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Coupled cluster theory on
modern heterogeneous
supercomputers

Hector H. Corzo1, Andreas Erbs Hillers-Bendtsen2,
Ashleigh Barnes1, Abdulrahman Y. Zamani3, Filip Pawłowski4,
Jeppe Olsen5, Poul Jørgensen5, Kurt V. Mikkelsen2 and
Dmytro Bykov1*
1Oak Ridge National Laboratory, Oak Ridge, TN, United States, 2Department of Chemistry, University of
Copenhagen, Copenhagen, Denmark, 3Department of Chemistry and Biochemistry and Center for
Chemical Computation and Theory, University of California, Merced, CA, United States, 4Department of
Chemistry and Biochemistry, Auburn University, Auburn, AL, United States, 5Department of Chemistry,
Aarhus University, Aarhus, Denmark

This study examines the computational challenges in elucidating intricate
chemical systems, particularly through ab-initio methodologies. This work
highlights the Divide-Expand-Consolidate (DEC) approach for coupled cluster
(CC) theory—a linear-scaling, massively parallel framework—as a viable solution.
Detailed scrutiny of the DEC framework reveals its extensive applicability for large
chemical systems, yet it also acknowledges inherent limitations. To mitigate these
constraints, the cluster perturbation theory is presented as an effective remedy.
Attention is then directed towards the CPS (D-3) model, explicitly derived from a
CC singles parent and a doubles auxiliary excitation space, for computing
excitation energies. The reviewed new algorithms for the CPS (D-3) method
efficiently capitalize on multiple nodes and graphical processing units,
expediting heavy tensor contractions. As a result, CPS (D-3) emerges as a
scalable, rapid, and precise solution for computing molecular properties in
large molecular systems, marking it an efficient contender to conventional CC
models.

KEYWORDS

coupled cluster theory, divide-expand-consolidate coupled cluster framework, cluster
perturbation theory, excitation energies, tetrahydrocannabinol, deoxyribonucleic acid

1 Introduction

Over the past 6 decades, the field of computational chemistry and molecular modeling
has aimed to solve for the energy and expectation values of wave functions for atomic and
molecular systems. In the exact limit, the non–relativistic electronic contribution to the total
energy of a many-body system can be obtained by finding the exact solution to the
N-electron Schrödinger equation. However, due to the challenges in solving atomic and
molecular systems composed of more than few electrons in orbitals with angular momentum
l ≥ 1, many numerical approximations have been rather crude. To reduce the mathematical
complexity associated with solving multi-electron molecular systems, which often requires
modeling a 3N dimensional space, many computational chemistry approximations have
opted for partial or total neglect of electron-electron correlation (Tew et al., 2007) and
relativistic effects (Pyykkö, 2012; Liu, 2020). Furthermore, in many cases, the neglect of
inner-core electrons, the acceptance of insufficient Born-Oppenheimer approximation, and

OPEN ACCESS

EDITED BY

Honghui Shang,
Institute of Computing Technology
(CAS), China

REVIEWED BY

Igor Ying Zhang,
Fudan University, China
Zhendong Li,
Beijing Normal University, China

*CORRESPONDENCE

Dmytro Bykov,
bykovd@ornl.gov

RECEIVED 30 January 2023
ACCEPTED 11 May 2023
PUBLISHED 14 June 2023

CITATION

Corzo HH, Hillers-Bendtsen AE, Barnes A,
Zamani AY, Pawłowski F, Olsen J,
Jørgensen P, Mikkelsen KV and Bykov D
(2023), Coupled cluster theory on
modern
heterogeneous supercomputers.
Front. Chem. 11:1154526.
doi: 10.3389/fchem.2023.1154526

COPYRIGHT

© 2023 Corzo, Hillers-Bendtsen, Barnes,
Zamani, Pawłowski, Olsen, Jørgensen,
Mikkelsen and Bykov. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 14 June 2023
DOI 10.3389/fchem.2023.1154526

https://www.frontiersin.org/articles/10.3389/fchem.2023.1154526/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1154526/full
https://www.frontiersin.org/articles/10.3389/fchem.2023.1154526/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2023.1154526&domain=pdf&date_stamp=2023-06-14
mailto:bykovd@ornl.gov
mailto:bykovd@ornl.gov
https://doi.org/10.3389/fchem.2023.1154526
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2023.1154526


the disregard of chemically unique tailored basis sets in favor of a
one-size-fits-all approach have become routine in many quantum
chemistry calculations (Woolley and Sutcliffe, 1977; Combes et al.,
1981; Davidson and Feller, 1986; Cederbaum, 2008; Nagy and
Jensen, 2017). In general, the larger the system with respect to
the number of electrons, the cruder the approximations become. It
can be argued that, in a way, the current state of many
computational chemistry methodologies is as paradoxical as it
was 60 years ago. For small systems, where very accurate
experiments are often readily accessible, we find increasingly
powerful and reliable quantum chemical computational methods
and techniques being developed. However, for complex chemical
systems like those typically found in biological applications where
accurate experimental data requires unambiguous interpretation
and quantitative predictions from theoretical models, one often
finds an extensive application of low-accuracy quantum chemical
methods. Only a few decades ago, modeling of biochemical systems
was limited to empirical and semiempirical methods, where
approximations such as the Hückel model and methods based on
the neglect of diatomic differential overlap were either presented or
used as reliable, despite strong evidence to the contrary obtained
from studies on small systems (Elstner et al., 2000; Hagebaum-
Reignier et al., 2007; Kutzelnigg, 2007; Yates, 2012; Elstner and
Seifert, 2014; Thiel, 2014; Christensen et al., 2016; Dral et al., 2019).

Recently, the development of many branches of sciences has
been accelerated by the use of machine learning (ML) models that
contain a large number of parameters, which are weighted and
tuned during the training process. As a result, ML models have had
a transformative impact on the chemical sciences. For molecular
applications, the design and assembly of a compelling ML model
often requires a significant investment of computational resources
not only for algorithm processing but also for generating
accurately labeled data and ground truths for analysis and
pattern inferences necessary for the training. Indeed, once
attained, ML models can drastically reduce the computational
time for routine tasks in molecular modeling, thereby
amplifying the amount of data that can be generated for a given
dataset. However, it is important to note that ML models usually
fail to generate the insights necessary for explaining the electronic
structure of molecules. Many of the reported works on molecular
applications of ML models propose that these models are not just
proxies but computational ends for theoretical molecular quantum
chemistry methods. Nonetheless, many of these methods rely on
correlations between families of molecules, where basic parameters
such as the molecular topology, molecular local descriptors, and
narrow electronic property classification of relationships are
emphasized (Haghighatlari and Hachmann, 2019; Corzo et al.,
2021; Fung et al., 2021; Keith et al., 2021; Unke et al., 2021). As a
consequence, the use of current ML models as an alternative for
ab-initio quantum-chemical techniques may be less relevant when
elucidating molecular phenomena for which unprecedented
electron correlation effects and possibly the interactions
between electronic and nuclear degrees of freedom play a
fundamental role, e.g., redox processes, chemical reactions,
photochemical processes, organometallic catalysis, etc.

Computational practitioners working in molecular modeling
should be mindful that a given model is only useful within a given
range of applications; outside that range, although the theory or

data sets behind the computational model may be correct, the
model might not be necessarily useful. Note that there is a
tendency to use techniques that were developed for small
chemical systems to study large systems, rather than to search
for new methods devised specifically to deal with large systems. It
follows that modeling biological molecules should rely on direct
calculations or ML models trained from accurate ab-initio
quantum chemical approximations. An understanding of the
proper applicability range of ML and computational quantum
chemistry models is important, since the traditional neglect of
quantities such as time, temperature, entropy, spin angular
momentum, and correlation, namely, those physical quantities
that have been considered basic since the last century to describe
complex chemical systems, can lead to erroneous predictions.
One-size-fits-all approaches may present an additional
complication, as the only tool available may not be suitable for
every problem. With this in mind, the cognitive bias of Maslow’s
law of the hammer (Maslow, 1966) should be avoided, as
reluctance and clemency of this may stifle the advancement of
fields such as quantum chemistry, where great efforts to develop
new methods and theories are still needed to achieve the deductive
and inductive interpretability goals required by experimental
molecular sciences.

2 Challenges in large systems

The definition of a large molecular system can be approached
from two angles: the number of electrons and the size of the
molecule, defined by the ensemble of atoms. For instance, Br2
contains 70 electrons but only two atoms, making it a small
system despite its electron count, while H10, H50, and H64 (Lin
et al., 2011; Li et al., 2021; Mitxelena and Piris, 2022) are larger in size
yet smaller in electron count than Br2. In this review, we adopt a
definition of large molecules as a compromise between electron
count and molecular size. We focus on medium-to large-sized
molecules containing dozens of electrons, with potential
applications in biological, biochemical, catalytic, photochemical,
and technological materials.

To describe large molecular systems accurately and advance
scientific and technological endeavors of quantum chemistry, one
must develop and implement computational methodologies always
guided by the following question: what is the largest number of
atoms for which it is still reasonable and, at times, necessary to
request electronic energy contributions from solutions of the
Schrödinger equation? Although this question may seem simple
and perhaps trivial at first, its answer requires not only an
understanding of quantum chemistry models, electron-electron
correlation, and scalability but also an understanding of the
implications associated with the intrinsic phenomenological
nature of chemical processes, error propagation, and the ideas
related to chemical accuracy first introduced by S.F. Boys (Boys
and Rajagopal, 1966) and later popularized by J.A. Pople (Pople,
1999).

In standard ab-initio quantum chemistry simulations, the
computational bottleneck primarily stems from the number of
basis functions used to represent electrons in the system under
study, rather than the number of electrons themselves. Accurate
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calculations are often obtained by employing a combination of
computational approximations designed to yield the exact
solution to the electronic Schrödinger equation. In this respect,
the exact numerical solution for stationary states of a given
Schrödinger equation can be obtained through the
configuration interaction (CI) matrix-eigenvalue equation. This
matrix-eigenvalue equation and its Hamiltonian representation,
expressed in terms of Slater determinants and a sufficiently large
orbital basis (where l → ∞), defines what is commonly known as
the Full CI (FCI) method, which is utilized to determine FCI
energies. In practice, however, CI is an essentially intractable
problem, due to its computational demands. Solutions for CI up to
a n number of excitations (CI-nx) and Full CI (FCI) for n ≤ 4
electrons are typically challenging to obtain. Therefore, in many
cases, compact basis sets and computationally feasible
approximations to the CI solution, such as the Coupled Cluster
approach (CC), are often preferred. In general, molecular systems
at their equilibrium geometry are known to exhibit rapid
convergence to the Full CI solution through the use of the CC
hierarchy of approximations.

Quantum chemistry, in pursuit of high accuracy, employs (CC)
family of methods to construct multi-electron wavefunctions using
the exponential cluster operator and a molecular orbital basis. The
CC method is particularly appealing not only for its remarkable
accuracy and rapid convergence, but also for its size extensivity and
size consistency properties (Bartlett, 2012). In contrast to other
computational methods, CC energy remains unitarily invariant with
respect to the rotation within occupied and virtual spin-orbital
space, respectively. Hence, it is the ideal computational method
for accounting for electron correlation and making accurate
determinations for medium-sized molecules. With efficient
implementation and approximations correlated ab-initio
quantum chemistry methods like CC can be performed for an
upper limit of 200–500 atoms with paired electrons within
orbitals with angular momentum l ≤ 2. However, despite
advances in computational hardware, routine calculations may
still be limited to 30–50 atoms. Therefore, large and complex
molecular systems, especially those found in biological or
biochemical processes, continue to present challenges in
computational chemistry. Accurately estimating the molecular
electronic energy in these systems requires consideration of both
the number of electrons in the atoms and the size of the system, as
well as the relationships between internuclear distances and
electronic density, decay of overlap integrals, the long-range
nature of Coulomb forces, and the conformational flexibility of
molecules, among other factors.

Thus, it is of practical importance to develop reliable
computational methods that can be used for molecules
approaching the system size limit, which is yet to be systematically
defined. Possible approaches may include: (1) Employ reasonable
approximations to matrix elements at the self-consistent-field (SCF)
level. These approximations often require a distinction between the
Roothaan Hartree-Fock method and the canonical nature of the SCF
method (Löwdin, 1955a; Löwdin, 1955b; Nesbet, 1955). (2) Generate
new techniques for integral evaluation and their applicability to new
approximations at the SCF and post-SCF level. (3) Formulate post-
SCF approximations for obtaining a better description of electron-
electron correlation energy. (4) The development of algorithms and

techniques that can leverage the inherent parallelism in computational
tasks to achieve optimal performance on modern high-performance
computing (HPC) architectures.

The field of quantum chemistry and general electronic structure
theory has witnessed productive research efforts in these directions,
with researchers employing clever computational simplifications
within new theoretical frameworks and developing new
approaches that can effectively scale computations to larger
problem sizes, improving the accuracy and efficiency of
simulations. These developments have been well-documented in
the literature (Häser, 1993; Ishikawa and Kuwata, 2012; Monari
et al., 2013; Helmich and Hättig, 2014; Díaz-Tinoco et al., 2016;
Gyevi-Nagy et al., 2019; Mester et al., 2019; Nagy and Kállay,
2019; Ballesteros et al., 2021; Datta and Gordon, 2021; Gyevi-
Nagy et al., 2021; Szabó et al., 2021; Abyar and Novak, 2022;
Paudics et al., 2022; Semidalas and Martin, 2022).

3 Scaling and parallelization of
quantum chemistry computations

As both molecular system sizes and computer resources grow
larger, efficient computation scaling becomes critical. On
commodity computer hardware, which is the basis for the
majority of available clusters and HPC resources, an effective
strategy would be combining computing power of multiple units,
allowing for a lower time-to-solution. This implies effective
management of computational tasks in hand. Quantum
chemistry calculations often involve tasks with variety of
computational costs and dependencies. For example, in the SCF
procedure, constructing and diagonalizing the Fock matrix depends
on computing and summing up many integrals over basis functions
that can vary in size and complexity. Finding the way to expose the
parallelism in the SCF procedure and other quantum chemistry
methods can yield improved performance on many different kinds
of computers, especially modern HPC architectures. However,
achieving optimal speedup is challenging, and only very few
parallel implementations of quantum chemistry methods can
demonstrate it. Domain decomposition and speculative
parallelization are general techniques that have proven useful in
identifying and designing parallel algorithms for large and complex
quantum chemistry calculation tasks (Werner, 1995; González-
Escribano et al., 2006; Su et al., 2007; Lipparini et al., 2013; Qiu
et al., 2017; Nottoli et al., 2019; Sho and Odanaka, 2019; Jha et al.,
2022; Shang et al., 2022; Fedorov and Pham, 2023).

3.1 Parallelization strategies

The main parallelization strategies in quantum chemistry
computations can generally be categorized into two approaches:
fine-grained and coarse-grained parallelism. Fine-grained
parallelism focuses on executing numerous small, independent
tasks simultaneously across multiple processing elements. This
approach is well-suited for tasks with a high degree of data
locality, such as dense matrix operations. The matrix and tensor
operations are prevalent in quantum chemistry and thus are most
often the first target of performance optimization.
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Conversely, coarse-grained parallelism divides the computation
into larger, independent tasks that can be executed on separate
processing elements. Unlike fine-grained parallelism, this approach
is more appropriate for situations with fewer, larger tasks that can be
executed simultaneously, and that require infrequent
communication between them to deliver results. In addition,
coarse-grained parallelism is quintessential for tasks that use data
that are far apart (i.e., tasks with less data locality). The coarse-
grained parallelizm is most often achieved through the
reformulation of the underlying theory of a particular quantum
chemistry method to expose independent work packets. Examples
could be as simple as numerical Hessian evaluation where each
nuclear displacement represent independent work packet and all the
way to very elaborate CC theory reformulations exposing data
locality through physical nature of the quantities to be evaluated.

Many scientific applications achieve both fine-grained and coarse-
grained parallelism through shared-memory and distributed-memory
parallel programming models. Shared-memory parallelism allows
multiple threads of execution to access the same memory space,
making it suitable for tasks with a high degree of data locality. In
contrast, distributed-memory parallelism uses message-passing
techniques for communication between multiple processing
elements, each with its own private memory space. Distributed
memory is better suited for coarse-grained parallelism, with tightly
coupled tasks that communicate frequently. These parallel memory
programming models are often supported in quantum chemistry
codes by two application programming interfaces: the Message
Passing Interface (MPI) and the Open Multi-Processing (OpenMP)
application programming interface.

MPI is a standardized, portable message-passingmodel designed
for parallel computing architectures. It is a widely-used distributed-
memory parallel programming model that efficiently parallelizes
tasks with less data locality, such as the distribution of integrals and
the communication of partial results between processing elements.
While MPI supports both point-to-point and collective
communication, it is generally better suited for coarse-grained
parallelism. On the other hand, OpenMP offers the capability to
incrementally parallelize a serial program, unlike message-passing
models like MPI which typically require an all-or-nothing approach.
OpenMP can implement both coarse-grain and fine-grain
parallelism. However, many chemistry codes find a hybrid
OpenMP and MPI approach most appropriate as it allows for
the clear treatment of the two separate levels of parallelism that
are often found, coarse-grained and fine-grained, nested within each
coarse subdomain.

Quantum chemistry codes often benefit from fine-grained
parallelism for tasks such as complete SCF calculations, dense
matrix multiplications, DMRG calculations, and other
fundamental numerical operations. Graphics Processing Units
(GPUs) and OpenMP are the commonly used hardware and
programming model, respectively, for implementing this type of
parallelism. Coarse-grained parallelism, on the other hand, may be
better for partitioning entire component grids onto separate
processors. Thus, calculations based on theories such as Density
Functional Theory can benefit from this type of parallelization.
Recently, fine-grained parallelism has been used to accelerate
simulations of quantum circuits on Field Programmable Gate
Arrays (FPGAs) (Moawad et al., 2022).

3.2 Load balancing

Another crucial aspect for achieving efficient parallelism in
large scale supercomputers is load balancing. Load balancing aims
to distribute the computational workload evenly among multiple
processors or nodes to reduce idle time and communication
overhead. This distribution of the workload enhances the
performance, efficiency, and scalability of parallel quantum
chemistry applications (Nikodem et al., 2014; Ma et al., 2023).
Thus, the proper use of the load balancing technique is essential for
many production codes and calculations. Load balancing becomes
specially important when coarse-grained parallelism is employed.
Static Load Balancing (SLB) and Dynamic Load Balancing (DLB)
are two types of load balancing techniques that vary depending on
whether the workload distribution is fixed or adaptive during the
execution of the computation (Ali and Khan, 2012; Patil and
Shedge, 2013; Nikodem et al., 2014).

The SLB approach divides the computational work evenly
among processing elements before the execution. Thus, in many
quantum chemistry codes, SLB is often used to distribute the
number of basis functions or integrals equally across processing
units. However, although SLB may be effective for many parts of a
production code, it may not always lead to optimal load balancing
as workloads may vary across tasks. On the other hand, the DLB
approach continuously monitors the computational workload of
each processing element during execution and redistributes it to
balance the load across all processing elements.

On the other hand, the DLB approach involves continuously
monitoring the computational workload of each processing
element during execution and redistributing tasks as needed to
maintain an even distribution of work. For instance, the work-
stealing algorithm allows idle processors to steal tasks from busy
processors, which can reduce idle time and communication
overhead in parallel systems. This algorithm has been shown to
be favorable for DFT calculations (Nikodem et al., 2014).

Another algorithm that has been shown to be advantageous in
quantum chemistry calculations is the inspector/executor load
balancing algorithm. This approach involves two phases: an
inspector phase that analyzes the task dependencies and
assigns them to the compute units, and an executor phase that
performs the tasks in parallel. By reducing the synchronization
and contention costs of the parallel system, this algorithm is
applicable to any application requiring load balance where
reasonable estimations of computational kernel execution times
are available. Furthermore, this algorithm reduces the overhead
from centralized dynamic load balancing in codes such as
NWChem’s Tensor Contraction Engine (TCE) (Ozog et al., 2013).

Load balancing plays a crucial role in efficient parallelization of
quantum chemistry computations across multiple computing units,
ensuring that no single unit bears too much demand. DLB
algorithms are well-suited for fine-grained parallelism in
quantum chemistry codes and are designed to adapt to changing
workloads by distributing traffic based on real-time conditions.
However, they can add communication overhead and slow down
the system. SLB algorithms, on the other hand, use fixed rules and
are better suited for coarse-grained parallelism in which larger,
independent tasks are executed on separate computing units.
Therefore, when implementing codes in distributed computing
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systems for quantum chemistry applications, it is important to
carefully consider the trade-offs between DLB and SLB algorithms.

3.3 Tensor decompositions in quantum
chemistry

The use of parallelization techniques in combination with tensor
decomposition methods has proven to be highly effective for
computational codes (Boudehane et al., 2022). Tensor
decomposition techniques, for example, have proven to be
successful in solving various quantum chemistry problems, such
as calculating molecular wavefunctions (Altman et al., 2021), density
matrices (Hoy and Mazziotti, 2015; Khoromskaia and Khoromskij,
2015), and electronic excitation energies (Xie et al., 2009). In CC
theory the electronic wave function of molecules is represented as
high-dimensional tensor. Efficient manipulation of the tensors is,
thus, of crucial importance. One popular technique commonly used
for this purpose is tensor decompositions. Tensor decompositions
enable higher-order tensors (multidimensional arrays) to be
represented as a combination of lower-order tensors, such as
vectors or matrices, which can simplify the complexity and
dimensionality of the tensor, uncovering patterns and structures,
that can facilitate efficient parallelizations. Third-order tensors,
which arise naturally as the outer product of a matrix and a
vector during the calculation of spectroscopic properties, offer a
practical example. The polarizability tensor is a third-order tensor
that describes how a molecule responds to an electric field.
Representing the fact that molecules can be polarized to varying
extents in different directions, the polarizability tensor is usually
represented by a 3 × 3 tensor, denoted as αij, where i, j = x, y, z.
Standard manipulations are often challenging to perform on this
tensor. Thus, the decomposition of this tensor into vector or matrix
components can often reveal critical information about the
molecule’s electronic structure, and facilitate efficient
parallelization of codes.

One common way to decompose a third-order tensor is to use
the CANDECOMP/PARAFAC (CP) decomposition, which
expresses the tensor as a sum of rank-one tensors (outer
products of three vectors) (Vannieuwenhoven et al., 2015).
Although this decomposition has some advantages that may be
exploited in quantum chemistry applications such as uniqueness,
interpretability, and sparsity, it also presents some challenges such
as finding the optimal number of rank-one tensors and solving the
nonlinear optimization problem (Stegeman, 2006; Favier and de
Almeida, 2014; Battaglino et al., 2018). Canonical polyadic
decomposition (CPD) (Hitchcock, 1927; Carroll and Chang,
1970; Qiu et al., 2021), Tucker decomposition (Tucker, 1966),
and tensor-train decomposition (TTD) (Oseledets, 2011) are
additional tensor decomposition tools that have shown potential
for computation on molecular systems. For example, the tensor-
train decomposition has been used to compress the wave-function
tensors in the quantum chemical calculations of large molecules. By
representing the wavefunction in a compressed tensor-train format,
it becomes possible to perform calculations for larger systems with
reduced computational cost. Similarly, the canonical polyadic
decomposition has been employed in the study of molecular
properties, such as dipole moments and polarizabilities, by

compressing the high-dimensional tensors associated with these
properties (Phan et al., 2013).

Nowadays, tensor libraries have been integrated into popular
chemistry computational software packages, such as Linear-
Scaling Dalton (LSDalton) and North West Computational
Chemistry (NWChem), to enhance their performance in CC
calculations. NWChem’s TCE (tensor contraction engine)
module enables the implementation of TCE-generated code for
efficient coupled cluster calculations, including CCSD (coupled
cluster singles and doubles) and other methods. LS-Dalton has
Scalable Tensor Library, developed to execute tensor contractions
in the CC parts of the code. There are also a number of stand alone
libraries available to manipulate tensors in quantum chemistry
software.

Despite the advancements made using tensor contractions and
decompositions in quantum chemistry, there are still challenges to
overcome. The choice of decomposition technique, as well as the
determination of appropriate rank and truncation parameters, can
have a significant impact on the accuracy and efficiency of the
calculations. Additionally, the development of robust and efficient
algorithms for tensor decompositions is an ongoing area of
research (Kolda and Bader, 2009). As these challenges are
addressed, tensor decompositions are expected to play an
increasingly important role in the development of molecular
codes.

3.4 Embarrassingly parallel quantum
chemistry tasks

In the realm of quantum chemistry, some theoretical methods
are considered embarrassingly parallel or trivially parallelizable. This
means that tasks within a computation can be easily divided into
independent sub-tasks, that require minimal to no communication
or data exchange and coordination between them during execution
(Foster, 1995). As a result, these tasks can be seamlessly parallelized,
and executed concurrently, without significant alterations to the
communication between processing units.

Embarrassingly parallel tasks often arise in the context of
evaluating integrals, such as the computation of Hartree-Fock
exchange integrals for large basis sets (Titov et al., 2013; Pinski
and Neese, 2018), or when solving for quantities like single-point
energy calculations, geometry optimizations, and molecular
dynamics simulations. In these cases, calculations for each task
can be performed independently, with the final result obtained by
aggregating or combining individual outcomes. These frameworks
allow for parallelization across multiple processing elements,
including CPUs or GPUs, enabling larger and more complex
problems to be tackled more efficiently.

Unfortunately, the majority of quantum chemistry methods are
not easily parallelizable. Certain methods involve complex
dependencies between sub-tasks or require frequent
communication between processes, making them challenging to
parallelize efficiently (Valiev et al., 2010). Examples include wave-
function-based ab-initio methods, such as CI, CC, and Multi-
Configuration Self-Consistent Field (MCSCF) calculations
(Hasanein and Evans, 1996). These methods often involve the
manipulation of large matrices and the evaluation of high-

Frontiers in Chemistry frontiersin.org05

Corzo et al. 10.3389/fchem.2023.1154526

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2023.1154526


dimensional arrays, making them computationally demanding and
requiring sophisticated parallelization techniques to achieve optimal
performance (Baumgartner et al., 2005).

Although frequently used quantum methods, such as Density
Functional Theory (DFT) and semi-empirical methods, are more
amenable to parallelization due to their relatively simpler
mathematical formulations and reduced computational
requirements (Andrade et al., 2015), they may not be optimal for
calculations requiring a precise understanding of the electronic
structure of the molecular system for elucidating the chemical
phenomena at hand. Even these methods can face challenges in
parallelizing specific aspects, such as evaluating long-range electron
correlation or treating van der Waals interactions (Grimme et al.,
2010).

The contrast between embarrassingly parallel tasks and
challenging-to-parallelize quantum methods underscores the
importance of developing advanced parallelization techniques
and algorithms for various quantum chemistry applications.
Researchers continue to explore approaches such as tensor
decompositions, load balancing protocols, new hybrid MPI-
OpenMP strategies, and computational hardware to overcome
the limitations of current parallelization techniques for
accelerating calculations (Götz et al., 2012). With ongoing
developments in parallel computing, the potential to address
computational challenges in quantum chemistry continues to
expand, paving the way for more efficient and accurate
calculations of complex molecular systems (Shao et al., 2015).
Bearing this in mind, the following section provides some
alternatives for calculating large molecules using CC methods.

4 Subdividing the correlation problem

In molecular orbital theory, the canonical set of molecular
orbitals (MO) is typically generated through the linear
combination of atom-centered basis functions, commonly
Gaussian-type functions. These MOs are called canonical because
they are the default MOs for a wave function obtained by
diagonalizing the Fock matrix used in the SCF calculation of the
HF method (Löwdin, 1955a; Löwdin, 1955b; Nesbet, 1955). Some
coefficients in the linear combination can be zero or very small,
which reduces computational complexity. This reduction occurs for
several reasons.

• Symmetry: In many molecular systems, certain basis functions
may not contribute to specific molecular orbitals due to
symmetry constraints. The symmetry of the molecule can
impose conditions on the coefficients of the linear
combination, resulting in some of them being zero or
negligible.

• Negligible overlap: When basis functions are centered on
distant atoms, their overlap might be very small. In such
cases, the contribution of these basis functions to the
molecular orbitals can be negligible.

• Weak interactions in excited states: In the case of excited states,
some molecular orbitals may have only weak interactions with
each other. The contributions of these weakly interacting

orbitals to the overall wave function can be minimal,
leading to small coefficients in the linear combination.

These factors can simplify the representation of molecular
orbitals and improve the efficiency of calculations by reducing
the number of significant coefficients and matrix elements to
consider (Boys, 1960; Simons and Nichols, 1997; Helgaker et al.,
2000; Levine et al., 2009; Szabo and Ostlund, 2012).

Despite the possible reductions in canonical MOs, they can still
lead to computational inefficiencies in large molecular systems. To
address this issue, the set of canonical MOs can be transformed
into an equally valid set of localized HF molecular orbitals through
a unitary transformation that preserves orthonormality. These
localized molecular orbitals (LMOs) not only correspond to
chemically familiar concepts such as core orbitals on heavy
atoms, bond orbitals, and lone pair orbitals, but can also be
used to reduce the computational overhead in large molecular
systems (Edmiston and Ruedenberg, 1963; Kleier et al., 1974; Pipek
and Mezey, 1989; Subotnik and Head-Gordon, 2005; Herbert,
2019).

Transforming canonical MOs to LMOs suggest an intrinsic
approach for studying large molecules. By studying a molecule as
an assembly of smaller sub-molecules rather than as a whole, the
conventional up-front computational overhead can be effectively
reduced.

Following this molecular splitting idea, by dividing a large
molecular system into smaller fragments and characterizing each
fragment with wave-functions localized on specific molecular
substructures, the electron correlation contributions for each
fragment can be obtained through standard computation of matrix
elements, allowing for the description of the entiremolecular system by
combining the wave-functions of all the fragments to form the final
wave-function for the complete molecule. For instance, the [n]helicene
molecule can serve as a practical example to illustrate the partitioning
of a large molecular system into smaller fragments. This molecule can
be partitioned into three primary molecular fragments, one with
molecular formula C4H4, another with molecular formula C6H4,
and n − 2 fragments with molecular formula C4H2. Consequently,
the [6]Helicene (C38H22) molecule can be partitioned into one
molecular segment with molecular formula C4H4, another with
C6H4, and four with molecular formula C4H2, Figure 1 illustrates
this partitioning. Under this partitioning scheme, the orbitals of each of
the six fragments of the [6]Helicene molecule are confined to a linear
combination of the basis set, possessing atomic functions centered on
the C4H4, C6H4, and C4H2 nuclei, resulting in the comprehensive and
final wave-function for the system. An efficient program design that
takes advantage of this partition would distribute the workload for each
fragment, establishing the orbitals for each fragment and computing
the wave-functions and expectation values of each fragment in the
initial phase. In the second phase, each fragment’s contribution would
be added to obtain the complete description and total electronic energy
of the entire molecule. This straightforward yet effective subdividing
technique for computing the total energy of large systems embodies the
core concept behind the Divide-Expand-Consolidate (DEC) scheme
for correlated electronmethods (Eriksen et al., 2015a; Ettenhuber et al.,
2016; Kjærgaard et al., 2017a; Kjærgaard et al., 2017b; Barnes et al.,
2019).
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The DEC framework for correlated electrons involves
dividing a large system into smaller fragments and obtaining
the electron correlation contributions for each fragment through
standard computation of matrix elements, similar to how it is
done for small and intermediate systems. The following section
outlines the DEC formalism for correlated wave-function
methods, which enables the routine handling of molecular
systems composed of over 200 atoms and more with a non-
trivial number of electrons.

4.1 Localization of orbitals

A vital aspect of the DEC methodology is the localization of
orbitals. Orbital localization forms the foundation for dividing large
molecules into smaller fragments. Although the concept of localized
orbitals is not new (Edmiston and Krauss, 1965), the literature
contains a wide array of procedures aimed at localizing occupied and
virtual orbitals as a means of electron-electron correlation
calculations. Both wave function-based methods and
fragmentation-based correlation approaches often generate
localized orbitals through various localization procedures, such as
those proposed by S.F. Boys (Boys, 1960) and J. Pipek and P.G.
Mezey (Pipek and Mezey, 1989). However, these methods may be
sensitive to the nature of molecular systems, which could limit their
applicability. To address these limitations, advanced orbital
localization techniques based on the central moment have been
introduced (Jansík et al., 2011; Høyvik et al., 2012a; 2014).
Combined with robust optimization strategies, these advanced
techniques can provide more spatially local virtual orbitals even
for traditionally delocalized systems (Høyvik et al., 2014; 2012a).

Localized orbitals that account for pair correlation effects have
been pivotal in the development of electron-correlated methods
(Löwdin, 1955a; Löwdin, 1955b; Edmiston and Ruedenberg, 1963;
Davidson, 1972a; Davidson, 1972b; Pople et al., 1976; Surján, 1999).
Pair natural orbitals (PNOs) are particularly useful for further
compressing the virtual parameter space (Kapuy et al., 1983;
Pulay, 1983; Pipek and Mezey, 1989; Saebø and Pulay, 1993;
Neese et al., 2009; Yang et al., 2011; Yang et al., 2012).

Constructed from (an approximation to) the MP2 correlation
density matrix for each electron pair, PNOs have gained
popularity in localized orbital CC methods (Pulay and Saebø,
1986; Hättig et al., 2006; Riplinger and Neese, 2013), such as the
domain-based local PNO (DLPNO) CCSD(T) method (Neese et al.,
2009; Wang et al., 2013). This method has been successfully applied
to various computational chemistry applications (Riplinger et al.,
2013; Riplinger and Neese, 2013; Sparta et al., 2017; Sharapa et al.,
2019; Stoychev et al., 2021; Wang et al., 2022). Local CC methods
relying on orbital-specific virtuals (OSVs) have also been developed,
closely relating to PNOs (Kurashige et al., 2012; Yang et al., 2012;
Schütz et al., 2013; Tew, 2019). However, PAOs can be non-
orthogonal and redundant, complicating algorithmic expressions
and posing conceptual challenges for molecular systems with
degenerate states arising from symmetry and angular momentum
coupling (Krause andWerner, 2012). Having a set of orthogonal and
non-redundant localized virtual orbitals is beneficial for CC
implementations and, in many cases, necessary for obtaining
unambiguous results in molecular applications. Although,
localized virtual orbitals obtained using advanced localization
functions are more spatially local than PAOs (Høyvik et al.,
2014; 2012a), despite their advantages, they might not always be
the best choice for local correlated methods. The representation and
selection of the optimal set of orbitals for local correlated methods
remain active areas of research and continue to evolve.

4.2 Localized orbital-based correlation
methods

Orbital localization is commonly utilized to express correlation
calculations in a local basis, introducing approximations that reduce
the computational complexity of a method in comparison to
conventional implementations. Local correlation methods can be
broadly classified into two categories, wave-function-based and
fragment-based approximations.

Wave-function-based approximations focus on expressing the
standard wave-function using a reduced parameter set. Such
approximations commonly involve constraining the virtual

FIGURE 1
Decomposition of the [6] Helicene into C4H4, C6H4, and C4H2 fragments.
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excitation domain for each pair of occupied LMOs, while neglecting
or approximating pair correlation contributions between well-
separated occupied LMOs. For each LMO pair, a local
correlation domain containing a subset of PAOs is assigned.
PAOs, which form a non-orthogonal and redundant basis for the
virtual orbital space, require adaptations to standard (canonical)
algorithms to accommodate their unique properties. Notable
examples of wave-function-based local approximations can be
traced back to the work of Pulay and Sæbø (Pulay, 1983; Sæbø
and Pulay, 1985; Pulay and Hamilton, 1988; Saebo and Pulay, 1988;
Saebø and Pulay, 1993). These methods utilize occupied LMOs and
PAOs for the virtual space, and have been further developed and
expanded to gradients (Amos and Rice, 1989; Sæbø and Almlöf,
1989; Kirtman, 1995; Hampel and Werner, 1996; Russ and
Crawford, 2004; Adler et al., 2009; Helgaker et al., 2012;
Riplinger et al., 2013; Rolik et al., 2013; Menezes et al., 2016;
Bistoni et al., 2017; Schwilk et al., 2017; Sitkiewicz et al., 2019;
Saitow et al., 2022; Wang et al., 2022). In contrast, fragment-based
approximations express the correlated method in amplitude
equations and partition these amplitude equations into numerous
small, typically independent, fragment calculations. Consequently,
the energy is divided into fragment energy contributions, and the
fragment energies are summed to yield the total energy. Examples of
fragment-based approximations include the incremental CCSD(T)
method (Friedrich and Dolg, 2009; Friedrich and Hänchen, 2013)
and the local energy CCSD(T) method (Zhang and Grüneis, 2019;
Altun et al., 2021).

Both wave function-based and fragment-based approximations
have their advantages and drawbacks. Fragment-based
approximations are better suited for modern multi-core
architectures and have storage requirements independent of system
size. In contrast, wave function-based approximations have storage
requirements that grow with system size, which limits the size of the
systems that can be treated. The choice of method depends on the
specific application and the balance between computational cost and
accuracy. As research in this area continues, further improvements
and refinements of these methods are expected, enabling the
treatment of larger and more complex molecular systems.

4.3 Breaking down correlation energy

In quantum chemistry theories, the concept of energy
correlation, popularized by Löwdin (Löwdin, 1958), is the most
prevalent perspective on the electron correlation problem. This
description divides the exact total energy of a molecular system
into the sum of the HF energy and a correlation contribution:

ETotal � EHF + Ecorr. (1)
In general, for any correlated method, the relationship between the
method’s total energy and the correlation energy can be
expressed as:

EMethod � EHF + Ecorr. (2)
In the case of the Møller-Plesset second-order perturbation theory
(MP2) method, the energy expression in Eq. 2 becomes:

EMP2 � EHF + EMP2
corr . (3)

For molecular systems, the MP2 correlation energy EMP2
corr can be

expressed as:

EMP2
corr � ∑

ij

∑
ab

tabij 2gaibj − gbiaj( ), (4)

where gaibj are the electron repulsion integrals (ERIs) using the
Mulliken notation, and tabij are the MP2 amplitudes.

Similarly, for the coupled cluster (CC) total energy (ECC), the
correlation energy for a closed-shell molecular system can be
obtained by:

ECC
corr � ∑

ij

∑
ab

tabij + tai t
b
j( ) 2gaibj − gbiaj( ), (5)

where tai and tabij represent singles and doubles CC amplitudes.
Indices i, j, . . . refer to occupied orbitals, while a, b, . . . refer to
virtual orbitals. In the DEC coupled cluster (DEC-CC)
framework, this correlation energy can be represented by a set
of localized occupied and virtual HF MOs, which are determined
and assigned to the atomic site nearest to the MO’s center of
charge. Thus, the correlation energy for a given correlated
method, Ecorr, becomes:

Ecorr � ∑Nfrag

P

EP + ∑Nfrag

Q<P
ΔEPQ

⎡⎢⎣ ⎤⎥⎦, (6)

where Nfrag is the number of atomic fragments the molecular system
was divided into. For the CCmethod, the atomic fragment energy EP
and the pair fragment interaction energy ΔEPQ are defined as
follows:

ECC
P � ∑

ij∈P
∑
ab

tabij + tai t
b
j( ) 2gaibj − gbiaj( ), (7)

ΔECC
PQ � ∑

i∈P j∈Q

∑
ab

tabij + tai t
b
j( ) 2gaibj − gbiaj( )

+ ∑
i∈Q j∈P

∑
ab

tabij + tai t
b
j( ) 2gaibj − gbiaj( ), (8)

where theMOs are now assumed to be local, and P denotes the set of
local occupied orbitals assigned to atomic site P.

It is important to note that the correlation energy expressions in
Eqs 6–8 do not contain any approximations. Therefore, these
equations, in principle, yield the same correlation energy
corrections as the original expressions of the CC correlated
methods. A crucial aspect of the DEC-CC approximation is
dividing the calculation of the correlation energy of the entire
molecular system into Nfrag + 1/2 · Nfrag(Nfrag − 1) independent
molecular fragments. Computational savings arise when screening
techniques are employed for each fragment calculation. In many
instances, the locality of the MOs reduces the computational effort
in the molecular calculation. Moreover, the integral gaibj becomes
negligible when the molecular orbital ϕa is spatially distant from ϕi,
allowing the summation over virtual orbitals in (7)–(8) to be limited.
Consequently, only a subset of virtual orbitals, [�P], is significant for
each fragment from the complete set of atomic site orbitals, P. A key
advantage of the DEC framework is that these summation
constraints in fragment energy calculations are determined in a
black-box manner, enabling the definition of atomic fragment and
pair fragment interaction CC energies as.
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EP � ∑
ij∈P

∑
ab∈ �P[ ]

tabij + tai t
b
j( ) 2gaibj − gbiaj( ), (9)

ΔEPQ � ∑
i∈P
j∈Q

∑
ab∈ �P[ ]∪ �Q[ ]

tabij + tai t
b
j( ) 2gaibj − gbiaj( )

+ ∑
i∈Q
j∈P

∑
ab∈ �P[ ]∪ �Q[ ]

tabij + tai t
b
j( ) 2gaibj − gbiaj( ), (10)

where, for the pair fragment interaction energies, the set of
virtual orbitals is chosen as the union of the atomic fragment spaces,
which can be justified by a locality analysis of the results (Kristensen
et al., 2011; Ettenhuber et al., 2016).

5 The Divide–Expand–Consolidate
CCSD(T) framework

In the realm of computational quantum chemistry, the CCSD(T)
model is often referred to as the gold standard for molecular
calculations. Within the DEC framework, the CCSD(T) method
is implemented as follows:

E T( ) � ∑Nfrag

P

E T( )
P + ∑Nfrag

Q<P
ΔE T( )

PQ
⎡⎢⎣ ⎤⎥⎦ (11)

with the corresponding equations.

E T( )
P � 2 ∑

ij∈P
∑

ab∈ �P[ ]
2tabij − tabji( )Tab

ij + 2∑
i∈P

∑
a∈ �P

tai T
a
i (12)

ΔE T( )
PQ � 2( ∑

i∈P
j∈Q

+ ∑
i∈Q
j∈P

) ∑
ab∈ �P[ ]∪ �Q[ ]

2tabij − tabji( )Tab
ij

+2( ∑
a∈ �P
i∈Q

+ ∑
a∈ �Q
i∈P

)tai Ta
i . (13)

In these expressions, the intermediate terms Tab
ij and Ta

j can be
defined as follows.

Tab
ij � ∑

cd∈ �P[ ]
∑

k∈ P[ ]
tacdijk Lbckd − tacdkji gkdbc( )

− ∑
c∈ �P[ ]

∑
kl∈ P[ ]

tabcikl Lkjlc − tabclki gkjlc( ) (14a)

Ta
i � ∑

cd∈ �P[ ]
∑

kl∈ P[ ]
tacdikl − tacdlki( )Lkcld. (14b)

Here, [P ] represents the set of occupied orbitals assigned to
atomic sites near center P, analogous to the virtual spaces. The
triples amplitudes tabcijk are derived from the CCSD doubles
amplitudes, and Laibj = 2gaibj − gbiaj. This implementation of
CCSD(T) necessitates an additional o3v4 scaling step compared to
a conventional CCSD(T) implementation, as the standard
CCSD(T) method cannot be easily partitioned into atomic
fragment energy contributions due to the (T) corrections
(Raghavachari et al., 1989). Nevertheless, with this
implementation, the CCSD(T) method can be partitioned
analogously to the standard CC correlation energy (Eriksen
et al., 2015a).

The energy partitioning presented in Eqs 9, 10 defines what is
known as the occupied partitioning scheme. However, DEC utilizes
both local occupied and local virtual orbitals, and as a result, virtual
and Lagrangian partitioning schemes are also formulated (Høyvik
et al., 2012a). These partitioning schemes not only provide
independent paths for evaluating correlation energy, maintain
comparable error control, and yield reliable results, but they also
exhibit distinct characteristics. The virtual and Lagrangian
partitioning schemes tend to generate larger fragments in
practice, yet they still enable error estimation in DEC
calculations. In contrast, the Lagrangian scheme offers some
advantages over the occupied and virtual schemes due to its
variational nature, which leads to errors in amplitudes and
multipliers being roughly proportional to the square root of the
fragment optimization threshold (FOT). Additionally, the
Lagrangian scheme delivers a more balanced treatment of both
occupied and virtual spaces. Although virtual orbitals are generally
less localized than occupied orbitals (Høyvik and Jørgensen, 2016),
resulting in larger fragments within the virtual and Lagrangian
schemes compared to the preferred occupied scheme, DEC
calculations of molecular gradients necessitate the use of the
virtual partitioning scheme. (Kristensen et al., 2012a; Bykov et al.,
2016).

5.1 Atomic fragment optimization

As a continuation of the discussion on partitioning the
correlation energy into atomic fragment and pair fragment
interaction energies, this section focuses on optimizing the
occupied and virtual orbital spaces [P ] and [�P] for atomic
fragment P. The error associated with this optimization is
dictated by the FOT used to obtain the fragment energy EP.

The atomic fragment energy EP in Eq. 9 is determined from the
energy orbital space (EOS), PEOS ≡ P ∪ [�P]. The EOS represents
the orbital space which ensures accurate corrlation energy.
However, due to the coupling between the CC amplitudes,
solving the CC amplitude equation in PEOS is not feasible
(Eriksen et al., 2015a; Ettenhuber et al., 2016). Instead, the
coupling can be accounted for by solving the CC amplitude
equations in an extended orbital space, the amplitude orbital
space (AOS), PAOS ≡ [P ] ∪ [�P](Eriksen et al., 2015a). It is
important to note that the occupied orbitals in the EOS (i ∈ P )
are fixed by the orbital assignment, and the virtual orbital space is
identical for both EOS and AOS. Assuming [P ] and [�P] are
known, the atomic fragment energy EP can be calculated as follows.

1. Solve the CC amplitude equations in PAOS.
2. Extract the CC amplitudes from PAOS to PEOS.
3. Calculate the two-electron integrals in PEOS.
4. Use the CC amplitudes and integrals in PEOS to calculate the

atomic fragment energy as in Eq 9.

In DEC, the strategy to determine the spaces [P ] and [�P] that yield
atomic fragment energies with FOT accuracy consists of two steps:
fragment expansion followed by fragment reduction (Ettenhuber et al.,
2016). In the fragment expansion step, a priority list lPr is generated to
describe the importance of each local orbital for the fragment energy EP,
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utilizing the distance between the center of charge of a given orbital and
the atomic site P due to the locality of correlation effects (Høyvik and
Jørgensen, 2016). However, alternative lists based on numerical overlap
of orbitals or Fock matrix elements have also been tested with similar
results (Ettenhuber et al., 2016). The process begins by selecting an
initial space ([P ] and [�P]) from the priority list, calculating the
fragment energy as previously described, then expanding the orbital
spaces based on the priority list, and subsequently obtaining an
improved fragment energy. This procedure is repeated until the
difference between the last two fragment energies falls below the
FOT. The fragment reduction step involves a binary search to
remove orbitals without introducing errors larger than the FOT in
the atomic fragment energy (Ettenhuber et al., 2016). This reduces the
size of the AOS for atomic fragments, leading to significant
computational savings for pair fragments.

The error control of the atomic fragment optimization comes with
overhead, and improving the fragment optimization procedure is an
ongoing research direction in optimizing the DEC scheme (Riplinger
and Neese, 2013; Ettenhuber et al., 2016). One possible approach to
reducing the overhead is to explore more efficient algorithms or
heuristics that can guide the optimization process and reduce the
number of calculations needed to reach the desired FOT accuracy.

Additionally, for DEC-CCSD or DEC-CCSD(T) calculations,
fragment optimization can be performed at a lower level of theory,
such asDEC-MP2 (Riplinger andNeese, 2013a; Ettenhuber et al., 2016).
This approach can lead to considerable computational savings without
significantly compromising the accuracy of the final results. However, it
is crucial to validate the appropriateness of using a lower level of theory
for the specific system being studied, as some systems might require
higher levels of theory for accurate predictions.

The locality of electron correlation is system-dependent, and the
goal of the fragment optimization procedure is to obtain a method
that provides the same recovery of the correlation energy for all
systems, independently of the complexity of the electronic structure
(Høyvik and Jørgensen, 2016). The fragment spaces tend to be larger
for systems characterized by a delocalized electronic-structure, such
as graphene, than for systems containing only non-conjugated
covalent bonds. In particular, for systems with a delocalized
electronic-structure, it is important to use the most advanced
orbital localization functions, such as the squared fourth moment
localization function (Høyvik et al., 2012a), as these localization
functions can generate localized sets of orbitals that are minimally
system-dependent (Høyvik and Jørgensen, 2016).

Furthermore, incorporating machine learning techniques into the
fragment optimization procedure may offer a promising avenue for
future research (Westermayr et al., 2021). By training machine learning
models on existing datasets of molecular systems, it may be possible to
predict optimal fragment spaces or guide the optimization processmore
efficiently. This approach could potentially reduce the computational
cost associated with the optimization procedure while maintaining the
desired level of accuracy.

5.2 DEC amplitudes and the transformation
of the basis

In the fragment energy calculations of the DEC scheme, the CC
amplitude equations must be solved in the AOS. To achieve this, the

set of local orbitals is transformed into a pseudo-canonical basis by
diagonalizing the local Fock matrix blocks Fij (ij ∈ [P ]) and Fab
(ab ∈ [�P]). The pseudo-canonical basis is traditionally denoted
using capital letters I, J, A, B.

The CC amplitude equations are better conditioned in the
pseudo-canonical basis, and the MP2 amplitudes (Kristensen
et al., 2011; Høyvik et al., 2012b) and (T) intermediates
(Ziółkowski et al., 2010; Eriksen et al., 2015a) can be obtained
non-iteratively using standard canonical CC algorithms. After
solving the amplitude equations in the AOS, the amplitudes must
be transformed back to the local basis (tABIJ → tabij ) in order to extract
the EOS amplitudes and calculate the fragment energy. A similar
operation is performed for the (T) intermediates (Tab

ij and Ta
i in

equation (14)).
While the pseudo-canonical basis is utilized throughout the code

implementation, the transformation to the local basis is model-
dependent. It is worth noting that when the energy is evaluated using
the occupied partitioning scheme in Eqs. 9, 10, transforming the
virtual orbitals to the local basis is not necessary. Moreover, in the
case of the Laplace-transformed variation of the method DEC-RI-
MP2 (i.e., the DEC-LT-RIMP2 method), the amplitudes are directly
obtained in the local basis (Bykov et al., 2016; Bykov and Kjaergaard,
2017).

5.3 Pair fragment calculations

The linear scaling of the DEC scheme is achieved only when the
number of pair fragments scales linearly with the system size.
Dispersion interactions cause the pair fragment interaction energy
ΔEPQ to decay following the R−6

PQ pattern with the distance RPQ
between atomic sites P and Q. By employing a real-space cutoff
Rscreen, pairs with a distance exceeding the distance screening
threshold (e.g., RPQ > Rscreen) can be screened, leading to a linear-
scaling algorithm (Ziółkowski et al., 2010; Kristensen et al., 2011;
Kristensen et al., 2012a; Høyvik et al., 2012b; Kristensen et al.,
2012b; Jakobsen et al., 2013; Olsen et al., 2015). However, this
strategy presents two challenges: (i) the calculated number of pair
fragment interaction energies becomes independent of the FOT,
requiring adjustments to both the FOT and Rscreen in order to
converge to the standard CC correlation energy, and (ii) the pair
fragment interaction energies for a specific pair distance can span
several orders of magnitude indicating that numerous pairs included
within the distance screening threshold are less significant than some of
the pairs excluded. To address these challenges, a pair screening strategy
based on estimating the pair fragment interaction energies can be
considered. This strategy is introduced by rewriting the correlation
energy (Eq. 6) as a sum of effective atomic fragment energies ϵP,

Ecorr � ∑Nfrag

P

ϵP. (15)

The effective atomic fragment energy for fragment P is the sum
of the atomic fragment energy EP and the average pair fragment
interaction energy Eav

P . The latter term describes the interaction
between the atomic site P and the other atomic sites,

ϵP � EP + Eav
P , (16)
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with

Eav
P � 1

2
∑
Q≠P

ΔEPQ. (17)

This process of partitioning a system into fragments is not
exclusive to DEC. Since it is also employed in other fragment-
based quantum chemistry methods (Wang et al., 2014; Fedorov,
2017).

In order to accurately determine the average pair fragment
interaction energy to the FOT accuracy, a pair fragment
screening technique is employed. This technique involves using
minimal orbital spaces to calculate pair energy estimates at the
MP2 level, based on a priority list lPr , such that the estimates recover
a significant portion (usually 80–95%) of the exact MP2 pair
fragment interaction energies, while requiring much less
computational resources. To ensure efficiency, a conservative
real-space cutoff of Rscreen = 30Å ensures a linear-scaling number
of pair energy estimates.

Once the pair energy estimates have been obtained, the
screening proceeds by following this specific strategy.

1. Order all pair energy estimates associated with a Nfrag number of
atomic sites in the molecule within a given P fragment,

|ΔEesti
P1 |≤ |ΔEesti

P2 |/≤ |ΔEesti
PNfrag

|, (18)

2. Sum up the estimated contributions in the list, starting with the
smallest values until it adds up to the FOT,

max
IP

1
2
∑IP
Q�1

|ΔEesti
PQ|⎛⎝ ⎞⎠≤ FOT (19)

3. All pairs ΔEesti
PQ in the ordered list for which Q ≤ IP are then

screened away and not calculated at the target CC level.
4. Repeat Steps 1-3 for all atomic sites.

This procedure, combined with fragment optimization and
basis transformation, serves as the core of the DEC framework.
It facilitates the breakdown of large molecular systems into
smaller, more manageable fragments that can be treated
independently. Consequently, it enables a series of single
fragment and pair fragment calculations, which concentrate
on specific sections of the system, and offers the potential to
take advantage of tensor hypercontraction concepts and linear-
scaling approaches.

5.4 Error estimates

As emphasized earlier, a crucial aspect of practicing
computational quantum chemistry is to recognize and appreciate
the accuracy limitations inherent to the different approaches that
make up the computational molecular method.

In connection with the approximations found in the DEC
framework, it is important to recognize the three primary
assumptions that greatly impact the calculation’s accuracy: (i)
the fragment expansion procedure, which is presumed to
converge with an error deemed negligible relative to the FOT,

(ii) the pair energy estimates and their ability to deliver a
qualitative approximation of the actual pair fragment
interaction energies, confirming that the relevant pair
fragment interaction energies are assessed, and (iii) the errors
in the ultimate pair fragment interaction energies EPQ being
minimal in comparison to the FOT.

The FOT is a crucial aspect of the DEC framework, as it directly
governs the correlation energy error and implicitly manages errors
in the correlated density matrix and molecular gradient. The DEC
framework has been purposefully designed to control the error in
atomic fragment energy EP and average pair fragment interaction
energy Eav

P according to the FOT. This is achieved by determining
the AOS for each atomic fragment in a DEC calculation, ensuring
precision dictated by the FOT through a black-box like algorithm.
The AOS is initially defined with only the nearest neighbor atoms to
P and expands layer by layer, assessing the energy contribution from
each individual orbital in the AOS. It is then examined whether
single orbitals can be removed from the AOS without affecting the
calculation’s precision, allowing the atomic fragment energies to be
determined within the FOT tolerance.

DEC calculations derive properties from the sum of
contributions from atomic fragment and pair fragment
calculations, determined up to the FOT tolerance. An analysis
of numerical experiments has revealed that the accuracy of a DEC
calculation is influenced by a correlation error, which scales with
Nfragments and is dependent on the number of non-Hydrogen
atoms in the system, such that

δEcorr ≈ 2Nfrag.FOT (20)

The error of a DEC calculation compared to a conventional
calculation depends on the FOT for size-intensive properties but
relies on both the FOT and system size for size-extensive properties.
For example, the percentage of correlation energy recovered for a
given FOT is independent of the system size, while the absolute error
in the correlation energy increases linearly with the system size.
Similarly, the error at a specific point in space of the correlated
density or electrostatic potential depends solely on the FOT,
irrespective of the system size.

On the other hand, the error control of the DEC method has
been validated through theoretical analyses and numerical results
for small and medium-sized molecules. For larger molecules,
internal consistency checks can be used to estimate errors in the
calculated DEC correlation energy and electron density, revealing
that DEC errors for size-intensive properties remain consistent
across different system sizes, while errors for size-extensive
properties increase with system size.

DEC calculations are capable of recovering over 99% of the
correlation energy if a sufficiently stringent FOT is employed,
Table 1.

Although FOT can assure a reduction in error compared to the
method’s conventional counterpart, it does not guarantee the
validity of the calculation’s accuracy for the system being studied.
This point is related to a minor alteration of the earlier reflective
question:

What is the maximum number of atoms for which electronic
energy calculations and quantum mechanical methods remain
meaningful and do not lose their significance?
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5.5 The Divide–Expand–Consolidate
parallelization

The DEC algorithm’s attractiveness for high-performance
computing is due in part to its core procedures: fragment
optimization, local energy calculation, and pair fragment
screening. These processes enable the DEC framework to divide
large molecular systems into independent fragments and taking
advantage of tensor hypercontraction concepts (like resolution-of-
identity) and other linear-scaling procedures and optimization on
the fragment level. The method has been applied to study sizable
systems, such as supramolecular wires with up to 40 monomers of 1-
aza-adamantane-trione (AAT) molecules, encompassing
2,440 atoms and 24,440 basis functions (Kjærgaard et al., 2017a;
Kjærgaard et al., 2017b).

Three levels of parallelization using a multi-threaded OpenMP
and MPI implementation exist within the DEC algorithm: coarse,
medium, and fine-grained. Coarse-grained parallelization leverages
the independent nature of fragment energy calculations, allowing
them to be executed in parallel on separate computing units (usually
a user defined team of compute nodes). Meanwhile, medium and
fine-grained parallelization focus on distributing the solution of the
CC amplitude equations for each molecular fragment across
multiple compute nodes within computing unit and individual
threads on a particular node.

At the coarse-grained level, available compute units are
divided into groups under a global work manager that directs
the DEC calculation through a set of local managers. These local
managers each command a group of workers to execute
individual fragment calculations. The global manager
generates an ordered job list based on the workload of each
job, which represents an atomic or pair fragment interaction
energy calculation. The global manager communicates the
required information for each fragment energy calculation to
local groups, starting with the largest fragments. As local groups
become available, the global manager dynamically distributes the
remaining fragment calculations in the job list. The size of the
local group is also dynamic, splitting if the workload is
insufficient to span across the local group, with two new jobs

assigned to the new groups. This combination of dynamic job
distribution and dynamic group size adjustment minimizes
global and local communication losses, ensuring optimal
performance on large parallel machines. Finally, the global
manager calculates the correlation energy based on Eq 6.

The DEC scheme has been used on large compute clusters
and supercomputers like Titan (Kjærgaard et al., 2017a;
Kjærgaard et al., 2017b) and Summit (Luo et al., 2020) at
Oak Ridge National Laboratory, as well as on GPUs (Bykov
and Kjaergaard, 2017). Several methods have been implemented
using the DEC strategy, including DEC resolution-of-the-
identity MP2 (Bykov and Kjaergaard, 2017) with gradients
(Bykov et al., 2016), densities (Kristensen et al., 2012a),
Laplace–transformed (Kjærgaard, 2017), and
Explicitly–correlated (Wang et al., 2016) excitation energies
using local framework (LoFEx) (Baudin and Kristensen, 2016),
CCSD (Baudin et al., 2017); CCSD(T) (Eriksen et al., 2015a);
and multi–layer DEC (Barnes et al., 2019).

5.6 Demonstrative calculations

To demonstrate the capability of the DEC methodology for
incorporating correlated techniques, we applied it to simulate
11 biologically and pharmacologically significant molecules at the
MP2 level, utilizing the resolution of identity (RI) approximation in
conjunction with the cc-pVDZ basis set (Dunning Jr, 1989). The
optimized molecular geometries were obtained with the Berny
algorithm available in the Gaussian 16 suite of programs (Frisch
et al., 2021). Initial guess geometries for codeine, remdesivir,
ampicillin, tetrahydrocannabinol (THC), and fentanyl were
computed in the gas phase using Hartree-Fock (HF) and the
6–311++G (d,p) basis set (Krishnan et al., 1980; Frisch et al.,
1984). These structures were subsequently optimized in water
and pentylethanoate with the Polarizable Continuum Model
(PCM) to simulate the aqueous and lipidic effects within a
biological cellular system. Initial structures for protonated
deoxyribonucleic acid (DNA) fragments were optimized with HF/
STO-3G (Hehre et al., 1969; Collins et al., 1976) in both gas and

FIGURE 2
Molecular structures of codeine (pain reliever), remdesivir (antiviral), ampicillin (antibiotic), THC (principal psychoactive constituent of cannabis),
fentanyl (pain medication); molecular structures of B-DNA fragments with 2, 4, 8, 10, and 14 nucleic acids.
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aqueous phases. These initial geometries were later refined using the
BP86 functional with Orca (Neese et al., 2020) and the cc-pVDZ
basis set. Figure 2 illustrates the molecular structures of five

protonated canonical right-handed DNA helix (B-DNA)
fragments with two (B-DNA (2)), four (B-DNA (4)), eight
(B-DNA (8)), and ten (B-DNA (10)) nucleic acids, as well as five
common drugs (pain relievers, an antiviral, an antibiotic, and a
cannabinoid). Additionally, the molecular structure reported by Q.
Zhang et al. for a protonated Cyclic Polyamide-DNA Complex,
FDNA (Zhang et al., 2004), was considered in this study and
computed with the cc-pVDZ basis set (see Figure 3).

DEC framework offers a significant advantage in its adaptability
to established techniques for accelerating molecular calculations.
One such technique is RI for reducing four-index integrals, which
offers substantial computational savings for DEC calculations. The
RI approximation can be straightforwardly applied on the fragment
level for any CC level of excitation.

Table 2 displays the HF and RIMP2 total energy values for the
11 computed molecules. The results demonstrate the accuracy of the
DEC framework for modeling large and complex systems, as well as its
effectiveness in reducing computational cost. Table 3 presents the CCSD
total energies for three representative molecules. These results further
showcase the adaptability of the DEC framework to more advanced
correlated methods and its ability to provide accurate results for large
and complex systems. The flexible nature of the DEC framework makes
it amenable to the integration of various correlated methods for the
computation of total energies and molecular properties.

The DEC approximation is particularly useful if time-to-solution
is to be optimized. Due to Embarrassingly parallel nature of the DEC
the time-to-solution can be brought down practically to any number
provided a computing resources are available. Obviously, this comes
at the cost of much higher count of floating point operations (FLOPs).
Thus for small and medium size systems it would be more beneficial
to use canonical implementation or approximations able to be
optimized for the optimal FLOPs count.

The DEC framework presents a flexible and adaptable strategy for
modeling intricate and large molecular systems without compromising
precision and computational efficiency. By leveraging well established
techniques such as the RI approximation and integrating advanced
correlated methods, the DEC framework empowers computational
chemistry in HPC with a powerful tool. Although, the DEC
framework provides a versatile and robust black-box like approach
to addressing the challenges of contemporary molecular modeling,
there are still several obstacles thatmust be overcome to establish it as an
essential tool in the realm of computational chemistry.

5.7 Challenges and opportunities

Although the DEC framework combined with electron
correlation methods may appear attractive for computing large

FIGURE 3
Molecular structure of the protonated Cyclic Polyamide-DNA
Complex.

TABLE 1 Percentage of correlation recovered as a function of the FOT.

FOT ΔDEC (%)

10–3 98.2

10–4 99.8

10–5 99.985

10–6 99.998

TABLE 2 DEC-RIMP2 total energy for 11 biologically relevant molecules, all
values are in a.u.

Molecule Hartree-Fock energy RIMP2 total energy

Codeine −972.862701 −975.992852

Remdesivir −2,309.345791 −2,315.468663

Ampicillin −1477.391759 −1480.860488

THC −962.501681 −965.745358

Fentanyl −1033.262311 −1036.726093

B-DNA (2) −2,901.318601 −2,907.974428

B-DNA (4) −5650.439019 −5663.251418

B-DNA (8) −11148.833671 −11174.064299

B-DNA (10) −13882.030042 −13913.440352

B-DNA (14) −19348.404412 −19392.241663

FDNA −32403.080000 −32480.965782

TABLE 3 DEC-CCSD total energies for three representative molecules, all values
in a.u.

Molecule Hartree-Fock energy CCSD total energy

Codeine −972.862700 −976.107748

Fentanyl −1033.262311 −1036.877810

THC −962.501681 −965.914124
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systems, practitioners in computational chemistry should be
mindful of the applicability and limitations of each method. It is
crucial to remmmber that a given model is only useful within a
specific range of applications, and its validity may not extend to all
types of molecular systems or sizes. In this regard, the DEC
framework with MP2 and CC methods presents a vulnerability;
while MP2 and CC methods have demonstrated their accuracy and
effectiveness for small to medium molecular systems, their
systematic validation for large systems remains to be conducted.

Moreover, many atomic and molecular processes necessary for
experimental applications are described by measurements inferred
from energy differences. A single total energy of a molecular system
is not chemically relevant unless the energies for the initial and final
states, accounting for the change in energy during the chemical
process, are available. Additionally, it has been established that an
accuracy of 1 kcal/mol is necessary for quantum mechanical
simulations to make reliable predictions for thermochemical
properties, chemical kinetics, reactivity profiling, and chemical
transformations. The use of DEC or other fragmentation
approaches for molecular fragments can result in the recovery of
correlation energy exceeding 1 kcal/mol for large molecules. This
raises concerns about the validity of the electronic energy error
propagation in large systems. When the fragments computed have a
contribution to the total energy larger than the accepted error of
1 kcal/mol, it becomes challenging to discuss the accuracy of the
correlated total energy.

Moreover, for large molecular systems, electron-electron effects
and electronic energy become less important due to the contribution
of vibrational effects. Therefore, practitioners should consider the
largest number of atoms for which it is still reasonable to compute
solutions of the Schrödinger equation. Although a systematic
evaluation of the upper limit size for quantum chemistry methods
is yet to be conducted, it is well-known that for large molecular
systems, the transition from a quantum mechanical domain to a
statistical mechanical one occurs. Depending on the system size, one
should evaluate whether to use approaches from quantummechanics,
statistical mechanics, fluid mechanics, or thermodynamics.

Nevertheless, correlated electron methods such as CI, CC, and
DEC CC can play a crucial role in the development and training of
ML and AI chemical applications, where electronic structure
elucidation becomes secondary and pragmatic insights are
paramount for task prioritization. The DEC framework, in
particular, could be a natural choice for ML chemistry models
with architectures based on diffusion, active learning, generative
adversarial models, normalizing flows, and transformers.

For large systems, properties depending on a correct description
of electronic behavior are often localized to a specific site in the
molecule or molecular system. Accounting for all electron-electron
correlations may be computationally wasteful due to the small
contributions from electrons far from the molecular site where
the electronic process occurs. Furthermore, accessing many final
states needed to describe chemical transformations can be
challenging due to variational collapse, symmetry breaking, spin
contamination, and the consideration of multiple configurations.
Thus, direct methods for computing localized electron-electron
properties should be a more effective way to tackle electron-
driven phenomena in large molecules. Quantum chemistry
methods that directly compute the desired property of the

molecule, such as those based on Green’s functions, equation of
motion and response theories, are particularly important for large
molecules. In the following section, the application of one such
method in the framework of the CC theory will be explored.

6 Cluster perturbation theory

An alternative method to the DEC-CCmodel and other localized
ab-initio approaches that can be efficiently adapted for use onmodern
supercomputers to enable CC quality calculations on large molecular
systems is the recently developed Cluster Perturbation theory (CP)
(Baudin et al., 2019; Pawłowski et al., 2019a; Pawłowski et al., 2019b;
Pawłowski et al., 2019c; Pawłowski et al., 2019d; Hillers-Bendtsen
et al., 2022; Høyer et al., 2022; Olsen et al., 2022). CP theory offers a
hybrid approach that combines CC theory and the Møller-Plesset
(Møller and Plesset, 1934) partitioning of the wave-function. This
unique combination helps overcome the limitations of the individual
models and offers a more comprehensive and accurate approach to
molecular calculations (Bartlett and Silver, 1974; Binkley and Pople,
1975; Pople et al., 1976; Bartlett and Shavitt, 1977; Krishnan and
Pople, 1978; Raghavachari et al., 1989; Eriksen et al., 2014; 2015b;
Eriksen et al., 2015c; Kristensen et al., 2016).

CP theory introduces a new class of perturbation models that
rely on a correlated zeroth-order state, which can be truncated at
any excitation level, thereby avoiding high excitation levels that
have a negligible effect on molecular properties. Perturbation
series for both energy and molecular properties, including
excitation energies, can be determined by calculating small
perturbation corrections, which are obtained by taking the
difference between the energy and molecular property for the
CC parent and CC target states.

Compared to coupled cluster perturbation theory (CCPT)
energy and CCPT Lagrangian series, CP theory exhibits a faster
convergence and yields superior results. It allows for the calculation
of perturbation series for both ground-state energy and excitation
energies, treating the CC parent state Jacobian as a zeroth-order
contribution. Excitation energies in CP theory can be determined
using either response function theory or equation-of-motion
coupled cluster (EOM-CC) theory.

CP theory’s unique pathway that connects the determination of
the CC parent state and the CC target state makes it possible to
determine CP series for both energy and molecular properties.
Moreover, its incorporation of only one additional excitation
level typically results in a more robust perturbation series and,
hence, better convergence. Furthermore, non-iterative and easily
parallelizable formulations can be derived within CP theory and
some the targeted model is a higher-level CCmodel rather than a full
configuration interaction (FCI) solution, the derived corrections
remain reasonably small.

A brief introduction to CP theory for electronic structure
calculations, specifically for excitation energies, is presented in
the following section. Additionally, the development of massively
parallel implementations of CP theory and some numerical
illustrations are discussed. For a comprehensive understanding of
CP theory, interested readers may refer to (Pawłowski et al., 2019a,b;
Baudin et al., 2019; Pawłowski et al., 2019c,d; Høyer et al., 2022;
Olsen et al., 2022; Hillers-Bendtsen et al., 2022).
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6.1 Standard CC theory for excitation
energies

In the standard CC theory, the coupled cluster (CC) wave
function (Čížek, 1966) is written as

|CC〉 � eT|HF〉, (21)
where |HF〉 is the Hartree-Fock reference state. Furthermore, in the
above expression the cluster operator reads

T � ∑
i

∑
μi

tμiθμi , (22)

where the cluster amplitude is denoted tμi, and it is associated with
the many-body excitation operator θμi which, when applied to the
Hartree-Fock reference state, generates an excited determinant:
|μi〉 � θμi|HF〉. Thus, the energy may be determined as

E0 � 〈HF|e−TH0e
T|HF〉 � 〈HF|HT

0 |HF〉. (23)
In this energy expression, the electronic Schrödinger equation has
been multiplied from the left with e−T and then projected against the
Hartree-Fock state. Consequently, the corresponding amplitude
equations are given as

〈μi|e−TH0e
T|HF〉 � 〈μi|HT

0 |HF〉 � 0. (24)
The similarity transformed Hamiltonian has been introduced,

HT
0 � e−TH0e

T. (25)
Based on linear response theory, the CC excitation energies may

be obtained as eigenvalues of the CC Jacobian, J (Harris, 1977;
Dalgaard and Monkhorst, 1983), such that,

JRx � ωxRx, (26)
LxJ � Lxωx, (27)
LxRy � δxy, (28)

The CC Jacobian,

Jμi]j � 〈μi| HT
0 , θ]j[ ]|HF〉, (29)

is non-Hermitian and therefore the left and right egienvectors, Lx
and Rx (which represent the excited-state wave function) are not
Hermitian conjugates of each other. The Jacobian formulation of CP
theory defines a numerical problem that can be solved using a block
Davidson eigensolver, where the eigenvalues are determined by an
iterative procedure starting from the lowest eigenvalue.

6.2 Cluster perturbation theory for
excitation energies

For excitation energies, the CC target excitation space, 1 ≤ i ≤ t, is
divided into two, the parent excitation space and the auxiliary excitation
space. The parent excitation space comprises the excitations from1≤ i≤
p, whereas the auxiliary space includes the excitations from p < i ≤ t.

The CC parent state wave–function is defined as1

|CC*〉 � e
*T|HF〉. (30)

This wave–function is defined by a truncated cluster operator which
covers the excitations in the parent space.

*T � ∑p
i�1

*Ti, (31)
*Ti � ∑

μi

*tμiθμi. (32)

Then, the corresponding energy and amplitude equations for the
parent state read

*E0 � 〈HF|H*T
0 |HF〉, (33)

〈μi|H
*T
0 |HF〉 � 0, 1≤ i≤p. (34)

Subsequently, the excitation energies are obtained from the
eigenvalue problem involving the Jacobian of the parent space
which is denoted by the left superscript P,

PJ*Rx � *ωx
*Rx, (35)

*LxPJ � *Lx*ωx, (36)
PJμi]j � 〈μi| H

*T
0 , θ]j[ ]|HF〉, 1≤ i, j≤p. (37)

Now, let’s assume that the left and right eigenvectors are
orthonormal,

*Lx*Ry � δxy. (38)

Then, the CC target wave function can be parameterized
according to

|CC〉 � eT|HF〉 � e
*T+δT|HF〉 � eδT|CC*〉, (39)

where the cluster operator is split into the parent-space component
and the correction that arises due to the presence of the auxiliary
space,

T � *T + δT, (40)
with the correction term affecting both the parent and the auxiliary
space,

δT � ∑t
i�1

∑
μi

δtμiθμi. (41)

The target state amplitudes are split in an analogous manner,

tμi � *tμi + δtμi , 1≤ i≤ t, (42)
where the parent space amplitudes have a vanishing auxiliary
excitation space component

*tμi � 0, p< i≤ t. (43)
Thus, the amplitude equations become

Ωμi � 〈μi|e−δTH
*T
0 eδT|HF〉 � 0, 1≤ i≤ t. (44)

Finally, the expression for the Jacobian of the target state reads

Jμi]j � 〈μi| e−δTH
*T
0 eδT, θ]j[ ]|HF〉, 1≤ i, j≤ t. (45)

The corrections to the excitation energy of the CC parent state are
derived by an expansion of the different components that enter the
CC target state eigenvalue problem in Eq. 2) in orders of the
similarity-transformed fluctuation potential, Φ*T.

1 The asterisk in the equation should not be confused with complex
conjugation.
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To this end, the ground-state parent-state cluster amplitudes are
initially expanded in the orders of Φ*T,

tμi � t 0( )
μi

+ δt 1( )
μi

+ δt 2( )
μi

+/ , 1≤ i≤ t (46)
with

t 0( )
μi

� *tμi . (47)
An analogous expansion is applied to the Jacobian,

Jμi]j � J 0( )
μi]j

+ J 1( )
μi]j

+ J 2( )
μi]j

+/ , 1≤ i, j≤ t, (48)
to the right excited-state vector

Rx � Rx 0( ) + Rx 1( ) + Rx 2( ) +/ (49)
with

Rx 0( ) � *Rx, (50)
and the corresponding excitation energy

ωx � ω 0( )
x + ω 1( )

x + ω 2( )
x +/ (51)

with

ωx 0( ) � *ωx. (52)
One of the key concepts of the CP theory is that the zeroth-order
Jacobian, J(0), in Eq. 48 does incorporate a term that is of first order in
Φ*T. (This is similar to the “pseudo-perturbation” concept introduced,
for example, in the derivation of the non-iterative second-order
correction to the random-phase approximation excitation energies.
(Christiansen et al., 1998) By this particular choice, the zeroth-order
Jacobian, J(0), is guaranteed to correspond to the Jacobian of the parent-
state model. To see this, consider the CC extended-parent-state
Jacobian,

*Jμi]j � 〈μi| H
*T
0 , θ]j[ ]|HF〉 i, j � 1, 2, . . . , t, (53)

Notice that *Jμi]j has the same structure as the Jacobian of the parent
space, pJμi]j in Eq. 37, but the difference is that the indices i and j run
for *Jμi]j over the entire target space rather than just the parent space
(hence the word “extended” in the name of *Jμi]j ). The extended-
parent-state Jacobian may now be split into the zeroth- and first-
order terms,

*J � J 0( ) + J 1( ), (54)
where the zeroth-order part does contain a Φ*T term.

J 0( ) � 〈μP| H*T
0 , θ]P[ ]|HF〉 0
0 〈μA| f*T, θ]A[ ]|HF〉( ) (55a)

J 1( ) � 0 〈μP| Φ*T, θ]A[ ]|HF〉
〈μA| Φ*T, θ]P[ ]|HF〉 〈μA| Φ*T, θ]A[ ]|HF〉( ), (55b)

where the P and A subscripts denote the parent- and auxiliary-
space components, respectively.

We have illustrated (with the excitation-energy example) the
conceptual foundations of the CP theory, and showed how these
foundations guarantee that the zeroth order wave function and its
properties are those of the parent excitation space. At infinite order,
the target state and its properties are formally recovered.

In practice, the target-state quality is usually recovered at third
order (Baudin et al., 2019). The excitation energy corrections
through third order become:

ω 1( )
x � 0, (56)

ω 2( )
x � ∑t

q�p+1
〈*Lx| Φ*T, δT 1( )

q[ ], *Rx[ ]|HF〉 + 〈*Lx| Φ*T, R 1( )
x[ ]|HF〉,

(57)
ω 3( )
x � 〈*Lx| Φ*T, δT 2( )

q[ ], *Rx[ ]|HF〉

+1
2

∑t
q,r�p+1

〈*Lx| Φ*T, δT 1( )
q[ ], δT 1( )

r[ ], *Rx[ ]|HF〉

+ ∑t
q�p+1

〈*Lx| Φ*T, δT 1( )
q[ ], R 1( )

x[ ]|HF〉

+〈*Lx| Φ*T, R 2( )
x[ ]|HF〉. (58)

The quantities needed to determine excitation energies through
third order are collected in Table 4.

6.3 A strategy for massively parallel
implementations of cluster perturbation
theory in singles and doubles excitation
space

As discussed in (Baudin et al., 2019), CP theory excitation
energies have been explicitly derived up to the third order for a
CC singles parent excitation space and a doubles auxiliary excitation
space in the CPS(D-3) model. A significant innovation over
traditional methods is that the calculations of ω(3)

x are non-
iterative in the doubles excitation space. The same, of course,
pertains to ω(2)

x , which turns out to be identical to the well-
known CIS(D) model (Head-Gordon et al., 1994). Furthermore,
for computing excitation energies, the CP framework allows
contributions to ω(2)

x and ω(3)
x from batches over a virtual

molecular orbital index to be determined independently and
subsequently summed, which greatly enhances the efficiency and
parallelizability of the method. In the following sections, the most
crucial aspects of the CP theory implementation for the excitation
energies are discussed. For a more extensive and thorough insight
into the algorithm, including performance, wall times,
computational cost, and various numerical tests, the reader is
encouraged to consult (Baudin et al., 2019; Hillers-Bendtsen
et al., 2023).

6.4 The singlet biorthonormal basis

Efficient parallelization of the third-order excitation energy
correction, ω(3), in the CP method requires the use of singlet
biorthonormal basis working equations. By expressing the
excitation energy corrections to the coupled cluster singles
(CCS) excitation energy in singlet biorthonormal basis, the
working equations for the second-order correction of the
CPS(D-3) excitation energy model (Baudin et al., 2019) can be
obtained as
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ω 2( )
x � −∑

ai

LCCS
ai ∑

jckd

RCCS
di t 1( )

ajckLkcjd + ∑
bjdl

RCCS
dl

~t
1( )
aibjLjbld

⎡⎢⎢⎣
−∑

bjcl

RCCS
al t 1( )

bjciLjblc +∑
bck

~R
1( )
bick kc|ab( ) −∑

jck

~R
1( )
ajck kc|ji( )⎤⎥⎥⎦,

(59)
where Lpqrs = 2 (pq|rs) − (ps|rq), and the barred integrals may be

represented by

pq�|rs( ) � P̂
pr

qs ∑
αβγδ

�XαpCβq + Cαp
�Yβq( )CγrCδs αβ|γδ( ), (60)

with.
�Xαi � 0, �Xαa � −∑

i

CαiR
CCS
ai , (61a)

�Yαi � ∑
a

CαaR
CCS
ai , �Yαa � 0, (61b)

where the i,j,k,l and a,b,c,d indices denote molecular orbitals
(MOs) that are, respectively, occupied and unoccupied in the
reference Hartree-Fock state. The Greek indices pertain to the
atomic-orbital (AO) basis and Cαp are AO-to-MO
transformation coefficients. Adopting the conventional approach
for computing the tensor elements (Helgaker et al., 2000), the first-
order cluster amplitudes read

~t
1( )
aibj �

2 ai|jb( ) − aj|ib( )
εi − εa + εj − εb

, (62)

whereas the first-order right eigenvector is symmetrized and written
in the singlet basis as

~R
1( )
aibj �

2 ai�|jb( ) − aj�|ib( )
εi − εa + εj − εb + ωCCS

. (63)

The third-order excitation energy correction may be
formulated via

ω 3( )
x � ∑

aibj

~t
2( )
aibj P̂

ab

ij R
CCS
ai

�Fjb − ia�|jb( )[ ]
+ ∑

aibj

~R
2( )

aibj + 2RCCS
ai t 2( )

bj − RCCS
aj t 2( )

bi[ ] ai�|bj( ), (64)

where the expression involving the two-electron integral is
defined by

ia�|jb( ) � P̂
ij

ab ∑
αβγδ

�XαiCβa + Cαi
�Yβa( )CγjCδb αβ|γδ( ), (65)

with

�Xαi � ∑
j

Cαj ∑
b

LCCS
bi RCCS

bj � ∑
j

CαjD
CCS
ij (66)

�Yαa � ∑
b

Cαb ∑
j

LCCS
aj RCCS

bj � ∑
j

CαbD
CCS
ab . (67)

Finally, the second-order doubles cluster amplitudes and right
eigenvectors may be expressed as

TABLE 4 The cluster amplitudes, the Jacobian and its right eigenvector through third order. εμi denotes the orbital energy difference between orbitals that differ in
the |HF〉 and |μi〉 determinants. Sip is a step function, which vanishes for i ≤ p and equals 1 otherwise.

δt(1)μi
= 0 1 ≤ i ≤ p

εμiδt
(1)
μi

� −〈μi|Φ*T|HF〉 p < i ≤ t

∑p
j�1∑]jJ

P
μi]j

δt(2)]j � −∑t
j�p+1∑]j〈μi|[Φ*T, θ]j]|HF〉δt(1)]j

1 ≤ i ≤ p

εμiδt
(2)
μi

� −∑t
j�p+1∑]j〈μi|[Φ*T, θ]j]|HF〉δt(1)]j

p < i ≤ t

J(0)μi]j � 〈μi|[H′T
0 , θ]j]|HF〉(1 − Sip)(1 − Sjp)+ε]jδμi]jSipSjp 1 ≤ i, j ≤ t

J(1)μi]j
� 〈μi|[Φ*T, θ]j]|HF〉(1 − Sip)Sjp
+〈μi|[Φ*T, θ]j]|HF〉Sip(1 − Sjp)
+〈μi|[Φ*T, θ]j]|HF〉SipSjp

1 ≤ i, j ≤ t

J(2)μi]j
� ∑t

q�p+1〈μi|[[Φ*T, δT(1)
q ], θ]j]|HF〉 1 ≤ i, j ≤ t

J(3)μi]j
� ∑t

q�1〈μi |[[Φ*T, δT(2)
q ], θ]j]|HF〉

+1
2∑t

q,r�p+1〈μi|[[[Φ*T, δT(1)
q ], δT(1)

r ], θ]j]|HF〉
1 ≤ i, j ≤ t

Rx(1)
]j

= 0 1 ≤ i ≤ p

(εμi − *ωx)Rx(1)
]j � −〈μi|[Φ

*T, *Rx]|HF〉 p < i ≤ t

∑p
j�1∑]j(JPμi]j − *ωxδμi]j)Rx(2)

]j � ω(2)
x

*Rx −∑t
q�p+1〈μi|[[Φ

*T, δT(1)
q ], *Rx]|HF〉

−〈μi|[Φ
*T, Rx(1)]|HF〉

1 ≤ i ≤ p

(εμi − *ωx)Rx(2)
]j � −(∑t

q�p+1〈μi |[[Φ
*T, δT(1)

q ], *Rx]|HF〉
+〈μi|[Φ

*T, Rx(1)]|HF〉)
p < i ≤ t
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~t
2( )

aibj �
2Xt

aibj −Xt
ajbi

εi − εa + εj − εb
(68)

and

~R
2( )

aibj �
2XR

aibj −XR
ajbi

εi − εa + εj − εb
, (69)

where the second order intermediates Xt
aibj and XR

aibj are given in
Tables 5 and VI of Ref. (Baudin et al., 2019).

6.5 The multi-node multi-GPU accelerated
CPS(D-3)

The implementation of the CPS(D-3) is based on the RI
approximation (Vahtras et al., 1993; Hättig and Weigend, 2000)
for two-electron repulsion integrals, which facilitates the efficient
calculation of ω(3) in batches over a virtual index. The RI
approximation is achieved by constructing three-center integral
fitting coefficients from an auxiliary basis set using the Coulomb
metric:

BP
pq � ∑

P

pq|P( ) P|Q( )−1/2. (70)

This allows the four-index two-electron repulsion integrals to be
represented by

pq|rs( ) � ∑
PQ

pq|P( ) P|Q( )−1 Q|rs( ) � ∑
P

BP
pqB

P
rs. (71)

The three-index fitting coefficients obtained from the RI approximation
can be written to disk and read into memory in batches over a virtual
index. This enables the calculation of the third-order excitation energy
correction using a massively parallel algorithm that can efficiently adapt
to the available computational resources.

By calculating the incremental contributions to ω(3)

independently and on-demand for each batch, the need to store
fourth-order tensors in main memory and recalculate the first-order
doubles amplitudes t(1)2 is eliminated. This allows for scalability of
the batch size according to the available memory. The main CPS(D-
3) algorithm is summarized by Algorithm 1.

Step 1: Initialize transformation matrices, integral

fitting coefficients, and Fock matrices

Step 2: Calculate fully virtual three index integral

fitting coefficients and distribute in global memory

for A (batch over virtual index a) do

Step 3.1: Calculate second order doubles

intermediate Xt
Aibj

Step 3.2: Calculate (iA�|jb)
Step 3.3: Update excitation energy

contribution,

ω(3) � ω(3) +∑a∈A∑ibj

(2Xt
aibj−Xt

ajbi )
εi−εa+εj−εb (P̂ab

ij R
CCS
ai

�Fjb − (ia�|jb))
end for

Step 4: Deallocate BP
�ia
and BP

i�a from memory

Step 5: Calculate three center integral fitting

coefficients B�ai, Ba�i, and B�ij

for A (batch over virtual index a) do

Step 6.1: Calculate second order doubles

intermediate XR
Aibj

Step 6.2: Calculate (Ai�|bj)
Step 6.3: Update excitation energy

contribution,

ω(3) � ω(3) +∑a∈A∑ibj(
(2XR

aibj−XR
ajbi )

εi−εa+εj−εb + 2RCCS
ai t(2)bj − RCCS

aj t(2)bi )(Ai�|bj)
end for

Algorithm 1.Massively Parallel Algorithm for Calculating the Third
Order Excitation Energy Correction to CCS via the CPS(D-3) model.

The CPS(D-3) algorithm described in Algorithm 1 is parallelized for
distributed memory architectures using a master-worker model and
MPI. The algorithm for the ω(3) calculation is initiated by the master
rank, which determines the transformation matrices �X, �Y , �X, and �Y .
Next, the algorithm calculates the three-center integral fitting
coefficients, BP

ai, BP
ij, BP

�ia
, and BP

i�a, followed by the one-index
transformed Fock matrices, �Fia, �Fij′, and �Fab′. Finally, the fully
virtual three-index integral fitting coefficients, BabP and BP

�ab, are
determined. Once these quantities are determined by the master
rank, they are broadcasted to all other ranks. To distribute the fully
virtual three index integralfitting coefficients, tiled distributed tensors are
utilized through the Scalable Tensor Library (ScaTeLib) (Ettenhuber,
2023). Subsequently, the master rank assigns the calculation of the first
contributions to ω(3) to the other ranks, to be computed in batches over
the virtual index a. These ranks execute the computation of the
contribution to ω(3) for a particular batch and return the incremental
contribution. The master rank then accumulates these
incremental contributions to determine the total ω(3)

correction. After all workers complete the first loop of
Algorithm 1, the master node identifies a new set of three
center integral fitting coefficients required for the second
contribution to ω(3), which is computed in the second loop of
Algorithm 1. The master rank then assigns the computation of
the second contribution to ω(3) to the other ranks in batches over
the virtual index a. This process leads to the determination of the
full ω(3) correction.

In the primary algorithm of the CPS(D-3) implementation,
Algorithm 2 is employed to calculate the Xt

aibj intermediates for a
given batch A. Minor modifications are made to utilize the
algorithm for the computation of XR

aibj; Algorithm 2 begins by
calculating the first-order correction for the doubles excitation
amplitudes, t(1)Aidk. It then retrieves the tiled distributed tensor BP

cA.
The algorithm proceeds with two nested loops, iterating over
virtual indexD in batches, and occupied index L in batches. In the
loop over virtual index D, several intermediate values are
computed, such as t(1)AiDk (bD|kj) (cA|bD), t(1)AkDj, and t(1)Djci.

TABLE 5 The first 5 roots for the retinal excited states, all values in eV.

Root CCS CPS(D-2) CPS(D-3)

1 3.274 2.370 2.498

2 5.038 3.621 3.930

3 6.105 4.650 4.874

4 6.161 4.443 4.560

5 6.993 5.388 5.590
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These values are used to iteratively update the Xt
Aibj. Once this

loop is completed, the algorithm proceeds with the loop over the
occupied index L. Here, t(1)AkbL and (ik|jL) are calculated and used
to further update the Xt

Aibj value. After completing the loop over
L, the algorithm calculates YP

Ai outside of the loops and uses it to
finalize the update of the Xt

Aibj value. This method allows for an
efficient and systematic computation of the first-order correction
to the doubles excitation amplitudes and theXt

aibj (orX
R
aibj) value

for a given batch A, accounting for the contributions from both
occupied and virtual indices in the process.

Step 1: Calculate first-order correction for doubles

excitation amplitudes, t(1)Aidk � (Ai|dk)/(εi − εA + εk − εd)
Step 2: Retrieve tiled distributed tensor BP

cA

for D (batch over virtual index) do

Step 3.1: Extract t(1)AiDk from t(1)Aidk

Step 3.2: Get tiled distributed tensor BP
bD

Step 3.3: Calculate (bD|kj)

Step 3.4: Update Xt
Aibj using t(1)AiDk and (bD|kj)

Step 3.5: Update Xt
Aibj using t(1)AkDj and (bD|ki)

Step 3.6: Calculate (cA|bD)

Step 3.7: Calculate first-order correction for t(1)Djci

Step 3.8: Update Xt
Aibj using t(1)Djci and (cA|bD)

end for

for L (batch over occupied index) do

Step 4.1: Extract t(1)AkbL from t(1)Akbl

Step 4.2: Calculate (ik|jL)

Step 4.3: Update Xt
Aibj using t(1)AkbL and (ik|jL)

end for

Step 5: Calculate YP
Ai using the given summation formula

Step 6: Update theXt
Aibj value using the calculated values

of YP
Ai and BP

bj

Algorithm 2. Algorithm for calculating the intermediateXt
aibj for a

given batch A.
Algorithm 1; Algorithm 2 provide a scheme that enables the

calculation of CPS(D-3) excitation energies for system sizes beyond the
reach of conventional CCSD calculations. To perform all the costly
tensor contractions in each batch, these algorithms use the Tensor
Algebra Library for Shared Memory Computers (TALSH) (Lyakh,
2023), which transfers them to GPUs. Open Multiprocessing (OMP)
allows each rank to exploit shared memory parallelism locally.
Moreover, the computation of 〈μ1|[Φ, T(1)

2 ]|HF〉 is parallelized as
the O(N5) scaling of this term is a bottleneck for larger systems.

6.6 Numerical illustrations: CPS(D-3)
excitation energies

In the case of CPS(D-n) methods, the retinal molecule (see
Figure 4) with a cc-pVDZ basis set serves as an excellent example of
a molecule with degenerate orbitals and delocalized electrons. This
molecule is also of significant importance due to its biological role in
photochemical reactions. The retinal system contains 63 atoms, and
for the demonstrative calculation, 540 basis functions and
1932 auxiliary basis functions were employed. The calculation
was performed using the GPU-accelerated LS-Dalton
implementation on the Summit supercomputer at Oak Ridge
National Laboratory. The first five roots, corresponding to the
first excitation energies, are summarized in the table below.

The total time for the CPS(D-3) calculation on the retinalmolecules
was less than 20 min using 64MPI processes. This balance betweenwall
time and computational resources makes approximations such as
CPS(D-3) practical tools capable of providing experimental
molecular scientists with chemical observables at an accuracy of the
CC target model (in this case, CCSD).

7 Discussion and outlook

The DEC scheme presents a divide-and-conquer linear-scaling
and massively parallel framework for CC calculations, assuring
error control in a black-box manner. These characteristics make
DEC an enticing computational basis for molecular modeling on
extensive molecular systems. Specifically, the DEC scheme imparts
CC methods with computational abilities that are generally
unattainable with conventional CC algorithms. Nevertheless, the
DEC framework also faces challenges, such as the high DEC
prefactor resulting from the need to recalculate integrals and
amplitudes due to overlapping orbital spaces across different
fragments.

In single compute node calculations, the crossover point in
computational effort between DEC and a traditional, canonical
calculation arises in large molecular systems. If a canonical
calculation is achievable, it is likely more efficient than the DEC
calculation. However, when multiple compute nodes are available,
the massively parallel nature of the DEC algorithm leads to a
reduced time-to-solution compared to a canonical calculation. As
floating point operations continue to become more cost-effective
and the number of cores on a compute node increases,
parallelization will be crucial, and a considerable amount of
recalculation will be acceptable if it facilitates a massively
parallel computational strategy.

The DEC scheme, in principle, lays the foundation for linear-
scaling and massively parallel implementations of any CC
model. However, multiple technical challenges must be
addressed before DEC can become a mainstream tool for
more accurate CC models. For example, although the error
control of the DEC-CCSD(T) method has been tackled, the
current DEC-CCSD(T) algorithm can only be applied to large
molecules for loose FOT values due to the fragment sizes
encountered. When analyzing large molecules with a triple-ζ
quality basis set, the resulting fragments often contain over
1000 basis functions, making such calculations impractical

FIGURE 4
Retinal molecule: 63 atoms, 540 basis functions and
1932 auxiliary basis functions.
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even for massively parallel CCSD(T) implementations and
hindering high-accuracy DEC-CCSD(T) applications. The large pair
fragments, however, are frequently associated with minor energy
contributions, and it may be possible to further reduce the pair
orbital spaces without sacrificing the accuracy of the final correlation
energy. Alternatively, the scaling of high-level CC fragment calculations
could be decreased by considering tensor factorization techniques, PNOs,
or other fragment-specific orbitals. Combining the DEC scheme with
PNO-based local CC methods, for instance, would fully harness the
sparsity of correlation effects in each fragment calculation, enabling CC
calculations on systems of unprecedented sizes by removing all
bottlenecks of wave function-based approximations through the DEC
scheme—provided that the HF solver which generates the underlying
reference is implemented with comparable efficiency.

Lastly, it is essential to note that the implementation of the DEC
scheme ensures performance portability, allowing the DEC scheme to
automatically benefit from new hardware developments and expand its
application range as computational resources become more accessible.
Although this work anticipates a promising future for DEC CC
calculations, it is crucial to remember that many chemistry
applications require energy differences rather than total energies. In
these scenarios, computational chemistry practitioners should
concentrate on direct approaches, such as CP theory.

CP theories provide a promising potential in addressing the
limitations of total energy calculations with DEC for large molecular
systems. The systematic approach offered by CP theories allows for the
accurate calculation of excitation energies and other molecular properties
at a CCSD level, providing a more robust, efficient and direct way to
understand and predict the behavior of complex molecular systems.

The development of the CPS(D-3) model, as discussed in the
literature, serves as a significant advancement in this area. By
employing perturbation corrections up to the third order within
the CP framework, the CPS(D-3) model delivers excitation
energies of CCSD quality. The non-iterative nature of the ω(2)

x

and ω(3)
x correction calculations in the doubles excitation space

enables a massively parallel implementation, distributing batches
over a virtual molecular orbital index across different compute
nodes using the MPI.

The application of modern heterogeneous supercomputers and
GPUs for accelerating heavy tensor contractions further enhances
the efficiency and scalability of the CPS(D-3) calculations. This
approach makes it feasible to calculate high quality excitation
energies for molecular systems with several thousand basis
functions, given sufficient computational resources.

Moreover, CP theory demonstrates versatility in its potential
applications, extending to the calculation of other time-independent
and time-dependent properties (Pawłowski et al., 2019c; Hillers-

Bendtsen et al., 2022). This adaptability paves the way for the
development of similar massively parallel implementations in
other areas of research.
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