |Yi − µ(Xi)|/u(Xi)
3: vi ← v(Xi)
4: end for
5: vm+1 ← v(Xtest)
6: for i = 1, . . . ,m+ 1 do ▷ Compute calibration and test weights
7: wi ← vi/

∑m+1
j=1 vj

8: end for
9: C ← ∅
10: LowerBoundIsSet← False

11: S(0) = 0, w0 = 0 ▷ Dummy values so for-loop will include [0, S(1)]
12: for i = 0, . . . ,m− 1 do
13: if

∑
j:Sj≤S(i)

wj + wm+1 < 1− α then ▷ S(x, y) ≤ β-quantile lower bound, so include

deterministically
14: C = C ∪

[
µ(Xtest) + S(i) · u(Xtest), µ(Xtest) + S(i+1) · u(Xtest)

]
∪[

µ(Xtest)− S(i+1) · u(Xtest), µ(Xtest)− S(i) · u(Xtest)
]

15: else if
∑

j:Sj≤S(i)
wj + wm+1 ≥ 1− α and

∑
j:Sj≤S(i)

wj < 1− α then ▷ S(x, y) = β-quantile, so

randomize inclusion
16: if LowerBoundIsSet = False then
17: LowerBoundIsSet← True ▷ Set β-quantile lower bound
18: LF =

∑
j:Sj≤S(i)

wj

19: end if

20: F ←
∑

j:Sj≤S(i)
wj+wm+1−(1−α)∑

j:Sj≤S(i)
wj+wm+1−LF

21: b ∼ Bernoulli(1− F )
22: if b then
23: C = C ∪

[
µ(Xtest) + S(i) · u(Xtest), µ(Xtest) + S(i+1) · u(Xtest)

]
∪[

µ(Xtest)− S(i+1) · u(Xtest), µ(Xtest)− S(i) · u(Xtest)
]

24: end if
25: end if
26: end for
27: if

∑m
i=1 wi < 1− α then ▷ For S(x, y) > S(m), either S(x, y) = β-quantile or S(x, y) > β-quantile

28: if LowerBoundIsSet = False then
29: LF =

∑m
i=1 wi

30: end if
31: F ← 1−(1−α)

1−LF
32: b ∼ Bernoulli(1− F )
33: if b then
34: C = C ∪

[
µ(Xtest) + S(m) · u(Xtest),∞

]
∪
[
−∞, µ(Xtest)− S(m) · u(Xtest)

]
35: end if
36: end if

identify the intervals of y values belonging to each of these categories, and for those in the
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second category, compute the probability that the randomized β-quantile is instantiated as
the β-quantile, which is P(y ∈ Crand,split

α (x)).
This probability turns out to be a piecewise constant function of y. Note that it is

computed from two quantities: the c.d.f. at the β-quantile and the c.d.f at the β-quantile
lower bound (see Eq. (3.10)). As depicted in Fig. 3.6 (third panel from top), for any two
successive sorted calibration scores, S(i) and S(i+1), both of these quantities are constant over
S(x, y) ∈ (S(i), S(i+1). That is, both the c.d.f. at the β-quantile and the c.d.f. at β-quantile
lower bound are piecewise constant functions of y, which only change values at the calibra-
tion scores, S1, . . . , Sm (and can take on different values exactly at the calibration scores).
Consequently, the probability P(y ∈ Crand,split

α (x)) is also a piecewise constant function of y,
which only changes values at the calibration scores. It attains its highest value at µ(x) and
decreases as y moves further away from it, resembling a staircase, as depicted in Fig. 3.6
(fourth panel from the top).

Therefore, instead of computing a randomized β-quantile for all y ∈ R, we can simply
compute the value of this probability on the m + 1 intervals between neighboring sorted
calibration scores: [0, S(1)), (S(1), S(2)), . . . , (S(m−1), S(m)), (S(m),∞], as well as its value ex-
actly at the m calibration scores. These probabilities may equal 1 or 0, which corre-
spond to the two cases earlier described wherein y is deterministically included or ex-
cluded, respectively. If the probability is not 1 or 0, then we can randomly include the
entire set of values of y such that S(x, y) falls in the interval. Due to the form of the
score in Eq. (3.14), this set comprises two equal-length intervals on both sides of µ(x):
(µ(x)− S(i+1), µ(x)− S(i)) ∪ (µ(x) + S(i+1), µ(x) + S(i)).

Finally, if we assume that scores are distinct almost surely, then our treatment of values
of y such that S(x, y) = Si for i = 1, . . . ,m, does not affect the exact coverage property. For
simplicity, Alg. 5 therefore includes or excludes closed intervals that contain these y values
as endpoints, rather than treating them separately.

More general score functions. In the reasoning above, we use the assumption that the
score function takes the form in Eq. (3.14) only at the end of the argument, to infer the form of
the sets of y values. We can relax this assumption as follows. For any continuous score func-
tion, consider the preimage of the intervals [0, S(1)), (S(1), S(2)), . . . , (S(m−1), S(m)), (S(m),∞]
under the function S(x, ·) (a function of the second argument with x held fixed), rather than
the intervals given explicitly in Lines 14, 23, and 34 of Alg. 5. This algorithm then gives
exact coverage for any continuous score function, although it will only be computationally
feasible when these preimages can be computed efficiently.
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3.7 Efficient algorithms for full conformal prediction

Ridge regression

When the likelihood of the test input is a function of the prediction from a ridge regression
model, it is possible to compute the scores and weights for the full conformal confidence set
by fitting n + 1 models and O(n · p · |Y|) additional floating point operations, instead of
naively fitting (n+ 1)× Y models, as demonstrated in Alg. 6.

For the fluorescent protein design experiments, the TestInputLikelihood subroutine
in Alg. 6 computed the likelihood in Eq. (3.6), that is,

TestInputLikelihood(ai + biy)←
exp(λ · (ai + biy))

·
∑

x∈X exp(λ · (Ci + yA−i,n)Tx)
,

TestInputLikelihood(an+1)←
exp(λ · an+1)

·
∑

x∈X exp(λ · βTx)
,

(3.18)

where the input space X was the combinatorially complete set of 8, 192 sequences.
The TrainInputLikelihood subroutine returned the likelihood under the train-
ing input distribution, which is simply equal to to 1/8192, since training se-
quences were sampled uniformly from the combinatorially complete data set. See
https://github.com/clarafy/conformal-for-design for an implementation.

Computing the test input likelihoods was dominated by the (n + 1) × |Y| normalizing
constants, which can be computed efficiently using a single tensor product between an (n+
1)× p×|Y| tensor containing the model parameters, Ci+ yA−i,n and β, and an |X |× p data
matrix containing all inputs in X . For domains, X , that are too large for the normalizing
constants to be computed exactly, one can turn to tractable Monte Carlo approximations.

Gaussian process regression

Here we describe how the scores and weights for the confidence set in Eq. (3.3) can be
computed efficiently, when the likelihood of the test input distribution is a function of the
predictive mean and variance of a Gaussian process regression model.

For an arbitrary kernel and two data matrices, V ∈ Rn1×p and V′ ∈ Rn2×p, let K(V,V′)
denote the n1×n2 matrix where the (i, j)-th entry is the covariance between the i-th row of
V and j-th row of V′. The mean prediction for Xi of a Gaussian process regression model
fit to the i-th augmented LOO data set, µy

−i(Xi), is then given by

µy
−i(Xi) = K(Xi,X−i)[K(X−i,X−i) + σ2I]−1Y y

−i,

and the model’s predictive variance at Xi is

K(Xi, Xi)−K(Xi,X−i)[K(X−i,X−i) + σ2I]−1K(X−i, Xi),

https://github.com/clarafy/conformal-for-design
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Algorithm 6 Efficient computation of scores and weights for ridge regression-based feedback
covariate shift
Input: training data, Z1, . . . , Zn, where Zi = (Xi, Yi); test input, Xn+1; grid of candidate labels,
Y ⊂ R; subroutine for test input likelihood, TestInputLikelihood(·), that takes an input’s predicted
fitness and outputs its likelihood under the test input distribution; subroutine for training input likelihood,
TrainInputLikelihood(·).
Output: scores Si(Xn+1, y) and likelihood ratios v(Xi, Z

y
−i) for i = 1, . . . , n+ 1, y ∈ Y.

1: for i = 1, . . . , n do
2: Ci ←

∑n−1
j=1 Y−i;jA−i;j

3: ai ← CT
i Xi

4: bi ← AT
−i;nXi

5: end for
6: β ← (XTX+ γI)−1XTY
7: an+1 ← βTXn+1

8: for i = 1, . . . , n do
9: for y ∈ Y do
10: Si(Xn+1, y)← |Yi − (ai + biy)| ▷ Can vectorize via outer product between (b1, . . . , bn) and

vector of all y ∈ Y.
11: v(Xi;Z−i,y)← TestInputLikelihood(ai + biy)/TrainInputLikelihood(Xi) ▷ Can

vectorize (see commentary on Eq. (3.18)).
12: end for
13: end for
14: Sn+1(Xn+1, y)← |y − an+1|
15: v(Xn+1;Z1:n)← TestInputLikelihood(an+1)/TrainInputLikelihood(Xn+1)

where the rows of the matrix X−i ∈ Rn×p are the inputs in Zy
−i, Y

y
−i = (Y−i, y) ∈ Rn is

the vector of labels in Zy
−i, and σ2 is the (unknown) variance of the label noise, whose

value is set as a hyperparameter. Note that the mean prediction is a linear function of the
candidate value, y, which is of the same form as the ridge regression prediction in Eq. (3.5);
furthermore, the predictive variance is constant over y. Therefore, we can mimic Alg. 6 to
efficiently compute scores and weights by training just n+1 rather than (n+1)×|Y| models.

3.8 Experimental details and additional results

Designing fluorescent proteins

Features Each sequence was first represented as a length-thirteen vector of signed bits (−1
or 1), each denoting which of the two wild-type parents the amino acid at a site matches.
The features for the sequence consisted of these thirteen signed bits, called the first-order
terms in the main text, as well as all

(
13
2

)
products between pairs of these thirteen bits, called

the second-order interaction terms.

Additional simulated measurement noise. Each time the i-th sequence in the combi-
natorially complete data set was sampled, for either training or designed data, we introduced
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additional simulated measurement noise using the following procedure. Poelwijk et al. [83]
found that the Walsh-Hadamard transform of the brightness fitness landscape included up
to seventh-order statistically significant terms. Accordingly, we fit a linear model of up to
seventh-order terms for each of the combinatorially complete data sets, then estimated the
standard deviation of the i-th sequence’s measurement noise, σi, as the residual between its
label and this model’s prediction. Each time the i-th sequence was sampled, for either train-
ing or designed data, we also sampled zero-mean Gaussian noise with standard deviation σi

and added it to the i-th sequence’s label. This was done to simulate the fact that multiple
measurements of the same sequence will yield different labels, due to measurement noise.

Designing AAV capsids

NNK sequence distribution. The NNK sequence distribution is parameterized by in-
dependent categorical distributions over the four nucleotides, where the probabilities of the
nucleotides are intended to result in a high diversity of amino acids while avoiding stop
codons. Specifically, for three contiguous nucleotides corresponding to a codon, the first two
nucleotides are sampled uniformly at random from {A, C, T, G}, while the last nucleotide is
sampled uniformly at random from only {T, G}.

Additional simulated measurement noise. Following Zhu & Brookes et al. [124], the
fitness assigned to the i-th sequence was an enrichment score based on its counts before and
after a selection experiment, ni,pre and ni,post, respectively. The variance of this enrichment
score for the i-th sequence was estimated as

σ2
i =

1

ni,post

(
1− ni,post

Npost

)
+

1

ni,pre

(
1− ni,pre

Npre

)
where Npre and Npost denote the total counts of all the sequences before and after the
selection experiment, respectively. Using this estimate, we introduced additional simulated
measurement noise to the label of the i-th sequence by adding zero-mean Gaussian noise
with a variance of 0.1 · σ2

i .

Neural network details. As in [124], the neural network took one-hot-encoded sequences
as inputs and had an architecture consisting of two fully connected hidden layers, with 100
units each and tanh activation functions. It was fit to the 7, 552, 729 training data points
with the built-in implementation of the Adam algorithm in Tensorflow, using the default
hyperparameters and a batch size of 64 for 10 epochs, where each training data point was
weighted according to its estimated variance as in [124].
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Figure 3.6: Probability P(y ∈ Crand,split
α (x)) is a piecewise constant function of y. (a)

Given the values of the calibration data and test input, the scores S1, . . . , Sm and corresponding probability
masses w1, . . . , wm (black stems), as well as the probability mass for the test input, wm+1 = 0.3, are fixed.
The only quantity that depends on y is S(x, y). Four example values are shown as dashed green, teal,
blue, and purple stems, representing values in [0, S(1)), (S(1), S(2)), (S(2), S(3)), and (S(3),∞], respectively
(see color legend). Note that in this example, 1 − α = 0.4. (b) The 0.4-quantile and 0.4-quantile lower
bound of the discrete distribution in the top panel as a function of S(x, y), where the colors correspond
to values of S(x, y) in the intervals just listed. Note the discontinuity in the 0.4-quantile lower bound at
S(x, y) = S(1). (c) The c.d.f. of the discrete distribution at the 0.4-quantile and 0.4-quantile lower bound.

Note the discontinuities when S(x, y) equals a calibration score. (d) The probability P(y ∈ Crand,split
α (x)),

which equals 1 or 0 if S(x, y) = 0.4-quantile lower bound or S(x, y) > 0.4-quantile, respectively, and otherwise
equals the probability in Eq. (3.10) that the randomized 0.4-quantile equals the 0.4-quantile: 1 − QF−0.4

QF−LF ,
where QF and LF denote the c.d.f. at the 0.4-quantile and 0.4-quantile lower bound, respectively. Color
legend: calculations of the plotted quantities (calculations for S(x, y) = S(i) omitted).
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Figure 3.7: Quantifying uncertainty for designed proteins (red fluorescence). (a)
Distributions of labels of designed proteins, for different values of the inverse temperature, λ, and different
amounts of training data, n. Labels surpass the fitness range observed in the combinatorially complete data
set, [0.025, 1.692], due to additional simulated measurement noise. (b) Empirical coverage, compared to the
theoretical lower bound of 1−α = 0.9 (dashed gray line), and (c) distributions of confidence interval widths
achieved by full conformal prediction for feedback covariate shift (our method) over T = 2000 trials. (d)
Distributions of Jaccard distances between the confidence intervals produced by full conformal prediction
for feedback covariate shift and standard covariate shift [84]. (e, f) Same as (b, c) but using full conformal
prediction for standard covariate shift. In (a), (c), (d), and (f), the whiskers signify the minimum and
maximum observed values.
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Figure 3.8: Quantifying uncertainty for designed proteins, for n = 48 training data
points, λ = 6, and ridge regression models with features of varying complexity.
In particular, the features consist of all interaction terms up to order d between the thirteen sequence sites,
where the maximum order, d, is the x-axis of the following subplots. (a) Distributions of Jaccard distances
between the confidence intervals produced by conformal prediction for feedback covariate shift (FCS, our
method) and standard covariate shift (SCS) [84] for the blue fluorescence data set over T = 2000 trials. (b)
Empirical coverage, compared to the theoretical lower bound of 1− α = 0.9 (dashed gray line), achieved by
conformal prediction for FCS and SCS over those trials. (c) Distributions of confidence interval widths using
conformal prediction for FCS and SCS. (d-f) Same as (a-c) but for the red fluorescence data set. In (a), (c),
(d), and (f), whiskers signify the minimum and maximum observed values.
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Figure 3.9: Quantifying uncertainty for designed proteins, for n = 48 training data
points, λ = 6, and varying ridge regularization strength, γ. (a) Distributions of Jaccard
distances between the confidence intervals produced by conformal prediction for feedback covariate shift
(FCS, our method) and standard covariate shift (SCS) [84] for the blue fluorescence data set over T = 2000
trials. (b) Empirical coverage, compared to the theoretical lower bound of 1 − α = 0.9 (dashed gray line),
achieved by conformal prediction for FCS and SCS over those trials. (c) Distributions of confidence interval
widths using conformal prediction for FCS and SCS. (d-f) Same as (a-c) but for the red fluorescence data
set. In (a), (c), (d), and (f), whiskers signify the minimum and maximum observed values.
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Figure 3.10: Comparison of weights constructed by conformal prediction for feed-
back covariate shift (FSC, our method) and standard covariate shift (SCS) [84]
for one example blue fluorescence training data set and resulting designed se-
quence, for n = 48 and two different settings of the inverse temperature, λ. Top:
For λ = 2, vector of the n+1 weights prescribed under SCS for the n training data points (data point indices
1 through 48) and the candidate test data points (data point index 49), alongside (n+1)×|Y| matrix of the
weights prescribed under FCS for those same n+ 1 training and candidate test data points. The weight for
each of these data points depends on the candidate label, y (x-axis of heatmap), through a linear relationship
with y (see Section 3.2). Bottom: same as top but for λ = 6.
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Figure 3.11: Comparison of weights constructed by conformal prediction for feed-
back covariate shift (FSC, our method) and standard covariate shift (SCS) [84]
for one example blue fluorescence training data set and resulting designed se-
quence, for n = 48 and two different ridge regularization strengths, γ. Top: For
γ = 100, vector of the n+1 weights prescribed under SCS for the n training data points (data point indices
1 through 48) and the candidate test data points (data point index 49), alongside (n+1)×|Y| matrix of the
weights prescribed under FCS for those same n+ 1 training and candidate test data points. The weight for
each of these data points depends on the candidate label, y (x-axis of heatmap), through a linear relationship
with y (see Section 3.2). Bottom: same as top but for γ = 10.
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Chapter 4

Prediction-powered inference

The material in this chapter is based on work co-authored with Anastasios N. Angelopoulos,
Stephen Bates, Michael I. Jordan, and Tijana Zrnic [144]

4.1 Predictions as data for scientific inquiry

Imagine a scientist has a machine-learning system that can supply accurate predictions
about a phenomenon far more cheaply than any gold-standard experimental technique. The
scientist may wish to use these predictions as evidence in drawing scientific conclusions. For
example, accurate predictions of three-dimensional structures have been made for a vast
catalog of known protein sequences [116] and are now being used in proteomics studies [127,
145]. Such machine-learning systems are becoming increasingly common in modern scientific
inquiry. However, predictions are not perfect, which may lead to incorrect conclusions. How
can modern science leverage machine-learning predictions in a statistically principled way?

One way to use predictions, which we call the imputation approach, is to proceed as
if they are gold-standard measurements. Although this lets the scientist draw conclusions
cheaply and quickly due to the high-throughput nature of the machine-learning system, the
conclusions may be invalid because the predictions may have biases.

An alternative approach is to ignore the machine-learning predictions altogether and only
use the available gold-standard measurements, which are typically far less abundant. We
call this the classical approach. The resulting discoveries will be statistically valid, but the
smaller amount of data will limit the scope of possible discoveries.

We present prediction-powered inference, a framework that achieves the best of both
worlds: extracting information from the predictions of a high-throughput machine-learning
system, while guaranteeing statistical validity of the resulting conclusions. Prediction-
powered inference provides a protocol for combining predictions, which are abundant but
not always trustworthy, with gold-standard data, which is trusted but scarce, to compute
confidence intervals and p-values. The resulting confidence intervals and p-values are statis-
tically valid, as in the classical approach, but also leverage the information contained in the
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predictions, as in the imputation approach, to make the confidence intervals smaller and the
p-values more powerful.

Prediction-powered inference can be used with any machine-learning system; as such, it
absolves the need for case-by-case analyses dependent on the machine-learning algorithm on
hand. The proposed protocol thereby enables researchers to report machine learning-based
scientific conclusions in a fully standardized way.

General principle of prediction-powered inference

The goal in prediction-powered inference is to estimate a quantity, θ⋆, such as the mean or
median value of the label over a population of interest. Toward this end, we have access to a
small gold-standard data set of features paired with labels, (X, Y ) =

(
(X1, Y1), . . . , (Xn, Yn)

)
,

as well as the features of a large unlabeled data set, (X̃, Ỹ ) =
(
(X̃1, Ỹ1), . . . , (X̃N , ỸN)

)
, where

we do not observe the labels, Ỹ1, . . . , ỸN . We focus on the practically relevant setting where
N ≫ n, and assume that (X, Y ) and (X̃, Ỹ ) are independently and identically distributed
from a common distribution, P.

Next, we have a prediction rule, f : X → Y , that is independent of the observed data.
For example, it may be a machine-learning model trained on data independent from both the
labeled and the unlabeled data. We let fi = f(Xi) and f̃i = f(X̃i) denote the predictions for
the labeled and unlabeled data, respectively, and let f = (f1, . . . , fn) and f̃ = (f̃1, . . . , f̃N),
with slight abuse of notation.

Prediction-powered inference builds confidence intervals that are guaranteed to contain
θ⋆ with high probability. Imagine we have an estimator θ̂ of θ⋆. One naive way to estimate
θ⋆, the imputation approach, is to treat the predictions as gold-standard labels and compute
θ̃f = θ̂(X̃, f̃). However, θ̃f will generally be biased due to prediction error. Instead, our
key idea is to use the gold-standard data set to quantify how the prediction errors affect the
imputation estimate, and then construct a confidence set for θ⋆ by adjusting for this effect.

More systematically, the first step and our key conceptual innovation is to introduce an
estimand-specific notion of prediction error called the rectifier, denoted ∆f . The rectifier
captures how errors in the predictions lead to bias in θ̃f . The appropriate rectifier depends
on the estimand of interest, θ⋆, and we derive it for a broad class of estimands in Section 4.2.
Next, we use the gold-standard data to construct a confidence set for the rectifier, R. Finally,
we form a confidence set for θ⋆ by taking θ̃f and “rectifying” it with each possible value in
the set R. The collection of these rectified values is the prediction-powered confidence set,
CPP, which is guaranteed to contain θ⋆ with high probability.
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Prediction-Powered Inference

1. Define rectifier

Define the rectifier,
∆f , a notion of
prediction error.

2. Estimate rectifier

With labeled data, build
R, a confidence set for the

rectifier.

3. Prediction-powered
confidence set

Construct confidence set CPP by
rectifying θ̃f with each value in R.

Prediction-powered inference yields efficient and provably valid confidence intervals and
p-values for a broad class of estimands, enabling researchers to reliably incorporate machine
learning into their analyses. We provide practical algorithms for constructing prediction-
powered confidence intervals for means, quantiles, modes, regression coefficients, and other
potential estimands of scientific interest. For conciseness, our technical statements and
algorithms will focus on constructing confidence intervals; however, note that through the
duality between confidence intervals and hypothesis tests, these results directly imply valid
prediction-powered p-values and hypothesis tests as well.

Warm-up: Mean estimation

Before presenting our theoretical results, we use the example of mean estimation to build
intuition. The goal is to give a valid confidence interval for the mean value of the label,
θ⋆ = E[Y1]. A classical estimate of θ⋆ is the average of the labels in the labeled data set,

θ̂class =
1

n

n∑
i=1

Yi.
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We now construct a prediction-powered estimate, θ̂PP, and show how it leads to tighter
confidence intervals than θ̂class if the prediction rule is accurate. Consider

θ̂PP =
1

N

N∑
i=1

f̃i︸ ︷︷ ︸
θ̃f

− 1

n

n∑
i=1

(fi − Yi)︸ ︷︷ ︸
∆̂f

.

The key idea is that if the predictions are accurate, then ∆̂f ≈ 0 and θ̂PP ≈ 1
N

∑N
i=1 Ỹi,

which has a much lower variance than θ̂class since N ≫ n.
More precisely, observe that θ̂PP is an unbiased estimator for θ⋆, and that it is the sum

of two independent terms. Thus, we can invoke the central limit theorem to construct 95%
confidence intervals for θ⋆ as

θ̂class ± 1.96

√
σ̂2
Y

n︸ ︷︷ ︸
classical interval

or θ̂PP ± 1.96

√
σ̂2
f−Y

n
+

σ̂2
f̃

N︸ ︷︷ ︸
prediction-powered interval

,

where σ̂2
Y , σ̂2

f−Y , and σ̂2
f̃
are the estimated variances of Yi, fi − Yi, and f̃i, respectively.

Because N ≫ n, the width of the prediction-powered interval is primarily determined by
the term σ̂2

f−Y ; furthermore, when the predictions are accurate, we have σ̂2
f−Y ≪ σ̂2

Y , mean-
ing the prediction-powered interval will be smaller than the classical interval. Although
this particular estimator for the mean can be found in many forms in the literature—see
Section 4.1—we leverage this variance reduction idea to make prediction-powered intervals
smaller than their classical counterparts for a broad range of estimands beyond the mean.

Related work

Our work generalizes tools from the model-assisted survey sampling literature [4], which
improve inference from survey data using auxiliary information. In particular, the mean
estimator in Section 4.1 is also known as the difference estimator, a variation of generalized
regression estimators [1]. The use of predictions as auxiliary data is not at all new [15], and
much work has gone into constructing asymptotically valid confidence intervals when the
predictive model is fitted on the same data used for inference [60].

Our work is also related to the statistical literature on missing data and multiple impu-
tation [81]. In particular, regression with missing data has been studied by Robins et al. [5],
Robins and Rotnitzky [7], Chen and Breslow [19], and Yu and Nan [29]. Our setting is also
related to measurement error [25], particularly as studied by Chen et al. [21], who focus on
the estimation of parameters defined as solutions to estimating equations, as we do herein.

Recently, a body of work on estimation using both labeled and unlabeled data has been
developed [3, 18, 34, 125], focusing on efficiency in semiparametric or high-dimensional
regimes. In particular, Chakrabortty and Cai [66] study efficient estimation of linear regres-
sion parameters, Chakrabortty et al. [129] focus on efficient quantile estimation, Zhang and
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Bradic [141] investigate mean estimation in a high-dimensional setting, and Hou et al. [115]
explore an imputation approach for improving generalized linear models. Our work instead
focuses on the setting where we have access to an accurate predictive model fit to sepa-
rate data. This allows us to address a broader range of estimands, such as minimizers of
any convex objective, and provide finite-sample guarantees without assumptions about the
machine-learning model.

More distantly, our setting involving labeled and unlabeled data also appears in the
semi-supervised learning literature [24, 42], which aims to improve prediction accuracy with
unlabeled data. We also highlight the literature on surrogates in causal inference [94]. The-
matically, our work is most similar to Wang et al. [106], who also propose a method to correct
machine-learning predictions for inference. However, our approach provides provably valid
confidence intervals with minimal assumptions about the data distribution, while Wang et
al. rely on parametric assumptions about true relationship between features and labels.

4.2 Main theory: estimands that minimize convex

objectives

Our main contribution is a technique for inference on any estimand that can be expressed
as a solution to a convex optimization problems. In additions to means, this includes a wide
range of quantities such as medians, quantiles, linear and logistic regression coefficients, and
more. Formally, we consider estimands of the form

θ⋆ = argmin
θ∈Rp

E [ℓθ(X1, Y1)] ,

for an objective function ℓθ : X × Y → R that is convex in θ ∈ Rp, for some p ∈ N.
Throughout, we assume the existence of the minimizer, θ⋆, and in cases where it is not unique,
our method returns a confidence set that contains all minimizers. Under mild conditions,
convexity ensures that θ⋆ can also be be expressed as the value solving

E [gθ⋆(X1, Y1)] = 0, (4.1)

where gθ : X × Y → Rp is a subgradient of ℓθ with respect to θ. We refer to estimation
problems where θ⋆ satisfies Eq. (4.1) as nondegenerate convex estimation problems, which
describes many problems in practice. For example, if the objective is differentiable for all θ ∈
Rp, then the problem is immediately nondegenerate. Furthermore, if the data distribution
does not have point masses and, for every θ, Lθ(x, y) is nondifferentiable only for a measure-
zero set of (x, y) pairs, then the problem is again nondegenerate.

Defining the rectifier. Following the outline in Section 4.1, the first step in prediction-
powered inference is to define the rectifier, which captures a estimand-specific notion of
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prediction error. For nondegenerate convex estimation problems, the rectifier is the bias of
the subgradient gθ when evaluated using the predictions:

∆f (θ) = E [gθ(X1, Y1)− gθ(X1, f1)] . (4.2)

Rectifier confidence set. The second step is to construct a confidence set for the rectifier,
Rδ(θ), that satisfies

P
(
∆f (θ) ∈ Rδ(θ)

)
≥ 1− δ.

Because the rectifier is an expectation for each θ, Rδ(θ) can be constructed using off-the-shelf
tools for building confidence intervals for means.

Prediction-powered confidence set. The final step is to form a confidence set for θ⋆.
We do so by combining Rδ(θ) with a term that accounts for finite-sample fluctuations due
to having N samples. In particular, for every θ, we want a confidence set Tα−δ(θ) for
E[gθ(X1, f1)], that satisfies

P (E[gθ(X1, f1)] ∈ Tα−δ(θ)) ≥ 1− (α− δ).

Again, since E[gθ(X1, f1)] is a mean, constructing Tα−δ(θ) can be easily done with off-the-
shelf tools.

We put all the steps together in Theorem 5.

Theorem 5 (Convex estimation). Suppose we have a nondegenerate convex estimation prob-
lem as in Eq. (4.1). Fix α ∈ (0, 1) and δ ∈ (0, α). Suppose that, for any θ ∈ Rp, we can
construct Rδ(θ) and Tα−δ(θ) that satisfy

P
(
∆f (θ) ∈ Rδ(θ)

)
≥ 1− δ; P (E[gθ(X1, f1)] ∈ Tα−δ(θ)) ≥ 1− (α− δ).

Let CPPα = {θ : 0 ∈ Rδ(θ) + Tα−δ(θ)}, where + denotes the Minkowski sum.1 Then,

P (θ⋆ ∈ CPPα ) ≥ 1− α.

This result means that we can construct a valid confidence set for θ⋆ using the predictions,
without any assumptions about the data distribution or the machine-learning model, for any
nondegenerate convex estimation problem. We instantiate some common examples in Section
4.3.

The general principle of prediction-powered inference described in Section 4.1 can also
be applied more broadly, such as to minimizers of any nonconvex objective function, as
described next.

1The Minkowski sum of two sets A and B is equal to {a+ b : a ∈ A, b ∈ B}.
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General risk minimizers

The tools developed in Section 4.2 were tailored to unconstrained convex optimization prob-
lems. More generally, estimands can be expressed as minimizers of nonconvex objective
functions, possibly also with convex or nonconvex constraints, in which case we cannot
expect the condition Eq. (4.1) to hold. In this section, we generalize prediction-powered
inference to a broad class of risk minimizers:

θ⋆ = argmin
θ∈Θ

E[ℓθ(X1, Y1)], (4.3)

where ℓθ : X × Y → R is a possibly nonconvex objective function and Θ is an arbitrary
parameter set. As before, if θ⋆ is not a unique minimizer, our method will return a confidence
set that contains all minimizers.

In this section, we present a prediction-powered inference solution for any estimand that
can be expressed as in Eq. (4.3). Note, however, that this solution does not reduce to the one
in Section 4.2 when the objective ℓθ is convex and subdifferentiable and Θ = Rp for some p,
in which case θ⋆ can be equivalently characterized by Eq. (4.1). We expect the method from
Section 4.2 to be more powerful for nondegenerate convex estimation problems, particularly
when p is small.

We use the following rectifier:

∆f (θ) = E [ℓθ(X1, Y1)− ℓθ(X1, f1)] . (4.4)

Notice that the rectifier Eq. (4.4) is one-dimensional, while the rectifier Eq. (4.2) for nonde-
generate convex estimation problems is p-dimensional.

A key distinction from the approach in Section 4.2 is the inclusion of an additional step
involving data splitting. This additional step is necessary because, unlike in nondegenerate
convex estimation where we know that E[gθ⋆(X1, Y1)] = 0, in general we do not know the
value of E[ℓθ⋆(X1, Y1)]. To address this challenge, we estimate E[ℓθ⋆(X1, Y1)] by approximat-
ing θ⋆ with an prediction-based estimate using the first N/2 unlabeled data points, assuming
N is even for simplicity. To state the main result, we define

θ̃f = argmin
θ∈Θ

2

N

N/2∑
i=1

ℓθ(X̃i, f̃i), L̃f (θ) :=
2

N

N∑
i=N/2+1

ℓθ(X̃i, f̃i).

Theorem 6 (General risk minimization). Fix α ∈ (0, 1) and δ ∈ (0, α). Suppose that, for

any θ ∈ Θ, we can construct
(
Rl

δ/2(θ),Ru
δ/2(θ)

)
and

(
T l

α−δ
2

(θ), T u
α−δ
2

(θ)
)
such that

P
(
∆f (θ) ≤ Ru

δ/2(θ)
)
≥ 1− δ/2,

P
(
∆f (θ) ≥ Rl

δ/2(θ)
)
≥ 1− δ/2,

P
(
L̃f (θ)− E[ℓθ(X1, f1)] ≤ T u

α−δ
2

(θ)
)
≥ 1− α− δ

2
,

P
(
L̃f (θ)− E[ℓθ(X1, f1)] ≥ T l

α−δ
2

(θ)
)
≥ 1− α− δ

2
.
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Let

CPPα =
{
θ ∈ Θ : L̃f (θ) ≤ L̃f (θ̃f )−Rl

δ/2(θ) +Ru
δ/2(θ̃

f ) + T u
α−δ
2

(θ)− T l
α−δ
2

(θ̃f )
}
.

Then, we have
P
(
θ⋆ ∈ CPPα

)
≥ 1− α.

For example, if the loss ℓθ(x, y) takes values in [0, B] for all x, y, then we can set Tα−δ(θ) =

B
√

log(1/(α−δ))
N

, which is valid by Hoeffding’s inequality.

Mode estimation. A common estimand that cannot be described by nondegenerate con-
vex estimation is the mode of the label distribution. We can handle the setting where the la-
bel takes values in a discrete set, Θ, by using the objective function ℓθ(y) = 1 {y ̸= θ} , θ ∈ Θ.
A generalization of this approach to continuous label distributions is obtained by defining
the objective ℓθ(y) = 1 {|y − θ| > η}, for some width parameter η > 0. The estimand
is thus the point θ ∈ R that has the greatest probability mass in its η-neighborhood,
θ⋆ = argminθ∈R P (|Y1 − θ| > η). Theorem 6 applies directly in both the discrete and con-
tinuous cases.

Prediction-powered p-values

The duality between confidence intervals and p-values enables us to repurpose the presented
theory for valid prediction-powered p-values.

To formalize this, suppose we want to test the hull hypothesis H0 : θ⋆ ∈ Θ0 for some
set Θ0 ∈ Rp. For example, a common choice when p = 1 is Θ0 = R≤0. Let Cα be a valid
confidence interval. Then, we can construct a valid p-value as

P = inf{α : θ0 ̸∈ Cα,∀θ0 ∈ Θ0}. (4.5)

A p-value P is valid if it is super-uniform under the null, meaning P (P ≤ u) ≤ u for all
u ∈ [0, 1]. This is indeed the case for the p-value defined in Eq. (4.5), because when θ⋆ ∈ Θ0,
we have

P (P ≤ u) ≤ P (θ⋆ ̸∈ Cu) ≤ u.

The first inequality follows from the definition of P and the fact that θ⋆ ∈ Θ0, and the
second inequality follows by the validity of Cu at level 1− u. We implicitly use the fact that
Cu ⊆ Cu′ when u ≥ u′.

The above derivation is a general recipe for deriving p-values from confidence inter-
vals. For the prediction-powered confidence interval stated in Theorem 5, the corresponding
prediction-powered p-value is given by:

PPP = inf
{
α : |mθ0 +∆f

θ0
| > wθ0(α), ∀θ0 ∈ Θ0

}
.
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4.3 Algorithms

In this section, we present nonasymptotically-valid prediction-powered algorithms for several
canonical estimands: mean estimation, quantile estimation, and logistic regression, which all
correspond to nondegenerate convex estimation problems. The algorithms follow the abstract
recipe in Theorem 5, and proofs of their validity are in Section 4.5.

The algorithms rely on any off-the-shelf method for computing nonasymptotically-valid
confidence intervals for the mean. For concreteness, we instantiate these algorithms with
a variance-adaptive confidence interval for the mean by Waudby-Smith and Ramdas [148]
(Algorithm 10), due to its strong performance in practice. The only assumption required to
apply Algorithm 10 is that the data are almost surely bounded within a known interval.

Mean estimation. We begin by returning to the problem of mean estimation:

θ⋆ = E[Y1]. (4.6)

The mean can alternatively be expressed as the minimizer of the expected squared difference
from the label, a convex objective:

θ⋆ = argmin
θ∈R

E[ℓθ(Y1)] = argmin
θ∈R

E
[
1

2
(Y1 − θ)2

]
.

The squared difference ℓθ(y) is differentiable with the gradient gθ(y) = θ − y. Applying this
to the definition of the rectifier Eq. (4.2), we get

∆f (θ) ≡∆f = E[f1 − Y1].

Note that this rectifier has no dependence on θ. We provide an explicit algorithm for
prediction-powered mean estimation and its guarantee in Algorithm 7 and Corollary 2, re-
spectively.

Algorithm 7 Prediction-powered mean estimation

Input: labeled data (X, Y ), unlabeled features X̃, prediction rule f , error levels α, δ ∈ (0, 1),
bound B

1: (f l
α−δ, f

u
α−δ)← MeanCI

(
{f̃i}Ni=1, err = α− δ, range = [0, B]

)
2: (Rl

δ,Ru
δ )← MeanCI

(
{fi − Yi}ni=1, err = δ, range = [−B,B]

)
Output: prediction-powered confidence set CPPα =

(
f l
α−δ −Ru

δ , f
u
α−δ −Rl

δ

)
Corollary 2 (Mean estimation). Let θ⋆ be the mean outcome Eq. (4.6). Suppose that Y1, f1 ∈
[0, B] almost surely. Then, the prediction-powered confidence set in Algorithm 7 has valid
coverage: P (θ⋆ ∈ CPPα ) ≥ 1− α.
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Quantile estimation. We now turn to quantile estimation. For a pre-specified q ∈ (0, 1),
we wish to estimate the q-quantile of the label distribution:

θ⋆ = min {θ : P (Y1 ≤ θ) ≥ q} . (4.7)

To simplify the exposition, we assume that the distribution of Y1 does not have point masses,
which ensures that the problem is nondegenerate Eq. (4.1). It is well known [2] that the
q-quantile can be expressed in variational form as

θ⋆ = argmin
θ∈R

E [ℓθ(Y1)]

= argmin
θ∈R

E [q(Y1 − θ)1 {Y1 > θ}+ (1− q)(θ − Y1)1 {Y1 ≤ θ}] ,

where ℓθ is called the quantile or “pinball” loss. The quantile loss has the subgradient
gθ(y) = −q1 {y > θ}+(1− q)1 {y ≤ θ} = −q+1 {y ≤ θ}. Plugging the expression for gθ(y)
into the definition Eq. (4.2), we get the relevant rectifier:

∆f (θ) = P (Y1 ≤ θ)− P (f1 ≤ θ) = E [1 {Y1 ≤ θ} − 1 {f1 ≤ θ}] .
We give an algorithm for prediction-powered quantile estimation in Algorithm 8; see Corol-
lary 3 for the corresponding guarantee of validity.

Algorithm 8 Prediction-powered quantile estimation

Input: labeled data (X, Y ), unlabeled features X̃, predictor f , quantile q ∈ (0, 1), error
levels α, δ ∈ (0, 1)

1: Construct fine grid Θgrid between mini∈[N ] f̃i and maxi∈[N ] f̃i
2: for θ ∈ Θgrid do

3: (Rl
δ(θ),Ru

δ (θ))← MeanCI
(
{1 {Yi ≤ θ} − 1 {fi ≤ θ}}ni=1 , err = δ, range = [−1, 1]

)
4: (F̂ l

α−δ(θ), F̂
u
α−δ(θ))← MeanCI

({
1

{
f̃i ≤ θ

}}N

i=1
, err = α− δ, range = [0, 1]

)
5: end for

Output: prediction-powered confidence set

CPPα =
{
θ ∈ Θgrid : q ∈

(
F̂ l
α−δ(θ) +Rl

δ(θ), F̂
u
α−δ(θ) +Ru

δ (θ)
)}

Corollary 3 (Quantile estimation). Let θ⋆ be the q-quantile Eq. (4.7). Then, the prediction-
powered confidence set in Algorithm 8 has valid coverage: P (θ⋆ ∈ CPPα ) ≥ 1− α.

Logistic regression. In logistic regression, the estimand is the parameter vector θ⋆ defined
by

θ⋆ = argmin
θ∈Rd

E[ℓθ(X1, Y1)] (4.8)

= argmin
θ∈Rd

E
[
−Y1θ

⊤X1 + log(1 + exp(θ⊤X1))
]
,
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where Y1 ∈ {0, 1}. The logistic loss is convex and differentiable, which ensures the optimality
condition Eq. (4.1). Its gradient is equal to

gθ(x, y) = −xy + xµθ(x), (4.9)

where µθ(x) = 1/(1 + exp(−x⊤θ)) is the predicted mean for x ∈ X based on parameters
θ. Plugging this into the definition of the rectifier for nondegenerate convex estimation
problems, Eq. (4.2), we derive a rectifier that is constant for all θ and equal to

∆f (θ) ≡∆f = E [X1(f1 − Y1)] .

Algorithm 9 gives the corresponding method for prediction-powered logistic regression, and
Corollary 4 states its validity guarantee. Note that we use Xi,j to denote the j-th coordinate
of Xi.

Other generalized linear models also have the optimality condition Eq. (4.1) with gradi-
ents of the same form as in Eq. (4.9), but with different predicted means µθ(x); see Chapter 3
of Efron [130]). For example, Poisson regression uses µθ(x) = exp(x⊤θ). Consequently, by
changing the instantiation of µθ(x) in Line 4 of Algorithm 9, we can handle other generalized
linear models in essentially the same way.

Algorithm 9 Prediction-powered logistic regression

Input: labeled data (X, Y ), unlabeled features X̃, predictor f , error levels α, δ ∈ (0, 1),
bounds B = (Bj)

d
j=1

1: Construct fine grid Θgrid ⊂ Rd of possible coefficients
2: (Rl

δ,j,Ru
δ,j)← MeanCI ({Xi,j(fi − Yi)}ni=1, err = δ, range = [−Bj, Bj]) , j ∈ [d]

3: for θ ∈ Θgrid do
4: Define µθ(x) =

1
1+exp(−x⊤θ)

5: for g ∈ [d] do

6: I ← MeanCI

({
X̃i,j

(
µθ(X̃i)− f̃i

)}N

i=1
, err = α−δ

d
, range = [−Bj, Bj]

)
7: (glα−δ,j(θ), g

u
α−δ,j(θ))← (min I,max I)

8: end for
9: end for

Output: prediction-powered confidence set,

CPPα =
{
θ ∈ Θgrid : 0 ∈

[
glα−δ,j(θ) +Rl

δ,j, g
u
α−δ,j(θ) +Ru

δ,j

]
, ∀j ∈ [d]

}

Corollary 4 (Logistic regression). Let θ⋆ be the logistic regression coefficients defined in
Eq. (4.8). Suppose that |X1,j| ≤ Bj and Y1, f1 ∈ [0, 1] almost surely. Then, the prediction-
powered confidence set in Algorithm 9 has valid coverage: P (θ⋆ ∈ CPPα ) ≥ 1− α.
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Algorithm 10 MeanCI (from Theorem 3 by Waudby-Smith and Ramdas [148])

Input: data points {Z1, . . . , Zn}, error level α ∈ (0, 1), range [L,U ] s.t. Zi ∈ [L,U ]
1: For all i ∈ [n], let Zi ← (Zi − L)/(U − L) ▷ normalize data to interval [0, 1]
2: Construct fine grid Mgrid of interval [0, 1]
3: Initialize active set A = Mgrid

4: for t ∈ 1, . . . , n do

5: Set µ̂t ←
0.5+

∑t
j=1 Zj

t+1
, σ̂2

t ←
0.25+

∑t
j=1(Zj−µ̂t)2

t+1
, λt ←

√
2 log(2/α)

nσ̂2
t−1

6: for m ∈ A do
7: M+

t (m)←
(
1 + min

(
λt,

0.5
m

)
(Zt −m)

)
M+

t−1(m)
8: M−

t (m)←
(
1−min

(
λt,

0.5
1−m

)
(Zt −m)

)
M−

t−1(m)

9: Mt(m)← 1
2
max

{
M+

t (m), M−
t (m)

}
▷ construct test martingale for m ∈ [0, 1]

10: if Mt(m) ≥ 1/α then
11: A ← A \ {m} ▷ Remove m from active set
12: end if
13: end for
14: end for
Output: Confidence set for the mean Cα = {m(U − L) + L : m ∈ A}

4.4 Applications in proteomics and genomics

In the following two applications, we compute the prediction-powered confidence interval for
an estimand of interest and compare it to two alternatives: the classical interval, which uses
only the gold-standard data, and the imputation interval, which uses only the predictions
on the unlabeled data, by treating it as gold-standard data. We show that the imputation
interval, which does not account for prediction error, does not contain the true value of the
estimand. For the two intervals that are guaranteed to be valid—prediction-powered and
classical—we compare their widths as a function of n, the amount of labeled data used.

Code is available at this link.

Relating protein structure and post-translational modifications

We demonstrate how prediction-powered confidence intervals for the mean can be used to
construct confidence intervals for more elaborate estimands, such as the odds ratio, which is
commonly used to quantify associations between binary random variables.

The goal in this application is to characterize the structural context of post-translational
modifications (PTMs), which are biochemical modifications of specific positions of a protein
sequence that play regulatory roles. One question of interest is whether PTMs occur more
frequently in intrinsically disordered regions (IDRs), segments of a protein that do not abide
in a fixed three-dimensional structure. Recently, Bludau et al. [127] studied this relationship
on an unprecedented proteome-wide scale by using AlphaFold-predicted structures [116] to

https://www.github.com/aangelopoulos/prediction-powered-inference
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predict IDRs, in contrast to previous work which considered far fewer experimentally derived
structures.

Figure 4.1: AlphaFold-based prediction of intrinsic disorder. Left: predicted disorder for
one example protein (UniProt S5FZ81), colored by predicted probability of disorder per position. Middle:
ROC curve of disorder prediction based on AlphaFold structure. Right: confidence interval for the odds ratio
between disorder and phosphorylation (a type of post-translational modification) produced by prediction-
powered inference and the classical and imputation baselines, when n = 571. Unlike the classical interval, the
prediction-powered interval excludes the value of one and thus the direction of the association is unambiguous.

Let Yi ∈ {1, 0} denote the gold-standard label of whether or not a position is in an IDR,
and let Zi ∈ {1, 0} denote whether or not a position has a PTM. Following Bludau et al. [127],
we obtain a prediction for Yi, denoted fi ∈ {1, 0}, from the AlphaFold-predicted structure
(see Section 4.6 for details). To quantify the association between PTMs and IDRs, the
authors computed the odds ratio between fi and Zi on a data set of hundreds of thousands
of protein sequence positions. Though some of the data points also contained a gold-standard
label, Yi, Bludau et al. [127] did not use these labels in their analyses to avoid dealing with
conflicts between labels and predictions. Here, we show how to use both the gold-standard
labels and the predictions to give confidence intervals for the odds ratio that are valid, in
contrast to the imputation interval, and smaller than the classical interval.

The odds ratio between Yi and Zi can be written as a function of two means:

θ⋆ =
µ1/(1− µ1)

µ0/(1− µ0)
, (4.10)

where µ1 = P (Y = 1 | Z = 1) and µ0 = P (Y = 1 | Z = 0). We therefore proceed
by constructing 1 − α/2 prediction-powered confidence intervals for µ0 and µ1, denoted
CPP0 = [l0, u0] and CPP1 = [l1, u1], respectively. We then propagate CPP0 and CPP1 through the
odds-ratio formula Eq. (4.10) to get the following confidence interval:

CPP =

{
c1

1− c1
· 1− c0

c0
: c0 ∈ CPP0 , c1 ∈ CPP1

}
=

(
l1

1− l1
· 1− u0

u0

,
u1

1− u1

· 1− l0
l0

)
.

By a union bound, CPP contains θ⋆ with probability at least 1− α. We set α = 0.1.
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Figure 4.2: Classical and prediction-powered confidence intervals on the odds
ratio for three different post-translational modifications, phosphorylation (top
row), ubiquitination (middle row), and acetylation (bottom row). Left: widths of
prediction-powered and classical confidence intervals for µ1 (solid line) and µ0 (dashed line). Middle: widths
of prediction-powered and classical confidence intervals for the odds ratio. Right: distribution of interval
widths for the odds ratio when n = 365.

We have 10, 803 data points from [127], from which we simulated labeled and unlabeled
data sets as follows. For each of 1000 trials, we randomly sampled n points to serve as
the labeled data set and used the remaining N = 10803 − n points as the unlabeled data
set, where we do not observe the labels. For all values of n and all three different types
of PTMs that we examined, the prediction-powered confidence intervals are smaller than
classical intervals (Fig. 4.2). On the other hand, the imputation confidence interval does not
contain the true odds ratio (Fig. 4.1).

Distribution of gene expression levels

In this section, we demonstrate the construction of prediction-powered confidence intervals
on quantiles for studying the effects of regulatory DNA on gene expression.

In particular, we aim to characterize the distribution of gene expression levels induced
by a population of promoters—regulatory DNA sequences that control how frequently a
gene is transcribed. Recently, Vaishnav et al. [139] trained a state-of-the-art transformer
model on tens of millions of random promoter sequences, to predict the expression level of



CHAPTER 4. PREDICTION-POWERED INFERENCE 90

a particular gene induced by a promoter sequence (Fig. 4.3). They then used the model’s
predictions to study the effects of promoters—for example, by assessing how quantiles of
predicted expression levels differ between different populations of promoters, and verifying
those observations by experimentally measuring the expression levels of the promoters of
interest.

Figure 4.3: Predicting gene expression level from promoter sequence. Data and
transformer predictive model are from Vaishnav et al. [139]. Left: each data point consists of a promoter
sequence, Xi, and an expression level, Yi. Middle: predictive performance of the transformer model on
the native yeast promoters used in our experiments (RMSE 2.18, Pearson 0.963, Spearman 0.946). Right:
confidence intervals for the median native yeast promoter expression level with n = 75 and α = 0.1.

Figure 4.4: Widths of confidence intervals for quantiles of gene expression level.
Data and transformer predictive model are from Vaishnav et al. [139]. Left: average width of prediction-
powered and classical confidence intervals for the 0.25-quantile (dashed lines), 0.5-quantile (solid lines), and
0.75-quantile (dotted lines). Right: distribution of confidence interval widths for the median using n = 75.

Let Xi be an 80-base-pair promoter sequence for a particular gene, and let Yi ∈ [0, 20]
denote a measurement of the expression level it causes for the gene. Furthermore, let fi ∈
[0, 20] denote the corresponding expression level predicted by the transformer model in [139].
We focus on estimating the 0.25-, 0.5-, and 0.75-quantiles of expression levels induced by
native yeast promoters: the population of promoter sequences that are naturally found in
the genomes of S. cerevisiae.
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We have 61, 150 labeled native yeast promoter sequences from [139], from which we
simulated labeled and unlabeled data sets as follows. For each of 1000 trials, we randomly
sampled n points to serve as the labeled data set and used the remainingN = 61150−n points
as the unlabeled data set. We then constructed prediction-powered confidence intervals for
the quantiles with α = 0.1. The prediction-powered intervals for all three quantiles are
smaller than the classical intervals for all values of n (Fig. 4.4). On the other hand, the
imputation confidence intervals do not contain the true quantiles (Fig. 4.3 for the median).

4.5 Proofs

Proof of Theorem 5

We show that θ⋆ ∈ CPPα with probability at least 1 − α; that is, with probability at least
1− α it holds that

0 ∈ Rδ(θ
⋆) + Tα−δ(θ

⋆).

Consider the event E = {∆f (θ⋆) ∈ Rδ(θ
⋆)}∩{E[gθ⋆(X1, f1)] ∈ Tα−δ(θ

⋆)}. By a union bound,
P (E) ≥ 1− α. On the event E, we have that

E[gθ⋆(X1, Y1)] = E[gθ⋆(X1, Y1)]− E[gθ⋆(X1, f1)] + E[gθ⋆(X1, f1)]

= ∆f (θ⋆) + E[gθ⋆(X1, f1)] ∈ Rδ(θ
⋆) + Tα−δ(θ

⋆).

The theorem follows by invoking the nondegeneracy condition, which ensures
E[gθ⋆(X1, Y1)] = 0, so we have shown that 0 ∈ Rδ(θ

⋆) + Tα−δ(θ
⋆).

Proof of Corollary 2

The proof follows by instantiating the terms in Theorem 5. In particular, we have

E[gθ(f1)] = θ − E[f1],

hence it is valid to construct Tα−δ(θ) as:

E[gθ(f1)] ∈ Tα−δ(θ) = θ − (f l
α−δ, f

u
α−δ).

Therefore, the condition 0 ∈ Rδ + Tα−δ(θ) becomes

0 ∈ (Rl
δ,Ru

δ ) + θ − (f l
α−δ, f

u
α−δ),

which, after rearranging and simplifying, is equivalent to

θ ∈
(
f l
α−δ −Ru

δ , f
u
α−δ −Rl

δ

)
.

This set exactly matches the set CPPα constructed in Algorithm 7.
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Proof of Corollary 3

The proof follows by instantiating the terms in Theorem 5. First, we have

E[gθ(f1)] = −q + P (f1 ≤ θ);

therefore, it is valid to construct Tα−δ(θ) as:

E[gθ(f1)] ∈ Tα−δ(θ) = −q +
(
F̂ l
α−δ(θ), F̂

u
α−δ(θ)

)
.

Therefore, the condition 0 ∈ Rδ(θ) + Tα−δ(θ) becomes

q ∈
(
F̂ l
α−δ(θ) +Rl

δ(θ), F̂
u
α−δ(θ) +Ru

δ (θ)
)
,

which matches the condition used to form CPPα in Algorithm 8.

Proof of Corollary 4

We instantiate the relevant terms in Theorem 5. We have

E[gθ(X1, f1)] = E
[
−X1f1 +X1

1

1 + exp(−X⊤
1 θ)

]
.

Note that, because X1 is bounded coordinate-wise, and Y1, 1/(1 + exp(−X⊤
1 θ)) ∈ [0, 1], we

have |(gθ(X1, f1))j| ≤ Bj almost surely. Therefore, we can construct Tα−δ(θ) as:

E[gθ(X1, f1)] ∈ Tα−δ(θ) =
(
glα−δ(θ), g

u
α−δ(θ)

)
=
(
glα−δ,1(θ), g

u
α−δ,1(θ)

)
× · · · ×

(
glα−δ,d(θ), g

u
α−δ,d(θ)

)
.

Since the rectifier has no dependence on θ, the condition 0 ∈ Rδ(θ) + Tα−δ(θ) becomes

0 ∈ (Rl
δ,j,Ru

δ,j) +
(
glα−δ,j(θ), g

u
α−δ,j(θ)

)
, ∀j ∈ [d],

which matches the condition defining CPPα in Algorithm 9.

4.6 Experimental details

Model for predicting intrinsically disordered regions. The predictive model f is a
logistic regression model that maps relative solvent-accessible surface area (RSA) of each
position, computed based on the AlphaFold-predicted structure, to a probability that the
position is in an IDR. Following Bludau et al. [127], the RSA was locally smoothed with a
window of 5, 10, 15, 20, 25, 30, or 35 amino acids, and a sigmoid function was used to predict
disorder from this smoothed RSA quantity. To fit the sigmoid, we used the data in [127]
that had disorder labels but no PTM labels. The window size was chosen as the value that
resulted in the lowest variance of the bias, Y − f , on this data.
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