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Abstract

The retinoblastoma protein (Rb) and the homologous pocket proteins p107 and p130

negatively  regulate  cell  proliferation  by  binding  and  inhibiting  members  of  the  E2F

transcription  factor  family.  The  structural  features  that  distinguish  Rb  from the  other

pocket  proteins  have  been  unclear  but  are  critical  for  understanding  their  functional

diversity and determining why Rb has unique tumor suppressor activities.  We describe

here important differences in how the Rb and p107 C-terminal domains (CTD) associate

with the coiled-coil and marked-box domains (CM) of E2Fs.  We find that while CTD-CM

binding  is  conserved  across  protein  families,  the  Rb  and  p107  CTDs  show  clear

preferences for different E2Fs.  A crystal structure of the p107 CTD bound to E2F5 and its

dimer partner DP1 reveals the molecular basis for pocket protein-E2F binding specificity

and how Cyclin-dependent  kinases  differentially  regulate  pocket  proteins  through CTD

phosphorylation.  Our structural and biochemical data together with phylogenetic analyses

of Rb and E2F proteins support the conclusion that Rb evolved specific structural motifs

that confer its unique capacity to bind with high affinity those E2Fs that are the most

potent activators of the cell cycle.

Significance Statement

The retinoblastoma (Rb) pocket protein and E2F transcription factor families regulate

cell  division  and are  commonly  deregulated  in  proliferating  cancer  cells.  An  important

question has been what distinguishing molecular features of Rb and its interaction with E2F

result in its unique potency as a tumor suppressor relative to the homologous proteins

p107 and p130.  Here we identify structures in Rb, p107, and E2Fs that determine the

specificity in their association.  We explain binding preferences with a novel x-ray crystal

structure of a p107-E2F5-DP1 complex, and we present the first phylogenetic analyses that

implicate co-evolving protein interactions between family members as a key determinant

of their evolution. 

\body

Introduction

E2F transcription factors regulate the mammalian cell cycle by controlling expression

of genes required for DNA synthesis and cell division (1).  E2F activity is regulated by the

retinoblastoma (Rb) “pocket” protein family members Rb, p107, and p130, which bind and



inhibit E2F and recruit repressive factors to E2F-driven promoters (2-5).  Beyond cell-cycle

regulation, these pocket protein-E2F complexes are the focal point of signaling pathways

that  trigger diverse cellular  processes  including proliferation,  differentiation,  apoptosis,

and stress response.  Improper inactivation of pocket proteins is a common mechanism by

which  cancerous  cells  maintain  aberrant  proliferation  (1,  5-7).  Pocket  protein-E2F

dissociation  and  subsequent  E2F  activation  is  induced  by  cyclin-dependent  kinase

phosphorylation (3-5, 8) or binding of viral oncoproteins such as the SV40 T-antigen (9).

The E2F family contains eight members, five of which (E2F1-E2F5) form complexes with

pocket proteins (1).  E2F1-E2F3 associate exclusively with Rb and are potent activators of

transcription during the G1 and S phases of the cell cycle  (10, 11).  These “activating”

E2Fs also specifically induce apoptosis  (12).  E2F4 is found in complexes with all three

pocket proteins and is thought of primarily as a repressor, because it typically occupies

promoters of repressed genes and is exported from the nucleus upon release from pocket

proteins  (1,  13,  14).  In  contrast,  several  studies of  E2F4 function during development

suggest  that  E2F4  may  stimulate  proliferation  in  certain  contexts,  acting  through

association with other transcription factors (14). Better characterization of how E2F4 and

E2F5  associate  with  pocket  proteins  and  other  factors  is  needed  to  understand  their

different functions and how they are regulated.

 While all three pocket proteins similarly inhibit the cell cycle and proliferation, genetic

observations  suggest  important  distinct  functions.  For  example,  only  Rb  deletion  is

embryonic lethal in the mouse  (3, 15). Rb is a more potent tumor suppressor in mouse

cancer models (3, 15), and mutations are more commonly observed in human cancers (6,

16).  One proposed explanation for these observations is that Rb forms unique complexes

with  the  activating  E2Fs  (E2F1-E2F3),  although  other  pocket  protein-specific  binding

interactions may confer distinct functions  (4, 17).  For example, through unique protein

interactions,  Rb functions in processes outside of cell-cycle control  including apoptosis,

chromosome stability, transcriptional silencing, and metabolic regulation (5, 18). 

 The five canonical E2Fs each contain a DNA binding domain (DBD), a transactivation

domain (TAD), and a coiled-coil and marked-box domain (CM) (Fig. 1A).  The DBDs are

homologous  and  bind  similar  DNA  sequences  as  heterodimers  with  one  of  three  DP

proteins (1). The CM domain of E2F also heterodimerizes with a similar domain in DP (19),

and the CM heterodimer binds other transcription factors as a proposed mechanism for

how specific E2F family members activate distinct genes (20, 21).  The Rb family pocket

domains bind the E2F transactivation domain and bind other cellular and viral proteins

using a distinct surface called the LxCxE-cleft (4, 17) (Fig. 1A).  Each pocket protein also



contains  a  C-terminal  domain  (CTD)  that  is  required  for  growth  suppression  and  E2F

inhibition and has a role in protein stability (22-24). A crystal structure demonstrates that

the Rb CTD (RbC) binds the E2F1-DP1 CM domains (19), but several studies suggest that

this particular association may be specific to Rb and E2F1 (25, 26). 

To  better  understand  how  the  Rb  proteins  regulate  E2F  function,  we  have

characterized  the  association  of  pocket  protein  CTDs  with  the  E2F  CM domain.   We

determined crystal structures of the E2F4-DP1 CM domain (E2F4-DP1CM) and E2F5-DP1CM in

complex with the p107 CTD (p107C).  The structure of the ternary complex clarifies the

generality of this domain association among all  family members and reveals molecular

details that explain the respective preferences of activating E2Fs for Rb and repressive

E2Fs for p107 and p130 (p107/p130).  We conclude that Rb evolved sequences that make

it uniquely suited to bind and regulate the activating E2Fs.  Our combination of structural

and  biochemical  data  with  phylogenetic  analyses  provides  novel  insights  into  the  co-

evolution of a protein-protein interaction critical for control of cell proliferation.

Results

Distinct E2F-binding properties of RbC and p107C

We first tested whether the binding preferences of Rb pocket proteins for different E2F

family members result from different affinities between the pocket protein CTDs and E2F

CM domains (Fig.  1B and 1C).  We used a co-precipitation assay to identify a minimal

fragment of p107C (residues 994-1031, called p107C994-1031) that is suitable for structural

studies and is sufficient to bind E2F4-DP1CM (Fig. S1). Using isothermal titration calorimetry

(ITC) (Fig. 1C), we found that p107C994-1031 binds with similar affinity as that previously

reported for full-length p107C (residues 949-1068) (19). Both p107C994-1031 and p107C949-1068

bind  E2F1-DP1CM with  lower  affinity  than  they  bind  E2F4-DP1CM.  These  affinity

measurements performed with purified protein fragments are  consistent  with  previous

observations of interaction specificities among Rb and E2F family proteins in cells and

suggest that these specificities arise at least in part from intrinsic structural differences (1,

10-13).

Comparing these measurements with previous measurements of RbC reveals several

differences between how RbC and p107C bind to E2F-DPCM domains (Fig. 1C) (19).  First,

the affinity of the full RbC sequence (residues 771-928) is four-fold tighter than full p107C

for E2F4-DP1 and fifty-fold tighter for E2F1-DP1.  Second, while RbC makes a bipartite

association  with  contributions  from  residues  786-801  (RbCnter)  and  residues  829-864

(RbCcore) (Fig. 1B) (19), all the interactions made by p107C are contained within p107C994-



1031 (p107Ccore).  Third, while RbCcore has similar affinity for E2F1 and E2F4 (19), p107Ccore

has higher affinity for E2F4 than E2F1.  We next determined the structural basis for these

affinity differences.

Conservation of E2F-DP CM structures

 We grew crystals of E2F4-DP1CM alone and E2F5-DP1CM bound with p107C994-1031 and

determined structures with resolution of 2.3 Å and 2.9 Å respectively (Table S1 and Fig. 2).

In  both  structures,  the  E2F  and  DP  polypeptides  have  similar  secondary  structure

topology, and the chains entwine to create an extensive interface (Fig. 1B and 2A). The CM

structure consists mainly of a heterodimeric coiled-coil subdomain and a heterodimeric -

sandwich subdomain that are bridged by two small helices and two small strands. The

intertwined structure and dependence on DP to complete the hydrophobic core explain

why heterodimerization is necessary for E2F stability,  DNA binding,  and transcriptional

activity (1, 19).

We  considered  sequence  and  structural  conservation  among  E2F  paralogs  and

identified regions  in  the  coiled-coil  and  marked-box domains  that  may be  involved  in

shared or distinct functions.  Several aspects of the E2F4-DP1CM and E2F5-DP1CM structures

are  similar  to  the  previously  determined  structure  of  E2F1-DP1CM (19), including  the

topology  and  structures  of  the  -sandwich  domains  (Fig.  S2).   One  notable  variation

among the structures is the orientation of the coiled-coil domain relative to the -sandwich

domain (Fig. 2B).  Alignment of the overall structures with the  -domain fixed suggests

that the coiled-coil domain can pivot about a fixed contact point made with the 2 helix in

DP1.  Considering that the E2F-DP DNA binding domains are N-terminal to the start of the

coiled-coil  domain,  we  suggest  that  this  flexibility  may  be  important  for  bridging  the

interaction with DNA and interactions with other transcription factors that potentially bind

the marked-box domain or C-terminal regions in E2F (20, 21). 

Sequence comparison of the human E2Fs reveals that twenty residues are identical

within the CM domain (Fig. 1B). They map primarily to the coiled-coil interface and the

structural  core  that  bridges the  -sandwich and coiled-coil  domains (Fig.  S2E).   These

amino  acids  contribute  to  the  overall  stability  of  the  E2F-DP  heterodimer.  The  most

notable region of the structure that is distinct among paralogs is the end of E2F 3 and the

loop between  3 and  4.  We explore below the idea that sequence divergence in this

region accounts for differences in specificity for different pocket proteins.  

Specificity in Rb and p107 interactions with E2F-DPCM 



p107C binds the E2F5-DP1 marked-box domain using a strand-loop-helix motif (Fig. 2

and  Fig.  3A).   The  strand  adds  on  in  an  anti-parallel  direction  to  the  -sheet  in  the

immunoglobulin sandwich domain that is distal to the coiled coil. The amphipathic p107C

helix covers the core of the -sandwich domain (Fig. 3A).  The hydrophobic sidechains of

L1014, I1017, M1020, and I1021 from p107C pack into the core.   They make van der

Waals contacts with L198, V200, I202, and P203 from E2F5 and I262, T290, F291, I293,

and D295 from DP1. These residues in E2F5 are all conserved in E2F4 (Fig. 1B), and we

anticipate that E2F4 binds p107 through identical interactions.  

 We  used  the  Cancer  Genome  Atlas  (cancergenome.nih.gov)  to  identify  cancer-

associated mutations in p107 and p130 that are localized to the CTD.  We mapped these

mutations onto the p107C-E2F5-DP1 crystal structure and tested their effects on binding

with ITC (Fig. S3). We conclude that most of these cancer-associated mutations map to the

exposed surface of the CTD helix and only slightly impair the ability of p107 to bind E2F.

We compared our structure of the p107C-E2F5-DP1 complex with the structure of the

RbC-E2F1-DP1 complex to understand the binding preferences revealed by our affinity

measurements.  First we addressed the question of why E2F4-DP1 has higher affinity for

p107Ccore than RbCcore (Fig.  1C).  In  general,  the mode of  RbC binding to the E2F1-DP1

marked-box domain resembles p107C binding to E2F5-DP1 (Fig. 3)  (19).  However,  the

contacts between hydrophobic residues near the N-terminus of the helix and C-terminus of

the strand are distinct with V833, I835, T841, and F845 in Rb replaced with Y1004, F1006,

and L1014 in p107 (Fig. 3B). We suggest that tighter packing of this interface stabilizes

p107C binding relative to RbC.

 A second observed binding specificity is the higher affinity of p107C for E2F4 and E2F5

compared  to  E2F1  (Fig.  3D).  To  understand  this  preference,  we  considered  residues

towards the C-terminus of strand 3 in the E2F5 structure (residues 200-203).  In addition

to  L198,  which  is  conserved  among  all  E2Fs,  these  residues  contain  the  only  E2F

sidechains that directly contact p107C, and they are different between E2F5 and E2F1.

The sequence in E2F5 and E2F4 is VPIP, while the sequence in E2F1 is AVDS (Fig. 1B and

3C).  The bulkier V200 in E2F5 (V167 in E2F4) can interact better with I1017 and M1020 in

p107 compared to the smaller A275 in E2F1 (Fig. 3C).  In addition, P201 in E2F5 (P168 in

E2F4) causes the strand to bulge such that P203 (P170 in E2F4) is in position to contact

I1021.  D277 in E2F1 is at the same position as P203 in E2F5 and likely makes weaker

interactions.  

We used the calorimetry assay to test the importance of the E2F4/E2F5-conserved VPIP

motif  for  p107C994-1031 affinity  (Fig.  3D).   We  primarily  used  E2F4  in  our  binding



measurements  because  E2F4  is  more  abundant  in  cells  and  expresses  well  as  a

recombinant  protein.  E2F4 and E2F5 are highly conserved in the  3-strand that  binds

p107C (Fig. 1B), and they both bind wild type p107C with similar affinity (Fig. 3D).  We

found that changing the VPIP sequence in E2F4 to the AVDS sequence in E2F1 yields a

mutant E2F4-DP1CM heterodimer that binds p107C nearly three-fold weaker than wild-type.

Conversely, mutation of the E2F1 AVDS sequence to VPIP increases the affinity of E2F1-

DP1CM for p107C994-1031 four-fold.   We also found that p107C994-1031 binds E2F3-DP1CM more

weakly than it binds E2F4-DP1CM and E2F5-DP1CM and more similar to how it binds E2F1-

DP1CM (Fig. 3D). Although E2F3 has the first proline to induce the bulge in the strand (Fig.

1B),  the  S331  at  the  position  of  the  second  proline  in  E2F4/E2F5  is  suboptimal  for

contacting I1021 (like D277 in E2F1).  Together these data demonstrate that the sequence

in 3 strand is a critical determinant for p107 binding repressive E2Fs with higher affinity

than activating E2Fs.

 Unlike p107, RbC binds E2F1-DP1CM and E2F4-DP1CM with similar affinity (Fig. 1C) (19).

Rb  contains  a  valine  (V852)  at  the  analogous  position  as  I1021  in  the  p107C  helix.

Structural alignment suggests that the smaller Rb sidechain would not contact P203 in

E2F5 (P170 in E2F4),  and we observe loss of  affinity  due to substitution of  the I1021

sidechain with a smaller hydrophobic group (Fig. S3).  The structural comparison suggests

the explanation that Rb is less sensitive to the differences in E2F1 and E2F4/E2F5 at this

binding interface because of the weaker interactions between V852 and the E2F 3 strand.

Additional  interactions  involving the RbCnter sequence enhance RbC binding to both

E2F1-DP1CM and E2F4-DP1CM (19).  In contrast, our measurements here suggest that the

sequence in p107 N-terminal to the core binding region in the crystal structure does not

make  these  stabilizing  interactions  (Fig.  1C).   We found that  replacing  the  p107C N-

terminal sequence (residues 949-974) with the RbCnter sequence (residues 771-822) results

in a hybrid p107C construct that binds E2F1-DP1CM and E2F4-DP1CM with increased affinity

compared to p107C994-1031 and p107C949-1068 (Fig. 3E).  This observation demonstrates that

the RbCnter sequence enables RbC to bind both activator and repressive E2F proteins with

higher affinity than p107C.

Although Rb is in complexes with both activating and repressive E2Fs,  it  has been

proposed that the RbC association is specific to E2F1 (11, 25, 26). We find here that RbC

binds different E2F-DPCM domains with similar affinity (Fig. 1C and Fig. S4).  As we discuss

further  in  Fig.  S4,  this  apparent  discrepancy  arises  from differences  in  the  affinity  of

different  E2F  transactivation  domains  for  the  Rb  pocket  domain.  In  contrast  to  Rb,



differences in affinity for both the transactivation domain (27) and the CM domain (Fig. 1C)

contribute to the preference of p107 for different E2Fs.  

T997 and S1009 phosphorylation regulates p107C binding to E2F-DPCM

We next  explored  the  question  of  how Cdk  phosphorylation  of  p107  weakens  the

p107C-E2F-DPCM association.  We phosphorylated the two Cdk sites in p107994-1031 (T997

and S1009, Fig. 1B) with purified Cdk2-CycA and found by ITC that the affinity of the

phosphorylated peptide was eleven-fold weaker than the unphosphorylated peptide (Fig.

4A).   We then made T997A and S1009A mutations in two separate constructs and found

that phosphorylation at the remaining site in each construct still weakens affinity. These

measurements demonstrate that both phosphorylation events in p107C inhibit binding to

E2F-DPCM and that their effects are additive.  

 In the crystal structure of the ternary complex, S1009 is visible in the loop between

the p107C strand and helix (Fig. 4B).  The loop folds back towards the secondary structure

elements, and the S1009 sidechain makes a hydrogen bond with S1013, which is in the

p107C helix.  Phosphorylation of S1009 likely weakens affinity by destabilizing this bound

conformation.  Electron density for T997 is not visible, suggesting that T997 is disordered.

It is less clear then why T997 phosphorylation inhibits the association.  

The phosphorylation  pattern within  the CTD of  p107 and p130 is  distinct  from the

pattern in Rb (Fig. 1B).  In Rb, there are two threonine Cdk sites (T821 and T826), but they

are both N-terminal to the CTD strand, and their phosphorylation does not directly inhibit

binding of RbCcore to E2F1-DP1 (19).  Instead, phosphorylation of these Rb sites induces an

interdomain  association  between  phosphorylated  RbC  and  the  pocket  domain,  which

competes with RbCcore  binding to E2F-DPCM. We found that phosphorylation of p107C T997

and  S1009  directly  inhibits  E2F-DPCM binding,  and  we  could  not  detect  binding  of

phosphorylated p107C to the p107 pocket domain. 

Rb sequence elements that confer E2F binding affinity co-evolved with E2F1 and

E2F2

Our data support the conclusion that Rb is unique among pocket proteins in its ability

to bind E2F1 with high affinity. To test the hypothesis that this property of Rb co-evolved

with E2F1, we examined the evolutionary history of pocket proteins and E2Fs along the

metazoan  lineage from a subset  of  52  genomes.  Our  phylogenetic  analysis  reveals  a

number of gene duplication events that resulted in the expansion of the pocket protein

and E2F families (Fig. 5, Fig. S5, Fig. S6, and Fig. S7).  In agreement with previous work



(28),  we find that  the divergence of  Rb and RbL (the p107/p130 ancestor)  from their

common  ancestor  (aRb)  precedes  the  emergence  of  Eumetazoa,  possibly  after  the

divergence of Choanoflagellata and before the emergence of the Placozoa lineage. This

emergence of Rb appears to coincide with the emergence of two E2F proteins, one that is

the ancestor of E2F4 and E2F5 (E2F45) and one that is the ancestor of E2F1, E2F2, E2F3

and E2F6 (E2F1236).   Additional  gene duplication  events  occurred  at  the base of  the

Craniata lineage after the divergence of the Agnantha lineage (“lamprey”),  when RbL2

(p130) and RbL1 (p107) emerged from RbL, E2F4 and E2F5 emerged from E2F45, and

E2F1, E2F2, E2F3, and E2F6 emerged from E2F1236.

We focused  on  the  evolution  of  structures  that  play  a  role  in  determining  pocket

protein-E2F binding specificity.  There is considerable conservation in the pocket protein

CTD helix (in human p107 residues 1011-1023), which plays a prominent role in binding

E2F-DPCM (Fig. 3).  For example, the helix residues along the interface are hydrophobic in

all  the sequences  dating back to the early  metazoa,  and several  positions are  nearly

strictly conserved (Fig. 6 and Fig. S8).  Two positions that give rise to differences in how

Rb binds the E2Fs--L1014 (F845 in human Rb) and I1021 (V852)--emerge in Rb in sharks

(Fig.  6  and  Fig.  S8).  This  emergence  is  coincident  with  the  expansion  of  the  protein

families at the base of the Craniata lineage (Fig. 5 and Fig. 6). 

 We also examined the sequence corresponding to the end of E2F β3 strand (V200-

P203 in human E2F5), which our data implicate as a key source of binding preferences

between the E2F and pocket  proteins (Fig.  3).   The ancestral  E2F at  the base of  the

phylogenetic tree and the two E2Fs in early metazoa (E2F45 and E2F1236) all contain the

VP*P motif at these positions (Fig. 6 and Fig. S8). This motif is kept in the E2F4 and E2F5

lineages through humans.  As seen in our E2F5 structure, the VP*P sequence places the

hydrophobic V200 and P203 sidechains at the interface with p107C, and these residues

are critical for high affinity binding of p107C to human E2F4-DP1CM (Fig. 3).  The VP*P motif

is eventually lost in all three activator E2F lineages.  It is lost first in E2F1 and E2F2, which

emerge in sharks and lack the first and second proline respectively (Fig. 6).  The E2F3

lineage maintains the VP*P motif until more recently diverged animals, in which it lacks

the second proline.  Notably, we observe that both human E2F1 and E2F3 have weaker

affinity for p107C than E2F4 and E2F5 (Fig. 3D).  Therefore, the unbiased approach that

groups E2Fs based on phylogenetic distance over their entire sequence (Fig. 5 and Fig. 6)

matches a grouping based on their affinity for p107C (Fig. 3D), which arises in large part

from sequence variation in just the four motif residues.



Our  phylogenetic  analyses  support  the  hypothesis  that  the  VP*P  motif  is  a  key

distinguishing  feature  between  activator  and  repressive  E2F  structure  and  function.

Examination of  the pocket  protein  CTD sequences  indicates  that  the RbCnter sequence

emerges at the same point as E2F1 and E2F2, despite the divergence of Rb from RbL

much earlier  in  the tree (Fig.  6 and Fig.  S8).   The Rb proteins from  C. mil and other

cartilaginous fish (L. eri and S. can) have sequences that resemble RbCnter, although they

lack  the  S788  (human  Rb  numbering)  Cdk  phosphorylation  site  (Fig.  S8).   The  first

complete RbCnter appears in vertebrates (e.g. D. rer). 

Our analysis suggests that the appearance of the E2F1-E2F3 lineages and loss of the

VP*P-motif are coincident with the appearance of the RbCnter sequence.  Loss of affinity

between RbL (p107/p130) and E2F1 and E2F2 is compensated by the gain in affinity of Rb

due  to  the  emergent  RbCnter sequence.   We  could  recapitulate  this  hypothesized

adaptation by adding RbCnter to p107C (Fig. 3E).  The hybrid protein has enhanced affinity

for E2F1 over p107C.  We see a similar trend in pocket residues that confer higher affinity

of Rb for activator E2F transactivation domains. For example, H555 and K475 (human Rb

numbering), both of which increase affinity of the Rb pocket domain for E2F2TD relative to

the affinity of the p107 pocket domain (27), emerge in sharks around the E2F1 and E2F2

emergence (Fig. S9). We propose that Rb has maintained sequence variations from its

ancestor that contribute to its high–affinity interactions with and ability to inhibit activator

E2Fs.

Discussion

Our  structural  and  biochemical  data  support  the  conclusion  that  the  association

between the pocket protein CTD and E2F-DPCM domain is a general binding mechanism

shared  by  all  pocket  proteins  and  canonical  E2F  family  members.  Functional  studies

clearly point to a unique role for Rb in regulating E2F1 activity, and it had been proposed

that  RbC has unique affinity for E2F1CM (11,  25,  26).   We demonstrate  here that RbC

associates similarly with different E2F CM domains, and we suggest that RbC-E2F1 binding

was thought to be specific because previous Rb-E2F1 co-immunoprecipitation experiments

detected a stronger pocket-E2F1 TAD association (19, 25-27) (Fig. S4). In contrast to RbC,

we find here that p107C binds E2F1CM and E2F3CM with weaker affinity than E2F4CM and

E2F5CM, and the crystal structure of the p107C complex offers a clear explanation for the

preference  for  the  repressor  E2Fs  (Fig.  3).   These  data  are  consistent  with  previous

observations that the p107C domain is required for its growth suppressive function and

that p107 associates exclusively with repressor E2Fs except when it is overexpressed (13,



24, 29).  We find that p107 has some capacity to bind all E2Fs, but its preference is tuned

by the molecular details of the p107C-E2FCM association.

Our phylogenetic analyses and examination of specific sequence motifs  involved in

pocket  protein-E2F  interactions  point  to  a  special  relationship  between  Rb  and  the

activating E2Fs.  The emergence of E2F1 and E2F2 is accompanied by the emergence of

Rb-specific sequences that result in higher E2F affinity. We propose that coincident with

the divergence of E2F1 and E2F2 from their ancestor and the accumulation of changes

that  weakened  p107/p130  binding,  Rb  underwent  adaptive  changes  that  resulted  in

increased E2F binding  affinity.   While  these  adaptive  changes  do not  result  in  higher

affinity specifically for E2F1 and E2F2, the foregoing poor affinity of p107 and p130 for

activator E2Fs rendered Rb the only pocket protein with high affinity for activating E2Fs.

We find it interesting that the RbCnter sequence includes a Cdk phosphorylation site that is

known to weaken RbC-E2F affinity (19).  We suggest that the additional E2F-binding motif

co-evolved with a regulatory mechanism such that Rb-E2F complexes can be dissociated.

Here we demonstrate that there are unique Rb structural  features that underlie its

exclusive ability to regulate activator E2Fs.  These observations complement and explain

previous studies that implicate E2F1, E2F2, and E2F3 activity as the cause of aberrant

phenotypes  in  Rb  knockout  cells  (30-33).   Rb  regulation  of  activator  E2Fs  cannot  be

complemented by p107/p130, because they fail  to bind with sufficient affinity. In more

complex  organisms  with  multiple  pocket  proteins  and  E2Fs,  exclusive  relationships

between family members may allow for independent regulation of different processes. For

example,  specific  Rb  inhibition  of  activating  E2Fs  is  likely  relevant  to  other  functions

beyond the cell cycle such as apoptosis or response to DNA damage  (1, 12). Our data

support the model that the unique role of Rb in development and tumor suppression arises

from its unique capacity to regulate the activator  E2Fs. At the same time, our results

indicate  that  p107/p130  have  some  weak  affinity  for  activating  E2Fs  that  may  be

exploited.  It has been observed that p107 represses E2F1 upon overexpression (29), and

endogenous  p107/p130  complexes  with  E2F1  or  E2F3  can  be  detected  in  mouse

fibroblasts  that  lack  E2F4  and  thus  have  higher  free  p107/p130  concentrations  (34).

Increasing p107/p130 association with the activator  E2Fs may be a viable therapeutic

strategy towards harnessing their activity to compensate for Rb loss.

Materials and Methods

Proteins  were  expressed and purified  using  standard  methods.   Crystallization  was

performed using vapor diffusion in sitting drops, and x-ray diffraction data were collected



at  the  Advanced  Photon  Source.   The  dimer  and  trimer  structures  were  solved  by

molecular replacement and single anomalous diffraction methods.  ITC experiments were

performed with a Microcal VP-ITC instrument, and the reported errors are the standard

deviations from two to four measurements.  Phosphorylation of p107C was performed as

previously  described  (27).  Profile-Hidden Markov Models  (profile-HMMs)  were  built  and

used  to  retrieve  E2F  and  pocket  protein  homologs.  Following  sequence  alignment,

phylogenetic analysis was performed using maximum-likelihood methods.  Details of all

experimental procedures can be found in Supplemental Materials and Methods.
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Figure Captions



Fig. 1. Interactions between pocket protein C-terminal domains (CTDs) and the
E2F coiled-coil  and marked-box (CM) domains.  (A) Domain architecture of  pocket
proteins, E2F, and DP. The E2F transactivation domain binds the pocket domain, and the
E2F-DP CM domain binds the CTD.  (B) Sequence alignment of the human E2F CM domains
and  pocket  protein  CTDs.  The  secondary  structure  elements  present  in  our  crystal
structures  are  indicated  along  with  residues  in  E2F5  (*)  that  contact  the  p107  CTD
(p107C). Cdk phosphorylation sites are indicated with blue dashed lines. (C) Calorimetry
measurements of RbC and p107C binding to E2F-DP CM domains. p107994-1031 binding was
measured here, whereas the other values were previously reported  (19).  The asterisk
indicates that the previous measurement was made with E2F4-DP2CM.

Fig. 2. Crystal structures of the E2F4-DP1 and E2F5-DP1 CM domains.  (A) Overall
structures  show  similar  topologies  with  the  E2F  and  DP  chains  forming  an  extensive
interface. (B) Overlay of the CM domain structures determined for E2F1-DP1 (grey, PDB:
2AZE), E2F4-DP1 (pink), and E2F5-DP1 (red and purple correspond to the two different
molecules in the asymmetric unit). Structures were overlaid by alignment of  -sandwich
domain C atoms (Fig. S2)  so that the different positions of the coiled-coil domains reflect
their different orientations relative to the -sandwich domain. Only the -sandwich domain
of E2F1-DP1 is shown. 

Fig. 3. Comparison of p107C-E2F5 and RbC-E2F1 binding interfaces.  (A) p107C
binds  the  E2F5-DP1  -sandwich  domain  using  a  strand-loop-helix  motif  and  forms  a
hydrophobic interface with residues from both E2F and DP.  (B) Overlay of RbC (taken from
the RbC-E2F1 structure) with p107C models how RbC would bind E2F5. (C) Overlay of E2F1
and E2F5 models how p107C would bind E2F1.  (D) Affinity measurements for p107C994-1031

binding to the indicated E2F-DPCM domains.  The E2F4-DP1CM AVDS mutant has the E2F4
VPIP sequence (residues 167-170) mutated to AVDS, while the E2F1-DP1CM mutant has the
E2F1 AVDS sequence (residues 275-278) mutated to VPIP. (E) Affinity measurements of an
RbC-p107C hybrid protein containing residues 771-794 of Rb (RbCnter) fused to residues
975-1031 of p107.

Fig. 4.  Phosphorylation of Cdk sites in p107C directly inhibits E2F binding. (A)
ITC measurements of p107C peptides phosphorylated at the indicated sites.  (B) Structure
of the  p107C-E2F5-DP1 interface.

Fig.  5.  Phylogenetic  distribution  of  pocket  protein  and  E2F  sub-families.
Detected pocket  proteins and E2Fs from each genome are classified into sub-families
based on phylogenetic analysis (see Supplemental Methods). The resulting distribution of
homologs was condensed and ordered according to the current consensus on phylogenetic
relationships between major animal lineages (35), including alternative locations of the
Ctenophora (dashed grey line) and  with Amoebozoa as an outgroup. Common names of
exemplary species are in parenthesis.

Fig.  6.     Evolutionary  model  of  sequences involved in  E2FCM-pocket  protein
association.   Family members are arranged according to their phylogenetic distances
over their entire sequences. The VP*P motif in the E2F3 strand, hydrophobic residues in
RbCcore, and whether the RbCnter sequence is present are indicated. The amino acid number
of the last residue in each human sequence is shown.
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