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Surgical robots are becoming increasingly common in operating rooms, which

provides the opportunity to deploy automation algorithms for surgery. Surgical task

automation aims to improve patient throughput, reduce quality-of-care variance among

surgeries, and potentially deliver complete automated surgery in the future. While

progress in developing autonomous surgical tasks has leaped forward, reactive maneuvers

to traumatic events, such as hemostasis, represent a critical area that has attracted little

attention. Hemostasis describes a state of the surgical field that is achieved when there is

no site of active bleeding and the tissues are unobstructed by blood. Unlike previously
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automated tasks that occur in a more predictable cadence within a procedure, bleeding

can be unpredictable, which necessitates hemostatic maneuvers at any time during surgery.

In this dissertation, all the necessary perception, motion planning, and control

strategies are presented to autonomously control a robotic suction tool to clear the

surgical field from blood. First, a surgical tool tracking technique is proposed that

localizes the robotic agent, which will clear the surgical field, in the endoscopic camera

frame. The surgical tool tracking is combined with a deformable tissue tracker to

completely track a surgical scene before a vessel rupture occurs. The combination of the

two trackers is coined SuPer, the Surgical Perception framework. Next, the blood from a

vessel rupture scenario is perceived by detecting and reconstructing the flowing blood

from the endoscopic camera data. Finally, a controller and a motion planner for the

robotic suction tool to clear the surgical field of blood are presented.
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Chapter 1

Introduction

Surgery is an invasive medical treatment that requires physical intervention. In open

surgery, large incisions are made to access the surgical site where the treatment would be

applied. Through modern sensing technology (e.g., endoscopic cameras), smaller incisions,

and sometimes even no incisions, can be achieved. Surgeons visualize the surgical site

through small endoscopic cameras while guiding and controlling low-profile surgical

instruments (e.g., laparoscopic instruments). Making fewer and smaller incisions is

associated with less scarring and improved recovery time for patients, ultimately allowing

them to get back to normal life sooner. The use of less invasive surgical procedures is

defined as minimally invasive surgery.

Minimally invasive surgery is a motivating factor for developing novel surgical robotic

systems that aim to improve surgical precision, increase dexterity, and decrease the

instrument profiles in the confined workspace of a small surgical site. The da Vinci

Surgical System [23] from Intuitive is a representative example of such a system and has

been through multiple iterations (S, Si, Xi). Competitors of similar designs have been

developed, such as the Versius from CMR Surgical and the Ottava from Johnson and

Johnson. Single port robotic systems (e.g., da Vinci SP from Intuitive and Sport Surgical

from Titan Medical) are emerging with the promise of only requiring a single entry point

(i.e., one incision).
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Figure 1.1. The dVRK [65] being used with a phantom abdomen on the left [135] and a
live surgery on the right [133].

More specialized surgical robotic systems have also been developed for other surgical

procedures. The Monarch Platform from Auris Health is a robotic catheter designed to

access hard-to-reach lung nodules. Mako from Stryker and ROSA from Zimmer Biomet

were developed for orthopedic surgeries (e.g., knee arthroplasty). CorPath GRX from

Cornidus supports percutaneous coronary and vascular procedures.

To date, surgical robots require direct control from an operating surgeon. Surgeons

send commands to the surgical robot from a console with a joystick or a back-drivable

manipulator, and the robot will execute the exact commands that it received. While this

utilization of surgical robotics is helping patients today, it is not the full potential of what

surgical robots can do in the operating room. To this end, a variety of research for

surgical robotics has emerged, such as performance metrics [56, 55, 75], remote surgeries

[137, 134, 115, 133], and surgical task automation [171, 31]. Surgical task automation is

an increasingly expanding research field in an effort to improve patient throughput,

reduce quality-of-care variance among surgeries, and potentially deliver complete

automated surgery in the future.

1.1 Surgical Task Automation

Success in realizing surgical automation has accelerated in recent years, with

improvements in available open-source platforms such as the da Vinci Research Toolkit
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(dVRK) [65], RAVEN [92, 49], and simulators [135, 167, 107]. The dVRK, as shown in

Fig. 1.1, is used by over 40 robotic research groups and represents an open-sourced

version of the da Vinci® Surgical System [22]. It is the ideal candidate for translating

research to practice on over 5,000 da Vinci® Surgical Systems used in hospitals around

the world. Furthermore, the dVRK has been tested with animal studies for more realistic

experimentation of the developed automation technology [133].

Tissue manipulation is a challenging research area for surgical automation due to the

inherent complexity in shape from deformations. General techniques for perceiving tissue

deformations have been proposed using a model-free, fusion approach [81, 88, 87]. From

the perceived tissue, real-to-sim registration was performed such that control of the tissue

could be derived from the simulation [84]. Reinforcement learning has also been applied

to control the tissue deformations caused by a surgical robotic manipulator [149, 125].

Coarse approaches along with online Jacobian estimation techniques have been proposed

for modeling the deformations [1].

Specific surgical tasks have also been automated, such as resection [108, 158] and

debridement removal [67]. The task of suturing has engrossed the community [146, 178],

and there is a good reason for this, as suturing for robot-assisted minimally invasive

surgery has been cited as being significantly more challenging and time-consuming than

manual suturing [39, 54]. Suturing requires a wide range of considerations for effective

automation, including perception [15], needle manipulation [156, 16], knot tying [101],

identification of entry and exit points for the suture throw [86], and interfacing the

automation with the surgeon for effective deployment [165].

1.2 Automation of Maintaining Hemostasis

While progress in developing autonomous surgical tasks has leaped forward, reactive

measures to traumatic events, such as hemostasis, represent a critical area that has
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Figure 1.2. Autonomous blood suction for cases of trauma in surgery. A robotic suction
tool clears the surgical field of flowing blood.

attracted little attention. Hemostasis describes a state of the surgical field that is achieved

when there is no site of active bleeding and the tissues are unobstructed by blood. The

bleeding can originate from either a visible or macroscopic blood vessel (artery or vein) or

from the microvasculature and capillary network within tissues. Unlike previously

automated tasks that occur in a more predictable cadence within a procedure, bleeding

can be unpredictable, which necessitates hemostatic maneuvers at any time during any

surgery. Typically, surgical manipulation of any type–suction, grasping, retraction,

cutting, and dissection–can immediately cause bleeding. However, the onset of bleeding

can also be delayed. For example, if a vessel is not definitively sealed, it can rupture

spontaneously without direct contact. If surgical automation is ever to be deployed, it will

require the implementation of reactive strategies to manage these traumatic scenarios.

This dissertation specifically addresses the problem of small and medium vessel

ruptures. Overall, there are four distinct stages in hemostasis of this scenario: (1) clearing

the surgical field of blood; (2) identification of the bleeding source (vessel rupture); (3)

grasping the identified vessel to temporarily stop bleeding; (4) closing the vessel rupture,
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usually with an energy-based device, clip, or suture. Each stage requires complex

manipulation skills and perception algorithms, which represent non-trivial hurdles to

automation.

In this dissertation, all the necessary perception and additional automation

components for clearing the surgical field are presented as illustrated in Fig. 1.2. First, a

surgical tool tracking technique is proposed that can localize the robotic agent, which is

deployed to clear the surgical field, in the endoscopic camera frame. The surgical tool

tracking function is combined with a deformable tissue tracker to completely track a

surgical scene before a vessel rupture occurs. The combination of the two trackers is

coined SuPer, the Surgical Perception framework. Next, the perception of blood from a

vessel rupture scenario is achieved by detecting and reconstructing the flowing blood from

the endoscopic camera data. Finally, a controller and motion planner for the robotic

suction tool to clear the surgical field of blood are presented.

1.3 Acknowledgements

Chapter 1, in part, is a reprint of material from F. Richter, S. Shen, F. Liu, J. Huang,
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Field for Hemostasis using Image-based Blood Flow Detection,” in IEEE Robotics and

Automation Letters, vol. 6, no. 2, pp. 1383-1390, 2021. The dissertation author is the

primary author of this paper.
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Chapter 2

Surgical Robotic Tool Tracking

Controlling a robot manipulator via visual feedback depends on an important

coordinate transform: the orientation and translation between the robot and the camera

frame. This coordinate frame transforms the positions and velocities of the robot based

on its kinematics, such as its end-effector position, into the camera’s reference frame,

where the feedback and trajectories are often defined. Typically, this relative transform is

calibrated by placing markers, such as ArUco [40], on the robot, identifying them in the

image frame, and solving the homogeneous linear system for the base-to-camera transform

[28]. However, when the camera can only observe a portion of the robot manipulator, the

calibration of the base-to-camera transform is more susceptible to errors due to the

limited range of motions the robot can process during data collection [161]. This situation

arises when the camera is positioned to perceive the robotic tool (e.g., gripper) along with

the environment or the objects targeted for manipulation rather than the entire kinematic

chain. An example scenario is shown in Fig. 2.1. This type of scenario comes up

frequently in object grasping and manipulation tasks [79, 95] and small-scale

manipulations, such as robotic surgery with the da Vinci® Surgical System.

A secondary source of uncertainty affecting robotic control is the inaccuracy of the

joint angle measurements. The errors in joint angle measurements are caused by biases in

positioning, drifting in readings, and complex transmission effects, such as cable stretch
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Non-visible Kinematic Chain
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Detected Features

Figure 2.1. Precise robotic manipulation, such as surgery, utilizes visual information
with the sensor positioned to observe the environment and objects of interest rather than
the entire kinematic chain. In this work, we track the robotic tool even with a partially
visible kinematic chain.

and backlash. Similar to finding the base-to-camera transform, this issue is typically

solved through calibration with a separate sensor, such as a camera, that collects ground

truth measurements and compares them against the joint angle readings [126]. The issue

of non-constant errors, such as the cable stretch, has been addressed by explicit dynamic

modeling [102] and data-driven approaches with neural networks [57]. These methods,

however, are challenging to apply outside of a laboratory setting due to the need for

additional sensors or calibration steps. Furthermore, the calibration parameters can

degrade over time through irreversible effects from transmission wear-and-tear and

mechanical creep.

Thus, surgical robotic-endoscopic platforms [47, 23, 160] will have both challenging

base-to-camera calibration and errors in joint angle measurements. The endoscopes are

designed to only capture a small working space for higher operational precision. Surgical

robotic platforms also typically use cable drives to enable low-profile robotic tools, which

are the source of the joint angle measurement error. Furthermore, the bases of the

surgical manipulators are adjusted regularly depending on the type of procedure and to fit

each patient’s anatomy. There is a significant amount of previous literature from the
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surgical robotics community tackling these two problems separately. Here we unify these

two problems and present a solution that also generalizes to other robotic manipulators.

In this work, we demonstrate the ability to track robotic tools from visual

observations that only show part of the kinematic chain under the conditions of

uncertainty in base-to-camera transform and joint angle measurements. To this end, we

present the following novel contributions:

1. a novel problem formulation that proves that the direct estimation of all the

described parameters is infeasible since they are non-identifiable,

2. the first approach that unifies these uncertainties into a smaller parameter set that

is identifiable and compensates for all the uncertainties,

3. an extension of tracking under simultaneously moving robotic tools and cameras.

We coin the reduced parameter set as Lumped Error. A tracking algorithm based on a

particle filter was created to track the Lumped Error. The particle filter uses visual

features from the tracked robotic tool to continuously update the belief of the Lumped

Error. In our implementation, the visual features were detected using markers, edge

detectors for geometric primitives such as cylinders, and learned point features. For

experimentation, the presented particle filter was evaluated both in simulation and on

real-world robotic data using the da Vinci Research Kit (dVRK) [65], a widely used

surgical robotics research platform with a total of 10 Degrees of Freedom (DoF) and a

gripper across both the endoscopic (i.e., surgical robotic camera arm) and robotic

manipulator kinematic chains. The method was also applied to a non-surgical robot,

Rethink Robotic’s Baxter robot, in Appendix A. In these experiments, the joint angle

disturbances included simulated noise, cable stretch from the dVRK, and backlash from

the Baxter arm. Overall, these results show that the estimation of the Lumped Error is

efficient and yields precise and accurate robotic tool tracking.
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2.1 Related Work

Integration of visual observations with robotic manipulators and handling inaccurate

joint angle measurements is not a new concept. Therefore, this related work section is split

into different categories to cover the wide range of robotic tracking solutions presented by

various research groups. A special focus is given to surgical robotics as the challenge of

surgical robotic tool tracking represents a direct application of the presented work.

Base-to-camera estimation

A common approach to calibrating the base-to-camera transform is rigidly attaching

a marker whose pose can be directly estimated from visual data (e.g., ArUco [40], ARTag

[30], AprilTag [114], and STag [5]), collecting multiple images of the marker, and solving

the homogeneous linear system [28, 120]. To relieve the heavy reliance on 3D pose

reconstruction, which can often be inaccurate from 2D images, markers were attached to

robot manipulators to collect 2D keypoints, and the camera-to-base transform was

estimated with Solve-PnP [78]. Deep learning approaches have been applied to detect 2D

keypoints on robotic manipulators to remove the need for markers [73, 72, 77, 89].

However, these calibration methods do not consider errors in joint angle measurements

and instead make the assumption that the robot kinematic chain is located exactly at the

joint angle readings.

Zhong et al. proposed an interactive method to maximize the accuracy for

calibrating remote center of motion (RCM) robots [179], which are typically used as

laparoscopic robots. Similarly, Zhao et al. defined a kinematic remote-center coordinate

system (KCS) that absorbs all the errors in the transform from the camera frame to the

base of an RCM robot [177]. Tracking the KCS is a common technique in surgical

robotics, where the updates come from learned features [131, 132], silhouette matching

[50], or online template matching [169]. However, these estimation methods do not
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explicitly consider the effects of joint angle errors. In fact, we show that the Lumped

Error is mathematically equivalent to tracking the KCS, implying that these methods can

compensate for both the base-to-camera transform and the joint angle errors.

Furthermore, in this work, we generalize the Lumped Error to other robotic manipulators.

Joint measurement error estimation

Using fiducial markers to collect data, Pastor et al. applied a data-driven approach

to estimating the joint angle error [121]. Meanwhile, Wang et al. used markers to

estimate the joint angle offsets in real-time via inverse kinematics [163]. From the

perspective of surgical robotics, the errors of joint angle readings due to transmission

effects have largely been studied in the context of cable drives. Miyasaka et al. explicitly

modeled the physical effects of cable transmissions, such as friction and hysteresis [102].

Learning-based approaches have been applied based on neural networks for direct

estimation of cable stretch [57, 123] and Gaussian processes for compensation [94]. Using

visual data, the Unscented Kalman Filter [46] and neural networks [145] were applied to

estimate the effects of cable stretch. These techniques, however, are impractical to apply

outside of laboratory settings due to the need for additional sensors or calibration steps.

In addition, calibration parameters can degrade over time due to mechanical effects, such

as cable creep, which occurs when cable stretch varies irreversibly through usage.

Combined base-to-camera and joint estimation

Joint calibration techniques have been proposed which optimize for both joint angle

offsets and base-to-camera transformations [126, 76]. To handle dynamic uncertainties,

such as the non-constant joint angle errors, a real-time estimation strategy based on

combining the iterative closest point from depth sensing and Kalman Filtering has been

proposed [70]. A probabilistic approach has also been proposed based on observation

models that are grounded in physical parameters, which facilitates the process of tuning
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the hyperparameters [18]. These works largely focus on the integration of sensors into

real-time estimation. Instead of this approach, we assessed the parameter reductions in

the case of partially visible kinematic chains. In this context, the proposed Lumped Error

parameter reduction can aid these efforts by reducing the total number of parameters that

need to be estimated in the case of a partially visible kinematic chain. Nonetheless, we

propose a particle filter to estimate the Lumped Error, which relies only on image data.

In contrast, the efforts above rely on depth sensing, which is not as readily available on all

robotic platforms, such as the da Vinci® Surgical System.

Another widely used approach to controlling a robot from visual feedback without

the base-to-camera transform is through online Jacobian estimation [148]. These visual

servoing techniques can even compensate for kinematic inaccuracies and joint angle

measurement errors [14]. While these techniques are sufficient to control the end-effector

in the camera frame, they do not describe the remainder of the kinematic chain in the

camera frame.

Eye-in-hand configuration

Another consideration in the case of a robotic camera arm is the problem of the

eye-in-hand calibration [150]. This particular visual-robotic challenge is not considered

here but included to ensure completeness. Zhang et al. developed a computationally

efficient method using dual quaternions [176]. Adjoint transformations from twist motions

have also been applied to converge to solutions with high accuracy [116, 117]. In the case

of RCM robots, a reduction of the computational complexity has been achieved [118, 164].

Similar to the previously described visual servoing techniques, the robot camera arm can

also be controlled through online Jacobian estimation [124, 162].
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2.2 Problem Formulation

The 3D geometry of a robotic tool can be fully described in the stationary camera

frame through a base-to-camera transform and forward kinematics. A single point,

oj ∈ R3, on the j-th link of a robotic tool, can be transformed to the stationary camera

frame by

oc
t = Tc

b

j∏
i=1

Ti−1
i (qit)o

j (2.1)

at time t where Tc
b ∈ SE(3) is the base-to-camera transform and Ti−1

i (qit) ∈ SE(3) is the

i-th joint transform with the joint angle qit. The overline operator (·) defines the

homogeneous representation of a 3D point (e.g o = [o 1]⊤). Therefore, the base-to-camera

transform and the joint angles are the only parameters necessary to describe a robotic

manipulator in the camera frame. Typically, calibration can be performed for the

base-to-camera transform, and the joint angles can be derived from encoder readings. The

issue with applying this approach directly to scenarios where the camera only captures

images with a portion of the kinematic chain is that small errors in calibration or joint

angles will be exacerbated in the image frame.

Therefore, let q̃1t , . . . , q̃
nj

t be the joint angle measurements with the respective

measurement errors e1t , . . . , e
nj

t , such that

qit = q̃it + eit (2.2)

for all i = 1, . . . , nj. No distribution is assumed for the errors, eit. For example, the error

could be a constant bias from the absolute position error or non-constant with hysteresis

effects from the cable stretch. In combination with (2.1), the robotic tool can be
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Figure 2.2. Based on an image of the robotic tool (marked in blue) and not the whole
kinematic chain, multiple solutions exist for joint angles and base-to-camera transform
errors. Examples are presented as transparent kinematic chains.

described in the camera frame by

oc
t = Tc

b−T
b−
b

j∏
i=1

Ti−1
i (q̃it + eit)o

j (2.3)

where the true base-to-camera transform is broken into Tc
b− ∈ SE(3) and Tb−

b ∈ SE(3),

which are measured from an initial calibration and the error in the calibration,

respectively. Therefore, in order to correctly describe the robotic tool in the camera frame,

both the joint angle errors, eit, and the error in the base-to-camera transform, Tb−
b , should

be estimated. Let nj be the total number of joint angles and the SE(3) error transform,

Tb−
b , an estimate based on an axis-angle and a translation vector, yielding a total of

nj + 6 parameters to be estimated.

Explicit estimation for the joint angles and the base-to-camera transform is not

possible when only a portion of the kinematic chain is visible in the camera frame. This

limitation exists because it is not possible to identify the source of the error, either the

joint angles or the base-to-camera transform calibration. For example, a surgical tool is

considered partially visible based on the endoscopic camera data. The endoscope’s narrow
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field only has visual information of the tool-tip and not the base or the joints preceding

the articulated wrist resulting in multiple viable solutions to estimating Tb−
b and eit. One

example is shown in Fig. 2.2, where the joint parts of the RCM are not visible to the

endoscopic camera, whereas the joints on the gripper are.

This problem relates to the concept of identifiability [139]. Identifiability is concerned

with the existence of a unique inverse association with regard to the parameters estimated

from observations. Fig. 2.2 presents examples that do not show a unique association from

the image of the surgical tool from an endoscope to the base-to-camera transform and the

joint angle errors. These instances are denoted as observationally equivalent. The

parameters are only considered identifiable if there are no observational equivalences.

Claim 1. When only using the camera data for observations, then the error in

base-to-camera transform, Tb−
b , and errors in the first nb joint angles, e

1
t , . . . , e

nb
t , are not

identifiable if all the kinematic links preceding joint nb are out of the camera frame.

Proof. Let the Modified Denavit-Hartenberg Parameters be used to define each forward

kinematic joint transform. Therefore: Ti−1
i (qit) = Tx(α

i, ai)Tz(θ
i, di) where

Tx(α
i, ai) =



1 0 0 ai

0 cos(αi) −sin(αi) 0

0 sin(αi) cos(αi) 0

0 0 0 1


Tz(θ

i, di) =



cos(θi) −sin(θi) 0 0

sin(θi) cos(θi) 0 0

0 0 1 di

0 0 0 1


(2.4)

and qit is plugged into θi or di for a revolute and prismatic joint, respectively. A revolute

joint transform with a joint angle of ω + ψ ∈ R, Ti−1
i (ω + ψ) can be expanded using the
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Modified Denavit-Hartenberg Parameters,

Tx(α
i, ai)Tz(ω + ψ, di) (2.5)

Tx(α
i, ai)Tz(ω, 0)T

−1
x (αi, ai)Tx(α

i, ai)Tz(ψ, d
i) (2.6)

Ti(ω)T
i−1
i (ψ) (2.7)

where Ti(ω) = Tx(α
i, ai)Tz(ω, 0)T

−1
x (αi, ai). Likewise for a prismatic joint transform,

Tx(α
i, ai)Tz(θ

i, ω + ψ) (2.8)

Tx(α
i, ai)Tz(0, ω)T

−1
x (αi, ai)Tx(α

i, ai)Tz(θ
i, ψ) (2.9)

Ti(ω)T
i−1
i (ψ) (2.10)

where Ti(ω) = Tx(α
i, ai)Tz(0, ω)T

−1
x (αi, ai). Note that the same notation, Ti(ω), is used

for rotational and prismatic joints as simplified notation in the coming equations.

Based on these expansions, we will use induction to show that portions of the joint

angle errors can be expanded out as follows

nb∏
i=1

Ti−1
i (q̃it + eit) = Tnb

nb∏
i=1

Ti−1
i (q̃it + βie

i
t) (2.11)

where

Tnb =

nb∏
k=1

( k−1∏
i=1

Ti−1
i (q̃it + βie

i
t)
)
Tk((1− βi)ekt )

( k−1∏
i=1

Ti−1
i (q̃it + βie

i
t)
)−1

(2.12)

and βi ∈ R for i = 1, . . . , nb is an arbitrary portion of the joint angle error not to be

lumped into Tnb . For the base case of nb = 1 in (2.11), the error of the joint angle can be

pulled out

T0
1(q̃

i
t + eit) = T1((1− β1)eit)T0

1(q̃
i
t + β1e

i
t) (2.13)
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using (2.5) - (2.10).

If (2.11) holds true for nb = m, the left-hand-expression from (2.11) can be rewritten

for nb = m+ 1 as follows

Tm

m∏
i=1

Ti−1
i (q̃it + βie

i
t)T

m
m+1(q̃

m+1
t + em+1

t ) (2.14)

which expands to

Tm

m∏
i=1

Ti−1
i (q̃it + βie

i
t)Tm+1((1− βm+1)e

m+1
t )Tm

m+1(q̃
m+1
t + βm+1e

m+1
t ) (2.15)

using (2.5) - (2.10). Then, the expression is expanded one more time

Tm

m∏
i=1

Ti−1
i (q̃it + βie

i
t)Tm+1((1− βm+1)e

m+1
t )

( m∏
i=1

Ti−1
i (q̃it + βie

i
t)
)−1

m∏
i=1

Ti−1
i (q̃it + βie

i
t)

Tm
m+1(q̃

m+1
t + βm+1e

m+1
t ) (2.16)

which is equivalent to (2.11). Therefore (2.11) holds for nb = 1, 2, . . . by mathematical

induction.

Let P (yt|Tb−
b , e1t , . . . , e

nj

t ) be a proper probability distribution and the observation

model of some feature y from the surgical tool in the camera frame parameterized by all

the unknowns in the kinematic chain described in (2.3). Since P (yt|·) cannot describe a

feature from the kinematic links that precede joint nb, the observation model for some

feature y can be re-parameterized to

P
(
yt|Tc

b−T
b−
b

nb∏
i=1

Ti−1
i (q̃it + eit), e

nb+1
t , . . . , e

nj

t

)
(2.17)

The equality in (2.11) implies that the observation is not a one-to-one mapping from the

parameter space (Tb−
b , e1t , . . . , e

nj

t ) to the camera observation (output of P (yt|·)). In fact,
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for each observation generated by P (yt|·), there are an infinite number of solutions for the

inverse mapping that are spanned by β1, . . . , βnb
. Since there are infinite observational

equivalencies, the parameters are not identifiable.

The equality in (2.11), which causes the lack of identifiability, can be interpreted as

moving the joint errors from the kinematic chain to the base transform of the robot. A

lack of identifiability implies undesirable properties for parameter estimation, such as rank

deficiency in the Fischer Information Matrix [139]. Furthermore, it shows the inability to

estimate both errors in joint angles and the base-to-camera transform.

2.3 Lumped Error Derivation and Tracking

Based on Claim 1, it is infeasible to estimate all error parameters described in (2.3)

using camera data alone. Therefore, we propose a parameter reduction technique where

all errors of the first nb joints are lumped together with the error in the base-to-camera

transform. Hence, we call it the Lumped Error Transform.

Using (2.11), (2.3) can be re-written as

oc
t = Tc

b−T
b−
nb
(wt,bt)

nb∏
i=1

Ti−1
i (q̃it)

j∏
i=nb+1

Ti−1
i (q̃it + eit)o

j (2.18)

where Tb−
nb
(wt,bt) ∈ SE(3) is the Lumped Error transform of all the first nb joint errors

and the base-to-camera transform calibration error, Tb−
b , and it is parameterized by an

orientation, wt ∈ R3, and translation, bt ∈ R3. The Lumped Error analytical solution

from the joint angle errors and the error in base-to-camera transform is

Tb−
nb
(wt,bt) = Tb−

b Tnb , where Tnb is defined in (2.12) with βi = 0 for i = 1, . . . , nb.

Intuitively, the Lumped Error transform is virtually adjusting the base of the

kinematic chain for the robot in the camera frame. The virtual adjustments are made to
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fit the error of the first nb joint angles and any error in base-to-camera transform. The

Lumped Error transform removes the many-to-one mapping shown in (2.17).

Furthermore, it significantly reduces the number of parameters that should be estimated

for robotic tool tracking. Using a total of nj joints and the SE(3) error transforms, Tb
b−

and Tb−
nb
(wt,bt), that are estimated based on the axis-angle and a translation vector, (2.3)

has nj + 6 parameters to estimate, whereas (2.18) has nj − nb + 6 parameters.

Even with this parameter reduction, it can still be challenging to constrain all of the

parameters with image observations. For example, from a single image frame, four pixel

point detections are required to constrain the Lumped Error transform [38], and

additional point detections would be needed for the joint errors enb+1
t , . . . , e

nj

t . Therefore,

we propose the following simplification to (2.18) if there is not an abundance of features,

eit ≈ 0 for i = nb + 1, . . . , nj (2.19)

With this simplification, only the Lumped Error transform needs to be estimated. This

simplification can be applied in situations where the error from joints nb + 1, . . . , nj does

not propagate through the kinematic chain dramatically. In cases where the camera

focuses on an articulated wrist or gripper, as shown in Fig. 2.2, this assumption is

acceptable because their link lengths are short, which reduces their sensitivity to error.

The expression obtained by combining the simplification in (2.19) with (2.18) is

equivalent to what previous literature in robotic surgical tool tracking described as the

KCS, which was developed for RCM-based robots [177]. Therefore, the KCS tracking

formulation corrects not only for the base-to-camera transform error but also for the joint

angle errors.

The Lumped Error can also be moved to the right-hand side of the first nb joint
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transforms in (2.18), giving the following expression

Tc
b−

nb∏
i=1

Ti−1
i (q̃it)T

nb,b−
nb+1 (wt,bt)

j∏
i=nb+1

Ti−1
i (q̃it + eit)o

j (2.20)

where the right hand-side Lumped Error, Tnb,b−
nb+1 (wt,bt), is

( nb∏
i=1

Ti−1
i (q̃it)

)−1

Tb−
nb
(wt,bt)

nb∏
i=1

Ti−1
i (q̃it) (2.21)

which is equivalent to the tracking method proposed by Hao et al. [50] and shows that

their method compensates for both base-to-camera transform errors and joint angle errors.

2.3.1 Extension to Robotic Camera Arm

In the case of the eye-in-hand configuration, the constant true base-to-camera

transform, Tc
b = Tc

b−T
b−
b , described in (2.3), is replaced with a kinematic chain as follows

oc
t = Tc

cn

( n∏
i=1

Tci−1
ci

(qcit )
)−1

Tcb
b

j∏
i=1

Ti−1
i (q̃it + eit)o

j (2.22)

where Tc
cn ∈ SE(3) is the static transform from the final joint to the camera frame,

T
ci−1
ci (qcit ) ∈ SE(3) is the i-th joint transform of the camera arm with joint angle qcit , and

Tcb
b ∈ SE(3) is the base-to-base transform (i.e., transform from the base of the robotic

tool to the base of the robotic camera arm).

Calibration of the base-to-base transform is even more challenging than calibrating

the base-to-camera transform since the kinematic chain is extended by the camera arm.

Joint angle errors are also still assumed. Let q̃cit and ecit be the joint angle measurement

and measurement error, respectively, for the joint angle ci on the camera arm. The

base-to-base transform Tcb
b is split into the calibrated base-to-base transform, Tcb

b−, and
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the error in calibration, Tb−
b . Therefore (2.22) is rewritten as

oc
t = Tc

cn

( n∏
i=1

Tci−1
ci

(q̃cit + ecit )
)−1

Tcb
b−T

b−
b

j∏
i=1

Ti−1
i (q̃it + eit)o

j (2.23)

The kinematic links from the camera arm are typically not visible in the camera frame.

Therefore, the same non-identifiability issue from Claim 1 extends to joint angle errors ecit

for i = 1, . . . cn. To resolve this issue, the Lumped Error from (2.18) is applied to the

camera arm’s kinematic chain. This modification results in

oc
t = Tc

cn

( n∏
i=1

Tci−1
ci

(q̃cit )
)−1

Tcb
cn(w

c
t ,b

c
t)

−1Tcb
b−T

b−
nb
(wt,bt)

nb∏
i=1

Ti−1
i (q̃it)

j∏
i=nb+1

Ti−1
i (q̃it + eit)o

j (2.24)

where the Tcb
cn(w

c
t ,b

c
t) analytical expression from joint angles is described in (2.11) with

βi = 0 for i = 1, . . . , n. Continuing further, (2.24) can be reduced to a single unknown

pose parameterized by orientation and translation vectors wl
t,b

l
t ∈ R3, respectively, and

the unknown joint errors eit for i = nb + 1, . . . , nj. The new expression is

oc
t = Tc

cn

( n∏
i=1

Tci−1
ci

(q̃cit )
)−1

Tcb
b−T

cn
nb
(wl

t,b
l
t)

nb∏
i=1

Ti−1
i (q̃it)

j∏
i=nb+1

Ti−1
i (q̃it + eit)o

j (2.25)

where

Tcn
nb
(wl

t,b
l
t) =

(
Tcb

b−
)−1

Tcb
cn(w

c
t ,b

c
t)

−1Tcb
b−T

b−
nb
(wt,bt) (2.26)

The Lumped Error estimated for this configuration, Tcn
nb
(wl

t,b
l
t), and the stationary

camera Lumped Error described earlier have similar properties. The base of the robotic

manipulator relative to the camera arm base is virtually adjusted to compensate for the

error in the first nb joint readings in it and all the joint readings in the robotic camera

arm. This Lumped Error also reduces the number of parameters that should be estimated
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to nj − nb + 6, whereas in (2.23), there are nj + n+ 6 unknown parameters. To even

further reduce the number of parameters to be estimated, the simplification in (2.19) can

be applied, resulting in only 6 parameters.

2.3.2 Particle Filter

The result in (2.18) reduced the number of parameters that are required to be

estimated for the Lumped Error transform, Tb−
nb
(ŵt, b̂t), and the joint errors:

êt := [ênb+1
t , . . . , ê

nj

t ]⊤. These reductions make it possible to use previously developed

parameter estimation methods for tracking, such as the Extended Kalman Filter, the

Unscented Kalman Filter, or a particle filter, all of which can use updates from camera

images. For our approach, we utilized a particle filter because of its flexibility to model

the posterior probability density function with a finite number of samples [159] rather

than using a parametric model, such as the Kalman Filter. Recently, particle filters have

been successfully applied to estimate poses [17], which is especially needed here for the

Lumped Error transform. The next sections describe the tracking of the parameters by

defining the motion models and observation models. The last section covers the few

modifications necessary for the eye-in-hand case. An outline of the proposed particle filter

is shown in Algorithm 1.

Motion Model

The joint angle errors are initialized from a uniform distribution and have a motion

model of additive zero mean Gaussian noise

ê0 ∼ U(−aê, aê) êt+1 ∼ N (êt,Σê,t+1) (2.27)

where aê ∈ Rnj−nb describes the bounds of constant joint angle error, and

Σê,t+1 ∈ R(nj−nb)×(nj−nb) is a covariance matrix. The initialization is done to capture the

joint angle biases, and a Weiner Process is chosen for the motion model due to its ability
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Algorithm 1: Particle Filter to Track Lumped Error

Input : Initial base-to-camera transform Tc
b−

Output :Estimated Lumped Error and Observable Joint Errors ŵt, b̂t, êt
1 Initialize particles P0|0 = {α(p)

0|0, ŵ
(p)
0|0, b̂

(p)
0|0, ê

(p)
0|0}Np=1

2 for particle p ∈ P0|0 do

3

[
ŵ

(p)
0|0, b̂

(p)
0|0

]⊤
∼ N (0,Σw,b,0)

4 α
(p)
0|0 ← G

([
ŵ

(p)
0|0, b̂

(p)
0|0

]⊤
,Σw,b,0

)
5 ê

(p)
0|0 ∼ U(−aê, aê)

6 {α(p)
0|0}Np=1 ← normalizeWeights

(
{α(p)

0|0}Nk=1

)
7 while new image and joint readings, (It, q̃t), arrive do

// Predict Particles

8 Initialize new particles Pt|t−1 = {α(p)
t|t−1, ŵ

(p)
t|t−1, b̂

(p)
t|t−1, ê

(p)
t|t−1}Np=1

9 for particle p ∈ Pt|t−1 do

10 q ∼ Pt−1|t−1 weights {α(1)
t−1|t−1, . . . , α

(N)
t−1|t−1}

11

[
ŵ

(p)
t|t−1, b̂

(p)
t|t−1

]⊤
∼ N

([
ŵ

(q)
t−1|t−1, b̂

(q)
t−1|t−1

]⊤
,Σw,b,t

)
12 ê

(p)
t|t−1 ∼ N

(
ê
(q)
t−1|t−1,Σê,t

)
13 α

(p)
t|t−1 ← G

([
ŵ

(p)
t|t−1, b̂

(p)
t|t−1

]⊤
,Σw,b,t

)
· G
(
ê
(p)
t|t−1,Σê,t

)
14 mt ← detectRobotPointFeatures(It)
15 ρt,ϕt ← detectRobotEdgeFeatures(It)

// Update Particles

16 for particle p ∈ Pt|t−1 do

17 m̂t ← projPoints(ŵ
(p)
t|t−1, b̂

(p)
t|t−1, ê

(p)
t|t−1, q̃t)

18 Am,C
m ← associatePoints(mt, m̂t)

19 α
(p)
t|t−1 ← α

(p)
t|t−1 · pointObsModel(Am,C

m)

20 ρ̂t, ϕ̂t ← projEdges(ŵ
(p)
t|t−1, b̂

(p)
t|t−1, ê

(p)
t|t−1, q̃t)

21 Al,C
l ← associateEdges([ρt,ϕt], [ρ̂t, ϕ̂t])

22 α
(p)
t|t−1 ← α

(p)
t|t−1 · edgeObsModel(Al,C

l)

23 Pt|t ← Pt|t−1

24 {α(p)
t|t }Nk=1 ← normalizeWeights

(
{α(p)

t|t }Nk=1

)
25

[
ŵt, b̂t, êt

]⊤
=

N∑
p=1

α
(p)
t|t

[
ŵ

(p)
t|t , b̂

(p)
t|t , ê

(p)
t|t

]⊤
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to generalize over a large number of random processes.

Let the tracked Lumped Error, Tb−
nb
(ŵt, b̂t) , be represented by an axis angle vector,

ŵt ∈ R3, and a translation vector, b̂t ∈ R3. Their initialization and motions are defined as

[
ŵ0, b̂0

]⊤
∼ N (0,Σw,b,0)

[
ŵt+1, b̂t+1

]⊤
∼ N (

[
ŵt, b̂t

]⊤
,Σw,b,t+1) (2.28)

where Σw,b,t ∈ R6×6 is a covariance matrix. A Weiner Process is once again applied based

on the same reason described above for the joint angle error motion model. Integration of

the initial distribution and the motion model in the particle filter is shown in lines 1– 6

and 8– 13, respectively, in Algorithm 1.

Observation Model

To update the Lumped Error from images, features need to be detected, and a

corresponding observation model must be defined for them. The described observation

models can generalize for any point or edge features. Let mt be a list of detected point

features in the image frame from the projected robot tool. By following the standard

camera pin-hole model combined with (2.18), the camera projection equation for the k-th

point is

m̂k(ŵt, b̂t, êt) =
1

s
KTc

b−T
b−
nb
(ŵt, b̂t)

nb∏
i=1

Ti−1
i (q̃it)

jk∏
i=nb+1

Ti−1
i (q̃it + êit)p

jk (2.29)

where 1
s
K is the camera projection operator with intrinsic matrix K and known location

pjk on joint link jk.

Similarly, let the paired lists ρt,ϕt be the parameters describing the detected edges

in the image from the projected robot tool. The parameters describe an edge in the image

frame using the Hough Transform [99], based on which the k-th pair, ρkt and ϕk
t is used to
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parameterize the k-th detected edge with the following equation,

ρkt = u cos(ϕk
t ) + v sin(ϕk

t ) (2.30)

where (u, v) are pixel coordinates. Let the projection equations for the i-th edge be(
ρ̂i(ŵt, b̂t, êt), ϕ̂

i(ŵt, b̂t, êt)
)
. These projection equations should be defined based on the

geometry of the robot. An example of a cylindrical shape is shown in Appendix A.1.

Furthermore, Chaumette derived the projection equations for a multitude of geometric

primitives and can be referred to for additional shapes [13]. The point and the edge

projections are computed on lines 17 and 20, respectively, in Algorithm 1.

The items on the lists of detected features, which may also contain false detections,

should be associated with the correct point position (pji) or edge on the robot. This

association can be established by generating a cost matrix, Cm, between the detected and

projected features. For the k-th detected point feature and i-th projected point, the cost

is

Cm
k,i = γm||mk

t − m̂i(ŵt, b̂t, êt)||2 (2.31)

where γm is a tuned parameter. Likewise, a cost matrix, Cl, is computed for the edges,

and for the k-th detected edge and the i-th projected edge, the associated cost is

C l
k,i = γρ|ρkt − ρ̂i(ŵt, b̂t, êt)|+ γϕ|ϕk

t − ϕ̂i(ŵt, b̂t, êt)| (2.32)

where γρ and γϕ are tuned parameters.

The associations between the detected and projected features are established with a

greedy matching technique, which is used because of its computational efficiency. The

costs are sorted from lowest to highest, and the first (k, i) pair is matched and added to

the set Am or Al for points and edges, respectively. All subsequent costs associated with

either detection k or projection i are removed from the sorted list. This is repeated until
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a maximum cost of Cm
max or C l

max is reached for points and edges, respectively. False

detections can be filtered out by limiting the maximum cost for association. This

association technique is conducted on lines 18 and 21 in Algorithm 1 for points and edges,

respectively.

The observation model wraps the associations and their costs into a probability

function dependent on the state, which ensures that the filter can properly update the

states. For the list of point features, the probability is

P (mt|ŵt, b̂t, êt) ∝ (nm − |Am|)e−Cm
max +

∑
k,i∈Am

e−Cm
k,i (2.33)

where there are a total of nm detectable point features on the robot. Similarly, the

probability of the list of detected edges is

P (ρt,ϕt|ŵt, b̂t, êt) ∝ (nl − |Al|)e−Cl
max +

∑
k,i∈Al

e−Cl
k,i (2.34)

where there are a total of nl detectable edge features on the robot. The probability

distributions can be viewed as a summation of Gaussians centered on the projected

features. The individual Gaussian probabilities are bounded and clipped by the maximum

cost for association. Clipping the Gaussians is preferred since in the cases of missed

feature detections, the posterior probability from the filter does not go to zero. An

additional advantage of using a particle filter for tracking the Lumped Error is that these

observation models do not need to be normalized. In this case, finding the normalization

factor would be challenging due to the matching complexity and clipping of Gaussians.

These observation models update the particle filter on lines 19 and 22 in Algorithm 1 for

points and edges, respectively.
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Modifications for Eye-in-Hand Configuration

The explicitly tracked joint errors, êt, remain the same since they are still the only

joints visible in the camera frame. However, the tracked pose is now Tcn
nb
(ŵl

t, b̂
l
t), as

described in (2.25). The tracked parameters ŵl
t, b̂

l
t ∈ R3 represent the Lumped Error as

axis-angle and translation vectors, respectively, and they have the same additive zero

mean Gaussian noise, as described in (2.28). The feature detection, association, and

observation models all remain unchanged. The only change required is modifying the

camera projection equations. The camera projection equation for the i-th marker is

changed from (2.29) to

m̂k(ŵ
l
t, b̂

l
t, êt) =

1

s
KTc

cn

( n∏
i=1

Tci
ci−1

(q̃cit )
)−1

Tcb
b−T

cn
nb
(ŵl

t, b̂
l
t)

nb∏
i=1

Ti−1
i (q̃it)

jk∏
i=nb+1

Ti−1
i (q̃it + êit)p

jk (2.35)

by combining (2.25) with the camera pin-hole model. A similarly simple modification is

required for the projected edges
(
ρ̂i(ŵt, b̂t, êt), ϕ̂

i(ŵt, b̂t, êt)
)
. The example shown in

Appendix A.1 for cylindrical shapes includes the necessary modifications.

2.3.3 Experimentation

Implementation Details

The proposed particle filter in all of the experiments shown here ran on a Intel®

CoreTM i9-7940X Processor and NVIDIA’s GeForce RTX 2080 with a loop rate of 24FPS

and was used to track the Lumped Error in a simulated scene of a da Vinci® Surgical

System and on a real-world dVRK [65]. The uncertainties of joint angles on the dVRK

system are so prevalent that results relying only on base-to-camera calibration and not

accounting for the joint angle error were intentionally omitted from a previous work due

to the poor results [145]. The parameters used to describe the motion models and
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observation models are as follows:

• aê =
[
0.004 0.004 2 0.004 0.004 0.004 0.01

]
• Σê,t = diag

([
0.0025 0.0025 1 0.0025 0.0025 0.0025 0.005

])
• aêc =

[
0.004 0.004 2 0.004

]
• Σêc,tdiag

([
0.01 0.01 2.5 0.01

])
• Σw,b,t = diag

([
Σw,t Σb,t

])
• Σb,t = diag(

[
0.25 0.25 0.25

]
)

• Σw,b,0 = 10(Σw,b,t)

•
[
γm γϕ γρ

]
=
[
0.15 40.0 0.1

]
•
[
Cm

max C l
max

]
=
[
25γm 0.1γϕ + 25γρ

]
• Number of particles is set to 1000

The only modification in the non-stationary robotic endoscope case was applied to the

covariances of the Lumped Errors, Σw,t and Σb,t, which were scaled by 2. Note that the

relationship of Σw,b,0 = 10(Σw,b,t) was still intact after the scaling. The markers are

located in similar locations as the detected features used in the previous work by Ye et al.

[169]. All marker locations relative to the joint coordinate frames, pji from (2.29), were

measured using calipers on the dVRK.

Datasets

Simulation: A simulated scene in V-REP [138] was developed based on the da Vinci

robot model constructed by Fontanelli et al. [32]. The simulated robotic tool and camera

arm were a Patient Side Manipulator (PSM) with a Large Needle Driver and an

Endoscopic Camera Manipulator (ECM), respectively, from the da Vinci® Surgical
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Figure 2.3. A simulated scene in V-REP [32] of a Patient Side Manipulator (PSM) and
Endoscopic Camera Manipulator (ECM) from a da Vinci® Surgical System.

System. The PSM has 6 DoF and an additional gripper joint. The ECM is stereoscopic

and has 4 DoF. The first joint link visible in the endoscopic camera frame was after the

nb = 4 joint, as expected when operating with a da Vinci® Surgical System. The

stereoscopic endoscope’s virtual cameras were set to render 540 by 432 images with a field

of view of 60 degrees. The baseline distance for the stereo cameras was set to 5 mm,

which simulated depth challenges that resemble those in real stereoscopic endoscopes.

Small blue spheres were placed as markers along the kinematic links near the gripper

to be used as point features to update the particle filter. The blue markers were detected

using the standard color segmentation from OpenCV [9]. Each camera image was initially

converted to the Hue, Saturation, and Value (HSV) color space. Hand-tuned lower and

upper bounds for each HSV channel were then applied to the image resulting in a

segmented binary image. The segmented binary image was then clustered into distinct

contours from which the centroids were estimated. The listed centroids, mt, were

considered detected pixel coordinate features potentially derived from projected points on

the surgical tool. The edges of the projected cylindrical insertion shaft of the PSM tool

were also used to update the particle filter and detected using standard OpenCV

functionality [9]. All pixels potentially associated with the edges were detected using the

Canny edge detector [11]. The pixels were further classified into distinct edges using the

Hough Transform [99] with parameters ρkt and ϕk
t to fit (2.30). The simulated scene and a
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corresponding camera image with the detected features is shown in Fig. 2.3.

The error in calibration, Tb−
b , was obtained by sampling from zero mean Gaussian in

its axis angle and translation vector representations

[
wb−,bb−

]⊤
∼ N (0,Σb−

w,b) (2.36)

Therefore, the initial calibration applied to the filter was set to

Tc
b− = Tc

b

(
Tb−

b (wb−,bb−)
)−1

Tcb
b− = Tcb

b

(
Tb−

b (wb−,bb−)
)−1

(2.37)

for the stationary camera and the eye-in-hand cases, respectively, where Tc
b and Tcb

b were

derived by the simulator. The joint error for the PSM was simulated as a summation

between a uniformly sampled bias at the start of each trial and a linear cable stretch.

Written explicitly, the error for joint angle i was defined as

eit = eib + eicq
i
t (2.38)

where eib ∼ U(−ai,be , ai,be ), eic was the linear cable stretch coefficient, and qit was the correct

joint angle from the PSM. Similarly, the joint error ci for the ECM was defined as

ecit = ecib + ecil,t (2.39)

where ecib ∼ U(−aci,be , aci,be ) was sampled once at the start of each trial and ecil,t ∼ N (0, σ2
ci,l

)

sampled at every time step to simulate the uncertainties associated with the joint angles

of the robotic endoscope. The values for the noise parameters are set to as follows:

• Σb−
w,b = diag

([
0.005 0.005 0.005 5 5 5

])

29



• ab
e =

[
0.004 0.004 2 0.004 0.004 0.004 0.01

]
• ec =

[
0.02 0.02 0.0025 0.02 0.02 0.02 0.05

]
• ac

e =
[
0.004 0.004 2 0.004

]
• σc,l =

[
0.0075 0.0075 0.75 0.0075

]
The PSM arms configuration was set via V-REP’s inverse kinematics. Its position

moved along a preset cyclical trajectory added with a small, random sample from a zero

mean Gaussian with a standard deviation of 1 mm. The gripper joint opened and closed

at a similar cyclical rate. Likewise, the four joint angles of the ECM were set to move in a

cyclical pattern in the eye-in-hand case. The orientation of the PSM end-effector instead

performed a random walk, starting at a preset value by rotating an additional, uniformly

sampled rotation at every time step. The random walk performed via the orientation, we
t

a quaternion vector, of the end-effector was defined as

we
t+1 = we

tw
n
t (2.40)

where wn
t was the quaternion representation of the axis-angle vector whose angle was

sampled from U(0, 0.07) radians, and the axis was uniformly sampled in spherical

coordinates [
sin (ϕn

t ) cos (θ
n
t ) sin (ϕn

t ) sin (θ
n
t ) cos (ϕn

t )

]⊤
(2.41)

where θnt = arccos (ut), ut ∼ U(−1, 1), and ϕn
t ∼ U(0, 2π). The trajectory per trial was

ran for 140 time steps. This simulation represented the most complex scenario where all

robotic components (manipulator, gripper, camera) were continuously moving on

independent paths, which allowed the testing of the proposed tracking method in a larger

variety of scenarios, including the occlusion of features.

To evaluate the effectiveness of pose or transform estimation, the error was
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calculated at time t as

ϵb = ||bt − b̂t|| ϵw = ||wr
t || (2.42)

where wr
t is the axis angle representation of Rt(R̂t)

−1, bt ∈ R3 and Rt ∈ SO(3) are the

ground truth translation vector and rotation matrix, respectively, and b̂t ∈ R3 and

R̂t ∈ SO(3) are the tracked translation vector and rotation matrix, respectively. The ith

joint angle error was computed as

ϵqi = |q̂it − qit| (2.43)

The simulation was repeated 50 times for both the stationary and moving endoscope cases.

dVRK: Two one-minute segments of encoder readings and stereoscopic data from the

endoscope on an ECM were captured from a dVRK [65]. The stereoscopic camera system

used the standard dVRK endoscopic lens and had a resolution of 1920 by 1080 pixels at

30FPS. In both sequences, a single PSM arm was teloperated with the gripper in full view

of the stereoscopic camera. In the first sequence, the PSM arm traveled a total distance of

48 mm, and the ECM was stationary. In the second sequence, the PSM arm traveled a

total distance of 49 mm, and the ECM arm joint angles were set to sinusoidal patterns

similar to the previous simulation experiment resulting in 35 mm for a total distance

traveled. The PSM arm had blue-colored markers in the same positions as the simulated

scene. The markers and edges of the projected cylindrical insertion shaft were detected in

the same manner as the simulated scene. The initial calibrations, Tc
b− and Tcb

b−, were

computed using OpenCV’s solvePnP [9] with manually set associations of the markers.

When deploying a fully assembled da Vinci® Surgical System, we envision that these

initial transformations are computed from the set-up joints that connect the ECM with

the PSM arm. However, the dVRK, by default, is not set up with joints, which is why the
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Figure 2.4. Mean end-effector pose error in the camera frame over time under various
tracking configurations from simulated da Vinci scene. The top and bottom row of plots
were measured using the stationary and the eye-in-hand setup, respectively.

sovlePnP was used with manually set associations for initialization.

From both sequences, 20 evenly distributed images were manually annotated using

the VGG labeler [25]. These labels, IG, were considered ground truth, and IoU was used

as the metric in this experiment,

IoU2D =
IR ∩ IG
IR ∪ IG

(2.44)

where IR was a generated mask using the rendering procedure described in [137]. The

generated mask was rendered using the tracked parameters.

Comparison Study

The evaluated particle filter configurations were:

• All Unknowns : tracking all joint angle errors and base-to-camera transform or

base-to-base in the stationary and eye-in-hand case, respectively. Done by setting
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Figure 2.5. Distribution of the first 4 joint angle errors, whose preceding kinematic links
were never in the camera frame, and the stationary camera-to-base transform Tc

b error
when explicitly estimating them in the simulated da Vinci scene.
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Figure 2.6. Box plots of the tracked joint angle errors, whose preceding kinematic links
were never in the camera frame, and the base of the camera arm to the base of the robotic
tool transform Tcb

b error when explicitly estimating all unknowns in the simulated da Vinci
scene.

nb = 0 in the particle filter.

• Lumped Error : applying (2.19) to the particle filter

• Lumped Error and Observable Joints : no modifications to the described particle

filter

Both stationary camera and moving camera arm scenarios were tested for all three

comparisons.

Results

The mean end-effector pose error plots are shown in Fig. 2.4 for both the stationary

camera and the eye-in-hand cases in the simulation. These mean error trends were
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Figure 2.7. Box plots of converged tracking performance under various configurations
for the particle filter in simulated da Vinci for the stationary camera.

calculated including all 50 trials, which demonstrated that tracking the Lumped Error

lowered end-effector orientation error value compared to that error value obtained when

tracking all unknowns. Fig. 2.5 and 2.6 show the distributions of errors for the

non-identifiable joint angles and the base-to-camera transform in the stationary and

eye-in-hand cases, respectively, when explicitly tracking all unknown parameters in the

simulation. These values were calculated across 40 time steps from all 50 trials after

performing 100 time steps to give enough time for the particle filter to converge. Errors of

up to 14 mm and 7 degrees highlight the inability to estimate these unknown values

explicitly due to the parameters being non-identifiable, as shown in Claim 1. These errors

displayed a large spread, although the particle filter was still able to sufficiently track the

end-effector as seen in the mean end-effector pose error plots in Fig. 2.4. This observation

supports Claim 1 by showing that it is infeasible to explicitly track all the unknown

parameters from robotic tools with limited visibility since they cannot converge to their
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Figure 2.8. Box plots of converged tracking performance under various scenarios for the
particle filter in a simulated da Vinci scene for the eye-in-hand configuration.

true values.

The distribution of end-effector tracking errors after giving the particle filter enough

time to converge in the same manner as previously described are shown in Figs. 2.7 and

2.8 for simulation scenarios with a stationary camera and a moving camera arm,

respectively. The end-effector positional error does not substantially differ between the

converged error distributions. Importantly, the end-effector orientation error was clearly

improved by using the Lumped Error estimation for both the stationary camera and the

robotic camera arm cases. For the observable joints, i.e., joints 5, 6, 7, the Lumped Error

tracking method showed no significant difference in error between the stationary camera

and the eye-in-hand cases. Meanwhile, when explicitly tracking all unknowns, the error

from the observable joints was significantly worse for the eye-in-hand configuration.

The distributions of IoU are shown in Fig. 2.9 for both the stationary and the
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Figure 2.9. The left and right plots show the distribution of the Intersection over Union
(IoU) between manual annotations and reprojected renderings from the tracked values
under various particle filter configurations on the dVRK [65].

(a) Best IoU for stationary camera (b) Best IoU for moving camera arm

(c) Worst IoU for stationary camera (d) Worst IoU for moving camera arm

Figure 2.10. Images from the best and worst IoU from tracking the dVRK surgical tool
[65] when using All Unknowns∗, Lumped Error∗∗, and Lumped Error plus Observable
Joints∗∗∗. The green and red regions are the intersection and the union minus intersection,
respectively.

moving camera arm cases on the dVRK. Examples of surgical tool renderings on the top

of the image feed are shown in Fig. 2.10. Similar to the simulation results, the Lumped

Error clearly performed the best. Furthermore, the performance of applying the

simplification in (2.19) is seen in both the stationary and moving camera cases.

2.4 Discussion

The experimental results and their respective metrics clearly indicate that using

Lumped Error yields almost always better tool tracking than explicitly estimating all

unknowns for both the stationary camera and the eye-in-hand configurations. Only one
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experimental metric, shown in Fig. 2.8a, performed marginally better when tracking all

unknowns. Nevertheless, these metrics cannot be viewed in isolation, and the respectively

paired metrics, as presented in Fig. 2.8b-e, were significantly improved when tracking the

Lumped Error compared with tracking all unknowns. Moreover, the non-identifiable

values estimated when tracking all unknowns yielded non-realistic results, as shown in

Figs. 2.5 and 2.6. Thus, it is a clear improvement to derive a single solution from the

parameters being estimated when tracking the Lumped Error rather than the infinite set

of solutions when tracking all unknowns, as shown in Claim 1. Furthermore, tracking all

unknowns, which generated the infinite set of solutions, resulted in large distributions of

the parameters being estimated, which is shown in Figs. 2.5 and 2.6. From the

perspective of the particle filter, this is an inefficient usage of particles and detrimental to

tracking because the particle filter estimates the posterior probability using a finite

number of samples.

When using the Lumped Error, the end-effector accuracy varied very little between

tracking the observable joints and not tracking them in the da Vinci simulation. This

result supports the validity of applying the simplification in (2.19) to the da Vinci robot

because the link lengths for the observable joints, a dexterous robotic gripper, are short.

However, not tracking the observable joints on the real-world dVRK performed better.

We believe this occurred due to the features not being detected as consistently in the real

world as in the simulation, which highlights the usefulness of the simplification in (2.19).

The proposed tracking method to estimate the Lumped Error, which used a Weiner

Process to model the uncertainty, was experimentally efficient. In our dVRK experiment,

the Weiner process compensated for the joint angle errors due to cable stretch. In

Appendix A.2, we applied the same approach to the Baxter Robot, where only the gripper

is visible in the camera view. The Baxter robot had a significant backlash which was

successfully compensated by using the proposed tracking method.
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Chapter 3

SuPer: A Surgical Perception Frame-
work

Significant advances have been made in control and task automation for surgical

robots. However, the integration of perception into these controllers is deficient despite

the remarkable progress in expanding the capabilities of surgical tool and tissue tracking

technologies over the past decade. Without properly integrating perception, control

algorithms will never be successful in non-structured environments, such as those under

surgical conditions. To overcome the perception challenges, we propose a novel Surgical

Perception framework, SuPer, which integrates visual perception from endoscopic image

data for a surgical robotic control loop to achieve tissue manipulation. A vision-based

tracking system is carefully designed to track both the surgical environment and robotic

agents, e.g., the tissue and a surgical tool, as shown in Fig. 3.1. Endoscopic procedures

have limited sensory information derived from endoscopic images and take place in a

constantly deforming environment. Therefore, we split the tracking system into two

methodologies: model-based tracking proposed in Chapter 2 to leverage the available

kinematic prior of the agent and model-free tracking for the unstructured physical world.

Equipped with the proposed 3D visual perception framework, surgical robotic controllers

can manipulate the environment in a closed-loop fashion as the framework maps the

environment, tracks the tissue deformation, and localizes the agent continuously and
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Figure 3.1. A demonstration of the proposed surgical perception framework. A green
point on the reconstructed deformable tissue, shown in the second image from the left, is
selected by the user. The surgical robot autonomously grasps the tissue at that location.

simultaneously. In the experimental section, we also demonstrate an efficient

implementation of the proposed framework on a dVRK in which we successfully

manipulate tissue.

To the best of our knowledge, the proposed perception framework is the first work to

combine 3D visual perception algorithms for the general control of a surgical robot in an

unstructured, deforming environment. More specifically, our contributions can be

summarized as

1. a perception framework with both model-based tracking and model-free tracking

components to track the tissue and localize the robot simultaneously,

2. deformable environment tracking to track tissue from stereo-endoscopic image data,

3. a released dataset of tissue manipulation with the da Vinci Surgical® System.1

The framework was implemented on a da Vinci Surgical® System, and multiple tissue

manipulation experiments were conducted to highlight its accuracy and precision. We

believe that the proposed framework is a fundamental step toward endoscopic surgical

autonomy in unstructured environments. With a uniform perception framework in the

control loop, more advanced surgical task automation can be achieved.

1Website: https://www.sites.google.com/ucsd.edu/super-framework
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3.1 Related Works

Deformable Reconstruction

The first group of related works covers 3D reconstruction and motion

capture [112, 140, 182, 181]. Newcombe et al. [111] proposed a real-time method for the

reconstruction of a static 3D model using a consumer-level depth camera based on

volumes for their internal data structure, while Keller et al. [68] used surfel points rather

than volumes. The rigidness assumption was then removed to capture the motion of a

deforming scene [110]. To enhance the robustness of the reconstruction, a keypoint

alignment function was added to the original cost function of the deformable

reconstruction [59]. In addition, multiple-sensor approaches have been shown to further

improve accuracy [24]. Guo et al. [37] achieved similar results for deformable object

reconstruction with surfel points.

Endoscopic Tissue Tracking

Tissue tracking is a specific area of visual tracking that often utilizes 3D

reconstruction techniques. A comprehensive evaluation of different optical techniques for

geometry estimation of tissue surfaces concluded that stereoscopic imaging is the only

feasible and practical approach to tissue reconstruction and tracking during surgery [97].

For image-guided surgery, Yip et al. [172] proposed a tissue tracking method with

keypoint feature detection and registration. 3D dynamic reconstruction was introduced by

Song et al. [151] to track in-vivo deformations. Moreover, dense SLAM methods [96, 98]

were applied to track and localize the endoscope in the surgical scene using image features.

In contrast to the algorithms mentioned above, our proposed framework not only tracks

the surgical environment through deformable reconstruction but also integrates the

control loop of the surgical robotic arm for automation.
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Figure 3.2. The flow chart of the proposed SuPer framework illustrates the integration
of perception for localization and environment mapping into the surgical robotic control.

3.2 Deformable Tissue Tracker

The goal of the SuPer framework, as shown in Fig. 3.2, is to provide geometric

information about the entire surgical scene, including the robotic agent and the deforming

environment. A model-based tracker via a particle filter, as described in Chapter 2, is

deployed to localize the surgical robotic tool by utilizing a kinematic prior and fusing the

encoder readings and endoscopic image data. For the surgical environment, a model-free

deformable tracker is employed since the surgical environment is unstructured and

constantly deforming. The model-free tracker uses the stereo-endoscopic data as an
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Figure 3.3. Deformable tracking results with testing dataset [59]. The color represents
the normal of our surfel data. As the model fuses with more data from left to right, the
normal becomes smooth, and the deformations are captured.

observation to reconstruct the deformable scene. To efficiently combine the two separate

trackers, a mask of the surgical tool is generated based on the surgical tool tracker and

removed from the observation presented to the model-free tracking component. Since the

trackers are both perceived in the same camera coordinate frame, a surgical robotic

controller can be used in our SuPer framework to manipulate the unstructured surgical

scene.

3.2.1 Depth Map from Stereo Images

The depth map from the stereoscopic image is generated using the Library for

Efficient Large-Scale Stereo Matching (LIBELAS) [41]. To fully exploit the prior and

enhance the robustness of our system, the surgical tool portion of the image and the

depth data are not passed to the deformable tissue tracker since the surgical tool is

already being tracked. Therefore, a mask of the surgical tool is generated using the same

OpenGL rendering pipeline previously developed [137] and applied to the depth and

image data that are passed to the deformable tissue tracker. To ensure that the mask

covers the entire tool, it is dilated before being applied.
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3.2.2 Deformable Surfel Model

To represent the environment, we choose surfel [68] as our data structure due to the

direct conversion to point cloud, which is a standard data type for the robotics

community. A surfel S represents a region of an observed surface and is parameterized by

the tuple (p,n, c, r, c, t), where p,n, c ∈ R3 are the expected position, normal, and color,

respectively, and the scalars r, c, t are the radius, confidence score, and time stamp of last

update, respectively. Alongside the geometric structure that the surfel data provides, it

also generates the confidence and timestamp of the last update, both of which can be

exploited to further optimize a controller working in the tracked environment. For

adding/deleting and fusing surfels, refer to work done by Keller et al. [68] and Gao et

al. [37].

The number of surfels grows proportionally to the number of image pixels provided

to the deformable tracker, which makes it infeasible to track the entire surfel set

individually. Inspired by the work about Embedded Deform (ED) [155], we process our

surfel set with a less-dense ED graph, GED = {V , E ,P}, where V is the vertex index set, E

is the edge set, and P is the parameters set. With a uniform sampling from the surfel, the

number of ED nodes, NED, is much lower than the number of surfels, Nsurfel. Thus, the

ED graph has significantly fewer parameters to track compared with the entire surfel

model. Moreover, the ED graph can be thought of as an embedded sub-graph

representing the skeletonization of the surfels to capture their deformations.

An ED node consists of a parameter tuple (gi,qi,bi) ∈ P , where gi ∈ R3 is the

position of the ED node, and qi ∈ SO(3) and bi ∈ R3 are the quaternion and translation

parameters, respectively, that are converted to a homogeneous transform matrix with

T(qi,bi) ∈ SE(3). The transformation of every surfel is modeled as follows

T (p) = Tg

∑
i∈KNN(p)

αi[T(qi,bi)(p− g⃗i) + g⃗i] (3.1)
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where Tg ∈ SE(3) is the global homogeneous transformation (e.g., common motion shared

with all surfel), αi is a normalized weight, and KNN(p) is an index set that contains

k-nearest neighbors of p in GED. Note that ·⃗ is a vector in homogeneous representation

(e.g.,g⃗ = [g, 0]T ). Both αi and KNN(p) are generated using the same method proposed by

Sumner et al. [155]. The normal transformation is similarly defined as

Tn(n) = Tg

∑
i∈KNN(p)

αi[T(qi,0)n⃗] (3.2)

When implementing the ED graph, the qi and bi for node i are the current frames for

estimating the deformation. After every frame, the deformations are committed to gi and

the surfels based on (3.1) and (3.2). Therefore, with an ED graph of n nodes, the whole

surfel model can be estimated with 7× (n+ 1) parameters. Note that the extra 7

parameters come from Tg, which is also estimated with a quaternion and translational

vector. An example of using this model to track deformations is shown in Fig. 3.3.

3.2.3 Cost Function

To track the visual scene with the parameterized surfel model, a cost function is

defined to represent the distance between an observation and the estimated model. It is

defined as follows

E = Edata + λaEArap + λrERot + λcECorr (3.3)

where Edata is the error between the depth observation and the estimated model, EARAP

is a rigidness cost ensuring that ED nodes nearby one another have a similar deformation,

ERot is a normalization term for the quaternions to satisfy a rotation in SO(3) space, and

ECorr is a visual feature corresponding to the cost to ensure texture consistency. More

specifically, the traditional point-plane error metric [111] is used for the depth data cost.
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When minimized, the model is aligned with the observed depth image. The expression is

Edata =
∑
i

(Tn(n⃗i)
T (T (pi)− oi))

2 (3.4)

where oi = D(u, v)K−1[u, v, 1]T is the observed position from the depth map with D at

pixel coordinate (u, v), and pi and ni are the associated surfel position and normal from

the most up-to-date model. This cost term, however, is highly curved and not easy to

solve. To simplify the optimization, the normal is fixed at every iteration during

optimization. This results in the following expression at iteration j

E
(j)
data =

∑
i

(n̂
(i)T
i (T (pi;O

(j))− oi))
2 (3.5)

where n̂
(j)
i = Tn(n⃗i−1;O

(j−1)) and O(j) is the set of ED nodes at iteration j. This is a

normal-difference cost term similar to the Iterative Closest Point [111].

The rigid term is constructed by l2 norm of the difference between the positions of an

ED node transformed by two nearby transformations. The cost expression is

EARAP =
∑
i

∑
k∈ei

||T (qk,bk)(gi − g⃗k) + g⃗k − g⃗i − b⃗i||2 (3.6)

where ei ∈ E is the edge set of ED nodes neighboring node i. The edge set E is generated

by the k-nearest neighbor algorithm based on the ED node positions. This cost term

forces the model to have consistent motion among the nearby ED nodes. Intuitively, it

provides feedback to the model when a portion of the ED nodes does not receive enough

data from the observation in the current frame.

To have a rigid-like transformation, the normalizing term in the cost function is set

to

ERot =
∑
k

||1− qT
k qk||2 (3.7)
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since quaternions hold ||q||2 = 1. Both ERot and EASAP are critical to ensuring that all

ED nodes move as rigid as possible. This specification is needed since 7× n is a very large

space that needs to be optimized relative to the observed data. For example, in cases of

obstruction, the optimization problem is ill-defined without these terms.

The final cost term is required to ensure visual feature correspondence, which forces

visual texture consistency between the model and the observed data. The expression for

the cost is

ECorr =
∑

(m,c)∈Feat

||T (pm)− oc||2 (3.8)

where Feat is a set of associated pairs of matched feature points m, c ∈ R2 between the

rendered color image of our model and the observed color image data, respectively. The

observed point is obtained using the same expression as before: oc = D(c)K−1c. The

feature matching gives a sparse but strong hint for the model to fit the current data.

To solve the non-linear least square problem proposed in (3.3), the Levenberg

Marquardt (LM) algorithm is implemented to efficiently obtain the solution for the model.

The LM algorithm requires the cost function to be in the form of a sum of squared

residuals. Therefore, all the parameters from O are stacked into a vector, x, and all cost

terms are reorganized into vector form such that ||f(x)||2 = f(x)T f(x) = E. In this form,

the function is linearized with a Taylor expansion

δ = argmin
δ
||f(x) + Jδ||2 (3.9)

where J is the Jacobian matrix of f(x). Following the LM algorithm, the function is

solved for δ by using

(JTJ+ µI)δ = JT f(x) (3.10)

where µ is a damping factor. The LM algorithm accepts the δ by setting x← x+ δ when

the cost function decreases: ||f(x)||2 > ||f(x+ δ)||2. Otherwise, it increases the damping
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factor. Intuitively, the LM algorithm aims at finding a balance between the

Gaussian-Newton method and the gradient descent solver.

3.2.4 Experiments

Implementation Details

To measure the effectiveness of the proposed framework, our implementation was

deployed on a da Vinci Surgical® System. The stereo camera is the standard 1080p

laparoscopic camera running at 30fps. The Open Source dVRK [65] is used to send

end-effector commands and get joint angles and the end-effector location in the base

frame of a single surgical robotic arm with a gripper, also known as Patient Side

Manipulator (PSM). The data submission for the PSM occurs at a rate of 100Hz. The

communication between subsystems of the code relies on the Robot Operating

System (ROS), and everything is processed on two identical computers with an Intel®

Core™ i9-7940X Processor and NVIDIA’s GeForce RTX 2080.

The surgical tool tracking is set to the same implementation as presented in Chapter

2. The endoscopic image data is resized to 640 by 480 before processing to generate the

depth map from the stereo images. The LIBELAS parameters are applied using the

default settings from their open-sourced repository [41]. After computing this dataset, D,

the resulting depth map is masked by the rendered surgical tool. The mask is dilated by 9

pixels before being applied. The depth map is then smoothed spatially with a bilateral

filter and temporally with a median filter of four frames to decrease the noise. The surfel

radius is set to r =
√
2D(u, v)/(f |nz|), and the confidence score is calculated with

c = exp(−d2c/0.72) at pixel coordinate (u, v), where nz is the z component of camera

frame normal, f is the cameras focal length, and dc is the normalized distance from the

pixel coordinate to the center of the image [111][68]. Whenever new surfels are added to

the model, ED nodes are randomly sampled from them [37]. This process typically results

in 300 ED nodes and, therefore, roughly 2K parameters to estimate. Very similar surfels,
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both temporally and spatially, are merged to each other when we fuse the observed map

to the model to keep the model concise as described in [37]. OpenCV’s implementation of

SURF is used for feature extraction and matching in the cost functions visual

correspondence term. To solve the linear system for the LM algorithm in (3.10), we

implemented a GPU version of the preconditioned conjugate gradient and set the max

iteration number to 10. For the cost function, the parameters [λa, λr, λc] are set to

[10, 100, 10].

Datasets

Repeated Tissue Manipulation: To test the effectiveness of the proposed framework, a

simple controller was implemented to grasp and tug on the tissue at the same tracked

point repeatedly. At the beginning of the experiment, a small cluster of surfels was

selected on the tissue in the deformable tracker, and their resulting averaged position, pc
g,

and normal, nc
g, represented the tracked point to be grasped. The following steps were

then repeated five times or until failure on the PSM gripper.

1. Align above surface: move to pc
g + dnc

g where d = 2 cm and the orientation qc
g is

adjusted that the opening of the gripper is pointed towards the surface normal, nc
g

2. Move to the tissue: stop updating pc
g and nc

g from the deformable tracker and move

to pc
g + dnc

g where d = 0.5 cm and orientation qc
g

3. Grasp and stretch the tissue: close the gripper to grasp the tissue and move to

pc
g + dnc

g where d = 2 cm and orientation qc
g

4. Place back the tissue: move to pc
g + dnc

g where d = 0.5 cm and orientation qc
g and

open the gripper

5. Continue updating pc
g and nc

g from the deformable tracker.
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It should be noted that the end-effector on the PSM gripper is defined on the link

preceding the jaws from the gripper, which are approximately 1 cm long.

To move the PSM to the target end-effector position, pc
g + dnc

g, and orientation, qc
g,

the trajectories were generated using linear and spherical linear interpolation, respectively.

The trajectories were re-generated after every update to pc
g and nc

g from the deformable

tracker and generated in the camera frame from the current end-effector pose. The

current end-effector pose was calculated by transforming the PSM end-effector pose from

dVRK with the Lumped Error transform from the surgical tool tracker. Finally, to follow

the trajectory, the end-effector poses were transformed back to the base frame of the PSM

using the surgical tool tracker and set via dVRK.

This experiment was repeated using the following configurations:

• The complete proposed framework.

• The framework without deformable tracking, i.e., just static reconstruction, by

setting the number of ED nodes to 0.

• The framework without surgical tool masking.

• The framework without surgical tool tracking, and, instead, relying on calibrated

hand-eye.

The tissue used was the skin of a chicken leg.

Reprojection Error for Tracking Accuracy: To evaluate our proposed approach

quantitatively, we manually annotated 20 points on the tissue through time on the raw

image data from the repeated tissue manipulation experimentation. The 20 points were

chosen from the highest confidence points of SURF in the first frame. This time series of

2D image positions was compared against the reprojection from the deformable tissue

tracker. We also evaluated the result of an off-the-shelf SURF approach from OpenCV

which matched the keypoints in every frame with the description in the first frame.
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Figure 3.4. Tissue manipulation with the SuPer framework was implemented on the
da Vinci® Surgical System in real time. Images (from left to right): the real scene, tool
tracking, deformable reconstruction, and the entire SuPer Framework in RViz.

Moreover, the surgical tool accuracy was evaluated by comparing 50 manually segmented

images that were selected at random from the repeated tissue experiment and compared

against the reprojected/rendering of the surgical tool tracking. The experiment was

conducted with different numbers of particles to highlight the trade-off between the

accuracy of modeling the posterior probability and computational cost in real-time

tracking.

Results

The separate components of the framework ran at 30fps, 30fps, 8fps, and 3fps for the

surgical tool tracking, surgical tool rendering, depth map generation, and deformable

tissue tracker, respectively. An example of the procedure used for the repeated tissue

manipulation experiment is shown in Fig. 3.1. When using the complete framework, the

PSM arm successfully grasped the same location of the tissue all five times after repeated

deformations. As indicated by the yellow rectangle in Fig. 3.4, the deformable tracker

even managed to capture the structure of the tissue that was not visible to the endoscopic

camera during the stretching.

As Fig. 3.5a illustrates, without our SuPer framework, the direct input was very
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(a) Raw depth map (b) Without tool track-
ing

(c) Without mask (d) without deformable
tracking

Figure 3.5. Results from the repeated tissue manipulation experiment without using the
complete proposed SuPer framework. None of these results are ideal since they do not
properly capture the real surgical scene through failed robotic localization or improper
environmental mapping.

Table 3.1. Reprojection error of surgical tool for tracking accuracy

Num. of Particles Mean IoU Perc. above 80% Fps

100 80.8% 68% 30

500 82.4% 71% 30

1000 81.7% 73% 26

5000 82.8% 77% 8

noisy and could not provide consistent geometrical information about the scene. When

not using the deformable tracker, the computer crashed due to memory overflow after

three grasps, and the reconstruction was not at all representative of the real environment.

Without the mask, the reconstructed scene in the deformable tracker did not converge

properly and failed after three grasps. Finally, when not using the surgical tool tracking

function, no successful attempt could be made because the grasper missed the tissue. All

three failure cases are presented in Fig. 3.5.

A comparison between the reprojected rendering from the surgical tool and the

manual segmentation results is presented in Table. 3.1. The results demonstrate that

more particles generally result in better performance. However, to ensure efficiency, we set

the particle number to 500 to keep the method in real time. The comparison provided in

Fig. 3.6 demonstrates that our SuPer framework is much more stable than the SURF

feature matching because our method is designed to reconstruct the dynamic scene
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Figure 3.6. The reprojection error comparison of 20 labeled points in our dataset between
our SuPer and the native SURF keypoint tracking.

entirely, whereas SURF only finds the local minimal matching position. Moreover, our

method has a higher accuracy because our error is smaller than the error derived from

SURF, even with the tracked point features No.2 and No.3 that had the best performance

of SURF, as shown in Fig. 3.6.

3.2.5 Discussion

The ability to continuously and accurately track the tissue during manipulation

enables control algorithms to be successful in the unstructured environment. Currently,

we believe that the first limiting factor of our frameworks is the noise from the depth map

reconstructed by the stereo-endoscopic camera as shown in Fig. 3.5a. A second

experimental limitation is related to the features used to update the surgical tool tracker.

The markers were manually painted and inherently inaccurate in terms of position, pjk

from (2.29). We believe this is the main cause of the inconsistencies in the surgical tool

tracking, and other methods, such as as [100] would be viable to use in place of the color

tracking. Improving these components would be simple as other strategies for more recent

and effective depth reconstruction and instrument feature tracking could be substituted at

no additional effort. Furthermore, the certainty of the perception could be used for
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optimal control algorithms, endoscopic camera control to maximize certainty, and other

advanced control techniques. Handling blood and topological changes, such as cutting, are

the next big challenges to overcome to make our proposed framework even more suitable

for real clinical scenarios.

In conclusion, we propose a surgical perception framework, SuPer, to localize the

surgical tool and track the deformable tissue. SuPer was experimentally evaluated on a da

Vinci® System to show its ability to track during ongoing manipulation tasks where

instrument occlusions, significant tissue deformations, and tissue tracking had to be

addressed. In addition, a deformable tissue tracking dataset was released for further

community research.

3.3 SuPer Deep

As highlighted in Section 3.2.5, there are two major challenges to providing

perception for surgical automation efforts: tracking of the surgical tool to control and

localize it in the camera frame, and tracking of the deformable environment for the

surgical tool to plan and interact with. While these two problems have been solved

outside of surgical robotics [82, 37], the domain-specific challenges are the narrow field of

view provided by endoscopes, poor lighting conditions, and the requirement of very high

accuracy [8].

The surgical tool tracking community has largely focused on developing feature

detection algorithms to update the pose of the surgical tool [8]. The algorithms need to

be robust to the poor lighting conditions and the highly reflective tool surfaces. Examples

of recent work include using the Canny-edge detector for silhouette extraction [50], online

template matching [169], and categorized features using classical image features, such as

the spatial derivatives [131], [132]. Deep neural networks have also achieved promising

results in feature tracking for surgical tools [71], [19], but utilizing them for full 3D pose
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estimation still remains unexamined.

Simultaneously, efforts in tissue tracking have focused mainly on adaptions of 3D

reconstruction techniques, such as SurfelWarp for deformable tracking [37]. The lack of

directly measurable depth information in endoscopes is a significant challenge in the

adaptation. Hence, the common approach is to work with stereoscopic endoscopes and use

stereo reconstruction techniques, such as Efficient Large-Scale Stereo Matching (ELAS),

to generate depth images [41]. This depth estimation allows the application of deformable

tracking techniques [151, 152]. Other tissue tracking techniques include tracking keypoint

features and registration [172],as well as dense SLAM methods, which use image features

to localize the endoscope [96, 98].

A common theme across these two challenges is the need for high-quality image

features. Surgical tool tracking mainly focuses on developing detectors for tool features,

and recent studies in tissue tracking have highlighted depth reconstruction from stereo

matching as the most significant bottleneck [151]. Deep learning has the advantage of

learning features, which will eliminate the need for feature engineering. However, deep

learning previously has not been a front runner in surgical perception due to the lack of

large quantities of high-quality medical and surgical data [63].

We use state-of-the-art deep neural networks (DNNs) that require minimal training

data to explore its application in surgical perception. Our contributions can be

summarized as follows:

1. Using deep learning for high quality and robust surgical tool feature extraction,

2. Investigative study of popular deep learning and traditional stereo matching

algorithms to improve deformable tissue tracking,

3. Complete integration of deep neural networks into the Surgical Perception (SuPer)

framework to fully perceive the entire surgical scene - SuPer Deep.
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Figure 3.7. The complete workflow of the proposed SuPer Deep framework, which was
built on our original framework with DNNs. The DNNs were used to match the features
from stereo images to generate the depth map and detect point features for estimating the
pose of the surgical tool.

Experiments were ran using a tissue manipulation dataset collected in Section 3.2.4,

along with two other publicly available datasets collected from the da Vinci® Surgical

System, to evaluate the tool tracking and tissue tracking performances individually. SuPer

Deep framework advances on SuPer, its predecessor, by eliminating the requirement for

painted markers and the keypoint association process in tool tracking. Moreover, our

framework generates more realistic tissue reconstruction by improving the depth

estimation. Finally, our work includes the first comparative study on deformable tissue

tracking, whereas previous studies have been hampered by a paucity of standard

benchmarking datasets for surgical perception.

Our surgical perception framework, as shown in Fig. 3.7, combines a deformable

tissue tracker and a surgical tool tracker to perceive the entire surgical scene, including

the the deforming environment and the robotic agent. Two deep neural networks are

embedded into our framework for specific feature extractions: DNN(1) finds and matches

features from stereo images to generate a depth map for tissue tracking, and DNN(2)

extracts point features for surgical tool tracking. Meanwhile, the other components (e.g.,

tissue tracking) remain unchanged as in the original SuPer presented in Section 3.2.
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Figure 3.8. Illustration of the point features to detect on surgical tools. The left figure
shows the features detected on a single instrument, and the right figure shows the features
detected and associated appropriately with two instruments.

3.3.1 Keypoint Detection for Surgical Tool Tracking

To localize the surgical tools on image frames, we use DeepLabCut [100], which

employs DeeperCut [60] as the backbone for point feature detection. The DNN consists of

variations of Deep Residual Neural Networks (ResNet) [52] for feature extraction and

deconvolutional layers to up-sample the feature maps and produce spatial probability

densities. The output estimation for each point feature is represented as a tuple (mi, ηi),

where mi ∈ R2 is the image coordinate of the i-th feature and ηi ∈ R is the corresponding

confidence score. The DNN was fine-tuned with few training samples to adapt to surgical

tool tracking by minimizing the cross-entropy loss. The samples were hand-labeled using

the open-source DLC toolbox [109]. Fig. 3.8 shows examples of point features that were

detected on surgical instruments.

To estimate the pose of the surgical tool in 3D space, the 2D detections are combined

with the encoder readings from the surgical robot, and a particle filter is applied for

estimation as detailed in Chapter 2. To integrate this with the Lumped Error tracking,

the point feature observation model in (2.33) was modified to

P (mt|ŵt, b̂t, êt) ∝
∑
i∈Am

ηite
−γm||mi

t−m̂i(ŵt,b̂t,êt)|| (3.11)

which removes the association step in line 18 from Algorithm 1. It is important to include

57



the DNN’s confidence, ηkt , in the model because sometimes the detections can be poor and

the corresponding update needs to be weighted lower.

3.3.2 Depth Estimation for Deformable Tissue Tracking

Deformable tissue tracking relies heavily on the quality of depth estimation, as the

deformable tracker uses the depth maps as the observation [151]. To estimate the depth, a

stereo matching algorithm is used to compute the disparity, and then inverted to obtain

pixel-wise depth. Traditional stereo matching algorithms, like [41] and [53], typically take

a pair of rectified stereo images Il and Ir as input, and estimate the disparity by matching

image patches or features between Il and Ir. Due to the complexity of the surgical setting,

the image quality is not the sharpest, which makes finding pixel-level correspondence

extremely challenging. Deep-learning-based algorithms, such as [69], [12], and [175], use a

weight-sharing feature extractor to obtain feature maps Fl and Fr from Il and Ir,

respectively. Then a 4D matching cost volume Cd is formed by concatenating the Fl and

Fr, such that Cd(i, j, d, :) is the concatenation of Fl(i, j) and Fr(i, j + d), where (i, j) is

the pixel location and d is the disparity. The cost volume is regularized using 3D

convolutional layers and reducing the dimension of the 4-th channel to 1. Finally, the

resulting 3D tensor Sd is used to estimate the disparity for each pixel as

d̂(i, j) =
Dmax∑
d=0

σ(−Sd(i, j, d))d (3.12)

where Dmax is the max disparity and σ(·) denotes the softmax function. An investigation

between these stereo matching algorithms is presented in the upcoming Section 3.3.3.

After estimating the disparity d̂, the depth value z is obtained by the following

transform

z(i, j) =
bf

d̂(i, j)
(3.13)

where b is the horizontal offset (i.e., baseline) between the two cameras, and f is the focal
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length, which can be obtained from camera calibration.

Various stereo-matching algorithms can be substituted in for DNN(1) of our

framework shown in Fig. 1. To find the best one, we investigated several stereo matching

algorithms by combining with the deformable tissue tracker presented in 3.2. The

state-of-the-art algorithm, Guided Aggregation Network (GA-Net) [175], was finally

chosen for our framework. In comparison to previous works on deformable tissue tracking,

which require a substantial amount of spatial and temporal filtering on the depth image

[151], our method employs a deep stereo matching network for accurate and dense depth

estimation, which requires no post-processing on the depth image.

3.3.3 Experimentation

Implementation Details

We evaluated the proposed framework on three open-source datasets for multiple

tasks addressing the performance of the surgical tool tracking and deformable tissue

tracking. The experiments were conducted on two identical computers, each containing an

Intel® Core™ i9-7940X Processor and NVIDIA’s GeForce RTX 2080. The weights of

DeepLabCut to detect the keypoints were pre-trained on ImageNet and fine-tuned by

training on only 50 hand-labeled images for 7100 iterations with stochastic gradient

descent of batch size 1 and learning rate lr = 0.005. The surgical tool tracking is set to

the same implementation as Chapter 2 and γm = 0.1. For depth map estimation, the raw

stereo images were rectified, undistorted, and resized to (640, 480) before being passed

into the stereo matching algorithm. Due to the lack of task-specific datasets for surgical

environments, the pretrained weights of GA-Net were utilized, which was trained on the

Scene Flow dataset from scratch for 10 epochs and fine-tuned on the KITTI2015 dataset

for 640 epochs. After inverting the disparity, the resulting depth map was fused into the

tissue model after subtracting the rendered tool mask, which is dilated by 5 pixels.
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Datasets

SuPer: The dataset consists of a raw stereo endoscopic video stream and encoder

readings from the surgical robot with ground-truth labels for the tool tracking tasks,

which consists of 50 hand-labeled surgical tool masks. The tool tracking performance was

evaluated by calculating the Intersection-Over-Union (IoU, Jaccard Index) for the

rendered tool masks, which are based on estimated tool poses.

Hamlyn Centre Video Dataset: [154] was used to evaluate the performance of

deformable tissue tracking. It includes two video sequences of silicone heart phantom

deforming with cardiac motion and consists of ex-vivo endoscopic stereo videos

(resolution: 360×288) with depth information generated from CT scans. The re-projected

depth maps of the reconstructed tissue model are evaluated, which is the projection of the

entire reconstructed point cloud to the image plane, with each pixel containing a depth

value. We calculated the per-pixel root-mean-square (RMS) error of the depth map for

every image, √
1

Np

∑
i,j

(d̂i,j − di,j)2 (3.14)

where i, j is the pixel position, d̂ is the estimated depth value, d is the ground truth depth

value, and Np is the total number of pixels for each image. We also reported the

percentage of the valid (non-zero) pixels of the depth map.

da Vinci Tool Tracking: [169] consists of a stereo video stream and the corresponding

kinematic information of the da Vinci® surgical robot. The dataset is used to evaluate

surgical tool feature detection and pose estimation. Note that the SuPer dataset has

painted markers, and hence this additional experiment ensures that surgical tool feature

detector learns surgical tool point features and is not dependent on colored markers. The

performance of feature detection is evaluated by calculating the L2 norm of the error in
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Figure 3.9. Qualitative results from real-time environmental mapping on the SuPer
dataset. Top and bottom row figures are results from the original SuPer framework and
the proposed SuPer Deep framework, respectively.

pixels which is explicitly computed as follows

1

N

N∑
n=1

||mi
n −mi∗

n ||2 (3.15)

for the i-th feature point where N is the total number of test images and mi∗
n is the ground

truth feature point location in the n-th image. We experiment with varying amounts of

hand-labeled training data to illustrate the data efficiency of the proposed surgical tool

feature detection method. Due to lack of ground-truth data for pose estimation, we only

provide qualitative results for surgical robotic tool tracking on this dataset.

Results

Qualitative results of the environment mapping on the SuPer dataset are presented

in Fig. 3.9. As highlighted in the figures, SuPer Deep provides a larger field of view of the

unstructured environment while preserving better details on the reconstruction. In

comparison to the SuPer framework, more detailed information is captured due to the

lack of filtering and smoothing applied on the stereo reconstruction process, which was

required in previous implementations of tissue tracking in Section 3.2.
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Figure 3.10. A comparison of tissue reconstruction by fusing the depth maps from
different stereo matching algorithms. The first row shows the front view and the second
row shows the side view of the reconstruction.

Table 3.2. Comparative study for deformable tissue tracking with varying stereo-
reconstruction algorithms done on the Hamlyn Cantre heart phantom dataset.

Method
Video 1 Video 2

RMSE Perc. valid RMSE Perc. valid
stereoBM + deformable tissue tracker 23.24 ± 2.18 0.565 ± 0.037 34.02 ± 2.08 0.523 ± 0.033

stereoSGBM + deformable tissue tracker 16.84 ± 1.99 0.713 ± 0.038 24.68 ± 1.84 0.683 ± 0.032
ELAS + deformable tissue tracker 16.12 ± 2.22 0.716 ± 0.044 22.03 ± 2.89 0.719 ± 0.049

PSMNet + deformable tissue tracker 5.64 ± 1.48 0.940 ± 0.023 8.23 ± 1.32 0.939 ± 0.014
HSM + deformable tissue tracker 5.33 ± 1.36 0.938 ± 0.023 6.73 ± 1.28 0.946 ± 0.020

GA-Net + deformable tissue tracker 4.87 ± 1.55 0.947 ± 0.026 6.20 ± 1.57 0.957 ± 0.024

Using the Hamyln Centre Video Dataset, the deformable tissue tracking results were

compared by combining popular stereo matching algorithms with the deformable tissue

tracker. We visualize the reconstruction results by fusing the first 10 estimated depth

maps from each algorithm in Fig. 3.10. Deep-learning-based algorithms generally provide

dense and consistent matches and result in realistic tissue reconstructions. We calculated

the average per-pixel RMS error on the re-projected depth maps, and the quantitative

results are shown in Table 3.2. Deep-learning-based approaches achieve much lower

per-pixel RMS error with the higher percentage of the valid pixel, which confirms the

observations from the environment mapping results in Fig. 3.9 and Fig. 3.10.

Fig. 3.11 shows the feature detection performance of the DeepLabCut with varying

numbers of training samples. By leveraging transfer learning, the feature detector is able

to achieve high performance on detecting surgical tool features using few training samples.
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Figure 3.11. Plot of average detection error of features on surgical tool against the
amount of training data. As is evident by the plot, only 60 to 80 training samples are
required to train an accurate model.

Figure 3.12. Qualitative results of surgical tool tracking. The top row shows the
DeepLabCut prediction overlaid on the real images. The bottom row shows an Augmented
Reality rendering of the surgical tool [137] on top of the real images. The renderings are
best viewed in color.

For the tool tracking task, SuPer Deep achieved 91.0% mean IoU on the SuPer tool

segmentation task, which is a significant improvement on the original method (SuPer:

82.8%). Notably, SuPer Deep does marker-less tool tracking while the former utilizes

painted markers. Qualitative results of the tool tracking are presented in Fig. 3.12, where

we experimented with our tool tracker on both the SuPer dataset and the da Vinci tool

tracking dataset. In the visualization, the Augmented Reality rendering from the
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Figure 3.13. Failure cases in tool point feature detection. In parenthesis are the
corresponding confidence scores. Note that when a failure occurs the DNN outputs low
confidence hence making the missed detection not as detrimental to our tracking algorithm.

estimated tool pose produces a near-perfect overlap with the tool on real images.

3.3.4 Discussion

The experimental results show SuPer Deep achieves excellent performances in both

surgical tool tracking and deformable tissue tracking. By utilizing deep neural networks,

SuPer Deep produces more consistent depth maps and achieves accurate tool pose

estimation. The latter also helps to reduce the dilation of the tool mask, which reduces

the amount of information lost. As the visualizations shows in Fig. 3.9, SuPer Deep’s

reconstruction has the surgical tool touching the point cloud (as opposed to just being

above the point cloud).

There are occasional failures in feature detection on the surgical tool, owing mainly

to the symmetry of the tool parts, for example, the Roll 1, Pitch 1 and Yaw 2 features.

As shown in Fig. 3.11, detecting those features is more challenging compared to other

ones. The missed detections are, however, of low confidence. Hence they are handled by

the probability weighting of the detected points in the observation model of the particle

filter. In Fig. 3.13, for instance, one of the grippers of the tools is miss detected, but has

substantially lower confidence; meanwhile the correctly detected points have confidence

scores higher than 70%. Similarly, in the second case, two features are detected on the
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wrong side of the shaft due to the surgical tools symmetry, but again with low confidence

and hence is not detrimental to the pose estimation. Overall, the feature detection is

robust and results in accurate perception.

Deep learning has not been utilized as a major tool in surgical robotic perception,

with a lack of training data as the primary bottleneck. The SuPer Deep framework,

incorporating two deep neural networks as major components, shows that the challenge of

insufficient data is surmountable. Using transfer learning, even on limited training data,

the framework accomplishes excellent feature detection for surgical scene perception. Our

comparative study on deformable tissue tracking, which utilizes the deep neural networks

with only pretrained weights, shows that deep learning techniques can be applied for

stereo reconstruction and gives a performance evaluation on these techniques applied to a

surgical context.
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Chapter 4

Perception of Blood from Vessel
Ruptures

Hemostasis describes the surgical scene when there is no active bleeding, and the

tissues are unobstructed by blood, making maintenance of hemostasis a crucial surgical

task. However, surgical manipulation of any type (e.g., suction, grasping, retraction,

cutting, dissection) can immediately cause bleeding. Bleeding can also occur in a delayed

manner. For example, if a vessel is not definitively sealed, it can rupture spontaneously

without direct contact. Previous work in perception algorithms for blood has not

investigated surgical scenarios and largely from the context of Wireless Capsule

Endsocopy (WCE) [83]. Toward this end, we present perception algorithms for vessel

ruptures in a surgical scenario in this work. Furthermore, the algorithms are designed for

downstream automation techniques for hemostasis maintenance. In order to trigger

reactive hemostasis maneuvers, vessel ruptures must be detected. Once detected, 3D

information about the liquid is required such that a robotic manipulator can begin

initiating the steps required to achieve hemostasis. Therefore, we present the following

novel contributions in perception for vessel ruptures in surgery:

1. a blood flow segmentation algorithm for endoscopic images to identify and track a

vessel rupture in the image frame and

2. a liquid reconstruction technique which only requires 2D image detections of liquids.
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The approaches are evaluated in both simulated and real-life scenes, including an in vivo

surgery, to show their efficiency. Furthermore, the liquid reconstruction technique can be

applied more generally to any liquid and tested on a pouring milk example.

4.1 Related Works

Fluid Reconstruction

Historically, specialized sensor modalities have been used to capture fluid flow in

science and engineering. Schlieren imaging [21, 3, 2], Particle Image Velocimetry [43], laser

scanners [51], and structured light [44] have all been developed for capturing fluids. These

specialized sensors however are not common and often expensive, making them less ideal

than visible spectrum sensors which are the only imaging sensors available in the current

workflow of endoscopic surgeries. This situation led to a wide range of developments in

the field of visible light tomography where a combination of 2D image projections of a

fluid are used to reconstruct it in 3D. Recent developments in the field have effectively

registered fluids with simulation based fluid dynamics [26] and require only a few camera

perspectives for effective reconstruction [174, 34]. These approaches however do not

consider incompressible fluids and only focus on gasses in free space (i.e., no collision).

General Liquid Detection and Simulation Registration

While direct reconstruction of liquids has not been done before, there has been work

in detecting liquids in the image frame and registering with a simulation. Pools of water

have been detected for unmanned ground vehicles [128, 129], and flowing blood has been

detected during surgeries for autonomous, robotic suction [136]. Liquids during a pouring

task have also been detected using optical flow [168] and Deep Neural Networks [143].

Mottaghi et al. were able to estimate a liquid’s volume in a container from images directly

[104]. Registration of a liquid simulation with the real world has also been conducted for

robot pouring [45, 142, 144]. However, these techniques require prior information about
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the liquid being reconstructed, such as knowing the volume of the liquid before hand.

Meanwhile in this work, we only assume prior knowledge of the gravity direction and

collision environment and use a novel branching strategy to dynamically adjust the

volume of the reconstructed liquid. Nevertheless, we integrated Schenck and Fox’s most

recent simulation registration work [144] to the best of our ability into our reconstruction

approach for comparison.

Blood Detection

Previous work on blood detection is largely from the context of WCE where image

processing for detections is used to speed up clinician workflow [83]. The typical approach

to blood detection in WCE is to classify either on a pixel level or using patch-based

methods [36]. The feature space used for classification is either direct Red, Green, Blue

[85] channels or the transformed HSV channels [62]. To efficiently process these color

spaces, techniques such as support vector machines [113], chromium moments combined

with binary pattern textures [80], and neural networks [119, 35] have been proposed.

While these methods are robust to small individual lesions, in a surgical scene there can

be stains from previous ruptures and larger amounts of blood flow that make the problem

of blood detection and tracking its dynamic motion a more challenging and complex

problem.

4.2 Segmenting Blood Flow from Images

An outline of the complete approach for detecting blood in the image frame is shown

in Alg. 2. At a high level, the blood region is estimated by updating a probability map on

the scene, which describes the probability of each pixel in the image frame being blood or

not. The probability map is updated using a novel bayesian filtering strategy. From the

probability map, the blood region is extracted.
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Algorithm 2: Blood Flow Segmentation from Images

1 Initialize image frame probability map of blood: P0

// Note: Each pixel pt ∈ Pt holds the posterior probability of it

being blood (i.e. pt = P (pt = b|zp1:t))
2 Initialize optical flow CNN with l image frame inputs
3 while new image, It, arrives do
4 Ot ← getOpticalF lowCNN(It, . . . , It−l−1)
5 for pixel pt ∈ Pt do

// Get Detections from Image

6 if ||Ot(p)|| > γo then
7 zpt ← b
8 else

9 zpt ← b

// Predict Step

10 p′t ← P (pt+1 = b|pt = b) · pt
11 p′t ← p′t + P (pt+1 = b | pt = b, kpt = b) · P (kpt = b | zp1:t) · (1− pt)
12 p′t ← p′t + P (pt+1 = b | pt = b, kpt = b) · (1− P (kpt = b | zp1:t)) · (1− pt)
13 pt ← p′t

// Update Step

14 pt ← P (zpt |pt = b) · pt/
(
P (zpt+1 | pt+1 = b) + P (zpt+1 | pt+1 = b)

)
// Get detected blood flow

15 Bt ← Pt > 0.5
16 Bt ← errodeAndDilate(Bt)
17 Bt ← largestConnectedRegion(Bt)

4.2.1 Detection in the Image Frame

Optical flow is chosen to detect flowing blood because it extracts information about

all moving objects in the scene. In a surgical scene, the main motion comes from surgical

tools and flowing fluids. Another source of motion in robotic surgery comes from a

moving camera, but for robotic surgery the camera remains stationary when work is being

done in a scene and its position is reset only to change the field of view. Therefore only

stationary scenes are considered. To mask instrument motion from the scene, previously

developed methods can be applied to effectively segment and remove pixels attributed to

surgical tools from image as done in Chapter 3.

To estimate optical flow, a pretrained convolutional neural network (CNN) is used
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Figure 4.1. The left and right images show the estimated and corresponding magnitude
of optical flow, respectively, from a vessel rupture during an in-vivo surgery.

[157]. A deep learning strategy is used instead of traditional methods such as

Lucas-Kanade [90] (used in previous work for robot pouring [168]) as traditional optical

flow approaches utilize brightness constancy constraint assumption, and this assumption

is not valid in endoscopic procedures due to irregular lighting. Meanwhile, the proposed

architecture by Teney and Herbert [157] is able to extract motion from learned features

that are invariant to textures, brightness, and contrast, which is ideal for detecting

flowing blood from an endoscope. The step of estimating optical flow is done on every

new image frame from the endoscopic camera as shown in Line 4 of Alg. 2.

Similar to previous work in robot pouring [168], experimental data showed that the

magnitude of optical flow is a good signal for detecting fluid motion while the orientation

is not. An example of the processed image is shown in Fig. 4.1 comparing the RGB image

to the amplitude map for optical flow. The magnitude of the estimated optical flow is

considered an observation, and they are fused temporally. Consider the magnitude of

optical flow at pixel p. Let zpt be the random variable describing the detection of blood at

pixel pt at time t. The detection is modelled where blood is detected, zpt = b, if the

magnitude of optical flow at pixel pt is greater than a threshold, γo. The inverse is also

set, so no blood is detected, zpt = b, if the magnitude at pixel pt is less than γo. The
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threshold detection scheme is reflected in Lines 6-9 in Alg. 2. Hence the probability

model for these detections can be simply written as

P (zpt = b | pt = b) P (zpt = b | pt = b) (4.1)

which describes an observation model for the hidden state pt ∈ {b, b} which represents

the true state of if a pixel is blood or not.

4.2.2 Temporal Filtering for Blood Region Detection

Although the magnitudes of optical flow provide a good initial estimate for blood

detection, they are nevertheless noisy and require filtering. Therefore, a temporal filter is

based on a Hidden Markov Model (HMM) is proposed to fuse independent measurements

of the pixels hidden state over time. The HMM tracks the discrete states for pt using the

observation models in (4.1). Let the following be a transition probability for a pixel pt be

P (pt+1 = b | pt = b), (4.2)

which models the probability that if a pixel is already blood it will continue being blood.

In the case of blood vessel ruptures, this should be set close to 1 since the vessel rupture

will not stop emitting blood until it has been closed. For the transition probabilities where

the pixel is not blood at time t, an additional parameter, kpt , is introduced to the model

P (pt+1 = b | pt = b, kpt = b) P (pt+1 = b | pt = b, kpt = b), (4.3)
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where kpt describes the state of the neighboring pixels of pt. This is modelled as the

resulting Boolean-OR operation (∨) on the states of the neighboring pixels

kpt = ∨
qi∈Ap

qit (4.4)

where Ap is the set of neighboring pixels to pt. Therefore, the first and second models

from (4.3) is capturing the flow of the blood and is describing the probability a blood

source starts at pixel pt, respectively. To appropriately describe these processes in this

case of blood vessel ruptures, the first model in (4.3) should be set less than (4.2) and the

second model in (4.3) should be set close to 0.

The temporal filter is designed to estimate the posterior probability of the state pt

using transition probabilities and observation models. This is done using a predict and

update step after every detection. The predict step can be calculated as

P (pt+1 | zp1:t) = P (pt+1 | pt = b)P (pt = b | zp1:t)+∑
kpt ∈{b,b}

P (pt+1 | pt = b, kpt )P (pt = b, kpt | z
p
1:t) (4.5)

and the update step is computed

P (pt+1 | zp1:t+1) =
P (zpt+1 | pt+1)P (pt+1 | zp1:t)

P (zpt+1)
(4.6)

P (pt+1 | zp1:t+1) =
P (zpt+1 | pt+1)P (pt+1 | zp1:t)

P (zpt+1 | pt+1 = b) + P (zpt+1 | pt+1 = b)
. (4.7)

However, the predict expression has the joint probability of pt and k
p
t . Explicit estimation

for this joint probability would be computationally intractable, so each pixel’s probability

of being blood is approximated to be independent of all others at time t. With this
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simplification, the predict step can be rewritten as

P (pt+1 | zp1:t) = P (pt+1 | pt = b)P (pt = b | z1:t)+∑
kpt ∈{b,b}

P (pt+1 | pt = b, kpt )P (k
p
t | z

p
1:t)P (pt = b | zp1:t) (4.8)

and an expression can be found for P (kpt | z
p
1:t) using the inclusion-exclusion principle

which results in

P (kpt | z
p
1:t) =

|Ap|∑
j=1

(−1)j−1
∑
J⊆Ap

|J|=j

∏
qi∈J

P (qit | z
p
1:t). (4.9)

This results in the ability to compute and track the probabilities of each pixel being blood

using (4.8) and (4.7) after every detection as shown in Lines 10-13 and Line 14 in Alg. 2

for the predict and update steps, respectively.

To find the region of blood on the image frame, a mask is generated where all pixels

with a posterior probability greater than 0.5 is set to 1, and the rest are set to 0. Then

dilation and erosion morphological operations are applied once to reduce noise on the

mask. Finally, the largest connected region of the mask is considered the region with

blood flowing. This final processing step is reflected in Line 15-17 of Alg. 14.

4.2.3 Experimentation

Implementation Details

All subsequent experiments in this section were ran on a computer with Intel®

CoreTM i9-7940X Processor and NVIDIA’s GeForce RTX 2080. The blood flow detection

and trajectory generation algorithms were implemented in MATLAB. The CNN for

optical flow estimation [157] is pre-trained on the Middlebury dataset [4], uses l = 3 image

frames for input, and the resolution of the optical flow estimation is 1/4 of the input frame

resolution. These are the default values of the original CNN implementation. The size of

the probability map is set to the optical flow resolution. The threshold for detection, γo,
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Figure 4.2. Simulated scenes used to evaluate the proposed blood flow segmentation
algorithm.

is set to 0.45. The detection probability, P (zpt = b|pt = b), P (zpt = b|pt = b), are set to

0.95 and 0.2, respectively because experimentally we found the true positive rate and false

negative rate to be very accurate and noisy, respectively. The initial probability of a pixel

being blood, P (p0 = b) and transition probabilities of a pixel being blood,

P (pt+1 = b|pt = b), P (pt+1 = b|pt = b, kpt = b), P (pt+1 = b|pt = b, kpt = b), are set to 0.1,

0.98, 0.85, and 0.01, respectively. The neighbors for a pixel, Ap, are set to just up, down,

left, and right so the algorithm can be ran in real-time.

Datasets

Two separate datasets were generated for this work to evaluate the proposed blood

region detection algorithm. Both datasets have labelled ground-truth masks, Gt, of the

blood region. Performance is evaluated from these datasets using the IoU metric between

Bt, a binary mask of the detected blood region, and Gt.

Simulation: six simulated scenes of flowing blood are generated using Unity3D’s

particle-based fluid dynamics (PBDs). The scenes are shown in Fig. 4.2. A total of 61

image frames were extracted per scene. The ground-truth mask, Gt, of the blood region is

generated by projecting the fluid particles onto a virtual camera’s image plane and

applying Gaussian smoothing. The rendered image is set to 1095×1284 pixels.

In-Vivo: the second dataset is from an in-vivo surgery. After the completion of a

thyroidectomy conducted on a pig (UCSD IACUC S19130), a rupture occurred on the

carotid artery. The 8s video data from this incident is used to evaluate the blood flow

detection and tracking algorithm in a similar manner to the simulated scenes. For
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Figure 4.3. The left and right plots show Intersection over Union (IoU) results of blood
flow segmentation when using the proposed method and only the blood detection from
optical flow thresholding, respectively.

Figure 4.4. Example figures of blood flow segmentation where the green and blue regions
indicate the intersection and union minus intersection between the ground truth and blood
flow segmentation, respectively.

ground-truth masks of the blood region, Gt, 10 evenly distributed frames were manually

annotated. The recorded image size was 640 by 480 pixels.

Results

To show the effectiveness of the tracking algorithm, a comparison experiment was

conducted where the blood flow region was simply set to be the pixels with optical flow

magnitude greater than γO. The distribution of IoU results are shown in Fig. 4.3 for

blood flow region detection with and without the tracking algorithm on the simulated

scenes and in-vivo dataset. There is a clear difference in performance of the blood flow
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detection and tracking between the simulated scenes and in-vivo rupture. We believe this

is due to the poorer lighting conditions and the reflective surgical clamps used in the

in-vivo scene as seen in Fig. 4.4. Nonetheless, the blood region is successfully estimated

when using the tracking algorithm despite the many red stains, hence highlighting the

importance of using temporal information for detection rather than color features. For

additional comparison, Lucas-Kanade’s [90] and Farnebeck’s [27] optical flow estimation

techniques were replaced for the CNN based optical flow estimation [157]. Note that

Lucas-Kanade’s optical flow estimation is the proposed detection method for fluids by

Yamaguchi and Atkeson used for robot pouring [168]. The resulting IoU for the in-vivo

and simulated scenes was measured to be consistently below 0.50 in both cases, which is

substantially lower than our proposed detection technique.

4.2.4 Discussion

In this section, a novel blood flow detection algorithm for endoscopic image data is

presented. To ensure robustness against blood stains, the algorithm relies on temporal

information for detection. The novel blood flow detection and tracking algorithm

presented offers a unique, probabilistic solution to tracking liquids over 3D cavities and

channels, under noisy and harsh visibility conditions, and is a critical perceptual element.

This estimation and tracking can help inform a trajectory generation technique to act

upon the detected blood from a vessel rupture and clear the surgical field.

4.3 Reconstructing Liquids

From segmented images, denoted as Bt in the previous section, a 3D understanding

of the blood must be derived in order to give sufficient information for a robotic controller

to suction the blood. This is accomplished through a novel optimization problem where

the liquid is represented with particles. The optimization problem accounts for liquid

constraints such as constant density and is seeded with a dynamics prediction based on
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Collision Constraint Density Constraint Image Loss

Figure 4.5. A visualization of solving (4.10) in order of left to right where the particle
locations are drawn in red. The collision constraint pushes particles out of collision, the
density maintains a constant density, and the image loss between the detected and rendered
surface is minimized.

the previous time-step. Finally, a branching strategy is presented that dynamically adjust

the number of particles in the reconstructed liquid

4.3.1 Problem Formulation

Let xt = {xi
t}Ni=1 be the set of particles in R3 representing the reconstructed liquid at

time t. To estimate the particle locations, and hence reconstruct the liquid, we assume

only knowledge of a binary masked image which identified the liquids surface, Bt. The

estimation for the particles is done by minimizing a loss between the detected surface and

a reconstruction of the liquid surface from the particles, B̂(·). Written explicitly, the

optimization problem is

argmin
xt

L
(
Bt, B̂(xt)

)
s.t. C(xt) = 0 (4.10)

where liquid constraints, C(·) , are applied to the particles positions so they behave like a

liquid. The position constraints considered here are density and collision, and a visual

explanation is shown in Fig. 4.5. Solving position constraints and deriving velocities from

them has produced stable, particle based simulations for large time-step sizes [106, 93].

Similarly, we leverage the liquid-like dynamics induced by position constraints for effective

liquid reconstruction from video sequences (i.e. going from t to t+ 1).
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Algorithm 3: Reconstruct Liquid at time t

Input :Previous liquid particle positions and velocities, xt−1, ẋt−1, and
image, Bt

Output :Updated liquid particle positions and velocities xt, ẋt

// Particle Prediction

1 xt ← xt−1 + ẋt−1∆t+
1
2
g∆t2

2 for no iterations do
3 for nj iterations do

// Apply Position Constraints

4 for nc iterations do
5 ∆xc ← solveCollision(xt)
6 xt ← xt +∆xc

7 ∆xρ ← solveDensity(xt)
8 xt ← xt +∆xρ

// Minimize Image Loss

9 for ni iterations do

10 B̂(xt)← renderSurface(xt)

11 xt ← xt + αB

(
∂L
(
Bt, B̂(xt)

)
/∂xt

)
// Adjust Particle Count

12 if local minima conditions then
13 xt ← duplicateOrRemoveParticle(xt)

// Update Particle Velocities

14 ẋt ← (xt − xt−1) /∆t
15 ẋt ← dampV elocityAndApplyV iscocity(xt, ẋt)
16 return xt, ẋt

The following methods detail our solution to the optimization problem shown in

(4.10) and an outline is shown in Algorithm 3. First, the position constraints, C(·), and

their respective solvers are described. Second, the rendered surface, B̂(·) and its gradient

with respective to the particle positions to minimize the loss is explained. The constraint

solvers and surface loss gradient are applied in a projective gradient descent scheme to

solve (4.10) as shown in lines 4 to 11 of Algorithm 3. Third, finding the number of

particles, N , to reconstruct the liquid and a strategy of where to add or remove the

particles is detailed. Lastly, prediction of the particles from time-step t to t+ 1 is defined

to reconstruct from videos of detected liquids, B1, . . . ,BT .
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4.3.2 Position Constraints for Liquid Particles

The two position constraints used to reconstruct the liquid when optimizing (4.10)

are collision and density. The collision constraint ensures that none of the particles

representing the reconstructed liquid are in collision with the scene. Let Cc(·) be the

collision constraint for a particle, and it is expressed as

Cc(x
i) = relu(−SDF (xi)) (4.11)

where relu(·) is the rectified linear unit function and SDF (·) is the signed distance

function of the scene. The collision constraint is satisfied when it is at 0, which occurs by

having all of the particles out of collision (i.e. no more negative SDF values at the

particle positions).

To push the particles out of collision and satisfy the collision constraint, finite

difference is used to approximate a gradient of (4.11) and the particles are moved along

the gradient step. This is computed for particle xi as follows

∆xi
c = Cc(x

i)
∑
k∈K

wkSDF (x
i + dk) (4.12)

where K is the set of finite sample directions (e.g. [±1, 0, 0], [0, ±1, 0], [0, 0, ±1]), wk is

the finite difference weight, and d is the steps size for the sample directions. The finite

difference weights are computed optimally [33] and scaled such that the resulting vector

from the summation is normalized. The normalization is done so the particles are moved

up to the current collision depth, Cc(x
i), and not in collision free space. The collision

constraint is iteratively solved and applied to the particles as shown in lines 5 and 6 in

Algorithm 3.

The second constraint, density, ensures that the liquid is in-compressible. The

density of particle based representations for liquids can be expressed using the same
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technique as Smoothed Particle Hydrodynamics (SPH) [42, 91]. SPH simulations compute

physical properties from hydrodynamics, such as density, using interpolation techniques

with kernel operators centered about the particle locations. Similarly, we compute the

density at particle xi

ρi(x) =
N∑
j=1

W (||xi − xj||, h) (4.13)

where W (·, h) is a smoothing kernel operator with radius h. This is the same as SPH

simulations except without the mass term because each particle is set to represent an

equal amount of mass in the reconstructed liquid. A density constraint for the i-th

particle using (4.14) can be written as

Ci
ρ(x) =

ρi(x)

ρ0
− 1 (4.14)

where ρ0 is the resting density of the liquid being reconstructed [7]. This density

constraint is satisfied at 0 which occurs when the reconstructed liquid is achieves resting

density at each of the particle locations. Since each particle represents an equal amount of

liquid, the resting density, ρ0, can be interpreted as the resolution of the reconstruction

(e.g. increasing ρ0 implies more particles are needed to represent the same liquid).

Newton steps along the constraint’s gradient are iteratively taken to satisfy the

density constraint in (4.14). Each Newton step, ∆xρ, is calculated as

∆xρ = −∇Cρ(x)
(
∇C⊤

ρ (x)∇Cρ(x) + ϵρI
)−1

Cρ(x) (4.15)

where Cρ(·) = [C1
ρ(·), . . . , CN

ρ (·)]⊤, the partials are

∂Ci
ρ(x)

∂xi
=

1

ρ0

N∑
j=1

(xi − xj)

||xi − xj||
W ′(||xi − xj||, h)

∂Ci
ρ(x)

∂xj
=

(xi − xj)

ρ0||xi − xj||
W ′(||xi − xj||, h)

(4.16)
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where W ′(·, h) is the derivative of smoothing kernel operator in (4.13), and ϵρI ∈ RN×N

stabilizes the inversion with a damping factor ϵρ. Enforcing incompressibility in SPH

simulations, similar to the proposed density constraint here, when particles have a small

number of neighbors is known to cause particle clustering [103]. Therefore, we use

Monaghan’s solution by adding the following artificial pressure term to ∆xρ:

sicorr = −
λs
ρ0

N∑
j=1

(
W (||xi − xj||, h)

W (λx, h)

)λn ∂Ci
ρ(x)

∂xj
(4.17)

for the i-th particle where λs, λx, λn are set according to the original work [103]. The

density constraint is iteratively solved with the artificial pressure term and applied to the

particles as shown in lines 7 and 8 in Algorithm 3.

4.3.3 Differentiable Liquid Surface Rendering

The loss being minimized in (4.10) to reconstruct the liquid is between the detected

surface, B, and the reconstructed surface, B̂(·). This is equivalent to the differentiable

rendering problem formulation, which multiple solutions have been proposed for [64]. The

differentiable renderer we employ is Pulsar which renders each particle as a sphere [74]

because it is currently state-of-the-art for point-based geometry rendering and requires no

training data to get a gradient of the rendered image with respect to the particle locations

when not using its shader. The loss used to minimize the difference between the detected

surface and rendered surface is the Symmetric Mean Absolute Percentage Error (SMAPE)

which is computed as

L
(
B, B̂(x)

)
=

1

Np

∑
u,v∈B

|Bu,v − B̂u,v(x)|
|Bu,v|+ |B̂u,v(x)|+ ϵs

(4.18)

where Np is the number of pixels on the image and ϵs is used to stabilize the division.

SMAPE was chosen because the ℓ-1 loss was used in the original Pulsar work [74] and
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SMAPE is a symmetric version of an ℓ-1 loss. In Algorithm 3, lines 10 and 11 are where

the differentiable renderer is integrated into our reconstruction technique with a gradient

step size of αB.

4.3.4 Adding and Removing Particles

The number of particles N must be found to solve (4.10), hence making this a

mixed-integer optimization problem. To solve for N , we use a branching strategy based

on the following heuristic: if the rendered surface area is smaller than the detected surface

area, duplicate a particle, N + 1, and vice-versa to remove a particle, N − 1. The

branching strategy is enabled after confirming a local-minima has been reached with the

current number of particles. This is determined by taking the mean image loss gradient

and checking if it less than a threshold:

1

N

N∑
k=1

∣∣∣∣∣∣
∣∣∣∣∣∣
∂L
(
B, B̂(x)

)
∂xk

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ γs (4.19)

where γs is the threshold and if the Intersection over Union (IoU) is less than a threshold:

B ∪ B̂(x)

B ∩ B̂(x)
≤ γB (4.20)

where γB is the threshold. IoU is chosen over the SMAPE loss because Pulsar renders

each sphere with a blending value so the rendered image will have values from [0, 1] hence

increasing the SMAPE loss as more spheres are rendered even when the spheres make a

perfect silhouette fit. Meanwhile IoU directly measures silhouette fit which is in line with

our heuristic for the branching strategy. If these two criteria are satisfied, a local-minima

due to the number of particles is assumed, and the branching decision of duplicating or

removing a particle is triggered. This branching logic is handled in lines 12 and 13 in

Algorithm 3.
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When duplicating or removing a particle, the collision constraint will remain

unchanged and the density constraint will be increased when duplicating a particle and

decreased when removing a particle. Therefore, the particle selected to duplicate or

remove is chosen to best satisfy the density constraint so the initial particle locations

when solving (4.10) after adjusting the particle count remains closest to the density

constraint manifold. Written explicitly and using the ℓ-1 loss to describe closeness to the

constraint manifold, the index of the particle to duplicate or remove is found by solving

argmin
i

N∑
k=1

|Ck+
ρ (x)|+ |Ci+

ρ (x)| argmin
i

N∑
k ̸=i

|Ck−
ρ (x)| (4.21)

for duplication and removal, respectively, and Ck+
ρ (·), Ck−

ρ (·) are the density constraint

evaluated at particle k after duplicating and removing the i-th particle, respectively. The

new density constraints are evaluated as

Ck+
ρ (x) =

1

ρ0

N+1∑
j=1

W (||xk − xj||, h)− 1 (4.22)

Ck+
ρ (x) = Ck

ρ (x) +
1

ρ0
W (||xk − xN+1||, h) (4.23)

for duplicating the i-th particle (so xN+1 = xi) and

Ck−
ρ (x) =

1

ρ0

N∑
j ̸=i

W (||xk − xj||, h)− 1 (4.24)

Ck−
ρ (x) = Ck

ρ (x)−
1

ρ0
W (||xk − xi||, h) (4.25)

for removing the i-th particle where Ck
ρ (x) is the density constraint evaluated at particle

k before duplicating or removing a particle. Finally, (4.21) is solved by explicitly

computing the loss for every potential i (i.e. computing loss after duplicating or removing

every particle) and choosing i that yields the smallest loss, hence duplicating or removing
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particles that best satisfy the density constraint. Note that this can be efficiently

computed due to the simplifications derived in (4.23) and (4.25).

4.3.5 Predicting Liquid

In Position Based Fluid (PBF) simulations, the constraints at every time step update

the positions of the particles which in turn induces a velocity for the particles [93]. These

constraint induced velocities combined with other external forces such as gravity are used

to move the particles forward in time for liquid-like motion of the particles. A similar

approach is used here to recreate the liquid-like motion through time and hence enable

reconstruction from a video of observations, B1 . . . ,BT . Let x
i∗
t and xi∗

t−1 be the

optimized particles from solving (4.10) at time t and t− 1, respectively. Then the induced

velocity for time t is

ẋi
t = (1− λd)(xi∗

t − xi∗
t−1)/∆t (4.26)

where λd ∈ [0, 1] is the velocity dampening factor and ∆t is the time-step size. For

consistent motion, XSPH viscosity [141] is applied

˙̄xi
t = ẋi

t + λv

N∑
j=1

ẋj
t − ẋi

t

ρj(x)
W (||xi∗

t − xj∗
t ||, h) (4.27)

where λv dictates the amount of viscosity applied. The induced velocity is computed after

every timestep of liquid reconstruction as shown in lines 14 and 15 in Algorithm 3. The

induced velocity and gravity are used to forward predicts the particles to t+ 1 using

equations of motion

xi
t+1 = xi∗

t + ˙̄xi
t∆t+

1

2
g∆t2 (4.28)

where g is the gravity vector. This forward prediction is done in line 3 of Algorithm 3.

The dampening and viscosity not only represent physical properties, but also provide

tuning parameters to stabilize the initialization for the next timestep. Dampening, λd,
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dictates how much to rely on the prediction and viscosity, λv, adjusts the consistency of

the velocity.

4.3.6 Experimentation

Implementation Details

All the arithmetic, e.g. Newton’s density constraint step in (4.15), are implemented

with PyTorch for its GPU integration [122]. The collision constraint, (4.11), and its

solution, (4.12), are implemented with SPNet’s ConvSP operator and its PyTorch

wrapper [144], Kernel K = {[±1, 0, 0], [0,±1, 0], [0, 0,±1]}, and step size d is equal to the

resolution of the SDF (·). The resting density ρ0 is generated by setting a resting distance

between particles because that is more intuitive to adjust. The resting distance between

particles is converted to the resting density by packing 1000 particles in a sphere and

computing the particle density of the sphere. Then the density constraint parameters to

solve (4.14) and (4.15) are set to a resting distance of 0.6h, ϵp = 102, and W (·) is set to

Poly6 and Spiky Kernels for density estimation and gradient steps, respectively [105].

Differentiable rendering is done with the PyTorch3D framework [130] and ϵs = 10−2. The

thresholds for adding/removing particles are γs = 10−3 and γB = 0.9, respectively.

Velocity dampening and viscosity coefficients are set to λd = 0.2 and λv = 0.75,

respectively. The parameters in Algorithm (3) are set to no = 30, nj = 2, nc = 5, ni = 5,

and αB = 0.02. All datasets are stereo so an initial four particles can be placed at a

stereo-computed, 3D location from the first liquid detections. The last parameters,

SDF (·) resolution and particle interaction radius, h, are set depending on the dataset as

they need to be adjusted depending on the scale of the reconstruction.

Datasets

Simulated Fountain: The first dataset is generated on a three step fountain, shown in

Fig. 4.6, with Blender [20]. Take note how the first step fills in a consistent shape, but
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Source
Step 1

Step 2

Step 3

Figure 4.6. The sequence of figures from left to right shows how liquid fills the simulated
fountain.

significant turbulence occurs when dropping to the second step making this a challenging

component of the scene. Another challenge is by the time the third and final step of the

fountain fills, a significant number of particles must be used for reconstruction due to the

large volume, hence testing the scalability of the reconstruction method. The liquid

simulation uses all default values except the viscosity is set to 0.001. The SDF (·) is

generated from the fountain with a resolution of 1cm and the particle interaction radius,

h, is set to 1cm. The scene is rendered with 1080p at 24fps stereo cameras, and a mask of

the rendered liquid is directly outputted from Blender. For this simulated dataset, the

ground-truth liquid mesh is available to evaluate our recontruction with. The metric of

3D IoU is used to capture the shape accuracy of our reconstruction and computed as

IoU3D =
V ∪ V̂(x)

V ∩ V̂(x)
(4.29)

where V and V̂(x) are voxel representation of the simulated and reconstructed liquid,

respectively. The reconstructed liquid in voxel representation, V̂(x), is generated with the

color field, shown in equation (B.1) in Appendix B. The voxel grid is computed at a

resolution of 3cm.

Endoscopic Liquid: The second dataset is closer to a vessel rupture scenario and uses

a custom silicon cavity that was molded with a 3D printed negative so a SDF (·) for it can

be generated. The cavity is 11cm by 9.5cm, SDF (·) resolution is set to 1mm, and particle

interaction radius, h, is set to 5mm. To transform the SDF (·) to the camera frame, which

is the coordinate frame the particles are being optimized in, an ArUco Marker [40] is
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Figure 4.7. The left figure shows a top down view of the silicon cavity used for the
Endoscopic Liquid dataset, and the liquid is injected with a syringe at the labelled points
for three trials. The right figure shows a camera image from our Pouring Milk experiment
set up.

placed on the cavity in a known location. Roughly 50ml of water is injected with a syringe

at three different locations for three trails as depicted in Fig. 4.7. The water is mixed

with red-coloring dye so color segmentation can be applied to detect the liquid surface.

The liquid video is recorded using a dVRK stereo-endoscope which is 1080p at 30fps [65].

Pouring Milk: The third dataset is pouring chocolate milk by a human into a mug as

shown in Fig. 4.7. Notice that the milk is partially blocked by the mug, hence testing the

reconstructions ability to handle occlusions. The mug is 9cm high and has a 7cm

diameter, the SDF (·) resolution is set to 1mm, and particle interaction radius, h, is set to

6.5mm. The mug is placed on a sheet of paper with an ArUco Marker [40] in a marked

location. The Aruco Marker and known geometry of the paper provides the

transformation to take the SDF (·) to the camera frame. Color segmentation is used to

detect the chocolate milk’s liquid surface. The liquid video is recorded at 720p 15fps using

a ZED Stereo Camera from Stereo Labs.

Comparative Study

We show the effectiveness of our proposed method through a comparative study. The

configurations being compared are:
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• No Constraints [74] (i.e. no density or collision constraints) and only image loss

• No Density constraint

• No Collision constraint

• Schenck & Fox [144] constraints instead of the density constraint we presented

• DSS [170] for rendering gradients rather than Pulsar

• Uniform random selection for duplication or removal of particles instead of solving

(4.21)

• No Prediction of particles (line 3 in Algorithm 3)

• Our complete approach

• Our Source estimation which adds particles at a source location and detailed in the

next sub-section

When removing the collision constraint (i.e. No Constraints and No Collision

comparisions), the particle prediction also had to be turned off otherwise the particles will

fall forever due to gravity. Without the density or collision constraint, the method is

equivalent to differentiable rendering [74] thus giving a baseline comparison. Schenck &

Fox proposed their own position-based liquid constraints for constant density [144] (i.e.

replacing Cρ) which were integrated into this method for comparison. We also compared

with another recently developed differentiable renderer for point-based geometry called

Differentiable Surface Splatting (DSS) [170]. Lastly, a source estimation technique is

implemented to highlight how the proposed method can be extended. Implementation

details for the Schenk & Fox, DSS, and Our Source comparisons are given in Appendix B.

Results

Quantitative results from the Simulated Fountain dataset are shown in Fig. 4.8, and

it shows how effective our proposed approach is in a turbulent, long scene. Note how our
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Step 1 Step 2 Step 3

Figure 4.8. The plot on the left shows IoU3D results from the Simulated Fountain
datasets along with time-marked points when the liquid reaches different steps in the scene.
An example of our reconstruction approach during the turbulent period of the scene is
shown on the right figure.

Figure 4.9. From left to right the image columns are an endoscopic image of liquid being
reconstruction with: no constraints, no collision constraint, no prediction, our approach,
and our source estimation technique.

proposed methods and the uniform comparison are able to reach 70% IoU3D in the first

step, and retain a good reconstruction as the very long, and turbulent simulation

continues. Meanwhile the compared approaches ran into memory limitations and crashed

(required greater than 24GB of memory) or were unable to converge effectively.

Fig. 4.9 shows results from the Endoscopic Trails and how our proposed methods

leverage liquid dynamics to fit the cavity shape correctly. The first row of renderings have

the virtual camera positioned similar to the real endoscope showing how from that

perspective, the particles in red line up with the real image of the liquid. The second row

shows another rendered perspective and how our proposed approaches properly

reconstruct the liquid in 3D. The first three comparisons are unable to properly

reconstruct because they do not leverage a liquids dynamics (i.e. falling to gravity and
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Figure 4.10. From left to right the image columns are an image from the Pouring Milk
dataset being reconstructed with: no density constraint, Schenck & Fox constraints [144],
DSS [170], our approach, and our source estimation technique.

colliding with the cavity).

From the Milk Pouring experiments, results are shown in Fig. 4.10 which shows that

the proposed method infers liquid in occluded regions (i.e. blocked by the mug). The first

row of renderings have the virtual camera positioned similar to the raw image showing

how from that perspective, the particles in red line up with the real image of the liquid.

The second row shows a birds-eye-view perspective and how our proposed approaches

properly reconstruct the liquid in 3D. The no density constraint and DSS [170]

comparisons are unable to properly reconstruct due to over-fitting on the image loss and

fail to make inferences in the occluded region. Meanwhile Schenck & Fox constraints [144]

constraints went unstable and splashed particles outside the mug. An additional

comparision result is shown in Fig. 4.11 which indicates that our proposed method is able

to reconstruct the falling stream, unlike the uniform comparison, due to the novel particle

insertion and removal approach.

Performance details on convergence for real-life experiments are shown in Table 4.1

and 4.2. The density constraint ensures incompressibility for the reconstructed liquid and

should be 0 when the constraint is satisfied. These results in Table 4.1 show that when

applying our constraint solver, the incompressibility property is met. Meanwhile Schenck
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Figure 4.11. The left-most image is from the Pouring Milk dataset being reconstructed
with the uniform comparison (middle) and our method (right).

Table 4.1. Mean and standard deviation of the density constraint, defined in (4.14), for
the real life experiments.

Method Simulation Endo Trail 1 Endo Trial 2 Endo Trail 3 Pouring

No Constraints [74] −0.03±0.12 −0.25±0.20 −0.09±0.23 −0.01±0.29 −0.08±0.14

No Density 0.89±3.7 0.48±0.65 1.0±0.94 0.91±1.0 66±85

No Collision (−5.26±61)10−5 (−3.2±4.9)10−3 (−1.4±3.3)10−3 (−3.7±8.7)10−4 (−0.33±11)10−3

Schenck & Fox [144] (−2.3±83)10−2 −0.11±0.04 −0.12±0.05 −0.11±0.04 0.21±0.37

DSS [170] (−1.3±25)10−3 (−4.6±8.4)10−3 (−4.9±6.6)10−3 (−6.4±6.4)10−3 (−5.2±32)10−3

Uniform (−0.05±14)10−3 (−2.1±4.5)10−3 (−2.2±3.4)10−3 (−1.4±3.8)10−3 (1.3±7.3)10−3

No Prediction (−0.51±9.9)10−3 (−3.1±4.6)10−3 (−1.5±3.4)10−3 (−3.5±5.0)10−3 (−4.6±14)10−3

Ours (1.2±13)10−2 (−1.7±3.8)10−3 (−2.3±4.1)10−3 (−1.2±3.0)10−3 (−0.08±4.4)10−3

Our Source (−1.6±15)10−2 (−1.2±3.5)10−3 (−1.9±4.5)10−3 (−1.6±8.5)10−3 (−0.24±7.3)10−3

Table 4.2. Mean and standard deviation of IoU for the real life experiments.

Method Simulation Endo Trail 1 Endo Trial 2 Endo Trail 3 Pouring

No Constraints [74] 0.469± 0.133 0.907± 0.034 0.904± 0.058 0.871± 0.063 0.798± 0.167

No Density 0.822± 0.096 0.915± 0.055 0.874± 0.214 0.919± 0.025 0.867± 0.054

No Collision 0.410± 0.241 0.904± 0.026 0.899± 0.048 0.761± 0.177 0.869± 0.078

Schenck & Fox [144] 0.217± 0.113 0.437± 0.319 0.882± 0.052 0.830± 0.100 0.039± 0.221

DSS [170] 0.759± 0.123 0.916± 0.042 0.909± 0.081 0.917± 0.032 0.815± 0.079

Uniform 0.826± 0.127 0.900± 0.056 0.891± 0.061 0.891± 0.071 0.576± 0.205

No Prediction 0.896± 0.049 0.904± 0.031 0.899± 0.046 0.905± 0.020 0.890± 0.084

Ours 0.889± 0.049 0.902± 0.054 0.905± 0.051 0.910± 0.026 0.849± 0.071

Our Source 0.891± 0.041 0.911± 0.034 0.908± 0.055 0.913± 0.026 0.843± 0.061

& Fox’s constraints were unable to reach similar performance. The results in Table 4.2

show that our reconstruction approach is able to achieve comparable image loss

performance as the best from No Constraints, No Density, No Collision and No Prediction

comparisons. This implies that our approach is effective at converging in image loss with

additional constraints (density and collision) and prediction.
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Figure 4.12. Sequence of reconstruction results from Endoscopic Trail 3 where the rows
from top to bottom show: endoscopic image, our complete approach, and our source
approach.

4.3.7 Discussion

Our experiments highlight the generalizability of our approach through the wide

range of liquids (simulated, water, and milk) and cameras (narrow & wide field of view

and 15, 24 & 30 fps). In the supplementary material video, consistent particle flow is

observed when using the source estimation extension. We envision that the source

estimation extension will be beneficial in downstream robotic automation applications

such as robotic bar tending [166] and managing hemostasis in surgery where prediction of

the liquid is required.

We found that the density constraint, collision constraint, and prediction are crucial

to inferring beyond the 2D image loss as seen in Fig. 4.9 and 4.10. Furthermore in longer

and more turbulent scenes, the lack of liquid properties can cause instabilities and blow

up the mixed-integer optimizer (greater than 10,000 particles). The density constraint can

be switched with other constraints that reflect a liquid incompressibility and other liquid

properties, such as Schenck & Fox’s constraints [144]. However, we were unable to
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Figure 4.13. Sequence of reconstruction results from Pouring Milk dataset where the
rows from top to bottom show: image, our complete approach, and our source approach.

stabilize Schenck & Fox’s constraints and found the constraint in (4.14) and its solver to

be stable on all of the datasets. Similar is true for the differentiable rendering, and we

found Pulsar to be more robust than DSS in our application since DSS requires normals

which we observed are not consistently generated. The proposed particle insertion and

removal strategy was effective and even able to insert particles to reconstruct a falling

stream as seen in Fig. 4.11.

There is a large quantity of hyper-parameters in our method, but this is expected

when solving a mixed-integer, optimization problem. Nevertheless, we found a set that

generalizes over our diverse datasets, and the interaction radius, h, adjusts the effective

resolution of our reconstruction (i.e. smaller h gives a denser reconstruction). An artifact

that we observed in our reconstruction approach is the ambiguity of depth due to our

observations being limited to only 2D surface detections of the liquid. The incorporation

of liquid dynamics does help overcome this challenge in the Endoscopic Liquid experiment

as seen in Fig. 4.9. However, in the Pouring Milk experiment the top layer of milk is

slightly lopsided which is best seen in Fig. B.1 in Appendix B.
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Chapter 5

Robotic Suction Control to Clear
the Surgical Field of Blood

Perception techniques for the surgical scene before and during a vessel rupture are

proposed in Chapter 3 and Chapter 4, respectively. Ultimately, these methods provide a

complete 3D understanding about the surgical scene that is required to maintain

hemostasis autonomously. In this work, we propose control and motion plan algorithms

that leverage these perception techniques to autonomously direct a robotic suction tool to

clear the surgical field. To this end, we propose the following contributions:

1. a visual based controller of robotic end-effectors that utilizes the Lumped Error

term proposed in Chapter 2,

2. a naive end-to-emit style motion plan for the robotic suction tool to follow when it

clears the surgical field,

3. andw an optimized motion plan based on differentiable simulation for the robotic

suction tool to follow when it clears the surgical field.

The Lumped Error controller is used to direct the suction tool along both proposed

motion plans. The methods are tested in both a simulated and a real-world environment

in a phantom that emulated a vessel rupture scenario.
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5.1 Lumped Error Controller

The Lumped Error localizes robots in the camera frame and compensates for joint

angle errors when the kinematic chain is only partially visible as shown in Chapter 2.

Surgical robots, such as the da Vinci ® Surgical System, often use cable drive systems to

keep the surgical tools at a low profile. Therefore, the joint angle errors are non-constant

[145], which implies that the Lumped Error is always changing to compensate for the

non-constant joint angle errors that are attributed to the cable stretch. In order to obtain

a reliable visual controller based on the Lumped Error tracking approach, the Lumped

Error transform needs to be iteratively applied at every timestep. The following

subsections detail this iterative approach for position and orientation control on the

end-effector where the goals are given in the camera frame.

5.1.1 Position Control

Let pc
g ∈ R3 be the position goal in the camera frame to which the controller directs

the end-effector. Let be
t ∈ R3 be the incorrect position of the end-effector in the robot

base frame which is computed through forward kinematics with the noisy joint angle

measurements, q̃it. The controller iteratively transforms the goal, pc
g, to the virtual base

defined by the Lumped Error, and the error, de
t ∈ R3, in the virtual base is computed as:

de
t =

(
Tc

b−T
b−
nb
(ŵt, b̂t)

)−1

pc
g − b

e

t . (5.1)

This error is then used to update the end-effector position

b
e

t+1 =


γs

de
t

||de
t ||

+ b
e

t if ||de
t || > γs

de
t + b

e

t if ||de
t || ≤ γs

(5.2)
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where γs is the max step size. The updated end-effector position, be
t+1, is set on the

robotic suction tool using inverse kinematics and joint level regulators which use the noisy

joint angle readings, q̃it, as feedback. These operations are repeated until the error, ||de
t ||,

is less than some threshold.

5.1.2 Orientation Control

The orientation is regulated in a similar fashion as the position control. Let

Rc
g ∈ SO(3) and Re

t ∈ SO(3) be the goal orientation in the camera frame and incorrect

orientation of the end-effector in the robot base frame computed through forward

kinematics with the noisy joint angle measurements, q̃it, respectively. The orientation of

the end-effector is iteratively set to

Re
t =

(
Rc

b−R
b−
nb
(ŵt)

)−1
Rc

g (5.3)

where Rc
b− ∈ SO(3) and Rb−

nb
(ŵt) ∈ SO(3) are the rotation matrix of Tc

b− and

Tb−
nb
(ŵt, b̂t), respectively. Similar to the position of the end-effector, the orientation Re

t is

set using inverse kinematics and joint level regulators which use the noisy joint angle

readings, q̃it, as feedback.

5.2 End-to-emit Motion Plan

In a vessel rupture scenario, the blood naturally flows from the vessel rupture

location. Therefore, in order to clear the surgical field, we can generate a naive motion

plan which goes from end of the blood flow stream to the source, i.e. end-to-emit. The

end-to-emit motion plan is generated from the binary mask Bt, from Section 4.2, which

highlights which pixels from the image frame are part of the blood flow. The largest

connected region of the mask, Bt, is considered the region with blood flowing if its size is

greater than a threshold of γB. This threshold keeps a detection from occurring when
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Algorithm 4: Trajectory Generation for Suction

Input : Start pixel, st, end pixel, et, and mask of blood region Bt

Output :Trajectory Tt

1 Initialize clearance reward R← 0
2 Initialize temporary eroded blood region E← Bt

3 Initialize i← 0
4 while E ̸= 0 and i < γr do
5 E← erode(E)
6 R← R+ rE
7 i← i+ 1

8 Initialize pixels cost to go to goal: D←∞
9 Initialize visited map: V←!Bt

10 Initialize parents of nodes: K← UNDEFINED
11 D(st)← 0
12 while V ̸= 1 do
13 u← argmin

pixel
D

14 V(u)← 1
15 if u = et then
16 break

17 for pixel q neighboring u and V(q) ̸= 1 do
18 if D(q) > ||q − u|| −R(q) then
19 D(q)← ||q − u|| −R(q)
20 K(q)← u

21 Initialize trajectory for output: Tt ← [ ]
22 Initialize parent traversal node: u← et
23 while u ̸= st do
24 Insert u at beginning of Tt

25 u← K(p)

26 return Tt

there is no actual blood flowing.

A start and end point must be decided to generate a trajectory for suction. The end

point should be roughly near the location of the vessel rupture in order to continuously

remove any newly released blood. Meanwhile, the starting point should be downstream of

the flowing blood in order to effectively clear the surgical field when suctioning upstream

towards the source. Therefore, a simple estimation for the start and end point is done
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Figure 5.1. Trajectory generation for blood suction from in-vivo scene where the start
and end points are chosen from the newest and oldest blood pixels, respectively, (shown
in center plot) and a clearance reward is applied to center the path in the blood region
(shown in right plot).

based on the age of the pixels in the blood region. The pixel with the largest and smallest

ages in the blood region are defined as the end and start points, respectively. To ensure

that the end point is not generated at the exact edge of the blood stream, the blood

region is eroded before selecting it.

The trajectory generated from the start to end point should also maximize its ability

to suction blood while moving upstream. Therefore, using standard minimum distance

paths are not ideal as they would tend to plan towards the edges of the blood region

rather than the center. To center the trajectory in the blood region, an additional

clearance reward is given to the motion planner. The clearance reward is generated by

iteratively eroding the blood region for a max of γr iterations. The pixels left in the

eroded region are given an additional reward of r at each iteration. The final trajectory in

the image frame is then generated using Dijkstra’s algorithm where the path is

constrained to stay within the blood region and the clearance reward is subtracted from

the normal distance cost. An outline of this trajectory generation technique is shown in

Algorithm 4, and an example is shown in Fig. 5.1. The trajectory is then executed if it is

longer than a threshold γT . This threshold gives time for the start and end points to

stabilize so an effective trajectory can be generated.
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Figure 5.2. Endoscopic view of phantom used for the automated suction experiments.
The red arrows highlight the direction of flow at the four injection points tested in the
experiment.

5.2.1 Experimentation

Implementation Details

All subsequent experiments were ran on a computer with Intel® CoreTM i9-7940X

Processor and NVIDIA’s GeForce RTX 2080. The blood detection algorithm that

provides the binary mask is implemented as done in Section 4.2.3 where the only change

is a decrease of image resolution by a factor of 4 to make the algorithm run in real-time.

The threshold for region size, γB, maximum number of erosions for clearance, γr, and

trajectory length, γT , are set to 20, 4, and 30, respectively. The clearance reward per

erosion, r, is set to 0.2.

Experimental Setup

To evaluate the complete autonomous surgical task of recognizing blood flow and

performing autonomous suction, a tissue phantom with a cavity for liquid to flow through

is constructed from silicone, and water with red coloring dye is drained into the cavity

using surgical tubing as shown in Fig. 5.2. A stereoscopic camera with a resolution of
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1080×1920 pixels at 30fps on the dVRK [65] is used. The trajectory generated for suction

is converted into 3D position commands using the Pyramid Stereo Matching Network

(PSMNet) [12], which takes the stereo-images of the cameras and determines the depth of

each pixel. PSMNet’s weight are provided by their original implementations without any

task-specific fine-tuning; the maximum disparity is set to 192. PSMNet estimated depth

using an image size of 640 by 480 pixels meanwhile the blood flow detection algorithm

from Section 4.2 used a reduced image size of 160 by 120 pixels to improve its speed. A

Patient Side Manipulator (PSM) from the dVRK [65] was equipped with da Vinci® Si

Suction Tool and followed the generated trajectory to clear the simulated surgical cavity

from blood.

The Lumped Error controller from Section 5.1 is ran at 100Hz and is repeated until

||de
t || < 2mm per target position, pc

g, from the generated trajectory. Meanwhile the

orientation of the suction tip is set to always be in direction of gravity. The position, be
t+1,

and orientation of the end-effector is converted to joint angles using an analytical inverse

kinematic solution. These joint angles are then regulated using dVRK [65].

To account for imperfections in the 3D depth estimation from PSMNet and surgical

tool tracking to regulate the end-effector, the suction tool was commanded to oscillate in

and out along the direction of gravity an additional 5mm at every point on the trajectory.

This probing behavior ensured that the tool always sucked up the blood and neither

drifted above the blood nor penetrated and dragged tissue. The Robot Operation System

(ROS) is used to encapsulate the image processing and robot trajectory tracking processes

[153].

Roughly 50mL of liquid is injected using a syringe into the cavity at one of the four

locations highlighted in Fig. 5.2. Before each trial, the end-effector is centered in the

middle of the silicon mold such that it does not obstruct any of the injected liquid as

shown in Fig. 5.2. The percentage of liquid removed from the cavity, time to react to the

injected fluid, the time to complete the trajectory were measured to evaluate the
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Figure 5.3. Sequence of figures (from left to right) of an automated suction experiment
where the liquid is injected at the bottom left corner.

Table 5.1. Mean results from automated suction experiment at each injection point.

Injection Point
Liquid

Time to React
Time to Execute

Suctioned Trajectory

Top Left 96.7% 4.1s 45.3s

Top Right 93.6% 2.6s 47.4s

Bottom Left 96.1% 4.7s 23.9s

Bottom Right 96.8% 6.4s 38.1s

performance of the proposed automation method. The percentage of liquid removed was

measured by weighing the silicon mold and syringe before and after each trial. Time to

react refers to the time taken to detect the flowing blood and generate a trajectory (i.e.,

completing Algorithm 4) from the first moment that the injected blood is visible in the

camera frame. To ensure consistency of the proposed automation method, the experiment

is repeated ten times at each of the four injection spots.

Results

The results from the total 40 trials of the automated suction experiment are shown

in Table 5.1 and an example sequence is shown in Fig. 5.3. During the experiments, we

noticed the liquid generally pooled near the bottom left injection point since it was

slightly lower with respect to gravity than the rest of the cavity. This lead to shorter
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trajectories being generated, and hence less time to execute them as seen in the results,

for the bottom left corner experiment compared to the others.

5.2.2 Discussion

In this work, a complete automated solution for clearing the surgical field from blood

is presented. The solution provides uses perception defined in Section 4.2, a motion

planning technique, and a control strategy from Section 5.1 for the task of clearing blood.

The motion plan is informed by the blood flow detection algorithm and is executed using

the Lumped Error control strategy. A clearence reward is applied to the motion plan to

maximize the blood suctioned by the suction tool and be robust against imperfect blood

region estimation. This is the first step taken towards automation of a crucial surgical

task, hemostasis, which can occur in any surgery at any time. While the results show

promise in clearing the surgical field, there is no guarantee that the end-to-emit style of

suction is optimal. Therefore, in the coming section we explore an motion plan technique

that optimizes the suctions motion to remove as much blood as quickly as possible.

5.3 Optimizing the Motion Plan

The approach in Section 5.2 is an end-to-emit style of suction to clear the surgical

field of blood. While this approach is empirically shown to be effective, there is no

guarantee that it is optimal. Therefore, in this section, we cover a novel motion plan

approach for robotic suction tools to clear the surgical field from blood. The approach

leverages a differentiable simulation of the blood flow and robotic suction tool so a cost

function can be optimized via gradient descenent. The cost function is defined and

applied in a Model Predictive Control (MPC) formulation to remove as much blood from

the surgical scene as quickly as possible.
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Algorithm 5: Simulation of Robotic Suction with Liquid

Input :Previous liquid particle positions and velocities, xt−1, ẋt−1

Output :Updated liquid particle positions and velocities xt, ẋt

// Particle Prediction

1 xt ← xt−1 + ẋt−1∆t+
1
2
g∆t2

// Apply Position Constraints

2 for nc iterations do
3 ∆xc ← solveCollision(xt)
4 xt ← xt +∆xc

5 ∆xρ ← solveDensity(xt)
6 xt ← xt +∆xρ

7 ∆xu,∆xp ← solveSuctionDisplacement(xt)
8 xt ← xt +∆xu + ny∆xp

// Update Particle Velocities

9 ẋt ← (xt − xt−1) /∆t
10 ẋt ← dampV elocityAndApplyV iscocity(xt, ẋt)
11 return xt, ẋt

5.3.1 Differentiable Position Based Fluid Simulation

Similar to Section 4.3, the simulation is based on PBF because it has good stability

over large timesteps [93]. An outline of the simulation is shown in Algorithm 5 where

xt, ẋt are the particle positions and velocity representing the liquid. Solving the position

constraints, ∆xc,∆xρ, are solved for using (4.12) and (4.15), respectively. The suction

displacements, ∆xu,∆xp, are detailed in the upcoming subsection. The simulation

timestep process (i.e. the particles going from t to t+ 1) is implemented in a

auto-differentiation framework (e.g. PyTorch [122]) such that gradients can be computed

like ∂xt+1

∂xt
.

5.3.2 Suction Model

The suction force from the surgical tool is modelled as a continuous and

differentiable force field that pulls nearby particles towards the nozzle of the tool and

subsequently adds a large vertical displacement to the particles. Note that we define y as

the vertical direction while the x-z plane represents the horizontal plane. The upward
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displacement field is in the vertical direction, as this is the typical orientation of a suction

tool attacking pooling blood. It is modelled after a 2D-Gaussian probability density

function (PDF) over the x-z plane due to its differentiable properties. The magnitude of

the upward displacement field experienced by particle i is proportional to the value of the

PDF at ([xi
t]x, [x

i
t]z). For a particle i with position xi

t, and a suction nozzle at position

be
t ∈ R3, the upward displacement, ∆u, is computed as

∆xu,i = K ·
exp

(
−([xi

t]x−[be
t ]x)

2

2σ2
x

− ([xi
t]z−[be

t ]z)
2

2σ2
z

)
√

(2π)2σ2
xσ

2
z

(5.4)

where [·]x, [·]y, and [·]z are the x, y, z coordinates of the position vectors and σx and σz

are the standard deviations of the 2D Gaussian PDF. The standard deviation controls

how narrow the suction region is. Finally, K > 0 controls the size of the upward

displacement and is adjusted to control the strength of the suction. For the field that

pulls particles towards the end-effector at position be
t , the i-th particle will experience a

displacement given by

∆xp,i =
be
t − xi

t

||be
t − xi

t||2
· 1

||be
t − xi

t||22 + d
(5.5)

where d is a constant that limits the maximum displacement when the particle is very

close to the center of the end-effector as well as to avoid division by 0. Finally, the

upward field and the field that pulls particles towards the end-effector are summed and

added to the particle positions along with the PBF solver corrections as shown in line 7, 8

of Algorithm 5, where ny is a normalized vector that describes the direction of upward

displacement in the simulation (i.e. ny = [0, 1, 0]⊤). This formulation of suction,

embedded in a completely differentiable fluid model, enables efficient and stable

calculation of gradients from the particle states to the suction tool position (i.e. ∂xt+1

∂be
t
).
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5.3.3 Model Predictive Control Formulation

The overall goal of the proposed control problem is to achieve hemostasis as quickly

as possible, which corresponds to when all particles in the modelled scene have been lifted

from the underlying tissue surfaces of the scene. This will be formatted as an

optimization problem where MPC [10] is used to generate a trajectory that the suction

nozzle should follow to optimally clear the surgical field from fluids. Let the control input

to the MPC be denoted as U = {be
t}. The output of the system is the set of particles

{xi
t}. The MPC is computed over a short horizon, h, to find a control trajectory

{be∗
t , ...,b

e∗
t+h} which minimizes the loss over the time frame [t, t+ h]. The optimization

problem is written explicitly as

min
U
L =

∑
t

∑
i

l(xi
t) (5.6)

over all timesteps and particles. The per-particle loss is

l(xi
t) =


1
2
∥ygoal − [xi

t]y ∥22, if [xi
t]y < ygoal

0, otherwise

(5.7)

where ygoal is a target height set above the surgical cavity that the upward displacement,

∆xp, i, pulls the particles towards. The optimal control is solved for by minimizing (5.6)

with gradient descent which is only possible due to the differentiable simulation. Only be∗
t

is applied to the system, and then another entire horizon length of control is computed

again starting at t+ 1.

To determine a good initial suction point, be∗
0 , a Monte-Carlo approach is utilized.

The process involves sampling many possible starting points from the fluid particle

positions, performing roll-outs using the MPC algorithm with these samples over a

look-ahead window m, and finally selecting the best performing one with regards to
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Figure 5.4. Comparison between a real surgical cavity and our two simulated cavity
scenes. The green arrows highlight direction of blood flow. The left and right simulated
Figures show case 1 and case 2, respectively.

removing the most fluid.

5.3.4 Experimentation

Implementation Details

The simulation used a time step of ∆t = 0.01s, the maximum number of particles

was limited to N = 2000, and 200 simulation steps were taken before the robot can take

its first action. The MPC controller used a horizon h = 10, and the initial suction point

selection uses a look-ahead window of m = 100. A total of 10 samples were used for initial

point selection. The target height was set to ygoal = 10cm, suction strength K = 100,

σx = σz =
√
0.5. The maximum change in end-effector position was also limited to 0.5mm

every step to be realistic. Finally, the gradients used a learning rate of 0.1 with

normalized gradients such that their components have a maximum magnitude of 1.

Experiment Setup

Simulated Scene: Two simulated scenes, denoted as case 1 and case 2, used to

evaluate the proposed control strategy are shown in Fig. 5.2. These scenes are motivated

by real surgical cases where a surgeon error in a live thyroidectomy caused bleeding to

occur. Four hand-crafted control policies for controlling the suction nozzle were also

developed to compare against the proposed MPC method. They are:

1. Fixed emission: stays at the emission point
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2. Fixed end : stays at the end point where the fluid could flow too

3. Fixed middle: stays at the middle of the fluid flow

4. End-to-emit : moves from the end to emission point at a constant rate.

Good suction performance should have little blood at the end of the simulation. Another

metric was the time it takes to reduce the amount of blood in the cavity by 50% and 90%,

computed as

τ50% = min t− t0 s.t. f(t) <= 50% (5.8)

where f(t) is the suction curve as a function of time, t0 is the time at which suction

begins, and tf is the time at which the simulation ends. The time for 90% reduction was

computed similarly. Note that the percent reduction time only makes sense if the suction

policy actually reduced the amount of blood by the targeted amount. Otherwise the

percent reduction time was not computed.

dVRK: In order to validate the suction trajectories generated using our algorithm,

we repeated the simulation experiments in a cavity made out of silicone rubber. Water

with red dye was used to emulate blood flow, which was manually injected into the cavity

with a syringe similar to the previously described simualted scenes. A Patient Side

Manipulator (PSM) from the dVRK [65] was fitted with a EndoWrist Suction/Irrigator

tool for suctioning. The cavity and PSM arm were converted into a unified camera frame

defined by dVRK’s stereo endoscope so that trajectories could be defined in a common

reference frame. To register the cavity, an Aruco marker was attached to it and the pose

was solved for using the Aruco library [40]. Meanwhile the end-effector of the suction tool

was controlled using the Lumped Error controller described in 5.1.

The amount of blood in the cavity was estimated using images from the dVRK’s

stereo endoscope. Color segmentation to detect the blood was done by manually setting

thresholds in the HSV color space. We assume that the concentration of red dye in the
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Table 5.2. Residual of blood after trajectory is executed and percent reduction time (in
simulation timesteps) for case 1.

Our Fixed: Fixed: Fixed: End-to-emit
method emission end middle trajectory

Residual 5.5% 28.0% 64.5% 27.0% 2.5%
τ50% 36 87 – 23 90
τ90% 162 – – – 255

Table 5.3. Residual of blood after trajectory is executed and percent reduction time (in
simulation timesteps) for case 2.

Our Fixed: Fixed: End-to-emit
method emission end (avg) trajectory (avg)

Residual 1.5% 2.0% 65.0% 3.8%
τ50% 21 18 – 87.5
τ90% 102 102 – 172.5

water was uniform, which means the attenuation of light through the fluid is proportional

to depth by the Beer-Lambert Law [58]. Calibration was performed by taking images of

the cavity filled with different volumes of blood and fitting a relationship between the

depth of blood and the pixel values in each of the three channels. The area covered by the

blood pixels and the calibrated depth curve in HSV space are used to estimate the volume

of blood at each image frame. This model is a simple approximation of the volume of

blood, which can only be truly known if one observed the underlying tissue topology

before being filled with blood. Naturally, MPC’s iterative approach continuously corrects

for this volume assumption as more of the tissue topology is revealed, so this first-order

approximation is reasonable. The estimated volume is used to generate a suction curve

plot. The MPC approach is compared against the same comparisions in the simulated

scene and three trials were repeated per policy. In each trial, the cavity was pre-filled with

blood, and more blood was continuously injected when suction started to emulate the

conditions in the simulated experiments.
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Figure 5.5. The left and right plots show suction results from real world experiments for
case 1 and case 2, respectively, normalized by the initial volume.

Results

The results from the experiments are shown in Tables 5.2 and 5.3. As is evident by

the results, the proposed method performed as good as, if not better than, the best

hand-crafted policies. In case 1, the blood flowed around the obstacle from right to left,

hence making the best hand-crafted policy, end-to-emit trajectory, slow but complete in

suctioning the blood. However, in case 2 this end-to-emit strategy failed since the blood

emits closer to the middle of the cavity hence diverting in two directions. Meanwhile the

opposite behavior occurred for the fixed emission control, where it failed in case 1 but was

the best strategy in the case 2. This means the hand-crafted policies had limited success

only in a single scenario the proposed method successfully generalized to both cases.

The suction curves for dVRK experiment with the silicone rubber cavity are shown

in Figure 5.5. We analyze the suction curves by roughly splitting each trial into 4 distinct

stages: (a) where the tool moved to initial position without suctioning (b) when suction

and injection began (c) where suction engaged with the blood for the same time; (d)

where suction and injection had been engaged for a long time and the tool reaches the end

of the trajectory. In stage (b), the amount of blood increased as suction started for most

of the hand-crafted policies. This means the rate of suction was slower than the rate of

blood injection. Meanwhile the proposed method was able to consistently circumvent this,

hence being more efficient. In stage (c), suction and injection reached an equilibrium
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Figure 5.6. Comparison between the simulated scene (top) and experiments with the
real cavity (bottom) for case 1 using our method. Only small amounts of residual blood is
left over in the real world due to unaccounted factors such as surface tension and adhesion.

where the percentage of remaining blood decreased at a steady rate. This rate of decrease

was seen to be roughly constant for all policies. However, the proposed method was able

to reach this state faster due to being more efficient in stage (b).

5.3.5 Discussion

In this work we presented a method for incorporating differentiable fluid modeling

into autonomous surgical robotics. We applied this method to the surgical sub-task of

controlling suction to clear the surgical field of blood during a vessel rupture. The

gradients from the PBF model were used in an MPC framework. A discrepancy between

the simulation-and-real world was seen at stage (d) where in the real world a thin

remaining layer of blood is left over. An example for case 1 is shown in Figure 5.6. In the

simulation, the blood particles was able to flow without sticking to the face of the cavity,

while a patch of blood was stuck in the left half of the cavity in the real experiment due

to surface adhesion. Nevertheless, our method still results in a low percentage of

remaining blood at the end of the task.
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Chapter 6

Conclusion

This dissertation presents the first completely automated solution for clearing the

surgical field from blood after a vessel rupture during surgery. The solution provides the

perception, trajectory generation, and control strategy required for the task of clearing

blood. Thus, it is the first step toward automation of hemostatic management as a crucial

surgical task, and it represents a critical contribution to the broader robotic and computer

vision community.

In Chapter 2, we describe the challenge of localizing a robotic tool based on visual

observations that only show a part of the kinematic chain (e.g., surgical robotic tools),

and we assess the associated uncertainties in the base-to-camera transform and joint angle

measurements. A smaller set of parameters, which we coined as Lumped Error, was

derived and shown to compensate for all the described uncertainties. The Lumped Error

is mathematically equivalent to a popular instrument tracking method [132], which

provides critical insights into its functionality. Experimental tracking of the Lumped

Error was shown to efficiently track robotic tools, and it was even successfully extended to

eye-in-hand configurations. Through this extension, we successfully tracked for the first

time a surgical robotic tool with a moving endoscope that contained a total of 10 DoF

and a gripper joint.

A surgical perception framework, SuPer, is proposed in Chapter 3, which describes
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how SuPer can localize the surgical tool and track the deformable tissue simultaneously.

We further improved its robustness and accuracy with deep learning approaches for depth

estimation and surgical tool detection. SuPer was evaluated experimentally on a dVRK,

which demonstrated its ability to track a surgical scene during manipulation tasks where

the instrument caused occlusions and significant tissue deformations. By using the

perceived environment as feedback, the controllers applied to the surgical tool have the

capability to accomplish tasks in unstructured, deforming surgical environments.

The perception of blood from vessel ruptures is covered in Chapter 4. To ensure

robustness against blood stains, the segmentation algorithm relies on temporal

information for detection. Our novel blood flow detection and tracking algorithm provides

critical perceptual capabilities and offers a unique, probabilistic solution to tracking

liquids over 3D cavities and channels under noisy and harsh visibility conditions. We also

developed a liquid reconstruction technique that is based on 2D image detections. We

limited the scope to 2D surface detections because the color of a liquid is too variable due

to reflections and refractions. Our experiments highlight the generalizability of our

approach through the wide range of liquids (simulated, water, and milk) and cameras

(narrow & wide field of view and 15, 24 & 30 fps).

Finally, Chapter 5 covers newly developed control and motion planning algorithms

for a robotic suction tool to autonomously clear the surgical field of blood automating the

task of hemostatic management. Specifically, we describe a controller that directs surgical

robotic tools to goal positions within the camera frame using the Lumped Error as

feedback. A blood perception technique is employed to inform a control function to

generate an end-to-emit trajectory when blood has been detected in the surgical field.

This technique, which needs to be robust against imperfect blood region estimation, relies

on clearance rewards to maximize the blood volume removed by the suction tool. To

optimize the motion plan of robotic suction tools, a differentiable fluid simulation function

was developed. The gradients from the fluid simulation were used in an MPC framework
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Higher Level Planning

Subtask Automation

Surgical Perception

Figure 6.1. While this dissertation advances autonomy with novel automation techniques
for hemostatic management, significant advances in perception, subtask automation, higher-
level planning, and human-robot interactions are still required to bring autonomy into
operating rooms.

to direct the robotic suction tool to clear as much blood as quickly as possible. The

resulting real-world trajectories led to low percentages of remaining blood despite

differences in the fluid parameters between the real and simulated scenes, such as surface

tension and adhesion of the fluid and suction strength.

While the advancement in surgical task autonomy presented in this dissertation is a

big step, there are still a significant number of research developments required to bring

autonomy into operating rooms, as shown in Fig. 6.1. One of the most critical research

categories is in surgical perception, such as the content of Chapter 4 for blood suction.

Previous examples include the application of real-to-sim techniques to measure tissue

tension for resection [84], suture needle tracking for autonomous suturing [15], and

localizing key anatomy [29]. However, these surgical perception techniques still require

refinements for their usage in surgery where the lighting conditions, occlusions, and

viewing angles contribute to an environment that is much less favorable for automation

than the structured laboratory environments in which these techniques are being tested.

The usability of automation for certain surgical tasks also needs to be expanded upon.

For instance, previously developed surgical task automation techniques for suturing [146]

and gauze cutting [158] cannot be applied to the broad range of topology found in surgery.
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A motivating example of complex topology is seen in vascular anastomosis. Current

state-of-the-art suturing techniques are unable to handle the deformable geometry of

blood vessels to perform a vascular anastomosis. Furthermore, surgical task automation

approaches should be robust against an incorrect or incomplete perception of the surgical

environment, which is a limitation of the approaches proposed in Chapter 5.

Higher-level planning for surgery also needs to be developed to deploy autonomy in

surgery. Knowing and identifying the steps during surgery is crucial for inferring the next

surgical task. However, state-of-the-art results for estimating surgical steps are not

accurate enough for autonomy, and small dataset sizes are cited as the main bottleneck

for improving performance [127, 61]. The autonomous agents are also anticipated to work

alongside surgeons [171, 48]. Hence, developments in human-robot interactions will be

required. Current human-robot interactions are limited to supervision approaches in

surgical automation [147] and are not suitable to handle scenarios where a surgeon works

simultaneously with the autonomous agent. Furthermore, the autonomous agents need

techniques to identify their own confidence in executing the surgical tasks and effectively

relay that information to a supervising surgeon to ensure patient safety.

116



Appendix A

Additional Material for Surgical
Tool Tracking

A.1 Camera Projection of a Cylinder

The camera projection of a cylinder is an adaptation of previous work by Chaumette

[13]. A cylinder is described by three parameters: a radius r ∈ R, a directional vector

dj ∈ R3 of its center axis, and a position along its center axis pj
0 ∈ R3. Let dj and pj

0 be

defined in joint frame j, which is the insertion shaft, and ||dj|| = 1. Using (2.18) or (2.25)

for the stationary endoscope or robotic endoscope cases respectively, dj and pj
0 are

transformed to the camera frame and denoted as dc(wt,bt, et) = [ac, bc, cc]⊤ and

pc
0(wt,bt, et) = [xc0, y

c
0, z

c
0]

⊤ respectively. Note that (wt,bt) should be replaced with

(wl
t,b

l
t) in the robotic endoscope case. The center axis of the cylinder in the camera frame

can be described as:

pc
a = pc

0(wt,bt, et) + λdc(wt,bt, et) (A.1)

where λ ∈ R. The cross section of a cylinder that is normal to the center axis can be

described as the intersection between the surface of a sphere with radius r centered along

pc
a and a plane with normal dc that contains the point pc

a. This intersection is described
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as: 
(pc

c − pc
a)

⊤(pc
c − pc

a)− r2 = 0

dc(wt,bt, et)
⊤(pc

c − pc
a) = 0

(A.2)

where pc
c ∈ R3 is a point on the perimeter of the circle from the cross section of the

cylinder in the camera frame.

By combining (A.1) and (A.2), an expression for the surface of a cylinder can be

derived. The resulting expression of the cylinder is:

(
pc
s − pc

0(wt,bt, et)
)⊤(

pc
s − pc

0(wt,bt, et)
)
−
(
dc(wt,bt, et)

⊤(pc
s − pc

0(wt,bt, et)
))2

− r2 = 0 (A.3)

where pc
s = [xcs, y

c
s, z

c
s]
⊤ is a point on the surface of the cylinder in the camera frame.

Without loss of generality, let (X, Y ) be the projected pixel coordinates of the

cylinder to a unit camera using the pin-hole model. This can be converted to the (u, v)

pixel location on a different camera by setting:

X =
u− cu
fx

Y =
v − cv
fy

(A.4)

where fx, fy and cu, cv are the focal lengths and principal point in pixel units respectively

from the camera intrinsic matrix K.

Applying the camera pin-hole model to the surface of the cylinder in the camera

frame results in a quadratic:

A+
1

z
B +

1

z2
C = 0 (A.5)
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where

A = X2 + Y 2 + 1− (acX + bcY + cc)2

B = −2
(
(xc0 − acν)X + (yc0 − bcν)Y + zc0 − ccν

)
C =

(
xc0
)2

+
(
yc0
)2

+
(
zc0
)2 − ν2 − r2

(A.6)

and

ν = acxc0 + bcyc0 + cczc0 (A.7)

The quadratic expression with respect to the depth occurs because there can be at most

two solutions to the depth for each (X, Y ) when the cylinder is projected onto an image

plane. One solution is the visible side of the cylinder, and the other is the obstructed side

of the cylinder. The case of a single solution to depth would occur only at the two edges

of the projected cylinder. This can be enforced by setting the determinant of the

quadratic to zero (B2 − 4AC = 0) resulting in:

(
Br

−2
√
C
− αX − βY − κ

)(
Br

−2
√
C

+ αX + βY + κ

)
= 0 (A.8)

where

α = ccyc0 − bczc0 β = aczc0 − ccxc0 κ = bcxc0 − acyc0 (A.9)

after simplification.

Therefore, it is evident that the two edges from the projection of the cylinder result

in two lines:

(
r(xc0 − acν)√

C
− α

)
X +

(
r(yc0 − bcν)√

C
− β

)
Y +

(
r(zc0 − ccν)√

C
− κ

)
= 0 (A.10)

119



Figure A.1. A DNN was trained in simulation to detect the keypoints, highlighted in
blue in the left figure, on the Baxter robot. An example of the detections and the tracked
robotic arm from the Baxter experiment is shown in red and green respectively on the
right figure.

and

(
r(xc0 − acν)√

C
+ α

)
X +

(
r(yc0 − bcν)√

C
+ β

)
Y +

(
r(zc0 − ccν)√

C
+ κ

)
= 0 (A.11)

Through simple arithmetic and (A.4), both of these edges can be converted to the normal

form described in (2.30) for any camera. In the normal form, let the resulting two edges

be parameterized by
(
ρ̂1(wt,bt, et), ϕ̂1(wt,bt, et)

)
and

(
ρ̂2(wt,bt, et), ϕ̂2(wt,bt, et)

)
.

A.2 Experimentation on Baxter Robot

Implementation Details

The features used to update the particle filter for this experiment were detected

using a Deep Neural Network (DNN) rather than markers as used in the previous

experiments. This was done to show the flexibility of the presented particle filter with

regards to the features used to update it. The DNN choosen was DeepLabCut [100], and

it was trained to detect and optimize feature points in simulation using the same method

in [89]. The resulting feature points which were detected by the DNN are shown in Fig.

A.1. The DeepLabCut detections also provide direct associations for the feature points,
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Am, and a confidence value, ηkt ∈ [0, 1], for each detected feature k. To integrate this with

the Lumped Error tracking, the point feature observation model in (2.33) was modified to

(3.11) which also removes the association step in line 18 from Algorithm 1. It is important

to include the DNN’s confidence, ηkt , in the model because sometimes the detections can

be poor and the corresponding update needs to be weighted lower. The parameters for

the particle filter are set as follows:

• aê =
[
0.01 0.01 0.01 0.01 0.01 0.01 0.01

]
• Σê,t = diag

([
0.001 0.001 0.001 0.001 0.001 0.001 0.001

])
• Σw,b,t = diag

([
Σw,t Σb,t

])
• Σw,t = diag

([
0.001 0.001 0.001

])
• Σb,t = diag(

[
0.25 0.25 0.25

]
)

• Σw,b,0 = 10(Σw,b,t)

• γm = 5

The number of particles is set to 200.

Dataset

A 77 second video segment was recorded of a 7 DoF arm from the Baxter robot with

corresponding joint reading data. The first joint link consistently visible in the image

frames is after the nb = 6 joint, and the end-effector moved a total distance of 5.25m

during the segment. The video was captured on Microsoft’s Azure Kinect camera which

has and RGB camera and a depth camera. In this experiment, the particle filter which

tracked this robotic arm only used the mono-RGB camera data. Meanwhile the depth

images were used to evaluate performance of tracking the robotic tool.
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To evaluate tracking performance, the depth images were compared against the

reconstructed robotic arm using the tracked parameters. The reconstructed scene was

rendered using a virtual camera and a Baxter robot model in V-REP [138]. After every

image used to update the particle filter, the virtual camera captured a depth image of the

reconstructed scene. The tracking error was defined as the relative transform,

T(wϵ,bϵ) ∈ SE(3), between the rendered point cloud from the virtual camera, R, and the

corresponding point cloud from Kinect Azure’s depth camera, G. This relative transform

is calculated by minimizing

∑
(r,g)∈K

||r−T(wϵ,bϵ)g|| (A.12)

where r ∈ R, g ∈ G, and K is the correspondence set between R and G. The

optimization was solved using Open3D’s [180] implementation of the Iterative Closest

Point algorithm [6]. To filter out poorly converged values, only the results where the

amount of corresponded points relative to the total rendered points, |K|/|R|, is greater

than 0.7 were recorded. Similar to the dVRK experiments, the initial calibration, Tc
b−,

was computed using OpenCV’s solvePnP [9] using the detected features and their

associations on the first image frame.

For additional comparison, we ran OpenCV’s solvePnP implementation [9] over the

first 20 images of the dataset to solve for a static base-to-camera transform, Tc
b. The 2D

detections are the same used by the particle filter. Their corresponding 3D positions in

the base frame of the Baxter robot are generated using forward kinematics with the joint

angle readings q̃it. The resulting Tc
b and the joint angle readings are used to generate a

rendered point cloud R in V-REP [32], and the same error metric as previously described

is computed.
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Figure A.2. Distribution of position and orientation errors when calibrating for the
base-to-camera transform alone with solvePnP and various particle filter configurations
compensating for errors in the base-to-camera transform and joint angles from the Baxter
robot experiment.

Results

The distribution of translational errors, ||bϵ||, and orientation errors, ||wϵ||, for the

three different particle filter configurations are plotted in Fig. A.2. Out of the active

tracking methods, the Lumped Error parameter reduction technique with the observable

joints is the most effective. We believe this is since the kinematic links on the Baxter are

much larger hence making the simplification from (2.19) no longer valid. Meanwhile,

solvePnP for the static base-to-camera transform performs similar to Lumped Error and

Observable joints in orientation error, but performs significantly worse in positional error.
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Appendix B

Additional Material for Liquid Re-
construction

B.1 Details for Comparison Study

B.1.1 DSS Rendering

For one of our experimental comparisons, we used Differentiable Surface Splatting

(DSS) [170] to minimize the image loss. DSS renders each point as a circle, which projects

to an ellipse, where the circle’s normal is the surface normal. Surface normals for a

particle-represented liquid are computed using the color field [105] which is

c(xi) =
N∑
j=1

1

ρi(x)
W (||xi − xj||, r) (B.1)

at xi ∈ R3. The surface normals should point outwards from the reconstructed liquid

which results in a negative change in color field. Therefore the normal is set to:

ni = −
(
∂c(xi)

∂xi

)/∣∣∣∣∣∣∣∣∂c(xi)

∂xi

∣∣∣∣∣∣∣∣ (B.2)
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for particle xi. To compute the liquid volume color’s gradient, the following expression is

used:

∂c(xi)

∂xi
=

N∑
j=1

1

ρi

∂W (||xi − xj||, r)
∂||xi − xj||

(
xi − xj

||xk − xj||

)
(B.3)

after applying the chain rule to (B.1).

Laplacian smoothing is applied for more consistent normals, similar to [173], by

averaging the particle positions the color field is being evaluated about in (B.1). The

particle averages are computed as

xj = (1− λl)xj + λl

N∑
k=1

xkW (||xj − xk||, r)

N∑
k=1

W (||xj − xk||, r)
(B.4)

where λl is the Laplacian average weight and xj replaces xj in (B.1). In low particle count

situations, the normal computation in (B.2) can produce undesirable effects such as

artifacts on the edges of the liquids. To account for this, the evaluation of points xi in

(B.2) are given a small offset towards the virtual camera which will eventually render the

surface. The offset is computed as:

∆xi = λc
c− xi

||c− xi||
(B.5)

where c ∈ R3 is the position of the virtual camera, λc is the amount of the offset, and ∆xi

is added to xi in (B.2).

The particle position, normal pairs, {xi,ni}Ni=1, are directly fed into the DSS which

renders each point, xi, as a circle whose plane is tangent to its normal, ni. The circles are

projected to ellipses, denoted as E(xi,ni), and averaged with their neighboring projected

circles, hence being called Elliptical Weighted Averaging (EWA). In the problem

formulation for this work, we assume only knowledge of an observed visibility mask I.
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Therefore, we simplify the rendering by not conducting the EWA and only render a

surface mask from the projected ellipses. Written mathematically, the masked image at

pixel [u, v]⊤ from a single particle and normal pair is: DSS computes each

hu,v(x
i,ni) =


1 if [u, v]⊤ ∈ E(xi,ni)

0 if xi is occluded

0 otherwise

(B.6)

The rendered surface is evaluated as a summation of all the masked images from (B.6):

Îu,v(x) = ηi

Ns∑
i=1

hu,v(x
i,ni) (B.7)

where ηi normalizes the pixel value. Finally, gradients of the rendered liquid surface with

respect to particle positions are computed using the approximation presented by Yifan et

al. to minimize the image loss [170]. The normal smoothing values are set to λl = 0.2 and

λc = 0.2r, and the original proposed kernels are used for (B.1) [105] and (B.4) [173]. The

gradient step size and its threshold for detecting a local-minima are set to αI = 10−4 and

λs = 0.2 respectively.

B.1.2 Schenck and Fox Constraints

Schenck and Fox previously proposed liquid position constraints that represent:

pressure, cohesion, and surface tension [144]. These constraints replaced the proposed

density constraint from (4.14) for comparison in our experiments. This is done by

replacing ∆xρ to solve (4.14) in lines 7 and 8 in Algorithm 3 with:

∆xp + αc∆xc + αs∆xs (B.8)
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where ∆xp,∆xc,∆xs solve the pressure, cohesion, and surface tension constraints

respectively and αc, αs are the cohesion and surface tension weights respectively. Refer to

the original paper for exact expressions to the constraint solutions [144]. The cohesion

and surface tension weights are optimized for in the original work to conduct real-to-sim

registration. However, this cannot be done with our problem setup because it requires

prior information on the amount of liquid volume there is (i.e. how many particles there

are). Therefore, instead the weights are preset to αc = 0.05 and αs = 0 (the surface

tension constraint only yielded unstable behavior so it was turned off).

B.1.3 Source Estimation

A simple single, static source estimation technique is developed to highlight how the

proposed method can be extended. Let ŝt ∈ R3 be the estimated liquid source location in

the camera frame at time t and particles are inserted according to an estimated flow rate

of f̂t particles per timestep at the source location. Note that no velocity prediction is

conducted for the inserted particles as there is no initial velocity. This reduces the

number of parameters to estimate to ŝt and f̂t.

To update the liquid source location, ŝt, we compare the source particle locations

after completing the optimization in (4.10) against their pre-optimized location. Let the

initial and optimized particle locations emitted from the source be denoted as xn
s ∈ R3 for

n = 1, . . . , f̂t and xn∗
s ∈ R3 for n = 1, . . . , f̂t respectively. Then the update rule given to

the source location is:

ŝt+1 = ŝt +
αŝ

f̂t

f̂t∑
n=1

(xi∗
s − xi

s) (B.9)

where αŝ is adjusted according to:

αŝ = 1/
t−1∑
i=1

f̂i (B.10)

so the source becomes less adjusted as more particles have been inserted since the source
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Figure B.1. From left to right, the sequence shows the steps for mesh generation from a
reconstructed liquid represented by particles.

is assumed stationary.

The liquid source rate, f̂t, has an integer effect on the reconstruction, and we adjust

it at every time step based on how many particles are duplicated or removed during the

optimization of (4.10) after inputting the source particles for that timestep. The

expression is:

f̂t = αf̂∆Nt + f̂t−1 − λf (B.11)

where ∆Nt is the cumulative increase of particles (e.g. could be negative if particles are

removed) at timestep t, αf̂ adjusts the reaction rate to the insertion/removal of particles,

and λf is a constant decay rate. Note that f̂t is estimated as a non-integer value, however

is applied as an integer by rounding (i.e. only an integer number of particles can be

inserted per timestep). The decay rate, λf is used ensures stability by driving the flow

rate to 0 when no new information from ∆Nt can be leveraged. The reaction rate and

decay rates are set to αf = 0.1 and λf = αf̂/2 respectively.

B.2 Mesh Generation from Liquid Particles

For visualization purposes, the reconstructed liquid can be converted to a surface

mesh. A dense, uniformly spaced, grid of 3D points is generated. Surface points, gk, from
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the grid points are then selected by thresholding the gradient of the color field [105]:

∂c(g)/∂gk ≥ λg (B.12)

where the color field, c(·), is defined in (B.1) and λg is the threshold. The surface normals

for each surface point is computed the same as (B.2). The collection of surface points and

normals are then converted to a mesh using Open3D’s implementation of [180] Poisson

surface reconstruction [66]. Fig. B.1 shows an example of this process. The grid points,

which the surface points are selected from, are spaced at 3mm, the gradient threshold, λg,

is set to 0.5, and the depth for Poission surface reconstruction is set to 12. Note that

figures of particles and mesh renderings in this paper are done with Open3D [180].
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[75] Joël L Lavanchy, Joel Zindel, Kadir Kirtac, Isabell Twick, Enes Hosgor, Daniel
Candinas, and Guido Beldi. Automation of surgical skill assessment using a
three-stage machine learning algorithm. Scientific Reports, 11(1):1–9, 2021.

[76] Quoc V Le and Andrew Y Ng. Joint calibration of multiple sensors. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3651–3658. IEEE,
2009.

[77] Timothy E Lee, Jonathan Tremblay, Thang To, Jia Cheng, Terry Mosier, Oliver
Kroemer, Dieter Fox, and Stan Birchfield. Camera-to-robot pose estimation from a
single image. In International Conference on Robotics and Automation, pages
9426–9432. IEEE, 2020.

[78] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate o(n)
solution to the pnp problem. International Journal of Computer Vision, 81(2):155,
2009.

136



[79] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
Learning hand-eye coordination for robotic grasping with deep learning and
large-scale data collection. The International Journal of Robotics Research,
37(4-5):421–436, 2018.

[80] Baopu Li and Max Q-H Meng. Computer-aided detection of bleeding regions for
capsule endoscopy images. Transactions on Biomedical Engineering,
56(4):1032–1039, 2009.

[81] Yang Li, Florian Richter, Jingpei Lu, Emily K Funk, Ryan K Orosco, Jianke Zhu,
and Michael C Yip. Super: A surgical perception framework for endoscopic tissue
manipulation with surgical robotics. Robotics and Automation Letters,
5(2):2294–2301, 2020.

[82] Yang Li, Jianke Zhu, Steven CH Hoi, Wenjie Song, Zhefeng Wang, and Hantang
Liu. Robust estimation of similarity transformation for visual object tracking. In
Conference on Artificial Intelligence, volume 33, pages 8666–8673. AAAI, 2019.

[83] Michael Liedlgruber and Andreas Uhl. Computer-aided decision support systems for
endoscopy in the gastrointestinal tract: a review. Reviews in Biomedical
Engineering, 4:73–88, 2011.

[84] Fei Liu, Zihan Li, Yunhai Han, Jingpei Lu, Florian Richter, and Michael C Yip.
Real-to-sim registration of deformable soft tissue with position-based dynamics for
surgical robot autonomy. In International Conference on Robotics and Automation,
pages 12328–12334. IEEE, 2021.

[85] Jianguo Liu and Xiaohui Yuan. Obscure bleeding detection in endoscopy images
using support vector machines. Optimization and Engineering, 10(2):289–299, 2009.

[86] Taoming Liu and Murat Cenk Cavusoglu. Needle grasp and entry port selection for
automatic execution of suturing tasks in robotic minimally invasive surgery.
Transactions on Automation Science and Engineering, 13(2):552–563, 2016.

[87] Yonghao Long, Zhaoshuo Li, Chi Hang Yee, Chi Fai Ng, Russell H Taylor, Mathias
Unberath, and Qi Dou. E-dssr: efficient dynamic surgical scene reconstruction with
transformer-based stereoscopic depth perception. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 415–425.
Springer, 2021.

[88] Jingpei Lu, Ambareesh Jayakumari, Florian Richter, Yang Li, and Michael C Yip.
Super deep: A surgical perception framework for robotic tissue manipulation using
deep learning for feature extraction. In International Conference on Robotics and
Automation, pages 4783–4789. IEEE, 2021.

[89] Jingpei Lu, Florian Richter, and Michael C Yip. Pose estimation for robot
manipulators via keypoint optimization and sim-to-real transfer. Robotics and
Automation Letters, 7(2):4622–4629, 2022.

137



[90] Bruce D Lucas and Takeo Kanade. An iterative image registration technique with
an application to stereo vision. In International Joint Conference on Artificial
Intelligence, pages 674–679. Vancouver, British Columbia, 1981.

[91] Leon B Lucy. A numerical approach to the testing of the fission hypothesis. The
Astronomical Journal, 82:1013–1024, 1977.

[92] Mitchell JH Lum, Diana CW Friedman, Ganesh Sankaranarayanan, Hawkeye King,
Kenneth Fodero, Rainer Leuschke, Blake Hannaford, Jacob Rosen, and Mika N
Sinanan. The raven: Design and validation of a telesurgery system. The
International Journal of Robotics Research, 28(9):1183–1197, 2009.

[93] Miles Macklin and Matthias Müller. Position based fluids. Transactions on
Graphics, 32(4):1–12, 2013.

[94] Jeffrey Mahler, Sanjay Krishnan, Michael Laskey, Siddarth Sen, Adithyavairavan
Murali, Ben Kehoe, Sachin Patil, Jiannan Wang, Mike Franklin, Pieter Abbeel, and
Ken Goldberg. Learning accurate kinematic control of cable-driven surgical robots
using data cleaning and gaussian process regression. In International Conference on
Automation Science and Engineering, pages 532–539. IEEE, 2014.

[95] Jeffrey Mahler, Matthew Matl, Vishal Satish, Michael Danielczuk, Bill DeRose,
Stephen McKinley, and Ken Goldberg. Learning ambidextrous robot grasping
policies. Science Robotics, 4(26), 2019.

[96] Nader Mahmoud, Toby Collins, Alexandre Hostettler, Luc Soler, Christophe
Doignon, and Jose Maria Martinez Montiel. Live tracking and dense reconstruction
for handheld monocular endoscopy. Transactions on Medical Imaging, 38(1):79–89,
2018.

[97] Lena Maier-Hein, Anja Groch, Adrien Bartoli, Sebastian Bodenstedt, Guillaume
Boissonnat, Ping-Lin Chang, Neil T Clancy, Daniel S Elson, Sven Haase, Eric Heim,
Joachim Hornegger, Pierre Jannin, Hannes Kenngott, Thomas Kilgus, Beat P
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