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ARTICLE

An integrated multi-omics analysis of
sleep-disordered breathing traits implicates
P2XR4 purinergic signaling
Nuzulul Kurniansyah1, Danielle A. Wallace 1, Ying Zhang1, Bing Yu2, Brian Cade 1,3,4, Heming Wang 1,3,4,

Heather M. Ochs-Balcom 5, Alexander P. Reiner 5,6, Alberto R. Ramos7, Joshua D. Smith8, Jianwen Cai 9,

Martha Daviglus10, Phyllis C. Zee11, Robert Kaplan12,13, Charles Kooperberg 12, Stephen S. Rich 14,

Jerome I. Rotter15, Sina A. Gharib16, Susan Redline 1,4 & Tamar Sofer 1,4,17✉

Sleep Disordered Breathing (SDB) is a common disease associated with increased risk for

cardiometabolic, cardiovascular, and cognitive diseases. How SDB affects the molecular

environment is still poorly understood. We study the association of three SDB measures with

gene expression measured using RNA-seq in multiple blood tissues from the Multi-Ethnic

Study of Atherosclerosis. We develop genetic instrumental variables for the associated

transcripts as polygenic risk scores (tPRS), then generalize and validate the tPRS in the

Women’s Health Initiative. We measure the associations of the validated tPRS with SDB and

serum metabolites in Hispanic Community Health Study/Study of Latinos. Here we find

differential gene expression by blood cell type in relation to SDB traits and link P2XR4

expression to average oxyhemoglobin saturation during sleep and butyrylcarnitine (C4)

levels. These findings can be used to develop interventions to alleviate the effect of SDB on

the human molecular environment.
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S leep-disordered breathing (SDB) is a common disorder,
affecting an estimated 24% of male and 9% of female adults
in the U.S.1. SDB is characterized by episodic periods of

breathing cessations and reductions during sleep, often accom-
panied by oxyhemoglobin desaturation2,3, and is associated with
cardiometabolic, vascular, and cognitive outcomes4–7. SDB is also
strongly associated with inflammation8,9. While obesity is a
strong risk factor for SDB, SDB is also heritable independent of
body mass index (BMI)10,11. The underlying molecular processes
by which SDB affects health outcomes are still being studied12,
with interest in understanding the effect of SDB-related hypoxia
during sleep on cardiometabolic and vascular measures in
humans and in animal models13–15.

In investigating the molecular changes caused by SDB, pre-
vious studies showed changes in distributions and activation of
white blood cells16–18 and inflammatory cytokines19 in indivi-
duals with obstructive sleep apnea (OSA). Other studies reported
changes in gene expression in white blood cells following treat-
ment using continuous positive airway pressure (CPAP), or fol-
lowing CPAP withdrawal20–23, supporting a causal role between
SDB-related physiological stressors (such as hypoxia) and
immune cell gene expression. Some studies, including those from
our group, also reported cross-sectional transcriptomic associa-
tions with SDB measures from observational studies20,24. How-
ever, these studies focused on a single cell population, and it is
unknown whether and how transcriptional effects of SDB differ
among circulating leukocyte subpopulations. Likewise, it is yet
unknown how SDB-alterations in gene expression translate to
metabolic changes. A few previous studies reported associations
of blood metabolites with SDB phenotypes, independently of
transcriptomics. For example, one study reported change in
serum metabolite levels, evaluated on an untargeted platform that
surveyed a few hundred metabolites, after multi-level sleep
surgery25. Most other studies considered specific, targeted meta-
bolite changes in sleep disorders (see reviews in ref. 26).

Large, untargeted, omics surveys are now becoming available in
cohort studies, providing an opportunity to study the association of
SDB with well-defined, genetically-regulated molecular measures.
We deploy a systems biology approach integrating genomic,
transcriptomic, and metabolomic data to identify potential path-
ways in tissue-specific mechanisms driving SDB-related morbidity.

Utilizing data from the Multi-Ethnic Study of Atherosclerosis
(MESA) and the Hispanic Community Health Study/Study of
Latinos (HCHS/SOL), we examined multi-omics data to investigate
signaling mechanisms underlying SDB traits. First, we used tran-
scriptomics data measured in peripheral blood mononuclear cells
(PBMCs), T-cells and monocytes, assayed by the Trans-Omics for
Precision Medicine (TOPMed) program, to perform transcriptome-
wide association study of SDB-related phenotypes (measured via
overnight polysomnography) in MESA. We compared the results
across different peripheral blood cell populations. With these data,
we constructed transcript polygenic risk scores (tPRS) predicting
transcript expression using genetic data. Next, we built these tPRS
in the Women’s Health Initiative (WHI) and tested them for
association and generalization with their transcripts in whole blood.
We calculated the tPRS that generalized in HCHS/SOL. Finally, we
applied these tPRS to SDB traits and metabolites in HCHS/SOL to
investigate how SDB phenotypes potentially propagate via tran-
scription to metabolic changes in serum, and on the other direction,
to assess potential reverse association by which transcript expres-
sion causes changes in SDB phenotypes.

Utilizing polysomnography, genetic, RNA-seq, and metabo-
lomic data from multiple independent cohorts, we identified gene
transcript expression patterns associated with leukocyte cell
populations, SDB traits (AHI, blood oxygen levels), and blood
metabolites. Genes represented by the transcripts associated with

SDB traits were related to hypoxia, neurotransmission, and
thrombolytic activity. One main finding of a complete “chain” of
association between a validated tPRS, a metabolite, and an SDB
trait included the tPRS for P2XR4, a gene that encodes a pur-
inergic receptor. Higher expression of P2XR4 was associated with
lower average oxyhemoglobin saturation during sleep and higher
butyrylcarnitine, an indicator of fatty acid metabolism. SDB traits
and obstructive sleep apnea are risk factors for the development
of cardiovascular disease, and prior research has reported asso-
ciations between P2XR4 expression levels and cardiovascular
function27,28, as well as butyrylcarnitine and heart failure29.
Therefore, our results suggest a mechanistic pathway for the role
of purinergic signaling in SDB, which may have implications for
the development of cardiovascular disease.

Results
Sample characteristics. Characteristics of the MESA population
that participated in the TOPMed omics study, the sleep study,
and the smaller T-cells and monocytes analyses are provided in
Supplementary Data 1; characteristics of the HCHS/SOL parti-
cipants with genetic and metabolite data are provided in Sup-
plementary Data 2. MESA individuals are a multi-ethnic sample,
69 years old on average during MESA exam 5, and 52% female.
HCHS/SOL individuals are from diverse Hispanic/Latino back-
grounds with a mean age of 46 years, and 59% female. SDB
phenotypes were more severe in MESA, with average AHI= 18.6,
MinO2= 83, and AvgO2= 94.1, in contrast to HCHS/SOL with
average AHI= 6.4, MinO2= 87.1, and AvgO2= 96.4, consistent
with the older age of the MESA sample. Characteristics of the
WHI participants with RNA-seq data used to validate the tran-
script PRS are provided in Supplementary Data 3. WHI indivi-
duals are from a multi-race and ethnic sample and are 80 years
old on average at the Long-Life Study exam when RNA was
extracted and are all females.

SDB phenotypes for oxyhemoglobin saturation and AHI are
linked to tissue-specific changes in the transcriptome. In
MESA, we identified 96 and 24 differentially expressed transcripts
(Supplementary Data 4–7) with FDR p value <0.1 in unadjusted
and adjusted BMI analyses, respectively, in the different cell types.
Table 1 reports the top differentially expressed transcripts (FDR p
value <0.05). Three transcripts, AJUBA (Ajuba LIM Protein),
ZNF665 (Zinc Finger Protein 665), and TMC3-AS1 (TMC3
Antisense RNA 1, a long non-coding RNA), are significantly
associated with AvgO2 and AHI in both analyses, in the direction
of reduced expression with worse SDB measures (higher AHI,
lower AvgO2). Supplementary Data 4–7 further report results
from secondary analyses adjusting all associations with FDR p
value <0.1 in the primary analysis to cardiometabolic causal risk
factors of OSA, including pulse pressure, type 2 diabetes, waist-
to-hip ratio, hemoglobin A1c, as well as to alcohol use. Adjust-
ments were performed for each phenotype separately, and jointly.
Throughout, association effect estimates remained similar to
those from the primary analysis.

To visualize gene expression and compare across SDB traits
and cell types, log-fold change in expression of all SDB-associated
transcripts (n= 96 transcripts FDR p < 0.1) was illustrated with a
heatmap for BMI-unadjusted (Supplementary Fig. 1) and BMI-
adjusted (Supplementary Fig. 2) analyses, clustered using
hierarchical clustering based on the correlation between the log-
fold estimates. These results illustrate concordant and discordant
patterns of differential gene expression by cell type (PBMCs,
monocytes, and T-cells) and SDB trait (AvgO2, MinO2, and
AHI). There are a few striking differences in gene expression,
particularly the increased expression of FAM106A, TMC3-AS1,
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SERPINE2, LA16c-312E8.4, and DUX4L27 in T-cells in associa-
tion with better SDB measures (lower AHI, higher MinO2 and
AvgO2) compared to monocytes and PBMCs in which the
corresponding expressions tended to decrease, whereas expres-
sions of EMP1, SIAE, PDGFC, and LHFPL2 were decreased across

tissues in improved SDB phenotypes. To further investigate the
overall patterns in gene expression in relation to tissue type and
SDB traits, a heatmap of the Spearman correlation of the log-fold
expression estimates of SDB phenotypes was plotted in Fig. 1.
Within cell types, the SDB traits AHI and MinO2 had the highest

Table 1 Top results from the tissue-specific transcriptome-wide gene expression analysis of SDB phenotypes (FDR p < 0.05)
in MESA.

Gene AdjLogFC p value FDR p value SDB trait Cell type

Unadjusted for BMI
AJUBA 0.104 2.59E−06 0.050 AvgO2 PBMCs
PDGFC −0.016 2.59E−06 0.050 MinO2 PBMCs
SIAE −0.011 1.26E−06 0.020 MinO2 Monocytes
EMP1 −0.030 6.91E−06 0.050 MinO2 Monocytes
LHFPL2 −0.014 9.42E−06 0.050 MinO2 Monocytes
ZNF665 −0.011 2.74E−07 0.003 AHI T-cells
FAM106A −0.032 7.69E−06 0.047 AHI T-cells
TMC3-AS1 −0.022 2.74E−07 0.003 AHI T-cells

Adjusted for BMI
AJUBA 0.116 2.59E−07 0.005 AvgO2 PBMCs
ZNF665 −0.012 5.49E−07 0.010 AHI T-cells
DUX4L27 −0.029 6.59E−06 0.043 AHI T-cells
TMC3-AS1 −0.021 7.14E−06 0.043 AHI T-cells

The table provides significant results from analyses unadjusted (n= 8 transcripts) and adjusted (n= 4 transcripts) for BMI. Column names are in bold text. “AdjLogFC” is the covariate-adjusted log2-fold
change in gene expression per 1 unit increase in SDB exposure. p value is the empirical p value (accounting for the distribution of p values across 100 random permutations of the data), and FDR p value is
the p value following FDR adjustment using the Benjamini–Hochberg procedure. For AvgO2 and MinO2, negative AdjLogFC indicates increased expression with worse SDB symptoms. For AHI, positive
AdjLogFC indicates increased expression with worse SDB symptoms.
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Fig. 1 Spearman correlations between estimated log-fold changes in gene expression across SDB phenotypes and blood cell types without BMI
adjustment in MESA. Heatmap illustrating the Spearman correlations of log-fold change of transcript expression by tissue type (monocytes, T-cells,
PBMCs) and SDB phenotype (AvgO2, MinO2, AHI) in MESA. Correlations were computed over genes with FDR p < 0.1. Color legend portrays Spearman R2

(no/weak correlation= light yellow; complete/strong correlation= green). Estimated AHI effect sizes were flipped prior to computation of correlations so
that they match the direction of MinO2 and AvgO2.
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correlation for gene expression (Spearman R2 between 0.91 and
0.97), whereas AvgO2 associations had lower correlations with
AHI and MinO2 associations, especially in monocytes. A
heatmap of correlations of estimated log-fold gene expression
changes (FDR p value <0.1) with SDB phenotypes across tissues
from analyses adjusted for BMI is shown in Supplementary Fig. 3.
The correlations between the SDB effect estimates for gene
expression across cell types are different, and generally higher,
from the phenotypic correlations between the SDB phenotypes,
which are at the range of 0.53 to 0.73 Spearman R2

(Supplementary Fig. 4). When computing correlations over all
genes, estimated associations between AvgO2 with gene expres-
sion had low correlation with the other phenotypes (Supplemen-
tary Fig. 5). A similar pattern of decrease in the correlations
between AvgO2 expression associations and other SDB trait
associations are observed in BMI-adjusted analyses (Supplemen-
tary Fig. 6).

Construction and validation of transcript PRS. We constructed
tPRS for gene expression in monocytes using a few methods,
focusing on transcripts that were associated with SDB exposures
in our analysis. The performance of constructed tPRS was eval-
uated against whole-blood gene expression levels in n= 1269
WHI participants. Supplementary Fig. 7 visualizes the results,
demonstrating that tPRS constructed using the clump and
threshold for genome-wide SNPs, including trans-eQTLs and
tPRS focusing on cis-eQTLs have similar results, and the same
generalization rate as that of the prediXcan-based tPRS. However,
prediXcan tPRS had opposite direction of association with one of
the transcripts in WHI, and, both cis-eQTLs based tPRS (pre-
diXcan and clump and threshold) were not available for some
transcripts due to lack of transcript-associated SNPs near the
coding region. Thus, we moved forward with the genome-wide
approach. Of the 96 tPRS (BMI-unadjusted analysis) and 24 tPRS
(BMI-adjusted analysis) tested, 26 and 9 tPRS were associated
(p < 0.017) with gene expression (Supplementary Data 8 and 9) in
whole blood and considered validated as instrumental
variables (IVs).

Evidence of causal association between transcripts and SDB
phenotypes. We tested the association of the validated tPRS,
constructed in a cell-specific manner, with SDB phenotypes in
HCHS/SOL (Supplementary Data 10). Of the 26 tested in BMI-
unadjusted analysis, 3 tPRS showed evidence of reverse associa-
tion with SDB phenotypes (p value <0.05), supporting a causal
relationship between expression of these transcripts and SDB
traits. Among them, the strongest association was of the tPRS for
P2RX4 (Purinergic Receptor P2X 4) in PBMCs in its association
with AvgO2; one standard deviation (SD) increase in the tPRS
was associated with a 1.9% decrease in AvgO2. Additionally,
higher tPRS for TUBB6 (Tubulin Beta 6 Class V) in monocytes
was associated with lower MinO2. These directions of associa-
tions matched those observed in association analysis of the SDB
phenotype and transcript expression in MESA. However, higher
tPRS for SEC14L2 (SEC14 Like Lipid Binding 2) in T-cells was
associated with higher AHI, but this direction of association did
not match that of the estimated AHI-transcript association in
MESA. After BMI adjustment, only P2RX4 in PBMCs tPRS
remained associated with AvgO2 (p value <0.05), as shown in
Supplementary Data 11.

Evidence of causal association between transcripts and meta-
bolites. We tested the relation between each validated tPRS and
metabolites in HCHS/SOL. The tPRS for P2RX4 and CTD-
2366F13.1 (also known as MOCS2-DT, MOCS2 Divergent

Transcript) were associated with a total of 6 and 7 metabolites in
unadjusted BMI and adjusted BMI analyses (FDR p value <0.05,
Supplementary Data 12 and 13), respectively; the association
“chains” are visualized in Fig. 2. Of the 7 metabolites, 4 of them
(butyrylcarnitine, 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4),
linoleoyl-arachidonoyl-glycerol (18:2/20:4), and palmitoleoyl-
linoleoyl-glycerol (16:1/18:2)) were also associated with AvgO2
(Supplementary Data 14). However, the AvgO2-metabolite
associations did not remain statistically significant after BMI
adjustment, suggesting that BMI, rather than SDB, may be
driving these associations (Supplementary Data 15). Of the
transcripts, P2RX4 had evidence of a complete chain of associa-
tion with SDB and metabolites (p value <0.05) in the BMI-
unadjusted analysis.

Discussion
Here, we conducted a robust analysis of SDB phenotypes and
their multi-omics correlates. We first identified transcriptome-
wide tissue-specific changes in gene expression associated with
sleep-related oxyhemoglobin saturation traits and AHI in MESA
and then used those transcripts to develop genetic proxies for
gene expression (tPRS). Next, we generalized and validated some
of the tPRS in WHI. Finally, we utilized the validated tPRS to
further study SDB phenotypes and metabolite associations in
HCHS/SOL. Our results support SDB-related leukocyte altera-
tions in gene expression and highlight signaling pathways related
to inflammation, thrombosis, and neurotransmission.

SDB traits were associated with differential expression of many
transcripts across three blood cell types (Supplementary Data 4
and 5), 96 genes with FDR p value <0.1). Of the top transcripts (8
genes with FDR p value <0.05), higher AJUBA expression was
associated with higher AvgO2 and higher PDGFC expression was
associated with lower MinO2 in PBMCs. AJUBA is a scaffold
protein in the family of LIM domain-containing proteins, con-
sidered key regulators of the hypoxic response30. Recent research
supports a role for AJUBA in interacting with retinoic acid
receptor signaling in an in vitro model31 and a role for indirectly
limiting inflammation by maintaining mitochondrial quality
control in a mouse model32; therefore, greater AJUBA expression
may be associated with increased AvgO2 through pathways
related to inflammation and retinoic acid. PDGFC encodes pla-
telet derived growth factor C33 and is upregulated during hypoxia
in tumor cells34. The association between higher PDGFC
expression and lower minimum oxygen saturation (MinO2)
supports a role for PDGFC signaling in SDB-related hypoxia. In
monocytes, increased expression of EMP1, SIAE, and LHFPL2
was associated with lower MinO2, suggesting that expression of
these genes increases as oxygen levels decrease. In line with these
findings, prior studies have shown that EMP1 expression
increases during sleep loss and during hypoxia in cancer
tissues35,36. While the functions of the esterase SIAE and the
transmembrane protein LHFPL2 are unclear, increased expres-
sion of each is a marker for poor cancer prognostic: higher
expression of SIAE is linked to poorer prognosis for patients with
multiple myeloma and higher expression of LHFPL2 is linked to
poorer prognosis for patients with liver cancer37,38. These cancer-
related markers may be relating to SDB phenotypes due to the
overlap between hypoxia and the hypoxic tumor
microenvironment39.

Correlations between leukocyte subsets and trait-specific gene
expression (Fig. 1) supported an overall pattern of similarity
between cell populations, but also highlighted some striking dif-
ferences. For example, higher expression of the gene HPCAL4
(Hippocalcin-Like Protein 4) is strongly associated with “worse”
SDB phenotypes (higher AHI, lower AvgO2 and MinO2) in
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monocytes, but this gene has weak associations with SDB phe-
notypes in T-cells and PBMCs. However, FAM106A and SER-
PINE2 have higher expression with worse SDB phenotypes in T-
cells, but weak associations in PBMCs and monocytes. SERPINE2
encodes glia-derived nexin (GDN, also referred to as protease
nexin-1) with mixed evidence as a genetic factor for COPD40–42.
SERPINE2/GDN inhibits the hypoxia-triggered serine protease
thrombin43,44, and a mouse model of SERPINE2 deficiency causes
excess thrombin activity and overproduction of cytokines in the
lungs45, suggesting a role for SERPINE2 in airway inflammation.
Since OSA may be associated with a procoagulant state featuring
high thrombin levels46,47, the hypoxemia associated with OSA
may lead to increased thrombin levels, affecting SERPINE2
expression in T-cells. Similar to FAM106A and SERPINE2,
TMC3-AS1 expression in T-cell increased as AHI increased;
because TMC3-AS1 encodes a lncRNA that may inhibit the anti-
inflammatory cytokine IL-1048, increased expression could result
in higher IL-10 levels, possibly as a compensatory response to
greater AHI.

Of the top differentially expressed genes in MESA whose tPRS
was validated in an independent cohort (WHI), only P2RX4 was
found to have a complete “chain” of association with SDB and
metabolites when tested in another independent study, HCHS/
SOL. Higher tPRS for P2RX4 was associated with lower AvgO2,
both with and without adjustment for BMI, and as such it is a

candidate contributor to oxyhemoglobin saturation in SDB.
P2RX4 encodes a purinergic receptor for ATP, P2X4, which may
play a role in the neuroprotective effects of hypoxic
preconditioning49,50. P2RX4 tPRS was further associated with
higher concentrations of the metabolite butyrylcarnitine, an
indicator of fatty acid metabolism previously linked to BMI51.
Higher oxygen tension promotes increased ATP production52,
which may in turn promote increased P2RX4 expression (P2X4 as
a purinergic ATP receptor) and increased butyrylcarnitine53.
P2RX4 can have beneficial or detrimental effects depending on
context. A mouse model of genetically increased P2XR4 expres-
sion led to enhanced cardiovascular function27 and prior research
supports a role for P2XR4 in heart contractility28, suggesting that
P2XR4 may impact AvgO2 levels via alteration of cardiac force.
Likewise, butyrylcarnitine was found to be associated with time
of cardiac isovolumetric relaxation and may be a marker of
heart failure29, further linking P2XR4 to cardiac function. How-
ever, ethanol is an inhibitor of P2RX4, and P2RX4 has been
associated with alcohol intake. Because alcohol consumption is a
risk factor for SDB and can promote airway collapse54–56, in a
secondary analysis we adjusted for self-reported alcohol con-
sumption in the MESA RNA-seq analysis. The results did not
substantially change, suggesting that alcohol use is not driving
this association; however, residual confounding by alcohol use is
still possible.

Fig. 2 Identified association chains between AvgO2, transcripts, and metabolites. Diagram illustrating the “association chain” relationships between
AvgO2, tPRS, and metabolites in BMI-unadjusted and BMI-adjusted analyses. Dark blue color indicates association between tPRS and metabolites in both
BMI-unadjusted and BMI-adjusted analyses; The light blue color indicates the association between tPRS and metabolite only in BMI-adjusted analysis.
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While CTD-2366F13.1 (MOCS2-DT) PBMCs tPRS was not
associated with SDB traits in HCHS/SOL, levels of three of the
four metabolites positively associated with CTD-2366F13.1 tPRS
were also negatively associated with AvgO2 (i.e., increased
metabolite levels with reduced AvgO2): linoleoyl-arachidonoyl-
glycerol (18:2/20:4), palmitoleoyl-linoleoyl-glycerol (16:1/18:2),
and 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4). The lack of
observed association between the CTD-2366F13.1 tPRS and
AvgO2 suggests that it is likely that AvgO2 may cause expression
changes in the gene, rather than the genetically-determined gene
expression causes AvgO2 (Fig. 3). Therefore, lower AvgO2 may
result in increased concentrations of these metabolites. linoleoyl-
arachidonoyl-glycerol (18:2/20:4), has previously been positively
associated with serum levels of the antioxidant alpha-tocopherol,
also known as Vitamin E57. Levels of the component 2-Arachi-
donoylglycerol, an agonist of the CB1 and CB2 cannabinoid
receptors, are increased in the brain during ischemia58 and in
macrophages in response to oxidative stress59. Palmitoleoyl-
linoleoyl-glycerol (16:1/18:2), is a palmitoleic acid derivative that
may be a marker of blood sugar regulation; it is also commonly
used in baked goods60. Increased levels have previously been
linked to in utero exposure to gestational diabetes60. Given the
relationship between SDB and cardiometabolic disease, it is
possible that these metabolites are associated with AvgO2 because
of their links to the immune system and glycemic regulation. In
fact, AvgO2 associations with these metabolites became null in a
BMI-adjusted analysis.

There are several strengths and some limitations of our ana-
lysis. Our unique study design exploited a stepwise discovery/
validation approach across multiple studies and optimized the
availability of SDB-related datasets to study omics markers and
SDB. First, we identified SDB-related transcripts. Next, we uti-
lized genetic associations with gene expression to construct tPRS,
serving as “genetic IVs”: exposure variables that are likely asso-
ciated with the gene transcripts and are specific to them, thus
allowing for downstream association analysis and causal inference
using these IVs instead of the transcript themselves61. The idea of
using genetic variants as IVs is often used in Mendelian Rando-
mization (MR) analysis. Our analysis is different than standard
one-sample MR in that we did not estimate the effect of the
transcript on the outcome, because we did not have access to
RNA-seq in HCHS/SOL. However, for causality inference, it is
sufficient to test the IV association with the outcome of interest62.
We then studied the evidence for the effect of gene expression on
SDB using the tPRS. Still, the exact form of association between
the gene expression and SDB traits cannot be determined (Fig. 3).
For example, if no tPRS–SDB association was detected, it is
possible that this was due to lack of power. Even in the absence of
tPRS–SDB association, the association between the SDB and tPRS
can be due to either causal effect of SDB on tPRS, or confounding
by a common cause of both. Notably, during the WHI validation
step, many transcripts did not have significant tPRS associations
and therefore were not carried forward for the genetic association
analysis in HCHS/SOL; lack of validation may be due to cell type

Fig. 3 Potential association “chains” of SDB traits, transcript expression, and metabolites, addressed in this study. The figure illustrates association
chains, or pathways, potentially linking an SDB trait, a transcript, and a metabolite. Here we assume that an association between a sleep trait and a transcript was
detected in MESA and is assumed “known” for follow-up analysis in WHI in HCHS/SOL. a demonstrates potential forms of causal associations between the sleep
trait and the transcript, including (a.4) the settings where an association exists due to a common cause, e.g., BMI. Our metabolomics analysis may only detect
transcript–metabolite associations, i.e., any sleep–metabolite link is via transcript levels. b demonstrates a potential conclusion from an association between a tPRS,
validated in WHI and used as an instrumental variable (IV) of a transcript, and a sleep trait: if an association is detected, it provides evidence that changes in
transcript levels are upstream (a cause of) changes in sleep trait levels. c demonstrates potential conclusions from analyses linking tPRS and a sleep trait to a
metabolite. A tPRS is used to link a transcript to a metabolite, and an association, if exists, is likely causal. A sleep–metabolite association should exist if the
sleep–transcript and tPRS–transcript associations hold, and therefore observing such an association validates the existence of any of A pathways. Further
association between the tPRS and the sleep trait narrows down the potential association chains to a.2 or a.3.
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differences, as we validated tPRS in WHI, where gene expression
was measured in whole blood, unlike measurement in specific cell
types in MESA. Finally, we leveraged the validated tPRS to test for
associations of gene transcript expression with metabolites and
connect possible “chains” of associations. All included cohorts are
large and represent diverse populations in the U.S. Our sleep
cohorts, HCHS/SOL and MESA, have objective sleep phenotype
measurement without prior selection of participants based on
specific phenotypes. Other limitations of our study include high
multiple testing burden, performing procedures with multiple
steps, utilizing multiple data in constructing tPRS, and differences
in sample timing between blood sample collection and overnight
PSG in MESA. However, genetic data should not be affected by
differences in timing, and chronic conditions like SDB may be
stable over time, making this limitation less of a concern. It is
notable that the three blood cell types used in MESA are not
distinct: PBMCs include monocytes and T-cells. Further, both
monocytes and T-cells are also composed of more granular cell
types. Statistical analyses within one cell type are generally
powered to detect associations that hold across the component,
more granular, cell types, and some cell type-specific associations
may be masked. Overall, we utilize robust statistical methods and
objective measures, integrating across multiple layers of biological
measures, to interrogate the mechanisms driving SDB-related
morbidity.

In summary, we examined multiple levels of biological infor-
mation to investigate signaling mechanisms underlying SDB traits
to better understand drivers of morbidity in SDB. Our results
highlight differential gene expression by circulating leukocyte
populations in relation to multiple SDB traits related to hypoxia,
neurotransmission, and thrombolytic activity. Analyses with
validated tPRS in independent cohorts support a mechanistic role
for P2XR4 purinergic signaling in SDB, a gene known to influence
cardiac function, which is relevant to SDB as both a risk factor
and an outcome. While further research is necessary to confirm
these findings, they suggest that P2XR4 signaling may alter oxy-
gen levels during sleep. In the future, we hope that more data will
become available with more granular cell-specific transcriptomics,
to better understand cell-specific responses involved in SDB, as
well as their validation. Large complementary genetic datasets
with unbiased genetic associations of SDB, gene transcripts, and
metabolomics, will further facilitate causal inference via Mende-
lian randomization analysis. Overall, we applied robust methods
to integrate multi-omics data and SDB data to discover
mechanisms underlying multiple SDB traits. Our multi-
dimensional approach using large population cohorts is a pro-
mising approach to unravel biological underpinnings of complex
human disorders.

Methods
Overall study design and purpose. The overall purpose of the study was to
investigate the multi-omics signaling mechanisms underlying SDB traits to
better understand possible drivers of morbidity in SDB. The study design and
purpose of each analysis component is illustrated in Fig. 4. Briefly, panel a
demonstrates the set of associations investigated: SDB phenotypes lead to
transcriptional changes which in turn lead to metabolic changes; panel b
describes the analysis steps taken to study the potential chain of associations,
and the goal of each of these steps. To optimize the available sample and
leverage the fact that transcription is, to some extent, genetically determined, we
utilized two separate cohorts to identify the biological components associated
sleep exposure to metabolomic changes. Figure 3 further illustrates potential
causal relationships underlying a set of measures, and the assumptions that we
used to interrogate some of them. Thus, we first performed transcriptome-wide
association studies for SDB phenotypes in MESA. For each transcript associated
with a SDB trait (FDR p value <0.1), we used genetic data to construct a
transcript Polygenic Risk Score (tPRS) to serve as a predictor of the transcript.
Next, to reduce false positive associations in subsequent analyses, we constructed
these tPRS in the WHI and tested their association and generalization with their
transcripts in whole blood. We proceeded with tPRS results that generalized (p

value <0.05), and constructed and tested them latter for association with SDB
phenotypes in HCHS/SOL. If a tPRS was associated with the SDB phenotype in
HCHS/SOL, it was interpreted as evidence of reverse association, i.e., the
transcript may contribute to SDB. We then calculated the association of the
tPRS with metabolites in HCHS/SOL. Lastly, we used another analytic step to
support the existence of an association chain linking a sleep exposure, a tran-
script, and a metabolite: we required evidence of association between the sleep
exposure and the metabolite in HCHS/SOL (i.e., any of the potential pathways in
Fig. 3a). If the tPRS was associated with the sleep exposure in HCHS/SOL, it lent
support to association chains where the transcript affects both SDB and meta-
bolite levels.

Participating studies. As described in Fig. 1, our analysis included three studies:
MESA, WHI, and HCHS/SOL each contributing to different analytical steps.
The three studies are described in the Supplementary Note. In brief, MESA, our
primary study used for discovery of SDB–transcript associations, is a long-
itudinal cohort study63. The first and fifth MESA exams took place between
2000–2002, and 2010–2012, respectively, and whole blood was drawn from
participants in both exams. For about 1000 participants, blood was used later for
RNA extraction in at least one of the exams. In addition, a sleep study ancillary
to MESA occurred shortly after MESA exam 5 during 2010–2013. Sleep study
participants underwent single night in-home polysomnography64. The number
of individuals with each type of data and at each time point (exam 1 and exam 5)
varies. Supplementary Fig. 8 visualizes the data flow and overlaps across the
various measures used in this study: whole-genome genotyping, RNA-seq, and
sleep. All MESA participants provided written informed consent, and the study
was approved by the Institutional Review Boards at The Lundquist Institute
(formerly Los Angeles BioMedical Research Institute) at Harbor-UCLA Medical
Center, University of Washington, Wake Forest School of Medicine, North-
western University, University of Minnesota, Columbia University, and Johns
Hopkins University.

The WHI was here used to identify tPRS that could be confidently used as IVs
for their traits. It is a prospective national health study focused on identifying
optimal strategies for preventing chronic diseases that are the major causes of death
and disability in postmenopausal women65. In all, 11,071 WHI participants have
whole-genome sequencing data via TOPMed, and 1274 of these participants have
RNA-seq measured in venous blood via TOPMed. All WHI participants provided
informed consent and the study was approved by the IRB of the Fred Hutchinson
Cancer Research Center.

The HCHS/SOL was used to establish association chains that include an SDB
trait, a transcript, and a metabolite. It is a longitudinal cohort study of U.S.
Hispanics/Latinos66,67. The HCHS/SOL baseline exam occurred on 2008–2011,
where 16,415 participants were enrolled. HCHS/SOL individuals who consented
further participated in an in-home sleep study, using a validated type 3 home sleep
apnea test recording airflow (via nasal pressure), oximetry, position, and snoring.
Genetic data were measured and imputed to the TOPMed freeze 5b reference
panel, for individuals who consented at baseline68,69. Metabolomic data were also
measured for n= ~4000 individuals selected at random out of those with genetic
data70. Supplementary Fig. 9 provides the data flow in HCHS/SOL, focusing on
individuals with genetic data and wide consent for genetic data sharing. The
HCHS/SOL was approved by the institutional review boards (IRBs) at each field
center, where all participants gave written informed consent, and by the Non-
Biomedical IRB at the University of North Carolina at Chapel Hill, to the HCHS/
SOL Data Coordinating Center. All IRBs approving the study are: Non-Biomedical
IRB at the University of North Carolina at Chapel Hill. Chapel Hill, NC; Einstein
IRB at the Albert Einstein College of Medicine of Yeshiva University. Bronx, NY;
IRB at Office for the Protection of Research Subjects (OPRS), University of Illinois
at Chicago. Chicago, IL; Human Subject Research Office, University of Miami.
Miami, FL; Institutional Review Board of San Diego State University, San
Diego, CA.

RNA sequencing. For both MESA and WHI, RNA-seq was performed via the
Trans-Omics in Precision Medicine (TOPMed) program. In MESA, RNA-seq was
generated from three blood cell types: peripheral blood mononuclear cells (PBMCs;
~n= 1200 measured in blood from visits 1 and 5), and specific components: T-
cells, and monocytes (referred to as T-cell and Mono, for both: n= 416), measured
in blood from visit 5. Samples were sequenced at the Broad Institute and at the
North West Genomics Center (NWGC). Both centers used harmonized protocols.
RNA samples quality was assessed using RNA Integrity Number (RIN, Agilent
Bioanalyzer) prior to shipment to sequencing centers. QC was re-performed at
sequencing centers by RIN analysis at the NWGC and by RNA Quality Score
analysis (RQS, Caliper) at the Broad Institute. A minimum of 250 ng RNA sample
was required as input for library construction, performed using the Illumina
TruSeqTM Stranded mRNA Sample Preparation Kit. RNA was sequenced as
2x101bp paired-end reads on the Illumina HiSeq 4000 according to the manu-
facturer’s protocols. Target coverage was of ≥40M reads. Comprehensive infor-
mation about the RNA-seq pipeline used for TOPMed can be found in https://
github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.
md under MESA RNA-seq pilot commit 725a2bc. Here we used gene-level
expected counts quantified using RSEM v1.3.071. RNA sequencing for WHI (whole
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blood) was performed at the Broad Institute using the unified TOPMed protocols.
More information about RNA-seq in WHI is provided in the Supplementary Note.

Metabolomics data in HCHS/SOL. Metabolomics profiling using fasting blood
samples was conducted at Metabolon (Durham, NC) with Discovery HD4 platform
in 2017. Serum metabolites were quantified with untargeted, liquid
chromatography-mass spectrometry (LC-MS)-based quantification protocol72,73.
The platform captured a total of 1136 metabolites, including 782 known and 354

unknown (unidentified) metabolites. Detailed methodologic information is pro-
vided elsewhere70.

Phenotypic measures of sleep disordered breathing. We used three SDB traits,
as measured by overnight sleep studies in MESA and HCHS/SOL (methods above):
(1) the Apnea-Hypopnea Index (AHI), defined in MESA as the number of apneas
(breathing cessation) and hypopneas (at least 30% reduction of breath volume,
accompanied by 3% or higher reduction of oxyhemoglobin saturation) per hour of

Fig. 4 Overall study design of the reported analysis. Flow charts illustrating the methodology and purpose of the analysis. The chart portrays the three
SDB phenotypes evaluated in the analysis, the three blood tissues with transcript expression measurement, and demonstrates each step of the analysis
with associated goals, cohorts, and reasons why step was performed. a Conceptual linking between SDB measures, transcript expression, and metabolites.
b Analytic steps supporting the study of the conceptual links. PBMC tPRS analysis sample sizes in MESA correspond to data from two visits (some
individuals were used twice, appropriately accounted for by mixed models).
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sleep, and in HCHS/SOL, due to differences in the recording montage compared to
MESA, as the number of apnea or hypopnea events with 3% desaturation per hour
of sleep; (2) minimum oxyhemoglobin saturation during sleep (MinO2), and (3)
average oxyhemoglobin saturation during sleep (AvgO2).

Testing the association between SDB and blood cell-specific transcriptome-
wide gene expression. We used the Olivia R package74 to perform association
analyses of gene expression in PBMCs, monocytes, and T-cells with each of the three
SDB measures, separately and in a joint analysis in MESA. SDB phenotypes were
treated as the exposures. In joint analysis, the three SDB phenotypes were modeled as
three exposures in the same model. We followed the recommended Olivia pipeline.
Briefly, we performed median normalization, and then filtered lowly expressed gene
transcripts defined by removing transcripts with proportion of zero higher than 0.5,
median value lower than 1, maximum expression range value lower than 5, and
maximum expression value lower than 10. Transcript counts were log transformed
after counts of zero were replaced with half the minimum of the observed transcript
count in the sample. The analyses were adjusted for age, sex (validated using
chromosomal checks), study center, race/ethnic group, and batch variables: plates,
shipment batch, and study site. Because BMI is a strong risk factor for SDB and is
assumed to be part of the causal chain, we conducted additional analyses adjusting
for BMI. We computed empirical p values to account for the highly skewed dis-
tribution of SDB phenotypes, which may lead to false negative associations if
ignored. However, for joint SDB phenotypes analysis we used the multivariate Wald
test, without further empirical p values, because the permutation procedure only
works when using a single exposure. Finally, we accounted for multiple testing by
applying False-Discovery Rate (FDR) correction to each set of gene-based p values
corresponding to a single SDB phenotype, or the joint association, using the
Benjamini–Hochberg (BH) procedure75. We carried forward transcript associations
with FDR p value <0.1 for additional analyses and visualized their association with
SDB phenotypes via a hierarchically clustered heatmap.

In secondary analyses, we assessed the effect of adjusting for additional available
phenotypes that prior work suggested as causal to SDB76, and for alcohol use.
Specifically, we applied the Olivia pipeline to estimate the same transcript-SDB
phenotype associations using the same regression adjustment, while also including
one of the additional risk factors as a covariate: pulse pressure, type 2 diabetes,
waist-to-hip ratio, hemoglobin A1c, and alcohol use. An additional analysis
included these five covariates together. We studied the association results for all
transcripts with FDR p value <0.1 in the main analyses once adjusting to these
covariates. Description of these measures is provided in the Supplementary Note.

Transcript polygenic risk scores (tPRS) construction and validation. To
develop tPRS, we first performed a genome-wide association study (GWAS) for each
SDB-associated transcript using the MESA TOPMed WGS dataset; each GWAS
adjusted for age (years), sex, study site, self-reported race/ethnic background, and 11
principal components, and analyses were restricted to genetic variants with a minor
allele frequency of at least 0.05 (due to low sample size). For each GWAS, we used
the fully adjusted two-stage procedure for rank-normalizing residuals in association
analyses77 to identify genetic variants associated with transcript expression. For
PBMCs, we used transcript measures from the two MESA visits with RNA-seq data
to increase power. To do this, we removed related individuals, and used a random
effect model that accounted for individuals. Summary statistics from the GWAS for
each transcript were used to develop PRS weights for the corresponding transcript.
Next, we constructed tPRS in MESA. We applied clump and threshold methodology
implemented in PRSice2 v2.3.1.e78 using clumping parameters R2= 0.1, distance of
250 Kb, and three p value thresholds: genome-wide significance (5 × 10−8), and levels
of evidence considered “suggestive” (10−7, 10−6). For each transcript, we constructed
the three tPRS in WHI. A tPRS with the smallest p value in association with the
transcript in WHI, and also having p value <0.05/3= 0.017, was selected and con-
sidered validated. We also computed FDR-adjusted p values based on all constructed
tPRS (3 candidate tPRS per gene across all genes). To test the association of the tPRS
with transcript in WHI, we used logistic mixed models, executed with the GENESIS
R package79 version 2.16.1. Each tPRS served as the exposure, and transcripts served
as the outcome, here too using the two-stage procedure for rank-normalization77.
Relatedness was modeled via a sparse kinship matrix among TOPMed WHI indi-
viduals. We selected transcripts with p value <0.017 for follow-up analysis.

We validated that our approach to construct tPRS is robust. We compared a few
polygenic prediction models developed using bulk RNA-seq in monocytes. First, the
prediction model developed using prediXcan based on the MESA dataset80,81, with
weights provided in the predictDB database (http://www.predictdb.org/). Second, our
approach above using genome-wide SNPs (including trans-eQTLs), and third, a
similar clump and threshold approach as above limited to cis-eQTLs defined as SNPs
within 1Mbp of the start and end position of the transcript (the definition used by
prediXcan). We focused on monocytes for this comparison because prediXcan
models were only published based on monocytes.

Using tPRS to identify reverse association between gene expression and SDB
traits. We constructed generalized tPRS in HCHS/SOL. We used HCHS/SOL
genotypes imputed to the TOPMed freeze5b reference panel. Prior to tPRS con-
struction, we filtered SNPs with imputation quality <0.8, minor allele frequency <5%,

missingness rate >0.01. As illustrated in panel b of Fig. 3, We identified potential
reverse causation, where gene expression alters SDB, by using the tPRS constructed
in HCHS/SOL as instrumental variables (IVs) and testing their association with their
respective SDB phenotypes in HCHS/SOL. We used logistic mixed models, executed
with the GENESIS R package79 version 2.16.1. Each tPRS served as the exposure, and
the relevant SDB phenotype served as the outcome. To account for skewness of the
SDB phenotypes, we used the two-stage procedure for rank-normalization77.
Relatedness was modeled via a sparse kinship matrix, household sharing, and block
unit sharing among HCHS/SOL individuals. All association analyses were adjusted
for age, sex, study site, Hispanic/Latino background, the first 5 PCs of the genetic
data, and log of the sampling weights used to sample HCHS/SOL individuals into the
study. Further, association analyses were adjusted to BMI when the tPRS and the
SDB phenotype pair corresponded to an association between an SDB phenotype and
a gene transcript in a BMI-adjusted analysis in MESA. In the analyses, all tPRS were
standardized to have mean 0 and variance 1 in the HCHS/SOL dataset, so that effect
size estimates correspond to 1 standard deviation (SD) increase in the relevant tPRS.
Because the tPRS represent a genetic proxy for gene expression, if a tPRS was found
to be associated with a SDB phenotype (p value <0.05), it provided evidence that the
transcript contributed to the SDB phenotype, rather than vice versa. However, as
illustrated in diagrams a.2 and a.3 in Fig. 3 for sleep–transcript association, bidir-
ectional associations are also plausible.

Associations between tPRS and metabolites. Treating tPRS as genetic IVs for
gene expression, we estimated associations between tPRS and all identified (named)
metabolites with <25% missing values in HCHS/SOL. We used robust survey models
implemented in the R survey package version 4.082, accounting for HCHS/SOL study
design (probability sampling and clustering) and providing associations generalizable
to the HCHS/SOL target population. For each metabolite, we first imputed obser-
vations with missing values of that metabolite with its minimum value observed in the
sample, under the assumption that missing values are due to concentrations being
below the detection limit, and then rank-normalized it across the sample.We used the
same covariates as before: age, sex (validated based on chromosomal checks), study
site, Hispanic background, and the first 5 PCs of the genetic data. Furthermore, we
adjusted for BMI depending on the original association of the SDB phenotype and the
transcript (BMI unadjusted or BMI adjusted). As before, tPRS associations were
estimated per 1 SD of the tPRS. For each transcript, we corrected metabolite asso-
ciations to account for FDR using the Benjamini–Hochberg (BH) procedure75.
Associations were considered significant if the FDR p value was <0.05.

Association analyses of SDB traits with selected metabolites to verify a
complete association chain. To further validate a complete association “chain” as
detailed in Fig. 3, we performed association analyses between the SDB phenotypes
and metabolites identified in the tPRS analysis. Associations between SDB pheno-
types and metabolites used a survey sampling approach to account for HCHS/SOL
sampling design and obtain estimates generalizable to the HCHS/SOL target
population. Thus, we used the survey R package83 with each individual weighted by
their sampling weights, and clustering accounted for when computing robust stan-
dard errors. Analyses were adjusted for age, sex, study site, Hispanic/Latino back-
ground. and BMI depending on the original detected SDB-transcript association
(BMI unadjusted or BMI adjusted). If an SDB phenotype was associated with the
metabolite (p value <0.05), we interpreted this as validation of a SDB association with
this metabolite via the transcript-level chain.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
MESA, HCHS/SOL and WHI data are available through application to dbGaP according
to the study specific accessions. MESA phenotypes are available in: “phs000209”; WHI
phenotypes: “phs000200”; and HCHS/SOL phenotypes: “phs000810”. HCHS/SOL
genotyping data: “phs000880”. MESA and WHI RNA-seq data has been deposited and
will become available through the TOPMed according to the study specific accessions;
MESA: “phs001416”; WHI: “phs001237”. HCHS/SOL metabolomics data are available
via data use agreement with the HCHS/SOL Data Coordinating Center at the University
of North Carolina at Chapel Hill, see collaborators website: https://sites.cscc.unc.edu/
hchs/. Data needed to construct the tPRS are publicly available on the following GitHub
and zenodo repositories https://github.com/nkurniansyah/SDB_Multi_Omics, https://
doi.org/10.5281/zenodo.7320074. Complete summary statistics from SDB traits
association analyses with RNA-seq across cell types are provided in the same zenodo
repository. The data behind Fig. 1 is provided in Supplementary Data 16.

Code availability
We provide developed scripts used to perform analyses described in the paper and code
to construct the tPRS in the GitHub repository https://github.com/nkurniansyah/SDB_
Multi_Omics, https://doi.org/10.5281/zenodo.7320074.
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