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Abstract

The proteasome degrades proteins, which is essential for cellular homeostasis. Ubiquitin 

independent proteolysis degrades highly disordered and misfolded proteins. A decline of 

proteasomal activity has been associated with multiple neurodegenerative diseases due to the 

accumulation of misfolded proteins. In this work, cyclic peptide proteasome stimulators (CyPPSs) 

that enhance the clearance of misfolded proteins were discovered. In the initial screen of predicted 

natural products (pNPs), several cyclic peptides were found to stimulate the 20S core particle 

(20S CP). Development of a robust structural activity relationship led to the identification of 

potent, cell permeable CyPPSs. In-vitro assays revealed that CyPPSs stimulate degradation of 

highly disordered and misfolded proteins without affecting ordered proteins. Furthermore, using 

a novel flow-based assay for proteasome activity, several CyPPSs were found to stimulate the 

20S CP in-cellulo. Overall, this work describes the development of CyPPSs as chemical tools 

capable of stimulating the proteasome and provides strong support for proteasome stimulation as a 

therapeutic strategy for neurodegenerative diseases.
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Cyclic peptide proteasome stimulators: Cyclic peptides inspired by natural products activate 

ubiquitin independent degradation of disordered proteins. Development and utilization of a flow-

based proteasome assay enabled confirmation of the activity of cyclic peptides in cells, making 

them valuable chemical tools for studying proteasome activation.
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Introduction

The proteasome is essential for the degradation of cellular proteins1–3 and maintenance 

of normal cellular functions3–11. Protein degradation via the proteasome is done by either 

a ubiquitin-proteasome system (UPS)12–14 or a ubiquitin-independent proteasome system 

(UIPS)15–18. The 26S and 30S isoforms1,19,20 of the proteasome, which consist of the 

19S regulator particle (19S RP) and the 20S core particle (20S CP), are responsible for 

UPS12,21,22 (Figure 1A). The 20S CP can also degrade proteins alone via UIPS. However, 

the proteins must be at least partially disordered to pass through the gate formed by the 

α-subunits15,23–27. Homeostasis between the UPS and UIPS is essential for the maintenance 
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of healthy cells28. During the aging process the production of the 19S RP diminishes29,30, 

leaving UIPS as a major pathway for protein degradation. This decline in UPS activity, 

along with other mechanisms of UPS inactivation, has been associated with many 

neurodegenerative diseases including Huntington’s Disease31, Alzheimer’s Disease32,33, 

and Parkinson’s Disease34,35. These proteopathies are hypothesized to be caused by the 

accumulation of misfolded proteins36–38. Literature suggests that the associated proteins 

(e.g. α-synuclein and tau) can be degraded by the proteasome23. However, the UIPS is 

not strongly activated, limiting its ability to clear these proteins. For this reason, there is 

an effort to identify UIPS activators that can increase the rate of clearance of misfolded 

proteins. Multiple small molecules and a handful of peptides (Figure 1B) have been 

observed to stimulate the proteasome8,39–43. While these small molecules and peptides 

have been useful for answering foundational questions about the mechanism of proteasome 

stimulation39,40,44,45, the majority of proteasome stimulators reported to date either have 

low potency (e.g. AM-404 and ursolic acid), are not selective (e.g. cyclosporine), or have 

limited activity in cell-based assays (e.g. betulinic acid, chloropromazine, and MK-866). 

Target-engagement studies with these molecules have also proven challenging, with little-to-

no evidence of their direct interaction with the proteasome. A cyclic peptide stimulator could 

provide regions to easily append cross-linking moieties or other pull-down handles for these 

future important studies.

Recently, we reported synthetic natural product inspired cyclic peptides (SNaPP), a useful 

tool for predicting novel natural product-like molecules with biological activity46. Given that 

linear peptides have previously been identified as proteasome stimulators, we hypothesized 

that our cyclic peptide predicted natural products (pNPs) might be capable of stimulating 

the 20S CP. Cyclic peptides have several advantages over linear peptides, including their 

generally greater stability to proteases47–49, their improved cell permeability47–51, and their 

rigidity47–49,52,53, which allows for increased affinity for their targets. Described herein, we 

utilized pNPs in our previously developed in vitro proteasome stimulation assay41 and found 

several cyclic pNPs that efficiently stimulate the 20S CP. Derivatives were synthesized to 

evaluate any structure activity relationship and revealed more potent cyclic pNPs. In vitro 
protein degradation assays revealed that these molecules stimulate proteasomal degradation 

of disordered proteins (e.g. α-synuclein) while having little to no effect on ordered proteins 

(e.g. lysozyme and GAPDH). Finally, cell-based assays revealed cyclic pNPs stimulate the 

20S CP.

Results and Discussion

Development of Cyclic Peptide Proteasome Stimulators

The TAS-1 biochemical assay54 was utilized to analyze the 20S CP proteasome stimulation. 

This assay relies on a fluorescent-based probe, which incorporates a rhodium fluorescent 

probe conjugated to a proteasome peptide substrate on one side and a peptoid for solubility 

on the other. Active proteasome cleaves the peptide, resulting in fluorescence of the rhodium 

probe. This enables monitoring of the real-time activity of the proteasome, with greater 

intensity of fluorescence corresponding to higher proteasome activity.
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Utilizing the TAS-1 biochemical assay, we screened a library of 45 cyclic peptides that 

were generated by SNaPP46 (Figure S1). In our library, we had nine peptides that stimulated 

the proteasome 20% more than the DMSO control, giving us a hit rate of 20%. This is in 

stark contrast to many other proteasome stimulator screens, which typically have hit rates of 

less than 1%40,55. Of the hits identified in the initial screen, six cyclic peptides stimulated 

the proteasome greater than 140%. These top compounds all contained an arginine, a polar 

uncharged amino acid, and an aromatic amino acid. Furthermore, four of the six with the 

highest percent stimulation contained six amino acids (Figure 2). Analogous to the peptides 

in Figure 2, many peptide proteasome stimulators have an arginine56. Another common 

motif throughout peptide proteasome stimulators is a tyrosine, which has shown to open 

or stabilize the gate of the 20S CP45,57. Although, none of the top pNP stimulators have 

tyrosine, they do have a conserved phenylalanine, which may be acting similarly.

Because pNP-40 (renamed Cyclic Peptide Proteasome Stimulator 1, CyPPS1) had the 

highest percent stimulation of the identified hits, we decided to pursue derivatives of 

CyPPS1 to develop a structural activity relationship (SAR). An alanine scan was first 

performed to determine the residues that were necessary for activity (CyPPS2–6, Figure 

3A). Each amino acid was substituted with an alanine, except for arginine. Unfortunately, 

the derivative where arginine is replaced with alanine is insoluble and thus could not be 

evaluated. For this reason, we utilized a derivative that switched the position of arginine 

with alanine (CyPPS6). The stimulatory activity for CyPPS6 was preserved, suggesting 

that the position of the arginine is not essential. When each amino acid was substituted 

with an alanine, the activity decreased, suggesting that all the amino acids are essential 

for the stimulatory affect (Figure 3A–B). Specifically, replacing either the D-leucine 

(CyPPS3) or the D-phenylalanine (CyPPS5) with D-alanine resulted in the greatest loss 

of stimulatory activity, suggesting that these amino acids are particularly important for 

activity. Additionally, a linear version of CyPPS1 (PPS1) was explored and found to have 

little-to-no stimulatory effect. This provides strong evidence for the necessity of cyclizing 

these peptides for activity and suggests that cyclization likely holds them in an active 

conformation.

The SAR was further explored by substituting other amino acids at each position (Figure 

3C–E, Table S1–2). The threonine at position 1 was substituted with lysine (CyPPS7), 

aspartic acid (CyPPS8), and valine (CyPPS9). The lysine substitution decreased activity, 

suggesting basic amino acids are not tolerated at position 1. Both CyPPS8 and CyPPS9 

maintained stimulatory activity, suggesting that position 1 tolerates both acidic and 

aliphatic amino acids, in addition to the polar threonine. The D-leucine at position 

2 was substituted with D-aspartic acid (CyPPS10), D-lysine (CyPPS11), D-isoleucine 

(CyPPS12), and D-valine (CyPPS13). Only CyPPS13 retained activity, with the other 

derivatives having decreased activity. While the lack of activity with CyPPS12 is surprising, 

these results overall suggest that an aliphatic amino acid with branching is preferred. 

Position 2 was also substituted with D-propargylglycine (CyPPS14), which also retained 

stimulatory activity, supporting the necessity for an aliphatic side chain. All substitutions 

at position 3 decreased activity except for 4-fluorophenylalanine (CyPPS15). Tyrosine 

(CyPPS16/CyPPS17) was also substituted for position 3 and 4. Interestingly, a decline 

in stimulatory activity was observed, indicating CyPPSs are likely not acting at the 
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same location as the previously studied tyrosine-containing peptides. Substitutions of D-4-

fluorophenylalanine (CyPPS18) at position 4 decreased activity. Other substitutions such 

as D-3-flurophenylalanine (CyPPS19) and D-3,4-difluorophenylalanine (CyPPS20) retained 

activity, suggesting that electron-withdrawing groups are tolerated. We also substituted this 

position for benzophenone (CyPPS21) and found that the 20S CP stimulatory activity 

was maintained. Substitution of the D-alanine at position 6 with D-serine (CyPPS22) 

and D-diaminopropionic acid (CyPPS23) maintained stimulatory activity, suggesting that 

small polar substitutions are tolerated. We were unable to substitute position 5 with 

any amino acids other than basic amino acids due to solubility issues. The basic amino 

acid diaminopropionic acid (CyPPS24) maintained stimulatory activity. Finally, a cyclic 

pentapeptide (CyPPS25) was explored but had decreased activity, demonstrating the 

importance of ring size for activity. Of the 37 derivatives tested, 4 derivatives were found 

to have similar or increased stimulatory activity compared to the parent CyPPS1 (Figure 

3C–D). These were selected to undergo further testing.

Dose response and activity with purified proteins

Initially, the dose-response relationship was determined for the top five hits (Figure 3F). 

CyPPS13 and CyPPS23 had the lowest EC50 values (4.0 μM and 4.1 μM, respectively), 

suggesting they are the most potent compounds. However, their maximal response was 

lower compared to CyPPS8 and CyPPS14 (Table S3 for Emax and EC50 values). While the 

reasoning for the differences in EC50 and Emax for these molecules is currently unclear, the 

structural similarity of the molecules suggests they likely have similar binding sites.

Given the potency of the CyPPSs in the TAS-1 assay, we chose to explore their abilities to 

degrade proteins using an in vitro degradation assay. The 20S CP typically degrades proteins 

that are highly disordered. To ensure the selectivity of the CyPPSs for disordered proteins, 

the ability of these molecules to induce degradation of disordered proteins (e.g. α-synuclein) 

and ordered proteins (e.g. GAPDH and lysosyme) was explored. CyPPS1, CyPPS14, and 

CyPPS23 greatly enhanced proteasomal degradation of α-synuclein while having little-to-no 

effect on GAPDH and lysozyme (Figure 4 and Figure S2). The lack of activity of CyPPS8 in 

this assay is unsurprising given that molecules were tested at 10 μM, a concentration where 

CyPPS8 has little effect (Figure 3F). Overall, this suggests that CyPPS1, CyPPS14, and 

CyPPS23 are excellent leads for proteasome stimulation. The top hits were also tested for 

toxicity in mammalians cells. Based on their selectivity for disordered proteins, we would 

not expect these molecules to be toxic. Gratifyingly, no toxicity was observed in HEK293 

cells (Table S2). Additionally, no hemolysis was observed with human red blood cells, 

further supporting these as excellent lead molecules (Table S2).

Cell-Based Activity

While many cyclic peptides are cell permeable, it is challenging to predict a priori the 

peptides that are capable of entering cells. Because the proteasome is an intracellular target, 

we decided to investigate the ability of the CyPPSs to enter cells. To do this, a BODIPY-

tagged CyPPS (CyPPS26) was synthesized from the alkyne derivative CyPPS14 (SI Scheme 

2). A549 cells were then dosed with CyPPS26 and analyzed for cell permeability via 

confocal microscopy. Furthermore, we investigated the mechanism by which CyPPS26 
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was entering the cell. Cellular uptake of cyclic peptides usually occurs either via passive 

diffusion58,59 or endocytosis60–65. The puncta present suggest that CyPPSs may enter the 

cell via endosomal uptake. This possibility was further supported by the overlap of the 

BODIPY and LysoTracker signal (Figure 5). However, further experimentation is needed 

to confirm this. As some cytosolic fluorescence is observed, it is hypothesized that at least 

some of the CyPPSs are capable of escaping the endosome, and thus likely capable of 

engaging with the cytosolic proteasome. However, it does appear like the majority of the 

peptide remains within the endosome, at least at this timepoint. This is an area that will be 

optimized in the future. Cytosolic protein accumulation is linked to many neurodegenerative 

diseases, including α-synuclein accumulation in Parkinson’s disease66. Given that CyPPSs 

can degrade highly disordered proteins and are cell permeable, we chose to investigate their 

abilities to stimulate the proteasome in cellulo using a newly established flow cytometry 

assay.

Flow cytometry allows for the study of proteasomal activity in physiologically relevant 

conditions and presents a high-throughput alternative to traditional gel electrophoresis and 

western blotting techinques67–69. To test the assay, a covalent fluorescent-based probe70,71 

was applied in HEK293T cells to quantify proteasome stimulation of CyPPSs, a known 

proteasome stimulator (miconazole [MO]) and proteasome inhibitor (MG132) (Figure S3). 

The covalent fluorescent-based probe is based on the proteasome inhibitor epoxomicin, 

which interacts with the β5 subunit of the proteasome, with a fluorophore appended 

to the N-termini. Upon incubation with the proteasome, it forms a covalent bond, thus 

fluorescently tagging the proteasome72. This probe has previously been shown to act in 

cells, enabling the current flow-based studies with higher fluorescence indicating higher 

proteasome activation. The addition of CyPPSs induces a significant shift in the intracellular 

fluorescence (Figure 6A). This shift validates that CyPPSs are capable of stimulating 

cytosolic proteasome in cellulo. Interestingly, the same compounds that degrade purified 

α-synuclein (CyPPS1, CyPPS14, and CyPPS23) show significant cellular stimulation of the 

proteasome. However, their activity is lower than what would be expected based on their in 
vitro activity. This may be due to incomplete cellular uptake or escape from the endosomes. 

Unsurprisingly, the linear PPS1 does not stimulate the proteasome. This is likely due to a 

combination of effects including the inability to stimulate the proteasome (Figure 3B–D) as 

well as the generally poor cell permeability and proteolytic stability of linear peptides.

Conclusions

Described herein, CyPPSs were developed as stimulators of UIPS. Exploration of derivatives 

enabled development of a robust SAR, resulting in identification of three CyPPSs that 

selectively degrade highly disordered proteins (i.e. α-synuclein). CyPPSs were found to 

enter the cell via endocytosis and demonstrated significant endosomal escape into the 

cytosol. A flow-based proteasome stimulation assay—which allows for high throughput 

evaluation of proteasome stimulation—was developed and revealed that CyPPSs efficiently 

stimulate the proteasome in cells. Overall, the CyPPSs are promising leads for potent, 

cell-active proteasome stimulators.

Nelson et al. Page 6

Chembiochem. Author manuscript; available in PMC 2024 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) The 26S proteasome (left) consists of the 19S regulatory particle (blue) and the 20S 

core particle (gray). Ubiquitin independent proteolysis (right) only consists of the 20S core 

particle. B) Known 20S core particle proteasome stimulators.
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Figure 2. 
Structural activity relationship of the initial screen of the SNaPP library. Each peptide is a 

hexamer that consists of at least one aromatic amino acid (purple), uncharged polar amino 

acid (blue), and arginine (orange).
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Figure 3. 
A) Structures of the peptides in Figure 3B. B) TAS-1 20S CP stimulation of the alanine scan 

of CyPPS1. All compounds except miconazole (MO) were tested at 10 μM. 2-way ANOVA 

analysis performed comparing to CyPPS1 (n=3 with S.E.M. indicated) **** P<0.0001, 

*** P<0.001, ** P<0.01, * P<0.05, and ns P > 0.05. Average of 3 independent replicates. 

Abbreviations: MO = miconazole. C) Structures of the peptides in Figure 3D. D) TAS-1 20S 

CP stimulation of the top five 20S CP stimulators and the linear of CyPPS1. All compounds 

except MO were tested at 10 μM. 2-way ANOVA analysis performed comparing to CyPPS1 

(n=3 with S.E.M. indicated) **** P<0.0001, *** P<0.001, ** P<0.01, * P<0.05, and ns P > 

0.05. Average of 3 independent replicates. Abbreviations: MO = miconazole. E) Structural 

activity relationship of CyPPS1. F) Dose response curve of the top 5 20S CP stimulators.
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Figure 4. 
A) Coomassie gel (representative of 3 independent replicates) and B) quantification of the 

degradation of highly disordered (⍺-synuclein) and low disordered (GAPDH and lysozyme) 

proteins. All compounds were tested at 10 μM. 2-way ANOVA performed comparing to 

basal activity (n=3 with S.E.M. indicated) **** P<0.0001, *** P<0.001, ** P<0.01, * 

P<0.05, and ns P > 0.05. Average of 3 independent replicates.
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Figure 5. 
Cell permeability and mechanism of cell uptake of CyPPSs was determined with 15 μM of 

CyPPS26 in A549 cells after 1.5 hours (representative of 3 independent replicates). Scale bar 

is 10 μm.
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Figure 6. 
A) Flow cytometry plots showing shifts in fluorescence signal (FITC) in HEK293 T cells 

(representative of 3 independent replicates). Abbreviations: MO = miconazole. B) Flow 

cytometry analysis of CyPPSs at 10 μM in HEK293 T cells. 2-way ANOVA performed 

((n=3 with S.E.M. indicated) **** P<0.0001, *** P<0.001, ** P<0.01, *<0.05, and ns 

P > 0.05. Average of 3 independent replicates. P<0.05, and ns P > 0.05. Average of 3 

independent replicates. Abbreviations: MO = miconazole.
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