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LINEAR-QUADRATIC STOCHASTIC DIFFERENTIAL GAMES ON

DIRECTED CHAIN NETWORKS

Jean-Pierre Fouque∗ Yichen Feng† Tomoyuki Ichiba‡

ABSTRACT

We study linear-quadratic stochastic differential games on directed chains inspired by the directed
chain stochastic differential equations introduced by Detering, Fouque & Ichiba [?]. We solve ex-
plicitly for Nash equilibria with a finite number of players and we study more general finite-player
games with a mixture of both directed chain interaction and mean field interaction. We investigate
and compare the corresponding games in the limit when the number of players tends to infinity.
The limit is characterized by Catalan functions and the dynamics under equilibrium is an infinite-
dimensional Gaussian process described by a Catalan Markov chain, with or without the presence
of mean field interaction.

Key Words and Phrases: Linear-quadratic stochastic games, directed chain network, Nash equilibrium, Catalan func-
tions, Catalan Markov chain, mean field games.

AMS 2010 Subject Classifications: 91A15, 60H30

1 Introduction

Stochastic differential games on networks is a broad area. There are two extreme situations. On one hand, we can
consider a fully connected network with interaction of mean-field type. When the number of players goes to infinity,
this kind of game can be approximated by a mean field game. The mean field convergence problem has been discussed
widely, for instance in Lacker [?]. Other networks and games have been proposed and studied. For example, Delarue
[?] investigates an example of a game with a large number of players in mean-field interaction when the graph con-
nection between them is of Erdos-Rényi type, and Lacker & Ramanan [?] studies the limit of an interacting diffusive
particle system on a large sparse interaction graph with finite average degree. On the other hand, we can consider
a very structured network such as a one-dimensional directed chain which has been studied in Detering, Fouque &
Ichiba [?] without the game aspect. It is a complete opposite to mean field games since, on a directed chain network,
each player interacts with its neighbor in a given direction. In this paper, we introduce a game aspect of the directed
chain and identify Nash equilibria. We also consider the limit when the number of players goes to infinity.
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Interestingly, the equilibrium dynamics on the network discussed in this paper turns out to be different from the
dynamics suggested in [?], in particular, with long time variance behavior. The equilibrium dynamics for the infinite-
player game is described by a Catalan Markov chain introduced in this paper.

The goal of this paper is to consider a game on a directed chain network and to find its Nash equilibrium. We focus on
open-loop Nash equilibria. We want to understand how the structure of the network affects this Nash equilibrium. We
propose three directed chain networks shown in Figures 1 and 2. Starting from a finite directed chain, we also discuss
a periodic directed chain in a ring structure and we compare with the game on a infinite directed chain network.

The paper is organized as follows. In section 2, we propose a finite-player game model on a directed chain and
construct an open-loop Nash equilibrium. We discuss general boundary conditions as well as two special cases to
illustrate that the boundary condition does not actually affect the Nash equilibrium. Section 3 is devoted to the analysis
of an infinite-player stochastic differential game on a directed chain. We try to find an open-loop Nash equilibrium
and get a similar Riccati system to that of the finite-player game. The solutions are called Catalan functions and we
use them to build a Catalan Markov chain, discussed in section 4. We find that its long-time asymptotic variance and
covariance are finite. In sections 5 and 6, we discuss the finite-player and infinite-player games for a mixed system
including both a directed chain interaction and a mean-field interaction. We can adjust the model to be a purely mean
field game or a purely directed chain game or a mixed one by introducing a tuning parameter u ∈ [0, 1]. We repeat
the same steps as sections 2, 3, and 4 to find the Nash equilibria and we construct a generalized Catalan Markov chain
describing the two effects. We find that the long-time asymptotic variance of the process with the purely directed
chain interaction is finite, which is different from the case with mean-field interaction as shown in Table 1 in [?]. In
section 7, we propose a finite-player periodic directed chain game and we construct an open-loop Nash equilibrium.
We conjecture that its infinite-player limit is the same as the one found for other boundary condition. this conjecture is
supported by numerical results. Section 8 gives a conclusion and open problems. Appendix A includes some technical
proofs and discussions.
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Figure 1: Finite Directed Chain and Infinite Directed Chain
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Figure 2: Periodic Directed Chain
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2 N-Player Directed Chain Game

2.1 Setup and Assumptions

We consider a stochastic game in continuous time, involvingN players indexed from 1 to N. Each player is controlling
its own, real-valued private state Xi

t by taking a real-valued action αit at time t ∈ [0, T ]. The dynamics of the states of
the N individual players are given by N stochastic differential equations of the form:

dXi
t = αitdt+ σdW i

t , i = 1, · · · , N, (1)

where 0 ≤ t ≤ T and (W i
t )0≤t≤T , i = 1, · · · , N are independent standard Brownian motions. For simplicity, we

assume that the diffusion is one-dimensional and the diffusion coefficients are constant and identical denoted by σ > 0.
The drift coefficients αi’s are adapted to the filtration of the Brownian motions and satisfy E[

∫ T
0
|αit|2dt] < ∞ for

i = 1, . . . , N . The system starts at time t = 0 from i.i.d. square-integrable random variables Xi
0 = ξi independent of

the Brownian motions and, without loss of generality, we assume E(ξi) = 0 for i = 1, . . . , N .

In this model, among the first N − 1 players, each player i chooses its own strategy αi, in order to minimize its
objective function given by:

1 ≤ i ≤ N − 1 : J i(α1, · · · , αN ) = E

{∫ T

0

(
1

2
(αit)

2 +
ε

2
(Xi+1

t −Xi
t)

2

)
dt+

c

2
(Xi+1

T −Xi
T )2

}
, (2)

for some constants ε > 0 and c ≥ 0. The running cost and the terminal cost functions are defined by f i(x, αi) =
1
2 (αi)2 + ε

2 (xi+1 − xi)2 and gi(x) = c
2 (xi+1 − xi)2, respectively. This is a Linear-Quadratic differential game on

a directed chain network, since Xi interacts only with Xi+1 through the cost functions for i = 1, . . . , N − 1. The
system is completed by describing the behavior of player N which will be done in the following section, when we
discuss the boundary condition of the system.

2.2 Open-Loop Nash Equilibrium

In this section, we search for an open-loop Nash equilibrium of the system among strategies {αit, i = 1, · · · , N} and
we study the effect of boundary conditions. We will discuss a general boundary condition for the game and then show
two particular choices in Section 2.2.2 and 2.2.3. We construct the equilibrium by the Pontryagin stochastic maximum
principle.

2.2.1 General Boundary Condition

We consider a setup with general boundary condition for the directed chain where the last player N does not depend
on the other players. The cost functional for player N is defined by:

JN (αN ) = E

{∫ T

0

(
1

2
(αNt )2 + q2(XN

t )

)
dt+Q2(XN

T )

}
.

Here, q2(x) = a1
2 (x − m)2 + a2 and Q2(x) = c1

2 (x − m)2 + c2 are non-degenerate convex quadratic functions
in x, where a1, a2,m, c1, c2 are some constants with a1 > 0 and c1 > 0. The running cost function is defined by
fN (x, αN ) = 1

2 (αN )2 + q2(x) and the terminal cost function is defined by gN (x) = Q2(x). This can be seen as a
control problem for the player N and we assume its state is attracted to some constant level m.

The Hamiltonian for player i ≤ N − 1 is given by:

Hi(x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN ) =

N∑
k=1

αkyi,k +
1

2
(αi)2 +

ε

2
(xi+1 − xi)2,
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and the Hamiltonian for player N is given by:

HN (x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN ) =

N∑
k=1

αkyi,k +
1

2
(αN )2 +

a1

2
(xN −m)2 + a2.

For i = 1, . . . , N the value of αi minimizing the Hamiltonian Hi(·) with respect to αi, when all the other variables
including αj for j 6= i are fixed, is given by the first order condition

∂αiHi = yi,i + αi = 0 leading to the choice: α̂i = −yi,i.

The adjoint processes Y it = (Y i,jt ; j = 1, · · · , N) and Zit = (Zi,j,kt ; j = 1, · · · , N, k = 0, · · · , N) for i = 1, · · · , N
are defined as the solutions of the system of backward stochastic differential equations (BSDEs): for j = 1, . . . , N

i ≤ N − 1 :


dY i,jt = −∂xjHi(Xt, Y

i
t , αt)dt+

N∑
k=0

Zi,j,kt dW k
t

= −ε(Xi+1
t −Xi

t)(δi+1,j − δi,j)dt+
N∑
k=0

Zi,j,kt dW k
t ,

Y i,jT = ∂xjgi(XT ) = c(Xi+1
T −Xi

T )(δi+1,j − δi,j);

i = N :

 dY N,jt = −a1(XN
t −m)δN,jdt+

N∑
k=0

ZN,j,kt dW k
t ,

Y N,jT = c1(XN
T −m)δN,j .

(3)

Particularly, for j = i, it becomes:


dY i,it = ε(Xi+1

t −Xi
t)dt+

N∑
k=0

Zi,i,kt dW k
t , Y i,iT = −c(Xi+1

T −Xi
T ), i ≤ N − 1

dY N,Nt = −a1(XN
t −m)dt+

N∑
k=0

ZN,N,kt dW k
t , Y N,NT = c1(XN

T −m).

(4)

Considering the BSDE system and its initial condition (4), we make the ansatz:

Y i,it =

N−1∑
j=i

φN,i,jt Xj
t + (φN,i,Nt XN

t + ψN,it )︸ ︷︷ ︸
affine inXN , depending on B.C.

=

N∑
j=i

φN,i,jt Xj
t + ψN,it , (5)

for some deterministic scalar functions φt (depending on N ) satisfying the terminal conditions: for 1 ≤ i ≤ N − 1,
φN,i,iT = c, φN,i,i+1

T = −c, φN,i,jT = 0 for j ≥ i+ 2, ψN,iT = 0; and φN,N,NT = c1, ψN,NT = −c1m. With this ansatz,
the optimal strategy and the forward equation become


α̂it = −Y i,it = −

( N∑
j=i

φN,i,jt Xj
t + ψN,it

)
,

dXj
t = −

( N∑
k=j

φN,j,kt Xk
t + ψN,jt

)
dt+ σdW j

t .
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Differentiating the ansatz leads to:

dY i,it =
N∑
j=i

[Xj
t φ̇

N,i,j
t dt+ φN,i,jt dXj

t ] + ψ̇N,it dt

=
N∑
j=i

Xj
t φ̇

N,i,j
t dt+ ψ̇N,it dt

+
N∑
j=i

φN,i,jt

(
−

N∑
k=j

φN,j,kt Xk
t dt− ψN,jt dt+ σdW j

t

)
=

N∑
k=i

(
φ̇N,i,kt −

k∑
j=i

φN,i,jt φN,j,kt

)
Xk
t dt+

N∑
k=i

σφN,i,kt dW k
t

+ ψ̇N,it dt−
N∑
j=i

ψN,jt φN,i,jt dt

=
{ N∑
k=i

(
φ̇N,i,kt −

k∑
j=i

φN,i,jt φN,j,kt

)
Xk
t +

[
ψ̇N,it −

N∑
j=i

ψN,jt φN,i,jt

]}
dt

+ σ
N∑
k=i

φN,i,kt dW k
t .

(6)

Here φ̇t represents the time derivative of φt. Comparing the martingale parts and drifts of two Itô’s decompositions
(4) and (6) of Y i,it , the martingale terms give the deterministic (and therefore adapted) processes Zi,i,kt :

Zi,i,0t = 0; Zi,i,kt = 0 for k < i and Zi,i,kt = σφN,i,kt for k ≥ i. (7)

The drift terms show that the functions φN,·,·t and ψN,·t must satisfy the system of Riccati equations :
for i ≤ N − 1,

φ̇N,i,it = φN,i,it · φN,i,it − ε, φN,i,iT = c,

φ̇N,i,i+1
t = φN,i,it · φN,i,i+1

t + φN,i,i+1
t · φN,i+1,i+1

t + ε, φN,i,i+1
T = −c,

...
φ̇N,i,`t = φN,i,it · φN,i,`t + φN,i,i+1

t · φN,i+1,`
t

+ · · ·+ φN,i,`−1
t · φN,`−1,`

t + φN,i,`t · φN,`,`t , φN,i,`T = 0,
...

φ̇N,i,N−1
t = φN,i,it · φN,i,N−1

t + · · ·+ φN,i,N−1
t · φN,N−1,N−1

t , φN,i,N−1
T = 0,

φ̇N,i,Nt = φN,i,it φN,i,Nt + · · ·+ φN,i,N−1
t φN,N−1,N

t + φN,i,Nt φN,N,Nt , φN,i,NT = 0;

(8)

for i = N ,
φ̇N,N,Nt = φN,N,Nt · φN,N,Nt − a1 , φN,N,NT = c1.

And 

ψ̇N,it =
N∑
j=i

ψN,jt φN,i,jt , ψN,iT = 0,

...
ψ̇N,N−1
t = ψN,N−1

t φN,N−1,N−1
t + ψN,Nt φN,N−1,N

t , ψN,N−1
T = 0,

ψ̇N,Nt = ψN,Nt φN,N,Nt + a1m, ψN,NT = −c1m.

From the equations above, the functions φN,i,it for all i = 1, · · · , N − 1 are identical; the functions φN,i,i+1
t for

all i = 1, · · · , N − 2 are identical ;· · · ; and the functions φN,i,N−2
t = φN,i+1,N−1

t . The functions φN,i,Nt for
all i depend on φN,N,Nt of the last player which is determined by the boundary condition. However, the functions
φN,i,it , · · · , φN,i,N−1

t are independent of φN,i,Nt and the boundary condition. The functions ψN,· depend on the φ
functions and have no effect on φN,i,j (j < N ) as well. In conclusion, these φN,i,j (j < N) functions are solvable,
identical and independent of the boundary condition as long as the boundary condition defines the last player as a
self-controlled problem.
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As the number of players goes to infinity, we can get rid of the boundary condition and get a sequence of functions
{φjt , j = 1, 2, · · · }, defined by φ0

t = φN,i,it , φ1
t = φN,i,i+1

t , · · · , φjt = φN,i,i+jt for large N and so on. It indicates
that the Nash equilibrium converges to a limit independent of the boundary condition. Therefore, it is natural to study
a similar game with infinite players and we conjecture that the limit of the Nash equilibrium of the finite-player game
gives us the Nash equilibrium of the infinite-player game. And the sequence of functions {φjt , i ∈ N} is the solution
to the Riccati equation system of the infinite-player game. This will be discussed in Section 3. Next, two particular
examples are discussed to better illustrate the effect of the special boundary condition.

2.2.2 Boundary Condition 1: XN is attracted to 0

Here, we discuss the case when XN is attracted to 0 which is also the mean of the initial condition. It is equivalent to
the general boundary condition when m = 0. Without loss of generality, we can take constants: a1 = ε, c1 = c and
a2 = c2 = 0. Then the cost functional for player N is given by:

JN (αN ) = E

{∫ T

0

(
1

2
(αNt )2 +

ε

2
(XN

t )2

)
dt+

c

2
(XN

T )2

}
.

The running cost function is defined by fN (x, αN ) = 1
2 (αN )2 + ε

2x
2 and the terminal cost function is defined by

gN (x) = c
2c

2. Then, XN is independent of the other players and is the solution of a self-controlled problem. We then
make the same ansatz as (5) with ψN,it = 0 for all i. As a result, the martingale terms give the same processes Zi,i,kt

as (7). And from the drift terms, we get the system of Riccati equations:
for i ≤ N − 1,

φ̇N,i,it = φN,i,it · φN,i,it − ε, φN,i,iT = c,

φ̇N,i,i+1
t = φN,i,it · φN,i,i+1

t + φN,i,i+1
t · φN,i+1,i+1

t + ε, φN,i,i+1
T = −c,

...
φ̇N,i,lt = φN,i,it · φN,i,lt + φN,i,i+1

t · φN,i+1,l
t + · · ·+ φN,i,l−1

t · φN,l−1,l
t + φN,i,lt · φN,l,lt , φN,i,lT = 0,

...
φ̇N,i,Nt = φN,i,it φN,i,Nt + φN,i,i+1

t φN,i+1,N
t + · · ·+ φN,i,N−1

t φN,N−1,N
t + φN,i,Nt φN,N,Nt , φN,i,NT = 0;

for i = N ,

φ̇N,N,Nt = φN,N,Nt · φN,N,Nt − ε, φN,N,NT = c,

From above, we have the same conclusion: the functions φN,i,i+kt = φN,j,j+kt for all i, j ≥ 1, k ≥ 0 and i + k <

N, j + k < N ; and functions φN,i,jt (j < N ) are independent of the boundary condition. Notice that in this case
φN,N,Nt has the same solution as φN,i,it (i < N ). Thus, in the ansatz, we can actually assume φN,j−i instead of φN,i,j .

2.2.3 Boundary Condition 2: αN = 0

We study the case when there is no control for the last player XN , i.e. the dynamics of the state is given by:

dXN
t = σdWN

t ; XN
0 = ξN , E(ξN ) = 0.

Player i chooses the strategy αit (i < N ) to minimize J i given above and αNt = 0. We make the same ansatz as in (5)
with ψN,it = 0 for all i. The martingale terms give the same processes Zi,i,kt as in (7).
From the drift terms, we get the system of Riccati equations :
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for i ≤ N − 1,

φ̇N,i,it = φN,i,it · φN,i,it − ε, φN,i,iT = c,

φ̇N,i,i+1
t = φN,i,it · φN,i,i+1

t + φN,i,i+1
t · φN,i+1,i+1

t + ε, φN,i,i+1
T = −c,

...
φ̇N,i,lt = φN,i,it · φN,i,lt + φN,i,i+1

t · φN,i+1,l
t + · · ·+ φN,i,l−1

t · φN,l−1,l
t + φN,i,lt · φN,l,lt , φN,i,lT = 0,

...
φ̇N,i,N−1
t = φN,i,it φN,i,N−1

t + φN,i,i+1
t φN,i+1,N−1

t + · · ·+ φN,i,N−1
t φN,N−1,N−1

t , φN,i,N−1
T = 0,

φ̇N,i,Nt =
N−1∑
j=i

φN,i,jt φN,j,Nt

= φN,i,it φN,i,Nt + φN,i,i+1
t φN,i+1,N

t + · · ·+ φN,i,N−1
t φN,N−1,N

t , φN,i,NT = 0;

for i = N ,

φ̇N,N,Nt = −ε, φN,N,NT = c,

From above, it is demonstrated again that the boundary condition does not affect the solutions φN,i,jt (j < N ), however,
the functions φN,i,Nt for all i are different from those in Section 2.2.2, which are dependent on the boundary condition.

3 Infinite-Player Game Model

Motivated by the limit of the finite-player game discussed in Section 2, we define the game with infinite players
on a directed chain structure. In Remark 1 in section 3.1, we will see that the Hamiltonian only depends on finite
players, which will make it well-defined. We assume that the state dynamics of all players are given by the stochastic
differential equations of the form:

dXi
t = αitdt+ σdW i

t , 0 ≤ t ≤ T,

where (W i
t )0≤t≤T , i ≥ 1 are one-dimensional, independent Brownian motions. Similar to the setup for the finite-

player games in Section 2, we assume that the drift coefficients αi are adapted to the filtration of the Brownian motions
and satisfy E[

∫ T
0
|αit|2dt] < ∞. We also assume that the diffusion coefficients are constant and identically denoted

by σ > 0. The system starts at time t = 0 from i.i.d. square-integrable random variables Xi
0 = ξi independent of the

Brownian motions and such that E(ξi) = 0. In this model, player i chooses its own strategy αi in order to minimize
its cost function of the form: J i(α) = E

[ ∫ T
0
f i(s,Xs, αs)ds+gi(XT )

]
, where f i(x, αi) = 1

2 (αi)2 + ε
2 (xi+1−xi)2

and gi(x) = c
2 (xi+1 − xi)2, xi ∈ R for i ≥ 1.

3.1 Open-Loop Nash Equilibrium

We search for an open-loop Nash equilibrium of the infinite system among strategies {αit, i = 1, 2, · · · }. First, we
have the Hamiltonian of the form:

Hi(x1, x2, · · · , yi,1, · · · , yi,ni , α1, α2, · · · ) =

ni∑
k=1

αkyi,k +
1

2
(αi)2 +

ε

2
(xi+1 − xi)2,

assuming it is defined on Y it ’s where only finitely many Y i,kt ’s are non-zero for every given i. Here, ni is a finite
number depending on i with ni > i. This assumption is checked in Remark 1 below. Thus, Hi is well defined for
i ≥ 1.
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The adjoint processes Y it = (Y i,jt ; j = 1, · · · , ni) and Zit = (Zi,j,kt ; 1 ≤ j ≤ ni, k ≥ 0) for i = 1, 2, · · · are the
solutions of the system of backward stochastic differential equations (BSDEs):

dY i,jt = −∂xjHi(Xt, Y
i
t , αt)dt+

∞∑
k=0

Zi,j,kt dW k
t

= −ε(Xi+1
t −Xi

t)(δi+1,j − δi,j)dt+
∞∑
k=0

Zi,j,kt dW k
t ,

Y i,jT = ∂xjgi(XT ) = c(Xi+1
T −Xi

T )(δi+1,j − δi,j).

(9)

Remark 1. For every j 6= i or i+ 1, dY i,jt =
∞∑
k=0

Zi,j,kt dW k
t and Y i,jT = 0 implies Zi,j,kt = 0 for all k. Thus, there

must be finitely many non-zero Y i,j’s for every i. Hence, the Hamiltonian can be rewritten as

Hi(x1, x2, · · · , yi,i, yi,i+1, α1, α2, · · · ) = αiyi,i + αi+1yi,i+1 +
1

2
(αi)2 +

ε

2
(xi+1 − xi)2.

By minimizing the Hamiltonian with respect to αi, we can get the open-loop Nash equilibrium: α̂i = −yi,i for all i.
Inspired by the conclusion from the finite-player game, we then make the ansatz of the form:

Y i,it =

∞∑
j=i

φj−it Xj
t , (10)

for some deterministic scalar functions φt satisfying the terminal conditions: φ0
T = c, φ1

T = −c, φkT = 0 for k ≥ 2.
Using the ansatz, the optimal strategy α̂i and the forward equation for Xi

· in (1) become:
α̂it = −Y i,it = −

∞∑
j=i

φj−it Xj
t ,

dXi
t = −

∞∑
j=i

φj−it Xj
t dt+ σdW i

t .
(11)

Differentiating the ansatz (10), we obtain

dY i,it =
∞∑
j=i

[Xj
t φ̇

j−i
t dt+ φj−it dXj

t ]

=
∞∑
k=0

φ̇ktX
i+k
t dt−

∞∑
k=0

(
k∑
j=0

φjtφ
k−j
t

)
Xi+k
t dt+ σ

∞∑
k=i

φk−it dW k
t .

(12)

Now we compare the two Itô’s decompositions (12) and (9) of Y i,it . The martingale terms give the processes Zi,j,kt :

Zi,i,0t = 0; Zi,i,kt = 0 for k < i and Zi,i,kt = σφk−it for k ≥ i.

And from the drift terms, we get the system of Riccati equations:

for k = 0 : φ̇0
t = φ0

t · φ0
t − ε, φ0

T = c,

for k = 1 : φ̇1
t = 2φ0

t · φ1
t + ε, φ1

T = −c,
for k ≥ 2 : φ̇kt = φ0

t · φkt + φ1
t · φk−1

t + · · ·+ φk−1
t · φ1

t + φkt · φ0
t , φkT = 0.

(13)

The solutions to this Riccati system coincide with the limit of the solutions to the ODE system (8) of the N-player
directed chain game in Section 2, i.e., φi· = lim

N→∞
φN,i,i+j· in the supremum norm.

Lemma 1. We have
∞∑
k=0

φkt = 0, φ0
t =

(−ε− c
√
ε)e2

√
ε(T−t) + ε− c

√
ε

(−
√
ε− c)e2

√
ε(T−t) −

√
ε+ c

,

and the functions φk’s are obtained by a series expansion of St(z) given by (66).
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Proof. Given in Appendix A.1.

Remark 2. It follows from Lemma 1 that the forward dynamics (11) can be written as:

dXi
t = −

∞∑
j=0

φjtX
i+j
t dt+ σdW i

t

= −φ0
t ·
∞∑
j=1

φj
t

φ0
t
Xi+j
t dt− φ0

tX
i
tdt+ σdW i

t

= φ0
t ·
( ∞∑
j=1

−φj
t

φ0
t
Xi+j
t −Xi

t

)
dt+ σdW i

t ,

which shows that this is a mean-reverting type process, since φ0
t > 0. We also see that this system is invariant under

the shift of indices of individuals. In particular, the law of Xi is the same as the law of X1 for every i and also Xi is
independent of (W 1, · · · ,W i−1).

4 Catalan Markov Chain

In order to simplify our analysis, we look at the stationary solution {φk, k ≥ 0} of the Riccati system (13) in Section
3. Without loss of generality, we assume ε = 1. By taking T → ∞, we obtain the stationary long-time behavior

satisfying φ̇k· = 0 for all k. Then, (13) gives the recurrence relation: φ0 = 1 and
n∑
k=0

φkφn−k = 0 for every

n ≥ 0. This is closely related to the recurrence relation of Catalan numbers. By using a moment generating function
method as in Appendix A.1, we get the stationary solutions (that we call Catalan functions): φ0 = 1, φ1 = − 1

2 ,

φk = − (2k − 3)!

(k − 2)!k!22k−2
for k ≥ 2.

Let p0 = −φ0 = 1, p1 = −φ1 = 1
2 , and pk = −φk = (2k−3)!

(k−2)!k!
1

22k−2 for k ≥ 2. We consider the continuous-time

Markov chain M(·) with state space N0 and generator matrix

Q =


−1 p1 p2 p3 · · ·

0 −1 p1 p2
. . .

0 0 −1 p1
. . .

. . . . . . . . . . . .

 .

The infinite particle system (11) can be represented as a stochastic evolution equation:

dXt = QXtdt+ dWt, (14)

where X. = (X.,k, k ∈ N0) with X0 = x0 and W. = (W.,k.k ∈ N0). By Itô’s formula we have

d
( ∫ t

0

e(t−s)QdWs

)
=
(
Q

∫ t

0

e(t−s)QdWs

)
dt+ dWs; t ≥ 0, (15)

and thus, the solution to (14) is:

Xt = x0 +

∫ t

0

e(t−s)QdWs; t ≥ 0. (16)

Note that the transition probabilities of the continuous-time Markov chain M(·) are: pi,k(t) = P(M(t) = k|M(0) =

i) = (etQ)i,k, i, k ∈ N0, t ≥ 0. Without loss of generality, let us assume X0 = 0. Then,

Xt =

∫ t

0

∞∑
k=0

p0,k(t− s)dWs,k

=

∫ t

0

∞∑
k=0

P(M(t− s) = k|M(0) = 0)dWs,k

= E
M
[ ∫ t

0

∞∑
k=0

1(M(t−s)=k)dWs,k|M(0) = 0
]
; t ≥ 0,

(17)
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where the expectation is taken with respect to the probability induced by the Markov chain M(·), independent of the
Brownian motions (W·,k, k ∈ N0). Therefore, we obtained a Feynman–Kac representation formula for the generator
Q.

Proposition 1. The Gaussian process Xj(t) , j ∈ N0 , t ≥ 0 , corresponding to the Catalan Markov chain, is

Xj(t) : =

∞∑
k=0

∫ t

0

(exp(Q(t− s)))j,kdWk(s) =

∞∑
k=j

∫ t

0

(t− s)2(k−j)

(k − j)!
· F (k−j)(−(t− s)2)dWk(s)

=

∞∑
k=j

∫ t

0

(t− s)2(k−j)

(k − j)!
· ρk−j(−(t− s)2) e−(t−s) · dWk(s), (18)

where Wk(·) , k ∈ N0 are independent standard Brownian motions and ρk(x) = 1
2k

2k−1∑
j=k

(j−1)!
(2j−2k)!!(2k−j−1)! (−x)−

j
2 ,

for k ≥ 1.

Proof. Given in Appendix A.2.

4.1 Asymptotic Behavior of the Variances as t→∞

For t ≥ 0 , we have:

Var(X0(t)) = Var
( ∞∑
k=0

∫ t

0

(t− s)2k

k!
F (k)(−(t− s)2)dWk(s)

)
=

∞∑
k=0

∫ t

0

(t− s)4k

(k!)2
|ρk(−(t− s)2)|2e−2(t−s)ds.

Remark 3. To evaluate the variance, we need some estimates of ρk(·) , k ∈ N0 . It can be shown that

ρk(−ν2) =
1

2kνk
·
√

2ν

π
· eν ·Kk−(1/2)(ν) ; k ≥ 1 ,

where Kn(x) (=
∫∞

0
e−x cosh t cosh(nt)dt ; n > −1, x > 0) is the modified Bessel function of the second kind.

Then Var(X0(t)) =
∑∞
k=1

∫ t
0

2
π

ν2k+1

(k!)2 4k

(
Kk−(1/2)(ν)

)2
dν + 1−e−2t

2 for t ≥ 0 . Details are given in the Appendix
A.3.

Proposition 2. The asymptotic variance is finite, i.e., lim
t→∞

Var(X0(t)) = 1√
2
<∞.

Proof. Given in Appendix A.4.

4.2 Asymptotic Independence

With X0 = 0, it follows from Proposition 1 and Remark 3 that:

Xj(t) =

∞∑
i=0

∫ t

0

1√
πi!

(t− s)i+1/2

2i−1/2
Ki−1/2(t− s)dWj+i(s). (19)

Then the auto-covariance and cross-covariance are given by:

E[X0(s)X0(t)] =
∞∑
k=0

∫ s
0

1
π(k!)222k−1 ((t− s+ α)α)k+1/2Kk−1/2(t− s+ α)Kk−1/2(α)dα, 0 ≤ s ≤ t (20)

E[X0(t)Xk(t)] =
∞∑
j=0

1
π(k+j)!j!

1
2k+2j−1

∫ t
0
sk+2j+1Kk+j−1/2(s)Kj−1/2(s)ds, t ≥ 0. (21)

The following propositions give two results about these covariances and the details of the proofs are given in Appendix
A.5.
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Proposition 3 (Asymptotic behavior of the auto-covariance). According to equation (20), the auto-covariance
E[X0(s)X0(t)] is positive since Kn(x) > 0. Fixing s > 0, when t− s→∞, the auto-covariance does not converge
to 0, i.e. the process has no stationary distribution.

Proposition 4 (Asymptotic behavior of the cross-covariance). Similarly, the cross-covariance E[X0(t)Xk(t)] is pos-
itive for any t > 0 and

0 < lim
t→∞

E[X0(t)Xk(t)] =

∞∑
j=0

1

π(k + j)!j!

1

2k+2j−1

∫ ∞
0

sk+2j+1Kk+j−1/2(s)Kj−1/2(s)ds <
1√
2
.

The asymptotic cross-covariance is positive and bounded above, which means the states are asymptoticaly dependent
in the directed chain game.

5 Mixture of Directed Chain and Mean Field Interaction on a Finite-player System

In the spirit of the paper, we want to look at the game on a mixed system, including the directed chain interaction and
the mean field interaction for finite players. This section repeats the same steps as before to analyse the mixed system
game. We assume the state dynamics of all payers are of the form:

dXi
t = αitdt+ σdW i

t ,

as in the previous sections. In this model, player i chooses its own strategy αi in order to minimize its objective
function of the mixed form:

i ≤ N − 1 : J i(α1, · · · , αN ) = E

{∫ T

0

(1

2
(αit)

2 +u ε2 (Xi+1
t −Xi

t)
2 + (1− u) ε2 (X̄t −Xi

t)
2
)
dt

+u c2 (Xi+1
T −Xi

T )2 + (1− u) c2 (X̄T −Xi
T )2

}
,

(22)

for some positive constants ε, c and u ∈ [0, 1]. The notation X̄t is defined as the empirical mean, i.e., X̄t = 1
N

N∑
i=1

Xi
t .

The running cost function is defined by f i(x, αi) = 1
2 (αi)2 + u ε2 (xi+1 − xi)2 + (1− u) ε2 (x̄− xi)2 and the terminal

cost function is defined by gi(x) = u c2 (xi+1 − xi)2 + (1− u) c2 (x̄− xi)2. The system is completed by describing the
behavior of player N . For simplicity, we consider the boundary condition of the system where XN is attracted to 0.
Then we can compare the result with that of Section 2.2.2. The cost functional for player N is given by:

JN (αN ) = E

{∫ T

0

(1

2
(αNt )2 +u ε2 (XN

t )2 + (1− u) ε2 (X̄t −XN
t )2

)
dt

+u c2 (XN
T )2 + (1− u) c2 (X̄T −XN

T )2

}
.

(23)

The running cost function is defined by fN (x, αN ) = 1
2 (αN )2 + u ε2 (xN )2 + +(1− u) ε2 (x̄− xN )2 and the terminal

cost function is defined by gN (x) = u c2 (xN )2 + (1−u) c2 (x̄−xN )2. If u = 1, the system becomes the directed chain
system discussed before. If u = 0, it becomes a mean-field system where each player is attracted towards the mean of
the system.

5.1 Open-Loop Nash Equilibrium

We search for an open-loop Nash equilibrium of the system among strategies {αit, i = 1, · · · , N}. The Hamiltonian
for player i is given by:

Hi(x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN ) =

N∑
k=1

αkyi,k +
1

2
(αi)2 + u

ε

2
(xi+1 − xi)2 + (1− u)

ε

2
(x̄− xi)2,
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and the Hamiltonian for player N is given by:

HN (x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN ) =

N∑
k=1

αkyi,k +
1

2
(αi)2 + u

ε

2
(xN )2 + (1− u)

ε

2
(x̄− xi)2.

The value of αi minimizing the Hamiltonian with respect to αi is given by:

∂αiHi = yi,i + αi = 0 leading to the choice: α̂i = −yi,i.

The adjoint processes Y it = (Y i,jt ; j = 1, · · · , N) and Zit = (Zi,j,kt ; j = 1, · · · , N, k = 0, · · · , N) for i = 1, · · · , N
are defined as the solutions of the backward stochastic differential equations (BSDEs):

i < N :


dY i,jt = −∂xjHi(Xt, Y

i
t , αt)dt+

N∑
k=0

Zi,j,kt dW k
t

= −
{
uε(Xi+1

t −Xi
t)(δi+1,j − δi,j) + (1− u)ε(X̄t −Xi

t)(
1
N − δi,j)

}
dt+

N∑
k=0

Zi,j,kt dW k
t ,

Y i,jT = ∂xjgi(XT ) = uc(Xi+1
T −Xi

T )(δi+1,j − δi,j) + (1− u)c(X̄T −Xi
T )( 1

N − δi,j).

i = N :

 dY N,jt = −
{
uεXN

t δN,j + (1− u)ε(X̄t −XN
t )( 1

N − δN,j)
}

dt+
N∑
k=0

ZN,j,kt dW k
t ,

Y N,jT = ucXN
T δN,j + (1− u)c(X̄T −XN

T )( 1
N − δN,j).

(24)
When j = i, it becomes:

dY i,it =
{
uε(Xi+1

t −Xi
t) + (1− u)ε(X̄t −Xi

t)(1− 1
N )
}

dt+
N∑
k=0

Zi,i,kt dW k
t ,

Y i,iT = −uc(Xi+1
T −Xi

T )− (1− u)c(X̄T −Xi
T )(1− 1

N ), i < N

dY N,Nt =
{
− uεXN

t + (1− u)ε(X̄t −XN
t )(1− 1

N )
}

dt+
N∑
k=0

ZN,N,kt dW k
t ,

Y N,NT = ucXN
T − (1− u)c(X̄T −XN

T )(1− 1
N ).

(25)

Considering the BSDE system and the initial condition, we then make the following ansatz with function parameters
depending on N :

Y i,it = u

N∑
j=i

φN,i,jt Xj
t − (1− u)(X̄t −Xi

t)θ
N
t , (26)

for some deterministic scalar functions φt, θt satisfying the terminal condition: when i < N , φN,i,iT = c, φN,i,i+1
T =

−c, φN,i,jT = 0 for N ≥ j ≥ i+ 2; φN,N,NT = c and θNT = c(1− 1
N ). For simplicity of notation, we denote θt = θNt .

Using the ansatz, the optimal strategy and forward equation become:
α̂i = −Y i,it = −u

N∑
j=i

φN,i,jt Xj
t + (1− u)(X̄t −Xi

t)θt,

dXj
t =

[
− u

N∑
k=j

φN,j,kt Xk
t + (1− u)(X̄t −Xj

t )θtdt
]

+ σdW j
t .

By summation, we can get:

dX̄t = −u( 1
N

N∑
j=1

N∑
k=j

φN,j,kt Xk
t )dt+ σ( 1

N

N∑
j=1

dW j
t )

= −u 1
N

N∑
k=1

(
k∑
j=1

φN,j,kt )Xk
t dt+ σ( 1

N

N∑
k=1

dW k
t ).
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Consequently, one obtains:

d(X̄t −Xi
t) = −u 1

N

N∑
k=1

(
k∑
j=1

φN,j,kt )Xk
t dt+ σ( 1

N

N∑
k=1

dW k
t )

+ u
N∑
k=i

φN,i,kt Xk
t − (1− u)(X̄t −Xi

t)θtdt− σdW i
t

= −u 1
N

i−1∑
k=1

(
k∑
j=1

φN,j,kt )Xk
t dt+ u

N∑
k=i+1

(φN,i,kt − 1
N

k∑
j=1

φN,j,kt )Xk
t dt

+
(
uφN,i,it − u 1

N

i∑
j=1

φN,j,it + (1− u)θt
)
Xi
tdt− (1− u)X̄tθtdt

+ σ( 1
N

N∑
k=1

dW k
t − udW i

t ).

(27)

Differentiating the ansatz (26) and using (27), we get:

dY i,it = u ·
N∑
j=i

[Xj
t φ̇

N,i,j
t dt+ φN,i,jt dXj

t ]− (1− u) ·
(
θ̇t(X̄t −Xi

t)dt+ θtd(X̄t −Xi
t)
)

def
= u · I − (1− u) · II.

(28)

First,

I =
N∑
j=i

[Xj
t φ̇

N,i,j
t dt+ φN,i,jt dXj

t ]

=
N∑
j=i

Xj
t φ̇

N,i,j
t dt+

N∑
j=i

φN,i,jt ·
{[
− u

N∑
k=j

φN,j,kt Xk
t + (1− u)(X̄t −Xj

t )θtdt
]

+ σdW j
t

}
=

N∑
k=i

Xk
t φ̇

N,i,k
t dt− u

N∑
j=i

N∑
k=j

φN,i,jt φN,j,kt Xk
t dt+ (1− u)θt

N∑
k=i

φN,i,kt (X̄t −Xk
t )dt+ σ

N∑
k=i

φN,i,kt dW k
t

=
N∑
k=i

(
φ̇N,i,kt − u

k∑
j=i

φN,i,jt φN,j,kt − (1− u)θtφ
N,i,k
t

)
Xk
t dt

+ (1− u)θt
N∑
k=i

φN,i,kt · X̄tdt+ σ
N∑
k=i

φN,i,kt dW k
t .

(29)
Then,

II = θ̇t(X̄t −Xi
t)dt+ θtd(X̄t −Xi

t)

= θ̇t(X̄t −Xi
t)dt

+ θt ·
{
− u 1

N

i−1∑
k=1

(
k∑
j=1

φN,j,kt )Xk
t dt+ u

N∑
k=i+1

(φN,i,kt − 1
N

k∑
j=1

φN,j,kt )Xk
t dt

+
(
uφN,i,it − u 1

N

i∑
j=1

φN,j,it + (1− u)θt
)
Xi
tdt− (1− u)X̄tθtdt

+ σ( 1
N

N∑
k=1

dW k
t − dW i

t )
}

= −uθt 1
N

i−1∑
k=1

(
k∑
j=1

φN,j,kt )Xk
t dt+ uθt

N∑
k=i+1

(φN,i,kt − 1
N

k∑
j=1

φN,j,kt )Xk
t dt

− [θ̇t − uθt(φN,i,it − 1
N

i∑
j=1

φN,j,it )− (1− u)θ2
t ]X

i
tdt

+ (θ̇t − (1− u)θ2
t )X̄tdt+ σ( 1

N

N∑
k=1

dW k
t − dW i

t ).

(30)
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So the equation (28) can be written as:

dY i,it = u · I − (1− u) · II

= u ·
{

N∑
k=i

(
φ̇N,i,kt − u

k∑
j=i

φN,i,jt φN,j,kt − (1− u)θtφ
N,i,k
t

)
Xk
t dt

+ (1− u)θt
N∑
k=i

φN,i,kt · X̄tdt+ σ
N∑
k=i

φN,i,kt dW k
t

}
− (1− u) ·

{
− uθt 1

N

i−1∑
k=1

(
k∑
j=1

φN,j,kt )Xk
t dt+ uθt

N∑
k=i+1

(φN,i,kt − 1
N

k∑
j=1

φN,j,kt )Xk
t dt

− [θ̇t − uθt(φN,i,it − 1
N

i∑
j=1

φN,j,it )− (1− u)θ2
t ]X

i
tdt

+ (θ̇t − (1− u)θ2
t )X̄tdt+ σ( 1

N

N∑
k=1

dW k
t − dW i

t )

}
=

i−1∑
k=1

(u(1− u)θt
1
N

k∑
j=1

φN,j,kt )Xk
t dt

+
N∑

k=i+1

[uφ̇N,i,kt − u2
k∑
j=i

φN,i,jt φN,j,kt − u(1− u)θtφ
N,i,k
t − u(1− u)θt(φ

N,i,k
t − 1

N

k∑
j=1

φN,j,kt )]Xk
t dt

+ [uφ̇N,i,it − u2(φN,i,it )2 − 2u(1− u)θtφ
N,i,i
t + (1− u)θ̇t + u(1− u)θt

1
N

i∑
j=1

φN,j,it − (1− u)2θ2
t ]X

i
tdt

+ [u(1− u)θt
N∑
k=i

φN,i,kt − (1− u)θ̇t + (1− u)2θ2
t ]X̄tdt

+ uσ
N∑
k=i

φN,i,kt dW k
t − (1− u)σθt(

1
N

N∑
k=1

dW k
t − dW i

t )

(31)

Now we compare the two Itô’s decompositions (25) and (31). The martingale terms give the processes Zi,j,kt :

Zi,i,0t = 0; Zi,i,kt = −(1− u)σθt
1
N for k < i,

Zi,i,it = uσφN,i,it + (1− u)σθt(1− 1
N ) and Zi,i,kt = uσφN,i,kt for k > i.

And from the drift terms, we get:
when i < N ,

for i : uφ̇N,i,it − u2(φN,i,it )2 − 2u(1− u)θtφ
N,i,i
t + (1− u)θ̇t(1− 1

N )− (1− u)2θ2
t (1− 1

N )

+ u(1− u)θt
1
N (

i∑
j=1

φN,j,it +
N∑
k=i

φN,i,kt ) = −uε− (1− u)ε(1− 1
N )2, φN,i,iT = c,

for i+ 1 : uφ̇N,i,i+1
t − u2(φN,i,it φN,i,i+1

t + φN,i,i+1
t φN,i+1,i+1

t )

− 2u(1− u)θtφ
N,i,i+1
t − (1− u)θ̇t

1
N + (1− u)2θ2

t
1
N

+ u(1− u)θt
1
N (

i+1∑
j=1

φN,j,i+1
t +

N∑
k=i

φN,i,kt )

= uε+ (1− u)ε(1− 1
N ) 1

N , φN,i,i+1
T = −c,

for ` ≥ i+ 2 : uφ̇N,i,`t − u2
l∑
j=i

φN,i,jt φN,j,`t − 2u(1− u)θtφ
N,i,`
t − (1− u)θ̇t

1
N + (1− u)2θ2

t
1
N

+ u(1− u)θt
1
N (

l∑
j=1

φN,j,`t +
N∑
k=i

φN,i,kt ) = (1− u)ε(1− 1
N ) 1

N , φN,i,`T = 0,

and u(1− u)θt
N∑
k=i

φN,i,kt − (1− u)θ̇t + (1− u)2θ2
t = (1− u)ε(1− 1

N ), θT = c(1− 1
N );

(32)

When i = N ,

uφ̇N,N,Nt − u2(φN,N,Nt )2 − 2u(1− u)θtφ
N,N,N
t + (1− u)θ̇t(1− 1

N )− (1− u)2θ2
t (1− 1

N )

+ u(1− u)θt
1
N (

N∑
j=1

φN,j,Nt + φN,N,Nt ) = −uε− (1− u)ε(1− 1
N )2, φN,i,iT = c,

and u(1− u)θtφ
N,N,N
t − (1− u)θ̇t + (1− u)2θ2

t = (1− u)ε(1− 1
N ), θT = c(1− 1

N );

(33)
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When u = 1, the systems (32) and (33) are exactly what we got for finite-player directed chain game in section 2. We
have the similar conclusion that the boundary condition does not affect the functions φN,i,jt (j < N) for all i < N . We
can also compare thesystem (32) with the system (45) - (48). Under suitable assumptions, the system (32) converges
as the number of players N goes to infinity.

6 Infinite-Player Game Model with Mean-Field Interaction

Motivated by Section 5 and following Section 3, we can define a game with infinite players on a mixed system,
including the directed chain interaction and the mean field interaction. This section searches for an open-loop Nash
equilibrium and repeats the same steps as before to analyse the infinite mixed system game. We have a more general
Catalan Markov chain and Table 1 below shows the asymptotic behaviors of the variances and covariances as t→∞
for the process with different types of interactions. Comparing it with Table 1 in Detering, Fouque & Ichiba [?], we
have similar conclusions except that our asymptotic variance of purely directed chain does not explode.

The game model is given by:

dXi
t = αitdt+ σdW i

t ; i = 1, 2, · · · , 0 ≤ t ≤ T, (34)

where (W i
t )0≤t≤T , i ∈ N are independent standard Brownian motions. We assume the same drift and diffusion

coefficients and the initial conditions as the finite-player game. By choosing αit, player i tries to minimize:

J i(α1, α2, · · · ) = E

{∫ T

0

(1

2
(αit)

2 +u ε2 (Xi+1
t −Xi

t)
2 + (1− u) ε2 (mt −Xi

t)
2
)
dt

+u c2 (Xi+1
T −Xi

T )2 + (1− u) c2 (mT −Xi
T )2

}
,

for some positive constants ε, c and u ∈ [0, 1]. Here, there is a real issue on the choice of mt. Intuitively, it should

come from the finite-player mixed game described in Section 5 as the limit of X̄t = 1
N

N∑
i=1

Xi
t as N →∞. Combined

with the fact that we had E{Xi
t} independent of i, it is natural to set mt = E{Xi

t} and check afterwards that this
mean value does not depend on i de facto after solving the fixed point step. Note that the case u = 0 is very particular,
and consists in solving the same mean field game problem for every i. The case u = 1 has already been studied in
Section 3, and therefore, in what follows, we concentrate on the case u ∈ (0, 1).

6.1 Open-Loop Nash Equilibrium

We search for Nash equilibria of the system among strategies {αit, i = 1, 2, · · · }. The Hamiltonian for individual i is
given by:

Hi(t, x1, x2, · · · , yi,1, yi,2, · · · , α1, α2, · · · ) =

∞∑
k=1

αkyi,k+
1

2
(αi)2 +u

ε

2
(xi+1−xi)2 +(1−u)

ε

2
(mt−xi)2. (35)

The adjoint processes Y it = (Y i,jt ; j ≥ 1) and Zit = (Zi,j,kt ; j ≥ 1, k ≥ 0) for i = 1, 2, · · · are defined as the solutions
of the backward stochastic differential equations (BSDEs): dY i,jt = −

{
uε(Xi+1

t −Xi
t)(δi+1,j − δi,j) + (1− u)ε(mt −Xi

t)(−δi,j)
}

dt+
∞∑
k=1

Zi,j,kt dW k
t ,

Y i,jT = ∂xjgi(XT ) = uc(Xi+1
T −Xi

T )(δi+1,j − δi,j) + (1− u)c(mT −Xi
T )(−δi,j).

(36)

When j = i, it becomes: dY i,it =
{
uε(Xi+1

t −Xi
t) + (1− u)ε(mt −Xi

t)
}

dt+
∞∑
k=1

Zi,i,kt dW k
t ,

Y i,iT = −uc(Xi+1
T −Xi

T )− (1− u)c(mT −Xi
T ).

(37)
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According to the Pontryagin stochastic maximum principle, by minimizing the Hamiltonian Hi with respect to αi, we
can get the optimal strategy: α̂i = −yi,i. Then the forward equation becomes:

dXi
t = −Y i,it dt+ σdW i

t . (38)

Similar as Carmona, Fouque, and Sun [?], we define mX
t = E(Xt) and mY

t = E(Yt). In equilibrium, we have:
mX
t = mt for t ≤ T .

Taking expectation in (37), we have: dmY
t = 0 and mY

T = 0 =⇒mY
t = 0 for t ≤ T .

Taking expectation in (38) we get: dmX
t = −mY

t dt = 0 and mX
0 = E(ξ) = 0 =⇒ mX

t = 0.
Now we make the ansatz:

Y i,it = u

∞∑
j=i

φj−it Xj
t − (1− u)(mt −Xi

t)ψt, (39)

for some deterministic scalar functions φt, ψt satisfying the terminal condition φ0
T = c, φ1

T = −c, φkT = 0 for k ≥ 2

and ψT = c. Using this ansatz, the forward equation (34) becomes
α̂i = −Y i,it = −u

∞∑
j=i

φj−it Xj
t + (1− u)(mt −Xi

t)ψt,

dXi
t =

(
− u

∞∑
j=i

φj−it Xj
t + (1− u)(mt −Xi

t)ψt
)
dt+ σdW i

t .
(40)

Using (40) and dmt = dmX
t = 0, we can differentiate the ansatz (39) to obtain

dY i,it = u ·
∞∑
j=i

[Xj
t φ̇

j−i
t dt+ φj−it dXj

t ]− (1− u) ·
(
ψ̇t(mt −Xi

t)dt+ ψtd(mt −Xi
t)
)

def
= u · I − (1− u) · II.

(41)

First,

I =
∞∑
j=i

[Xj
t φ̇

j−i
t dt+ φj−it dXj

t ]

=
∞∑
j=i

[Xj
t φ̇

j−i
t dt+ φj−it (−u

∞∑
k=j

φk−jt Xk
t + (1− u)(mt −Xj

t )ψtdt+ σdW j
t )]

=
∞∑
j=i

Xj
t φ̇

j−i
t dt− u

∞∑
j=i

φj−it

∞∑
k=j

φk−jt Xk
t dt+ (1− u)ψt

∞∑
j=i

φj−it (mt −Xj
t )dt+

∞∑
j=i

σφj−it dW j
t

=
∞∑
k=0

φ̇ktX
i+k
t dt− u

∞∑
k=0

(
k∑
j=0

φjtφ
k−j
t

)
Xi+k
t dt+ (1− u)ψt

∞∑
k=0

φkt (mt −Xi+k
t )dt+ σ

∞∑
k=i

φk−it dW k
t

=
∞∑
k=0

(
φ̇kt − u

k∑
j=0

φjtφ
k−j
t

)
Xi+k
t dt+ (1− u)ψt

∞∑
k=0

φkt (mt −Xi+k
t )dt+ σ

∞∑
k=i

φk−it dW k
t .

(42)
Then,

II = ψ̇t(mt −Xi
t)dt+ ψtd(mt −Xi

t)

= ψ̇t(mt −Xi
t)dt+ ψt

u ∞∑
j=i

φj−it Xj
t − (1− u)(mt −Xi

t)ψtdt− σdW i
t


= uψt

∞∑
k=0

φktX
i+k
t dt+ (ψ̇t − (1− u)ψ2

t )(mt −Xi
t)dt− ψtσdW i

t . (43)
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Thus, equation (41) can be written as:

dY i,it = u · I − (1− u) · II

= u ·
{ ∞∑
k=0

(
φ̇kt − u

k∑
j=0

φjtφ
k−j
t

)
Xi+k
t dt+ (1− u)ψt

∞∑
k=0

φk(mt −Xi+k
t )dt+ σ

∞∑
k=i

φk−it dW k
t

}
− (1− u) ·

{
uψt

∞∑
k=0

φktX
i+k
t dt+ (ψ̇t − (1− u)ψ2

t )(mt −Xi
t)dt− ψtσdW i

t

}
=
∞∑
k=0

{
uφ̇kt − u2

k∑
j=0

φjtφ
k−j
t − u(1− u)ψtφ

k
t

}
Xi+k
t dt

+ u(1− u)ψt
∞∑
k=0

φkt (mt −Xi+k
t )dt− (1− u)(ψ̇t − (1− u)ψ2

t )(mt −Xi
t)dt

+ (uσφ0
t + (1− u)σψt)dW

i
t + uσ

∞∑
k=i+1

φk−it dW k
t

= [uφ̇0
t − u2(φ0

t )
2 − 2u(1− u)ψtφ

0
t + (1− u)ψ̇t − (1− u)2ψ2

t ]Xi
tdt

+
∞∑
k=1

[uφ̇kt − u2
k∑
j=0

φjtφ
k−j
t − 2u(1− u)ψtφ

k
t ]Xi+k

t dt

+ [u(1− u)ψt
∞∑
k=0

φkt − (1− u)ψ̇t + (1− u)2ψ2
t ]mtdt

+ (uσφ0
t + (1− u)σψt)dW

i
t + uσ

∞∑
k=i+1

φk−it dW k
t .

(44)

Now we compare the two Itô’s decompositions (44) and (37). First, the martingale terms give the processes Zi,j,kt :

Zi,i,0t = 0; Zi,i,kt = 0 for k < i, Zi,i,it = uσφ0
t + (1− u)σψt and Zi,i,kt = uσφk−it for k > i.

And from the drift terms:

for k = 0 : uφ̇0
t − u2(φ0

t )
2 − 2u(1− u)ψtφ

0
t + (1− u)ψ̇t − (1− u)2ψ2

t = −ε, ψT = c, φ0
T = c (45)

for k = 1 : uφ̇1
t − 2u2φ0

tφ
1
t − 2u(1− u)ψtφ

1
t = uε, φ1

T = −c (46)

for k ≥ 2 : uφ̇kt − u2
k∑
j=0

φjtφ
k−j
t − 2u(1− u)ψtφ

k
t = 0, φkT = 0 (47)

and u(1− u)ψt

∞∑
k=0

φkt − (1− u)ψ̇t + (1− u)2ψ2
t = (1− u)ε, ψT = c. (48)

In Appendix A.6 we show the following result which simplifies equation (48) considerably.

Proposition 5.
∞∑
k=0

φkt = 0.

Using Proposition 5 and 0 < u < 1, we can simplify the equations (45) to (48):

ψ̇t = (1− u)ψ2
t − ε, ψT = c (Riccati),

for k = 0 : φ̇0
t = uφ0

t · φ0
t + 2(1− u)ψtφ

0
t − ε, φ0

T = c (Riccati),
for k = 1 : φ̇1

t = 2uφ0
t · φ1

t + 2(1− u)ψtφ
1
t + ε, φ1

T = −c,
for k ≥ 2 : φ̇kt = u(φ0

t · φkt + φ1
t · φk−1

t + · · ·+ φk−1
t · φ1

t + φkt · φ0
t ) + 2(1− u)ψtφ

k
t , φkT = 0.

(49)
Looking at the stationary solution (in the limit (T →∞), and without loss of generality assuming ε = 1, the recurrence
relation can be solved by the method of moment generating function to obtain:

ψ =
√

1
1−u ,

φ0 = 1−
√

1−u
u ,

φ1 = − 1
2 ,

φk = − (2k − 3)!

(k − 2)!k!22k−2
uk−1, for k ≥ 2.
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6.2 Catalan Markov Chain for the Mixed Model

As in Section 4, we consider a continuous-time Markov chain M (u)(·) in the state space N0 with generator matrix

Q(u) =


−1 q1 q2 q3 · · ·

0 −1 q1 q2
. . .

0 0 −1 q1
. . .

. . . . . . . . . . . .

 where q1 = u
2 , qk = (2k−3)!

(k−2)!k!
1

22k−2u
k(= −uφk = pku

k) for k ≥ 2.

For 0 < u < 1, Q(u) is the generator of the Markov chain with jump rate 1 −
√

1− u from i and killed with

probability 1 −
∞∑
k=1

qk =
√

1− u. The infinite particle system (40) can be represented as the infinite-dimensional

stochastic evolution equation:
dX

(u)
t = Q(u) X

(u)
t dt+ dWt, (50)

where X(u)
. = (X

(u)
.,k , k ∈ N0) with X(u)

0 = x
(u)
0 and W. = (W.,k.k ∈ N0). The solution is:

X
(u)
t = x

(u)
0 +

∫ t

0

e(t−s)Q(u)

dWs; t ≥ 0. (51)

Note that the transition probabilities of the continuous-time Markov chain M (u)(·) is : pi,k(t) = P(M (u)(t) =

k|M (u)(0) = i) = (etQ
(u)

)i,k, i, k ∈ N0, t ≥ 0. Without loss of generality, assume x
(u)
0 = 0. Then,

X
(u)
t =

∫ t

0

∞∑
k=0

p0,k(t− s)dWs,k

=

∫ t

0

∞∑
k=0

P(M(t− s) = k|M(0) = 0)dWs,k

= E
M
[ ∫ t

0

∞∑
k=0

1(M(t−s)=k)dWs,k|M(0) = 0
]
; t ≥ 0,

(52)

where the expectation is taken with respect to the probability induced by the Markov chain M (u)(·), independent of
the Brownian motions (W·,k, k ∈ N0). Therefore, we have a Feynman–Kac representation formula for the generator
Q(u).

Since
k−1∑
i=1

qiqk−i = u2
k−1∑
i=1

φ
(i)
t φ

(k−i)
t = −2uφ

(k)
t = 2qk we have (Q(u))2 = I − uB with B having 1 ’s on the

upper second diagonal and 0 ’s elsewhere, i.e.,

(Q(u))2 =


1 −u 0 · · ·

0 1 −u
. . .

. . . . . . . . .


The matrix exponential of Q(u)t , t ≥ 0 is written formally as

exp(Q(u)t) = F (−(Q(u))2t2), t ≥ 0 , F (x) := exp(−
√
−x) , x ∈ C .

Since F is smooth, one can write

exp(Q(u)t) = F ((−I + uB)t2) =

∞∑
k=0

F (k)(−t2)

k!
(uBt2)k =

∞∑
k=0

ukt2kF (k)(−t2)

k!
Bk.

The (j, k) -element of exp(Qt) is formally given by

(exp(Q(u)t))j,k =
uk−jt2(k−j) · F (k−j)(−t2)

(k − j)!
, j ≤ k , where F (k)(x) :=

dkF

dxk
(x) ; x > 0 , k ∈ N ,
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and (exp(Q(u)t))j,k = 0 , j > k for t ≥ 0 .

As in Section 4, we have the same solution for F (k)(x) : F (k)(x) = ρk(x)e−
√
−x , where ρ0(x) = 1, ρk(x) =

1
2k

2k−1∑
j=k

(j−1)!
(2j−2k)!!(2k−j−1)! (−x)−

j
2 .

Proposition 6. The Gaussian process X
(u)
j (t) , i ∈ N0 , t ≥ 0 , corresponding to the (Catalan) general Markov

chain, is

X
(u)
j (t) : =

∞∑
k=0

∫ t

0

(exp(Q(u)(t− s)))j,kdWk(s) =

∞∑
k=j

∫ t

0

uk−j(t− s)2(k−j)

(k − j)!
· F (k−j)(−(t− s)2)dWk(s)

=

∞∑
k=j

∫ t

0

uk−j(t− s)2(k−j)

(k − j)!
· ρk−j(−(t− s)2) e−(t−s) · dWk(s), (53)

where Wk(·) , k ∈ N0 are independent standard Brownian motions.

6.3 Asymptotic Behavior

Table 1 exhibits the asymptotic behaviors of their variances and covariances as t → ∞. The calculation is given in
Appendix A.7. We find that only when u = 0 (i.e. pure mean field game), the asymptotic cross-covariance is zero,
which means the states are asymptotically independent. Otherwise, they are dependent and their covariance is finite.
Note that in the purely nearest neighbor interaction studied in Detering, Fouque, and Ichiba [?], in the case u = 0, the
variance does not stabilized as in our “Catalan” interaction equilibrium dynamics.

u Interaction Type Asymptotic Variance Asymptotic Independence

u = 0 Purely mean-field Stabilized Independent
u ∈ (0, 1) Mixed interaction Stabilized Dependent
u = 1 Purely directed chain Stabilized Dependent

Table 1: Asymptotic behaviors as t→∞

7 Periodic Directed Chain Game

We consider a stochastic game with finite players on a periodic ring structure. We assume the dynamics of the states
of the individual players are given by N stochastic differential equations of the form:

dXi
t = αitdt+ σdW i

t , i = 1, · · · , N, 0 ≤ t ≤ T, (54)

where (W i
t )0≤t≤T , i = 1, · · · , N are one-dimensional independent standard Brownian motions. The drift coefficient

function, the diffusion coefficient and the initial conditions are assumed to be the same as those in Section 2. In this
model, player i chooses its own strategy αi in order to minimize its objective function of the form:

J i(α1, · · · , αN ) = E

{∫ T

0

(
1

2
(αit)

2 +
ε

2
(Xi+1

t −Xi
t)

2

)
dt+

c

2
(Xi+1

T −Xi
T )2

}
, (55)

for constants ε > 0, and c ≥ 0, and we define XN+1
t = X1

t .
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7.1 Construction of an Open-Loop Nash Equilibrium

We search for Nash equilibria of the system among strategies {αit, i = 1, · · · , N}. We construct an open-loop Nash
equilibrium by the Pontryagin stochastic maximum principle. The Hamiltonian for player i is given by:

Hi(x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN ) =

N∑
k=1

αkyi,k +
1

2
(αi)2 +

ε

2
(xi+1 − xi)2. (56)

The adjoint processes Y it = (Y i,jt ; j = 1, · · · , N) and Zit = (Zi,j,kt ; j, k = 1, · · · , N) for i = 1, · · · , N are defined
as the solutions of the system of the backward stochastic differential equations (BSDEs): dY i,jt = −ε(Xi+1

t −Xi
t)(δi+1,j − δi,j)dt+

N∑
k=1

Zi,j,kt dW k
t ,

Y i,jT = ∂xjgi(XT ) = c(Xi+1
T −Xi

T )(δi+1,j − δi,j).
(57)

Based on the sufficiency part of the Pontryagin stochastic maximum principle, we can get an open-loop Nash equilib-
rium by minimizing the Hamiltonian Hi with respect to αi:

∂αiHi = yi,i + αi = 0 leading to the choice: α̂i = −yi,i. (58)

With this choice for the controls αi’s, the forward equation (54) becomes coupled with the backward equation (57).
We make the ansatz:

Y i,it =

N−1∑
j=0

φN,jt Xi+j
t , (59)

for some deterministic scalar functions φt satisfying the terminal conditions: φN,0T = c, φN,1T = −c, φN,kT = 0 for

k ≥ 2 andXi+j
t

def
= X

(i+j) mod N
t . Using the ansatz, the optimal strategy (58) and the forward equation (54) become:

α̂i = −Y i,it = −
N−1∑
j=0

φN,jt Xi+j
t ,

dXi
t = −

N−1∑
j=0

φN,jt Xi+j
t dt+ σdW i

t .

(60)

Using the equations (60), we can differentiate the ansatz (59):

dY i,it =
N−1∑
j=0

[Xi+j
t φ̇N,jt dt+ φN,jt dXi+j

t ]

=
N−1∑
j=0

Xi+j
t φ̇N,jt dt−

N−1∑
j=0

φN,jt

N−1∑
k=0

φN,kt Xi+j+k
t dt+

N−1∑
j=0

σφN,jt dW i+j
t

(61)

Now we compare the two Itô’s decompositions (61) and (57) of Y i,it . The martingale terms give the processes Zi,j,kt :

Zi,i,0t = 0; Zi,i,kt = σφN,N+k−i
t for 1 ≤ k < i and Zi,i,kt = σφN,k−it for i ≤ k ≤ N.

And from the drift terms, we get:

for k = 0 : φ̇N,0t = φN,0t · φN,0t +
N−1∑
i=1

φN,it φN,N−it − ε, φN,0T = c,

for k = 1 : φ̇N,1t = φN,0t · φN,1t + φN,1t · φN,0t +
N−1∑
i=2

φN,it φN,N+1−i
t + ε, φN,1T = −c,

for N − 1 > k ≥ 2 : φ̇N,kt =
k∑
j=0

φN,jt φN,k−jt +
N−1∑
i=k+1

φN,it φN,N+k−i
t , φN,kT = 0,

for k = N − 1 : φ̇N,N−1
t =

N−1∑
j=0

φN,jt φN,N−1−j
t , φN,N−1

T = 0.

(62)

20



It can be written as a matrix Ricatti equation:

Φ̇N (t) = ΦN (t)ΦN (t)−E , ΦN (T ) := C , (63)

where ΦN (·) is the N ×N matrix-valued function given by

ΦN (t) :=



φN,0t φN,N−1
t · · · φN,1t

φN,1t φN,0t

. . . φN,2t

...
. . . . . . . . .

...
...

. . . . . . . . . φN,N−1
t

φN,N−1
t · · · φN,1t φN,0t


,

and

E :=



ε 0 · · · 0 −ε

−ε ε
. . . . . . 0

0 −ε
. . . . . .

...
...

. . . . . . . . . 0

0 · · · 0 −ε ε


, C :=



c 0 · · · 0 −c

−c c
. . . . . . 0

0 −c
. . . . . .

...
...

. . . . . . . . . 0

0 · · · 0 −c c


.

Proposition 7. We have the relation:
N−1∑
k=0

φN,kt = 0.

Proof. Given in Appendix A.8.

With finiteN , these equations are not easy to solve explicitely. If we takeN =∞, we expect that the system converges
to the Riccati system of the infinite-player game studied in Section 3.

Conjecture 1. ΦN (t) → Φ∞(t), i.e. φN,it converges when N → ∞ for each i ≤ N , where Φ∞(t) is an infinite
dimensional matrix-valued function given by

Φ∞(t) :=



φ0
t 0 0 · · · · · ·

φ1
t φ0

t 0
. . .

...

φ2
t φ1

t φ0
t

. . .
...

...
. . .

. . .
. . .

...
· · · · · · · · · · · ·


,

where the functions φk’s are given by the system of differential equations (13).

Remark 4. Proving this conjecture is equivalent to show that
N−1∑
k=j+1

φN,kt φN,N+j−k
t → 0 as N → ∞. For instance,

for j = 0, one needs to show that
N−1∑
k=1

φN,kt φN,N−kt → 0. As of now, this remains an open problem.

Our conjecture is substantiated by numerical evidences presented below.

7.2 Numerical Results

Using the methods given in [?], we can get the numerical solution of the matrix Riccati equation (63). Taking ε =

2, c = 1, T = 10 (large terminal time), Figure 3 shows the behaviors of the φ functions defined by the system of
differential equations (13) for N = 4 and N = 100. They converge to the constant solutions of the infinite game
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given in Section 4, except in the tail close to maturity as T is large but not infinite. This result confirms our conjecture

stated in the previous section. Figure 4 shows the behavior of the function
N−1∑
k=1

φN,kt φN,N−kt for different values of

N . As we can see, the sum converges to 0 when N becomes larger, which supports the statement in remark 4. Though
these numerical results give us strong evidence and confidence that the conjecture is true, a mathematical proof is still
needed and it is part of our ongoing research.

(a) N=4 (b) N=100

Figure 3: As N increases, the blue line φN,0t → 1, the orange line φN,1t → − 1
2 , and φN,kt → 0 for ≥ 2.

8 Conclusion

We studied a linear-quadratic stochastic differential game on a directed chain network. We were able to identify Nash
equilibria in the case of finite chain with various boundary conditions and in the case of an infinite chain. This last
case allows for more explicit computation in terms of Catalan functions and Catalan Markov chain. The Catalan

Figure 4:
N−1∑
k=1

φN,kt φN,N−kt for different values of N
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open-loop Nash equilibrium that we obtained is characterized by interactions with all the neighbors in one direction
of the chain weighted by Catalan functions, event though the interaction in the objective functions is only with the
nearest neighbor. Under equilibrium the variance of a state converges in the infinite time limit as opposed to the
diverging behavior observed in the nearest neighbor dynamics studied in Detering, Fouque & Ichiba [?]. Our analysis
is extended to mixed games with directed chain and mean field interaction so that our game model includes the two
extreme network interactions, fully connected and only one neighbor connection. Our ongoing and future research
concerns games with interactions on directed tree-like networks and stochastic networks.
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A Appendix

A.1 Proof of Lemma 1

Define St(z) =
∞∑
k=0

zk φ
(k)
t where 0 ≤ z < 1 and φ(k)

t = φkt in equation (13) to avoid confusion. Then

Ṡt(z) =
∞∑
k=0

zkφ̇
(k)
t

=
(
φ

(0)
t φ

(0)
t − ε

)
+ z
(
φ

(0)
t φ

(1)
t + φ

(1)
t φ

(0)
t + ε

)
+ · · ·

+zk
(
φ

(0)
t φ

(k)
t + φ

(1)
t φ

(k−1)
t + · · ·+ φ

(k−1)
t φ

(1)
t + φ

(k)
t φ

(0)
t

)
+ · · ·

=

(
φ

(0)
t St(z) + zφ

(1)
t St(z) + · · ·+ zkφ

(k)
t St(z) + · · ·

)
− ε+ zε

= (St(z))
2 − ε(1− z),

ST (z) = c(1− z).

(64)

• For z = 1, we get the ODE:
Ṡt(1) = (St(1))2 , ST (1) = 0. (65)

The solution is St(1) = 0, and we deduce:
∞∑
k=0

φ
(k)
t = 0, i.e., φ

(0)
t = −

∞∑
k=1

φ
(k)
t .

One needs to be careful when taking z = 1 because the series defining St(1) may not converge. Instead, we
take a sequence {zn} → 1, the limit of St(zn) converges to the ODE (65), and we get the conclusion.

• For z 6= 1, the solution to the Riccati equation (64) is:

St(z) =
−ε(1− z)

(
e2
√
ε(1−z)(T−t) − 1

)
− c(1− z)

(√
ε(1− z)e2

√
ε(1−z)(T−t) +

√
ε(1− z)

)(
−
√
ε(1− z)e2

√
ε(1−z)(T−t) −

√
ε(1− z)

)
− c(1− z)

(
e2
√
ε(1−z)(T−t) − 1

)
=

(
− ε(1− z)− c

√
ε(1− z)(1− z)

)
e2
√
ε(1−z)(T−t) + ε(1− z)− c

√
ε(1− z)(1− z)(

−
√
ε(1− z)− c(1− z)

)
e2
√
ε(1−z)(T−t) −

√
ε(1− z) + c(1− z)

T→∞−→
√
ε(1− z).

(66)

A.2 Catalan Markov Chain

We have the Catalan probabilities:
∞∑
k=1

pk = 1 and pk = 1
2

k−1∑
i=1

pipk−i. Then, it is easily seen that Q2 = I −B with

B having 1 ’s on the upper second diagonal and 0 ’s elsewhere, i.e.,

Q2 =


1 −1 0 · · ·

0 1 −1
. . .

. . . . . . . . .

 = −J∞(−1) , J∞(λ) :=


λ 1 0 · · ·

0 λ 1
. . .

. . . . . . . . .

 .

Here, J∞(λ) is the infinite Jordan block matrix with diagonal components λ .

The matrix exponential of Qt , t ≥ 0 , is written formally as

exp(Qt) = F (−Q2t2) = F (J∞(−1) · t2) , t ≥ 0 , F (x) := exp(−
√
−x) , x ∈ C .

Since a smooth function of a Jordan block matrix can be expressed as

F (J∞(λ)) = F (λI +B) =

∞∑
k=0

F (k)(λ)

k!
Bk =


F (λ) F (1)(λ) F (2)(λ)

2! · · · F (k)(λ)
k! · · ·

. . . . . . . . . . . .
. . . . . . . . .

 ,
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we get

exp(Qt) = F (J(−∞) · t2) = F ((−I +B)t2) =

∞∑
k=0

F (k)(−t2)

k!
(Bt2)k =

∞∑
k=0

t2kF (k)(−t2)

k!
Bk.

The (j, k) -element of exp(Qt) is formally given by

(exp(Qt))j,k =
t2(k−j) · F (k−j)(−t2)

(k − j)!
, j ≤ k , where F (k)(x) :=

dkF

dxk
(x) ; x > 0 , k ∈ N ,

and (exp(Qt))j,k = 0 , j > k for t ≥ 0 . Here the k -th derivative F (k)(x) of F (·) can be written as F (k)(x) =

ρk(x)e−
√
−x , where ρk(x) satisfies the recursive equation

ρk+1(x) = ρ′k(x) +
ρk(x)

2
√
−x

; k ≥ 0 ,

with ρ0(x) = 1 , x ∈ C . For example,

ρ0(x) = 1 , ρ1(x) :=
+1

2
(−x)−

1
2 , ρ2(x) :=

1

4
(−x)−

2
2 +

+1

4
(−x)−

3
2 ,

ρ3(x) :=
1

8
(−x)−

3
2 +

3

8
(−x)−

4
2 +

3

8
(−x)−

5
2 ,

ρ4(x) :=
1

16
(−x)−

4
2 +

6

16
(−x)−

5
2 +

15

16
(−x)−

6
2 +

15

16
(−x)−

7
2 ,

ρ5(x) :=
1

32
(−x)−

5
2 +

10

32
(−x)−

6
2 +

45

32
(−x)−

7
2 +

105

32
(−x)−

8
2 +

105

32
(−x)−

9
2 .

More generally we have

ρk(x) =

2k−1∑
j=k

Pk,j (−x)−
j
2

(
where Pk,j =

1

2k
(j − 1)!

(2j − 2k)!!(2k − j − 1)!
for k ≤ j ≤ 2k − 1

)
=

2k−1∑
j=k

1

2k
(j − 1)!

(2j − 2k)!!(2k − j − 1)!
(−x)−

j
2

=
1

2k

2k−1∑
j=k

(j − 1)!

(2j − 2k)!!(2k − j − 1)!
(−x)−

j
2 , for k ≥ 1., (67)

This formula is justified by induction in the prroof below.

Proof. First, ρ1(x) = 1
2 (−x)−

1
2 . Assume ρk(x) = 1

2k

2k−1∑
j=k

(j−1)!
(2j−2k)!!(2k−j−1)! (−x)−

j
2 .

Then,

ρ′k(x) = 1
2k

2k−1∑
j=k

(j−1)!
(2j−2k)!!(2k−j−1)!

j
2 (−x)−

j+2
2

(i = j + 1) = 1
2k+1

2k∑
i=k+1

(i−1)!
(2i−2k−2)!!(2k−i)! (−x)−

i+1
2

= 1
2k+1

( 2k−1∑
i=k+1

(i−1)!
(2i−2k−2)!!(2k−i)! (−x)−

i+1
2 + (2k−1)!

(2k−2)!! (−x)−
2k+1

2

)
,

ρk(x)

2
√
−x = 1

2k+1

2k−1∑
j=k

(j−1)!
(2j−2k)!!(2k−j−1)! (−x)−

j+1
2

= 1
2k+1

(
(−x)−

k+1
2 +

2k−1∑
j=k+1

(j−1)!
(2j−2k)!!(2k−j−1)! (−x)−

j+1
2

)
.
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Therefore,

ρ′k(x) + ρk(x)

2
√
−x = 1

2k+1

{ (2k−1)!
(2k−2)!! (−x)−

2k+1
2 + (−x)−

k+1
2

+
2k−1∑
i=k+1

(i− 1)! (2i−2k)+(2k−i)
(2i−2k)!!(2k−i)! (−x)−

i+1
2

}
= 1

2k+1

2k∑
i=k

i!
(2i−2k)!!(2k−i)! (−x)−

i+1
2

(j = i+ 1) = 1
2k+1

2k+1∑
j=k+1

(j−1)!
(2j−2(k+1))!!(2(k+1)−j−1)! (−x)−

j
2

= ρk+1(x).

Thus, the Gaussian process Xj(t) , j ∈ N0 , t ≥ 0 , corresponding to the Catalan Markov chain, is

Xj(t) : =

∞∑
k=0

∫ t

0

(exp(Q(t− s)))j,kdWk(s) =

∞∑
k=j

∫ t

0

(t− s)2(k−j)

(k − j)!
· F (k−j)(−(t− s)2)dWk(s)

=

∞∑
k=j

∫ t

0

(t− s)2(k−j)

(k − j)!
· ρk−j(−(t− s)2) e−(t−s) · dWk(s), (68)

where Wk(·) , k ∈ N0 are independent standard Brownian motions.

A.3 Proof of Remark 3

By ρk’s formula (67), we have:

ρk(−ν2) = 1
2k

2k−1∑
j=k

(j−1)!
(2j−2k)!!(2k−j−1)! ν

−j for ν ≥ 0

= 1
2k

k−1∑
i=0

(i+k−1)!
(2i)!!(k−i−1)! ν

−(i+k)

= (2ν)−k
k−1∑
i=0

(i+k−1)!
(2i)!!(k−i−1)! ν

−i

= (2ν)−k
k−1∑
i=0

(i+k−1)!
i!(k−i−1)! (2ν)−i

=
1

2kνk
·
√

2ν

π
· eν ·Kk−(1/2)(ν) ; k ≥ 1 ,

.

where Kn(x) is the modified Bessel function of the second kind, i.e.,

Kn(x) =

∫ ∞
0

e−x cosh t cosh(nt)dt ; n > −1, x > 0 .

Then,

Var(X0(t)) =

∞∑
k=0

∫ t

0

(t− s)4k

(k!)2
|ρk(−(t− s)2)|2e−2(t−s)ds

(ν = t− s ≥ 0) =

∞∑
k=0

∫ t

0

ν4k

(k!)2
|ρk(−ν2)|2e−2νdν

=

∞∑
k=1

∫ t

0

2

π

ν2k+1

(k!)2 4k
(
Kk−(1/2)(ν)

)2
dν +

1− e−2t

2
; t ≥ 0 .
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A.4 Proof of Proposition 2

First, we observe that:∫∞
0
tα−1(Kν(t))2dt =

√
π

4Γ((α+1)/2)Γ(α2 )Γ(α2 − ν)Γ(α2 + ν),

(1− 4x)−
1
2 =

∞∑
k=0

(− 1
2
k

)
(−4x)k =

∞∑
k=0

(−1)k(2k−1)!!
2kk!

(−4x)k =
∞∑
k=0

(2k−1)!!2k

k! xk =
∞∑
k=0

(
2k
k

)
xk,

Γ(n+ 1
2 ) = (2n−1)!!

2n

√
π, (2n− 1)!! = (2n)!

n!2n .

As t→∞ , based on the Remark 3, we obtain

lim
t→∞

Var(X0(t)) =
1

2
+

∞∑
k=1

∫ ∞
0

2 s2k+1

π(k!)24k
· [Kk−(1/2)(s)]

2ds

=
1

2
+

∞∑
k=1

2

π (k!)24k

∫ ∞
0

s2k+1[Kk−(1/2)(s)]
2ds

=
1

2
+

∞∑
k=1

2

π(k!)24k
· π Γ(k + 1) Γ(2k + (1/2))

8 Γ(k + (3/2))

=
1

2
+

∞∑
k=1

Γ(2k + (1/2))

4k+1 k! Γ(k + (3/2))

=
1

2
+

∞∑
k=1

1

4k+1k!

(4k − 1)!!
√
π

22k

/(
(2k + 1)!!

√
π

2k+1

)

=
1

2
+

∞∑
k=1

1

4k+1k!

(4k − 1)!!

(2k + 1)!!

1

2k−1

=
1

2
+

1

2

∞∑
k=1

(4k − 1)!!

(2k + 1)!!

1

k!8k(
since

(4k − 1)!!

(2k + 1)!!
=

(4k)!

22k(2k)!

/
(2k + 2)!

2k+1(k + 1)!
=

1

2k−1

(4k)!

(2k)!

(k + 1)!

(2k + 1)!
=

1

2k−1
2k

1

2k+1
=

1

2k

)
=

1

2
+

1

2

∞∑
k=1

1

2kk!

1

8k
=

1

2
+

1

2

∞∑
k=1

(
2k

k

)
1

8k
=

1

2
+

1

2
(−1 + (1− 1

2
)−

1
2 )

=
1

2
+
−1 +

√
2

2
=

1√
2
.

A.5 Proofs of Proposition 3 and Proposition 4

From the expression (19) for Xj(t), the auto-covariance is:

E[X0(s)X0(t)] = E

( ∞∑
k=0

∫ t

0

1√
πk!

(t− ν)k+1/2

2k−1/2
Kk−1/2(t− ν)dWk(ν)

·
∞∑
k=0

∫ s

0

1√
πk!

(s− γ)k+1/2

2k−1/2
Kk−1/2(s− γ)dWk(γ)

)

=

∞∑
k=0

∫ s

0

1

π(k!)222k−1
(t− ν)k+1/2(s− ν)k+1/2Kk−1/2(t− ν)Kk−1/2(s− ν)dν

=

∞∑
k=0

∫ s

0

1

π(k!)222k−1
((t− s+ α)α)k+1/2Kk−1/2(t− s+ α)Kk−1/2(α)dα

> 0;
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the cross-covariance is:

E[X0(t)Xk(t)] = E

( ∞∑
i=0

∫ t

0

1√
πi!

(t− ν)i+1/2

2i−1/2
Ki−1/2(t− ν)dWi(ν)

·
∞∑
j=0

∫ t

0

1√
πj!

(t− s)j+1/2

2j−1/2
Kj−1/2(t− s)dWk+j(γ)

)

= E

( ∞∑
i=k

∫ t

0

1√
πi!

(t− ν)i+1/2

2i−1/2
Ki−1/2(t− ν)dWi(ν)

·
∞∑
i=k

∫ t

0

1√
π(i− k)!

(t− s)i−k+1/2

2i−k−1/2
Ki−k−1/2(t− s)dWi(γ)

)

=

∞∑
i=k

∫ t

0

1

πi!(i− k)!)

(t− ν)2i−k+1

22i−k−1
Ki−1/2(t− ν)Ki−k−1/2(t− ν)dν

=

∞∑
j=0

∫ t

0

1

π(k + j)!j!

(t− ν)k+2j+1

2k+2j−1
Kk+j−1/2(t− ν)Kj−1/2(t− ν)dν

=

∞∑
j=0

∫ t

0

1

π(k + j)!j!

sk+2j+1

2k+2j−1
Kk+j−1/2(s)Kj−1/2(s)ds

=

∞∑
j=0

1

π(k + j)!j!

1

2k+2j−1

∫ t

0

sk+2j+1Kk+j−1/2(s)Kj−1/2(s)ds,

and as t→∞, it converges to
∞∑
j=0

1

π(k + j)!j!

1

2k+2j−1

∫ ∞
0

sk+2j+1Kk+j−1/2(s)Kj−1/2(s)ds (> 0). (69)

We have the bound∫ ∞
0

sk+2j+1Kk+j−1/2(s)Kj−1/2(s)ds ≤
(∫ ∞

0

(
sk+j+1/2Kk+j−1/2(s)

)2
ds ·

∫ ∞
0

(
sj+1/2Kj−1/2(s)

)2
ds

) 1
2

=

(∫ ∞
0

s2k+2j+1(Kk+j−1/2(s))2ds ·
∫ ∞

0

s2j+1(Kj−1/2(s))2ds

) 1
2

=

(
πΓ(k + j + 1)Γ(2k + 2j + (1/2))

8Γ(k + j + (3/2))
· πΓ(j + 1)Γ(2j + (1/2))

8Γ(j + (3/2))

) 1
2

.

We deduce a bound for the cross-covariance given by (69):

lim
t→∞

E[X0(t)Xk(t)]

≤
∞∑
j=0

1

π(k + j)!j!

1

2k+2j−1

(
πΓ(k + j + 1)Γ(2k + 2j + (1/2))

8Γ(k + j + (3/2))
· πΓ(j + 1)Γ(2j + (1/2))

8Γ(j + (3/2))

) 1
2

=

∞∑
j=0

[
1

(k + j)!4k+j+1

Γ(2k + 2j + (1/2))

Γ(k + j + (3/2))
· 1

j!4j+1

Γ(2j + (1/2))

Γ(j + (3/2))

] 1
2

(since
∞∑
j=0

1

j!4j+1

Γ(2j + (1/2))

Γ(j + (3/2))
is convergent, we can apply Cauchy–Schwarz inequality)

≤
[ ∞∑
j=0

1

(k + j)!4k+j+1

Γ(2k + 2j + (1/2))

Γ(k + j + (3/2))
·
∞∑
j=0

1

j!4j+1

Γ(2j + (1/2))

Γ(j + (3/2))

] 1
2

< (
1√
2
· 1√

2
)

1
2 =

1√
2
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A.6 Proof of Proposition 5

Adding equations (45) and (48), for 0 < u < 1, we get:

−uε = uφ̇0
t − u2(φ0

t )
2 − 2u(1− u)ψtφ

0
t + u(1− u)ψt

∞∑
k=0

φkt

=⇒ uφ̇0
t = u2(φ0

t )
2 + 2u(1− u)ψtφ

0
t − u(1− u)ψt

∞∑
k=0

φkt − uε.

Then (47) and (48) can be written as:

uφ̇1
t = 2u2φ0

tφ
1
t + 2u(1− u)ψtφ

1
t + uε,

uφ̇kt = u2
k∑
j=0

φjtφ
k−j
t + 2u(1− u)ψtφ

k
t , for k ≥ 2.

Define St(z) =
∞∑
k=0

zkφ
(k)
t where 0 ≤ z ≤ 1 and φ(k)

t = φkt in equations above to avoid confusion. Then

uṠt(z) =
∞∑
k=0

zkuφ̇
(k)
t

= u2(φ
(0)
t )2 + 2u(1− u)ψtφ

(0)
t − u(1− u)ψt

∞∑
k=0

φ
(k)
t − uε

+z
(
u2(φ

(0)
t φ

(1)
t + φ

(1)
t φ

(0)
t ) + 2u(1− u)ψtφ

(1)
t + uε

)
+ · · ·

+zk
(
u2

k∑
j=0

φ
(j)
t φ

(k−j)
t + 2u(1− u)ψtφ

(k)
t

)
+ · · ·

= u2(St(z))
2 + u(1− u)ψtSt(z)− u(1− z)ε,

uST (z) = u(1− z)c.

(70)

For z = 1, we obtain the ODE:

uṠt(1) = u2(St(1))2 + u(1− u)ψtSt(1) , uST (1) = 0. (71)

The solution is given by St(1) = 0 and we deduce
∞∑
k=0

φ
(k)
t = 0.

A.7 About Table 1

According to proposition 6, for t ≥ 0 , we have:

Var(X(u)
0 (t)) = Var

( ∞∑
k=0

∫ t

0

uk(t− s)2k

k!
F (k)(−(t− s)2)dWk(s)

)
=

∞∑
k=0

∫ t

0

u2k(t− s)4k

(k!)2
|ρk(−(t− s)2)|2e−2(t−s)ds

=

∞∑
k=1

∫ t

0

2u2k

π(k!)24k
ν2k+1(Kk− 1

2
(ν))2dν +

1− e−2t

2
.

(72)
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As t→∞, for u < 1, we obtain

lim
t→∞

Var(X(u)
0 (t)) =

1

2
+

∞∑
k=1

∫ ∞
0

2u2k s2k+1

π(k!)24k
· [Kk−(1/2)(s)]

2ds

=
1

2
+

∞∑
k=1

2u2k

π (k!)24k

∫ ∞
0

s2k+1[Kk−(1/2)(s)]
2ds

=
1

2
+

∞∑
k=1

2u2k

π(k!)24k
· π Γ(k + 1) Γ(2k + (1/2))

8 Γ(k + (3/2))

=
1

2
+

∞∑
k=1

u2k · Γ(2k + (1/2))

4k+1 k! Γ(k + (3/2))

=
1

2
+

1

2

∞∑
k=1

(
2k

k

)
u2k

8k

=
1

2
+

1

2
((1− 4

u2

8
)−

1
2 − 1)

=
1

2
(1− u2

2
)−

1
2 <∞.

Since

X
(u)
j (t) =

∞∑
k=j

∫ t

0

uk−j(t− s)2(k−j)

(k − j)!
ρk−j(−(t− s)2) e−(t−s)dWk(s)

=

∞∑
i=0

∫ t

0

ui(t− s)2i

i!
ρi(−(t− s)2) e−(t−s)dWj+i(s)

=

∞∑
i=0

∫ t

0

ui√
πi!

(t− s)i+1/2

2i−1/2
Ki−1/2(t− s)dWj+i(s),

the (auto)covariance is:

E[X
(u)
0 (s)X

(u)
0 (t)] = E

( ∞∑
k=0

∫ t

0

uk√
πk!

(t− ν)k+1/2

2k−1/2
Kk−1/2(t− ν)dWk(ν)

·
∞∑
k=0

∫ s

0

uk√
πk!

(s− γ)k+1/2

2k−1/2
Kk−1/2(s− γ)dWk(γ)

)

=

∞∑
k=0

∫ s

0

u2k

π(k!)222k−1
(t− ν)k+1/2(s− ν)k+1/2Kk−1/2(t− ν)Kk−1/2(s− ν)dν

=

∞∑
k=0

∫ s

0

u2k

π(k!)222k−1
((t− s+ α)α)k+1/2Kk−1/2(t− s+ α)Kk−1/2(α)dα

6= 0 .

The cross-covariance is:
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E[X
(u)
0 (t)X

(u)
k (t)] = E

( ∞∑
i=0

∫ t

0

ui√
πi!

(t− ν)i+1/2

2i−1/2
Ki−1/2(t− ν)dWi(ν)

·
∞∑
j=0

∫ t

0

uj√
πj!

(t− s)j+1/2

2j−1/2
Kj−1/2(t− s)dWk+j(γ)

)

= E

( ∞∑
i=k

∫ t

0

ui√
πi!

(t− ν)i+1/2

2i−1/2
Ki−1/2(t− ν)dWi(ν)

·
∞∑
i=k

∫ t

0

ui−k√
π(i− k)!

(t− s)i−k+1/2

2i−k−1/2
Ki−k−1/2(t− s)dWi(γ)

)

=

∞∑
i=k

∫ t

0

u2i−k

πi!(i− k)!)

(t− ν)2i−k+1

22i−k−1
Ki−1/2(t− ν)Ki−k−1/2(t− ν)dν

=

∞∑
j=0

∫ t

0

uk+2j

π(k + j)!j!

(t− ν)k+2j+1

2k+2j−1
Kk+j−1/2(t− ν)Kj−1/2(t− ν)dν

=

∞∑
j=0

∫ t

0

uk+2j

π(k + j)!j!

sk+2j+1

2k+2j−1
Kk+j−1/2(s)Kj−1/2(s)ds

=

∞∑
j=0

uk+2j

π(k + j)!j!

1

2k+2j−1

∫ t

0

sk+2j+1Kk+j−1/2(s)Kj−1/2(s)ds ,

and as t→∞ it converges to

∞∑
j=0

uk+2j

π(k + j)!j!

1

2k+2j−1

∫ ∞
0

sk+2j+1Kk+j−1/2(s)Kj−1/2(s)ds (6= 0, if u 6= 0), (73)

and we deduce the bound:

lim
t→∞

E[X
(u)
0 (t)X

(u)
k (t)]

≤
∞∑
j=0

uk+2j

π(k + j)!j!

1

2k+2j−1

(
πΓ(k + j + 1)Γ(2k + 2j + (1/2))

8Γ(k + j + (3/2))
· πΓ(j + 1)Γ(2j + (1/2))

8Γ(j + (3/2))

) 1
2

=

∞∑
j=0

[
u2(k+j)

(k + j)!4k+j+1

Γ(2k + 2j + (1/2))

Γ(k + j + (3/2))
· u2j

j!4j+1

Γ(2j + (1/2))

Γ(j + (3/2))

] 1
2

≤
[ ∞∑
j=0

u2(k+j)

(k + j)!4k+j+1

Γ(2k + 2j + (1/2))

Γ(k + j + (3/2))
·
∞∑
j=0

u2j

j!4j+1

Γ(2j + (1/2))

Γ(j + (3/2))

] 1
2

<
1

2
(1− u2

2
)−1/2
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A.8 Proof of Proposition 7

Define SNt (z) =
N−1∑
k=0

zkφN,kt , then, by (62), we have:

ṠNt (z) =

N−1∑
k=0

zkφ̇N,kt

= φN,0t · φN,0t + φN,1t · φN,N−1
t + · · ·+ φN,N−1

t · φN,1t − ε

+ z

(
φN,0t · φN,1t + φN,1t · φN,0t + φN,2t · φN,N−1

t + · · ·+ φN,N−1
t · φN,2t + ε

)
+ · · ·

+ zN−2

(
φN,0t · φN,N−2

t + φN,1t · φN,N−3
t + φN,2t · φN,N−4

t + · · ·+ φN,N−2
t · φN,0t + φN,N−1

t · φN,N−1
t

)
+ zN−1

(
φN,0t · φN,N−1

t + φN,1t · φN,N−2
t + · · ·+ φN,N−2

t · φN,1t + φN,N−1
t · φN,0t

)

= φN,0t SNt (z)− (1− z)ε

+ zφN,1t

(
SNt (z)− zN−1φN,N−1

t

)
+ φN,1t φN,N−1

t

+ z2φN,2t

(
SNt (z)− zN−1φN,N−1

t − zN−2φN,N−2
t

)
+ φN,2t φN,N−2

t + zφN,2t φN,N−1
t + · · ·

+ zN−2φN,N−2
t

(
SNt (z)− zN−1φN,N−1

t − · · · − z2φN,2t

)
+ φN,N−2

t φN,2t + zφN,N−2
t φN,3t + · · ·+ zN−3φN,N−2

t φN,N−1
t

+ zN−1φN,N−1
t

(
SNt (z)− zN−1φN,N−1

t − · · · − zφN,1t

)
+ φN,N−1

t φN,1t + zφN,N−1
t φN,2t + · · ·+ zN−2φN,N−1

t φN,N−1
t

= (SNt (z))2 + (1− zN )φN,1t φN,N−1
t − (1− z)ε

+ (1− zN )[φN,2t φN,N−2
t + zφN,2t φN,N−1

t ] + · · ·

+ (1− zN )[φN,N−2
t φN,2t + zφN,N−2

t φN,3t + · · ·+ zN−3φN,N−2
t φN,N−1

t ]

+ (1− zN )[φN,N−1
t φN,1t + zφN,N−1

t φN,2t + · · ·+ zN−2φN,N−1
t φN,N−1

t ]

= (SNt (z))2 + (1− zN )
[N−1∑
k=1

φN,kt φN,N−kt + z

N−1∑
k=2

φN,kt φN,N+1−k
t

+ · · ·+ zN−2
N−1∑
k=N−1

φN,kt φ
N,N+(N−2)−k
t

]
− (1− z)ε

= (SNt (z))2 + (1− zN )
[N−2∑
j=0

zj ·
N−1∑
k=j+1

φN,kt φN,N+j−k
t

]
− (1− z)ε,

with SNT (z) = (1− z)c.
(74)

For z = 1, ṠNt (1) = (SNt (1))2, SNT (1) = 0, we can get:

SNt (1) =

N−1∑
k=0

φN,kt = 0, i.e., φN,0t = −
N−1∑
k=1

φN,kt .

32


	Introduction
	N-Player Directed Chain Game
	Setup and Assumptions
	Open-Loop Nash Equilibrium
	General Boundary Condition
	Boundary Condition 1: XN  is attracted to 0
	Boundary Condition 2: N=0


	Infinite-Player Game Model
	Open-Loop Nash Equilibrium

	Catalan Markov Chain
	Asymptotic Behavior of the Variances as t 
	Asymptotic Independence

	Mixture of Directed Chain and Mean Field Interaction on a Finite-player System 
	Open-Loop Nash Equilibrium

	Infinite-Player Game Model with Mean-Field Interaction
	Open-Loop Nash Equilibrium
	Catalan Markov Chain for the Mixed Model
	Asymptotic Behavior

	Periodic Directed Chain Game
	Construction of an Open-Loop Nash Equilibrium
	Numerical Results

	Conclusion
	Appendix
	Proof of Lemma 1
	Catalan Markov Chain
	Proof of Remark 3
	Proof of Proposition 2
	Proofs of Proposition 3 and Proposition 4
	Proof of Proposition 5
	About Table 1
	Proof of Proposition 7




