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EPIGRAPH

Mathematics is the science of skillful operations with concepts and rules invented just for this
purpose. The principal emphasis is on the invention of concepts. Mathematics would soon run
out of interesting theorems if these had to be formulated in terms of the concepts which already
appear in the axioms.

–Eugene Wigner
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Chapter 1

Introduction

Random matrix theory (RMT), free probability, and high-dimensional statistics have been

recently employed successfully to study deep learning in a variety of cases. In this work, we aim

to build a spectral analysis of neural networks [FW20, WZ24, WES+23, BES+22, WWF24],

which may have important practical and theoretical consequences in deep learning. Generally

speaking, there are three pillars of deep learning: neural network architectures, optimization and

training dynamics, and data structures. In this thesis, we use high-dimensional probability theory

to more realistically understand how these three pillars efficiently support neural networks (NNs)

to achieve learning tasks:

(i) For architectures, we explore the impact of both the depth and width of fully connected

neural network models. We consider different asymptotic scaling of the width of NNs.

(ii) For data structures, we go beyond isotropic Gaussian datasets to establish theory on datasets

with anisotropic structures or even deterministic datasets with certain orthogonal properties.

(iii) For optimization, we analyze various training processes of NNs and how they learn features

from training datasets and improve the representation learning in the neural network.

Modern datasets in areas like genomics, finance, and image processing usually have

extremely large sizes in high dimensions which makes them difficult to process using traditional

data processing techniques. In the context of machine learning and artificial intelligence, big

data provides the extensive information needed to train artificial intelligence, improve accuracy,
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and make data-driven decisions. Random matrix theory helps in studying the properties of these

high-dimensional big data structures, by considering the sample size and feature dimension grow

to infinity proportionally and then analyzing the eigenvalues and eigenvectors of matrices that

represent the data. These properties can reveal important insights about the latent structure of

high-dimensional data in large sizes.

Moreover, overparameterization (i.e., a large number of training parameters; [BHMM19,

BHX20]) has become an indispensable component of artificial intelligence due to its presence

in popular machine learning models, yet many properties of overparameterized estimators

remain mysterious despite having been a major focus of recent research. To study the role

of overparameterization in NNs, high-dimensional probability tools should be introduced to

analyze the performances of NNs when sample size and width go to infinity with various rates.

High-dimensional probability emerges as a potent tool in analyzing the asymptotic performances

of overparameterized machine learning models.

Below, we will first summarize the background in deep learning theory and RMT, and

then outline how our results harness the methodologies from random matrix theory to scrutinize

spectral phenomena across diverse statistical and machine learning applications.

1.1 Neural Network Model and Kernel Matrices

In this section, we define the neural network model and its corresponding kernel matrices

that will be discussed in this thesis.

Fully connected neural networks (NNs)

We define a fully-connected, feedforward neural network with input dimension d0, hidden

layers of dimensions d1, . . . ,dL, and a scalar output. For an input xxx ∈ Rd0 , we parametrize the

network as

fθ (xxx) = www⊤ 1√
dL

σ

(
WWW L

1√
dL−1

σ

(
. . .

1√
d2

σ

(
WWW 2

1√
d1

σ(WWW 1xxx)
)))

∈ R. (1.1.1)
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Here, σ : R→ R is the activation function (applied entrywise to matrices or vectors) and

WWW ℓ ∈ Rdℓ×dℓ−1, for 1 ≤ ℓ≤ L, www ∈ RdL

are the network weights. We denote the collection of all training parameters by

θ = (vec(WWW 1), . . . ,vec(WWW L),www),

where vec(·) means vectorization of the weight matrix. We call L ∈ N the number of layers (the

depth) of this NN and dℓ the number of neurons (the width) in ℓ-th layer for 1 ≤ ℓ≤ L. Then,

WWW ℓ is the weight matrix at the ℓ-th layer for 1 ≤ ℓ≤ L.

The scalings by 1/
√

dℓ in (1.1.1) reflect the “NTK-parametrization” of the network

[JGH18]. We will discuss alternative scalings and an extension to multi-dimensional outputs in

Sections 2.2.4 and 5.4.2.

Empirical kernel matrices in NN models

Kernel matrices associated with the nonlinear feature map of deep neural networks

(NNs) provide insight into the optimization dynamics [JGH18, MZ20, FDP+20] and predictive

performance [LBN+17, ADH+19a, OJMDF21]; consequently, properties of these kernel matri-

ces can guide the design of network architecture [XBSD+18, MBD+21, LNR22] and learning

algorithms [KO20, ZNB22]. Particular emphasis has been placed on the spectral properties of

kernel matrices, due to their connection with the training and test performance of the underlying

NN [BCP20, LGC+21a, WHS22]. This thesis will focus on two empirical kernel matrices on n

training data points.

Given n training samples xxx1, . . . ,xxxn ∈ Rd0 , we denote the input data matrix by

XXX ≡ XXX0 =

(
xxx1 . . . xxxn

)
∈ Rd0×n. (1.1.2)
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When passing through these n samples in (1.1.1), we can define the output matrix of post-

activation at each layer by

XXX ℓ =
1√
dℓ

σ(WWW ℓXXX ℓ−1) ∈ Rdℓ×n, for ℓ= 1 . . . ,L, (1.1.3)

with weight matrices WWW ℓ ∈ Rdℓ×dℓ−1 , XXX0 ≡ XXX and d0 ≡ d, and a nonlinear activation function

σ : R→ R applied entrywise. The in-sample predictions of the network in (1.1.1) are given by

fθ (XXX) = ( fθ (xxx1), . . . , fθ (xxxn)) = www⊤XXXL ∈ R1×n.

Definition 1. The Conjugate Kernel (CK) at ℓ-th layer of NN in (1.1.1) with n sample dataset

XXX0 in (1.1.2) is defined by

KKKCK
ℓ = XXX⊤

ℓ XXX ℓ ∈ Rn×n, (1.1.4)

for ℓ= 1, . . . ,L. We denote the last layer CK as KKKCK for simplicity.

This KKKCK is also called the equivalent Gaussian process kernel [Nea95, Wil97, CS09,

DFS16, PLR+16, SGGSD17, LBN+18, MHR+18]. Fixing the matrix XXXL, this KKKCK governs

training and generalization in the linear regression model fθ (XXX) = www⊤XXXL. For very wide

networks, KKKCK may be viewed as an approximation of its infinite-width limit, and regression

using XXXL is an approximation of regression in the Reproducing Kernel Hilbert Space (RKHS)

defined by this limit kernel [RR08]. In this thesis, we use “conjugate kernel” and “neural

tangent kernel” to refer to these matrices for a finite-width network, rather than their infinite-

width limits. In the high-dimensional asymptotic setting where the width of the NN and the

number of training samples diverge at the same rate, prior works employed random matrix

theory to analyze the limit eigenvalue distribution of the CK matrix at random initialization

[PW17, LLC18, Péc19, FW20]. These and related characterizations of the CK resolvent enable

precise computations of various errors for NNs with random first-layer weights, known as

random features models [MM22, TAP21, HJ22].
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Definition 2. The Neural Tangent Kernel (NTK) is the Gram matrix of the Jacobian of

in-sample predictions with respect to the network weights

KKKNTK = J⊤J =
(
∇θ fθ (XXX)

)⊤(
∇θ fθ (XXX)

)
∈ Rn×n, (1.1.5)

where we denote the Jacobian matrix of the network predictions with respect to the weights θ as

J = ∇θ fθ (XXX) =

(
∇θ f (xxx1) · · · ∇θ f (xxxn)

)
∈ Rdim(θ)×n.

This KNTK was introduced to study network training [JGH18, DZPS19a, AZLS19].

Under gradient-flow training dynamics, the in-sample predictions follow a differential equation

governed by the NTK. Under gradient-flow training of the network with weights θ and training

loss given by (1.1.7), the time evolutions of residual errors and in-sample predictions are given

respectively by

d
dt

(
yyy− fθ(t)(XXX)

)
=−KKKNTK(t) ·

(
yyy− fθ(t)(XXX)

)
,

d
dt

fθ(t)(XXX) = KKKNTK(t) ·
(

yyy− fθ(t)(XXX)
)

where θ(t) and KNTK(t) are the parameters and NTK at training time t [JGH18, DZPS19a].

Denoting the eigenvalues and eigenvectors of KKKNTK(t) by (λα(t),vvvα(t))n
α=1, and the spectral

components of the residual error by rα(t) = vvvα(t)⊤(yyy− fθ(t)(XXX)), these training dynamics are

expressed spectrally as

vvvα(t)⊤
d
dt

(
yyy− fθ(t)(XXX)

)
=−λα(t)rα(t),

d
dt

fθ(t)(XXX) =
n

∑
α=1

λα(t)rα(t) · vvvα(t).

Note that these relations hold instantaneously at each training time t, regardless of whether

KKKNTK(t) evolves or remains approximately constant over training. Hence, λα(t) controls the

instantaneous rate of decay of the residual error in the direction of vvvα(t).

For very wide networks, KKKNTK, λα , and vvvα will all approximately stay close to the initial
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values over the entirety of training [JGH18, DZPS19a, DLL+19b, AZLS19, COB19]. This

yields the closed-form solution rα(t)α ≈ rα(0)e−tλα , so that the in-sample predictions fθ(t)(XXX)

converge exponentially fast to the observed training labels y, with a different exponential rate λα

along each eigenvector vvvα of KKKNTK.

The spectral decompositions of these kernel matrices are related to the training and

generalization properties of the underlying network. Training occurs most rapidly along the

eigenvectors of the largest eigenvalues [ASS20], and the eigenvalue distribution may determine

the trainability of the model and the extent of implicit bias towards simpler functions [XPS19,

YS19a]. It is thus of interest to understand the spectral properties of these matrices, using random

matrix theory, both at random initialization and throughout training.

As an example, when L = 2, let d1 = h and d0 = d be the widths of the output and input

layer. The CK is defined as KKKCK := XXX⊤
1 XXX1 ∈ Rn×n, where XXX1 := 1√

h
σ

(
WWWXXX/

√
d
)

. Specifically,

the empirical NTK of two-layer NN can be explicitly written as

KKKNTK =
1
d

XXX⊤XXX ⊙ 1
h

σ
′
(

1√
d

WWWXXX
)⊤

diag(vvv)2
σ
′
(

1√
d

WWWXXX
)
+KKKCK. (1.1.6)

Here we train both layers, so we have two parts in the NTK expression. If we only train the

first-hidden layer, we can simply remove the second CK part.

Training processes of NNs.

We focus on the NTK parameterization and consider the kernel machine (1.1.9) induced

by the initial NTK of the NN. We aim to seek the cases when the NN outperforms this kernel

during the training process. For this purpose, we adopt different optimizers of training this NN

to obtain different testing performances and spectral properties of trained weights and empirical

kernels.

The loss function for training is a mean squared error (MSE)

L (θ) :=
1
2n

∥yyy− fθ (XXX)∥2. (1.1.7)
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NNs are usually trained by gradient-based methods such as full-batch gradient descent (GD),

mini-batch stochastic gradient descent (SGD), Adaptive Gradients (AdaGrad), and Adam [KB14].

We can represent GD by

θt+1 = θt −η∇θL (θt), (1.1.8)

where η is the learning rate (step size) and ∇θL (θt) is the gradient of the training loss w.r.t.

trainable parameters θ at step t ≥ 0. We will prove the global convergence of GD in some special

(overparameterized) cases ensuring the convergence to the NN that interpolates the data. We will

also show that the hyper-parameters (e.g. learning rate η) affect the spectral properties of NNs

during training.

Lazy training regime.

Lazy training [COB19] can be viewed as a linear approximation of the NN, i.e.

fθ (xxx)≈ fθ0(xxx)+(θ −θ0)
⊤

∇θ fθ0(xxx),

defined by minimum-norm interpolation

θ̂ := argmin
{
∥θ −θ0∥ : (θ −θ0)

⊤
∇θ fθ0(XXX) = yyy− fθ0(XXX)

}
.

Then, lazy training also represents a kernel machine

f̂ (xxx) = fθ0(xxx)+
(
yyy− fθ0(XXX)

)
KKK(XXX ,XXX)−1KKK(XXX ,xxx) (1.1.9)

where f̂ (xxx) is the unregularized regression prediction on test data xxx ∈ Rd , the kernel KKK(XXX ,XXX)

is the initial KKKNTK on training data, and KKK(XXX ,xxx) = (∇θ fθ0(XXX))⊤(∇θ fθ0(xxx)). The asymptotic

performance of f̂ (xxx) has been analyzed by [AP20] under the LWR. We view this regime as a

benchmark: [COB19, BMR21] prove that NN through gradient flow is close to lazy training if

h ≫ n; [HXAP20] shows NN can go beyond lazy training under a non-proportional regime.
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1.2 An Overview of Random Matrix Theory

1.2.1 Empirical Spectral Distributions and Stieltjes Transforms

We will derive almost sure weak limits for the empirical spectral distributions (ESDs) of

random symmetric kernel matrices K ∈ Rn×n as n → ∞. Throughout this thesis, we will denote

this as

lim specK = µ

where µ is the limit probability distribution on R. Letting {λα}n
α=1 be the eigenvalues of K, this

means
1
n

n

∑
α=1

f (λα)→ Eλ∼µ [ f (λ )] (1.2.1)

a.s. as n→∞, for any continuous bounded function f :R→R. Intuitively, this may be understood

as the convergence of the “bulk” of the spectral distribution of K. we call this convergence as

global law of K. To be clear, this does not imply convergence of the extreme eigenvalues of

K to the support of µ , which is a stronger notion of convergence for global law. We will also

show that ∥K∥ ≤C a.s., for a constant C > 0 and all large n. Then (1.2.1) in fact holds for any

continuous function f : R→ R, as such a function must be bounded on [−C,C].

We will characterize the probability distribution µ and the ESD of KKK ∈ Rn×n by their

Stieltjes transforms. These are defined, respectively, for z ∈ C+, as

mµ(z) =
∫ 1

x− z
dµ(x), mK(z) =

1
n

n

∑
α=1

1
λα − z

=
1
n

Tr(K − z Id)−1.

Here Id represents the identity matrix. The pointwise convergence mK(z) → mµ(z) a.s. as

n → ∞ over z ∈ C+ implies lim specK = µ . For z = x+ iη ∈ C+, the value π−1 Immµ(z) is the

density function of the convolution of µ with the distribution Cauchy(0,η) at x ∈ R. Hence, the

function mµ(z) uniquely defines µ , and evaluating π−1 Immµ(x+ iη) for small η > 0 yields an

approximation for the density function of µ (provided this density exists at x).
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For any n× n Hermitian matrix An, the Stieltjes transform of the empirical spectral

distribution of An can be written as tr(An − z Id)−1. We call (An − z Id)−1 the resolvent of An.

1.2.2 Deformed Marčenko-Pastur Law

An example of limiting eigenvalue distribution is given by the Marčenko-Pastur law,

which describes the spectra of sample covariance matrices [MP67a]. Back in 1928, [Wis28] first

studied this kind of random matrix model in statistical analysis.

Let X ∈ Rd×n have i.i.d. N (0,1/d) entries, let Φ ∈ Rn×n be deterministic and positive

semi-definite, and let n → ∞ such that lim specΦ = ν and n/d → γ ∈ (0,∞). Then the sample

covariance matrix Φ1/2X⊤XΦ1/2 has an almost sure spectral limit,

lim spec Φ
1/2X⊤XΦ

1/2 = ρ
MP
γ ⊠ν . (1.2.2)

We call this limit ρMP
γ ⊠ν the Marčenko-Pastur map of ν with aspect ratio γ , where ⊠ is an

analog of the classical notion of multiplicative convolution of probability measures, called free

multiplicative convolution in free probability theory. This distribution ρMP
γ ⊠ν can be defined

by its Stieltjes transform m(z), which solves the Marčenko-Pastur fixed point equation [MP67a].

We define this fixed point equation below.

This free multiplicative convolution is from free harmonic analysis. For full descriptions

of free independence and free multiplicative convolution, see [NS06, Lecture 18] and [AGZ10,

Section 5.3.3]. The free multiplicative convolution ⊠ was first introduced in [Voi87], which

later has many applications for products of asymptotic free random matrices. The main tool for

computing free multiplicative convolution is the S-transform, invented by [Voi87]. S-transform

was recently utilized to study the dynamical isometry of deep neural networks [PSG17, PSG18,

XBSD+18, HK21, CH23]. Some basic properties and intriguing examples for free multiplicative

convolution with µs can also be found in [BZ10, Theorems 1.2, 1.3].

For a probability measure ν supported on [0,∞) and an aspect ratio parameter γ > 0,
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consider the deformed Marčenko–Pastur measure

µ = ρ
MP
γ ⊠ν

and its “companion” probability measure

µ̃ = γµ +(1− γ)δ0.

In general, µ and µ̃ represent the limit eigenvalue distributions of

GGG⊤GGG ∈ Rn×n, and GGGGGG⊤ ∈ RN×N

respectively, when GGG = 1√
N
[ggg1, . . . ,gggN ] ∈ RN×n has i.i.d. rows with mean 0 and covariance ΣΣΣ,

and n,N → ∞ with n/N → γ and 1
n ∑

n
i=1 δλi(ΣΣΣ) → ν weakly.

These measures µ, µ̃ can be defined by their Stieltjes transforms

m(z) =
∫ 1

x− z
dµ(x), m̃(z) =

∫ 1
x− z

dµ̃(x) (1.2.3)

where m̃(z) = γm(z)+(1− γ)(−1/z). By the results of [MP67a, SB95], for any z ∈ C+, m(z)

and m̃(z) are the unique solutions in {m ∈ C : γm+(1− γ)(−1/z) ∈ C+} and C+, respectively,

to the Marčenko-Pastur equations

m(z) =
∫ 1

λ (1− γ − γzm(z))− z
dν(λ ), z =− 1

m̃(z)
+ γ

∫
λ

1+λ m̃(z)
dν(λ ). (1.2.4)

We define m(z) and m̃(z) via (1.2.3) also on the full domains C \ supp(µ) and C \ supp(µ̃)

respectively. Notice that the support sets supp(µ) and supp(µ̃) may differ only at the single

point {0}.

In the setting ΣΣΣ = Id (and ν = δ1), the law µ = ρMP
γ is the standard Marčenko-Pastur law
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[MP67a], with explicit density function with respect to Lebesgue measure

dρ
MP
γ (λ ) =

1
2π

√
(λ+−λ )(λ −λ−)

γλ
·1λ∈[λ−,λ+] dλ , λ± := (1±

√
γ)2

for γ ≤ 1, and an additional point mass (1−1/γ) at 0 when γ > 1. Here 1λ∈[λ−,λ+] is the indicator

function on the subset [λ−,λ+]⊂ R.

In general, µ and µ̃ may not have analytically explicit densities. However, supp(µ̃) is

explicitly characterized in [SC95], and we review this characterization here: Define

T = {0}∪{−1/λ : λ ∈ supp(ν)}. (1.2.5)

For m̃ ∈ C\T , define

z(m̃) =− 1
m̃
+ γ

∫
λ

1+λ m̃
dν(λ ). (1.2.6)

In light of the second equation of (1.2.4), this may be understood as a formal inverse of m̃(z).

From [SC95, Theorems 4.1 and 4.2], we have the following properties.

Proposition 3. m̃(·) defines a bijection from {z ∈ R \ supp(µ̃)} to {m̃ ∈ R \T : z′(m̃) > 0},

whose inverse function is z(·). In particular, x ∈ R does not belong to supp(µ̃) if and only if

there exists m̃ ∈ R\T such that z′(m̃)> 0 and z(m̃) = x.

1.2.3 Deformed Semicircle Law

The semicircle law is another fundamental distribution in random matrix theory. It

describes the limiting distribution of eigenvalues for many types of random symmetric matrices

as the matrix size grows to infinity. The Wigner semicircle law Theorem [Wig55] states that the

empirical distribution of the eigenvalues of a symmetric n×n random matrix with independent

and identically distributed (i.i.d.) entries (up to the symmetry constraint) converges to a semicircle

distribution as n approaches infinity. This type of random matrix is called the Wigner matrix

in random matrix literature. If the entries of the matrix are centered (mean zero) with variance
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σ2/n, the density of the eigenvalue distribution in the limit is given by the density function:

ρ(λ ) =
1

2πσ2

√
4σ2 −λ 2 ·1{|λ |≤2σ}

where 1 is the indicator function, restricting λ to the interval [−2σ ,2σ ]. We denote the standard

semicircle law as µs with density function ρ(λ ) and σ = 1. We refer to [Gui09, BS10, AGZ10,

Tao12] for more details on the Wigner matrix, semicircle law µs and its relation with free

probability.

Similarly with deformed Marčenko-Pastur Law, we can define the deformed semicircle

law µ = µs ⊠µΦ for a probability measure µΦ supported on [0,+∞). This probability measure

µ can be characterized by its Stieltjes transform m(z) governed by the following equation

m(z)+
∫ dµΦ(x)

z+β (z)x
= 0 (1.2.7)

for each z ∈ C+, where β (z) ∈ C+ is the unique solution to

β (z)+
∫ xdµΦ(x)

z+β (z)x
= 0. (1.2.8)

When µΦ = δ1, µ is exactly the standard semicircle law. For more details on this deformed

semicircle law, see Chapter 4.

1.3 Summary of Contribution

Recently, nonlinear random matrix theory has emerged in neural networks (1.1.1) at

random initialization, e.g. [PW17, LLC18, BP21]. This thesis contributes to this field by deriving

the limiting spectral distributions of neural network kernel matrices in (1.1.4) and (1.1.5) for

different regimes and general dataset X . Furthermore, we analyze spectral properties of weight

matrices in (1.1.1) and neural network kernel matrices in (1.1.4) and (1.1.5) during the training
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processes of neural network functions. We summarize the main contribution of this thesis below.

Global law for the linear-width regime in Chapter 2.

First, we considered the linear-width (proportional) regime where all the widths are

scaled with the sample size n, i.e. n/dℓ → γℓ. In Chapter 2, we prove the limiting spectral

distribution of CKL can be obtained by a recursive sequence of deformed Marčenko-Pastur

distributions µℓ = ρMP
γℓ

⊠ ((1− b2
σ )+ b2

σ µℓ−1) where bσ = Eξ∼N (0,1)[σ
′(ξ )] and ρMP

γℓ
is the

Marčenko-Pastur distribution with aspect ratio γℓ, for 1 ≤ ℓ ≤ L. Here µ0 is the limiting law

of the initial data matrix X⊤X . For this model, we proved the limiting spectrum of NTK is a

linear combination of limiting spectra of CKℓ for all 1 ≤ ℓ≤ L. Our analysis shows how spectra

propagate through multiple layers of a random neural network under the linear-width regime. The

dataset we considered is very general with only some approximate orthogonality; for example,

the CIFAR-10 image dataset can be covered in this case. Moreover, our proofs provide new

techniques to extend the analysis of a single hidden layer to multi-layer networks and deeper

NTKs, in a systematic and recursive way.

Spike analysis for linear-width regime in Chapter 3.

Following the global law results in Chapter 2, we studied the outlier eigenvalues in CKl

when the dataset X has some spikes that often capture the low-dimensional signal structure of

the learning problem. Following the setup of Chapter 2, we consider the CK matrix defined by

(1.1.4) in an L-layer fully connected NN at random initialization under the linear-width regime.

Given spiked input data, we compute the magnitude of the eigenvalues in CKℓ outside the bulk

distribution µℓ and the alignments between the corresponding CK eigenvectors with those of the

input data, across network depth 1 ≤ ℓ≤ L.

To quantify these spike eigenvalues in CKℓ, we develop a new result of the signal

eigenvalues and eigenvectors of spiked covariance matrices with arbitrary and possibly nonlinear

dependence across features, showing a “universality” with the quantitative spectral properties of

linear spiked covariance models established by [BY12]. We prove a deterministic equivalent for
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the Stieltjes transform and resolvent for any spectral argument z separated from the support of

the limit spectral measure, extending recent results for spectral arguments bounded away from

the positive real line [Cho22, Cho23, SCDL23]. Using this, we characterize the BBP-type phase

transition [BAP05] and first-order limits of the eigenvalues and eigenvector alignments in the

proportional asymptotics regime, for spike eigenvalues of bounded size.

Global law for the ultra-wide regime in Chapter 4.

In Chapter 4, we focus on the ultra-wide regime for L = 1, where the width d1 of the

first layer is much larger than the sample size n. Under similar assumptions on X as [FW20],

we showed that as d1/n → ∞ and n → ∞, a deformed semicircle law µs ⊠ ((1−b2
σ )+b2

σ ·µ0)

emerges for both normalized CK and NTK, where µs is a semicircular distribution. In the

proof, we first established necessary random matrix results for generalized sample covariance

matrices with some dependency and a nonlinear Hanson-Wright inequality that is suitable for

neural networks with random weights and Lipschitz activation functions. We also demonstrated

non-asymptotic concentrations of CK and NTK around their limiting kernels in the spectral

norm, along with sharper lower bounds on their smallest eigenvalues, which are useful in deep

learning theory [DLL+19a, OS20, MZ20, BMR21]. As an application, we showed that random

feature regression induced by CK and NTK achieves the same asymptotic performance as its

limiting kernel regression under the ultra-wide regime. This allows us to calculate the precise

asymptotic training and test errors for random feature regression using the corresponding kernel.

Empirical and theoretical analysis of trained weight and kernel matrices in Chapter 5.

Going beyond the random initialization of NNs, we study the spectral properties of NNs

in (1.1.1) with L = 1 after certain training processes under the linear-width regime, empirically

and theoretically, respectively.

Empirically, we show that the spectra of the weight matrix, CK, and NTK are invariant

when trained by gradient descent for small constant learning rates. We demonstrate similar

characteristics when training with stochastic gradient descent with small learning rates. When the
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learning rate is large, we exhibit the emergence of an outlier whose corresponding eigenvector is

aligned with the training data structure. We also show that, where a lower test error and feature

learning emerge after adaptive gradient training, both weight and kernel matrices exhibit heavy

tail behavior. Simple examples are provided to empirically explain when heavy tails can have

better generalizations. We exhibit different spectral properties such as invariant bulk, spike, and

heavy-tailed distribution from a two-layer neural network using different training strategies, and

then correlate them to the feature learning. Analogous phenomena also appear when we train

conventional neural networks with real-world data. We conclude that monitoring the evolution

of the spectra during training is an essential step toward understanding the training dynamics

and feature learning.

Theoretically, we prove the invariance of the bulk spectra for both CK and NTK when

the NN is trained by gradient descent for small constant learning rates. However, these invariant

spectra impede the NN from learning informative features from the dataset during the training

process. Therefore, we further investigate the phenomenon of emergence of an outlier we

empirically observed. With proper scaling of NN and learning rate in [BES+22], we prove

the feature learning of NN, where the first-layer weights in a two-layer NN are optimized by

gradient descent, and the learned weight matrix exhibits a rank-one spiked structure. Applying

the spiked sample covariance result in Chapter 3, we characterize the spiked eigenstructure of

the corresponding CK matrix for independent test data, and the alignment of spike eigenvectors

with the test labels. This provides a quantitative description of how gradient descent improves

the NN representation.

1.4 Notation

Let [n] = {i = 1, . . . ,n} for any n ∈ N. We use tr(A) = 1
n ∑i Aii as the normalized trace of

a matrix A ∈ Rn×n and Tr(A) = ∑i Aii. Denote vectors by lowercase boldface. Throughout this

thesis, vvv∗ and M∗ denote the conjugate transpose, ∥ ·∥ denotes the ℓ2 norm for vectors (Euclidean
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norm), ℓ2 → ℓ2 is the operator norm for matrices, i.e. ∥M∥= supvvv∈Cn:∥vvv∥=1 ∥Mvvv∥, while ∥ · ∥F

is the Frobenius norm, i.e. ∥M∥F = (TrM∗M)1/2 = (∑α,β |Mαβ |2)1/2. We define the entry-wise

2-∞ matrix norm as

∥M∥2,∞ := max
1≤i≤N

∥mi∥,

for any matrix M ∈ RN×d with the i-th row mi ∈ Rd and 1 ≤ i ≤ N. We denote ∥ · ∥∞ as the ℓ∞

norm for vectors. Note that we have

| trM| ≤ ∥M∥ ≤ ∥M∥F , ∥M∥F ≤
√

n∥M∥, | trAB| ≤ n−1∥A∥F∥B∥F , (1.4.1)

for any matrices M,A,B ∈ Rn×n. Denote that A⊙B is the Hadamard product of two matrices,

i.e., (A⊙B)i j = Ai jBi j for any i, j ∈ [n]. Given any vector vvv, diag(vvv) is a diagonal matrix where

the main diagonal elements are given by vvv. λmin(A) and λmax(A) are the smallest and largest

eigenvalues of any Hermitian matrix A, respectively. smax(A) is the largest singular value of any

matrix A. Let IIIn be the n×n identity matrix. For simplicity, we may ignore the dimension n and

denote III as the identity matrix. We will also use Id to denote the identity matrix.

Let Ewww[·] and Varwww[·] be the expectation and variance only with respect to random vector

www. Also, let od,P(·) represent little-o in probability as d → ∞. For a probability measure µ , its

support is the closed set

supp(µ) = {x ∈ R : µ(O)> 0 for any open neighborhood O ∋ x}.

We write dist(x,A) = inf{|x− y| : y ∈ A} and define the ε-neighborhood

supp(µ)+(−ε,ε) = {x ∈ R : dist(x,supp(µ))< ε}.

We write δx for the probability measure given by a point mass at x ∈ R, and the linear transfor-

mation a⊗µ ⊕b for the law of aX+b when X∼ µ and a,b ∈ R.
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Chapter 2

Deformed Marčenko-Pastur Law for
Linear-Width Multi-Layer NNs

In this Chapter, we apply techniques of random matrix theory to derive an exact asymp-

totic characterization of the eigenvalue distributions of the CK and NTK at random initialization,

in a multi-layer feedforward network architecture. We study a “linear-width” asymptotic regime,

where each hidden layer has a width proportional to the training sample size. We impose an

assumption of approximate pairwise orthogonality for the training samples, which encompasses

general settings of independent samples that need not have independent entries.

We show that the eigenvalue distributions for both the CK and the NTK converge to

deterministic limits, depending on the limiting eigenvalue distribution of the training data. The

limit distribution for the CK at each intermediate hidden layer is a Marčenko-Pastur map of a

linear transformation of that of the previous layer. The NTK can be approximated by a linear

combination of CK matrices, and its limiting eigenvalue distribution can be described by a

recursively defined sequence of fixed point equations that extend this Marčenko-Pastur map. We

demonstrate the agreement of these asymptotic limits with the observed spectra on both synthetic

and CIFAR-10 training data of moderate size.

In this linear-width asymptotic regime, feature learning occurs, and both the CK and NTK

evolve over training. Although our theory pertains only to their spectra at random initialization

of the weights, we conclude with an empirical examination of their spectral evolutions during
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training, on simple examples of learning a single neuron and learning a binary classifier for

two classes in CIFAR-10. In these examples, the bulk eigenvalue distributions of the CK and

NTK undergo elongations, and isolated principal components emerge that are highly predictive

of the training labels. Recent theoretical work has studied the evolution of the NTK in an

entrywise sense [HY19, DGA20], and we believe it is an interesting open question to translate

this understanding to a more spectral perspective.

2.1 Related Work

Many properties of the CK and NTK have been established in the limit of infinite

width and fixed sample size n. In this limit, both the CK [Nea95, Wil97, DFS16, LBN+18,

MHR+18] and the NTK [JGH18, LXS+19, Yan19] at random initialization converge to fixed

n× n kernel matrices. The associated random features regression models converge to kernel

linear regression in the RKHS of these limit kernels. Furthermore, network training occurs

in the lazy regime [COB19], where the NTK remains constant throughout training [JGH18,

DZPS19a, DLL+19b, AZLS19, LXS+19, ADH+19b]. Spectral properties of the CK, NTK, and

Hessian matrix of the training loss have been previously studied in this infinite-width limit in

[PLR+16, SEG+17, XPS19, KAA19, GSd+19, JGH19]. Limitations of lazy training and these

equivalent kernel regression models have been studied theoretically and empirically in [COB19,

ADH+19b, YS19b, GMMM19, GMMM21, LRZ19], suggesting that trained neural networks of

practical width are not fully described by this type of infinite-width kernel equivalence. The

asymptotic behavior in the linear-width regime is different from the infinite-width regime: For

example, for a linear activation σ(x) = x, the infinite-width limit of the CK for random weights

is the input Gram matrix X⊤X , whereas its limit spectrum under linear-width asymptotics has an

additional noise component from iterating the Marčenko-Pastur map.

Under linear-width asymptotics, the limit CK spectrum for one hidden layer was char-

acterized in [PW17] for training data with i.i.d. Gaussian entries. For activations satisfying
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Eξ∼N (0,1)[σ
′(ξ )] = 0, [PW17] conjectured that this limit is a Marčenko-Pastur law also in

multi-layer networks, and this was proven under a subgaussian assumption as part of the results

of [BP21]. [LLC18] studied the one-hidden-layer CK with general training data, and [LC18b]

specialized this to Gaussian mixture models. These works [LLC18, LC18b] showed that the

limit spectrum is a Marčenko-Pastur map of the inter-neuron covariance. We build on this insight

by analyzing this covariance across multiple layers, under approximate orthogonality of the

training samples. This orthogonality condition is similar to that of [ALP22], which recently

studied the one-hidden-layer CK with a bias term. This condition is also more general than the

assumption of i.i.d. entries, and [FW20] describes the reduction to the one-hidden-layer result of

[PW17] for i.i.d. Gaussian inputs, as this reduction is not immediately clear. [Péc19] provides

another form of the limit distribution in [PW17], which is equivalent to our form via the relation

described in [BG10].

The limit NTK spectrum for a one-hidden-layer network with i.i.d. Gaussian inputs was

recently characterized in parallel work of [AP20]. In particular, [AP20] applied the same idea as

in Lemma 7 below to study the Hadamard product arising in the NTK. [PB17, PW18] previously

studied the equivalent spectrum of a sample covariance matrix derived from the network Jacobian,

which is one of two components of the Hessian matrix of the training loss, in a slightly different

setting and also for one hidden layer.

The spectra of the kernel matrices X⊤X that we study are equivalent (up to the addi-

tion/removal of 0’s) to the spectra of the sample covariance matrices in linear regression using the

features X . As developed in a line of recent literature including [Dic16, PW17, DW18, LLC18,

LC18a, HMRT22, MM22, AP20, dRBK20], this spectrum and the associated Stieltjes transform

and resolvent are closely related to the training and generalization errors in this linear regression

model. These works have collectively provided an asymptotic understanding of training and

generalization errors for random features regression models derived from the CK and NTK of

one-hidden-layer neural networks, and related qualitative phenomena of double and multiple

descent in the generalization error curves.
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2.2 Main Results

2.2.1 Additional Notation and Assumptions

In this Chapter, we use Greek indices α , β , etc. for samples in {1, . . . ,n}, and Roman

indices i, j, etc. for neurons in {1, . . . ,d}. For a matrix X ∈ Rd×n, we denote by xα its α th

column and by x⊤i its ith row.

Definition 4. Let ε,B > 0. A matrix X ∈ Rd×n is (ε,B)-orthonormal if its columns satisfy, for

every α ̸= β ∈ {1, . . . ,n},

∣∣∥xα∥2 −1
∣∣≤ ε,

∣∣x⊤α xβ

∣∣≤ ε, ∥X∥ ≤ B,
n

∑
α=1

(∥xα∥2 −1)2 ≤ B2.

Assumption 1. The number of layers L ≥ 1 is fixed, and n,d0,d1, . . . ,dL → ∞ with n/dℓ → γℓ

for constants γℓ ∈ (0,∞) and each ℓ= 1,2, . . . ,L, such that

(a) The weights θ = (vec(W1), . . . ,vec(WL),www) are i.i.d. and distributed as N (0,1).

(b) The activation σ(x) is twice differentiable, with supx∈R |σ ′(x)|, |σ ′′(x)| ≤ λσ for some

λσ < ∞. For ξ ∼ N (0,1), we have E[σ(ξ )] = 0 and E[σ2(ξ )] = 1.

(c) The input X ∈ Rd0×n is (εn,B)-orthonormal in the sense of Definition 4, where B is a

constant, and εnn1/4 → 0 as n → ∞.

(d) As n → ∞, lim specX⊤X = µ0 for a probability distribution µ0 on [0,∞).

Part (c) quantifies our assumption of approximate pairwise orthogonality of the training

samples. Although not completely general, it encompasses many settings of independent samples

with input dimension d0 ≍ n, including:

• Gaussian inputs xα ∼ N (0,Σ), for any Σ satisfying TrΣ = 1 and ∥Σ∥≲ 1/n.

• Inputs xα drawn from certain multi-class Gaussian mixture models, in the high-dimensional

asymptotic regimes that were studied in [CBG16, LLC18, LC18b, LC18a, LC19].
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• Inputs that may be expressed as
√

d0 ·xα = f (zα), where zα ∈Rm has independent entries

satisfying a log-Sobolev inequality, and f : Rm → Rd0 is any Lipschitz function.

In particular, the limit spectral law µ0 in Assumption 1(d) can be very different from the

Marčenko-Pastur spectrum that would correspond to X having i.i.d. entries. This approximate

orthogonality is implied by the following more technical convex concentration property, which

is discussed further in [VW15, Ada15]. We prove this result in Section 2.3.

Proposition 5. Let X = (x1, . . . ,xn) ∈ Rd0×n, where x1, . . . ,xn are independent training samples

satisfying E[xα ] = 0 and E[∥xα∥2] = 1. Suppose, for some constant c0 > 0, that d0 ≥ c0n, and

each vector
√

d0 ·xα satisfies the convex concentration property

P
[∣∣ϕ(√d0 ·xα)−Eϕ(

√
d0 ·xα)

∣∣≥ t
]
≤ 2e−c0t2

for every t > 0 and every 1-Lipschitz convex function ϕ : Rd0 → R. Then for any k > 0, with

probability 1−n−k, X is (
√

C logn
d0

,B)-orthonormal for some C,B > 0 depending only on c0,k.

In Assumptions 1(a) and (b), the scaling of θ and the conditions E[σ(ξ )] = 0 and

E[σ2(ξ )] = 1, together with the parametrization (1.1.1), ensure that all pre-activations have

approximate mean 0 and variance 1. This may be achieved in practice by batch normalization

[IS15]. For ξ ∼ N (0,1), we define the following constants associated to σ(x):

bσ = E[σ ′(ξ )], aσ = E[σ ′(ξ )2], qℓ = (b2
σ )

L−ℓ, rℓ = aL−ℓ
σ , r+ =

L−1

∑
ℓ=0

rℓ−qℓ. (2.2.1)

We verify in Proposition 11 that under Assumption 1(b), we have b2
σ ≤ 1 ≤ aσ . These parameters

in (2.2.1) related to activation function σ will be employed to characterize the limiting spectra of

empirical CK and NTK matrices in the following sections.

21



2.2.2 Spectrum of the Conjugate Kernel

Recall the Marčenko-Pastur map (1.2.2). Let µ1,µ2,µ3, . . . be the sequence of probability

distributions on [0,∞) defined recursively by

µℓ = ρ
MP
γℓ

⊠
(
(1−b2

σ )⊕b2
σ ⊗µℓ−1

)
. (2.2.2)

Here, µ0 is the input limit spectrum in Assumption 1(d), bσ is defined in (2.2.1), and (1−b2
σ )⊕

b2
σ ⊗µ denotes the translation and rescaling of µ that is the distribution of (1−b2

σ )+b2
σX when

X∼ µ .

The following theorem shows that these distributions µ1,µ2,µ3, . . . are the asymptotic

limits of the empirical eigenvalue distributions of the CK across the layers. Thus, the limit

distribution for each layer ℓ is a Marčenko-Pastur map of a translation and rescaling of that of

the preceding layer ℓ−1.

Theorem 6. Suppose Assumption 1 holds, and define µ1, . . . ,µL by (2.2.2). Then (marginally)

for each ℓ= 1, . . . ,L, we have lim specX⊤
ℓ Xℓ = µℓ. In particular,

lim specKKKCK = µL.

Furthermore, ∥KKKCK∥ ≤C a.s. for a constant C > 0 and all large n.

If σ(x) is such that bσ = 0, then each distribution µℓ is simply the Marčenko-Pastur

law ρMP
γℓ

. This special case was previously conjectured in [PW17] and proven in [BP21], for

input data X with i.i.d. entries. Note that for such non-linearities, the limiting CK spectrum

does not depend on the spectrum µ0 of the input data, and furthermore µ1 = . . . = µL if the

layers have the same width d1 = . . .= dL. Implications of this for the network discrimination

ability in classification tasks and for learning performance have been discussed previously in

[CBG16, PW17, LLC18, LC19, ALP22].
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To connect Theorem 6 to our next result on the NTK, let us describe the iteration

(2.2.2) more explicitly using a recursive sequence of fixed point equations derived from the

Marčenko-Pastur equation (1.2.4): Let mℓ(z) be the Stieltjes transform of µℓ, and define

t̃ℓ(z−1,zℓ) = lim
n→∞

1
n

Tr(z−1 Id+zℓX⊤
ℓ Xℓ)

−1 =
1
zℓ

mℓ

(
−z−1

zℓ

)
.

Applying the Marčenko-Pastur equation (1.2.4) to mℓ(−z−1/zℓ), and introducing s̃ℓ(z−1,zℓ) =

[zℓ(1− γℓ+ γℓz−1t̃ℓ(z−1,zℓ))]−1, one may check that (2.2.2) may be written as a pair of equations

t̃ℓ(z−1,zℓ) = t̃ℓ−1

(
z−1 +

1−b2
σ

s̃ℓ(z−1,zℓ)
,

b2
σ

s̃ℓ(z−1,zℓ)

)
, (2.2.3)

s̃ℓ(z−1,zℓ) = (1/zℓ)+ γℓ

(
s̃ℓ(z−1,zℓ)− z−1s̃ℓ(z−1,zℓ)t̃ℓ(z−1,zℓ)

)
, (2.2.4)

where (2.2.4) is a rearrangement of the definition of s̃ℓ. Applying (2.2.3) to substitute t̃ℓ(z−1,zℓ)

in (2.2.4), the equation (2.2.4) is a fixed point equation that defines s̃ℓ in terms of t̃ℓ−1. Then

(2.2.3) defines t̃ℓ in terms of s̃ℓ and t̃ℓ−1. The limit Stieltjes transform for KKKCK is the specialization

mCK(z) = t̃L(−z,1).

2.2.3 Spectrum of the Neural Tangent Kernel

In the neural network model (1.1.1), an application of the chain rule yields an explicit

form for NTK in (1.1.5)

KKKNTK = X⊤
L XL +

L

∑
ℓ=1

(S⊤ℓ Sℓ)⊙ (X⊤
ℓ−1Xℓ−1)

for certain matrices Sℓ ∈ Rdℓ×n, where ⊙ is the Hadamard (entrywise) product. We refer to

Section 2.8.1 for the exact expression; see also [HY19, Eq. (1.7)]. Our spectral analysis of

KKKNTK relies on the following approximation, which shows that the limit spectrum of KKKNTK is

equivalent to a linear combination of the CK matrices X⊤
0 X0, . . . ,X⊤

L XL and Id. We prove this in
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Section 2.8.1.

Lemma 7. Under Assumption 1, letting r+ and qℓ be as defined in (2.2.1),

lim specKKKNTK = lim spec
(

r+ Id+X⊤
L XL +

L−1

∑
ℓ=0

qℓX⊤
ℓ Xℓ

)
.

By this lemma, if bσ = 0, then q0 = . . . = qL−1 = 0 and the limit spectrum of KKKNTK

reduces to the limit spectrum of r+ Id+X⊤
L XL which is a translation of ρMP

γL
described in Theorem

6. In the following, Thus we assume that bσ ̸= 0. Our next result provides an analytic description

of the limit spectrum of KKKNTK, by extending (2.2.3) and (2.2.4) to characterize the trace of

rational functions of X⊤
0 X0, . . . ,X⊤

L XL and Id.

Denote the closed lower-half complex plane with 0 removed as C∗ = C− \ {0}. For

ℓ= 0,1,2, . . ., we define recursively two sequences of functions

tℓ : (C−×Rℓ×C∗)×Cℓ+2 → C, (z,www) 7→ tℓ(z,www),

sℓ : C−×Rℓ×C∗ → C+, z 7→ sℓ(z).

where z = (z−1,z0, . . . ,zℓ) ∈ C−×Rℓ×C∗ and www = (w−1,w0, . . . ,wℓ) ∈ Cℓ+2. We will define

these functions such that tℓ(z,www) will be the value of

lim
n→∞

n−1 Tr(z−1 Id+z0X⊤
0 X0 + . . .+ zℓX⊤

ℓ Xℓ)
−1(w−1 Id+w0X⊤

0 X0 + . . .+wℓX⊤
ℓ Xℓ).

For ℓ= 0, we define the first function t0 by

t0
(
(z−1,z0),(w−1,w0)

)
=
∫ w−1 +w0x

z−1 + z0x
dµ0(x) (2.2.5)
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For ℓ≥ 1, we then define the functions sℓ and tℓ recursively by

sℓ(z) = (1/zℓ)+ γℓtℓ−1
(
zprev(sℓ(z),z), (1−b2

σ ,0, . . . ,0,b
2
σ )
)
, (2.2.6)

tℓ(z,www) = (wℓ/zℓ)+ tℓ−1
(
zprev(sℓ(z),z), wwwprev

)
(2.2.7)

where we write as shorthand

zprev(sℓ(z),z)≡
(

z−1 +
1−b2

σ

sℓ(z)
,z0, . . . ,zℓ−2,zℓ−1 +

b2
σ

sℓ(z)

)
∈ C−×Rℓ−1 ×C∗, (2.2.8)

wwwprev ≡ (w−1, . . . ,wℓ−1)− (wℓ/zℓ) · (z−1, . . . ,zℓ−1) ∈ Cℓ+1. (2.2.9)

Proposition 8. Suppose bσ ̸= 0. For each ℓ≥ 1 and any z ∈ C−×Rℓ×C∗, there is a unique

solution sℓ(z) ∈ C+ to the fixed point equation (2.2.6).

Hence, (2.2.6) defines the function sℓ in terms of the function tℓ−1, and this is then used

in (2.2.7) to define tℓ. This is illustrated diagrammatically as

t0 t1 t2 · · ·

s1 s2 s3 · · ·

Specializing the function tL for the last layer L to the values (z−1,z0, . . . ,zL−1,zL) =

(r+,q0, . . . ,qL−1,1) and (w−1,w0, . . . ,wL) = (1,0, . . . ,0), we obtain an analytic description for

the limit spectrum of KKKNTK via its Stieltjes transform.

Theorem 9. Suppose bσ ̸= 0. Under Assumption 1, for any fixed values z−1,z0, . . . ,zL ∈ R

where zL ̸= 0, we have lim spec(z−1 Id+z0X⊤
0 X0+ . . .+ zLX⊤

L XL) = ν where ν is the probability

distribution with Stieltjes transform mν(z) = tL((−z+ z−1,z0, . . . ,zL),(1,0, . . . ,0)).
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In particular, lim specKKKNTK is the probability distribution with Stieltjes transform

mNTK(z) = tL
(
(−z+ r+,q0, . . . ,qL−1,1),(1,0, . . . ,0)

)
.

Furthermore, ∥KKKNTK∥ ≤C a.s. for a constant C > 0 and all large n.

We remark that Theorem 9 encompasses the previous result in Theorem 6 for KKKCK =

X⊤
L XL, by specializing to (z0, . . . ,zL−1,zL) = (0, . . . ,0,1). Under this specialization,

sℓ(z−1,0, . . . ,0,zℓ) = s̃ℓ(z−1,zℓ),

tℓ((z−1,0, . . . ,0,zℓ),(1,0, . . . ,0)) = t̃ℓ(z−1,zℓ),

and (2.2.6) and (2.2.7) reduce to (2.2.3) and (2.2.4), respectively.

2.2.4 Multi-dimensional Outputs and Rescaled Parametrizations

Theorem 9 pertains to a network with scalar outputs, under the “NTK-parametrization”

of network weights in (1.1.1). As neural network models used in practice often have multi-

dimensional outputs and may be parametrized differently for backpropagation, we state here the

extension of the preceding result to a network with k-dimensional output and a general scaling

of the weights.

Consider the model

fθ (x) =W⊤
L+1

1√
dL

σ

(
WL

1√
dL−1

σ

(
. . .

1√
d2

σ

(
W2

1√
d1

σ(W1x)
)))

∈ Rk (2.2.10)

where W⊤
L+1 ∈ Rk×dL . We write the coordinates of fθ as ( f 1

θ
, . . . , f k

θ
), and the vectorized output

for all training samples X ∈ Rd0×n as fθ (X) = ( f 1
θ
(X), . . . , f k

θ
(X)) ∈ Rnk. We consider the NTK

KKKNTK =
L+1

∑
ℓ=1

τℓ

(
∇Wℓ

fθ (X)
)⊤(

∇Wℓ
fθ (X)

)
∈ Rnk×nk. (2.2.11)
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For τ1 = . . . = τL+1 = 1, this is a flattening of the NTK defined in [JGH18], and we recall

briefly its derivation from gradient-flow training in Section 2.9.1. We consider general constants

τ1, . . . ,τL+1 > 0 to allow for a different learning rate for each weight matrix Wℓ, which may arise

from backpropagation in the model (2.2.10) using a parametrization with different scalings of

the weights.

Theorem 10. Fix any k ≥ 1. Suppose Assumption 1 holds, and bσ ̸= 0. Then ∥KKKNTK∥ ≤ C

a.s. for a constant C > 0 and all large n, and lim specKKKNTK is the probability distribution with

Stieltjes transform

mNTK(z) = tL
(
(−z+ τ · r+, τ1q0, . . . ,τLqL−1,τL+1),(1,0, . . . ,0)

)
, τ · r+ ≡

L−1

∑
ℓ=0

τℓ+1(rℓ−qℓ).

2.3 Proof of Proposition 5

We prove Proposition 5. For convenience, in this section, we denote the input dimension

d0 simply as d, and we denote the rescaled input by X̃ =
√

d X , with columns x̃α =
√

d ·xα .

Bound for ∥x̃α∥2: Note that E[∥x̃α∥2] = d. Applying the convex concentration property

and [Ada15, Theorem 2.5] with A = Id, we have for any t > 0 that

P
[∣∣∥x̃α∥2 −d

∣∣> t
]
≤ 2exp

(
−cmin

(
t2

d
, t
))

(2.3.1)

for a constant c depending only on c0. Applying this for t =
√

Kd logn and a union bound, with

probability 1−2ne−cK logn,

∣∣∣∥x̃α∥2 −d
∣∣∣≤√Kd logn for all α ∈ [n]. (2.3.2)

Rescaling, this shows |∥xα∥2 −1| ≤
√

(K logn)/d.

Bound for x̃⊤α x̃β : Since x̃α and x̃β are independent, conditional on x̃β , we have E[x̃⊤α x̃β |

x̃β ] = 0, and the map x̃α 7→ x̃⊤α x̃β is convex and ∥x̃β∥-Lipschitz. Then the convex concentration
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property implies, for any t > 0,

P
[
|x̃⊤α x̃β |> t

∣∣∣x̃β

]
≤ 2e−c0t2/∥x̃β ∥2

.

On the event (2.3.2), applying this for t =
√

Kd logn, this probability is at most 2e−cK logn.

Taking a union bound, with probability 1−2n2e−cK logn,

∣∣∣x̃⊤α x̃β

∣∣∣≤√Kd logn for all α ̸= β ∈ [n].

Rescaling, this shows |x⊤α xβ | ≤
√

(K logn)/d.

Bound for ∥X̃∥: Fix any unit vector vvv = (v1, . . . ,vn) ∈ Rn. By [KR19, Lemma C.11],

the random vector X̃vvv also satisfies the convex concentration property, with a modified constant

c′0. Note that E[∥X̃vvv∥2] = d∥vvv∥2 = d. Then, as in (2.3.1), we have

P
[
|∥X̃vvv∥2 −d|> t

]
≤ 2exp

(
−cmin

(
t2

d
, t
))

.

Applying this with t = (B2/4−1)d, and taking a union bound over a 1/2-net N of the unit ball

{vvv ∈ Rn : ∥vvv∥= 1} with cardinality 5n, we have with probability at least 1−5n ·2e−cB2d that

∥X̃vvv∥ ≤ (B/2)
√

d for all vvv ∈ N.

Since

∥X̃∥= sup
vvv:∥vvv∥=1

∥X̃vvv∥ ≤ sup
vvv∈N

∥X̃vvv∥+∥X̃∥/2,

we have ∥X̃∥ ≤ B
√

d on this event. Rescaling, this shows ∥X∥ ≤ B.
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Bound for ∑
n
α=1(∥x̃α∥2 − d)2: Define z = (z1, . . . ,zn) where zα = ∥x̃α∥2 − d. Fixing

any unit vector vvv = (v1, . . . ,vn) ∈ Rn, let us first bound vvv⊤z: We have

vvv⊤z =
n

∑
α=1

vα(∥x̃α∥2 −d),

which has mean 0. Note that integrating the tail bound (2.3.1) yields the sub-exponential

condition

E
[
exp
(
λ (∥x̃α∥2 −d)

)]
≤ exp(Cdλ

2) for all |λ | ≤ c′

and some constants C,c′ > 0. (See e.g. [BLM13, Theorem 2.3], applied with (v,c) = (C′d,C′)

and a large enough constant C′ > 0.) Then, as x̃1, . . . , x̃n are independent and ∥vvv∥2 = 1, also

E[eλvvv⊤z] = E

[
exp

(
λ

n

∑
α=1

vα(∥x̃α∥2 −d)

)]
≤ exp(Cdλ

2) for all |λ | ≤ c′.

For any t > 0, applying this with λ = min(t/(2Cd),c′) yields the sub-exponential tail bound

P[vvv⊤z ≥ t]≤ e−λ tE[eλvvv⊤z]≤ exp
(
−cmin

(
t2

d
, t
))

.

Now applying this for t = (B/2)d, and again taking a union bound over a 1/2-net N of the unit

ball, we have with probability 1−5n · e−cBd that

vvv⊤z ≤ (B/2)d for all vvv ∈ N.

On this event, we have as above that ∥z∥ ≤ Bd, so ∥z∥2 ≤ B2d2. Rescaling, this shows

∑
n
α=1(∥x̃α∥2 −1)2 ≤ B2.

Applying all of the above bounds for sufficiently large constants K,B > 0, we obtain that

these bounds hold with probability at least 1−n−k, which yields Proposition 5.
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2.4 Overview of Proofs and Preliminary Lemmas

The proofs of Theorems 6, 9, and 10 are contained in the subsequent Appendices 2.5–2.9.

We provide here an outline of the argument.

We will apply induction across the layers ℓ = 1, . . . ,L, analyzing the post-activation

matrix Xℓ of each layer conditional on the previous post-activations X0, . . . ,Xℓ−1 (i.e. with respect

to only the randomness of Wℓ). For the Conjugate Kernel, this will entail analyzing the Stieltjes

transform
1
n

Tr(X⊤
L XL − z Id)−1

conditional on the previous layers. For the Neural Tangent Kernel, given the approximation in

Lemma 7, this will entail analyzing the Stieltjes transform

1
n

Tr(A+X⊤
L XL − z Id)−1

conditional on the previous layers, where A is a linear combination of X⊤
0 X0, . . . ,X⊤

L−1XL−1, and

Id. Note that this matrix A is deterministic conditional on the previous layers.

In Section 2.5, we carry out a non-asymptotic analysis of (ε,B)-orthonormality. In

particular, we show that if the deterministic input X ≡ X0 is (ε,B)-orthonormal, then X1 is

(Cε,CB)-orthonormal with high probability, for a constant C > 0 depending only on λσ . Note

that we require the fourth technical condition

n

∑
α=1

(∥xα∥2 −1)2 ≤ B2

in Definition 4 to ensure that the operator norm ∥X1∥ remains of constant order, as otherwise X1

may have a rank-one component whose norm grows slowly with n. Applying this result condi-

tionally for every layer, Assumption 1 then implies that X0, . . . ,XL are all (ε̃n, B̃)-orthonormal for

modified parameters (ε̃n, B̃) with high probability.
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In Section 2.6, we carry out the analysis of the trace

1
n

Tr(A+αX⊤
1 X1 − z Id)−1

in a single layer, for a deterministic (εn,B)-orthonormal input X0, symmetric matrix A ∈ Rn×n,

and spectral parameters α ∈ C∗ ≡ C− \ 0 and z ∈ C+. We allow α ∈ C∗ (rather than fixing

α = 1), as the subsequent induction argument for the NTK will require this extension. When

A = 0 and α = 1, this reduces to the analysis in [LLC18], and also mirrors the proof of the

Marčenko-Pastur equation (1.2.4). For A ̸= 0, this trace will depend jointly on A and the second-

moment matrix Φ1 ∈ Rn×n for the rows of X1. We derive a fixed point equation in terms of A

and Φ1, which approximates this trace in the n → ∞ limit.

In Section 2.7, we prove Theorem 6 on the CK, by specializing this analysis to the

setting A = 0 and α = 1. The inductive loop is closed via an entrywise approximation of the

second-moment matrix Φℓ in each layer by a linear combination of X⊤
ℓ−1Xℓ−1 and Id in the

previous layer. The main argument for this approximation has been carried out in Section 2.5.

In Section 2.8, we prove Theorem 9 on the NTK. Our analysis reduces the trace of any

linear combination of X⊤
0 X0, . . . ,X⊤

L XL and Id to the trace of a more general rational function

of X⊤
0 X0, . . . ,X⊤

L−1XL−1 and Id in the previous layer. In order to close the inductive loop, we

analyze the trace of such a rational function across layers and show that it may be characterized

by the recursive fixed point equations (2.2.6) and (2.2.7). In Section 2.8, we also establish the

approximation in Lemma 7 and the existence and uniqueness of the fixed point to (2.2.6).

Finally, in Section 2.9, we prove Theorem 10, which is a minor extension of Theorem 9.

Before presenting all the proofs, let us first collect here a few basic results, which we

will use in the subsequent sections.

Proposition 11. Under Assumption 1(b), the constants aσ and bσ in (2.2.1) satisfy

|bσ | ≤ 1 ≤
√

aσ ≤ λσ .
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For a universal constant C > 0, the activation function σ satisfies

|σ(x)| ≤ λσ (|x|+C) for all x ∈ R. (2.4.1)

Proof. It is clear from the definition that aσ ≤ λ 2
σ . By the Gaussian Poincaré inequality,

1 = E[σ(ξ )2] = Var[σ(ξ )]≤ E[σ ′(ξ )2] = aσ .

By Gaussian integration-by-parts and Cauchy-Schwarz,

|bσ |= |E[σ ′(ξ )]|= |E[ξ ·σ(ξ )]| ≤ E[ξ 2]1/2E[σ(ξ )2]1/2 = 1.

We have

|σ(0)| ≤ E[|σ(0)−σ(ξ )|]+E[|σ(ξ )|]≤ λσE[|ξ |]+E[σ(ξ )2]1/2 ≤Cλσ (2.4.2)

(the last inequality applying λσ ≥ 1). Then |σ(x)| ≤ |σ(0)|+λσ |x| ≤ λσ (|x|+C).

Proposition 12. Suppose M =U + iV ∈ Cn×n, where the real and imaginary parts U,V ∈ Rn×n

are symmetric, and V is invertible with either V ⪰ c0 Id or V ⪯−c0 Id for a value c0 > 0. Then

M is invertible, and ∥M−1∥ ≤ 1/c0.

Proof. For any unit vector vvv ∈ Cn,

∥Mvvv∥= ∥Mvvv∥ · ∥vvv∥ ≥ |vvv∗Mvvv|= |vvv∗Uvvv+ i · vvv∗V vvv| ≥ |vvv∗V vvv|,

the last step holding because U,V are real-symmetric so that vvv∗Uvvv and vvv∗V vvv are both real. By

the given assumption on V , we have |vvv∗V vvv| ≥ c0, so ∥Mvvv∥ ≥ c0 for every unit vector vvv ∈ Cn.

Then M is invertible, and ∥M−1∥ ≤ 1/c0.
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Proposition 13. Let M,M̃ ∈ Rn×n be any two symmetric matrices satisfying

1
n
∥M− M̃∥2

F → 0

a.s. as n → ∞. If lim specM = ν for a probability distribution ν on R, then also lim specM̃ = ν .

Proof. For fixed z ∈ C+, let m(z) = tr(M − z Id)−1 and m̃(z) = tr(M̃ − z Id)−1 be the Stieltjes

transforms. Then applying the identity

A−1 −B−1 = A−1(B−A)B−1, (2.4.3)

we may bound their difference by

|m(z)− m̃(z)|2 = 1
n2

∣∣∣Tr[(M− z Id)−1 − (M̃− z Id)−1]
∣∣∣2

=
1
n2

∣∣∣Tr(M− z Id)−1(M̃−M)(M̃− z Id)−1
∣∣∣2

≤ 1
n2∥M̃−M∥2

F∥(M− z Id)−1(M̃− z Id)−1∥2
F

≤ 1
n
∥M̃−M∥2

F∥(M− z Id)−1∥2∥(M̃− z Id)−1∥2

Applying ∥(M − z Id)−1∥ ≤ 1/ Imz by Proposition 12, and similarly for M̃, the given con-

dition shows that m(z)− m̃(z) → 0 a.s., pointwise over z ∈ C+. If lim specM = ν , then

m(z)→mν(z)≡
∫
(x−z)−1dν(x) a.s., and hence also m̃(z)→mν(z) a.s. and lim specM̃ = ν .
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2.5 Propagation of Approximate Pairwise Orthogonality

In this section, we work in the following (non-asymptotic) setting of a single layer:

Consider any deterministic matrix X ∈ Rd×n, let W ∈ Rd×d have i.i.d. N (0,1) entries, and set

XXX =
1√
d

σ(WX) ∈ Rd×n. (2.5.1)

Note that XXX has i.i.d. rows with distribution σ(www⊤X)/
√

d, where www ∼ N (0, Id). Define the

second-moment matrix of XXX by

Φ = E[XXX⊤XXX ] = E[σ(www⊤X)⊤σ(www⊤X)] ∈ Rn×n (2.5.2)

where the expectations are over the standard Gaussian matrix W and standard Gaussian vector www.

Let Φαβ denote the (α,β ) entry of Φ for any α,β ∈ [n]. We show in this section the following

result.

Lemma 14. Suppose X is (ε,B)-orthonormal where ε < 1/λσ . Then for universal constants

C,c> 0, with probability at least 1−2n2e−cdε2 −3e−cn, the matrix XXX remains (ε,B)-orthonormal

with

ε =Cλ
2
σ ε, B =C

(
1+n/d

)
λ

2
σ B.

Corollary 15. Under Assumption 1, there exist parameters (ε̃n, B̃) still satisfying ε̃nn1/4 → 0,

such that a.s. for all large n, every matrix X0, . . . ,XL is (ε̃n, B̃)-orthonormal.

Proof. Note that increasing εn represents a weaker assumption, so we may assume without

loss of generality that εn ≥ n−0.49. Then by Lemma 14, there is a constant C0 ≥ 1 depending

on λσ ,γ1, . . . ,γL, such that if Xℓ−1 is (Cℓ−1
0 εn,Cℓ−1

0 B)-orthonormal, then conditional on this

event, Xℓ is (Cℓ
0εn,Cℓ

0B)-orthonormal with probability at least 1− e−n0.01
for all large n. Thus,

setting ε̃n =CL
0 εn and B̃ =CL

0 B, with probability at least 1−Le−n0.01
, every matrix X0, . . . ,XL is

(ε̃n, B̃)-orthonormal. The almost sure statement then follows from the Borel-Cantelli Lemma.
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In the remainder of this section, we prove Lemma 14. We divide the proof into Lemmas

16, 17, and 18 below, which check the individual requirements for (ε,B)-orthonormality of XXX .

We denote by C,C′,c,c′ > 0 universal constants that may change from instance to instance.

Lemma 16. If X is (ε,B)-orthonormal where ε < 1/λσ , then for universal constants C,c > 0:

(a) For all α ̸= β ∈ [n],

|Φαβ −b2
σ x⊤α xβ | ≤Cλ

2
σ ε

2 (2.5.3)∣∣∣Ewww∼N (0,Id)[σ(www⊤xα)]
∣∣∣≤Cλσ

∣∣∣∥xα∥2 −1
∣∣∣≤Cλσ ε (2.5.4)

|Φαα −1| ≤Cλσ

∣∣∣∥xα∥2 −1
∣∣∣≤Cλσ ε (2.5.5)

(b) With probability at least 1−2n2e−cdε2
, simultaneously for all α ̸= β ∈ [n], the columns of

XXX satisfy ∣∣∥xxxα∥2 −1
∣∣≤Cλ

2
σ ε,

∣∣xxx⊤α xxxβ

∣∣≤Cλ
2
σ ε.

Note that (2.5.3) establishes an approximation of off-diagonal entries for Φ which is

second-order in ε—this will be important in our later arguments which approximate Φ in both

Frobenius norm and operator norm.

Proof of Lemma 16. For part (a), observe that (ζα ,ζβ )≡ (www⊤xα ,www⊤xβ ) is bivariate Gaussian,

with mean 0 and covariance

Σ =

∥xα∥2 x⊤α xβ

x⊤α xβ ∥xβ∥2

= Id+∆

where ∆ is entrywise bounded by ε . Then performing a Gram-Schmidt orthogonalization
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procedure, for some independent standard Gaussian variables ξα ,ξβ ∼ N (0,1), we have

ζα = uαξα , ζβ = uβ ξβ + vβ ξα (2.5.6)

where uα ,uβ > 0 and vβ ∈ R satisfy |uα −1|, |uβ −1|, |vβ | ≤Cε for a universal constant C > 0.

By a Taylor expansion of σ(ζ ) around ζ = ξ , there exists a random variable η between

ζ and ξ such that

σ(ζ ) = σ(ξ )+σ
′(ξ )(ζ −ξ )+

1
2

σ
′′(η)(ζ −ξ )2. (2.5.7)

For α ̸= β , applying this for both ζα and ζβ , noting that the product of leading terms satisfies

E[σ(ξα)σ(ξβ )] = 0, and applying also the bounds |σ ′(x)|, |σ ′′(x)| ≤ λσ where λσ ≥ 1, it is easy

to check that

Φαβ = E[σ(ζα)σ(ζβ )] = E
[
σ(ξα) ·σ ′(ξβ )(ζβ −ξβ )+σ(ξβ ) ·σ ′(ξα)(ζα −ξα)

]
+ remainder

where this remainder has magnitude at most Cλ 2
σ ε2. For the first term, substituting (2.5.6) and

applying independence of ξα and ξβ , we have

E
[
σ(ξα) ·σ ′(ξβ )(ζβ −ξβ )+σ(ξβ ) ·σ ′(ξα)(ζα −ξα)

]
= (uβ −1)E[σ(ξα)] ·E[σ ′(ξβ )ξβ ]+ vβE[σ(ξα)ξα ] ·E[σ ′(ξβ )]

+(uα −1)E[σ(ξβ )] ·E[σ ′(ξα)ξα ].

Applying E[σ(ξ )] = 0 and the integration-by-parts identity E[σ(ξ )ξ ] = E[σ ′(ξ )] = bσ , this

term equals vβ b2
σ . From (2.5.6), we have uαvβ = E[ζαζβ ] = x⊤α xβ . Since |uα − 1| ≤ Cε and

|x⊤α xβ | ≤ ε , this implies |vβ b2
σ −b2

σ x⊤α xβ | ≤Cb2
σ ε2 ≤Cλ 2

σ ε2. Combining these yields (2.5.3).
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Similarly, from a first-order Taylor expansion analogous to (2.5.7),

∣∣∣E[σ(www⊤xα)]
∣∣∣= ∣∣∣E[σ(ζα)]−E[σ(ξα)]

∣∣∣≤Cλσ · |uα −1|,

|Φαα −1|=
∣∣∣E[σ(ζα)

2]−E[σ(ξα)
2]
∣∣∣≤C max

(
λσ · |uα −1|, λ

2
σ · |uα −1|2

)
.

The bounds (2.5.4) and (2.5.5) follows from the observations u2
α =E[ζ 2

α ] = ∥xα∥2 and |uα −1| ≤

|uα −1| · |uα +1|= |u2
α −1| ≤ ε .

For part (b), let www⊤
k be the kth row of W . Then by definition of XXX , for any α,β ∈ [n]

(including α = β ),

xxx⊤α xxxβ =
1
d

d

∑
k=1

σ

(
www⊤

k xα

)
σ

(
www⊤

k xβ

)
.

We next apply Bernstein’s inequality. Denote by ∥ · ∥ψ2 and ∥ · ∥ψ1 the sub-Gaussian and sub-

exponential norms of a random variable. For any deterministic vector x ∈ Rd , the function

www 7→ σ(www⊤x) is λσ∥x∥-Lipschitz. Then for www ∼ N (0, Id) and a universal constant C > 0, we

have by Gaussian concentration-of-measure

∥σ(www⊤xα)−E[σ(www⊤xα)]∥ψ2 ≤Cλσ∥xα∥.

From (2.5.4), |E[σ(www⊤xα)]| ≤Cλσ ε . Thus (recalling that |∥xα∥−1| ≤ ε), we have

∥σ(www⊤xα)∥ψ2 ≤Cλσ

for a constant C > 0, and similarly for xβ . So

∥σ(www⊤xα)σ(www⊤xβ )∥ψ1 ≤ ∥σ(www⊤xα)∥ψ2∥σ(www⊤xβ )∥ψ2 ≤Cλ
2
σ . (2.5.8)

Applying Bernstein’s inequality (see [Ver18, Theorem 2.8.1]), for a universal constant c > 0 and
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any t > 0,

P
[∣∣xxx⊤α xxxβ −E

[
xxx⊤α xxxβ

]∣∣> t
]
≤ 2exp

(
−cd min

(
t2

λ 4
σ

,
t

λ 2
σ

))
.

Applying this for t = λ 2
σ ε and taking a union bound over all α,β ∈ [n], we get

P
[∣∣xxx⊤α xxxβ −E

[
xxx⊤α xxxβ

]∣∣≤ λ
2
σ ε for all α,β ∈ [n]

]
≥ 1−2n2 exp

(
−cd · ε2). (2.5.9)

Since E[xxx⊤α xxxβ ] = Φαβ , part (b) now follows from part (a).

Lemma 17. If X is (ε,B)-orthonormal where ε < 1/λσ , then for universal constants C,c > 0:

(a) ∥Φ∥ ≤Cλ 2
σ B2.

(b) With probability at least 1−2e−cn, ∥XXX∥ ≤C
(

1+
√

n/d
)

λσ B.

Proof. For part (a), define

Σ = E
[
σ(www⊤X)⊤σ(www⊤X)

]
−E[σ(www⊤X)]⊤E[σ(www⊤X)] (2.5.10)

where the first term on the right is Φ. Then

∥Σ∥= sup
vvv:∥vvv∥=1

vvv⊤Σvvv = sup
vvv:∥vvv∥=1

∣∣∣E[(σ(www⊤X)vvv
)2
]
−E

[
σ(www⊤X)vvv

]2∣∣∣= sup
vvv:∥vvv∥=1

Var
[
σ(www⊤X)vvv

]
.

We bound this variance using the Gaussian Poincaré inequality: Let us fix vvv ∈ Rn with ∥vvv∥= 1

and define

F(www) = σ(www⊤X)vvv =
n

∑
α=1

vασ(www⊤xα).

Then, letting uuu ∈ Rn be the vector with entries uα = vασ ′(www⊤xα),

∇F(www) =
n

∑
α=1

vασ
′(www⊤xxxα) · xxxα = XXXuuu, ∥∇F(www)∥ ≤ ∥XXX∥ · ∥uuu∥ ≤ λσ B. (2.5.11)
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Then by the Gaussian Poincaré inequality, Var[F(www)]≤ E[∥∇F(www)∥2]≤ λ 2
σ B2, so ∥Σ∥ ≤ λ 2

σ B2.

In addition, by (2.5.4), the difference between Φ and Σ is a rank-one perturbation controlled by

∥Φ−Σ∥= ∥E[σ(www⊤X)]∥2 =
n

∑
α=1

E[σ(www⊤xα)]
2 ≤Cλ

2
σ

n

∑
α=1

(∥xα∥2 −1)2 ≤Cλ
2
σ B2, (2.5.12)

the last inequality using the final condition of (ε,B)-orthonormality in Definition 4. This

establishes part (a).

For part (b), we apply the concentration result of [Ver10, Eq. (5.26)] for matrices with

independent sub-Gaussian rows. For any fixed unit vector vvv ∈ Rn, recall from (2.5.11) that

F(www) = σ(www⊤X)vvv is λσ B-Lipschitz. Then by Gaussian concentration of measure,

∥F(www)−E[F(www)]∥ψ2 ≤Cλσ B.

We have |E[F(www)]| ≤ ∥E[σ(www⊤X)]∥ ≤ Cλσ B by (2.5.12), so also ∥F(www)∥ψ2 ≤ Cλσ B. This

holds for any unit vector vvv ∈Rn, hence ∥σ(www⊤X)∥ψ2 ≤Cλσ B for the vector sub-Gaussian norm.

Thus,
√

dXXX/(λσ B) has i.i.d. rows whose sub-Gaussian norm is at most a universal constant.

Recalling Φ = E[XXX⊤XXX ] and applying [Ver10, Eq. (5.26)] with A =
√

dXXX/(λσ B), we obtain for

some universal constants C,c > 0 that

P
[
∥XXX⊤XXX −Φ∥> max(δ ,δ 2)∥Φ∥

]
≤ 2e−ct2

, δ =C
√

n/d + t/
√

d.

Note that the complementary event ∥XXX⊤XXX −Φ∥ ≤ max(δ ,δ 2)∥Φ∥ implies

∥XXX∥ ≤
√
(1+max(δ ,δ 2))∥Φ∥ ≤ (1+C′

δ )
√
∥Φ∥

for a constant C′ > 0. Then choosing t =
√

n and applying part (a) yields part (b).

Lemma 18. If X is (ε,B)-orthonormal where ε < 1/λσ , then for universal constants C,c > 0,
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with probability at least 1− e−cn, the columns of XXX satisfy

n

∑
α=1

(∥xxxα∥2 −1)2 ≤C
(

1+n2/d2
)

λ
4
σ B2.

Let us remark that in settings where ε ≫ 1/
√

n, applying Lemma 16(b) to bound each

term (∥xxxα∥2 −1)2 separately would not yield a constant-order bound for this sum. The proof

below performs a more careful analysis of the combined fluctuations of (∥xxxα∥2 −1)2.

Proof. Let z = (z1, . . . ,zn) ∈ Rn and r = (r1, . . . ,rn) ∈ Rn be defined as

zα = ∥xxxα∥2 −E[∥xxxα∥2], rα = E[∥xxxα∥2]−1.

The quantity to be bounded is ∥z+ r∥2. Note that ∥z+ r∥2 ≤ 2∥z∥2 +2∥r∥2. We have

E[∥xxxα∥2] = E

[
1
d

d

∑
i=1

σ(www⊤
i xα)

2

]
= Φαα ,

so applying (2.5.5) from Lemma 16,

∥r∥2 =
n

∑
α=1

(Φαα −1)2 ≤Cλ
2
σ

n

∑
α=1

(∥xα∥2 −1)2 ≤Cλ
2
σ B2. (2.5.13)

Thus it remains to bound ∥z∥2.

Let N be a 1/2-net of the unit ball {www ∈ Rn : ∥www∥= 1}, of cardinality |N | ≤ 5n. Then

∥z∥= sup
www:∥www∥≤1

www⊤z ≤ sup
vvv∈N

vvv⊤z+∥z∥/2,
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so ∥z∥ ≤ 2supvvv∈N vvv⊤z. For each fixed vector vvv = (v1, . . . ,vn) ∈ N , we have

vvv⊤z =
n

∑
α=1

vα · 1
d

d

∑
i=1

(
σ(www⊤

i xα)
2 −E[σ(www⊤

i xα)
2]
)

=
1
d

d

∑
i=1

( n

∑
α=1

(
σ(www⊤

i xα)
2 −E[σ(www⊤

i xα)
2]
)

vα

)
. (2.5.14)

We will bound the sub-exponential norm of each summand i = 1, . . . ,d and apply Bernstein’s

inequality.

For standard normal random vector www ∼ N (0, Id), denote

q ≡ q(www) = (q1, . . . ,qn) = (www⊤x1, . . . ,www⊤xn), F(q) =
n

∑
α=1

(
σ(qα)

2 −E[σ(qα)
2]
)

vα .

Observe that q(www) = X⊤www. Thus we wish to bound the sub-exponential norm of F(q(www)) when

www ∼ N (0, Id). By the Gaussian Sobolev inequality (see [AW15, Eq. (3)]), for any p ≥ 2,

∥F(q(www))∥Lp ≤√
p ·
∥∥∥∥∇wwwF(q(www))∥

∥∥∥
Lp

(2.5.15)

where ∥Y∥Lp = E[|Y |p]1/p denotes the Lp-norm of a random variable (and ∥∇wwwF(q(www))∥ is the

usual ℓ2 vector norm of the gradient of F(q(www)) in www). By the chain rule,

∇wwwF(q(www)) = X ·∇qF(q),

so

∥∇wwwF(q(www))∥2 ≤ ∥X∥2∥∇qF(q)∥2 ≤ B2∥∇qF(q)∥2.

We have (∂/∂qα)F(q) = 2σ(qα)σ
′(qα)vα . Hence,

∥∇qF(q)∥2 =
n

∑
α=1

4σ(qα)
2
σ
′(qα)

2v2
α ≤ 4λ

2
σ

n

∑
α=1

σ(qα)
2v2

α .
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Recalling (2.5.8), we have ∥σ(qα)
2∥ψ1 = ∥σ(www⊤xα)

2∥ψ1 ≤Cλ 2
σ . Then

∥∥∥∥∥ n

∑
α=1

σ(qα)
2v2

α

∥∥∥∥∥
ψ1

≤Cλ
2
σ

n

∑
α=1

v2
α =Cλ

2
σ ,

and, hence, ∥∥∥∥∇wwwF(q(www))∥2
∥∥∥

ψ1
≤Cλ

4
σ B2.

This implies the bound (see [Ver18, Proposition 2.7.1]), for any p ≥ 1,

∥∥∥∥∇wwwF(q(www))∥
∥∥∥2p

L2p
= E

[
∥∇wwwF(q(www))∥2p

]
=
∥∥∥∥∇wwwF(q(www))∥2

∥∥∥p

Lp
≤ (C′

λ
4
σ B2 · p)p

for a universal constant C′ > 0. Thus, applying this to (2.5.15), we obtain for any p ≥ 2

∥F(q(www))∥Lp ≤√
p ·Cλ

2
σ B

√
p =Cλ

2
σ B · p.

Finally, this implies (see again [Ver18, Proposition 2.7.1]) ∥F(q(www))∥ψ1 ≤C′λ 2
σ B for a universal

constant C′ > 0, which is our desired bound on the sub-exponential norm of F(q(www)).

Applying this and Bernstein’s inequality to (2.5.14), for any t > 0,

P[vvv⊤z > t]≤ exp
(
−cd min

(
t2

λ 4
σ B2 ,

t
λ 2

σ B

))
.

Setting

t =C0λ
2
σ B ·max(δ ,δ 2), δ =

√
n/d

for a large enough constant C0 > 0, and taking the union bound over all 5n vectors vvv ∈ N, we get

P[∥z∥> 2t]≤ P
[

sup
vvv∈N

vvv⊤z > t
]
≤ e−cn

for a constant c > 0. Combining with the bound on ∥r∥2 in (2.5.13), we obtain the lemma.
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2.6 Resolvent Analysis for Single Layers

We consider the same setting of a single layer as in the preceding section. Let XXX and Φ

be defined by the deterministic input X ∈ Rd×n and Gaussian matrix W ∈ Rd×d as in (2.5.1) and

(2.5.2), and define the (n-dependent) aspect ratio

γ = n/d.

Consider a deterministic real-symmetric matrix A ∈ Rn×n, and two (possibly n-dependent)

spectral arguments α ∈ C∗ and z ∈ C+, where C∗ = C− \{0}. We study the matrix

A+αXXX⊤XXX − z Id .

We collect here the set of assumptions that we will use in this section.

Assumption 2. There are constants B,C0,c0 > 0 such that

(a) α ∈ C∗ and z ∈ C+, and γ, |α|, |z|, Imz ∈ [c0,C0].

(b) X is (εn,B)-orthonormal, where εn < n−0.01.

(c) A ∈ Rn×n is deterministic and symmetric, satisfying ∥A∥ ≤C0.

(d) W has i.i.d. N (0,1) entries, and σ(x) satisfies Assumption 1(b).

Throughout this section, C,C′,c,c′,n0 > 0 denote constants changing from instance to

instance that may depend on λσ and the above values B,C0,c0.

Proposition 12 ensures that A+αXXX⊤XXX − z Id is invertible. Define the resolvent

R = (A+αXXX⊤XXX − z Id)−1 ∈ Cn×n (2.6.1)
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and the deterministic (n-dependent) parameter

s̄ = α
−1 + γ ·E[trRΦ]. (2.6.2)

The goal of this section is to prove the following result, which approximates this resolvent

R by replacing the random matrix αXXX⊤XXX with a deterministic matrix s̄−1Φ, and provides an

approximate fixed point equation that defines this parameter s̄.

For A = 0 and α = 1, we will verify in Section 2.7 that this result reduces to the

Marčenko-Pastur equation (1.2.4).

Lemma 19. Under Assumption 2, there are constants C,c,c′,n0 > 0 such that for all n ≥ n0,

any deterministic matrix M ∈ Cn×n, and any t ∈ (n−1,c′),

(a) P
[∣∣∣trRM− tr

(
A+ s̄−1

Φ− z Id
)−1

M
∣∣∣> ∥M∥t

]
≤Cne−cnt2

(b) P
[∣∣∣s̄− (α−1 + γ tr

(
A+ s̄−1

Φ− z Id
)−1

Φ
)∣∣∣> t

]
≤Cne−cnt2

2.6.1 Basic Bounds

Proposition 20. Recall the notation in the above section. Under Assumption 2, deterministically

for some constants C,c,n0 > 0 and all n ≥ n0,

∥R∥ ≤C, ∥Φ∥ ≤C, |s̄| ≤C, Im s̄ ≥ c.

Furthermore, with probability at least 1−2e−c′n for a constant c′ > 0,

ImtrRΦ ≥ c.

Proof. We may write A+αXXX⊤XXX − z Id =U + iV where U = A+(Reα)XXX⊤XXX − (Rez) Id and

V = (Imα)XXX⊤XXX⊤ − (Imz) Id. Both U and V are symmetric, and V ⪯ (− Imz) Id because

Imα ≤ 0 and Imz > 0. Then ∥R∥ ≤ 1/ Imz ≤C by Proposition 12.
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The bound ∥Φ∥≤C comes from Lemma 17(a) and the (εn,B)-orthonormality assumption

for X . Then from the definition of s̄ in (2.6.2) and the bounds ∥R∥,∥Φ∥ ≤C, we have also |s̄| ≤C.

For the lower bound for Im s̄ and ImtrRΦ, let us write

trRΦ = tr
(

R+R∗

2

)
Φ+ tr

(
R−R∗

2

)
Φ.

The first trace is real because R+R∗ is Hermitian, so

ImtrRΦ = Imtr
(

R−R∗

2

)
Φ.

Denoting Y = A+αXXX⊤XXX − z Id and applying the identity (2.4.3), we have

R−R∗ = Y−1 − (Y ∗)−1 = Y−1(Y ∗−Y )(Y ∗)−1 = R(Y ∗−Y )R∗.

Then, writing Y =U + iV as above and applying Y ∗−Y =−2iV , we get

ImtrRΦ = Im(−i · trRV R∗
Φ)

= Re
(
−(Imα) · trRXXX⊤XXXR∗

Φ+(Imz) · trRR∗
Φ

)
.

Since trRXXX⊤XXXR∗Φ = trΦ1/2RXXX⊤XXXR∗Φ1/2, where this matrix is positive semi-definite, this trace

is real and non-negative. Similarly, trRR∗Φ is real and non-negative. Then the above yields the

lower bound

ImtrRΦ ≥ Imz · trRR∗
Φ ≥ Imz ·λmin(RR∗) · trΦ,

where λmin(RR∗) is the smallest eigenvalue of RR∗. By (2.5.5) and the condition εn < n−0.01, we

have trΦ ≥ c for a constant c > 0 and large enough n0. Observe that λmin(RR∗) = 1/∥Y∥2, and

∥Y∥ ≤ ∥A∥+ |α| · ∥XXX∥2 + |z|. By Lemma 17(b), with probability 1−2e−c′n, we have ∥XXX∥ ≤C,

so putting this together yields ImtrRΦ ≥ c with this probability. Finally, for the deterministic
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bound Im s̄ ≥ c, we may apply ImtrRΦ ≥ c on the event where ∥XXX∥ ≤C holds, and ImtrRΦ ≥ 0

on the complementary event. Taking an expectation and applying the definition (2.6.2) yields

Im s̄ ≥ c.

2.6.2 Resolvent Approximation

We recall the result of [LLC18, Lemma 1], which establishes a concentration of quadratic

forms in the rows of XXX . The following is its specialization to standard Gaussian matrices W , and

stated in our notation.

Lemma 21 ([LLC18]). Suppose σ(x) is λσ -Lipschitz, and let xxx⊤i be a row of XXX. Then for any

deterministic matrix Y ∈ Rn×n with ∥Y∥ ≤ 1, for some constants C,c > 0 (depending on λσ ),

and for any t > 0,

P
(∣∣∣∣1γ xxx⊤i Y xxxi − trY Φ

∣∣∣∣> t
)
≤C exp

(
− cn
∥X∥2 min

(
t2

t2
0
, t
))

(2.6.3)

where t0 = |σ(0)|+λσ∥X∥
√

1/γ .

Using this result, we establish the following approximation for the resolvent R in (2.6.1).

Lemma 22. Consider any deterministic matrix M ∈ Cn×n, and set

δn = trM− trR
(

A+
1

α−1 + γ trRΦ
Φ− z Id

)
M.

Under Assumption 2, there exist constants C,c,c′,n0 > 0 such that for all n ≥ n0 and t ∈ (n−1,c′),

P[|δn|> ∥M∥t]≤Cne−cnt2
.

Proof. By rescaling M, we may assume that ∥M∥ ≤ 1. We have Id = R(A+αXXX⊤XXX − z Id) =

RA+αRXXX⊤XXX − zR. Writing XXX⊤XXX = ∑i xxxixxx⊤i (where xxx⊤i is the ith row of XXX), multiplying by M,
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and taking the normalized trace tr = n−1 Tr,

trM = trRAM+α trRXXX⊤XXXM− z trRM

= trRAM+
α

n

d

∑
i=1

xxx⊤i MRxxxi − z trRM.

Hence

δn =
α

n

d

∑
i=1

xxx⊤i MRxxxi −
trRΦM

α−1 + γ trRΦ
.

Let us define the leave-one-out resolvent, for each 1 ≤ i ≤ d,

R(i) =

(
A+α ∑

j: j ̸=i
xxx jxxx⊤j − z Id

)−1

.

We may then decompose δn as δn = J1 + γJ2 where (recalling γ = n/d)

J1 =
1
n

d

∑
i=1

(
αxxx⊤i MRxxxi −

γ trR(i)ΦM
α−1 + γ trR(i)Φ

)
,

J2 =
1
n

d

∑
i=1

(
trR(i)ΦM

α−1 + γ trR(i)Φ
− trRΦM

α−1 + γ trRΦ

)
.

Let us denote these summands as

J(i)1 = αxxx⊤i MRxxxi −
γ trR(i)ΦM

α−1 + γ trR(i)Φ
and J(i)2 =

trR(i)ΦM
α−1 + γ trR(i)Φ

− trRΦM
α−1 + γ trRΦ

.

Bound for J1. Momentarily fix the index i∈ {1, . . . ,d}. Applying the Sherman-Morrison-

Woodbury identity, we have

R = R(i)− αR(i)xxxixxx⊤i R(i)

1+αxxx⊤i R(i)xxxi
. (2.6.4)

Then, introducing A1 = xxx⊤i MR(i)xxxi and A2 = xxx⊤i R(i)xxxi,

αxxx⊤i MRxxxi = αA1 −
α2A1A2

1+αA2
=

A1

α−1 +A2
.
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Recall that the rows of XXX are i.i.d. Let XXX (i) be the matrix XXX with the ith row xxxi removed, and let

Exxxi[·] be the expectation over only xxxi (i.e. conditional on XXX (i)). Observe that R(i) is a function of

XXX (i). Applying Proposition 20 with XXX (i) in place of XXX , we see that ∥R(i)∥ and ∥MR(i)∥ are both

bounded by a constant. Then applying Lemma 21 conditional on XXX (i), and recalling the bound

(2.4.1) for σ(0), there are constants C,c > 0 for which

P[|Ak −Exxxi[Ak]|> t]≤Ce−cnmin(t2,t) for k = 1,2.

Note that

Exxxi[A1] = TrMR(i)E[xxxixxx⊤i ] =
1
d

TrMR(i)
Φ = γ trR(i)

ΦM.

Similarly, Exxxi[A2] = γ trR(i)Φ, so

J(i)1 =
A1

α−1 +A2
− Exxxi[A1]

α−1 +Exxxi[A2]
.

Applying Proposition 20, we have for some constants C,c,c′ > 0, on an event E (XXX (i)) of

probability 1−2e−c′n, that

|Exxxi[A1]| ≤C, |α−1 +Exxxi[A2]| ≥ Im(α−1 +Exxxi[A2])≥ c.

Then, for any t such that t < c/2, on the event where |A1 −Exxxi[A1]| ≤ t, |A2 −Exxxi[A2]| ≤ t, and

E (XXX (i)) all hold,

∣∣∣J(i)1

∣∣∣≤ |A1 −Exxxi[A1]|
|α−1 +A2|

+ |Exxxi[A1]| ·
|A2 −Exxxi[A2]|

|α−1 +A2| · |α−1 +Exxxi[A2]|
≤Ct. (2.6.5)

Thus, for t < c′ and a sufficiently small constant c′ > 0, we have P[|J(i)1 | ≥ t]≤Ce−cnt2
. Applying

a union bound over i ∈ {1, . . . ,d}, this yields P[|J1| ≥ t]≤Cne−cnt2
.
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Bound for J2. Applying the identity (2.4.3),

R(i)−R = R(i)(R−1 − (R(i))−1)R = αR(i)xxxixxx⊤i R.

Then, applying also the bounds ∥R∥,∥R(i)∥ ≤C from Proposition 20,

| tr(R(i)−R)ΦM|= 1
n
|αxxx⊤i RΦMR(i)xxxi| ≤

C∥XXX∥2

n
.

Applying Lemma 17(b), with probability 1−2e−cn, this is at most C/n for every i ∈ {1, . . . ,d}.

Similarly, | tr(R(i)−R)Φ| ≤ C/n with this probability. Applying again | trRΦM| ≤ C, |α−1 +

γ trRΦ| ≥ c, and an argument similar to (2.6.5), we obtain |J(i)2 | ≤C′/n for a constant C′ > 0.

Taking a union bound over i ∈ {1, . . . ,d}, this yields P[|J2|>C/n]≤C′ne−cn. Combining these

bounds for J1 and J2, choosing t > cn−1, and re-adjusting the constants yields the lemma.

2.6.3 Proof of Lemma 19

We now prove Lemma 19 using Lemma 22. Define the random n-dependent parameter

s = α
−1 + γ trRΦ,

so that s̄ = E[s]. The following establishes a concentration of s around s̄.

Lemma 23. Under Assumption 2, for some constants c,n0 > 0, all n ≥ n0, and any t > 0,

P[|s− s̄|> t]≤ 2e−cnt2
.

Proof. Define F(W ) = γ trRΦ, where R and XXX are considered as a function of W . Fix any matri-

ces W,∆ ∈Rd×n where ∥∆∥F = 1, and define Wt =W + t∆. Then, applying ∂R =−R(∂ (R−1))R
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and R = R⊤,

vec(∆)⊤(∇F(W )) =
d
dt

∣∣∣
t=0

F(Wt) =−γ trR
(

d
dt

∣∣∣
t=0

R−1
)

RΦ

=−2γα trR
(

XXX⊤ · d
dt

∣∣∣
t=0

XXX
)

RΦ

=−2γα√
d

trR
(

XXX⊤ ·
(
σ
′(WX)⊙ (∆X)

))
RΦ,

where ⊙ is the Hadamard product, and σ ′ is applied entrywise. Applying Proposition 20,

∣∣∣vec(∆)⊤(∇F(W ))
∣∣∣≤ C√

d
·
∥∥∥RXXX⊤ · (σ ′(WX)⊙ (∆X)) ·R

∥∥∥≤ C′
√

d
· ∥RXXX⊤∥ ·∥σ

′(WX)⊙ (∆X)∥.

For the first term,

∥RXXX⊤∥2 =
1
|α|

∥R(αXXX⊤XXX)R∗∥ ≤ 1
|α|

(
∥R(A+αXXX⊤XXX − z Id)R∗∥+∥R(A− z Id)R∗∥

)
≤ 1

|α|
(∥R∥+∥R∥2(∥A∥+ |z|))≤C.

For the second term,

∥σ
′(WX)⊙ (∆X)∥ ≤ ∥σ

′(WX)⊙ (∆X)∥F ≤ λσ∥∆X∥F ≤ λσ∥∆∥F · ∥X∥ ≤C.

Thus |vec(∆)⊤(∇F(W ))| ≤ C/
√

n. This holds for every ∆ such that ∥∆∥F = 1, so F(W ) is

C/
√

n-Lipschitz in W with respect to the Frobenius norm. Then the result follows from the

Gaussian concentration of measure.

To conclude the proof of Lemma 19, we may again assume ∥M∥ ≤ 1 by rescaling M. Set

M̃ =
(
A+ s̄−1

Φ− z Id
)−1

M.
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Note that s̄−1 ∈ C−, so ∥M̃∥ ≤ ∥(A+ s̄−1Φ− z Id)−1∥ ≤C by Proposition 12. Applying Lemma

22 with M̃,

P
[∣∣∣ trM̃− trR

(
A+ s−1

Φ− z Id
)
M̃
∣∣∣> t

]
≤Cne−cnt2

(2.6.6)

for all t ∈ (n−1,c′). Furthermore, applying the definition of M̃,

| trR
(
A+ s−1

Φ− z Id
)
M̃− trRM|=

∣∣∣trR
((

A+ s−1
Φ− z Id

)
−
(
A+ s̄−1

Φ− z Id
))

M̃
∣∣∣

= |s−1 − s̄−1| · | trRΦM̃| ≤C|s−1 − s̄−1|.

Recall that |s̄| ≥ Im s̄ ≥ c. Then, on the event where |s− s̄| ≤ t and t < c/2, we have |s−1− s̄−1| ≤

Ct. Then applying Lemma 23, for some constants c,c′ > 0 and all t ∈ (0,c′),

P
[
| trR

(
A+ s−1

Φ− z Id
)
M̃− trRM|> t

]
≤ 2e−cnt2

.

Combining this with (2.6.6) yields Lemma 19(a). Specializing Lemma 19(a) to M = Φ, we

obtain

P
[∣∣s− (α−1 + γ tr(A+ s̄−1

Φ− z Id)−1
Φ
)∣∣> t

]
≤Cne−cnt2

.

Applying again Lemma 23 to bound |s− s̄|, we obtain Lemma 19(b).

2.7 Analysis for the Conjugate Kernel

Theorem 6 is a special case of Theorem 9, but let us provide here a simpler argument.

Define, for each layer, the n×n matrices

Φℓ = Ewww

[
σ(www⊤Xℓ−1)

⊤
σ(www⊤Xℓ−1)

]
(2.7.1)

Φ̃ℓ = b2
σ X⊤

ℓ−1Xℓ−1 +(1−b2
σ ) Id (2.7.2)
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where Ewww denotes the expectation over only the random vector www ∼ N (0, Id). Here, Φℓ and Φ̃ℓ

are deterministic conditional on Xℓ−1, but are random unconditionally for ℓ≥ 2. For each fixed

ℓ= 1, . . . ,L, we will show that as n → ∞,

lim spec Φℓ = lim spec Φ̃ℓ. (2.7.3)

Conditional on Xℓ−1, the spectral limit of X⊤
ℓ Xℓ was shown in [LLC18] to be a Marčenko-Pastur

map of the spectral limit of Φℓ—we reproduce a short proof below under our assumptions,

by specializing Lemma 19 to α = 1 and A = 0. Combining with (2.7.3) and iterating from

ℓ= 1, . . . ,L yields Theorem 6.

Lemma 24. Under Assumption 1, for each ℓ= 1, . . . ,L, almost surely as n → ∞,

1
n
∥Φℓ− Φ̃ℓ∥2

F → 0.

Proof. By Corollary 15, increasing (εn,B) as needed, we may assume that each matrix X0, . . . ,XL

is (εn,B)-orthonormal. Denote by Φℓ[α,β ] and Φ̃ℓ[α,β ] the (α,β ) entries of these matrices.

Then Lemma 16(a) shows for α ̸= β that

|Φℓ[α,β ]− Φ̃ℓ[α,β ]| ≤Cε
2
n .

For α = β , applying Φ̃ℓ[α,α] = 1−b2
σ +b2

σ∥xℓ−1
α ∥2, we have

|Φℓ[α,α]− Φ̃ℓ[α,α]| ≤ |Φℓ[α,α]−1|+b2
σ |∥xℓ−1

α ∥2 −1| ≤Cεn.

Then

∥Φℓ− Φ̃ℓ∥2
F ≤Cn(n−1)ε4

n +Cnε
2
n ,
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and the result follows from the condition εnn1/4 → 0.

Proof of Theorem 6. By Corollary 15, we may assume that each matrix X0, . . . ,XL is (εn,B)-

orthonormal. This implies the bounds ∥Xℓ∥ ≤C and ∥KKKCK∥ ≤C for all large n.

For the spectral convergence, suppose by induction that lim specX⊤
ℓ−1Xℓ−1 = µℓ−1, where

the base case lim specX⊤
0 X0 = µ0 holds by assumption. Defining

νℓ = (1−b2
σ )+b2

σ ·µℓ−1,

Proposition 13 and Lemma 24 together show that

lim specΦℓ = lim specΦ̃ℓ = νℓ.

Specializing Lemma 19(b) to the setting A = 0, α = 1, X = Xℓ−1, and XXX = Xℓ, and choosing

t ≡ tn such that tn → 0 and nt2
n ≫ logn, we obtain

∣∣∣s̄−1− (n/dℓ) tr(s̄−1
Φℓ− z Id)−1

Φℓ

∣∣∣→ 0 (2.7.4)

a.s. as n → ∞, where

s̄ = 1+
n
dℓ
EWℓ

[tr(X⊤
ℓ Xℓ− z Id)−1

Φℓ].

Here, this expectation is taken over only Wℓ (i.e. conditional on X0, . . . ,Xℓ−1).

Proposition 20 verifies that s̄ is bounded as n → ∞, so for any subsequence in n, there is

a further sub-subsequence along which s̄ → s0 for a limit s0 ≡ s0(z) ∈ C+. Applying (2.4.3) and
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Propositions 12 and 20,

∣∣∣ tr(s̄−1
Φℓ− z Id)−1

Φℓ− tr(s−1
0 Φℓ− z Id)−1

Φℓ

∣∣∣
= |s−1

0 − s−1| · tr
∣∣∣(s−1

0 Φℓ− z Id)−1
Φℓ(s̄−1

Φℓ− z Id)−1
Φℓ

∣∣∣
≤ |s−1

0 − s−1| · ∥(s−1
0 Φℓ− z Id)−1∥ · ∥(s̄−1

Φℓ− z Id)−1∥ · ∥Φℓ∥2

≤C|s−1
0 − s−1|.

Thus, along the sub-subsequence where s̄ → s0, we get

tr(s̄−1
Φℓ− z Id)−1

Φℓ− tr(s−1
0 Φℓ− z Id)−1

Φℓ → 0. (2.7.5)

We have also

tr(s−1
0 Φℓ− z Id)−1

Φℓ →
∫ x

s−1
0 x− z

dνℓ(x), (2.7.6)

since the function x 7→ x/(s−1
0 x− z) is continuous and bounded over R, and lim specΦℓ = νℓ.

Thus, taking the limit of (2.7.4) along this sub-subsequence, the value s0 must satisfy

s0 −1− γℓ

∫ x
s−1

0 x− z
dνℓ(x) = 0. (2.7.7)

Now applying Lemma 19(a) with M = Id, and taking the limit along this sub-subsequence,

by a similar argument we obtain that

tr(X⊤
ℓ Xℓ− z Id)−1 →

∫ 1
s−1

0 x− z
dνℓ(x). (2.7.8)

Denoting this limit by mℓ(z), and rewriting (2.7.7) by applying

∫ x
s−1

0 x− z
dνℓ(x) = s0

∫ (
1+

z
s−1

0 x− z

)
dνℓ(x) = s0(1+ zmℓ(z)),
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we get s−1
0 = 1− γℓ− γℓzmℓ(z). Applying this back to the definition of mℓ(z) in (2.7.8), this

shows that mℓ(z) satisfies the Marčenko-Pastur equation

m(z) =
∫ 1

x(1− γℓ− γℓzm(z))− z
dνℓ(x),

so mℓ(z) is the Stieltjes transform of µℓ = ρMP
γℓ

⊠νℓ = ρMP
γℓ

⊠ ((1−b2
σ )⊕b2

σ ⊗µℓ−1).

We have shown that tr(X⊤
ℓ Xℓ−z Id)−1 → mℓ(z) almost surely along this sub-subsequence

in n. Since, for every subsequence in n, there exists such a sub-subsequence, this implies

limn→∞ tr(X⊤
ℓ Xℓ− z Id)−1 = mℓ(z) almost surely. Thus lim specX⊤

ℓ Xℓ = µℓ, which completes

the induction.

2.8 Analysis for the Neural Tangent Kernel

2.8.1 Spectral Approximation and Operator Norm Bound

We first prove the spectral approximation stated in Lemma 7, as well as the operator

norm bound ∥KKKNTK∥ ≤ C. The following form of KKKNTK is derived also in [HY19, Eq. (1.7)]:

Denote by xℓα the α th column of Xℓ. For each ℓ= 1, . . . ,L, define the matrix Sℓ ∈ Rdℓ×n whose

α th column is given by

sℓα = Dℓ
α

W⊤
ℓ+1√
dℓ

Dℓ+1
α

W⊤
ℓ+2√
dℓ+1

Dℓ+2
α . . .

W⊤
L√

dL−1
DL

α

www√
dL

, (2.8.1)

where we define diagonal matrices indexed by α ∈ [n] and k ∈ [L] as

Dk
α ≡ diag

(
σ
′(Wkxk−1

α )
)
∈ Rdk×dk .
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Applying the chain rule, we may verify for each input sample xα that

∇www fθ (xxxα) = xL
α ∈ RdL , ∇Wℓ

fθ (xα) = sℓα ⊗xℓ−1
α ∈ Rdℓdℓ−1.

Then, we can write

(
∇www fθ (X)

)⊤(
∇www fθ (X)

)
= X⊤

L XL,(
∇Wℓ

fθ (X)
)⊤(

∇Wℓ
fθ (X)

)
= (S⊤ℓ Sℓ)⊙ (X⊤

ℓ−1Xℓ−1),

where ⊙ is the Hadamard product. Thus, the NTK is given by

KNTK =
(

∇θ fθ (X)
)⊤(

∇θ fθ (X)
)
= X⊤

L XL +
L

∑
ℓ=1

(S⊤ℓ Sℓ)⊙ (X⊤
ℓ−1Xℓ−1). (2.8.2)

Lemma 25. Let X ∈Rd×n be (ε,B)-orthonormal, let W ∈Rd×d have i.i.d. N (0,1) entries, and

let xα ,xβ be two columns of X where α ̸= β . Then for universal constants C,c > 0 and any

t > 0:

(a) With probability at least 1−2e−cdt2
,

∣∣∣∣1d Tr
(

diag
(
σ
′(Wxα)

)
diag

(
σ
′(Wxβ )

))
−b2

σ

∣∣∣∣≤Cλ
2
σ (ε + t).

(b) Let M ∈ Rd×d be any deterministic symmetric matrix, and denote

T (xα ,xβ ) =
1
d

Tr
(

diag
(
σ
′(Wxα)

)
WMW⊤ diag

(
σ
′(Wxβ )

))
.

With probability at least 1− (2d +2)e−cmin(t2d,t
√

d),

∣∣T (xα ,xβ )−b2
σ TrM

∣∣≤Cλ
2
σ

(
ε
√

d + t
√

d + t
√

d
)
∥M∥F .
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Furthermore, both (a) and (b) hold with (xα ,xα) in place of (xα ,xβ ), upon replacing b2
σ by aσ .

Proof. Write www⊤
k ∈ Rd for the kth row of W . Then

1
d

Tr
(

diag
(
σ
′(Wxα)

)
diag

(
σ
′(Wxβ )

))
=

1
d

d

∑
k=1

σ
′(www⊤

k xα)σ
′(www⊤

k xβ ).

Applying σ ′(www⊤
k xα)σ

′(www⊤
k xβ ) ∈ [−λ 2

σ ,λ
2
σ ] and Hoeffding’s inequality,

P

[∣∣∣∣∣1d d

∑
k=1

(
σ
′(www⊤

k xα)σ
′(www⊤

k xβ )−E[σ ′(www⊤
k xα)σ

′(www⊤
k xβ )]

)∣∣∣∣∣> λ
2
σ t

]
≤ 2e−cdt2

.

To bound the mean, recall that (ζα ,ζβ )≡ (www⊤
k xα ,www⊤

k xβ ) is bivariate Gaussian, which we may

write as

ζα = uαξα , ζβ = uβ ξβ + vβ ξα

as in (2.5.6). Here, ξα ,ξβ ∼ N (0,1) are independent, uα ,uβ > 0 and vβ ∈ R, and these satisfy

|uα −1|, |uβ −1|, |vβ | ≤Cε . Applying the Taylor expansion

σ
′(ζ ) = σ

′(ξ )+σ
′′(η)(ζ −ξ )

for some η between ζ and ξ , and the conditions E[σ ′(ξ )] = bσ and |σ ′′(x)| ≤ λσ , it is easy to

check that |E[σ ′(ζα)σ
′(ζβ )]−b2

σ | ≤Cλ 2
σ ε . Then part (a) follows. The statement with (xα ,xα)

and aσ follows similarly from this Taylor expansion and the bound |E[σ ′(ζα)
2]−aσ | ≤Cλ 2

σ ε .

For part (b), we write

T (xα ,xβ ) =
1
d

d

∑
k=1

σ
′(www⊤

k xα)σ
′(www⊤

k xβ ) ·www⊤
k Mwwwk.

By the Hanson-Wright inequality (see [RV13, Theorem 1.1]),

P
[
|www⊤

k Mwwwk −TrM|> ∥M∥F · t
√

d
]
≤ 2e−cmin(t2d,t

√
d)
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for a constant c > 0. Then, applying |σ ′(x)| ≤ λσ and a union bound over k = 1, . . . ,d, with

probability at least 1−2de−cmin(t2d,t
√

d),

∣∣∣∣∣T (xα ,xβ )−TrM · 1
d

d

∑
k=1

σ
′(www⊤

k xα)σ
′(www⊤

k xβ )

∣∣∣∣∣≤ ∥M∥F ·λ 2
σ t
√

d.

Then part (b) follows by combining with part (a) and applying TrM ≤
√

d∥M∥F .

Corollary 26. Let sℓα be as defined in (2.8.1), and let qℓ,rℓ be the constants in (2.2.1). Under

Assumption 1, for a constant C > 0, almost surely for all large n and for all ℓ ∈ [L] and

α ̸= β ∈ [n],

∣∣∣sℓα⊤sℓ
β
−qℓ−1

∣∣∣≤C max(εn,n−0.48),
∣∣∣∥sℓα∥2 − rℓ−1

∣∣∣≤C max(εn,n−0.48). (2.8.3)

Proof. By Corollary 15, we may assume that each matrix X0, . . . ,XL is (εn,B)-orthonormal.

Since a larger value of εn corresponds to a weaker assumption, we may assume without loss of

generality that εn ≥ n−0.48.

Fix ℓ ∈ [L] and α,β ∈ [n], and define

Mℓ = Dℓ
αDℓ

β

Mk = Dk
α

Wk√
dk−1

. . . Dℓ+1
α

Wℓ+1√
dℓ

Dℓ
α Dℓ

β

W⊤
ℓ+1√
dℓ

Dℓ+1
β

. . .
W⊤

k√
dk−1

Dk
β

(2.8.4)

for ℓ+1 ≤ k ≤ L. Recalling the definition (2.8.1) and applying the Hanson-Wright inequality

conditional on W1, . . . ,WL,

∣∣∣∣sℓα⊤sℓ
β
− 1

dL
TrML

∣∣∣∣≤Cεn
√

n · 1
dL

∥ML∥F (2.8.5)

with probability 1− e−cmin(ε2
n n,εn

√
n) ≥ 1− e−n0.01

. Next, for each k = L,L− 1, . . . , ℓ+ 1, we
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apply Lemma 25(b) conditional on W1, . . . ,Wk−1, with t = εn, M = Mk−1/dk−1, d = dk−1, and

d = dk. Note that k−1 ≥ ℓ≥ 1, so that both dk−1 and dk are proportional to n. Then

∣∣∣∣ 1
dk

TrMk −b2
σ · 1

dk−1
TrMk−1

∣∣∣∣≤Cεn
√

n · 1
dk−1

∥Mk−1∥F

with probability 1−e−n0.01
. Finally, for k = ℓ, applying Lemma 25(a) conditional on W1, . . . ,Wℓ−1

and with t = εn, ∣∣∣∣ 1
dℓ

TrMℓ−b2
σ

∣∣∣∣≤Cεn

with probability 1− e−n0.01
. Combining these bounds, with probability 1−C′e−n0.01

,

∣∣∣sℓα⊤sℓ
β
− (b2

σ )
L−ℓ+1

∣∣∣≤ Cεn√
n

(
∥ML∥F + . . .+∥Mℓ∥F +

√
n
)
.

We also have ∥Wk/
√

dk∥ ≤C for each k = 2, . . . ,L with probability 1−C′e−cn, see e.g. [Ver18,

Theorem 4.4.5]. Then, applying ∥Dk∥ ≤ λσ , we have ∥Mk∥F ≤ C
√

n∥Mk∥ ≤ C′√n for every

k = 1, . . . ,L. Then the first bound of (2.8.3) follows. The second bound of (2.8.3) is the same,

applying Lemma 25 for (xα ,xα) instead of (xα ,xβ ). The almost sure statement follows from the

Borel-Cantelli Lemma.

Lemma 27. Under Assumption 1, almost surely as n → ∞,

1
n

∥∥∥∥∥KKKNTK −

(
r+ Id+X⊤

L XL +
L−1

∑
ℓ=0

qℓX⊤
ℓ Xℓ

)∥∥∥∥∥
2

F

→ 0.

Furthermore, for a constant C > 0, almost surely for all large n, ∥KKKNTK∥ ≤C.

Proof. By Corollary 15, we may assume that each matrix X0, . . . ,XL is (εn,B)-orthonormal.

Then ∣∣∣xℓ−1
α

⊤xℓ−1
β

∣∣∣≤ εn,
∣∣∣∥xℓ−1

α ∥2 −1
∣∣∣≤ εn.
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Increasing εn if necessary, we may assume εn ≥ n−0.48. Combining with (2.8.3), we have for the

off-diagonal entries of the Hadamard product that

∣∣∣((S⊤ℓ Sℓ)⊙ (X⊤
ℓ−1Xℓ−1)

)
[α,β ]−qℓ−1X⊤

ℓ−1Xℓ−1[α,β ]
∣∣∣≤Cε

2
n ,

and for the diagonal entries that

∣∣∣((S⊤ℓ Sℓ)⊙ (X⊤
ℓ−1Xℓ−1)[α,α]−qℓ−1(X⊤

ℓ−1Xℓ−1)[α,α]− (rℓ−1 −qℓ−1)
∣∣∣

≤
∣∣∣((S⊤ℓ Sℓ)⊙ (X⊤

ℓ−1Xℓ−1)[α,α]− rℓ−1

∣∣∣+qℓ−1

∣∣∣X⊤
ℓ−1Xℓ−1[α,α]−1

∣∣∣≤Cεn.

Then applying this to (2.8.2),

∥∥∥∥∥KKKNTK −

(
r+ Id+X⊤

L XL +
L−1

∑
ℓ=0

qℓX⊤
ℓ Xℓ

)∥∥∥∥∥
2

F

≤Cn(n−1)ε4
n +Cnε

2
n .

The first statement of the lemma then follows from the assumption εnn1/4 → 0.

For the second statement on the operator norm, we have

∥(S⊤ℓ Sℓ)⊙ (X⊤
ℓ−1Xℓ−1)∥ ≤ max

1≤α≤n

∣∣∣sℓα⊤sℓα
∣∣∣ · ∥X⊤

ℓ−1Xℓ−1∥.

See [Joh90, Eq. (3.7.9)], applied with X = Y = Sℓ. Then ∥KKKNTK∥ ≤C follows from (2.8.2), the

(εn,B)-orthonormality of each matrix Xℓ−1, and the bound for ∥sℓα∥2 in (2.8.3).

Combining Lemma 27 and Proposition 13, this proves Lemma 7.

As a remark, Lemmas 27 and 7 imply lim specKKKNTK = lim spec(r+ Id+X⊤
L XL) when

bσ = 0, since every qℓ = 0 in this case. Thus, the Stieltjes transform of lim specKKKNTK is actually

mNTK(z) = m(−r++ z) defined by the Stieltjes transform of ρMP
γ in (1.2.4) with γ = γL. Thus in

the following arguments for the limit spectrum of KKKNTK, we restrict to the case bσ ̸= 0.
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2.8.2 Unique Solution of the Fixed Point Equation

Let A,Φ ∈ Rn×n be symmetric matrices, where Φ is positive semi-definite. Let z ∈ C+,

α ∈ C∗, and γ > 0. For s ∈ C+, define

S(s) = (A+ s−1
Φ− z Id)−1, fn(s) = α

−1 + γ trS(s)Φ.

Lemma 28. (a) For any s ∈ C+, setting S ≡ S(s),

Im fn(s)≥ Imz · γ trSΦS∗ ≥ 0.

(b) For any s1,s2 ∈ C+, setting S1 ≡ S(s1) and S2 ≡ S(s2),

| fn(s1)− fn(s2)|

≤ |s1 − s2| ·
(

Im fn(s1)− Imz · γ trS1ΦS∗1
Ims1

)1/2(Im fn(s2)− Imz · γ trS2ΦS∗2
Ims2

)1/2

Proof. For part (a), let us write

SΦ = SΦS∗(A+ s−1
Φ− z Id)∗ = SΦS∗A+(1/s∗)SΦS∗Φ− z∗SΦS∗.

Since SΦS∗ is Hermitian and positive semi-definite, the quantities trSΦS∗A, trSΦS∗Φ, and

trSΦS∗ are all real, and the latter two are nonnegative. Then

Im fn(s) = Imα
−1 + γ ImtrSΦ = Imα

−1 +
Ims
|s|2

· γ trSΦS∗Φ+ Imz · γ trSΦS∗. (2.8.6)

Each term on the right side of (2.8.6) is nonnegative, and dropping the first two of these terms

yields (a).
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For part (b), applying the identity (2.4.3), we have

S1 −S2 = S1(s−1
2 Φ− s−1

1 Φ)S2 =
s1 − s2

s1s2
S1ΦS2,

so

fn(s1)− fn(s2) = γ trS1Φ− γ trS2Φ =
γ(s1 − s2)

s1s2
trS1ΦS2Φ.

Applying Cauchy-Schwartz to the inner-product ⟨S1,S2⟩Φ = trS1ΦS∗2Φ,

| trS1ΦS2Φ|2 = |⟨S1,S∗2⟩Φ|2 ≤ ⟨S1,S1⟩Φ · ⟨S∗2,S∗2⟩Φ = trS1ΦS∗1Φ · trS2ΦS∗2Φ.

Then

| fn(s1)− fn(s2)| ≤ |s1 − s2| ·
(

γ trS1ΦS∗1Φ

|s1|2

)1/2(
γ trS2ΦS∗2Φ

|s2|2

)1/2

.

Dropping Imα−1 in (2.8.6) and applying this to upper-bound γ trSΦS∗Φ/|s|2, part (b) fol-

lows.

Corollary 29. As n → ∞, suppose that fn(s)→ f (s) pointwise for each s ∈ C+, the empirical

spectral distributions of Φ and A converge weakly to deterministic limits, and the limit for Φ is

not the point distribution at 0. Then the fixed point equation s = f (s) has at most one solution

s ∈ C+.

Proof. Let us first show that for each s ∈ C+ and a value c0(s)> 0 independent of n,

liminf
n→∞

trS(s)ΦS(s)∗ ≥ c0(s)> 0. (2.8.7)

Denoting S ≡ S(s) and applying the von Neumann trace inequality,

trSΦS∗ =
1
n

TrΦS∗S ≥ 1
n

n

∑
α=1

λα(Φ)λn+1−α(S∗S),
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where λ1(·) ≥ . . . ≥ λn(·) denote the sorted eigenvalues. Since Φ has a non-degenerate limit

spectrum, there is a constant ε > 0 for which λεn(Φ)> ε for all large n. (Throughout the proof,

εn, εn/2, etc. should be understood as their roundings to the nearest integer.) Then

trSΦS∗ ≥ ε · 1
n

εn

∑
α=1

λn+1−α(S∗S).

Denoting by σα(·) the α th largest singular value, observe that

λn+1−α(S∗S) = σn+1−α(S)2 = σα(A+ s−1
Φ− z Id)−2.

Applying σα+β−1(A+B)≤ σα(A)+σβ (B), we have

σα(A+ s−1
Φ− z Id)≤ σα/2(A)+ |s|−1

σα/2+1(Φ)+ |z|.

Since the spectra of A and Φ converge to deterministic limits, this implies that there is a

constant C(s)> 0 (also depending on z and ε) such that σα(A+ s−1Φ− z Id)≤C(s) for every

α ∈ [εn/2,εn] and all large n. Thus

trSΦS∗ ≥ ε · εn− εn/2
n

·C(s)−2

for all large n, and this shows the claim (2.8.7).

Then, taking the limit n → ∞ in Lemma 28(b), we get

| f (s1)− f (s2)| ≤ |s1 − s2| ·
(

Im f (s1)− Imz · γc0(s1)

Ims1

)1/2(Im f (s2)− Imz · γc0(s2)

Ims2

)1/2

.

If s1 = f (s1) and s2 = f (s2), then this yields |s1 − s2| ≤ |s1 − s2| · h(s1,s2) for some quantity

h(s1,s2) ∈ [0,1), where h(s1,s2)< 1 strictly because c0(s1),c0(s2)> 0. This contradiction im-

plies s1 = s2, so the equation s = f (s) has at most one solution s ∈ C+.
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2.8.3 Proof of Proposition 8 and Theorem 9

The operator norm bound in Theorem 9 was shown in Lemma 27. For the spectral

convergence, note that by Lemma 7, the limit Stieltjes transform of KKKNTK at any z ∈ C+ is given

by

mNTK(z) = lim
n→∞

tr

(
(−z+ r+) Id+X⊤

L XL +
L−1

∑
ℓ=0

qℓX⊤
ℓ Xℓ

)−1

,

provided that this limit exists and defines the Stieltjes transform of a probability measure. For

z = (z−1, . . . ,zℓ) ∈ C−×Rℓ×C∗, www = (w−1, . . . ,wℓ) ∈ Cℓ+2,

recall the functions

z 7→ sℓ(z), (z,www) 7→ tℓ(z,www)

defined recursively by (2.2.6) and (2.2.7). Proposition 8 and Theorem 9 are immediate conse-

quences of the following extended result.

Lemma 30. Suppose bσ ̸= 0. Under Assumption 1, for each ℓ= 1, . . . ,L:

(a) For every z ∈ C−×Rℓ×C∗, the equation (2.2.6) has a unique fixed point sℓ(z) ∈ C+.

(b) For every (z,www) ∈ (C−×Rℓ×C∗)×Cℓ+2, almost surely

tℓ(z,www)

= lim
n→∞

tr
(

z−1 Id+z0X⊤
0 X0 + . . .+ zℓX⊤

ℓ Xℓ

)−1(
w−1 Id+w0X⊤

0 X0 + . . .+wℓX⊤
ℓ Xℓ

)
.

(2.8.8)

In particular, for any z−1, . . . ,zℓ ∈ R where zℓ ̸= 0,

lim spec
(

z−1 Id+z0X⊤
0 X0 + . . .+ zℓX⊤

ℓ Xℓ

)
= ν

64



where ν is a probability measure on R with Stieltjes transform

m(z) = tℓ
(
(−z+ z−1,z0, . . . ,zℓ),(1,0, . . . ,0)

)
.

Proof. By Corollary 15, we may assume that each matrix X0, . . . ,XL is (εn,B)-orthonormal.

Define Φℓ,Φ̃ℓ by (2.7.1) and (2.7.2). For z = (z−1, . . . ,zℓ), let us write as shorthand

z ·X⊤X(ℓ) = z−1 Id+z0X⊤
0 X0 + . . .+ zℓX⊤

ℓ Xℓ,

where the parenthetical (ℓ) signifies the index of the last term in this sum. Let us define similarly

www ·X⊤X(ℓ).

Note that part (b) holds for ℓ= 0, by the assumption lim specX⊤
0 X0 = µ0, the definition

of t0((z−1,z0),(w−1,w0)) in (2.2.5), and the fact that the function x 7→ (w−1 +w0x)/(z−1 + z0x)

is continuous and bounded over the non-negative real line when z−1 ∈ C− and z0 ∈ C∗.

We induct on ℓ. Suppose that part (b) holds for ℓ− 1. To show part (a) for ℓ, fix any

z = (z−1, . . . ,zℓ) ∈ C−×Rℓ×C∗ (not depending on n) and consider the matrix

R =
(

z ·X⊤X(ℓ)
)−1

. (2.8.9)

We apply the analysis of Section 2.6, conditional on X0, . . . ,Xℓ−1, and with the identifications

XXX = Xℓ, X = Xℓ−1, d = dℓ, d = dℓ−1,

A = z0X⊤
0 X0 + . . .+ zℓ−1X⊤

ℓ−1Xℓ−1, α = zℓ, z =−z−1.

Observe that α ∈ C∗ and z ∈ C−. The matrix R in (2.8.9) is exactly

R = (A+αXXX⊤XXX − z Id)−1.
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Since each X0, . . . ,Xℓ−1 is (εn,B)-orthonormal, we have ∥A∥ ≤ C for some constant C > 0

(depending on z−1, . . . ,zℓ,λσ ). Thus Assumption 2 holds, conditional on X0, . . . ,Xℓ−1. Let us

define the n-dependent parameter

s̄ =
1
α
+

n
dℓ

trEWℓ
[RΦℓ]

where this expectation is over only the weights Wℓ. Then, applying Lemma 19(b) with a value

t ≡ tn such that t → 0 and nt2 ≫ logn, we obtain

∣∣∣s̄− 1
α
− n

dℓ
tr(A+ s̄−1

Φℓ− z Id)−1
Φℓ

∣∣∣→ 0 (2.8.10)

almost surely as n → ∞.

Proposition 20 shows that |s̄| is bounded, so for any subsequence in n, there is a further

sub-subsequence where s̄ → s0 for a limit s0 ≡ s0(z) ∈ C+. Let us now replace s̄ and Φℓ above

by s0 and Φ̃ℓ: First we have

tr
(
A+ s̄−1

Φℓ− z Id
)−1

Φℓ− tr
(
A+ s−1

0 Φ̃ℓ− z Id
)−1

Φℓ → 0

by the same argument as (2.7.5). Then, we have

∣∣∣tr(A+ s−1
0 Φℓ− z Id

)−1
Φℓ− tr

(
A+ s−1

0 Φ̃ℓ− z Id
)−1

Φℓ

∣∣∣
=
∣∣∣s−1

0 tr
(
A+ s−1

0 Φℓ− z Id
)−1

(Φ̃ℓ−Φℓ)
(
A+ s−1

0 Φ̃ℓ− z Id
)−1

Φℓ

∣∣∣
≤ C

n
∥Φ̃ℓ−Φℓ∥F ·

∥∥(A+ s−1
0 Φ̃− z Id)−1

Φ(A+ s−1
0 Φ− z Id)−1∥∥

F

≤ C√
n
∥Φ̃ℓ−Φℓ∥F · ∥(A+ s−1

0 Φ̃− z Id)−1∥ · ∥Φ∥ · ∥(A+ s−1
0 Φ− z Id)−1∥→ 0,
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where the convergence to 0 follows from Lemma 27. Finally, we have

∣∣∣tr(A+ s−1
0 Φℓ− z Id

)−1
Φℓ− tr

(
A+ s−1

0 Φℓ− z Id
)−1

Φ̃ℓ

∣∣∣
≤ 1

n
∥(A+ s−1

0 Φℓ− z Id)−1∥F · ∥Φℓ− Φ̃ℓ∥F ≤ 1√
n
∥(A+ s−1

0 Φℓ− z Id)−1∥ · ∥Φℓ− Φ̃ℓ∥F → 0.

Applying these approximations to (2.8.10), we have almost surely along this sub-subsequence

that ∣∣∣s0 −
1
α
− γℓ tr(A+ s−1

0 Φ̃ℓ− z Id)−1
Φ̃ℓ

∣∣∣→ 0. (2.8.11)

Now observe from the definitions of A, Φ̃ℓ, and z that

A+ s−1
0 Φ̃ℓ− z Id =

(
z−1 +

1−b2
σ

s0

)
Id+

ℓ−2

∑
k=0

zkX⊤
k Xk +

(
zℓ−1 +

b2
σ

s0

)
X⊤
ℓ−1Xℓ−1,

Φ̃ℓ = (1−b2
σ ) Id+b2

σ X⊤
ℓ−1Xℓ−1.

Then, applying (2.8.11) and the induction hypothesis that part (b) holds for ℓ−1, we obtain that

the value s0 must satisfy

s0 =
1
α
+ γℓtℓ−1

(
zprev(s0,z),(1−b2

σ ,0, . . . ,0,b
2
σ )
)
,

where zprev is defined in (2.2.8). This shows the existence of a solution (in C+) to the fixed point

equation (2.2.6). Notice that because bσ ̸= 0 and s0 ∈ C+, the last entry of zprev(s0,z) is in C∗

and (zprev(s0,z),(1−b2
σ ,0, . . . ,0,b

2
σ )) is in the domain of function tℓ−1.

To show uniqueness, we apply Corollary 29: For any fixed s ∈ C+, defining

fn(s) =
1
α
+(n/dℓ) tr(A+ s−1

Φℓ− z Id)−1
Φℓ,
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the same arguments as above establish that

lim
n→∞

fn(s) = f (s)≡ 1
α
+ γℓtℓ−1

(
zprev(s,z),(1−b2

σ ,0, . . . ,0,b
2
σ )
)
.

Part (b) holding for ℓ−1 implies that both A and Φℓ have deterministic spectral limits, where

lim specΦℓ = lim specΦ̃ℓ

by (2.7.3). This cannot be the point distribution at 0, because (2.5.5) implies that trΦℓ ≥ 1/2

for all large n, and ∥Φℓ∥ ≤C so at least n/(2C) eigenvalues of Φℓ exceed 1/2 for every n. Thus,

Corollary 29 implies that the fixed point s = f (s) is unique. So the fixed point sℓ(z) ∈ C+ is

uniquely defined by (2.2.6), and this shows part (a) for ℓ.

By the uniqueness of this fixed point, we have also shown that s0 = sℓ(z), where s0 is

the limit of s̄ along the above sub-subsequence. Since for any subsequence in n, there exists a

sub-subsequence for this which holds, this shows that limn→∞ s̄ = sℓ(z) almost surely.

Now, to show that part (b) holds for ℓ, let us also fix any www = (w−1, . . . ,wℓ) ∈ Cℓ+2.

Using that zℓ ̸= 0, we may write

www ·X⊤X(ℓ) =
wℓ

zℓ
· z ·X⊤X(ℓ)+wwwprev ·X⊤X(ℓ−1),

where wwwprev is as defined in (2.2.9). Then

(
z ·X⊤X(ℓ)

)−1(
www ·X⊤X(ℓ)

)
=

wℓ

zℓ
Id+

(
z ·X⊤X(ℓ)

)−1(
wwwprev ·X⊤X(ℓ−1)

)
. (2.8.12)

We now apply Lemma 19(a) conditional on X0, . . . ,Xℓ−1, with the same identifications as above

and with

M = wwwprev ·X⊤X(ℓ−1).
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Note that M is indeed deterministic conditional on X0, . . . ,Xℓ−1, and ∥M∥ ≤ C for a constant

C > 0 (depending on z and www) since X0, . . . ,Xℓ−1 are (εn,B)-orthonormal. Then, we can apply

Lemma 19(a) to conclude that

tr
[(

z ·X⊤X(ℓ)
)−1(

wwwprev ·X⊤X(ℓ−1)
)]

− tr
[
(A+ s̄−1

Φℓ−z Id)−1
(

wwwprev ·X⊤X(ℓ−1)
)]

→ 0.

By the same arguments as above, we may replace s̄ by s0 = sℓ(z) and Φℓ by Φ̃ℓ. Then, applying

this to (2.8.12),

tr
[(

z ·X⊤X(ℓ)
)−1(

www ·X⊤X(ℓ)
)]

− wℓ

zℓ

− tr
[
(A+ sℓ(z)−1

Φ̃ℓ− z Id)−1
(

wwwprev ·X⊤X(ℓ−1)
)]

→ 0.

Finally, applying that part (b) holds for ℓ−1, this yields

lim
n→∞

tr
[(

z ·X⊤X(ℓ)
)−1(

www ·X⊤X(ℓ)
)]

=
wℓ

zℓ
+ tℓ−1(zprev(sℓ(z),z),wwwprev),

which is the definition of tℓ(z,www). This establishes (2.8.8).

For any fixed z−1, . . . ,zℓ ∈ R where zℓ ̸= 0, and any fixed z ∈ C+, this implies that the

Stieltjes transform of z ·X⊤X(ℓ) has the almost sure limit

m(z) = tℓ
(
(−z+ z−1,z0, . . . ,zℓ),(1,0, . . . ,0)

)
.

So m(z) defines the Stieltjes transform of a sub-probability distribution ν , and the empiri-

cal eigenvalue distribution of z ·X⊤X(ℓ) converges vaguely a.s. to ν . Since ∥z ·X⊤X(ℓ)∥ is

bounded because X0, . . . ,XL are (εn,B)-orthonormal, this limit ν must, in fact, be a probability

distribution, and the ESD converges weakly to ν . This concludes the induction and the proof.
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2.9 Multi-dimensional Outputs and Rescaling

In this section, we provide some motivation for the form of the NTK in (2.2.11) for

networks with a k-dimensional output, and we prove Theorem 10 regarding its spectrum.

2.9.1 Derivation of (2.2.11) from Gradient Flow Training

Consider the training process of the network (2.2.10) based on a gradient flow with

training samples {xα ,yα}n
α=1 where xα ∈ Rd0 and yα ∈ Rk, under the general training loss

F(θ) =
n

∑
α=1

L ( fθ (xα),yα).

Here, L : Rk ×Rk → R is the loss function. We denote by ∇L ( fθ (xα),yα) ∈ Rk the gradient

of L with respect to its first argument, and by ∇Wℓ
fθ (xα) ∈ Rdim(Wℓ)×k the Jacobian of fθ (xα)

with respect to the weights Wℓ.

Consider a possibly reweighted gradient-flow training of θ , where the evolution of

weights Wℓ is given by

d
dt

Wℓ(t) =−τℓ ·∇Wℓ
F(θ(t)) =−τℓ

n

∑
α=1

∇Wℓ
fθ(t)(xα) ·∇L ( fθ(t)(xα),yα).

The learning rate for each weight matrix Wℓ is scaled by a constant τℓ—this may arise, for

example, from reparametrizing the network (2.2.10) using W̃ℓ = τ
−1
ℓ ·Wℓ and considering gradient

flow training for W̃ℓ. Denoting the vectorization of all training predictions and their Jacobian by

fθ (X) = ( f 1
θ (X), . . . , f k

θ (X)) ∈ Rnk, ∇Wℓ
fθ (X) ∈ Rdim(Wℓ)×nk,

and the corresponding vectorization of (∇L ( fθ (xα),yα))
n
α=1 by ∇L ( fθ (X),y)∈Rnk, this may
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be written succinctly as

d
dt

Wℓ(t) =−τℓ ·∇Wℓ
fθ(t)(X) ·∇L ( fθ(t)(X),y).

Then the time evolution of in-sample predictions is given by

d
dt

fθ(t)(X) =
(

∇θ fθ(t)(X)
)⊤

· d
dt

θ(t)

=−
L+1

∑
ℓ=1

τℓ

(
∇Wℓ

fθ(t)(X)
)⊤(

∇Wℓ
fθ(t)(X)

)
·∇L ( fθ(t)(X),y)

=−KKKNTK(t) ·∇L ( fθ(t)(X),y),

where KKKNTK is the matrix defined in (2.2.11). For τ1 = . . .= τL+1 = 1, this matrix is simply

KKKNTK =
(

∇θ fθ (X)
)⊤(

∇θ fθ (X)
)
∈ Rnk×nk,

which is a flattening of the neural tangent kernel K ∈ Rn×n×k×k (identified as a map K : Rn×n →

Rk×k) that is defined in [JGH18].

2.9.2 Proof of Theorem 10

The matrix KKKNTK in (2.2.11) admits a k× k block decomposition

KKKNTK =


KNTK

11 · · · KNTK
1k

... . . . ...

KNTK
k1 · · · KNTK

kk


where

KNTK
i j =

L+1

∑
ℓ=1

τℓ

(
∇Wℓ

f i
θ (X)

)⊤(
∇Wℓ

f j
θ
(X)
)
∈ Rn×n,
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for general constants τ1, . . . ,τL+1 > 0. Considering

WL+1 =


www⊤

1
...

www⊤
k

,

we can use the chain rule similar to (2.8.2) to verify

KNTK
i j = 1{i = j}τL+1X⊤

L XL +
L

∑
ℓ=1

τℓ(Si
ℓ
⊤

S j
ℓ)⊙ (X⊤

ℓ−1Xℓ−1)

where Si
ℓ ∈ Rdℓ×n is the matrix with the same column-wise definition as in (2.8.1), replacing www

by wwwi.

Lemma 31. Under the assumptions of Theorem 10, for any indices i ̸= j ∈ [k], almost surely as

n → ∞,
1
n
∥KNTK

i j ∥2
F → 0.

Furthermore, for a constant C > 0, almost surely for all large n, ∥KNTK
i j ∥ ≤C.

Proof. By Corollary 15, we may assume that each X0, . . . ,XL is (εn,B)-orthonormal.

Let us fix i, j, ℓ and denote the columns of Si
ℓ and S j

ℓ by sℓ,iα and sℓ, j
β

for α,β ∈ [n].

We apply the Hanson-Wright inequality conditional on W1, . . . ,WL, which is similar to (2.8.5).

However, since wwwi and www j are independent, there is no trace term, and we obtain instead

∣∣∣sℓ,iα

⊤
sℓ, j

β

∣∣∣≤Cεn
√

n
1
dL

∥ML∥F

for both α = β and α ̸= β with probability 1− e−n0.01
, where ML is the same matrix as defined

in (2.8.4). Applying the bound ∥ML∥F ≤C
√

n as in the proof of Corollary 26, this yields

∣∣∣sℓ,iα

⊤
sℓ, j

β

∣∣∣≤Cεn

72



almost surely for all α,β ∈ [n] and all large n. Combining with the (εn,B)-orthonormality of

Xℓ−1, we get for α ̸= β that

∣∣∣(Si
ℓ
⊤

S j
ℓ)⊙ (X⊤

ℓ−1Xℓ−1)[α,β ]
∣∣∣≤Cε

2
n ,

∣∣∣(Si
ℓ
⊤

S j
ℓ)⊙ (X⊤

ℓ−1Xℓ−1)[α,α]
∣∣∣≤Cεn.

Then

∥(Si
ℓ
⊤

S j
ℓ)⊙ (X⊤

ℓ−1Xℓ−1)∥2
F ≤Cn(n−1)ε4

n +Cnε
2
n ,

and the first statement follows from the assumption εnn1/4 → 0. The second statement on the

operator norm follows from the bound

∥(Si
ℓ
⊤

S j
ℓ)⊙ (X⊤

ℓ−1Xℓ−1)∥ ≤
(

max
1≤α≤n

∣∣∣sℓ,iα

⊤
sℓ,iα

∣∣∣)1/2(
max

1≤α≤n

∣∣∣sℓ, jα

⊤
sℓ, jα

∣∣∣)1/2

· ∥X⊤
ℓ−1Xℓ−1∥.

See [Joh90, Eq. (3.7.9)] applied with X = Si
ℓ and Y = S j

ℓ . The bound ∥KNTK
i j ∥ ≤C then follows

from the (εn,B)-orthonormality of Xℓ−1 and Corollary 26, applied to Si
ℓ and S j

ℓ .

Applying this lemma together with Proposition 13, we obtain

lim specKKKNTK = lim spec


KNTK

11
. . .

KNTK
kk


where the off-diagonal blocks KNTK

i j may be replaced by 0. Then the limit spectral distribution

of KKKNTK is an equally weighted mixture of those of KNTK
11 , . . . ,KNTK

kk . For each diagonal block

KNTK
ii , the argument of Lemma 27 shows that

lim specKNTK
ii = lim spec

(
τ · r+ Id+τL+1X⊤

L XL +
L−1

∑
ℓ=0

τℓ+1qℓX⊤
ℓ Xℓ

)
.

Then by Theorem 9, each diagonal block KNTK
ii has the same limit spectral distribution, whose
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Stieltjes transform is given by the function mNTK(z) in Theorem 10. Furthermore, since

∥KNTK
ii ∥ ≤C by Lemma 27 and ∥KNTK

i j ∥ ≤C for i ̸= j by Lemma 31, this shows ∥KKKNTK∥ ≤C.

This establishes Theorem 10. Again, when bσ = 0, the limit spectrum of each KNTK
ii reduces to

lim spec(τ · r+ Id+τL+1X⊤
L XL), which can be computed via the Stieltjes transform of ρMP

γL
.

2.10 Numerical Solution of the Fixed Point Equations

Theorem 9 characterizes the limit Stieltjes transform m(z) of matrices such as KKKCK and

KKKNTK. By the discussion in Section 1.2.1, a numerical approximation to the density functions

of the corresponding spectral distributions may be obtained by computing m(z) for z = x+ iη ,

across a fine grid of values x ∈ R and for a fixed small imaginary part η > 0. We describe here

one possible approach for this computation.

To compute the limit spectrum for z−1 Id+z0X⊤
0 X0 + . . .+ zLX⊤

L XL and general values

z−1, . . . ,zL ∈ R, fix the spectral argument z = x+ iη and denote

zL = (−z+ z−1,z0, . . . ,zL), zL−1 = zprev(sL(zL),zL), zL−2 = zprev(sL−1(zL−1),zL−1), etc.

Here, for s ∈ C+ and z ∈ C−×Rℓ×C∗, the quantity

zprev(s,z) =
(

z−1 +
1−b2

σ

s
,z0, . . . ,zℓ−2,zℓ−1 +

b2
σ

s

)
∈ C−×Rℓ−1 ×C∗

is as defined in (2.2.8). Denote sℓ ≡ sℓ(zℓ) for each ℓ= 1, . . . ,L. Observe that, if we are given

s1, . . . ,sL, then the value tℓ(zℓ,www) may be directly computed from (2.2.7), for any ℓ ∈ {0, . . . ,L}

and any vector www ∈ Cℓ+2. This is because the fixed points needed to compute the arguments

zprev(sℓ(zℓ),zℓ), zprev(sℓ−1(zℓ−1),zℓ−1), etc. for the successive evaluations of tℓ, tℓ−1, etc. are

provided by this given sequence s1, . . . ,sL.

Thus, we apply an iterative procedure of initializing s(0)1 , . . . ,s(0)L ∈ C+, and computing

the simultaneous updates s(t+1)
1 , . . . ,s(t+1)

L using the previous values s(t)1 , . . . ,s(t)L . That is, we
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iterate the following two steps:

1. Set z(t)L = zL, and compute z(t)L−1 = zprev(s
(t)
L ,z(t)L ), z(t)L−2 = zprev(s

(t)
L−1,z

(t)
L−1), etc.

2. Compute an update s(t+1)
ℓ for the value of sℓ(zℓ) and each ℓ= 1, . . . ,L, using the right side

of (2.2.6) with z(t)ℓ and z(t)ℓ−1 ≡ zprev(s
(t)
ℓ ,z(t)ℓ ) in place of zℓ and zprev(sℓ(zℓ),zℓ).

After this iteration converges to fixed points s∗1, . . . ,s
∗
L, we then compute

m(z) = tL(zL,(1,0, . . . ,0))

using (2.2.7) and these fixed points. For each successive value z = x+ iη along the grid of values

x ∈ R, we initialize s(0)1 , . . . ,s(0)L by linear interpolation from the computed fixed points at the

preceding two values of x along this grid, for faster computation.

Note that for each value z = x+ iη , if the above iteration converges to fixed points

s∗1, . . . ,s
∗
L ∈ C+, then this procedure computes the correct value for m(z): This is because,

denoting

z∗L−1 = zprev(s∗L,zL), z∗L−2 = zprev(s∗L−1,z
∗
L−1), . . . , z∗1 = zprev(s∗2,z

∗
2),

it can be checked iteratively from (2.2.6), (2.2.7), and the uniqueness guarantee of Proposition 8

that s∗1 = s1(z∗1), then s∗2 = s2(z∗2), etc., and finally that s∗L = sL(zL). This then means that z∗L−1 =

zprev(sL(zL),zL) = zL−1, then z∗L−2 = zprev(sL−1(zL−1),zL−1) = zL−2, etc., and so s∗ℓ = sℓ(zℓ) for

each ℓ. Then this method computes the correct value for m(z) = tL(zL,(1,0, . . . ,0)).

We have found in practice that the above iteration occasionally converges to fixed points

s1, . . . ,sL not belonging to C+ (i.e. this is not a mapping from (C+)L to (C+)L). If this occurs,

we randomly re-initialize s(0)1 , . . . ,s(0)L ∈ C+, and we have found that the method reaches the

correct fixed point within a small number of random initialization.

To clarify this approach, let us illustrate this computation in a simple example: Consider

L = 2. Fix any grid value x ∈ R and η > 0. An approximate density function for the limit

75



spectrum of X⊤
2 X2 at x is given by 1

π
Im t2((−z,0,0,1),(1,0,0,0)), where z = x+ iη . Based on

(2.2.5), (2.2.6), and (2.2.7), we can get

t2((−z,0,0,1),(1,0,0,0)) = t1

((
−z+

1−b2
σ

s2
,0,

b2
σ

s2

)
,(1,0,0)

)
= t0

((
−z+

1−b2
σ

s2
+

1−b2
σ

s1
,
b2

σ

s1

)
,(1,0)

)
=
∫ (

−z+
1−b2

σ

s2
+

1−b2
σ

s1
+

b2
σ

s1
x
)−1

dµ0(x),

where s1,s2 ∈ C+ satisfy the fixed point equations

s2 = 1+ γ2s2 + γ2t0

((
−z+

1−b2
σ

s2
+

1−b2
σ

s1
,
b2

σ

s1

)
,(s2z,0)

)
(2.10.1)

s1 =
s2

b2
σ

+ γ1t0

((
−z+

1−b2
σ

s2
+

1−b2
σ

s1
,
b2

σ

s1

)
,(1−b2

σ ,b
2
σ )

)
. (2.10.2)

We randomly initialize s(0)1 ,s(0)2 ∈ C+, and update s(t+1)
1 ,s(t+1)

2 simultaneously by substituting

s1 = s(t)1 and s2 = s(t)2 into the right side of (2.10.1) and (2.10.2). We iterate this until convergence,

and then substitute into the above expression for t2((−z,0,0,1),(1,0,0,0)) to approximate the

limit spectral density of X⊤
2 X2 at x.

2.11 Experiments

We describe in Section 2.10 an algorithm to numerically compute the limit spectral

densities of Theorem 9. The computational cost is independent of the dimensions (n,d0, . . . ,dL),

and each limit density below was computed within a few seconds on our laptop computer. Using

this procedure, in this section, we investigate the accuracy of the theoretical predictions of

Theorems 6 and 9.
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(a) (b) (c)

Figure 2.1. Simulated spectra at initialization for i.i.d. Gaussian training samples in a 5-layer network,
for (a) the input gram matrix X⊤

0 X0, (b) KKKCK = X⊤
5 X5, and (c) KKKNTK. Numerical computations of the limit

spectra in Theorems 6 and 9 are superimposed in red.

2.11.1 Simulated Gaussian Training Data

We consider n = 3000 training samples with i.i.d. N (0,1/d0) entries, input dimension

d0 = 1000, and L = 5 hidden layers of dimensions d1 = . . . = d5 = 6000. We take σ(x) ∝

tan−1(x), normalized so that E[σ(ξ )2] = 1. A close agreement between the observed and limit

spectra is displayed in Figure 2.1, for both KKKCK and KKKNTK at initialization.

We highlight two qualitative phenomena: The spectral distribution of the NTK (at

initialization) is separated from 0, as explained by the Id component in Lemma 7. Across layers

ℓ= 1, . . . ,L, there is a merging of the spectral bulk components of the CK, and an extension of

its spectral support.

2.11.2 CIFAR-10 Training Data

We consider n= 5000 samples randomly selected from the CIFAR-10 training set [Kri09],

with input dimension d0 = 3072, and L = 5 hidden layers of dimensions d1 = . . .= d5 = 10000.

Strong principal component structure may cause the training samples to have large pairwise

inner products, which is shown in Figure 2.2. CIFAR-10 training samples were mean-centered

and normalized to satisfy x⊤α 1 = 0 and ∥xα∥2 = 1 in Figure 2.2(a) and (b). The pairwise inner-

products in Figure 2.2(a) span a typical range of [−0.5,0.5]. Those in Figure 2.2(b) span a range

of about [−0.2,0.2], and those in Figure 2.2(c) about [−0.02,0.02]. Thus, with 10 PCs removed,

77



(a) (b) (c)

Figure 2.2. All pairwise inner-products {x⊤α xβ : 1 ≤ α < β ≤ n}, for (a) 5000 CIFAR-10 training
samples, (b) 5000 CIFAR-10 training samples with the first 10 PCs removed, and (c) i.i.d. Gaussian
training data of the same dimensions.

(a) (b) (c)

Figure 2.3. Same plots as Figure 2.1, for 5000 training samples from CIFAR-10 with 10 leading PCs
removed.

these inner-products for CIFAR-10 are larger than for i.i.d. Gaussian inputs by a factor of 10.

Thus, before computing the spectra of CK and NTK on the CIFAR-10 dataset, we pre-process

the training samples by removing the leading 10 PCs—a few example images before and after

this removal are depicted in the Appendix of [FW20]. A close agreement between the observed

and limit spectra is displayed in Figure 2.3, for both KKKCK and KKKNTK. Without removing these

leading 10 PCs, there is still a close agreement for KKKCK but a deviation from the theoretical

prediction for KKKNTK. This suggests that the approximation in Lemma 7 is sensitive to large but

low-rank perturbations of X .

In conclusion, we analyze the limiting eigenvalue distributions of CK and NTK for linear-

width neural networks at random initialization. These results can be viewed as a benchmark for

spectral analysis of trained neural network models. In the following chapters, we will extend
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these results from different perspectives. Here, we derive the convergence of empirical eigenvalue

distribution of CK to a deformed Marčenko-Pastur law, globally. Chapter 3 will address the

possibility of spikes in CK, i.e. extreme eigenvalues of the CK which converge outside the

bulk of deformed Marčenko-Pastur law. In Chapter 4, we will analyze the limiting eigenvalue

distributions of CK and NTK when the width is much larger than the sample size. Additionally, in

Section 2.11, we only present the spectra of CK and NTK at random initialization, but the spectra

behavior for trained neural networks is more intriguing for deep learning theory. In Chapter 5,

we will further explore the spectral behavior of CK and NTK matrices during the training process

and compare with the results of limiting spectra at initialization from this Chapter.
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Chapter 3

Spike Analysis for Linear-Width Multi-
Layer NNs

In this Chapter, we study the spike eigenvalues of the CK matrix at random initialization.

It is worth noting that while Chapter 2 establishes the weak convergence of the empirical spectral

measure, the precise behavior of “spike” eigenvalues that are separated from the spectral bulk

remains largely unexplored. In learning applications, these spike eigenvalues and corresponding

eigenvectors are often the primary spectral features (signal) of interest, because they pertain

to low-rank structure of the underlying learning problem (e.g., class labels or the direction

of the target function). For the linearly defined spiked covariance model XXX = ZZZΣΣΣ
1/2 ∈ Rn×d ,

whose dependence across features is induced by a linear map ΣΣΣ
1/2(·) applied to ZZZ having i.i.d.

coordinates, classical work in random matrix theory provides a quantitative description of the

spike eigenvalue/eigenvector behavior [Joh01, BS06, BGN12, BKYY16]. In this Chapter, we

establish an analogous characterization of spiked spectral structure for the CK, motivated in part

by the following applications:

Real data often contain low-dimensional structure despite the high ambient dimension-

ality [LV07, HTFF09, PZA+21], and the leading eigenvectors of the input covariance matrix may

be good predictors of the training labels. Common examples where the input features exhibit

a low-dimensional spiked structure include Gaussian mixture models [LGC+21a, RGKZ21,

BAGJ23] and the block-covariance setting of [GMMM20, BES+23, MHWSE23]. Assuming
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that the input data XXX has informative spikes eigenvectors, we ask the natural question:

How does the low-dimensional signal propagate through nonlinear layers of the NN?

When do we observe a similar spiked structure in the CK matrix?

3.1 Related Work

Eigenvalues of nonlinear random matrices.

Global convergence of the empirical eigenvalue distribution of nonlinear kernel matrices

has been studied in both proportional and polynomial scaling regimes [EK10, CS13, FM19,

LY22, DLMY23]. Building upon related techniques, recent works characterized the spectrum

of the CK matrix [PW17, LLC18, Péc19] and the neural tangent kernel (NTK) matrix [MZ20,

AP20], with generalizations to deeper networks studied in [FW20] and [Cho23].

[BP22] gave a precise characterization of the largest eigenvalue in a one-hidden-layer CK

matrix when the input data XXX and weight matrix WWW both have i.i.d. entries, identifying possible

uninformative spike eigenvalues when the nonlinear activation is not an odd function. [GKK+23]

and [Fel23a] recently characterized spiked eigenstructure in models where an activation is applied

to a spiked Wigner matrix or rectangular information-plus-noise matrix entrywise, for possibly

growing spike sizes and activations having degenerate information/Hermite coefficients.

Precise error analysis of NNs.

An important application of spectral analyses of the CK matrix is the precise computation

of generalization error of random features regression, first performed for two-layer models

in proportional scaling regimes [LLC18, MM22] and later extended to deep random features

models [SCDL23, BPH23] and polynomial scaling regimes [GMMM21, XHM+22]. These risk

analyses reveal a Gaussian equivalence principle, where generalization error coincides with

that of a Gaussian covariates model, and this equivalence has been extended to other settings of

nonlinear (regularized) empirical risk minimization [HL20, GLR+21, MS22].

Going beyond random features, [BES+22] derived the precise asymptotics of represen-

tation learning in a two-layer NN when the first-layer weights are trained by one (or finitely
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many) gradient descent steps; see also [DLS22, BES+23, DKL+23]. The computation follows

from an information-plus-noise characterization of the weight matrix due to a low-rank gradient

update. [MLHD23] derived a corresponding information-plus-noise decomposition of the CK

matrix defined by the resulting trained weights, in an asymptotic regime different from ours

where the learning rate and spike eigenvalues diverge. [BAGHJ23] examined the emerging spike

eigenstructure in the NN Hessian that arises during SGD training.

Eigenvalues of sample covariance matrices.

Asymptotic spectral analyses of sample covariance matrices have a long history in random

matrix theory [MP67b, Sil95, SB95, BS98], with the strongest known results in the linearly

defined model XXX = ZZZΣΣΣ
1/2, see e.g. [BEK+14, KY17]. Outside of this linear setting, [SV13] and

[CT18] develop sharp bounds for the extremal eigenvalues with isotropic population covariance,

and [BX22] develop eigenvalue rigidity and Tracy-Widom fluctuation results for isotropic and

log-concave distributions.

The spiked covariance model was introduced in [Joh01]. [BAP05, BS06, Pau07] initiated

the study of spiked eigenstructure and phase transition phenomena for spiked covariance matrices

with isotropic bulk covariance. [Péc06, BGN11, BGN12, Cap13, Cap18] studied spiked eigen-

structure in related Wigner and information-plus-noise models. Closely related to our work are

the results of [BY12] that characterize spike eigenvalues in linearly defined models XXX = ZZZΣΣΣ
1/2

with general population covariance ΣΣΣ, and we extend this characterization to nonlinear settings.

3.2 Propagation of Signal Through Multi-Layer NNs

Consider input features XXX = [xxx1, . . . ,xxxn] ∈Rd×n, where xxxi ∈Rd are independent samples.

Define a L-hidden-layer feedforward neural network by (1.1.3). The Conjugate Kernel (CK) at

each layer ℓ= 1, . . . ,L is given by the Gram matrix

KKKℓ = XXX⊤
ℓ XXX ℓ ∈ Rn×n. (3.2.1)
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In the limit n,d0, . . . ,dL → ∞ with n/dℓ → γℓ ∈ (0,∞) for each ℓ= 0, . . . ,L, under deter-

ministic conditions for the input data XXX and for random weight matrices WWW 1, . . . ,WWW L as specified

below, Chapter 2 showed that the empirical eigenvalue distribution µ̂ℓ of KKKℓ for each ℓ= 1, . . . ,L

satisfies the weak convergence

µ̂ℓ :=
1
n

n

∑
i=1

δλi(KKKℓ) → µℓ a.s. (3.2.2)

for limit measures µ1, . . . ,µL defined as follows: Let µ0 be the limit eigenvalue distribution of

the input gram matrix KKK0 = XXX⊤XXX (c.f. Assumption 4). Then, for ℓ= 1, . . . ,L, let

νℓ−1 = b2
σ ⊗µℓ−1 ⊕ (1−b2

σ ) (3.2.3)

denote the law of b2
σX+(1−b2

σ ) when X∼ µℓ−1 and bσ := Eξ∼N (0,1)[σ
′(ξ )], and define

µℓ = ρ
MP
γℓ

⊠νℓ−1. (3.2.4)

Here, ρMP
γ ⊠ν is deformed Marčenko-Pastur law defined in Chapter 1.

In this section, we provide a precise quantitative characterization of the spike eigenvalues

and eigenvectors of KKKℓ for each ℓ= 1, . . . ,L when the input data XXX has a fixed number of spike

singular values of bounded magnitude. We assume the following conditions for the random

weights, input data, and activation.

Assumption 3. The number of layers L ≥ 1 is fixed, and n,d0, . . . ,dL → ∞ such that

n/dℓ → γℓ ∈ (0,∞) for each ℓ= 0, . . . ,L.

The weights WWW 1, . . . ,WWW L have entries [WWW ℓ]i j
iid∼ N (0,1), independent of each other and of XXX .
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Definition 32. A feature matrix XXX ∈ Rd×n is τn-orthonormal if

∣∣∥xxxα∥−1
∣∣≤ τn,

∣∣∥xxxβ∥−1
∣∣≤ τn,

∣∣xxx⊤α xxxβ

∣∣≤ τn

for all pairs α ̸= β ∈ [n], where {xxxα}n
α=1 are the columns of XXX .

Assumption 4. For some τn > 0 such that limn→∞ τn · n1/3 = 0, XXX ≡ XXX0 is τn-orthonormal

almost surely for all large n. Furthermore, KKK0 = XXX⊤XXX has eigenvalues λ1(KKK0), . . . ,λn(KKK0) (not

necessarily ordered by magnitude) such that for some fixed r ≥ 0, as n,d → ∞,

(a) There exists a compactly supported probability measure µ0 on [0,∞) such that

1
n− r

n

∑
i=r+1

δλi(KKK0) → µ0 weakly a.s.

and for any fixed ε > 0, almost surely for all large n,

λi(KKK0) ∈ supp(µ0)+(−ε,ε) for all i ≥ r+1.

(b) There exist distinct values λ1, . . . ,λr > 0 with λ1, . . . ,λr ̸∈ supp(µ0) such that

λi(KKK0)→ λi a.s. for each i = 1, . . . ,r.

Assumption 5. The activation σ : R→ R is twice differentiable with supx∈R |σ ′(x)|, |σ ′′(x)| ≤

λσ for some λσ ∈ (0,∞). Under ξ ∼ N (0,1), we have E[σ(ξ )] = 0 and E[σ2(ξ )] = 1. Further-

more,

bσ := E[σ ′(ξ )] ̸= 0, E[σ ′′(ξ )] = 0. (3.2.5)

Assumption 3 defines the linear-width asymptotic regime. Similarly to Assumption 1(c),

Assumption 4 requires an orthogonality condition for the input features, and also codifies

our spiked eigenstructure assumption for the input data. We briefly comment on (3.2.5) in
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Assumption 5: The condition bσ ̸= 0 ensures that the linear component of σ(·) is non-degenerate;

if bσ = 0, then spiked eigenstructure does not propagate across the NN layers in our studied

regime of bounded spike magnitudes. The condition E[σ ′′(ξ )] = 0 ensures that KKKℓ does not have

uninformative spike eigenvalues; otherwise, as shown in [BP22], KKKℓ may have spike eigenvalues

even when the input KKK0 has no spiked structure. We assume E[σ ′′(ξ )] = 0 for clarity, to avoid

characterizing also such uninformative spikes across layers. This condition holds, in particular,

for odd activation functions σ(·) such as tanh.

The following theorem first extends Theorem 6 by affirming that the weak convergence

statement (3.2.2) holds under the above assumptions, and furthermore, each KKKℓ has no outlier

eigenvalues outside its limit spectral support when the input KKK0 has no spike eigenvalues.

Theorem 33. Suppose Assumptions 3, 4, and 5 hold. Then for each ℓ= 1, . . . ,L, (3.2.2) holds

weakly a.s. as n → ∞. Furthermore, if the number of spikes is r = 0 in Assumption 4, then for

any fixed ε > 0, almost surely for all large n,

KKKℓ has no eigenvalues outside supp(µℓ)+(−ε,ε).

The main result of this section characterizes the eigenvalues of KKKℓ outside supp(µℓ) when

r ≥ 1. To describe this characterization, define for each ℓ= 1, . . . ,L the domain

Tℓ = {−1/λ : λ ∈ supp(νℓ−1)}

where νℓ−1 is defined by (3.2.3), and define zℓ,ϕℓ : (0,∞)\Tℓ → R by

zℓ(s) =−1
s
+ γℓ

∫
λ

1+λ s
νℓ−1(dλ ), ϕℓ(s) =−

sz′ℓ(s)
zℓ(s)

. (3.2.6)

It is known from the results of [BY12] and [YZB15, Chapter 11] that these are precisely the

functions that characterize the spike eigenvalues and eigenvectors in linear spiked covariance
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models. Set

I0 = {1, . . . ,r}, si,0 =− 1
b2

σ λi +(1−b2
σ )

for i ∈ I0,

where λi and bσ are defined in Assumptions 4 and 5 respectively. Here, I0 records the indices

of the spike eigenvalues of the input Gram matrix KKK0. Then define recursively for ℓ= 1, . . . ,L

Iℓ =
{

i ∈ Iℓ−1 : z′ℓ(si,ℓ−1)> 0
}
, si,ℓ =− 1

b2
σ zℓ(si,ℓ−1)+(1−b2

σ )
for i ∈ Iℓ. (3.2.7)

The condition z′ℓ(si,ℓ−1)> 0 describes the “phase transition” phenomenon for spike eigenvalues

in this model, where spikes i ∈ Iℓ−1 with z′ℓ(si,ℓ−1) > 0 induce spike eigenvalues in the CK

matrix KKKℓ of the next layer, while spikes with z′ℓ(si,ℓ−1)≤ 0 are absorbed into the bulk spectrum

of KKKℓ.

Theorem 34. Suppose Assumptions 3, 4, and 5 hold. Then for each ℓ= 1, . . . ,L:

(a) si,ℓ−1 ∈ (0,∞)\Tℓ for each i ∈ Iℓ−1, so zℓ(si,ℓ−1) and Iℓ are well-defined. Furthermore,

if i ∈ Iℓ (i.e. if z′ℓ(si,ℓ−1)> 0) then zℓ(si,ℓ−1)> 0 and ϕℓ(si,ℓ−1)> 0.

(b) For any fixed and sufficiently small ε > 0, almost surely for all large n, there is a 1-to-1

correspondence between the eigenvalues of KKKℓ outside supp(µℓ)+(−ε,ε) and {i : i ∈Iℓ}.

Denoting these eigenvalues of KKKℓ by {λ̂i,ℓ : i ∈ Iℓ}, for each i ∈ Iℓ as n → ∞,

λ̂i,ℓ → zℓ(si,ℓ−1) a.s.

(c) Let v̂vvi,ℓ be a unit-norm eigenvector of KKKℓ corresponding to its eigenvalue λ̂i,ℓ, and let vvv j

be a unit-norm eigenvector of KKK0 corresponding to its spike eigenvalue λ j(KKK0). Then for

each i ∈ Iℓ and j ∈ I0, as n → ∞,

|v̂vv⊤i,ℓvvv j|2 →
ℓ

∏
k=1

ϕk(si,k−1) ·1{i = j} a.s.
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Moreover, for each i ∈ Iℓ and any unit vector vvv ∈ Rn independent of WWW 1, . . . ,WWW ℓ,

|v̂vv⊤i,ℓvvv|2 −
ℓ

∏
k=1

ϕk(si,k−1) · |vvv⊤i vvv|2 → 0 a.s.

We present the following corollary as a concrete example in which the assumptions of

the theorem are satisfied. The corollary encompasses, for instance, Gaussian mixture models

with a fixed number r of balanced classes, each class having Θ(n) samples.

Corollary 35. Suppose the input data XXX is itself a low-rank signal-plus-noise matrix

XXX =
r

∑
i=1

θiaaaibbb⊤i +ZZZ ∈ Rd×n (3.2.8)

where θ1, . . . ,θr > 0 are fixed distinct signal strengths, aaa1, . . . ,aaar ∈ Rd and bbb1, . . . ,bbbr ∈ Rn are

orthonormal sets of unit vectors, and ZZZ has i.i.d. N (0,1/d) entries. Assume that bbb1, . . . ,bbbr

satisfy the ℓ∞-delocalization condition: for any sufficiently small ε > 0 and all large n,

max
1≤i≤r

∥bbbi∥∞ < n−1/2+ε .

Define ϕℓ(·) and si,ℓ−1 by (3.2.6) and (3.2.7), with the initial measures µ0 = ρMP
γ0

and ν0 =

b2
σ ⊗µ0 ⊕ (1−b2

σ ) and initial spike values λi = (1+θ 2
i )(γ0 +θ 2

i )/θ 2
i for i ∈ I0.

Then for each ℓ= 1, . . . ,L, KKKℓ has a spike eigenvalue corresponding to the input signal

component θi if and only if θi > γ
1/4
0 and i ∈ Iℓ. In this case, its corresponding unit eigenvector

v̂vvi,ℓ satisfies, as n → ∞,

|v̂vv⊤i,ℓbbbi|2 →
ℓ

∏
k=1

ϕk(si,k−1) ·
(

1− γ0(1+θ 2
i )

θ 2
i (θ

2
i + γ0)

)
a.s. (3.2.9)
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Figure 3.1. Spectra of three-layer CK matrices defined by (3.2.1) on GMM input data with r = 3 in
(3.2.8). (a)-(c) are theoretically predicted (red) and empirical (blue) bulk distributions and spikes of KKKℓ

for ℓ= 0,1,2.

Numerical illustration.

A simple illustration of this result for a 3-component Gaussian mixture model is provided

in Figure 3.1. Here, we present the spectra of three-layer CK matrices defined by (3.2.1) with

n= 5000, d0 = d1 = d2 = 15000, and σ ∝ arctan. The input data is a GMM satisfying (3.2.8) with

r = 3, θ1 = 2.0, θ2 = 1.18, and θ3 = 1.0. Observe that, in Figure 3.1, the number of informative

spikes is non-increasing with respect to the depth. Theorem 34 shows that IL ⊆ ·· · ⊆ I0 and

ϕℓ(si,ℓ−1) ∈ (0,1), so the number of spike eigenvalues of KKKℓ induced by KKK0 and the alignment of

the spike eigenvectors of KKKℓ with the true class label vectors {bbbi}r
i=1 are both non-increasing in

the network depth, see also Figure 3.2. In other words, at random initialization, the input signal

diminishes as the depth of the NN increases.

In Figure 3.2(a), we consider multiple-layer NNs at random initialization in (1.1.3)

with varying hidden widths N = 2048,4096,8192,10240, and the activation function σ ∝ tanh

satisfying Assumption 5. Here we propagate a Gaussian mixture data (3.2.8) with r = 1 and

θ1 = 2.5. Figure 3.2(a) presents the eigenvector alignment between the largest eigenvector v̂vv1,ℓ

of the CK matrix KKKℓ with genuine signal bbb1 (class labels) for different layer ℓ= 1, . . . ,8.

Figure 3.2(b) considers a NN with dℓ = 6000 for ℓ= 0,1, . . . ,7 using n = 2000 training

data points sampled from (3.2.8) with r = 1 and θ1 = 1.8. Figure 3.2(b) shows the eigenvector

alignment between the largest eigenvector v̂vv1,ℓ of the CK matrix KKKℓ with genuine signal bbb1
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Figure 3.2. We consider multiple-layer NNs in (1.1.3) on Gaussian mixture data with r = 1, and compute
the alignment between the largest eigenvector of the CK matrix KKKℓ with genuine signal bbb1 (class labels) for
different layer ℓ. (a) NNs at random initialization with varying hidden widths N = 2048,4096,8192,10240.
(b) NNs trained by gradient descent with learning rate η = 0.1 for varying steps t = 0,10,20,50.

(class labels), for different layer ℓ= 0, . . . ,7. Here, we train the NN by gradient descent with

learning rate η = 0.1 for varying steps t = 0,10,20,50; we use the µ-parameterization [YH20] to

encourage feature learning. When t = 0, Figure 3.2(b) presents the initial eigenvector alignment

at different depths, which matches the theoretical solid curve in red from Corollary 35.

In Figure 3.2, all dots are empirical values (over 10 runs) and solid curves represent

theoretical predictions at random initialization from Theorem 34. In summary, we can observe

that Figure 3.2 highlights two remedies to this “curse of depth” at random initialization.

• In Figure 3.2(a) we observe that when the width of NN becomes larger, alignment between

the leading eigenvector of KKKℓ at random initialization and the signal can be preserved across

a larger depth. This illustrates the benefit of overparameterization by increasing the network

width.

• In Figure 3.2(b) we observe that gradient descent training on the weight matrices also restores

and even amplifies the informative signal in the CK matrix of each layer; specifically, after 50

steps of GD training (yellow curve), the alignment between the class labels and the leading

eigenvector of KKKℓ may increase through depth. This demonstrates the benefit of gradient-based

feature learning. In Section 5.4.2 we precisely quantify this improved alignment due to gradient

descent in a simplified two-layer setting.
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In addition, Figure 3.2(b) illustrates that gradient descent training on the parameters also

restores and even amplifies the informative signal in the CK matrix of each layer, demonstrating

the benefit of feature learning. In Section 5.4.2 we precisely quantify this improved alignment

due to gradient descent in a simplified two-layer setting.

3.3 Results For the Nonlinear Spiked Covariance Model

In this section, we state a new random matrix result for nonlinear spiked sample covari-

ance matrices. The proof will be presented in the next section. Theorem 34 for spikes in CK

matrices can then be analyzed by this general random matrix result. In Chapter 5, we will employ

this nonlinear spiked random matrix result again to investigate the trained CK matrix. Before

stating the main results, we first introduce the following notation and proposition.

Stochastic domination notation.

We use the following standard notation for stochastic domination of random variables,

see e.g. [EKY13, Definition 2.4]: For random variables X ≡ X(u) and Y ≡ Y (u)≥ 0 depending

implicitly on N and a parameter u ∈UN , as N → ∞, we write

X ≺ Y or X = O≺(Y ) uniformly over u ∈UN

if, for any fixed ε,D > 0 and all large N,

sup
u∈UN

P
[
|X(u)|> NεY (u)

]
< N−D.

Throughout, “for all large N” means for all N ≥ N0 where N0 may depend on ε,D, any quantities

that are constant in the context of the statement, and convergence rates of the spike eigenvalues

and empirical spectral measures in the given assumptions.

If X = 1{E } is the indicator of an event E ≡ EN , then 1{E } ≺ 0 means P[E ]< N−D for

any fixed D > 0 and all large N. If X and Y are both deterministic, then X ≺Y means |X | ≤ NεY
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(deterministically) for any ε > 0 and all large N. For an event E ≡ EN , we will write

X = OE
≺(Y )

as shorthand for X ·1{E } ≺ Y .

We will use the following basic properties often implicitly.

Proposition 36. Suppose X ≺ Y uniformly over u ∈UN .

(a) If |UN | ≤ NC for a constant C > 0, then for any fixed ε,D > 0 and all large N,

P
[
there exists u ∈UN with |X(u)| ≥ NεY (u)

]
≤ N−D.

(b) If |UN | ≤ NC for a constant C > 0, then ∑u∈UN X(u)≺ ∑u∈UN Y (u).

(c) If |UN | ≤C for a constant C > 0, then ∏u∈UN X(u)≺ ∏u∈UN Y (u).

(d) If Y is deterministic, and E[X2] ≤ NC and Y ≥ N−C for a constant C > 0, then also

E[|X |]≺ Y uniformly over u ∈UN .

Proof. The first three statements follow from a union bound over UN . For the last statement, for

any fixed ε > 0, observe that

E|X | ≤ Nε/2Y +E
[
|X |1{|X |> Nε/2Y}

]
≤ Nε/2Y +E[X2]1/2P[|X |> Nε/2Y ]1/2.

Applying E[X2]≤ NC, Y ≥ N−C, and P[|X |> Nε/2Y ]< N−D for sufficiently large D > 0 shows

that the second term is less than Nε/2Y for all large N, hence E|X |< NεY .
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3.3.1 Deterministic Equivalent for the Resolvent

We consider the sample covariance and Gram matrix

KKK = GGG⊤GGG ∈ Rn×n, K̃KK = GGGGGG⊤ ∈ RN×N , where GGG =
1√
N
[ggg1, . . . ,gggN ] ∈ RN×n.

The following are our basic assumptions, where we recall that 1{E } ≺ 0 means P[E ]≤ N−D for

any fixed D > 0 and all large N.

Assumption 6. The rows of GGG are independent and satisfy E[gggi] = 0 and E[gggiggg
⊤
i ] = ΣΣΣ for all

i ∈ [N], such that:

(a) There exist constants C,c > 0 such that c < n/N <C and ∥ΣΣΣ∥<C.

(b) There exists a constant B > 0 such that 1{∥KKK∥> B} ≺ 0.

(c) Uniformly over deterministic matrices AAA ∈ Cn×n and over i ̸= j ∈ [N],

ggg⊤i AAAgggi −E[ggg⊤i AAAgggi]≺ ∥AAA∥F , ggg⊤i AAAggg j ≺ ∥AAA∥F .

(d) For any integer α > 0, there exists a constant C =C(α)> 0 such that E[∥gggi∥α ]≤ NC.

Denote the finite-N dimension ratio and empirical eigenvalue distribution of ΣΣΣ by

γN =
n
N
, νN =

1
n

n

∑
i=1

δλi(ΣΣΣ). (3.3.1)

Let

µN = ρ
MP
γN

⊠νN , µ̃N = γN µN +(1− γN)δ0.

Denote the Stieltjes transforms of µN , µ̃N by mN(z), m̃N(z). These are characterized exactly as in

(1.2.4) with (γN ,νN) in place of (γ,ν).
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We first establish that with high probability, KKK and K̃KK have no outlier eigenvalues far

from the support set

SN = supp(µN)∪{0}= supp(µ̃N)∪{0}. (3.3.2)

Theorem 37. Suppose Assumption 6 holds. Then for any fixed ε > 0,

1
{

KKK has an eigenvalue outside SN +(−ε,ε)
}
≺ 0.

In asymptotic settings where νN → ν and µN → µ weakly and ΣΣΣ has no spike eigenvalues,

this set SN will converge to S := supp(µ)∪{0}. In general, SN may contain intervals around

spike eigenvalues of KKK that are separated from supp(µ)∪{0} if ΣΣΣ has a spiked structure, and

this will be clarified in the subsequent section.

Next, we establish a deterministic equivalent approximation for the resolvent of KKK, for

spectral arguments separated from this support set SN . Let us denote by

RRR(z) = (KKK − zIII)−1, mKKK(z) =
1
n

TrRRR(z)

the resolvent and Stieltjes transform of KKK for z ̸∈ supp(µN). For any ε > 0, define the domain

UN(ε) =
{

z ∈ C : |z| ≤ ε
−1, dist(z,SN)≥ ε

}
. (3.3.3)

Theorem 38. Suppose Assumption 6 holds. Then for any fixed ε > 0, uniformly over z ∈UN(ε)

and over deterministic matrices AAA ∈ Cn×n, we have

mKKK(z)−mN(z)≺
1
N
, Tr

[
RRR(z)AAA− (−zm̃N(z)ΣΣΣ− zIII)−1AAA

]
≺ 1√

N
∥AAA∥F .

For spectral arguments z ∈ C\R+ separated from the positive real line, such a result has

been shown recently in [Cho22, SCDL23] (using different proof techniques). We use Theorem
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37 as an input to establish this approximation also for spectral arguments in R+ \SN , as such

a result (and its extension to a generalized resolvent) is needed for our analysis of spiked

eigenstructure to follow.

3.3.2 Spike Eigenvalues and Eigenvectors

Now we consider an asymptotic setting with a specific spiked structure for the population

covariance matrix ΣΣΣ, having a fixed number of spikes outside the support of the weak limit of its

spectral law. This assumption is summarized as follows.

Assumption 7. ΣΣΣ has eigenvalues λ1(ΣΣΣ), . . . ,λn(ΣΣΣ) (not necessarily ordered by magnitude)

where, for a fixed integer r ≥ 0, as N → ∞:

(a) n/N → γ ∈ (0,∞).

(b) There exists a probability measure ν with compact support in (0,∞), such that

1
n− r

n

∑
i=r+1

δλi(ΣΣΣ) → ν weakly.

Furthermore, for any fixed ε > 0 and all large N,

λi(ΣΣΣ) ∈ supp(ν)+(−ε,ε) for all i ≥ r+1.

(c) There exist distinct values λ1, . . . ,λr > 0 with λ1, . . . ,λr ̸∈ supp(ν) such that

λi(ΣΣΣ)→ λi for all i = 1, . . . ,r.

Under this assumption, we analyze the outlier singular values of GGG and their correspond-

ing singular vectors. Let

γN,0 =
n− r

N
, νN,0 =

1
n− r

n

∑
i=r+1

δλi(ΣΣΣ)
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be the finite-N aspect ratio and population spectral measure corresponding to the bulk component

of ΣΣΣ. Define the laws

µN,0 = ρ
MP
γN,0

⊠νN,0, µ̃N,0 = γN,0µN,0 +(1− γN,0)δ0

and let mN,0(z), m̃N,0(z) be their Stieltjes transforms. In the setting of Assumption 7, we note

that µN,0 → µ = ρMP
γ ⊠ν and µ̃N,0 → µ̃ = γµ +(1− γ)δ0 weakly as N → ∞, where the Stieltjes

transforms m(z), m̃(z) of these limits µ, µ̃ are characterized by (1.2.4).

Denote the limit support set

S = supp(µ)∪{0}= supp(µ̃)∪{0}. (3.3.4)

Under Assumption 7 when r = 0, i.e. ΣΣΣ does not have spike eigenvalues, the following is a

corollary of Theorem 37. A similar “no outlier” statement has been shown for linearly defined

sample covariance models in [BS98].

Corollary 39. Suppose Assumptions 6 and 7 hold, where r = 0. Then for any fixed ε > 0,

1
{

KKK has an eigenvalue outside S +(−ε,ε)
}
≺ 0.

We now give a more quantitative description of the spike eigenvalues of KKK = GGG⊤GGG and

corresponding singular vectors of GGG when there are possibly spike eigenvalues in ΣΣΣ. Define the

domain

TN,0 = {0}∪{−1/λ : λ ∈ supp(νN,0)}.

For m̃ ∈ C\TN,0, define the functions

zN,0(m̃) =− 1
m̃
+ γN,0

∫
λ

1+λ m̃
dνN,0(λ ), ϕN,0(m̃) =−

m̃z′N,0(m̃)

zN,0(m̃)
. (3.3.5)
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We note that under Assumption 7, the domain TN,0 converges in Hausdorff distance to T

as defined in (1.2.5). We will verify in the proof (c.f. Lemma 51) that zN,0(m̃) → z(m̃) and

z′N,0(m̃) → z′(m̃) for each fixed m̃ ∈ C \T , where z(·) is as defined in (1.2.6). Then also

ϕN,0(m̃)→ ϕ(m̃) for the limiting function

ϕ(m̃) =−m̃z′(m̃)

z(m̃)
. (3.3.6)

Theorem 40. Suppose Assumptions 6 and 7 hold. Let

I =
{

i ∈ {1, . . . ,r} : z′(−1/λi)> 0
}
.

(a) For any sufficiently small constant ε > 0 and all large N, on an event E ≡ EN satisfying

1{E c} ≺ 0, there is a 1-to-1 correspondence between the eigenvalues of KKK outside S +

(−ε,ε) and {λi : i ∈ I }. Denoting these eigenvalues of KKK by {λ̂i : i ∈ I }, we have

λ̂i − zN,0(−1/λi(ΣΣΣ)) = OE
≺

(
1√
N

)

for each i ∈ I , where zN,0(−1/λi(ΣΣΣ))→ z(−1/λi)> 0 as N → ∞.

(b) On this event E , for each i ∈ I , let v̂vvi ∈ Rn be a unit-norm eigenvector of KKK (i.e. right sin-

gular vector of GGG) corresponding to its eigenvalue λ̂i, and let vvvi be a unit-norm eigenvector

of ΣΣΣ corresponding to λi(ΣΣΣ). Then, uniformly over (deterministic) unit vectors vvv ∈ Rn,

|vvv⊤v̂vvi|−
√

ϕN,0(−1/λi(ΣΣΣ)) · |vvv⊤vvvi|= OE
≺

(
1√
N

)
(3.3.7)

where ϕN,0(−1/λi(ΣΣΣ)) → ϕ(−1/λi) > 0 as N → ∞. In particular, for each i ∈ I ,

|vvv⊤i v̂vvi|2 → ϕ(−1/λi) and sup j∈[n]: j ̸=i |vvv⊤j v̂vvi|2 → 0 almost surely as N → ∞.

(c) Let uuu = 1√
N
(u1, . . . ,uN)

⊤ ∈ RN be a random vector such that [uuu,GGG] ∈ RN×(n+1) has inde-
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pendent rows also satisfying Assumption 6. Denote by E[uggg] ∈ Rn the common value of

E[u jggg j] for all j ∈ [N].

On this event E , for each i ∈ I , let ûuui ∈ RN be a unit-norm eigenvector of K̃KK (i.e. left

singular vector of GGG) corresponding to its eigenvalue λ̂i, and let vvvi be the eigenvector of ΣΣΣ

as in part (b). Then

|uuu⊤ûuui|−
√

zN,0(−1/λi(ΣΣΣ))ϕN,0(−1/λi(ΣΣΣ))

λi(ΣΣΣ)
·
∣∣∣E[uggg]⊤vvvi

∣∣∣= OE
≺

(
1√
N

)
. (3.3.8)

3.4 Proof Ideas of Theorem 40

Statements (a–b) in Theorem 40 are known in a linear setting gggi = ΣΣΣ
1/2zzzi when zzzi has

i.i.d. entries, see e.g. [BY12] and [YZB15, Theorems 11.3 and 11.5]. The above theorem thus

verifies an exact asymptotic equivalence between spiked spectral phenomena in a nonlinear

spiked covariance model with those of a linearly defined (possibly Gaussian) model.

In Section 3.2, each CK matrix KKKℓ has (approximately) the structure of the above matrix

KKK over the randomness of WWW ℓ, conditional on the features XXX ℓ−1 of the preceding layer, and

Theorem 34 follows from Theorem 40(a,b). Additionally, in Section 5.4.2, the CK matrix

KKK defined by trained weights has (approximately) this structure over the randomness of X̃XX ,

conditional on WWW trained, and Theorem 105 follows from Theorem 40(a,c).

Proof ideas of Theorem 40.

Analyses in the linearly defined model gggi = ΣΣΣ
1/2zzzi commonly stem from block matrix

inversion identities with respect to the block decompositions

ΣΣΣ =

ΣΣΣr 0

0 ΣΣΣ0

, GGG =

(
GGGr GGG0

)
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where ΣΣΣr contains the spike eigenvalues of ΣΣΣ, and GGGr is independent of GGG0. This independence

does not hold in our setting, and we develop a different “master equation” approach.

Let λ̂ 1/2 be a spike singular value of GGG with corresponding unit singular vectors (ûuu, v̂vv).

We consider the linearized equation

0 =

−λ̂ III GGG⊤

GGG −III


 v̂vv

λ̂ 1/2ûuu

. (3.4.1)

Writing VVV r ∈ Rn×r for the r spike eigenvectors of ΣΣΣ, we define a generalized resolvent

RRR(z,α) =

−zIII −αVVV rVVV⊤
r GGG⊤

GGG −III


−1

,

add to (3.4.1) the quantity −α

VVV r

0

 ·VVV⊤
r v̂vv on both sides for some large α > 0, and rewrite this

as  v̂vv

λ̂ 1/2ûuu

=−α RRR(λ̂ ,α)

VVV r

0

 ·VVV⊤
r v̂vv. (3.4.2)

We will show that RRR(z,α) exists and is bounded in operator norm for any z separated from

the limit bulk spectral support of KKK and any large enough α > 0. Then, multiplying (3.4.2) by

(VVV⊤
r 0) and applying a block matrix inversion identity,

VVV⊤
r v̂vv =−α

VVV r

0


⊤

RRR(λ̂ ,α)

VVV r

0

 ·VVV⊤
r v̂vv =−αVVV⊤

r

(
GGG⊤GGG− λ̂ III −αVVV rVVV⊤

r

)−1
VVV r ·VVV⊤

r v̂vv.

As a result, spike eigenvalues λ̂ are roots z = λ̂ of the master equation

det
(

IIIr +αVVV⊤
r

(
GGG⊤GGG− zIII −αVVV rVVV⊤

r

)−1
VVV r

)
= 0,
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for any fixed and large α > 0. Singular vector alignments may be characterized likewise from

(3.4.2).

The core of the proof is an asymptotic analysis of this master equation via a deterministic

equivalent approximation

vvv⊤1 RRR(ΓΓΓ)vvv2 := vvv⊤1 (GGG
⊤GGG−ΓΓΓ)−1vvv2 ≈−vvv⊤1 (ΓΓΓ+ zm̃(z)ΣΣΣ)−1vvv2 (3.4.3)

for any deterministic unit vectors vvv1,vvv2 ∈ Rn and low-rank perturbations ΓΓΓ of zIII, where m̃(z)

is the Stieltjes transform of the “companion” limit measure µ̃ for the eigenvalue distribution

of GGGGGG⊤ ∈ RN×N . We extend results of [Cho22, SCDL23] by establishing this approximation

not only for ΓΓΓ = zIII but also perturbations thereof, and for spectral arguments z ∈ C\ supp(µ)

that may belong to the positive real line. The latter extension requires showing, a priori, that all

eigenvalues of KKK = GGG⊤GGG fall close to supp(µ) in the absence of spiked structure. We show this

by adapting an argument of [BS98] and using a fluctuation averaging lemma described below.

Let us conclude with a brief discussion of our proof of (3.4.3): From manipulations of

the identity

TrBBB = Tr(GGG⊤GGG−ΓΓΓ)RRR(ΓΓΓ)BBB =−TrRRR(ΓΓΓ)BBBΓΓΓ+
1
N

N

∑
i=1

ggg⊤i RRR(ΓΓΓ)BBBgggi

for appropriately chosen matrices BBB ∈ Cn×n, the Sherman-Morrison (leave-one-out) formula for

matrix inversion applied to RRR(ΓΓΓ), and the concentration of bilinear forms in gggi, one may show

vvv⊤1 (ΓΓΓ+ zm̃(z)ΣΣΣ)−1vvv2 ≈−vvv⊤1 RRR(ΓΓΓ)vvv2 +
1

1+N−1 TrΣΣΣRRR(ΓΓΓ)
· 1

N

N

∑
i=1

(1−Egggi)Ti (3.4.4)

where Ti = ggg⊤i RRR(i)(ΓΓΓ)vvv2 · vvv⊤1 (ΓΓΓ+ zm(i)
K̃KK
(ΓΓΓ)ΣΣΣ)−1gggi. Here, RRR(i)(ΓΓΓ) and m(i)

K̃KK
(ΓΓΓ) are generalized

leave-one-out resolvents and empirical Stieltjes transforms defined by {ggg j} j ̸=i, and Egggi is the

partial expectation over only gggi. Under our assumptions for gggi, each error term (1−Egggi)Ti has
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mean 0 and O(1) fluctuations. In the next section, we develop a fluctuation-averaging lemma

using recursive applications of the Sherman-Morrison-Woodbury identity to further resolve the

dependence of RRR(i)(ΓΓΓ) and m(i)
K̃KK
(ΓΓΓ) on fixed subsets of rows {ggg j} j ̸=i, to show that the errors

(1−Egggi)Ti are weakly correlated across i ∈ [N]. Hence their average has a mean 0 and fluctuates

on the asymptotically negligible scale of O(N−1/2), and applying this to (3.4.4) shows (3.4.3).

3.5 Analysis of the Resolvent

We now prove the results of Section 3.3.1. Section 3.5.1 first develops a fluctuation

averaging lemma for the sample covariance model. Section 3.5.2 applies this lemma within

the arguments of [BS98], to prove the “no outliers” result of Theorem 37. Section 3.5.3

uses Theorem 37 and a second application of the fluctuation averaging lemma to prove the

deterministic equivalent approximation of Theorem 38.

3.5.1 Fluctuation Averaging Lemma

Recall the definitions

KKK = GGG⊤GGG, K̃KK = GGGGGG⊤.

For S ⊂ [N], let GGG(S) ∈R(N−|S|)×n be the matrix obtained by removing the rows of GGG correspond-

ing to i ∈ S, and define

KKK(S) = GGG(S)⊤GGG(S) =
1
N ∑

i∈[N]\S
gggiggg

⊤
i ∈ Rn×n.

Then, for ΓΓΓ ∈ Cn×n, define

RRR(S)(ΓΓΓ) = (KKK(S)−ΓΓΓ)−1, m(S)
KKK (ΓΓΓ) =

1
n

TrRRR(S)(ΓΓΓ),

m̃(S)
KKK (ΓΓΓ) = γNm(S)

KKK (ΓΓΓ)+(1− γN)

(
−1

z

)
=

1
N

TrRRR(S)(ΓΓΓ)+
(

1− n
N

)(
−1

z

)
.

(3.5.1)
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Importantly, these quantities are independent of {gggi : i∈ S}. We say that RRR(S)(ΓΓΓ) exists (and hence

also m(S)
KKK , m̃(S)

KKK exist) when KKK(S)−ΓΓΓ is invertible. For simplicity, we write RRR = RRR /0, RRR(i) = RRR({i}),

RRR(Si) = RRR(S∪{i}), and similarly for mKKK and m̃KKK .

Lemma 41. Suppose Assumption 6 holds. Suppose also that there are constants C0,c0,δ ,υ > 0,

N-dependent domains U ⊂C\{0} and DΓ,DA ⊆Cn×n, and N-dependent maps ΦN : DΓ×DA →

(N−υ ,Nυ) and ΨN : DΓ → (N−υ ,N1−δ ), such that for any fixed L ≥ 1, the events

E (z,ΓΓΓ,AAA,S) =
{

RRR(S)(ΓΓΓ) exists, ∥RRR(S)(ΓΓΓ)AAA∥F ≤ ΦN(ΓΓΓ,AAA), ∥RRR(S)(ΓΓΓ)∥F ≤ ΨN(ΓΓΓ),

∥(z−1
ΓΓΓ+ m̃(S)

KKK (ΓΓΓ)ΣΣΣ)−1∥ ≤C0, and |1+N−1ggg⊤j RRR(S)(ΓΓΓ)ggg j| ≥ c0 for all j ∈ S
}

(3.5.2)

satisfy 1{E (z,ΓΓΓ,AAA,S)c} ≺ 0 uniformly over z ∈U, ΓΓΓ ∈ DΓ, AAA ∈ DA, and S ⊂ [N] with |S| ≤ L.

Then, denoting by Egggi the partial expectation over only gggi (i.e. conditional on {ggg j} j ̸=i),

also uniformly over z ∈U, ΓΓΓ ∈ DΓ, and AAA ∈ DA,

1
N

N

∑
i=1

(1−Egggi)
[
ggg⊤i RRR(i)(ΓΓΓ)AAA(z−1

ΓΓΓ+ m̃(i)
KKK (ΓΓΓ)ΣΣΣ)−1gggi

]
≺ max

(
ΨN(ΓΓΓ)

N
,

1√
N

)
·ΦN(ΓΓΓ,AAA).

(3.5.3)

We remark that applying Assumption 6(c) and the conditions of E (z,ΓΓΓ,AAA, i) separately

to each summand of the left side of (3.5.3) gives the naive bound

1
N

N

∑
i=1

(1−Egggi)[ggg
⊤
i RRR(i)(ΓΓΓ)AAA(z−1

ΓΓΓ+ m̃(i)
KKK (ΓΓΓ)ΣΣΣ)−1gggi]

≺ max
1≤i≤N

∥RRR(i)(ΓΓΓ)AAA∥F · ∥(z−1
ΓΓΓ+ m̃(i)

KKK (ΓΓΓ)ΣΣΣ)−1∥ ≺ ΦN(ΓΓΓ,AAA).

The content of the lemma is to improve this by the additional factor of max(ΨN(ΓΓΓ)
N , 1√

N
)≪ 1.

In this work, we will apply Lemma 41 only to spectral arguments z with O(1)-separation

from supp(µN) (and matrices ΓΓΓ = zIII or a finite-rank perturbation thereof), in which case we will

take ΨN(ΓΓΓ) =C/
√

N for a constant C > 0. For full-rank matrices AAA having bounded operator
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norm, we will also take ΦN(ΓΓΓ,AAA) = C/
√

N, whereas for finite-rank matrices AAA we will take

ΦN(ΓΓΓ,AAA) = C. We state the result here more abstractly, as it may be of independent interest

to prove local laws in this nonlinear sample covariance model for spectral arguments z that

approach supp(µN).

In the remainder of this section, we prove Lemma 41. Fix z ∈U , ΓΓΓ ∈ DΓ, and AAA ∈ DA,

and write as shorthand

RRR(S) = RRR(S)(ΓΓΓ), m̃(S) = m̃(S)
KKK (ΓΓΓ), ΩΩΩ

(S) = (z−1
ΓΓΓ+ m̃(S)

KKK (ΓΓΓ)ΣΣΣ)−1,

ΦN = ΦN(ΓΓΓ,AAA), ΨN = ΨN(ΓΓΓ), E (S) = E (z,ΓΓΓ,AAA,S).

All subsequent instances of ≺ will be implicitly uniform over z ∈U , ΓΓΓ ∈DΓ, and AAA ∈DA. Define

the quantities, for i ∈ S, j,k ∈ S\{i}, and d ≥ 0,

Y (S)
i [d] = Tr(gggiggg

⊤
i −ΣΣΣ)RRR(S)AAAΩΩΩ

(S)[ΣΣΣΩΩΩ
(S)]d,

Z(S)
i jk [d] = N−1 Tr(gggiggg

⊤
i −ΣΣΣ)RRR(S)ggg jggg

⊤
k RRR(S)AAAΩΩΩ

(S)[ΣΣΣΩΩΩ
(S)]d,

B(S)
jk = N−1ggg⊤j RRR(S)gggk,

C(S)
jk = N−2ggg⊤j (RRR

(S))2gggk,

Q(S)
j = (1+N−1ggg⊤j RRR(S)ggg j)

−1.

For each L ≥ 1, define also the event

EL =
⋂

S⊂[N]:|S|≤L

E (S). (3.5.4)

Lemma 42. For any fixed L,D ≥ 1, uniformly over S ⊂ [N] with |S| ≤ L, and over i ∈ S and
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j,k ∈ S\{i} and d ≤ D,

Y (S)
i [d] = OE (S)

≺ (ΦN), Z(S)
i jk [d] = OE (S)

≺
(
N−1

ΨNΦN
)
,

B(S)
jk = OE (S)

≺
(
N−1

ΨN
)

for j ̸= k, C(S)
jk = OE (S)

≺
(
N−2

Ψ
2
N
)
, Q(S)

j = OE (S)
≺ (1).

(3.5.5)

Furthermore, for any α > 0, there exists a constant C =C(α,L,D)> 0 such that

E
[
|Y (S)

i [d]|α1{E (S)}
]
< NC, E

[
|Z(S)

i jk [d]|
α1{E (S)}

]
< NC,

E
[
|B(S)

jk |
α1{E (S)}

]
< NC, E

[
|C(S)

jk |α1{E (S)}
]
< NC, E

[
|Q(S)

j |α1{E (S)}
]
< NC.

(3.5.6)

Proof. On the event E (S), we have by definition Q(S)
j ≤ 1/c0, so the two statements for Q(S)

j

hold immediately. The remaining statements of (3.5.6) follow easily from Holder’s inequality,

the moment bounds for ∥gggi∥ in Assumption 6(d), the bound ∥ΣΣΣ∥<C in Assumption 6(a), and

the conditions ∥RRR(S)AAA∥ ≤ ΦN ≤ Nυ , ∥RRR(S)∥F ≤ ΨN ≤ N, and ∥ΩΩΩ
(S)∥ ≤C0 defining E (S).

For the bounds for B(S)
jk and C(S)

jk in (3.5.5), note that when j ̸= k, Assumption 6(c) implies

B(S)
jk ≺ N−1∥RRR(S)∥F and C(S)

jk ≺ N−2∥(RRR(S))2∥F ≤ N−2∥RRR(S)∥2
F . When j = k, Assumption 6(c)

implies also

C(S)
j j ≺ N−2|TrΣΣΣ(RRR(S))2|+N−2∥(RRR(S))2∥F

≤ N−2∥ΣΣΣRRR(S)∥F∥RRR(S)∥F +N−2∥RRR(S)∥2
F ≤ N−2(∥ΣΣΣ∥+1)∥RRR(S)∥2

F .

Then these bounds in (3.5.5) follow from the condition ∥RRR(S)∥F ≤ ΨN defining E (S).

Finally, for the bounds for Y (S)
i [d] and Z(S)

i jk [d] in (3.5.5), observe that for any matrix AAA ∈

Cn×n independent of gggi, we have Tr(gggiggg
⊤
i −ΣΣΣ)AAA ≺ ∥AAA∥F by Assumption 6(c). Then Y (S)

i [d]≺

∥RRR(S)AAAΩΩΩ
(S)[ΣΣΣΩΩΩ

(S)]d∥F ≤ ∥RRR(S)AAA∥F · ∥ΩΩΩ
(S)∥d+1∥ΣΣΣ∥d , so the bound for Y (S)

i [d] in (3.5.5) follows

from the conditions ∥RRR(S)AAA∥F ≤ ΦN and ∥ΩΩΩ
(S)∥ ≤C0 defining E (S). For Z(S)

i jk [d], similarly by
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Assumption 6(c),

Z(S)
i jk ≺ N−1∥RRR(S)ggg jggg

⊤
k RRR(S)AAAΩΩΩ

(S)[ΣΣΣΩΩΩ
(S)]d∥F ≤ N−1∥RRR(S)ggg j∥ · ∥ggg⊤k RRR(S)AAA∥ · ∥ΩΩΩ

(S)∥d+1∥ΣΣΣ∥d.

Applying again Assumption 6(c), we have

∥RRR(S)ggg j∥2 = ggg⊤j (RRR
(S))∗RRR(S)ggg j ≺ |TrΣΣΣ(RRR(S))∗RRR(S)|+∥(RRR(S))∗RRR(S)∥F ≺ ∥RRR(S)∥2

F

and similarly ∥ggg⊤k RRR(S)AAA∥2 ≺ ∥RRR(S)AAA∥2
F . Then the bound for Z(S)

i jk [d] in (3.5.5) follows from the

conditions ∥RRR(S)AAA∥F ≤ ΦN , ∥RRR(S)∥F ≤ ΨN , and ∥ΩΩΩ
(S)∥ ≤C0 defining E (S).

Lemma 43. Fix any L,D≥ 1. Then there exist coefficients α(d,d′,D)∈R such that the following

holds: Uniformly over S ⊂ [N] with |S| ≤ L−1, and over i ∈ S, j,k ∈ S \ {i}, l ∈ [N]\ S, and

d ≤ D, we have

Y (S)
i [d] =

d+⌈D/2⌉

∑
d′=d

α(d,d′,D)
[
C(Sl)

ll Q(Sl)
l

]d′−d(
Y (Sl)

i [d′]−Z(Sl)
ill [d′]Q(Sl)

l

)
+OEL

≺
(
N−D

Ψ
D
NΦN

)
(3.5.7)

Z(S)
i jk [d] =

d+⌈D/2⌉

∑
d′=d

α(d,d′,D)
[
C(Sl)

ll Q(Sl)
l

]d′−d(
Z(Sl)

i jk [d′]−Z(Sl)
ilk [d′]B(Sl)

l j Q(Sl)
l

−Z(Sl)
i jl [d′]B(Sl)

kl Q(Sl)
l +Z(Sl)

ill [d′]B(Sl)
l j B(Sl)

kl (Q(Sl)
l )2

)
+OEL

≺
(
N−D

Ψ
D
NΦN

)
, (3.5.8)

B(S)
jk = B(Sl)

jk −B(Sl)
jl B(Sl)

lk Q(Sl)
l , (3.5.9)

C(S)
jk =C(Sl)

jk −B(Sl)
jl C(Sl)

lk Q(Sl)
l −C(Sl)

jl B(Sl)
lk Q(Sl)

l +B(Sl)
jl C(Sl)

ll B(Sl)
lk (Q(Sl)

l )2, (3.5.10)

Q(S)
j =

⌈D/2⌉

∑
d=1

(
Q(Sl)

j

)d[
(B(Sl)

jl )2Q(Sl)
l

]d−1
+OEL

≺
(
N−D

Ψ
D
N
)
. (3.5.11)

Proof. By the Sherman-Morrison-Woodbury formula, on the event EL where RRR(S) and RRR(Sl) both
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exist, we have

RRR(S) = RRR(Sl)−N−1RRR(Sl)ggglggg
⊤
l RRR(Sl) ·Q(Sl)

l . (3.5.12)

Applying this to each copy of RRR(S) defining B(S)
jk and C(S)

jk yields immediately (3.5.9) and (3.5.10),

as well as the identities

z−1
ΓΓΓ+ m̃(S)

ΣΣΣ = z−1
ΓΓΓ+

(
N−1 TrRRR(S)+(1− γN)(−1/z)

)
ΣΣΣ

= (z−1
ΓΓΓ+ m̃(Sl)

ΣΣΣ)−C(Sl)
ll Q(Sl)

l ΣΣΣ,

1+B(S)
j j = 1+B(Sl)

j j − (B(Sl)
jl )2Q(Sl)

l .

Taking inverses and applying the expansion

(AAA−∆∆∆)−1 =
⌈D/2⌉

∑
d=1

AAA−1(∆∆∆AAA−1)d−1 +(AAA−∆∆∆)−1(∆∆∆AAA−1)⌈D/2⌉,

we obtain

ΩΩΩ
(S) =

⌈D/2⌉

∑
d=1

ΩΩΩ
(Sl)[C(Sl)

ll Q(Sl)
l ΣΣΣΩΩΩ

(Sl)]d−1 +EEE, (3.5.13)

Q(S)
j =

⌈D/2⌉

∑
d=1

Q(Sl)
j [(B(Sl)

jl )2Q(Sl)
l Q(Sl)

j ]d−1 + e, (3.5.14)

for remainder terms EEE ∈ Cn×n and e ∈ C satisfying, by the bounds of Lemma 42,

∥EEE∥= OEL
≺

(
|C(Sl)

ll |D/2
)
= OEL

≺
(
(N−1

Ψ)D), |e|= OEL
≺

(
|(B(Sl)

jl )2|D/2
)
= OEL

≺
(
(N−1

Ψ)D).
In particular, (3.5.14) shows (3.5.11). Applying (3.5.13) to the definitions of Y (S)

i [d] and Z(S)
i jk [d],
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we get

Y (S)
i [d] = Tr(gggiggg

⊤
i −ΣΣΣ)RRR(S)AAA

(
⌈D/2⌉

∑
d′=1

ΩΩΩ
(Sl)[C(Sl)

ll Q(Sl)
l ΣΣΣΩΩΩ

(Sl)]d
′−1 +EEE

)

·

(
ΣΣΣ

[
⌈D/2⌉

∑
d′=1

ΩΩΩ
(Sl)[C(Sl)

ll Q(Sl)
l ΣΣΣΩΩΩ

(Sl)]d
′−1 +EEE

])d

,

Z(S)
i jk [d] =

1
N

Tr(gggiggg
⊤
i −ΣΣΣ)RRR(S)ggg jggg

⊤
k RRR(S)AAA

(
⌈D/2⌉

∑
d′=1

ΩΩΩ
(Sl)[C(Sl)

ll Q(Sl)
l ΣΣΣΩΩΩ

(Sl)]d
′−1 +EEE

)

·

(
ΣΣΣ

[
⌈D/2⌉

∑
d′=1

ΩΩΩ
(Sl)[C(Sl)

ll Q(Sl)
l ΣΣΣΩΩΩ

(Sl)]d
′−1 +EEE

])d

.

For any matrix BBB ∈Cn×n independent of gggi, observe that Tr(gggiggg
⊤
i −ΣΣΣ)RRR(S)AAABBB = OE (S)

≺ (ΦN∥BBB∥)

and Tr(gggiggg
⊤
i −ΣΣΣ)RRR(S)ggg jggg

⊤
k RRR(S)AAABBB = OE (S)

≺ (ΨNΦN∥BBB∥) by the same arguments as those bound-

ing Y (S)
i [d] and Z(S)

i jk [d] in the proof of Lemma 42. Then, expanding the above and absorb-

ing all terms containing EEE and all terms with combined power of C(Sl)
ll larger than D/2 into

OE (S)
≺

(
N−DΨD

NΦN
)

remainders, we obtain for some coefficients α(d,d′,D) ∈ R that

Y (S)
i [d] = Tr(gggiggg

⊤
i −ΣΣΣ)RRR(S)AAA

⌈D/2⌉

∑
d′=0

α(d,d′,D)[C(Sl)
ll Q(Sl)

l ]d
′
ΩΩΩ

(Sl)[ΣΣΣΩΩΩ
(Sl)]d+d′

+OE (S)
≺

(
N−D

Ψ
D
NΦN

)
,

Z(S)
i jk [d] =

1
N

Tr(gggiggg
⊤
i −ΣΣΣ)RRR(S)ggg jggg

⊤
k RRR(S)AAA

⌈D/2⌉

∑
d′=0

α(d,d′,D)[C(Sl)
ll Q(Sl)

l ]d
′
ΩΩΩ

(Sl)[ΣΣΣΩΩΩ
(Sl)]d+d′

+OE (S)
≺

(
N−D

Ψ
D
NΦN

)
.

Finally, applying the Sherman-Morrison-Woodbury formula (3.5.12) to expand each copy of

RRR(S), and re-indexing the summations by d +d′ 7→ d′, we get (3.5.7) and (3.5.8).

Lemma 44. Fix any L,D ≥ 1. Uniformly over S ⊂ [N] with |S| ≤ L and over i ∈ S, the following

holds: Denote S̄ = S\{i}. Then there exists a collection of monomials Mi,S such that Y (i)
i [0] can
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be approximated as

Y (i)
i [0] = ∑

q∈Mi,S

q
(
{Y (S)

i [d]}d≤⌊D/2⌋,{Z(S)
i jk [d]} j,k∈S̄,d≤⌊D/2⌋,{B(S)

jk } j ̸=k∈S̄,

{C(S)
jk } j,k∈S̄,{Q(S)

j } j∈S̄

)
+OEL

≺
(
N−D

Ψ
D
NΦN

)
. (3.5.15)

Each monomial q ∈ Mi,S is a product of a real-valued scalar coefficient and one or more factors

of the form Y (S)
i [d], Z(S)

i jk [d], B(S)
jk with j ̸= k, C(S)

jk , Q(S)
j for j,k ∈ S̄ and d ≤ ⌊D/2⌋. We have

q = OEL
≺ (ΦN) uniformly over q ∈ Mi,S, and the number of monomials |Mi,S| is most a constant

depending on L,D. Furthermore:

(a) There is exactly one factor of the form Y (S)
i [d] or Z(S)

i jk [d] appearing in q.

(b) The number of factors Z(S)
i jk [d], B(S)

jk , and C(S)
jk appearing in q is no less than the number of

distinct indices of S̄ (not including i) that appear as lower indices across all factors of q.

Proof. We arbitrarily order the indices of S̄ = S \ {i} as l1, l2, . . . , l|S|−1. Beginning with the

monomial Y (i)
i [0], iteratively for j = 1,2, . . . , |S| − 1, we replace all factors with superscript

(il1 . . . l j−1) by a sum of terms with superscript (il1 . . . l j), using the recursions (3.5.7)–(3.5.11).

It is then direct to check that this gives a representation of the form (3.5.15), where:

• Each application of (3.5.7)–(3.5.8) replaces a factor Y (...)
i [d] or Z(...)

i jk [d] by terms having

exactly one such factor. Thus, each monomial q ∈ Mi,S has exactly one factor Y (S)
i [d] or

Z(S)
i jk [d].

• The number of total applications of (3.5.7)–(3.5.11) is bounded by a constant depending on

L,D, so |Mi,S| and the scalar coefficient of each q ∈ Mi,S are both bounded by constants

depending on L and D. Then, by the bounds of (3.5.5), each q ∈ Mi,S satisfies q =

OEL
≺ (ΦN), and the remainder in (3.5.15) is at most OEL

≺
(
N−DΨD

NΦN
)
. If q has the term

Y (S)
i [d] or Z(S)

i [d], then it also has combined power of {C(S)
jk } j,k∈S̄ equal to d, and hence

may be absorbed into the remainder of (3.5.15) if d > D/2.
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• Each term on the right side of (3.5.7)–(3.5.11) that contains the new lower index l has

at least one more factor of the form Z(...)
i jk [d], B(...)

jk , or C(...)
jk than the left side. Thus, each

monomial q ∈ Mi,S is such that the number of distinct lower indices of S̄ across all of its

factors is no greater than the number of its factors of the form Z(...)
i jk [d], B(...)

jk , or C(...)
jk .

Combining these observations yields the lemma.

Proof of Lemma 41. For each ε,D > 0, let us fix an even integer L = L(ε,D) > D/ε . The

assumption of this lemma guarantees 1{E (S)c} ≺ 0 uniformly over S ⊂ [N] with |S| ≤ L. Since

the number of such subsets is at most NL, we may take a union bound (c.f. Proposition 36(a)) to

obtain 1{E c
L} ≺ 0 for the intersection event EL of (3.5.4). Noting that (1−Egggi)[ggg

⊤
i RRR(i)AAAΩΩΩgggi] =

Y (i)
i [0], to prove the lemma, it suffices to show for any ε,D > 0 and all sufficiently large N that

P

[(
1
N

N

∑
i=1

Y (i)
i [0]

)
1{EL}> max

(
ΨN

N
,

1√
N

)
ΦN ·Nε

]
< N−D. (3.5.16)

In anticipation of applying Markov’s inequality, we analyze

E

( N

∑
i=1

Y (i)
i [0]

)L

1{EL}

=
N

∑
i1,...,iL=1

E

[
L

∏
l=1

Y (il)
il [0]1{EL}

]
︸ ︷︷ ︸

:=E[m(i1,...,iL)]

. (3.5.17)

Fix any index tuple (i1, . . . , iL). Letting S = {i1, . . . , iL} be the set of distinct indices in this tuple,

we apply Lemma 44 to each term Y (il)
il [0], with this set S and with D = L. This gives

m(i1, . . . , iL) = ∑
q(1)∈M (i1,S)

. . . ∑
q(l)∈M (il ,S)

L

∏
l=1

q(l) ·1{EL}+O≺
(
(N−1

ΨN)
L
Φ

L
N
)
, (3.5.18)

where each M (il,S) is the collection of monomials arising in the approximation of Y (il)
il [0], and

we have applied q(l) = OEL
≺ (ΦN) to bound the remainder. Observe that by (3.5.6) and Holder’s

inequality, we have E[|m(i1, . . . , iL)|2]≤NC and E[|∏L
l=1 q(l) ·1{EL}|2]≤NC for all q(1), . . . ,q(L)
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and a constant C > 0. By this and the given condition ΨN ,ΦN ≥ N−υ , we may take expectations

in (3.5.18) using Proposition 36(d) to get

E[m(i1, . . . , iL)] = ∑
q(1)∈M (i1,S)

. . . ∑
q(l)∈M (il ,S)

E

[
L

∏
l=1

q(l) ·1{EL}

]
+O≺

(
(N−1

ΨN)
L
Φ

L
N
)
. (3.5.19)

Now to bound E[∏L
l=1 q(l) ·1{EL}], we consider separately two cases, focusing on those

indices il which appear exactly once in (i1, . . . , iL). In the first case, suppose there is some such

index il that does not appear as a lower index of q(l
′) for any l′ ̸= l. Fixing this set S = {i1, . . . , iL}

and index il ∈ S, let us introduce

E ′ =

{
RRR(S) exists, ∥RRR(S)AAA∥F ≤ ΦN , ∥RRR(S)∥F ≤ ΨN , ∥(z−1

ΓΓΓ+ m̃(S)
ΣΣΣ)−1∥ ≤C0,

and |1+N−1ggg⊤j RRR(S)ggg j| ≥ c0 for all j ∈ S\{il}
}
.

Comparing with the definition of E (S) from (3.5.2), observe that only the last condition defining

E ′ is different (where we do not require the bound for j = il), so that this event E ′ is independent

of gggil . Then EL ⊆ E (S)⊆ E ′, and

E

[
L

∏
l=1

q(l) ·1{EL}

]
= E

[
L

∏
l=1

q(l) ·1{E ′}

]
−E

[
L

∏
l=1

q(l) ·1{E ′}1{E c
L}

]
. (3.5.20)

For the first term of (3.5.20), observe that both {q(l
′) : l′ ̸= l} and E ′ are independent of gggil , and

only the one factor Y (S)
il [d] or Z(S)

il jk[d] in q(l) depends on gggil . Then, noting that Egggi[Y
(S)
i [d]] = 0

and Egggi[Z
(S)
i jk [d]] = 0, the first term of (3.5.20) is 0. For the second term of (3.5.20), observe that

all statements of (3.5.6) continue to hold with E (S) replaced by E ′, except for the bound on

Q(S)
il . But Q(S)

il appears neither in {q(l
′) : l′ ̸= l} nor in q(l), so we may apply Holder’s inequality

to get E[|∏L
l=1 q(l)|21{E ′}] ≤ NC for a constant C > 0. Then, applying Cauchy-Schwarz and

1{E c
L} ≺ 0, the second term of (3.5.20) is bounded by N−D′

for any fixed constant D′ > 0 and
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all large N. Thus,

E

[
L

∏
l=1

q(l) ·1{EL}

]
≤ N−D′

. (3.5.21)

In the second case, every index il that appears exactly once in (i1, . . . , iL) appears as a

lower index of q(l
′) for some l′ ̸= l. Call the number of such indices K. Then condition (b)

of Lemma 44 implies that the total number of factors of the forms Z(S)
i jk [d], B(S)

jk for j ̸= k, and

C(S)
jk across all monomials q(1), . . . ,q(L) is at least K. Then, by the bounds of Lemma 42 and

Proposition 36(d), we have

E

[
L

∏
l=1

q(l) ·1{EL}

]
≺ (N−1

ΨN)
K

Φ
L
N . (3.5.22)

Under the given condition ΦN ,ΨN ≥ N−υ , we have N−D′ ≤ (N−1ΨN)
KΦL

N for large

enough D′. Then, combining the two cases (3.5.21) and (3.5.22) and applying this back to

(3.5.19), we get

E[m(i1, . . . , iL)]≺ (N−1
ΨN)

K
Φ

L
N (3.5.23)

where K is the number of indices in S = {i1, . . . , iL} that appear exactly once in (i1, . . . , iL). Let J

be the number of distinct indices in S = {i1, . . . , iL} that appear at least twice in (i1, . . . , iL). Then

2J +K ≤ L, and the number of index tuples (i1, . . . , iL) ∈ [N]L with these values of (J,K) is at

most CNJ+K , for a constant C =C(J,K)> 0. Then, applying (3.5.23) back to (3.5.17) yields

E

( N

∑
i=1

Y (i)
i [0]

)L

1{EL}

≺ max
J,K≥0:2J+K≤L

NJ+K · (N−1
ΨN)

K
Φ

L
N

= max
J,K≥0:2J+K≤L

(
√

N)2J
Ψ

K
NΦ

L
N ≤ max(ΨN ,

√
N)L

Φ
L
N .

Finally, by Markov’s inequality, the probability in (3.5.16) is at most

max(ΨN ,
√

N)−L
Φ

−L
N N−εL ·E

( N

∑
i=1

Y (i)
i [0]

)L

1{EL}

≺ N−εL,
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and (3.5.16) follows as desired under our initial choice L = L(ε,D)> D/ε .

3.5.2 No Eigenvalues Outside the Support

We now prove Theorem 37. Let mN(z), m̃N(z) be the Stieltjes transform of the N-

dependent deterministic measures µN , µ̃N . For each z ∈ C+, m̃N(z) is the unique root in C+ to

the equation

z =− 1
m̃N(z)

+ γN

∫
λ

1+λ m̃N(z)
dνN(λ ), (3.5.24)

and mN(z), m̃N(z) are related by m̃N(z) = γNmN(z)+(1− γN)(−1/z). Define the discrete set

TN = {0}∪{−1/λ : λ ∈ supp(νN)}. (3.5.25)

On the domain C\TN , we may define the formal inverse of (3.5.24),

zN(m̃) =− 1
m̃
+ γN

∫
λ

1+λ m̃
dνN(λ ), (3.5.26)

which is a finite-N analogue of (1.2.6). Let SN be the deterministic support defined in (3.3.2),

and let UN(ε) be the spectral domain (3.3.3). The following basic properties of SN and m̃N(z)

are known.

Proposition 45. Suppose Assumption 6(a) holds, and fix any ε > 0. Then there exist constants

C0,c0 > 0, depending only on ε and the constants C,c of Assumption 6(a), such that for all

x ∈ SN we have |x| ≤C, and for all z = x+ iη ∈UN(ε) we have

c < |m̃N(z)|<C, cη ≤ | Im m̃N(z)| ≤Cη , min
λ∈supp(νN)

|1+λ m̃N(z)| ≥ c
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Proof. See [FJ22, Propositions A.3, B.1, B.2].

Let mK̃KK(z) = N−1 Tr(K̃KK − zIII)−1 be the Stieltjes transform of the empirical eigenvalue

distribution of K̃KK = GGGGGG⊤. Since K̃KK and KKK = GGG⊤GGG have the same eigenvalues up to |N −n| 0’s,

we have

mK̃KK(z) = γNmKKK(z)+(1− γN)(−1/z), (3.5.27)

so in particular mK̃KK coincides with m̃( /0)
KKK from (3.5.1). We begin with a preliminary estimate

for the Stieltjes transform mK̃KK(z) when Imz ≥ N−1/11. Similar statements have been shown in

[Sil95, BS98], and we provide an argument here following ideas of [BS98, Section 3] for later

reference.

Lemma 46. Fix any ε > 0, and suppose Assumption 6 holds. Then, uniformly over z = x+ iη ∈

UN(ε) with Imz ≥ N−1/11,

mK̃KK(z)− m̃N(z)≺
1√
Nη4

.

Proof. Let RRR(i) and m̃(i)
KKK be as defined in (3.5.1) with ΓΓΓ = zIII. Applying the Sherman-Morrison-

Woodbury formula

RRR = RRR(i)− N−1RRR(i)gggiggg
⊤
i RRR(i)

1+N−1ggg⊤i RRR(i)gggi
, (3.5.28)

for any matrix BBB ∈ Cn×n we have

TrBBB = Tr(KKK − zIII)RRRBBB =−zTrRRRBBB+
1
N

N

∑
i=1

ggg⊤i RRRBBBgggi

=−zTrRRRBBB+
1
N

N

∑
i=1

ggg⊤i RRR(i)BBBgggi

1+N−1ggg⊤i RRR(i)gggi
. (3.5.29)

Choosing BBB = III in (3.5.29), applying TrRRR = nmKKK = N mK̃KK +(n−N)(−1/z), and rear-

ranging, we obtain the identity

mK̃KK =− 1
Nz

N

∑
i=1

1

1+N−1ggg⊤i RRR(i)gggi
. (3.5.30)
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Now fix any deterministic matrix AAA ∈ Cn×n, define

di =
1
N

ggg⊤i RRR(i)AAA(III +mK̃KKΣΣΣ)−1gggi −
1
N

TrRRRAAA(III +mK̃KKΣΣΣ)−1
ΣΣΣ,

and choose BBB = AAA(III +mK̃KKΣΣΣ)−1 in (3.5.29). Then, applying also the identity (3.5.30), we get

TrAAA(III +mK̃KKΣΣΣ)−1

= − zTrRRRAAA(III +mK̃KKΣΣΣ)−1 − zmK̃KK TrRRRAAA(III +mK̃KKΣΣΣ)−1
ΣΣΣ+

N

∑
i=1

di

1+N−1ggg⊤i RRR(i)gggi

= − zTrRRRAAA+
N

∑
i=1

di

1+N−1ggg⊤i RRR(i)gggi
. (3.5.31)

We proceed to bound di, where (for later purposes) we derive estimates in terms of the

Frobenius norms of RRR,RRRAAA,RRR(i),RRR(i)AAA rather than their operator norms. Note that Assumption

6(c) implies, for any matrix BBB ∈ Cn×n independent of gggi,

∥BBBgggi∥2 = ggg⊤i BBB∗BBBgggi ≺ TrΣΣΣBBB∗BBB+∥BBB∗BBB∥F ≺ ∥BBB∥2
F . (3.5.32)

We have also, by Assumption 6(c) and the Sherman-Morrison-Woodbury formula (3.5.28),

N−1|TrRRRBBB−TrRRR(i)BBB|= N−2|1+N−1ggg⊤i RRR(i)gggi|−1|ggg⊤i RRR(i)BBBRRR(i)gggi|

≺ N−2|1+N−1ggg⊤i RRR(i)gggi|−1
(
|TrΣΣΣRRR(i)BBBRRR(i)|+∥RRR(i)BBBRRR(i)∥F

)
≺ N−2|1+N−1ggg⊤i RRR(i)gggi|−1∥RRR(i)BBB∥F∥RRR(i)∥F . (3.5.33)
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Define di = di,1 +di,2 +di,3 +di,4 where

di,1 = N−1ggg⊤i RRR(i)AAA(III +mK̃KKΣΣΣ)−1gggi −N−1ggg⊤i RRR(i)AAA(III + m̃(i)
KKK ΣΣΣ)−1gggi,

di,2 = N−1ggg⊤i RRR(i)AAA(III + m̃(i)
KKK ΣΣΣ)−1gggi −N−1 TrΣΣΣRRR(i)AAA(III + m̃(i)

KKK ΣΣΣ)−1,

di,3 = N−1 TrΣΣΣRRR(i)AAA(III + m̃(i)
KKK ΣΣΣ)−1 −N−1 TrΣΣΣRRRAAA(III + m̃(i)

KKK ΣΣΣ)−1,

di,4 = N−1 TrΣΣΣRRRAAA(III + m̃(i)
KKK ΣΣΣ)−1 −N−1 TrΣΣΣRRRAAA(III +mK̃KKΣΣΣ)−1.

(3.5.34)

Applying the identity (2.4.3) in Chapter 2, the definition of m̃(i)
KKK in (3.5.1), and the bounds

(3.5.32) and (3.5.33) (the latter with BBB = III),

|di,1| ≤ N−1∥ggg⊤i RRR(i)AAA∥∥(III +mK̃KKΣΣΣ)−1∥∥(m̃(i)
KKK −mK̃KK)ΣΣΣ∥∥(III + m̃(i)

KKK ΣΣΣ)−1∥∥gggi∥

≺ N−5/2|1+N−1ggg⊤i RRR(i)gggi|−1∥RRR(i)AAA∥F∥RRR(i)∥2
F∥(III +mK̃KKΣΣΣ)−1∥∥(III + m̃(i)

KKK ΣΣΣ)−1∥. (3.5.35)

Applying Assumption 6(c),

|di,2| ≺ N−1∥RRR(i)AAA(III + m̃(i)
KKK ΣΣΣ)−1∥F ≤ N−1∥RRR(i)AAA∥F∥(III + m̃(i)

KKK ΣΣΣ)−1∥. (3.5.36)

Applying the Sherman-Morrison-Woodbury identity (3.5.28), |Truuuvvv⊤| ≤ ∥uuu∥∥vvv∥, and (3.5.32),

|di,3| ≤ N−2|1+N−1ggg⊤i RRR(i)gggi|−1∥ΣΣΣRRR(i)gggi∥∥ggg⊤i AAARRR(i)(III + m̃(i)
KKK ΣΣΣ)−1∥

≺ N−2|1+N−1ggg⊤i RRR(i)gggi|−1∥RRR(i)AAA∥F∥RRR(i)∥F∥(III + m̃(i)
KKK ΣΣΣ)−1∥. (3.5.37)

Finally, applying (2.4.3) in Chapter 2, (3.5.33) (with BBB = III), and

|TrAAABBB| ≤ ∥AAA∥F∥BBB∥F ≤
√

N∥AAA∥F∥BBB∥,
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|di,4|= N−1
∣∣∣TrΣΣΣRRRAAA(III + m̃(i)

KKK ΣΣΣ)−1(m̃(i)
KKK −mK̃KK)ΣΣΣ(III +mK̃KKΣΣΣ)−1

∣∣∣
≺ N−5/2|1+N−1ggg⊤i RRR(i)gggi|−1∥RRRAAA∥F∥RRR∥2

F∥(III + m̃(i)
KKK ΣΣΣ)−1∥∥(III +mK̃KKΣΣΣ)−1∥. (3.5.38)

For the current proof, we apply (3.5.31) and the definitions (3.5.34) with AAA = III. Recalling

TrRRR = nmKKK = N mK̃KK +(n−N)(−1/z) and rearranging (3.5.31) with AAA = III, we get the identity

zN(mK̃KK)− z =− 1
mK̃KK

· 1
N

N

∑
i=1

di

1+N−1ggg⊤i RRR(i)gggi
(3.5.39)

where zN(m) = −(1/m) +N−1 TrΣΣΣ(III +mΣΣΣ)−1 is the function defined in (3.5.26). For any

z = x+ iη with η > 0, we have

|z(1+N−1ggg⊤i RRR(i)gggi)| ≥ Im[z(1+N−1ggg⊤i RRR(i)gggi)]≥ Imz = η , (3.5.40)

max(∥RRR∥F ,∥RRR(i)∥F)≤ N1/2 max(∥RRR∥,∥RRR(i)∥)≤ N1/2
η
−1. (3.5.41)

Here, the second inequalities of both (3.5.40) and (3.5.41) follow from the spectral represen-

tations of RRR,RRR(i), i.e. writing (λ j,vvv j)
n
j=1 for the eigenvalues and unit eigenvectors of KKK(i), we

have

Im[zggg⊤i RRR(i)gggi] = Im

[
zggg⊤i

(
n

∑
j=1

1
λ j − z

vvv jvvv⊤j

)
gggi

]
=

n

∑
j=1

Im
z

λ j − z
· (ggg⊤i vvv j)

2

=
n

∑
j=1

λ j Imz
|λ j − z|2

· (ggg⊤i vvv j)
2 ≥ 0,

∥RRR(i)∥=

∥∥∥∥∥ n

∑
j=1

1
λ j − z

vvv jvvv⊤j

∥∥∥∥∥= max
1≤ j≤n

|λ j − z|−1 ≤ η
−1,

and similarly for ∥RRR∥. In particular, (3.5.40) and (3.5.41) imply

(1+N−1ggg⊤i RRR(i)gggi)
−1 ≺ η

−1, ∥RRR∥F ,∥RRR(i)∥F ≺ N1/2
η
−1. (3.5.42)
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Next, observe that if m(z) =
∫ 1

λ−zdµ(λ ) is the Stieltjes transform of any probability measure µ

supported on [−B,B], then for z = x+ iη with η > 0 and |z| ≤ ε−1, we have

Imm(z) =
∫

η

|λ − z|2
dµ(λ )≥ cη , |Rem(z)| ≤

∫ |λ − x|
|λ − z|2

dµ(λ )≤ (C/η) Imm(z)

for some constants C,c> 0 depending on ε,B. Consequently, for any λ ≥ 0, either λ · |Rem(z)|<

1/2 or λ · Imm(z)≥ 2η/C, so |1+λm(z)| ≥ max(2,2η/C). By Assumption 6(b) and Weyl’s in-

equality, we have 1{∥KKK∥>B}≺ 0 and 1{∥KKK(i)∥>B}≺ 0, and on the event where ∥KKK∥,∥KKK(i)∥≤

B, we have that mK̃KK, m̃
(i)
KKK are Stieltjes transforms of probability measures supported on [−B,B].

Thus, this implies

|mK̃KK|
−1 ≤ | ImmK̃KK|

−1 ≺ η
−1, max(∥(III +mK̃KKΣΣΣ)−1∥,∥(III + m̃(i)

KKK ΣΣΣ)−1∥)≺ η
−1. (3.5.43)

Applying these bounds (3.5.42) and (3.5.43) to (3.5.35)–(3.5.38), we get

di ≺ N−1
η
−6 +N−1/2

η
−2 ≤ 2N−1/2

η
−2

for η ≥ N−1/11. Then, applying these bounds (3.5.42) and (3.5.43) also to (3.5.39), we get

zN(mK̃KK)− z ≺ 1√
Nη4

. (3.5.44)

The proof is completed by the following stability argument: When η ≥ N−1/11, we have

1/(
√

Nη4)≪ η = Imz, so (3.5.44) implies in particular that

1{zN(mK̃KK) /∈ C+} ≺ 0. (3.5.45)

On the event zN(mK̃KK) ∈ C+, recalling the implicit definition of m̃N : C+ → C+ by (3.5.24), the
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value m̃N(zN(mK̃KK)) must be the unique root u ∈ C+ to the equation

zN(mK̃KK) =−1
u
+ γN

∫
λ

1+λu
dνN(λ ),

i.e. to the equation zN(mK̃KK)= zN(u). This equation is satisfied by u=mK̃KK ∈C+, so we deduce that

m̃N(zN(mK̃KK)) = mK̃KK . Then, applying that z ∈UN(ε) and that m̃N : C+ → C+ is (4/ε2)-Lipschitz

over the domain UN(ε/2), we obtain from (3.5.44) that

1{zN(mK̃KK) ∈ C+}
(

mK̃KK − m̃N(z)
)
= 1{zN(mK̃KK) ∈ C+}

(
m̃N(zN(mK̃KK))− m̃N(z)

)
≺ 1√

Nη4
.

Together with (3.5.45), this yields the lemma.

Corollary 47. Fix any ε > 0, and suppose Assumption 6 holds. Then there is a constant C > 0

such that uniformly over z ∈UN(ε) with Imz ≥ N−1/11,

1{∥RRR(z)∥F >C
√

N} ≺ 0.

Proof. Since mK̃KK(z) = γNmKKK(z) + (1− γN)(−1/z) and m̃N(z) = γNmN(z) + (1− γN)(−1/z),

Lemma 46 implies also

mKKK(z)−mN(z)≺
1√
Nη4

≪ η .

Observe that ImmN(z) =
∫

η/|λ − z|2dµN(λ ) ≤ ηε−2 for z ∈ UN(ε), so 1{ImmKKK(z) > (1+

ε−2)η} ≺ 0. Then by the identity ∥RRR(z)∥2
F = ∑i 1/|z − λi(KKK)|2 = (n/η) ImmKKK(z), we get

1{∥RRR(z)∥F >C
√

N} ≺ 0 for a constant C =C(ε)> 0, as desired.

We may now apply Corollary 47 and the fluctuation averaging result of Lemma 41 to

improve the estimate of Lemma 46 to the following result.

Lemma 48. Fix any ε > 0, and suppose Assumption 6 holds. Then, uniformly over z = x+ iη ∈
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UN(ε) with Imz ≥ N−1/11,

mK̃KK(z)− m̃N(z)≺
1
N
.

Proof. We derive an improved estimate for (3.5.39). First, combining Lemma 46 with the

bounds for m̃N(z) in Proposition 45, there are constants C0,c0 > 0 for which

1{|mK̃KK|>C0} ≺ 0, 1{|mK̃KK|< c0} ≺ 0, 1{∥(III +mK̃KKΣΣΣ)−1∥>C0} ≺ 0 (3.5.46)

uniformly over z ∈UN(ε) with Imz ≥ N−1/11. Next, applying Assumption 6(c), we have also

uniformly over i ∈ [N],

N−1ggg⊤i RRR(i)gggi = N−1 TrΣΣΣRRR(i)+O≺
(

N−1∥RRR(i)∥F

)
= N−1 TrΣΣΣRRR+O≺

(
N−2|1+N−1ggg⊤i RRR(i)gggi|−1∥RRR(i)∥2

F

)
+O≺

(
N−1∥RRR(i)∥F

)

where the second line follows from (3.5.33) applied with BBB = ΣΣΣ. Applying ∥RRR(i)∥F ≺ N1/2 by

Corollary 47 and the estimate |1+N−1ggg⊤i RRR(i)gggi|−1 ≺ η−1 from (3.5.42), this gives

1+N−1ggg⊤i RRR(i)gggi = 1+N−1 TrΣΣΣRRR+O≺
(

N−1/2
)
. (3.5.47)

Then, applying this and |1+N−1ggg⊤i RRR(i)gggi|−1 ≺ η−1 to (3.5.30),

mK̃KK =−1
z
· 1

1+N−1 TrΣΣΣRRR
+O≺

(
N−1/2

η
−2
)
.

Together with the first bound of (3.5.46) and the bound |z| ≤ ε−1 for z ∈UN(ε), this implies for

a constant c0 > 0 that 1{|1+N−1 TrΣΣΣRRR|< c0} ≺ 0, and thus 1{|1+N−1ggg⊤i RRR(i)gggi|< c0} ≺ 0.

Applying Corollary 47 and the above arguments now for KKK(S) and RRR(S) in place of KKK and

RRR, we obtain for any fixed L ≥ 1 and some constants C0,c0 > 0, uniformly over S ⊂ [N] with
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|S| ≤ L, over i ∈ S, and over z ∈UN(ε) with Imz ≥ N−1/11,

1{|m̃(S)
KKK |>C0} ≺ 0, 1{|m̃(S)

KKK |< c0} ≺ 0, 1{∥(III + m̃(S)
KKK ΣΣΣ)−1∥>C0} ≺ 0,

1{∥RRR(S)∥F >C
√

N} ≺ 0, 1{|1+N−1 TrΣΣΣRRR(S)|< c0} ≺ 0,

1{|1+N−1ggg⊤i RRR(S)gggi|< c0} ≺ 0.

(3.5.48)

(We remark that a direct application of the above arguments for KKK(S) yields the first three

estimates of (3.5.48) for the quantity N
N−|S|m̃

(S)
KKK = 1

N−|S| TrRRR(S)+ n
N−|S|(−1/z) in place of m̃(S)

KKK ,

and the estimates for m̃(S)
KKK then follow for slightly modified constants C0,c0 > 0 because |S| ≤ L.)

Finally, applying (3.5.47) and (3.5.48) back to (3.5.39) and (3.5.35)–(3.5.38) with AAA = III,

we get |di,1|, |di,3|, |di,4| ≺ N−1, |di,2| ≺ N−1/2, and

|zN(mK̃KK)− z| ≺

∣∣∣∣∣ 1
N

N

∑
i=1

di,2

1+N−1ggg⊤i RRR(i)gggi

∣∣∣∣∣+O≺
(
N−1)

=
1
N
· 1

1+N−1 TrΣΣΣRRR
·

∣∣∣∣∣ N

∑
i=1

di,2

∣∣∣∣∣+O≺
(
N−1).

The statements of (3.5.48) verify the needed assumptions of Lemma 41 with AAA = III, ΓΓΓ = zIII, and

ΦN = ΨN =C
√

N. Then Lemma 41 gives ∑
N
i=1 di,2 ≺ 1, and hence

|zN(mK̃KK)− z| ≺ N−1.

The proof is then completed by the same stability argument as in the conclusion of the proof of

Lemma 46.

Proof of Theorem 37. We apply the idea of [BS98, Section 6]. Let z = x + iη , where

dist(x,SN)≥ ε and η = N−1/11. Taking imaginary part in the estimate mK̃KK(z)− m̃N(z)≺ N−1
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of Lemma 48 and multiplying by η gives

1
N

N

∑
j=1

η2

(λ j(K̃KK)− x)2 +η2
−
∫

η2

(λ − x)2 +η2 dµ̃N(λ )≺
η

N
.

Fix any integer P ≥ 1, and apply this instead at the point z = x+ i
√

pη for each p = 1, . . . ,P.

Then

1
N

N

∑
j=1

η2

(λ j(K̃KK)− x)2 + pη2
−
∫

η2

(λ − x)2 + pη2 dµ̃N(λ )≺
η

N
for all p = 1, . . . ,P.

Taking successive finite differences using

1
r−q+1

(
1

∏
r
p=q(λ − x)2 + pη2 −

1

∏
r+1
p=q+1(λ − x)2 + pη2

)
=

η2

∏
r+1
p=q(λ − x)2 + pη2

,

we then obtain

1
N

N

∑
j=1

η2P

∏
P
p=1[(λ j(K̃KK)− x)2 + pη2]

−
∫

η2P

∏
P
p=1[(λ − x)2 + pη2]

dµ̃N(λ )≺
η

N
. (3.5.49)

Since dist(x,SN)≥ ε , the second integral term of (3.5.49) is bounded by Cη2P for a constant

C :=C(ε,P)> 0. Thus, we get

1
N

N

∑
j=1

1{λ j(K̃KK) ∈ (x−η ,x+η)} ≤ C
N

N

∑
j=1

η2P

∏
P
p=1[(λ j(K̃KK)− x)2 + pη2]

≺ η

N
+η

2P

where the first inequality holds for a constant C :=C(P)> 0. Finally, recalling η = N−1/11 and

taking any P ≥ 6, we get η/N +η2P ≪ 1/N, hence

1
{

there exists an eigenvalue of K̃KK in (x−η ,x+η)
}
≺ 0.

Recalling Assumption 6(b) and taking a union bound over x belonging to a η-net of [−B,B]\
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(SN +(−ε,ε)) (with cardinality at most CN1/11), we obtain

1
{

there exists an eigenvalue of K̃KK in SN +(−ε,ε)
}
≺ 0.

The theorem follows from the observation that KKK has the same non-zero eigenvalues as K̃KK, and

all 0 eigenvalues belong by definition to SN .

3.5.3 Deterministic Equivalent for the Resolvent

In this section, we prove Theorem 38.

Lemma 49. Suppose Assumption 6 holds. Let

γ
(S)
N =

n
N −|S|

, µ
(S)
N = ρ

MP
γ
(S)
N

⊠νN , µ̃
(S)
N = γ

(S)
N µ

(S)
N +(1− γ

(S)
N )δ0

be the analogues of γN ,µN , µ̃N defined with the dimension N −|S| in place of N. Then for any

fixed ε > 0 and L ≥ 1, all large N, and all S ⊂ [N] with |S| ≤ L,

supp(µ̃(S)
N )⊆ supp(µ̃N)+(−ε,ε)

Proof. Let TN and zN : C\TN → C be as defined by (3.5.25) and (3.5.26). Define similarly

z(S)N (m̃) =− 1
m̃
+ γ

(S)
N

∫
λ

1+λ m̃
dνN(λ ), z(S)N : C\TN → C.

We recall from Proposition 3 that x ∈ R\ supp(µ̃N) if and only if there exists m̃ ∈ R\TN where

zN(m̃) = x and z′N(m̃)> 0; the analogous characterization holds for R\ supp(µ̃(S)
N ) and z(S)N (m̃).

Now fix any ε,L> 0. By Proposition 45, there is a constant C0 > 0 such that supp(µ̃(S)
N )⊆

[−C0,C0] for all |S| ≤ L and all large N. Consider any x∈ [−C0,C0]\(supp(µ̃N)+(−ε,ε)). Then

[x− ε/2,x+ ε/2] ⊂ R\ supp(µ̃N), so m̃N is well-defined and increasing on [x− ε/2,x+ ε/2].
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Define [m̃−, m̃+] = [m̃N(x−ε/2), m̃N(x+ε/2)]. Then Proposition 3 implies that zN is increasing

on [m̃−, m̃+], and zN([m̃−, m̃+]) = [x−ε/2,x+ε/2]. Again by Proposition 45, there is a constant

c > 0 such that, for any such x ∈ [−C0,C0]\ (supp(µ̃N)+(−ε,ε)), we have

min
y∈[x−ε/2,x+ε/2]

min
λ∈supp(νN)

|1+λ m̃N(y)|> c.

This then implies that there is a constant C > 0 for which

|z(S)N (m̃)− zN(m̃)|= |γ(S)N − γN | ·
∣∣∣∣∫ λ

1+λ m̃
dνN(λ )

∣∣∣∣≤ C
N

< ε/2

for all m̃ ∈ [m̃−, m̃+], |S| ≤ L, and large N. Then z(S)N (m̃−)< zN(m̃−)+ ε/2 = x and z(S)N (m̃+)>

zN(m̃+)− ε/2 = x. [SC95, Theorem 4.3] shows that if m1,m2 ∈ [m̃−, m̃+] satisfy z(S)N
′
(m1)≥ 0

and z(S)N
′
(m2)≥ 0, then z(S)N

′
(m)> 0 strictly for all m ∈ [m1,m2]. By this and the continuity and

differentiability of z(S)N on [m̃−, m̃+], there must be a point m̃ ∈ (m̃−, m̃+) where z(S)N (m̃) = x

and z(S)N
′
(m̃) > 0 strictly. Then Proposition 3 implies that x /∈ supp(µ̃(S)

N ). This holds for all

x∈ [−C0,C0]\(supp(µ̃N)+(−ε,ε)), implying supp(µ̃(S)
N )⊆ supp(µ̃N)+(−ε,ε) as desired.

The following now applies Lemma 49 and Theorem 37 to extend the estimates (3.5.48)

previously obtained over {z ∈UN(ε) : Imz ≥ N−1/11} to all of UN(ε).

Lemma 50. Fix any ε > 0 and L ≥ 1. Then for some constants C0,c0 > 0, uniformly over

z ∈UN(ε), S ⊂ [N] with |S| ≤ L, and i ∈ S, we have

1{|m̃(S)
KKK (z)|>C0} ≺ 0, 1{|m̃(S)

KKK (z)|< c0} ≺ 0, 1{∥(III + m̃(S)
KKK (z)ΣΣΣ)−1∥>C0} ≺ 0,

1{∥RRR(S)(z)∥>C0} ≺ 0, 1{|1+N−1 TrΣΣΣRRR(S)(z)|< c0} ≺ 0,

1{|1+N−1ggg⊤i RRR(S)(z)gggi|< c0} ≺ 0.

Proof. By conjugation symmetry, it suffices to show the statements for z ∈UN(ε) with Imz ≥
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0. Denote for simplicity RRR(S) = RRR(S)(z) and m̃(S)
KKK = m̃(S)

KKK (z). Let S
(S)

N = supp(µ(S)
N )∪{0} =

supp(µ̃(S)
N )∪{0} where µ

(S)
N , µ̃

(S)
N are as defined in Lemma 49. Then Theorem 37 applied to

KKK(S) guarantees that

1{KKK(S) has an eigenvalue outside S
(S)

N +(−ε/4,ε/4)} ≺ 0,

uniformly over all S ⊂ [N] with |S| ≤ L. Note that S
(S)

N +(−ε/4,ε/4)⊆ SN +(−ε/2,ε/2) by

Lemma 49. Then, applying the bound ∥RRR(S)∥ ≤ 1/dist(z,S (S)
N ) and the condition z ∈UN(ε), we

get

1{∥RRR(S)∥> 2/ε} ≺ 0. (3.5.50)

The remaining statements have already been shown for z ∈UN(ε) with Imz ≥ N−1/11 in

(3.5.48). For z= x+ iη where η ∈ [0,N−1/11], define z′ = x+ iN−1/11. On the event that KKK(S) has

no eigenvalues outside SN +(−ε/2,ε/2), both N−1 TrΣΣΣRRR(S)(z) and m̃(S)
KKK (z) = N−1 TrRRR(S)(z)+

γN(−1/z) are C-Lipschitz over z ∈UN(ε) for a constant C =C(ε)> 0, and N−1ggg⊤i RRR(S)(z)gggi is

CN−1∥gggi∥2-Lipschitz where N−1∥gggi∥2 ≺ 1 by Assumption 6. Then

N−1 TrΣΣΣRRR(S)(z)−N−1 TrΣΣΣRRR(S)(z′)≺ N−1/11, m̃(S)
KKK (z)− m̃(S)

KKK (z′)≺ N−1/11,

N−1ggg⊤i RRR(S)(z)gggi −N−1ggg⊤i RRR(S)(z′)gggi ≺ N−1/11,

so the remaining statements of the lemma hold also for z ∈UN(ε) with Imz ∈ [0,N−1/11].

Proof of Theorem 38. Again by conjugation symmetry, it suffices to show the result for

z ∈ UN(ε) with Imz ≥ 0. Denote for simplicity RRR(S) = RRR(S)(z) and m̃(S)
KKK = m̃(S)

KKK (z). The first

estimate of Lemma 50 implies

1{∥RRR(S)∥F >C
√

N} ≺ 0, 1{∥RRR(S)AAA∥F >C∥AAA∥F} ≺ 0 (3.5.51)
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uniformly over z ∈UN(ε) and AAA ∈ Cn×n. Then also, by Assumption 6(c) and (3.5.33) applied

with BBB = ΣΣΣ,

1+N−1ggg⊤i RRR(i)gggi = 1+N−1 TrΣΣΣRRR+O≺
(

N−2|1+N−1ggg⊤i RRR(i)gggi|−1∥RRR(i)∥2
F +∥RRR(i)∥F

)
= 1+N−1 TrΣΣΣRRR+O≺

(
N−1/2

)
. (3.5.52)

Let di = di,1 + di,2 + di,3 + di,4 be as defined in (3.5.34) with AAA = III. Then, applying

(3.5.51), (3.5.52), and the bounds of Lemma 50, we obtain exactly as in the proof of Lemma 48

(using again the fluctuation averaging result of Lemma 41) that, uniformly over z ∈UN(ε), we

have |di,1|, |di,3|, |di,4| ≺ N−1, |di,2| ≺ N−1/2, and

|zN(mK̃KK)− z| ≺ 1
N
· 1

1+N−1 TrΣΣΣRRR
·

∣∣∣∣∣ N

∑
i=1

di,2

∣∣∣∣∣+O≺
(
N−1)= O≺

(
N−1).

Fix any ι > 0. If Imz ≥ N−1+ι , then this implies 1{zN(mK̃KK) /∈ C+} ≺ 0. By the same stability

argument as in Lemma 46, we get mK̃KK(z)− m̃N(z)≺ N−1 uniformly over z ∈UN(ε) with Imz ≥

N−1+ι . For Imz ∈ [0,N−1+ι ], on the event that all eigenvalues of KKK belong to SN +(−ε/2,ε/2),

we may apply that both mK̃KK(z) and m̃N(z) are C(ε)-Lipschitz over z ∈UN(ε) to compare values

at z = x+ iη and z′ = x+ iN−1+ι . Applying mK̃KK(z
′)− m̃N(z′)≺ N−1, we then get for any D > 0,

all z ∈UN(ε), some constant C > 0, and all large N,

P[|mK̃KK(z)− m̃N(z)|>CN−1+ι ]≤ N−D.

Since ι > 0 is arbitrary, this shows mK̃KK(z)− m̃N(z)≺ N−1 uniformly over z ∈UN(ε). The bound

mKKK(z)−mN(z) ≺ N−1 then follows from mK̃KK(z) = γNmKKK(z) + (1− γN)(−1/z) and m̃N(z) =

γNmN(z)+(1− γN)(−1/z).

For the estimate of TrRRRAAA, we apply the definition of di = di,1 + di,2 + di,3 + di,4 from
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(3.5.34) and the identity (3.5.31) now with this matrix AAA. Then (3.5.31) gives

Tr
[
RRRAAA− (−zIII − zmK̃KKΣΣΣ)−1AAA

]
=

1
z

N

∑
i=1

di

1+N−1ggg⊤i RRR(i)gggi
.

Applying (3.5.51), (3.5.52), and the bounds of Lemma 50 to (3.5.35)–(3.5.38), uniformly over

z ∈UN(ε) and AAA ∈Cn×n, we have |di,1|, |di,3|, |di,4| ≺ N−3/2∥AAA∥F , |di,2| ≺ N−1∥AAA∥F , and hence

∣∣∣∣∣ N

∑
i=1

di

1+N−1ggg⊤i RRR(i)gggi

∣∣∣∣∣≺ 1
1+N−1 TrΣΣΣRRR

∣∣∣∣∣ N

∑
i=1

di,2

∣∣∣∣∣+O≺
(

N−1/2∥AAA∥F

)
.

Finally, applying Lemma 41 with ΓΓΓ = zIII, ΨN(ΓΓΓ) =C
√

N, and ΦN(ΓΓΓ,AAA) =C∥AAA∥F (where we

may assume without loss of generality ∥AAA∥F ∈ (N−υ ,Nυ) by scale invariance of the desired

estimate with respect to AAA), we get |∑i di,2| ≺ N−1/2∥AAA∥F . Thus,

Tr
[
RRRAAA− (−zIII − zmK̃KKΣΣΣ)−1AAA

]
≺ 1√

N
∥AAA∥F .

3.6 Analysis of Spiked Eigenstructure

We now consider the asymptotic setup of Section 3.3.2 and prove Corollary 39 and

Theorem 40. As all the desired statements are invariant under conjugation of ΣΣΣ by an orthogonal

matrix, we may assume without loss of generality that ΣΣΣ is diagonal and of the form

ΣΣΣ =

ΣΣΣr 0

0 ΣΣΣ0

, ΣΣΣr = diag(λ1(ΣΣΣ), . . . ,λr(ΣΣΣ)), ΣΣΣ0 = diag(λr+1(ΣΣΣ), . . . ,λn(ΣΣΣ)).

125



Denote the block decomposition of GGG corresponding to ΣΣΣr,ΣΣΣ0 as

GGG = [GGGr,GGG0], GGGr ∈ RN×r, GGG0 ∈ RN×(n−r).

We remind the reader that GGGr and GGG0 need not be independent.

3.6.1 No Outliers Outside the Limit Support

We consider first the setting of r = 0, and prove Corollary 39 together with some uniform

convergence properties of m̃N and zN that will be used in the later analysis.

Recall the domain TN and function zN : C \TN → C from (3.5.25) and (3.5.26), and

their asymptotic analogues T and z : C\T → C from (1.2.5) and (1.2.6).

Lemma 51. Suppose Assumption 6 holds, and Assumption 7 holds with r = 0. Then, as N → ∞,

(a) zN(m̃) and its derivative z′N(m̃) converge uniformly over compact subsets of C\T to z(m̃)

and z′(m̃).

(b) For any ε > 0 and all large N,

supp(µ̃N)⊆ supp(µ̃)+(−ε,ε).

(c) m̃N(z) and its derivative m̃′
N(z) converge uniformly over compact subsets of C\ supp(µ̃)

to m̃(z) and m̃′(z).

Proof. For part (a), let K ⊂ C\T be any fixed compact set. Then K does not intersect some

sufficiently small open neighborhood of the compact domain T . If Assumption 7 holds with

r = 0, then TN is contained in this open neighborhood of T for all large N, so K ⊂ C \TN ,

and both zN and z are well-defined on K. The pointwise convergences zN(m̃) → z(m̃) and

z′N(m̃)→ z′(m̃) on K then follow from γN → γ , the weak convergence νN → ν , and the uniform

boundedness of the functions λ 7→ λ/(1+λ m̃) and λ 7→ λ 2/(1+λ m̃)2 on an open neighborhood
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of supp(ν), for m̃ ∈ K. This convergence is furthermore uniform because {zN} and {z′N} are

both equicontinuous over K.

For part (b), consider any x /∈ supp(µ̃)+(−ε,ε). Then [x−ε/2,x+ε/2]⊂R\ supp(µ̃),

so m̃ is well-defined and increasing on [x− ε/2,x+ ε/2]. Let [m̃−, m̃+] = [m̃(x− ε/2), m̃(x+

ε/2)]. Then by Proposition 3, z′(m̃)> 0 for all m̃ ∈ [m̃−, m̃+], and z([m̃−, m̃+]) = [x− ε/2,x+

ε/2]. The uniform convergence in part (a) implies for all large N that zN(m̃−)< x, zN(m̃+)> x,

and z′N(m̃) > 0 for all m̃ ∈ [m̃−, m̃+]. Then there exists m̃ ∈ [m̃−, m̃+] where zN(m̃) = x and

z′N(m̃)> 0, implying by Proposition 3 that x /∈ supp(µ̃N). So supp(µ̃N)⊆ supp(µ̃)+(−ε,ε) as

desired.

For part (c), let K ⊂ C\ supp(µ̃) be any fixed compact set. Then K does not intersect

some sufficiently small open neighborhood of the compact set supp(µ̃), so the inclusion of part

(b) implies K ⊂ C\ supp(µ̃N) for all large N, and both m̃N and m̃ are well-defined on K. The

uniform convergence m̃N(z)→ m̃(z) and m̃′
N(z)→ m̃′(z) on K then follow from the weak conver-

gence µ̃N → µ̃ , the uniform boundedness of the functions λ 7→ 1/(λ −z) and λ 7→ 1/(λ −z)2 on

an open neighborhood of supp(µ̃) for z∈K, and the equicontinuity of {m̃N} and {m̃′
N} on K.

Proof of Corollary 39. By Lemma 51(b), for any fixed ε > 0, we have SN +(−ε/2,ε/2)⊆

S +(−ε,ε) for all large N. Then by Theorem 37,

1{KKK has an eigenvalue in R\ (S +(−ε,ε))

≤ 1{KKK has an eigenvalue in R\ (SN +(−ε/2,ε/2))} ≺ 0.
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3.6.2 Deterministic Equivalents for Generalized Resolvents

We next introduce two generalized resolvents for the matrix KKK, and extend Theorem 38

to establish deterministic equivalents for these generalized resolvents.

Define the spectral domain

U(ε) =
{

z ∈ C : |z| ≤ ε
−1, dist(z,S )≥ ε

}

where S is the limit support set defined in (3.3.4). Given z ∈U(ε) and α ∈C, define a diagonal

matrix

ΓΓΓ := ΓΓΓ(z,α) = zIIIn +αVVV rVVV⊤
r =

(z+α)IIIr 0

0 zIIIn−r

 ∈ Cn×n, VVV r =

IIIr

0

 ∈ Rn×r. (3.6.1)

Define the first generalized resolvent

RRR(z,α) =

−ΓΓΓ GGG⊤

GGG −IIIN


−1

∈ C(n+N)×(n+N). (3.6.2)

This matrix inverse exists if and only if the Schur complement GGG⊤GGG−ΓΓΓ = KKK −ΓΓΓ for its lower

right block is invertible, in which case the upper-left block of RRR(z,α) is RRR(ΓΓΓ) = (KKK−ΓΓΓ)−1. The

following provides a deterministic equivalent for this block of RRR(z,α).

Lemma 52. Under the assumptions of Theorem 40, for any fixed ε > 0, there exist C0,α0 > 0

(depending on ε) such that fixing any α ∈ C with |α|> α0, the following hold:

(a) The event

E =
{
RRR(z,α) exists and ∥RRR(z,α)∥ ≤C0 for all z ∈U(ε)

}
satisfies 1{E c} ≺ 0.
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(b) Uniformly over z ∈U(ε) and deterministic unit vectors vvv1,vvv2 ∈ Rn,

∥∥∥∥∥∥∥
(

vvv⊤1 0
)

RRR(z,α)

vvv2

0

+ vvv⊤1 (ΓΓΓ+ z · m̃N,0(z)ΣΣΣ)
−1vvv2

∥∥∥∥∥∥∥≺
1√
N
. (3.6.3)

In the setting of Theorem 40(c), let uuu = 1√
N
(u1, . . . ,uN) ∈ RN be the additional given

vector for which {(u j,ggg⊤j )}N
j=1 are independent vectors in Rn+1. For z ∈U(ε) and α ∈C, define

Σ̃ΣΣ =

E[u2] E[uggg]⊤

E[uggg] ΣΣΣ

 ∈ R(n+1)×(n+1), (3.6.4)

Γ̃ΓΓ = Γ̃ΓΓ(z,α) =

z+α 0

0 ΓΓΓ

 ∈ C(n+1)×(n+1)

where E[u2] and E[uggg] denote the common values of E[u2
j ] and E[u jggg j] for j = 1, . . . ,N. Define

the second generalized resolvent

R̃RR(z,α) =

 −Γ̃ΓΓ [uuu,GGG]⊤

[uuu,GGG] −III


−1

=


−(z+α) 0 uuu⊤

0 −ΓΓΓ GGG⊤

uuu GGG −IIIN


−1

∈C(n+1+N)×(n+1+N). (3.6.5)

We have the following deterministic equivalent for the upper-left block of R̃RR(z,α), which is

analogous to Lemma 52.

Lemma 53. Under the assumptions of Theorem 40(c), for any fixed ε > 0, there exist C0,α0 > 0

(depending on ε) such that fixing any α ∈ C with |α|> α0, the following hold:

(a) The event

Ẽ =
{
R̃RR(z,α) exists and ∥R̃RR(z,α)∥ ≤C0 for all z ∈U(ε)

}
satisfies 1{Ẽ c} ≺ 0.
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(b) Uniformly over z ∈U(ε) and deterministic unit vectors vvv1,vvv2 ∈ Rn+1,

∥∥∥∥∥∥∥
(

vvv⊤1 0
)

R̃RR(z,α)

vvv2

0

+ vvv⊤1
(

Γ̃ΓΓ+ z · m̃N,0(z)Σ̃ΣΣ
)−1

vvv2

∥∥∥∥∥∥∥≺
1√
N
. (3.6.6)

In the remainder of this section, we prove Lemmas 52 and 53. Recall

µN,0 = ρ
MP
γN,0

⊠νN,0, µ̃N,0 = γN,0µN,0 +(1− γN,0)δ0.

Define the bulk components of the sample covariance and Gram matrices

KKK0 = GGG⊤
0 GGG0 ∈ R(n−r)×(n−r), K̃KK0 = GGG0GGG⊤

0 ∈ RN×N . (3.6.7)

Define also the N-dependent bulk spectral support and spectral domain

SN,0 = supp(µN,0)∪{0}= supp(µ̃N,0)∪{0},

UN,0(ε) = {z ∈ C : |z| ≤ ε
−1,dist(z,SN,0)≥ ε}. (3.6.8)

Lemma 51(b) shows SN,0 ⊆ S +(−ε/2,ε/2) for any fixed ε > 0 and all large N, so also

U(ε) ⊆ UN,0(ε/2) for all large N. Thus, the results of Section 3.5 applied to KKK0, which hold

uniformly over z ∈ UN,0(ε/2) for any fixed ε > 0, also hold uniformly over z ∈ U(ε). In

particular, the following is an immediate consequence of Corollary 39 and Theorem 38, which

we record here for future reference.

Lemma 54. Suppose Assumptions 6 and 7 hold. Then for any fixed ε > 0,

1{KKK0 has an eigenvalue outside S +(−ε,ε)} ≺ 0.
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Furthermore, uniformly over z ∈U(ε),

mKKK0 −mN,0(z)≺ 1/N, mK̃KK0
− m̃N,0(z)≺ 1/N.

We now check that for sufficiently large |α|, the generalized resolvent RRR(z,α) exists and

has bounded operator norm with high probability.

Proof of Lemma 52(a). Let

E ′ =
{

all eigenvalues of KKK0 belong to S +(−ε/2,ε/2), and ∥GGG∥<
√

B
}
.

By Assumption 6(b) and Lemma 54, 1{E ′c} ≺ 0, so it suffices to show E ′ ⊆ E . On this event E ′,

for any z ∈U(ε), we have that each eigenvalue of KKK0 is separated by at least ε/2 from z. Then

RRR0(z) :=

−zIIIn−r GGG⊤
0

GGG0 −IIIN


−1

∈ C(n−r+N)×(n−r+N) (3.6.9)

exists for all z ∈ U(ε) because the Schur complement KKK0 − zIIIn−r of its lower-right block is

invertible. Furthermore, denoting RRR0 = (KKK0−zIIIn−r)
−1, we have ∥RRR0∥≤ 2/ε and ∥GGG0∥≤ ∥GGG∥<

√
B, so

∥RRR0(z)∥=

∥∥∥∥∥∥∥
 RRR0 RRR0GGG⊤

0

GGG0RRR0 GGG0RRR0GGG⊤
0 − IIIN


∥∥∥∥∥∥∥≤C1 (3.6.10)

for some constant C1 depending only on ε,B.

Now write RRR(z,α) as defined in (3.6.2) in its block decomposition with blocks of sizes r
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and n− r+N. Then the Schur complement of the upper left block of size r× r is given by

SSS =−
(

0 GGG⊤
r

)
RRR0(z)

 0

GGGr

− (α + z)IIIr. (3.6.11)

Notice that

SSSSSS∗ = |α + z|2IIIr +

(
0 GGG⊤

r

)
RRR0(z)

 0

GGGr

(0 GGG⊤
r

)
RRR0(z)

 0

GGGr

 (3.6.12)

+(ᾱ + z̄)
(

0 GGG⊤
r

)
RRR0(z)

 0

GGGr

+(α + z)
(

0 GGG⊤
r

)
RRR0(z)

 0

GGGr

 (3.6.13)

where the first two terms are positive semi-definite. Therefore, applying (3.6.10) and ∥GGGr∥ ≤

∥GGG∥<
√

B on the event E ′, there exist α0,c0 > 0 depending only on ε,B, such that

λmin(SSSSSS∗)≥ |α + z|2 −2(|α|+ |z|)∥GGGr∥2∥RRR0(z)∥> c0 (3.6.14)

for any z ∈U(ε) and |α|> α0. Consequently, under the event E ′, the Schur complement SSS in

(3.6.11) is invertible with ∥SSS−1∥< c−1/2
0 . Then RRR(z,α) exists, and

∥RRR(z,α)∥=

∥∥∥∥∥∥∥∥∥∥∥


SSS−1 −SSS−1

(
0 GGG⊤

r

)
RRR0(z)

−RRR0(z)

 0

GGGr

SSS−1 RRR0(z)+RRR0(z)

 0

GGGr

SSS−1
(

0 GGG⊤
r

)
RRR0(z)



∥∥∥∥∥∥∥∥∥∥∥
≤C0

(3.6.15)

for a constant C0 > 0 depending only on ε,B. This shows E ′ ⊆ E as desired.

For the matrix ΓΓΓ = ΓΓΓ(z,α) in (3.6.1), recall the definitions of RRR(S)(ΓΓΓ) and m̃(S)
KKK (ΓΓΓ) from
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(3.5.1). The following provides an analogue of Lemma 50 for these quantities.

Lemma 55. Fix any ε > 0 and L ≥ 1. Then there exist C0,c0,α0 > 0 such that for any fixed

α ∈ C with |α|> α0, uniformly over S ⊂ [N] with |S| ≤ L, over j ∈ S, and over z ∈U(ε),

1{|m̃(S)
KKK (ΓΓΓ)|>C0} ≺ 0, 1{|m̃(S)

KKK (ΓΓΓ)|< c0} ≺ 0, 1{∥(z−1
ΓΓΓ+ m̃(S)

KKK (ΓΓΓ)ΣΣΣ)−1∥>C0} ≺ 0,

1{∥RRR(S)(ΓΓΓ)∥>C0} ≺ 0, 1{|1+N−1 TrΣΣΣRRR(S)(ΓΓΓ)|< c0} ≺ 0,

1{|1+N−1ggg⊤j RRR(S)(ΓΓΓ)ggg j|< c0} ≺ 0.

Proof. Suppose |α| is large enough so that Lemma 52(a) holds. Since RRR(ΓΓΓ) is the upper-left block

of RRR(z,α), Lemma 52(a) applied with GGG(S) in place of GGG shows that 1{∥RRR(S)(ΓΓΓ)∥ >C0} ≺ 0

for a constant C0 > 0, uniformly over S ⊂ [N] with |S| ≤ L and over z ∈U(ε). For the remaining

statements, let GGG(S)
0 ∈ R(N−|S|)×(n−r) be the submatrix of GGG0 with the rows of S removed, and

define

KKK(S)
0 = GGG(S)

0
⊤

GGG(S)
0 , K̃KK

(S)
0 = GGG(S)

0 GGG(S)
0

⊤
,

RRR(S)
0 = (KKK(S)

0 − zIIIn−r)
−1, m(S)

KKK0
=

1
n− r

TrRRR(S)
0 , m̃(S)

KKK0
= γN,0m(S)

KKK0
+(1− γN,0)

(
−1

z

)
.

Then by Lemma 54 applied to KKK(S)
0 , also 1{∥RRR(S)

0 ∥>C0} ≺ 0 for a constant C0 > 0.

Using these bounds, we first show the comparisons

|m̃(S)
KKK (ΓΓΓ)− m̃(S)

KKK0
| ≺ 1/N,

∣∣∣N−1 TrΣΣΣRRR(S)(ΓΓΓ)−N−1 TrΣΣΣ0RRR(S)
0

∣∣∣≺ 1/N. (3.6.16)

For the first comparison, notice that in the decompositions into blocks of sizes r and n− r,

n− r
n

m(S)
KKK0

=
1
n

Tr

0 0

0 RRR(S)
0
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and

m(S)
KKK (ΓΓΓ) =

1
n

TrRRR(S)(ΓΓΓ)

=
1
n

Tr

GGG(S)⊤
r GGG(S)

r − (α + z)IIIr GGG(S)⊤
r GGG(S)

0

GGG(S)⊤
0 GGG(S)

r KKK(S)
0 − zIIIN−|S|


−1

=
1
n

Tr

 (SSS(S)r )−1 −(SSS(S)r )−1GGG(S)⊤
r GGG(S)

0 RRR(S)
0

−RRR(S)
0 GGG(S)⊤

0 GGG(S)
r (SSS(S)r )−1 RRR(S)

0 +RRR(S)
0 GGG(S)⊤

0 GGG(S)
r (SSS(S)r )−1GGG(S)⊤

r GGG(S)
0 RRR(S)

0

,

where

SSS(S)r := GGG(S)⊤
r GGG(S)

r − (α + z)IIIr −GGG(S)⊤
r GGG(S)

0 RRR(S)
0 GGG(S)⊤

0 GGG(S)
r (3.6.17)

is the Schur complement of the lower-right block. We have ∥(SSS(S)r )−1∥ ≤ ∥RRR(S)(ΓΓΓ)∥ ≺ 1,

∥RRR(S)
0 ∥ ≺ 1, and by Assumption 6, ∥GGG(S)

0 ∥ ≺ 1 and ∥GGG(S)
r ∥ ≺ 1. Combining these bounds

and using |TrAAA| ≤ r∥AAA∥ when AAA has rank r (as follows from the von Neumann trace inequality),

∣∣∣∣m(S)
KKK (ΓΓΓ)− n− r

n
m(S)

KKK0

∣∣∣∣
=

∣∣∣∣∣∣∣
1
n

Tr

 (SSS(S)r )−1 −(SSS(S)r )−1GGG(S)⊤
r GGG(S)

0 RRR(S)
0

−RRR(S)
0 GGG(S)⊤

0 GGG(S)
r (SSS(S)r )−1 RRR(S)

0 GGG(S)⊤
0 GGG(S)

r (SSS(S)r )−1GGG(S)⊤
r GGG(S)

0 RRR(S)
0


∣∣∣∣∣∣∣

≤ 1
n
|Tr(SSS(S)r )−1|+ 1

n
|TrRRR(S)

0 GGG(S)⊤
0 GGG(S)

r (SSS(S)r )−1GGG(S)⊤
r GGG(S)

0 RRR(S)
0 |

≤ r
n
∥(SSS(S)r )−1∥+ r

n
∥GGG(S)

r ∥2∥GGG(S)
0 ∥2∥RRR(S)

0 ∥2∥(SSS(S)r )−1∥ ≺ 1/N.

Then also |m(S)
KKK (ΓΓΓ)−m(S)

KKK0
| ≺ 1/N since |m(S)

KKK0
| ≤ ∥RRR(S)

0 ∥ ≺ 1 and (n− r)/n = 1+O≺(1/N).

Hence |m̃(S)
KKK (ΓΓΓ)− m̃(S)

KKK0
| ≺ 1/N from the definitions m̃(S)

KKK (ΓΓΓ) = γNm(S)
KKK (ΓΓΓ)+(1− γN)(−1/z) and

m̃(S)
KKK0

= γN,0m(S)
KKK0

+(1− γN,0)(−1/z), as |1/z| ≤ ε for z ∈U(ε) and γN,0 = γN +O≺(1/N). The
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proof of the second comparison of (3.6.16) is analogous, considering in addition

1
n

Tr

ΣΣΣ−

0 0

0 ΣΣΣ0


RRR(S)(ΓΓΓ) =

1
n

Tr

ΣΣΣr 0

0 0

RRR(S)(ΓΓΓ)≤ r
n
∥ΣΣΣr∥∥RRR(S)(ΓΓΓ)∥ ≺ 1

N
. (3.6.18)

Now, Lemma 50 applied with KKK0 shows, uniformly over S ⊂ [N] with |S| ≤ L and over

z ∈U(ε),

1{|m̃(S)
KKK0

|>C0} ≺ 0, 1{|m̃(S)
KKK0

|< c0} ≺ 0, 1{|1+N−1 TrΣΣΣ0RRR(S)
0 |< c0} ≺ 0,

which together with (3.6.16) implies

1{|m̃(S)
KKK (ΓΓΓ)|>C0} ≺ 0, 1{|m̃(S)

KKK (ΓΓΓ)|< c0} ≺ 0, 1{|1+N−1 TrΣΣΣRRR(S)(ΓΓΓ)|< c0} ≺ 0

for adjusted constants C0,c0 > 0. Also by Assumption 6, uniformly over j ∈ S,

N−1ggg⊤j RRR(S)(ΓΓΓ)ggg j −N−1 TrΣΣΣRRR(S)(ΓΓΓ)≺ N−1∥RRR(S)(ΓΓΓ)∥F ≤ N−1/2∥RRR(S)(ΓΓΓ)∥ ≺ N−1/2, (3.6.19)

so 1{|1 + N−1ggg⊤j RRR(S)(ΓΓΓ)ggg j| < c} ≺ 0 for a constant c > 0. Lastly, from the definition of

ΓΓΓ = ΓΓΓ(z,α) in (3.6.1), we have

z−1
ΓΓΓ+ m̃(S)

KKK (ΓΓΓ)ΣΣΣ =

m̃(S)
KKK (ΓΓΓ)ΣΣΣr +(α

z +1)IIIr 0

0 m̃(S)
KKK (ΓΓΓ)ΣΣΣ0 + IIIn−r

. (3.6.20)

By (3.6.16) and Lemma 50, we have

1
{∥∥∥∥(m̃(S)

KKK (ΓΓΓ)ΣΣΣ0 + IIIn−r

)−1
∥∥∥∥>C

}
≺ 0 (3.6.21)

for some constant C > 0. We have already proved 1{|m̃(S)
KKK (ΓΓΓ)|>C0}≺ 0, and applying ∥ΣΣΣr∥≤C
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under Assumption 6, we can deduce for the smallest singular value that

σmin

(
m̃(S)

KKK (ΓΓΓ)ΣΣΣr +(α/z+1)IIIr

)
≥ |α|

|z|
−1−|m̃(S)

KKK (ΓΓΓ)|∥ΣΣΣr∥ ≥ c (3.6.22)

on the event {|m̃(S)
KKK (ΓΓΓ)| ≤ C0}, for any z ∈ U(ε), |α| ≥ α0, and some α0,c > 0 depending on

ε,C0. Thus also

1{∥(z−1
ΓΓΓ+m(S)

K̃KK
(ΓΓΓ)ΣΣΣ)−1∥>C} ≺ 0 (3.6.23)

for a constant C > 0, showing all statements of the lemma.

Proof of Lemma 52(b). Recalling the form of RRR(z,α) in (3.6.2), the quantity we wish to

approximate is

(
vvv⊤1 0

)
RRR(z,α)

vvv2

0

= vvv⊤1 RRR(ΓΓΓ)vvv2 = vvv⊤1 (KKK −ΓΓΓ)−1vvv2.

Analogous to (3.5.29) in the proof of Lemma 46, for any matrix BBB ∈ Cn×n, we have

TrBBB = Tr(KKK −ΓΓΓ)RRR(ΓΓΓ)BBB =−TrRRR(ΓΓΓ)BBBΓΓΓ+
1
N

N

∑
i=1

ggg⊤i RRR(i)(ΓΓΓ)BBBgggi

1+N−1ggg⊤i RRR(i)(ΓΓΓ)gggi
. (3.6.24)

Applying the definition mK̃KK(ΓΓΓ) = N−1 TrRRR(ΓΓΓ)+(1− γN)(−1/z) and the identity (3.6.24) with

BBB = III, we obtain analogously to (3.5.30) that

mK̃KK(ΓΓΓ) = (1− γN)(−1/z)+
1

Nz
TrRRR(ΓΓΓ)ΓΓΓ− 1

N
Tr(z−1

ΓΓΓ− III)RRR(ΓΓΓ)

=− 1
Nz

N

∑
i=1

1

1+N−1ggg⊤i RRR(i)(ΓΓΓ)gggi
− 1

N
Tr(z−1

ΓΓΓ− III)RRR(ΓΓΓ).

Then, noting that z−1ΓΓΓ− III has rank r and hence |N−1 Tr(z−1ΓΓΓ− III)RRR(ΓΓΓ)| ≤ r
N
|α|
|z| ∥RRR(ΓΓΓ)∥ ≺ N−1,
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this gives

mK̃KK(ΓΓΓ) =− 1
Nz

N

∑
i=1

1

1+N−1ggg⊤i RRR(i)(ΓΓΓ)gggi
+O≺

(
N−1). (3.6.25)

Fixing the unit vectors vvv1,vvv2 ∈ Rn, let us now choose AAA = vvv2vvv⊤1 and BBB = AAA(z−1ΓΓΓ+

mK̃KK(ΓΓΓ) ·ΣΣΣ)−1 in (3.6.24), and define

di =
1
N

ggg⊤i RRR(i)(ΓΓΓ)BBBgggi −
1
N

TrRRR(ΓΓΓ)BBBΣΣΣ

=
1
N

ggg⊤i RRR(i)(ΓΓΓ)AAA
(
z−1

ΓΓΓ+mK̃KK(ΓΓΓ)ΣΣΣ
)−1

gggi −
1
N

TrRRR(ΓΓΓ)AAA
(
z−1

ΓΓΓ+mK̃KK(ΓΓΓ)ΣΣΣ
)−1

ΣΣΣ.

Then, combining (3.6.24) and (3.6.25), we get

vvv⊤1 (z
−1

ΓΓΓ+mK̃KK(ΓΓΓ)ΣΣΣ)
−1vvv2 = TrBBB

=−TrRRR(ΓΓΓ)BBBΓΓΓ+TrRRR(ΓΓΓ)BBBΣΣΣ ·
(
−zmK̃KK(ΓΓΓ)+O≺

(
N−1))+ N

∑
i=1

di

1+N−1ggg⊤i RRR(i)(ΓΓΓ)gggi

=−z · vvv⊤1 RRR(ΓΓΓ)vvv2 +
N

∑
i=1

di

1+N−1ggg⊤i RRR(i)(ΓΓΓ)gggi
+O≺

(
N−1), (3.6.26)

where the last equality applies the definition of BBB to combine the first two terms, and applies

also |TrRRR(ΓΓΓ)BBBΣΣΣ| ≤ ∥(z−1ΓΓΓ+mK̃KK(ΓΓΓ)ΣΣΣ)
−1ΣΣΣRRR(ΓΓΓ)∥ ≺ 1 by Lemma 55 to obtain the O≺

(
N−1)

remainder.

Considering a similar decomposition as in Lemma 46, we define di = di,1 +di,2 +di,3 +

di,4 where

di,1 =
1
N

ggg⊤i RRR(i)(ΓΓΓ)AAA(z−1
ΓΓΓ+mK̃KK(ΓΓΓ)ΣΣΣ)

−1gggi −
1
N

ggg⊤i RRR(i)(ΓΓΓ)AAA(z−1
ΓΓΓ+m(i)

K̃KK
(ΓΓΓ)ΣΣΣ)−1gggi,

di,2 =
1
N

ggg⊤i RRR(i)(ΓΓΓ)AAA(z−1
ΓΓΓ+m(i)

K̃KK
(ΓΓΓ)ΣΣΣ)−1gggi −

1
N

TrΣΣΣRRR(i)(ΓΓΓ)AAA(z−1
ΓΓΓ+m(i)

K̃KK
(ΓΓΓ)ΣΣΣ)−1,

di,3 =
1
N

TrΣΣΣRRR(i)(ΓΓΓ)AAA(z−1
ΓΓΓ+m(i)

K̃KK
(ΓΓΓ)ΣΣΣ)−1 − 1

N
TrΣΣΣRRR(ΓΓΓ)AAA(z−1

ΓΓΓ+m(i)
K̃KK
(ΓΓΓ)ΣΣΣ)−1,

di,4 =
1
N

TrΣΣΣRRR(ΓΓΓ)AAA(z−1
ΓΓΓ+m(i)

K̃KK
(ΓΓΓ)ΣΣΣ)−1 − 1

N
TrΣΣΣRRR(ΓΓΓ)AAA(z−1

ΓΓΓ+mK̃KK(ΓΓΓ)ΣΣΣ)
−1.

(3.6.27)

For AAA = vvv2vvv⊤1 , by the bound 1{∥RRR(S)(ΓΓΓ)∥>C0} ≺ 0 from Lemma 55, we have for a constant
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C > 0 that

1
{∥∥∥RRR(S)(ΓΓΓ)

∥∥∥
F
>C

√
N
}
≺ 0, 1

{∥∥∥RRR(S)(ΓΓΓ)AAA
∥∥∥

F
>C

}
≺ 0 (3.6.28)

uniformly over z ∈U(ε). Then, employing Lemma 55 and the same bounds as (3.5.35)–(3.5.38)

from the proof of Lemma 50 (where here, the bounds for ∥RRR(i)AAA∥F ,∥RRRAAA∥F are improved

by a factor of N−1/2 because AAA is low-rank), we conclude that |di,1|, |di,3|, |di,4| ≺ N−3/2 and

|di,2| ≺ N−1. Hence, applying also 1+N−1ggg⊤i RRR(i)(ΓΓΓ)gggi = 1+N−1 TrΣΣΣRRR(ΓΓΓ)+O≺
(

N−1/2
)

as

follows from (3.6.19) and the bound (3.5.33),

N

∑
i=1

di

1+N−1ggg⊤i RRR(i)(ΓΓΓ)gggi
=

1
1+N−1 TrΣΣΣRRR(ΓΓΓ)

·
N

∑
i=1

di,2 +O≺
(

N−1/2
)
.

By Lemma 41 applied with ΨN(ΓΓΓ) =C
√

N and ΦN(ΓΓΓ,AAA) =C for a constant C > 0, we have

|∑i di,2| ≺ N−1/2. Thus the above quantity is of size O≺
(

N−1/2
)

, so applying this back to

(3.6.26),

vvv⊤1 (ΓΓΓ+ zmK̃KK(ΓΓΓ) ·ΣΣΣ)
−1vvv2 + vvv⊤1 RRR(ΓΓΓ)vvv2 ≺ N−1/2.

Finally, from (3.6.16) and Lemma 54 we have mK̃KK(ΓΓΓ) = m̃N,0(z)+O≺
(
N−1), and applying this

above completes the proof.

Proof of Lemma 53. The proof is similar to Lemma 52, replacing r and n throughout by r+1

and n+1, GGG(S)
r by [uuu(S),GGG(S)

r ], ΣΣΣ by Σ̃ΣΣ, and RRR(S)(ΓΓΓ) and m̃(S)
KKK (ΓΓΓ) by

RRR(S)(Γ̃ΓΓ) =
(
[uuu(S),GGG(S)]⊤[uuu(S),GGG(S)]− Γ̃ΓΓ

)−1
, m̃(S)

KKK (Γ̃ΓΓ) =
1
N

TrRRR(S)(Γ̃ΓΓ)+
(

1− n+1
N

)(
−1

z

)
.

The only difference here is that Σ̃ΣΣ is no longer diagonal, leading to the following minor modifica-
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tions of the preceding proof: The bound

1
n+1

Tr

Σ̃ΣΣ−


0 0 0

0 0 0

0 0 ΣΣΣ0


RRR(S)(Γ̃ΓΓ)≺ 1

N

analogous to (3.6.18) follows upon noting that (with E[uggg]⊤ =

(
E[ugggr]

⊤ E[uggg0]
⊤
)

)

Σ̃ΣΣ−


0 0 0

0 0 0

0 0 ΣΣΣ0

=


E[u2] E[ugggr]

⊤ E[uggg0]
⊤

E[ugggr] ΣΣΣr 0

E[uggg0] 0 0


still is of low rank, with rank at most r+2. Writing as shorthand m̃(S)

KKK = m̃(S)
KKK (Γ̃ΓΓ), the bound

1{∥(z−1
Γ̃ΓΓ+ m̃(S)

KKK Σ̃ΣΣ)−1∥>C0} ≺ 0

analogous to (3.6.23) follows from

(z−1
Γ̃ΓΓ+ m̃(S)

KKK Σ̃ΣΣ)−1 =


m̃(S)

KKK E[u2]+ α

z +1 m̃(S)
KKK E[ugggr]

⊤ m̃(S)
KKK E[uggg0]

⊤

m̃(S)
KKK E[ugggr] m̃(S)

KKK ΣΣΣr +(α

z +1)IIIr 0

m̃(S)
KKK E[uggg0] 0 m̃(S)

KKK ΣΣΣ0 + III


−1

,

the bound 1{∥m̃(S)
KKK ΣΣΣ0 + III∥−1 >C} ≺ 0 for the lower-right block as follows from (3.6.21), and
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the bound for the inverse of its Schur-complement

1

{∥∥∥∥∥
[m̃(S)

KKK E[u2]+ α

z +1 m̃(S)
KKK E[ugggr]

⊤

m̃(S)
KKK E[ugggr] m̃(S)

KKK ΣΣΣr +(α

z +1)IIIr


−

m̃(S)
KKK E[uggg0]

⊤

0

(m̃(S)
KKK ΣΣΣ0 + III)−1

(
m̃(S)

KKK E[uggg0] 0
)]−1∥∥∥∥∥>C

}
≺ 0

which holds uniformly over z ∈U(ε) for any |α|> α0 sufficiently large, by an argument analo-

gous to (3.6.22). The remainder of the proof is identical to that of Lemma 52, and we omit the

details.

3.6.3 Analysis of Outliers

Let VVV r,ΓΓΓ(z,α),RRR(z,α),R̃RR(z,α) be as defined in the preceding section. Consider the

decomposition of R̃RR(z,α) as in (3.6.5) into its blocks of dimensions 1, n, and N, and define

R̃11(z,α) :=


1

0

0


⊤

R̃RR(z,α)


1

0

0

=
1

−z−α +uuu⊤uuu−uuu⊤GGG(GGG⊤GGG−ΓΓΓ(z,α))−1GGG⊤uuu
,

(3.6.29)

R̃RR1V (z,α) :=


1

0

0


⊤

R̃RR(z,α)


0

VVV r

0

=−R̃11(z,α) ·uuu⊤GGG
(

GGG⊤GGG−ΓΓΓ(z,α)
)−1

VVV r, (3.6.30)

140



where the second equality follow from the block matrix inversion of the lower 2×2 blocks of

R̃RR(z,α), followed by block matrix inversion of the full matrix R̃RR(z,α). Set

MMMKKK(z,α) = IIIr +α

(
VVV⊤

r 0
)

RRR(z,α)

VVV r

0

. (3.6.31)

Proposition 56. Fix any ε > 0 and any α ∈ R sufficiently large that satisfies Lemmas 52 and 53.

Then on the event E ∩ Ẽ of Lemmas 52 and 53, for all sufficiently large N,

(a) λ̂ ∈U(ε)∩R is an eigenvalue of GGG⊤GGG if and only if detMMMKKK(λ̂ ,α) = 0, and its multiplicity

as an eigenvalue of GGG⊤GGG equals the dimension of kerMMMKKK(λ̂ ,α).

(b) Let v̂vv ∈ Rn be a unit eigenvector of GGG⊤GGG (i.e. right singular vector of GGG) corresponding to

an eigenvalue λ̂ ∈U(ε)∩R. Then VVV⊤
r v̂vv is a non-zero vector in kerMMMKKK(λ̂ ,α), and

1
α2 = v̂vv⊤VVV r

VVV r

0


⊤

RRR(λ̂ ,α)

IIIn 0

0 0

RRR(λ̂ ,α)

VVV r

0

VVV⊤
r v̂vv (3.6.32)

For any vector vvv ∈ Rn, we have

vvv⊤v̂vv+α

(
vvv⊤ 0

)
RRR(λ̂ ,α)

VVV r

0

VVV⊤
r v̂vv = 0. (3.6.33)

(c) Let uuu be as in Theorem 40(c), and let ûuu ∈ RN be a unit eigenvector of GGGGGG⊤ (i.e. left

singular vector of GGG) corresponding to the eigenvalue λ̂ ∈U(ε)∩R. Then

uuu⊤ûuu =
α

λ̂ 1/2 R̃11(λ̂ ,α)
R̃RR1V (λ̂ ,α)VVV⊤

r v̂vv. (3.6.34)

Proof. For part (a), note that if λ̂ is an eigenvalue of GGG⊤GGG, i.e. λ̂ 1/2 is a singular value of GGG
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with left and right unit singular vectors ûuu and v̂vv, then

0 =

−λ̂ IIIn GGG⊤

GGG −IIIN


 v̂vv

λ̂ 1/2ûuu


which implies, for any α ∈ R,

−α

VVV r

0

 ·VVV⊤
r v̂vv =

−λ̂ IIIn −αVVV rVVV⊤
r GGG⊤

GGG −IIIN


 v̂vv

λ̂ 1/2ûuu

.

Fixing α ∈ R large enough, on the event E of Lemma 52, the generalized resolvent

RRR(λ̂ ,α) =

−λ̂ IIIn −αVVV rVVV⊤
r GGG⊤

GGG −IIIN


−1

exists, and multiplying both sides by RRR(λ̂ ,α) gives

 v̂vv

λ̂ 1/2ûuu

=−αRRR(λ̂ ,α)

VVV r

0

 ·VVV⊤
r v̂vv. (3.6.35)

Then, multiplying by (VVV⊤
r 0) on both sides and re-arranging, we get MMMKKK(λ̂ ,α) ·VVV⊤

r v̂vv = 0.

We remark that if λ̂ is an eigenvalue of multiplicity k, and GGG has corresponding linearly

independent left singular vectors ûuu1, . . . , ûuuk and right singular vectors v̂vv1, . . . , v̂vvk, then the vectors

{(v̂vv j, λ̂
1/2ûuu j)}k

j=1 on the left side of (3.6.35) are linearly independent, implying that the vec-

tors {VVV⊤
r v̂vv j}k

j=1 on the right side must also be (non-zero and) linearly independent vectors in

kerMMMKKK(λ̂ ,α). Conversely, if {yyy j}k
j=1 are linearly independent vectors in kerMMMKKK(λ̂ ,α), then

defining  v̂vv j

λ̂ 1/2ûuu j

=−αRRR(λ̂ ,α)

VVV r

0

 · yyy j
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and multiplying by (VVV⊤
r 0), we must have VVV⊤

r v̂vv j = (−MMMKKK(λ̂ ,α)+ III)yyy j = yyy j. Thus the pairs

(v̂vv j, λ̂
1/2ûuu j) are linearly independent vectors satisfying (3.6.35), and multiplying by RRR(λ̂ ,α)−1

and rearranging shows that λ̂ 1/2 must be a singular value of GGG with multiplicity at least k, with

corresponding singular vectors {(v̂vv j, ûuu j)}k
j=1. This establishes part (a).

For part (b), the above argument has shown VVV⊤
r v̂vv ∈ kerMMMKKK(λ̂ ,α). Multiplying (3.6.35)

on the left by IIIn 0

0 0


and taking the squared norm (noting that λ̂ ,α and RRR(λ̂ ,α) here are real) shows (3.6.32).

Multiplying (3.6.35) on the left by (vvv⊤ 0) shows (3.6.33). For part (c), multiplying (3.6.35) by

(0 uuu⊤), we have

λ̂
1/2 uuu⊤ûuu =−α

0

uuu


⊤

RRR(λ̂ ,α)

VVV r

0

 ·VVV⊤
r v̂vv =−αuuu⊤GGG

(
GGG⊤GGG−ΓΓΓ(λ̂ ,α)

)−1
VVV r ·VVV⊤

r v̂vv

where the second equality follows from the block matrix inversion of RRR(λ̂ ,α). Then, recalling

the forms of R̃11 and R̃RR1V from (3.6.29) and (3.6.30), this gives

uuu⊤ûuu =
αR̃RR1V (λ̂ ,α)

λ̂ 1/2 R̃11(λ̂ ,α)
·VVV⊤

r v̂vv

which is (3.6.34).

For notational convenience, let us now introduce the shorthand

ψN,0(z) = zm̃N,0(z), ψ(z) = zm̃(z).

By Lemma 52(b) applied with (vvv1,vvv2) being the columns of VVV r, we see that MMMKKK(z,α) is well-
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approximated by the (deterministic, N-dependent) matrix

MMMN(z,α) := IIIr −α

(
(α + z)IIIr +ψN,0(z)diag(λ1(ΣΣΣ), . . . ,λr(ΣΣΣ))

)−1
. (3.6.36)

To show Theorem 40(a), we translate this approximation into a comparison of the roots of

0 = detMMMKKK(z,α) and 0 = detMMMN(z,α), where the latter are explicitly given by zN,0(−1/λi(ΣΣΣ))

for the function zN,0(·) defined in (3.3.5).

Proof of Theorem 40(a). Let us fix any ε > 0 and α ∈ R satisfying Lemmas 52 and 53, and

denote

fN,i(z,α) = 1− α

α + z+ψN,0(z)λi(ΣΣΣ)

for each i ∈ [r]. Then detMMMN(z,α) = ∏
r
i=1 fN,i(z,α). Define also the limiting functions

fi(z,α) = 1− α

α + z+ψ(z)λi
, MMM(z,α) = IIIr −α

(
(α + z)IIIr +ψ(z)diag(λ1, . . . ,λr)

)−1

so detMMM(z,α) = ∏
r
i=1 fi(z,α). We first analyze the roots of 0 = detMMM(z,α): By the definition

ψ(z) = zm̃(z), observe that z ∈R\ supp(µ̃) satisfies 0 = detMMM(z,α) if and only if either z = 0 or

m̃(z) =−1/λi for some i ∈ [r].

(This condition is the same for any non-zero α ∈ R.) Let T = {0}∪{−1/λ : λ ∈ supp(ν)} be

as in (1.2.5) where ν is the limit spectral law of ΣΣΣ0. Then −1/λi ∈ R\T for all i ∈ [r] under

Assumption 7, so Proposition 3 implies that m̃(z) = −1/λi holds for some z ∈ R\ supp(µ̃) if

and only if z′(−1/λi) > 0, i.e. i ∈ I . If i ∈ I , then m̃(z) = −1/λi holds for z = z(−1/λi),

and we must have z(−1/λi) > 0 strictly because for any z ≤ 0, we have m̃(z) > 0 (and hence

m̃(z) ̸= −1/λi) by the definition m̃(z) =
∫ 1

x−zdµ̃(x). Thus the roots of 0 = detMMM(z,α) in

R\S = R\ (supp(µ̃)∪{0}) — and hence in U(ε)∩R for any sufficiently small ε > 0 — are
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given precisely by

zi := z(−1/λi) for i ∈ I .

Since m̃′(z) =
∫ 1

(x−z)2 dµ̃(x)> 0 for all z ∈ R\S , and {λi : i ∈ I } are distinct by assumption,

these values {zi : i ∈ I } are simple roots of 0 = detMMM(zi,α). Then (detMMM)′(zi,α) ̸= 0 where

(detMMM)′ denotes the derivative in z.

Lemma 51(c) implies m̃N,0(z) → m̃(z) and m̃′
N,0(z) → m̃′(z) uniformly over z ∈ U(ε).

Since also λi(ΣΣΣ)→ λi, we have detMMMN(z,α)→ detMMM(z,α) and (detMMMN)
′(z,α)→ (detMMM)′(z,α)

uniformly over z ∈U(ε). This, together with the above condition (detMMM)′(zi,α) ̸= 0, imply that

for all large N, the roots zN,i ∈U(ε)∩R of 0 = detMMMN(z,α) are in 1-to-1 correspondence with,

and converge to, the above roots zi ∈U(ε)∩R of 0 = detMMM(z,α). We note that 0 = detMMMN(z,α)

if and only if either z = 0 or

m̃N,0(z) =−1/λi(ΣΣΣ) for some i ∈ [r]. (3.6.37)

For each i ∈ I , we have λi(ΣΣΣ) → λi where z′(−1/λi) > 0. Recall from Lemma 51(a) that

zN,0(m̃)→ z(m̃) and

z′N,0(m̃)→ z′(m̃)

uniformly over compact subsets of R\T . Then z′N,0(−1/λi(ΣΣΣ))→ z′(−1/λi), so also

z′N,0(−1/λi(ΣΣΣ))> 0

for all large N. Then Proposition 3 implies that (3.6.37) holds for zN,i := zN,0(−1/λi(ΣΣΣ)). We

have zN,i → zi = z(−1/λi), so these must be the roots of detMMMN(z,α) in U(ε)∩R. Thus we

have shown that for any sufficiently small ε > 0 and all large N, the roots z ∈ U(ε)∩R of
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0 = detMMMN(z,α) are precisely the values

zN,i := zN,0(−1/λi(ΣΣΣ)) for i ∈ I ,

and zN,i → zi > 0 for each i ∈ I .

Finally, we apply Lemma 52(b) with (vvv1,vvv2) being the columns of VVV r. On the event E of

Lemma 52(a), we have

∥MMMKKK(z,α)∥ ≤C,
∥∥MMMKKK(z,α)−MMMKKK(z′,α)

∥∥≤C|z− z′| (3.6.38)

for some C > 0 and all z,z′ ∈ U(ε/2). Also |m̃N,0(z)|, |m̃′
N,0(z)| < C for a constant C > 0, all

z ∈U(ε), and all large N, and thus

∥MMMN(z,α)∥ ≤C,
∥∥MMMN(z,α)−MMMN(z′,α)

∥∥≤C|z− z′| (3.6.39)

for some C > 0 and all z,z′ ∈U(ε/2). Then, applying Lemma 52(b) and the Lipschitz bounds of

(3.6.38) and (3.6.39) to take a union bound over a sufficiently fine covering net of U(ε/2), we

get

sup
z∈U(ε/2)

∥MMMN(z,α)−MMMKKK(z,α)∥ ≺ 1/
√

N. (3.6.40)

Applying also the first bounds of (3.6.38) and (3.6.39), this gives

sup
z∈U(ε/2)

|detMMMN(z,α)−detMMMKKK(z,α)| ≺ 1/
√

N. (3.6.41)

Since detMMMN(z,α) and detMMMKKK(z,α) are both holomorphic over z ∈U(ε/2) on this event E , the

Cauchy integral formula then implies

sup
z∈U(ε)

|(detMMMN)
′(z,α)− (detMMMKKK)

′(z,α)| ≺ 1/
√

N.
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In particular, combining with the uniform convergence statements detMMMN(z,α)→ detMMM(z,α)

and (detMMMN)
′(z,α)→ (detMMM)′(z,α) over z ∈U(ε) as argued above, this shows that on an event

E satisfying 1{E c} ≺ 0 and for some δN → 0, we have

sup
z∈U(ε)∩R

|detMMM(z,α)−detMMMKKK(z,α)|, |(detMMM)′(z,α)− (detMMMKKK)
′(z,α)|< δN .

Thus, on this event E and as N → ∞, the roots λ̂i ∈ U(ε)∩R of 0 = detMMMKKK(z,α) are also in

1-to-1 correspondence with, and converge to, the roots zi ∈U(ε)∩R of 0 = detMMM(z,α). Fur-

thermore, the condition (detMMM)′(zi,α) ̸= 0 implies that |(detMMMN)
′(z,α)| and |(detMMMKKK)

′(z,α)|

are bounded away from 0 in a neighborhood of each such root zi, so (3.6.41) then implies that

the corresponding roots λ̂i and zN,i of 0 = detMMMKKK(z,α) and 0 = detMMMN(z,α) satisfy

|λ̂i − zN,i| ≺ 1/
√

N.

Proposition 56 shows that on this event E , these roots {λ̂i : i ∈ I } are precisely the

eigenvalues of GGG⊤GGG in U(ε)∩R. By the definition of MMM(zi,α), each root zi of detMMM(zi,α) is

such that kerMMM(zi,α) has dimension 1. Since 1{E }(λ̂i − zi)→ 0, we have 1{E }∥MMMKKK(λ̂i,α)−

MMM(zi,α)∥ → 0, so kerMMMKKK(λ̂i,α) also has dimension 1 on this event E for all large N. Then

Proposition 56 implies that the eigenvalues {λ̂i : i ∈ I } of GGG⊤GGG are simple, and thus in 1-to-1

correspondence with {λi : i ∈ I }. This proves part (a) of the theorem.

Lemma 57. Under the assumptions of Theorem 40, for any fixed ε > 0, there exists α0 > 0 such
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that fixing any α ∈ C with |α|> α0, uniformly over z ∈U(ε),

∥∥∥∥∥
VVV r

0


⊤

RRR(z,α)

IIIn 0

0 0

RRR(z,α)

VVV r

0


− ((α + z)IIIr +ψN,0(z)ΣΣΣr)

−2(IIIr +ψ
′
N,0(z)ΣΣΣr

)∥∥∥∥∥≺ 1√
N
.

Proof. Fix any α ∈ C satisfying Lemma 52, and denote

fN(z,α) :=
(

VVV⊤
r 0

)
RRR(z,α)

VVV r

0

, gN(z,α) :=−((α + z)IIIr +ψN,0(z)ΣΣΣr)
−1.

Applying Lemma 52(b) and the Lipschitz continuity statements of (3.6.38) and (3.6.39) to take a

union bound over a sufficiently fine covering net of U(ε/2), we have

sup
z∈U(ε/2)

∥ fN(z,α)−gN(z,α)∥ ≺ 1/
√

N.

Then by the Cauchy integral formula, supz∈U(ε) ∥ f ′N(z,α)−g′N(z,α)∥ ≺ 1/
√

N where f ′N and

g′N denote the entrywise derivatives in z. The lemma follows, since differentiating RRR(z,α) in

(3.6.2) shows

f ′N(z,α) =

(
VVV⊤

r 0
)

RRR(z,α)

III 0

0 0

RRR(z,α)

VVV r

0,


while g′N(z,α) = ((α + z)IIIr +ψN,0(z)ΣΣΣr)

−2(IIIr +ψ ′
N,0(z)ΣΣΣr).

Proof of Theorem 40(b). Let v̂vvi be the given unit-norm eigenvector of KKK with eigenvalue λ̂i.

Let zN,i = zN,0(−1/λi(ΣΣΣ)) and zi = z(−1/λi). Then, fixing any α ∈ R large enough to satisfy

Lemmas 52 and 53, Proposition 56(b) shows that VVV⊤
r v̂vvi ∈ kerMMMKKK(λ̂i,α). By (3.6.40), (3.6.39),
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and the bound |λ̂i − zN,i| ≺ N−1/2 of part (a) of the theorem already proven, we have

∥∥∥MMMKKK(λ̂i,α)−MMMN(zN,i,α)
∥∥∥≤ ∥∥∥MMMKKK(λ̂i,α)−MMMN(λ̂i,α)

∥∥∥+∥∥∥MMMN(λ̂i,α)−MMMN(zN,i,α)
∥∥∥

≺ N−1/2. (3.6.42)

Let vvv1, . . . ,vvvr denote the columns of VVV r, which are the unit eigenvectors of ΣΣΣ. Then, applying

VVV⊤
r v̂vvi ∈ kerMMMKKK(λ̂i,α), (3.6.42), and the definition of MMMN(z,α), and noting that ψN,0(zN,i) =

zN,im̃N,0(zN,i) =−zN,i/λi(ΣΣΣ), we have

∥∥∥MMMN(zN,i,α) ·VVV⊤
r v̂vvi

∥∥∥2
=

r

∑
j=1

(
1− α

α + zN,i(1−λ j(ΣΣΣ)/λi(ΣΣΣ))

)2

(vvv⊤j v̂vvi)
2 ≺ 1/N.

For each j ∈ [r] \ {i}, we have that zN,i(1−λ j(ΣΣΣ)/λi(ΣΣΣ)) is bounded away from 0 as N → ∞

because zN,i → zi > 0 and λ j(ΣΣΣ)/λi(ΣΣΣ)→ λ j/λi ̸= 1. So this implies

|vvv⊤j v̂vvi|2 ≺ 1/N for all j ∈ [r]\{i}. (3.6.43)

At the same time, applying Lemma 57 and |λ̂i − zN,i| ≺ N−1/2 to bound (3.6.32) in Proposi-

tion 56(b), we have

1
α2 = v̂vv⊤i VVV r

VVV r

0


⊤

RRR(zN,i,α)

IIIn 0

0 0

RRR(zN,i,α)

VVV r

0

VVV⊤
r v̂vvi +O≺

(
N−1/2

)

= v̂vv⊤i VVV r

(
(α + zN,i)IIIr +ψN,0(zN,i)ΣΣΣr

)−2(
IIIr +ψ

′
N,0(zN,i)ΣΣΣr

)
VVV⊤

r v̂vvi +O≺
(

N−1/2
)

= |vvv⊤i v̂vvi|2 ·
1+ψ ′

N,0(zN,i)λi(ΣΣΣ)

α2

+∑
j ̸=i

|vvv⊤j v̂vvi|2 ·
1+ψ ′

N,0(zN,i)λ j(ΣΣΣ)

(α + zN,i(1−λ j(ΣΣΣ)/λi(ΣΣΣ)))2 +O≺
(

N−1/2
)

= |vvv⊤i v̂vvi|2 ·
1+ψ ′

N,0(zN,i)λi(ΣΣΣ)

α2 +O≺
(

N−1/2
)
, (3.6.44)
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the last equality applying (3.6.43). Observe that

1+ψ
′
N,0(zN,i)λi(ΣΣΣ) = 1+ zN,im̃′

N,0(zN,i)λi(ΣΣΣ)+ m̃N,0(zN,i)λi(ΣΣΣ)

= zN,im̃′
N,0(zN,i)λi(ΣΣΣ) = zN,iλi(ΣΣΣ)/z′N,0(−1/λi(ΣΣΣ)),

where the last two equalities use zN,i = zN,0(−1/λi(ΣΣΣ)) and m̃N,0(·) is the inverse function of

zN,0(·). Then, multiplying by α2/(1+ψ ′
N,0(zN,i)λi(ΣΣΣ)) we obtain

|vvv⊤i v̂vvi|2 =
z′N,0(−1/λi(ΣΣΣ))

zN,iλi(ΣΣΣ)
+O≺

(
N−1/2

)
= ϕN,0(−1/λi(ΣΣΣ))+O≺

(
N−1/2

)
,

where we recall ϕN,0 from (3.3.5). We have ϕN,0(−1/λi(ΣΣΣ))→ ϕ(−1/λi) = z′(−1/λi)/(λizi)>

0, so taking a square root gives

|vvv⊤i v̂vvi|=
√

ϕN,0(−1/λi(ΣΣΣ))+O≺
(

N−1/2
)
. (3.6.45)

Finally, for any unit vector vvv ∈ Rn, by (3.6.33) in Proposition 56(b), Lemma 52(b), and

the bound |λ̂i − zN,i| ≺ N−1/2 in part (a) of the theorem already shown, we know that

vvv⊤v̂vvi = −α ·
(

vvv⊤ 0
)

RRR(zN,i,α)

VVV r

0

 ·VVV⊤
r v̂vvi +O≺

(
N−1/2

)

= −α

r

∑
j=1

vvv⊤vvv j · vvv⊤j v̂vvi

α + zN,i +ψN,0(zN,i)λ j(ΣΣΣ)
+O≺

(
N−1/2

)
= −α

r

∑
j=1

vvv⊤vvv j · vvv⊤j v̂vvi

α + zN,i · (1−λ j(ΣΣΣ)/λi(ΣΣΣ))
+O≺

(
N−1/2

)
.

Applying (3.6.43) and (3.6.45), only the summand with j = i contributes, and we obtain as

desired

|vvv⊤v̂vvi|=
√

ϕN,0(−1/λi(ΣΣΣ)) · |vvv⊤vvvi|+O≺
(

N−1/2
)
.
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Proof of Theorem 40(c). Applying Lemma 53(b) and block matrix inversion of Γ̃ΓΓ+ψN,0(z)Σ̃ΣΣ

to the definitions of R̃11 and R̃RR1V in (3.6.29) and (3.6.30), we have

∣∣∣∣R̃11(z,α)+
(

z+α +ψN,0(z) ·E[u2]−ψN,0(z)2 ·E[uggg]⊤(ΓΓΓ+ψN,0(z)ΣΣΣ)
−1E[uggg]

)−1
∣∣∣∣≺ 1√

N
,∥∥∥∥∥R̃RR1V (z,α)−

ψN,0(z) ·E[uggg]⊤(ΓΓΓ+ψN,0(z)ΣΣΣ)
−1VVV r

z+α +ψN,0(z) ·E[u2]−ψN,0(z)2 ·E[uggg]⊤(ΓΓΓ+ψN,0(z)ΣΣΣ)
−1E[uggg]

∥∥∥∥∥≺ 1√
N
.

Hence,

∥∥∥∥∥R̃RR1V (z,α)

R̃11(z,α)
+ψN,0(z) ·E[uggg]⊤VVV r · ((α + z)IIIr +ψN,0(z)ΣΣΣr)

−1

∥∥∥∥∥≺ 1√
N
.

Applying this and the bound |λ̂i − zN,i| ≺ N−1/2 to Proposition 56(c),

uuu⊤ûuui =
α

λ̂
1/2
i

R̃RR1V (λ̂i,α)

R̃11(λ̂i,α)
·VVV⊤

r v̂vvi =− α
√zN,i

r

∑
j=1

ψN,0(zN,i) ·E[uggg]⊤vvv j · vvv⊤j v̂vvi

α + zN,i +ψN,0(zN,i)λ j(ΣΣΣ)
+O≺

(
N−1/2

)
=− α

√zN,i

r

∑
j=1

ψN,0(zN,i) ·E[uggg]⊤vvv j · vvv⊤j v̂vvi

α + zN,i(1−λ j(ΣΣΣ)/λi(ΣΣΣ))
+O≺

(
N−1/2

)
.

Then, applying again (3.6.43) and (3.6.45), only the summand with j = i contributes, and this

gives

|uuu⊤ûuui|=
|E[uggg]⊤vvvi| · |ψN,0(zN,i)|

√
ϕN,0(−1/λi(ΣΣΣ))

√zN,i
+O≺

(
N−1/2

)
.

Recalling ψN,0(zN,i) =−zN,i/λi(ΣΣΣ), this yields part (c) of the theorem.
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3.7 Proofs for Propagation of Spiked Eigenstructure in
Deep NNs

We next prove Theorems 33 and 34. Section 3.7.1 first establishes these results for a

one-hidden-layer NN, L = 1. We then apply this result for L = 1 inductively in Section 3.7.2 to

obtain these results for general L. Section 3.7.3 proves Corollary 35.

3.7.1 Spike Analysis for One-hidden-layer CK

Consider the setup in Section 3.2 with a single hidden layer L = 1. In this setting, let us

simplify notation and denote

XXX = XXX0, WWW =WWW 0, d = d0, N = d1,

YYY = XXX1 =
1√
N

σ(WWWXXX), KKK = KKK1 = YYY⊤YYY .

We denote the rows of WWW and columns of XXX respectively by

www⊤
i ∈ Rd for i ∈ [N], xxxα ∈ Rd for α ∈ [n].

We write Ewww for the expectation over a standard Gaussian vector www ∼ N (0, III) in Rd .

Note that for a sufficiently large constant B > 0 (depending on supp(ν) and λ1, . . . ,λr),

Assumption 4 implies that the event

E (XXX) =
{
∥XXX∥< B, |xxx⊤α xxxβ |< τn and |∥xxxα∥−1|< τn for all α ̸= β ∈ [n]

}
(3.7.1)

holds almost surely for all large n. Throughout this section, we use the following argument:

Since WWW ≡WWW (n) is independent of XXX ≡ XXX (n), and E (XXX (n)) holds for all large n with probability

one over {XXX (n)}∞
n=1, to prove any almost-sure statement, it suffices to show that the statement

holds with probability one over {WWW (n)}∞
n=1, for any deterministic matrices {XXX (n)}∞

n=1 satisfying
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E (XXX (n)). Therefore, we assume in the remainder of this section that XXX is deterministic and

satisfies E (XXX) for all large n, and write E and P for the expectation and probability over only the

random weight matrix WWW , respectively.

We will apply Theorem 40 to a centered version of YYY ,

GGG := YYY −EYYY =
1√
N
[ggg1, . . . ,gggN ]

⊤, ggg⊤i := σ(www⊤
i XXX)−Ewww[σ(www⊤XXX)].

Note that these rows ggg⊤i are i.i.d. with mean 0 and covariance

ΣΣΣ := Ewww[σ(www⊤XXX)⊤σ(www⊤XXX)]−Ewww[σ(www⊤XXX)]⊤Ewww[σ(www⊤XXX)] ∈ Rn×n. (3.7.2)

Lemma 58. Suppose Assumptions 3, 4, and 5 hold, with L = 1 and deterministic XXX. Then

∥Ewww[σ(www⊤XXX)]∥→ 0, ∥EYYY∥→ 0.

Proof. Denote ξ ∼ N (0,1). Applying E[σ(ξ )] = 0, E[σ ′(ξ )ξ ] = E[σ ′′(ξ )] = 0, and a Taylor

approximation of σ , for any α ∈ [n],

Ewww[σ(www⊤xxxα)] = E[σ(∥xxxα∥ξ )]−E[σ(ξ )]

= E[σ ′(ξ )ξ (∥xxxα∥−1)]+E[σ ′′(η)ξ 2(∥xxxα∥−1)2] = E[σ ′′(η)ξ 2(∥xxxα∥−1)2]

for some η between ξ and ∥xxxi∥ξ . Then, applying |σ ′′(x)| ≤ λσ and the τn-orthonormality of XXX

under E (XXX),

|Ewww[σ(www⊤xxxα)]| ≤ λσ τ
2
n .

This gives ∥Ewww[σ(www⊤XXX)]∥ ≤ λσ τ2
n
√

n → 0, so also ∥EYYY∥=
∥∥∥ 1√

N
1N ·Ewww[σ(www⊤XXX)]

∥∥∥→ 0.

Next, we utilize Lemma 84 in Chapter 4 to derive an approximation of ΣΣΣ by the linearized
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matrix

ΣΣΣlin := b2
σ XXX⊤XXX +(1−b2

σ )IIIn (3.7.3)

in the operator norm.

Lemma 59. Suppose Assumptions 3, 4, and 5 hold, with L = 1 and deterministic XXX.

∥ΣΣΣ−ΣΣΣlin∥→ 0.

Consequently, ordering λ1(ΣΣΣ), . . . ,λn(ΣΣΣ) in the same order as λ1(XXX⊤XXX), . . . ,λn(XXX⊤XXX),

sup
i∈[n]

∣∣∣b2
σ λi(XXX⊤XXX)+(1−b2

σ )−λi(ΣΣΣ)
∣∣∣→ 0. (3.7.4)

Proof. Denote ξ ∼ N (0,1). Let ζk(σ) = E[σ(ξ )hk(ξ )] be the k-th Hermite coefficient of σ ,

where hk(x) is the k-th Hermite polynomial normalized so that E[hk(ξ )
2] = 1. Note that by

Gaussian integration by parts and the assumption E[σ ′′(ξ )] = 0,

ζ1(σ) = E[ξ σ(ξ )] = E[σ ′(ξ )] = bσ , (3.7.5)
√

2ζ2(σ) = E[(ξ 2 −1)σ(ξ )] = E[ξ σ
′(ξ )] = E[σ ′′(ξ )] = 0. (3.7.6)

Then by Lemma 84 in Chapter 4 and the first statement of Lemma 58, we have

∥ΣΣΣ0 −ΣΣΣ∥ ≤ ∥ΣΣΣ0 −Ewww[σ(www⊤XXX)⊤σ(www⊤XXX)]∥+∥Ewww[σ(www⊤XXX)⊤σ(www⊤XXX)]−ΣΣΣ∥→ 0

where

ΣΣΣ0 = ζ1(σ)2XXX⊤XXX +ζ3(σ)2(XXX⊤XXX)⊙3 +(1−ζ1(σ)2 −ζ3(σ)2)IIIn.

(Here, examination of the proof of Lemma 84 shows that the condition ∑α(∥xxxα∥− 1)2 ≤ B2

for (ε,B)-orthonormality is not used when ζ2(σ) = 0, and the remaining conditions of (ε,B)-
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orthonormality hold under E (XXX).) The lemma then follows upon observing that under E (XXX),

∥∥∥(XXX⊤XXX)⊙3 − IIIn

∥∥∥≤ ∥∥∥diag((XXX⊤XXX)⊙3 − IIIn)
∥∥∥+∥∥∥offdiag(XXX⊤XXX)⊙3

∥∥∥
F

≤ max
α∈[n]

∣∣∣∥xxxα∥6 −1
∣∣∣+n · max

α ̸=β∈[n]
|xxx⊤α xxxβ |3 ≤C(τn +nτ

3
n ),

so that ∥ΣΣΣlin −ΣΣΣ0∥= ζ3(σ)2
∥∥(XXX⊤XXX)⊙3 − IIIn

∥∥→ 0 when limn→∞ τn ·n1/3 = 0.

Theorem 40 will provide a characterization of outlier eigenvalues of KKK that are separated

from S1 = supp(µ1)∪{0}, which is different from supp(µ1) when γ1 < 1. For γ1 < 1, we

augment this statement with a small-ball argument to bound the smallest eigenvalue of KKK, using

the following result of [Yas16, Theorem 2.1].

Lemma 60 ([Yas16]). Let GGG = 1√
N
[ggg1, . . . ,gggN ]

⊤ ∈ RN×n where the rows gggi ∈ Rn are i.i.d. and

equal in law to ggg ∈ Rn. Define

ΣΣΣ = Egggggg⊤, cggg = inf
vvv∈Rn:∥vvv∥=1

E|ggg⊤vvv|, Lggg(δ , ι) = sup
ΠΠΠ:rank(ΠΠΠ)≥ιn

P
[
|ΠΠΠggg|2 ≤ δ rank(ΠΠΠ)

]

where the latter supremum is taken over all orthogonal projections ΠΠΠ ∈ Rn×n with rank at least

ι ·n.

Suppose λmax(ΣΣΣ) ≤ 1, c(ggg) ≥ c, and n/N ≤ y for some constants c > 0 and y ∈ (0,1).

Then there exist constants s0, ι > 0 depending only on (c,y) such that for any δ ∈ (0,1) and

s > 0,

P[λmin(GGG⊤GGG)≥ (s0 −L(δ , ι ;ggg)− s)δ ]≥ 1−2e−yns2/2.

Lemma 61. Suppose Assumptions 3, 4, and 5 hold, with L = 1 and deterministic XXX. Let

GGG = YYY −EYYY .

(a) If γ1 ≥ 1, then 0 ∈ supp(µ1).

(b) If γ1 < 1, then there is a constant c > 0 such that λmin(GGG⊤GGG) > c almost surely for all
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large n.

Proof. If γ1 > 1 strictly, then by definition

µ1 =
1
γ1

µ̃1 +
γ1 −1

γ1
δ0

is a mixture of µ̃1 and a point mass at 0, so 0 ∈ supp(µ1). If γ = 1, then µ1 = µ̃1. In this case,

recall from Proposition 3 that supp(µ̃1) is characterized by the function

z(m̃) =− 1
m̃
+ γ1

∫
λ

1+λ m̃
dν0(λ ).

When γ1 = 1, we have for all m̃ ∈ (0,∞) that

z(m̃)< 0, z′(m̃) =
1

m̃2 −
∫

λ 2

(1+λ m̃)2 dν(λ )> 0,

so z(m̃) increases from −∞ to 0 over the positive line m̃ ∈ (0,∞). Suppose by contradiction

that 0 /∈ supp(µ̃). Then by Proposition 3, there must be a point m̃ ∈ R\T where z(m̃) = 0 and

z′(m̃)> 0 strictly, implying that there is an open interval (m̃−, m̃+) ∋ m̃ on which z(·) increases

from z(m̃−)< 0 to z(m̃+)> 0. We must have m̃ < 0 by the above behavior of z(·) on (0,∞), and

the range [z(m̃−),z(m̃+)] must overlap with [z(a),z(b)] for some sufficiently large a,b ∈ (0,∞).

But this contradicts the non-intersecting property shown in [SC95, Theorem 4.4]. So also in this

case 0 ∈ supp(µ̃1) = supp(µ1), showing part (a).

For part (b), we apply Lemma 60. Under E (XXX), the condition bσ ̸= 0 implies c0 <

λmin(ΣΣΣlin)≤ λmax(ΣΣΣlin)<C0 for some constants C0,c0 > 0. Hence, also,

c0 < λmin(ΣΣΣ)≤ λmax(ΣΣΣ)<C0 (3.7.7)

for all large n, by Lemma 59. We assume without loss of generality that λmax(ΣΣΣ)≤ 1 as needed

in Lemma 60; otherwise, the following argument may be applied to a rescaling of ΣΣΣ and GGG.
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To lower bound cggg in Lemma 60, observe that for any unit vector vvv ∈ Rn we have

E[(ggg⊤vvv)2] = vvv⊤ΣΣΣvvv > c0.

Viewing F(www) = ggg⊤vvv = σ(www⊤XXX)vvv = ∑
n
α=1 vασ(www⊤xxxα) as a function of www ∼ N (0, III), we

have ∇F(www) = ∑
n
α=1 vασ ′(www⊤xxxα)xxxα = XXX(vvv⊙σ ′(www⊤XXX)) where σ ′(·) is applied coordinatewise

and ⊙ is the coordinatewise product. Then, applying |σ ′(x)| ≤ λσ , observe that ∥∇F(www)∥ ≤

∥XXX∥·∥vvv⊙σ ′(www⊤XXX)∥≤ λσ∥XXX∥, so F(www) is C-Lipschitz in www for a constant C > 0 (not depending

on vvv) on the event E (XXX). This implies by Gaussian concentration-of-measure that ggg⊤vvv is sub-

Gaussian, i.e. for some constants C,c > 0 and any t > 0, P[|ggg⊤vvv| ≥ t]≤Ce−ct2
. Integrating this

tail bound, for some constant t > 0 sufficiently large, we have E[(ggg⊤vvv)21{|ggg⊤vvv|>t}]≤ c0/2, and

hence

c0 < E[(ggg⊤vvv)2]≤ E[(ggg⊤vvv)21{|ggg⊤vvv|≤t}]+
c0

2
≤ t ·E|ggg⊤vvv|+ c0

2
.

So E|ggg⊤vvv| ≥ c0/(2t), and hence cggg ≥ c0/(2t)> c for a constant c > 0.

Now let s0, ι > 0 be the constants depending on (c,γ1) in the statement of Lemma 60. By

the nonlinear Hanson-Wright inequality of (4.4.4), for any orthogonal projection ΠΠΠ ∈ Rn×n, any

t > 0, and some constant c > 0, we have

P
[
|ggg⊤ΠΠΠggg−Eggg⊤ΠΠΠggg|> t

]
≤ 2e−cmin(t2/∥ΠΠΠ∥2

F ,t/∥ΠΠΠ∥).

Here Eggg⊤ΠΠΠggg = TrΠΠΠΣΣΣ > c0rank(ΠΠΠ), ∥ΠΠΠ∥2
F = rank(ΠΠΠ), and ∥ΠΠΠ∥ = 1, so applying this with

t = (c0/2)rank(ΠΠΠ) yields

P[|ΠΠΠggg|2 ≤ (c0/2)rank(ΠΠΠ)]≤ 2e−c′rank(ΠΠΠ).

Then, choosing δ = c0/2, we get Lggg(δ , ι)→ 0 as n → ∞. Then Lemma 60 implies λmin(GGG⊤GGG)>

s0δ/2 almost surely for all large n, as desired.
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The following is the main result of this section, showing that Theorems 33 and 34 hold

in this setting of L = 1.

Lemma 62. Theorems 33 and 34 hold for a single layer L = 1. Furthermore, YYY is Cτn-

orthonormal for some constant C > 0, almost surely for all large n.

Proof. We condition on XXX as discussed at the start of this section, and apply Theorem 40 to the

centered matrix GGG = YYY −EYYY = 1√
N
[ggg1, . . . ,gggN ]

⊤. Let us verify Assumption 6 for GGG: We have

shown Assumption 6(a) in (3.7.7). The rows gggi are sub-Gaussian as shown in the above proof of

Lemma 61(b), so Assumption 6(b) holds by [Ver10, Eq. (5.26)], and Assumption 6(d) holds by

[JNG+19, Lemma 2]. The nonlinear Hanson-Wright inequality of (4.4.4) implies

|ggg⊤i AAAgggi −TrAAAΣΣΣ| ≺ ∥AAA∥F

uniformly over i ∈ [N] and deterministic matrices AAA ∈ Cn×n. Furthermore, it is clear from the

argument preceding (4.4.4) that for any i ̸= j ∈ [N], the joint vector (gggi,ggg j) ∈ R2n also satisfies

Lipschitz concentration, hence

∣∣∣∣∣∣∣
(

ggg⊤i ggg⊤j

)
BBB

gggi

ggg j

−TrBBB

ΣΣΣ 0

0 ΣΣΣ


∣∣∣∣∣∣∣≺ ∥BBB∥F

uniformly over i ̸= j ∈ [N] and deterministic matrices BBB ∈ C2n×2n. Applying this with

BBB =

0 AAA

AAA 0


verifies both statements of Assumption 6(c).

Next, we check Assumption 7 for the population covariance matrix ΣΣΣ. Combining
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Assumption 4 and (3.7.4) from Lemma 59, we have

1
n− r

n

∑
i=r+1

δλi(ΣΣΣ) → ν0 := b2
σ ⊗µ0 ⊕ (1−b2

σ ) weakly, (3.7.8)

λi(ΣΣΣ)→− 1
si,0

:= b2
σ λi +(1−b2

σ ) ̸∈ supp(ν0) for i = 1, . . . ,r. (3.7.9)

Here, the statement −1/si,0 /∈ supp(ν0) in (3.7.9) follows from the assumptions λi /∈ supp(µ0)

and bσ ̸= 0. This then implies by the definition of T1 that si,0 ∈ R\T1, as claimed in Theorem

34(a). Furthermore, for any fixed ε > 0 and all large n, Assumption 4 and (3.7.4) imply also that

λi(ΣΣΣ) ∈ supp(ν0)+(−ε,ε) for all i ≥ r+1.

Thus Assumption 7 holds for ΣΣΣ as n → ∞.

Then we can apply Theorems 38 and 40 for K̄KK := GGG⊤GGG. The Stieltjes transform approxi-

mation in Theorem 38 and Lemma 51(c) together imply mK̄KK(z)→ m1(z) almost surely for each

fixed z ∈ C+, where m1(z) is the Stieltjes transform of the measure µ1 = ρMP
γ1

⊠ν0. This implies

the weak convergence
1
n

n

∑
i=1

δ
λi(K̄KK) → µ1 a.s. (3.7.10)

Theorem 40(a,b) further justifies:

• Let z1(·) and I1 be defined by (3.2.6) and (3.2.7) with ℓ = 1. Then for any sufficiently

small constant ε > 0, almost surely for all large n, there is a 1-to-1 correspondence between

the eigenvalues of K̄KK outside S1 +(−ε,ε) and {i : i ∈ I1}. Furthermore, for each i ∈ I1,

λi(K̄KK)→ z1(si,0)> 0. (3.7.11)

almost surely as n → ∞.

• Let ϕ1(·) be defined by (3.2.6) with ℓ= 1. For each i ∈ I1, let vvvi(K̄KK) ∈ Rn be a unit-norm
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eigenvector of K̄KK corresponding to λi(K̄KK), and for each j ∈ [r], let vvv j(ΣΣΣ) be a unit-norm

eigenvector of ΣΣΣ corresponding to λ j(ΣΣΣ). Then almost surely as n → ∞, for each i ∈ I1

and j ∈ [r],

|vvv j(ΣΣΣ)
⊤vvvi(K̄KK)| →

√
ϕ1(si,0) ·1{i = j} (3.7.12)

where ϕ1(si,0)> 0. Moreover, letting vvv ∈ Rn be any unit vector independent of WWW , almost

surely

|vvv⊤vvvi(K̄KK)|−
√

ϕ1(si,0) · |vvv⊤vvvi(ΣΣΣ)| → 0. (3.7.13)

If γ1 ≥ 1, then Lemma 61(a) shows that supp(µ1) = supp(µ1)∪{0}=S1. If γ1 < 1, then

Lemma 61(b) shows that for any sufficiently small constant ε > 0, K̄KK has no eigenvalues in [0,ε)

almost surely for all large n. Thus, in both cases, the first statement above in fact establishes a

1-to-1 correspondence between {i : i ∈ I1} and all eigenvalues of K̄KK outside supp(µ1)+(−ε,ε),

almost surely for all large n.

To translate these statements to the non-centered matrix KKK =YYY⊤YYY , recall from Lemma 58

that ∥YYY −GGG∥ → 0 almost surely, and from Assumption 6(b) verified above that 1{∥GGG⊤GGG∥ >

B′} ≺ 0 for a constant B′ > 0. Then, almost surely as n → ∞,

∥∥KKK − K̄KK
∥∥→ 0.

Therefore, by Weyl’s inequality and (3.7.10), the empirical eigenvalue distribution µ̂1 of KKK

converges also to µ1 weakly a.s., as claimed in Theorem 33. And, by (3.7.11), almost surely for

all large n, the eigenvalues λ̂i,1 of KKK outside supp(µ1)+(−ε,ε) are also in 1-to-1 correspondence

with {i : i ∈I1}, where λ̂i,1 → z1(si,0) for each i ∈I1. In particular, if r = 0, then also |I1|= 0,

so KKK has no eigenvalues outside supp(µ1)+(−ε,ε). This proves Theorem 33.

For each i ∈ I1, let v̂vvi,1 ∈ Rn be a unit-norm eigenvector of KKK corresponding to λ̂i,1.
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Then by the Davis-Kahan Theorem [DK70], we may choose a sign for v̂vvi,1 such that

∥∥v̂vvi,1 − vvvi(K̄KK)
∥∥≤ √

2∥KKK − K̄KK∥
dist(λ̂i,1,spec(K̄KK)\{λi(K̄KK)})

.

We note that λ̂i,1 → z1(si,0) a.s., which is distinct from the limit values {z1(s j,0) : j ∈ I1 \{i}}

of {λ j(K̄KK) : I1 \{i}} by bijectivity of the map z1(·) in Proposition 3. Furthermore z1(si,0) falls

outside supp(µ1)+(−ε,ε) for sufficiently small ε > 0, which contains all other eigenvalues of

K̄KK. Thus dist(λ̂i,1,spec(K̄KK)\{λi(K̄KK)})≥ c for a constant c > 0 almost surely for all large n, so

∥∥v̂vvi,1 − vvvi(K̄KK)
∥∥→ 0 a.s.

Similarly, by the convergence ∥ΣΣΣ−ΣΣΣlin∥→ 0 and the assumption bσ ̸= 0, we have

∥∥vvv j(ΣΣΣ)− vvv j
∥∥→ 0

for each j ∈ [r], where vvv j is the unit-norm eigenvector of ΣΣΣlin corresponding to its eigenvalue

b2
σ λ j(XXX⊤XXX)+(1−b2

σ ), i.e. the eigenvector of XXX⊤XXX corresponding to λ j(XXX⊤XXX). Then (3.7.12)

and (3.7.13) imply also

|vvv⊤j v̂vvi|2 → ϕ1(si,0) ·1{i = j}, |vvv⊤v̂vvi|2 −ϕ1(si,0) · |vvv⊤vvvi|2 → 0.

This shows all claims of Theorem 34 for L = 1.

Finally, on E (XXX), the matrix YYY is Cτn-orthonormal for a constant C > 0 by Lemma 16(b).

Notice that the proof of Lemma 16(b) again does not use the condition ∑α(∥xxxα∥2 −1)2 ≤ B2 of

(ε,B)-orthonormality therein, and the remaining conditions of (ε,B)-orthonormality hold under

E (XXX). This shows the last claim of the lemma.
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3.7.2 Spike Analysis for Multiple Layers

We now prove Theorem 34 by inductively applying the result for L = 1 through multiple

layers. We follow the notations of Section 3.2.

Proof of Theorem 34. Suppose inductively that Assumption 4 holds with XXX ℓ−1 in place of XXX0,

and all conclusions of Theorem 34 hold for KKKℓ. The base case of ℓ= 1 follows from Lemma 62.

Then the last statement of Lemma 62 implies that XXX ℓ is τ ′n-orthonormal almost surely for

all large n, for some τ ′n satisfying τ ′n ·n1/3 → 0. Furthermore, the conclusions of Theorem 34(b,c)

for KKKℓ imply that statements (a) and (b) of Assumption 4 also hold for XXX ℓ, in the following sense:

Let rℓ = |Iℓ|. Then
1

n−|rℓ| ∑
i/∈Iℓ

δ
λi(XXX⊤

ℓ XXXℓ)
→ µℓ weakly a.s.

For any fixed ε > 0, almost surely for all large n, λ̂i,ℓ := λi(XXX⊤
ℓ XXX ℓ) ∈ supp(µℓ)+(−ε,ε) for all

i /∈ Iℓ. Furthermore, for each i ∈ Iℓ, λ̂i,ℓ → zℓ(si,ℓ−1) /∈ supp(µℓ).

Then we may apply Lemma 62 with input data XXX = XXX ℓ in place of XXX0. This shows that

for any fixed ε > 0 and all large n, there is a 1-to-1 correspondence between the eigenvalues

λ̂i,ℓ+1 of KKKℓ+1 outside supp(µℓ+1)+(−ε,ε) and {i : i ∈ Iℓ+1}, where λ̂i,ℓ+1 → zℓ+1
(
si,ℓ
)
> 0

a.s., and si,ℓ ∈ R\Tℓ+1. Moreover, for any unit vector vvv ∈ Rn independent of WWW 1, . . . ,WWW ℓ+1,

|v̂vv⊤i,ℓ+1vvv|2 −ϕℓ+1(si,ℓ) · |v̂vv⊤i,ℓvvv|2 → 0,

where also ϕℓ+1(si,ℓ)> 0. Then by the induction hypothesis for |v̂vv⊤i,ℓvvv|2,

|v̂vv⊤i,ℓ+1vvv|2 →
ℓ+1

∏
k=1

ϕk(si,k−1) · |vvv⊤i vvv|2,
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and specializing to vvv = vvv j for j ∈ [r] gives

|v̂vv⊤i,ℓ+1vvv j|2 →
ℓ+1

∏
k=1

ϕk(si,k−1) ·1{i = j}.

This verifies all conclusions of Theorem 34 for KKKℓ+1, completing the induction.

3.7.3 Corollary for Signal-Plus-Noise Input Data

Proof of Corollary 35. It is shown in [BGN12, Section 3.1] that asymptotically as d,n → ∞

with n/d → γ0, the data matrix XXX has a spike singular value corresponding to θi if and only if

θi > γ
1/4
0 , in which case

λi(KKK0)→ λi :=
(1+θ 2

i )(γ0 +θ 2
i )

θ 2
i

, |bbb⊤i vvvi|2 → 1− γ0(1+θ 2
i )

θ 2
i (θ

2
i + γ0)

where vvvi is the unit eigenvector of the input Gram matrix KKK0 = XXX⊤XXX . Thus claims (a) and (b)

of Assumption 4 hold with r = |{i : θi > γ
1/4
0 }|, µ0 = ρMP

γ0
being the standard Marčenko-Pastur

law, and λi = (1+θ 2
i )(γ0 +θ 2

i )/θ 2
i being the above values.

We note that XXX is n−1/2+ε -orthonormal for any ε > 0 almost surely for all large n, by the

given condition max1≤i≤r ∥bbbi∥∞ < n−1/2+ε and the bounds, for any α,β ∈ [n],

∥xxxα∥= ∥zzzα∥+
r

∑
i=1

O≺(∥aaai∥|θi||bi,α |) = ∥zzzα∥+O≺
(

n−1/2+ε

)
= 1+O≺

(
n−1/2+ε

)
,

xxx⊤α xxxβ = zzz⊤α zzzβ +
r

∑
i=1

O≺
(
|θi|
(
|aaa⊤i zzzα ||bi,α |+ |aaa⊤i zzzβ ||bi,β |

)
+θ

2
i ∥aaai∥2|bi,αbi,β |

)
= O≺

(
n−1/2+ε

)
.

Hence Theorem 34 applies, showing that KKKℓ has an outlier eigenvalue corresponding to each

input signal θi if and only if θi > γ
1/4
0 and i ∈ Iℓ. The statement (3.2.9) follows from Theorem

34(c) applied with vvv = bbbi.
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Chapter 4

Deformed Semicircle Law for Ultra-Wide
NNs

In this Chapter, we study the random CK and NTK matrices of a two-layer fully connected

neural network with input data X ∈ Rd0×n, given by f : Rd0×n → Rn such that

f (X) :=
1√
d1

aaa⊤σ(WX), (4.0.1)

where W ∈ Rd1×d0 is the weight matrix for the first layer, aaa ∈ Rd1 are the second layer weights,

and σ is a nonlinear activation function applied to the matrix WX element-wisely. We assume

that all entries of aaa and W are independently identically distributed by the standard Gaussian

N (0,1). We will always view the input data X as a deterministic matrix (independent of the

random weights in aaa and W ) with certain assumptions.

In terms of random matrix theory, we study the difference between these two kernel

matrices (CK and NTK) and their expectations with respect to random weights, showing both

asymptotic and non-asymptotic behaviors of these differences as the width of the first hidden

layer d1 is growing faster than the number of samples n. As an extension of Chapter 2, we

prove that when n/d1 → 0, the centered CK and NTK with appropriate normalization have the

limiting eigenvalue distribution given by a deformed semicircle law, determined by the training

data spectrum and the nonlinear activation function. To prove this global law, we further set

up a limiting law theorem for centered sample covariance matrices with dependent structures
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and a nonlinear version of the Hanson-Wright inequality. These two results are very general,

which makes them potentially applicable to different scenarios beyond our neural network model.

For the non-asymptotic analysis, we establish concentration inequalities between the random

kernel matrices and their expectations. As a byproduct, we provide lower bounds of the smallest

eigenvalues of CK and NTK, which are essential for the global convergence of gradient-based

optimization methods when training a wide neural network [OS20, NM20, Ngu21]. Because of

the non-asymptotic results for kernel matrices, we can also describe how close the performances

of the random feature regression and the limiting kernel regression are with a general dataset,

which allows us to compute the limiting training error and generalization error for the random

feature regression via its corresponding kernel regression in the ultra-wide regime.

4.1 Related Work

General sample covariance matrices

We observe that the random matrix Y ∈ Rd1×n defined above has independent and

identically distributed rows. Hence, Y⊤Y is a generalized sample covariance matrix. We first

inspect a more general sample covariance matrix Y whose rows are independent copies of some

random vector y ∈ Rn. Assuming n and d1 both go to infinity but n/d1 → 0, we aim to study the

limiting empirical eigenvalue distribution of centered Wishart matrices in the form of

1√
nd1

(
Y⊤Y −E[Y⊤Y ]

)
, (4.1.1)

with certain conditions on y. This regime is also related to the ultra-high dimensional setting in

statistics [QLY23].

This regime has been studied for decades starting in [BY88], where Y has i.i.d. entries

and E[Y⊤Y ] = d1 Id. In this setting, by the moment method, one can obtain the semicircle law.

This normalized model also arises in quantum theory with respect to random induced states

(see [Aub12, AS17, CYZ18]). The largest eigenvalue of such a normalized sample covariance
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matrix has been considered in [CP12]. Subsequently, [CP15, LY16, YXZ22, QLY23] analyzed

the fluctuations for the linear spectral statistics of this model and applied this result to hypothesis

testing for the covariance matrix. A spiked model for sample covariance matrices in this regime

was recently studied in [Fel23b]. This kind of semicircle law also appears in many other random

matrix models. For instance, [Jia04] showed this limiting law for normalized sample correlation

matrices. Also, the semicircle law for centered sample covariance matrices has already been

applied in machine learning: [GKZ19] controlled the generalization error of shallow neural

networks with quadratic activation functions by the moments of this limiting semicircle law;

[GZR22] derived a semicircle law of the fluctuation matrix between stochastic batch Hessian

and the deterministic empirical Hessian of deep neural networks.

For general sample covariance, [WP14] considered the form Y = BXA1/2 with deter-

ministic A and B, where X consists of i.i.d. entries with mean zero and variance one. The

same result has been proved in [Bao12] by generalized Stein’s method. Unlike previous results,

[Xie13] tackled the general case, only assuming Y has independent rows with some deterministic

covariance Φn. Though this is similar to our model in Section 4.5, we will consider more general

assumptions on each row of Y , which can be directly verified in our neural network models.

Infinite-width kernels and the smallest eigenvalues of empirical kernels

Besides the above asymptotic spectral fluctuation, we provide non-asymptotic concen-

trations of centered CK and NTK in spectral norm and a corresponding result for the NTK. In

the infinite-width networks, where d1 → ∞ and n are fixed, both CK and NTK will converge to

their expected kernels. This has been investigated in [DFS16, SGGSD17, LBN+18, MHR+18]

for the CK and [JGH18, DZPS19a, AZLS19, ADH+19b, LRZ20] for the NTK. Such kernels

are also called infinite-width kernels in literature. In this current work, we present the precise

probability bounds for concentrations of CK and NTK around their infinite-width kernels, where

the difference is of order
√

n/d1. Our results permit more general activation functions and input

data X only with pairwise approximate orthogonality, albeit similar concentrations have been
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applied in [AKM+17, SY19, AP20, MZ20, HXAP20].

A corollary of our concentration is the explicit lower bounds of the smallest eigenvalues

of the CK and the NTK. Such extreme eigenvalues of the NTK have been utilized to prove

the global convergence of gradient descent algorithms of wide neural networks since the NTK

governs the gradient flow in the training process, see Section 1.1 in Chapter 1. The smallest

eigenvalue of NTK is also crucial for proving generalization bounds and memorization capacity

in [ADH+19a, MZ20]. Analogous to Theorem 3.1 in [MZ20], our lower bounds are given by

the Hermite coefficients of the activation function σ . Besides, the lower bound of NTK for

multi-layer ReLU networks is analyzed in [NMM21].

Random feature regression and limiting kernel regression

Another byproduct of our concentration results is to measure the difference of per-

formance between random feature regression with respect to 1√
d1

Y and corresponding ker-

nel regression when d1/n → ∞. Random feature regression can be viewed as the linear

regression of the last hidden layer, and its performance has been studied in, for instance,

[PW17, LLC18, MM22, LCM20, GLK+20, HL20, LD21, MMM21, LGC+21b] under the

linear-width regime. This linear-width regime is also known as the high-dimensional regime,

while our ultra-wide regime is also called a highly overparameterized regime in literature, see

[MM22]. In this regime, the CK matrix 1
d1

Y⊤Y is not concentrated around its expectation

Φ := Ewww[σ(www⊤X)⊤σ(www⊤X)] (4.1.2)

under the spectral norm, where www is the standard normal random vector in Rd0 . But the limiting

spectrum of CK is exploited to characterize the asymptotic performance and double descent

phenomenon of random feature regression when n,d0,d1 → ∞ proportionally. Several works

have also utilized this regime to depict the performance of the ultra-wide random network by

letting d1/n → ψ ∈ (0,∞) first, getting the asymptotic performance and then taking ψ → ∞

(see [MM22, YBM21]). However, there is still a difference between this sequential limit and
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the ultra-wide regime. Before these results, random feature regression has already attracted

significant attention in that it is a random approximation of the RKHS defined by population

kernel function K : Rd0 ×Rd0 → R such that

K(x,z) := Ewww[σ(⟨www,x⟩)σ(⟨www,z⟩)], (4.1.3)

when width d1 is sufficiently large [RR07, Bac13, RR17, Bac17]. We point out that Theorem 9

of [AKM+17] has the same order
√

n/d1 of the approximation as ours, despite only for random

Fourier features.

In this Chapter, the concentration between empirical kernel induced by 1
d1

Y⊤Y and

the population kernel matrix K defined in (4.1.3) for X leads to the control of the differences

of training/test errors between random feature regression and kernel regression, which were

previously concerned by [AKM+17, JSS+20, MZ20, MMM21] in different cases. Specifically,

[JSS+20] obtained the same kind of estimation but considered random features sampled from

Gaussian Processes. Our results explicitly show how large width d1 should be so that the

random feature regression gets the same asymptotic performance as kernel regression [MMM21].

With these estimations, we can take the limiting test error of the kernel regression to predict

the limiting test error of random feature regression as n/d1 → 0 and d0,n → ∞. We refer

[LR20, LRZ20, LLS21, MMM21], [BMR21, Section 4.3] and references therein for more

details in high-dimensional kernel ridge/ridgeless regressions. We emphasize that the optimal

prediction error of random feature regression in linear-width regime is actually achieved in the

ultra-wide regime, which boils down to the limiting kernel regression, see [MM22, MMM21,

YBM21, LGC+21b]. This is one of the motivations for studying the ultra-wide regime and the

limiting kernel regression.

In the end, we would like to mention the idea of spectral-norm approximation for the

expected kernel Φ, which helps us describe the asymptotic behavior of limiting kernel regression.

For specific activation σ , kernel Φ has an explicit formula, see [LLC18, LC18b, LCM20],
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whereas generally, it can be expanded in terms of the Hermite expansion of σ [PW17, MM22,

FW20]. Thanks to pairwise approximate orthogonality introduced in Definition 4, we can

approximate Φ in the spectral norm for general deterministic data X . This pairwise approximate

orthogonality defines how orthogonal is within different input vectors of X . With certain i.i.d.

assumption on X , [LRZ20] and [BMR21, Section 4.3], where the scaling d0 ∝ nα , for α ∈ (0,1],

determined which degree of the polynomial kernel is sufficient to approximate Φ. Instead, our

theory leverages the approximate orthogonality among general datasets X to obtain a similar

approximation. Our analysis presumably indicates that the weaker orthogonality X has, the

higher degree of the polynomial kernel we need to approximate the kernel Φ.

4.2 Preliminaries

Before stating our main results, we describe our model with assumptions. We first

consider the output of the first hidden layer and empirical Conjugate Kernel (CK):

Y := σ(WX) and
1
d1

Y⊤Y. (4.2.1)

Observe that the rows of matrix Y are independent and identically distributed since only W is

random and X is deterministic. Let the i-th row of Y be y⊤i , for 1 ≤ i ≤ d1. Then, we obtain a

sample covariance matrix,

Y⊤Y =
d1

∑
i=1

yiy⊤i , (4.2.2)

which is the sum of d1 independent rank-one random matrices in Rn×n. Let the second moment

of any row yi be (4.1.2). Later on, we will approximate Φ based on the assumptions of input

data X .

Next, we define the empirical Neural Tangent Kernel (NTK) for (4.0.1), denoted by
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H ∈ Rn×n. From Section 2.2.3, the (i, j)-th entry of H can be explicitly written as

Hi j :=
1
d1

d1

∑
r=1

(
σ(www⊤

r xi)σ(www⊤
r x j)+a2

r σ
′(www⊤

r xi)σ
′(www⊤

r x j)x⊤i x j

)
, 1 ≤ i, j ≤ n, (4.2.3)

where wwwr is the r-th row of weight matrix W , xi is the i-th column of matrix X , and ar is r-th

entry of the output layer aaa. In the matrix form, H can be written by

H :=
1
d1

(
Y⊤Y +(S⊤S)⊙ (X⊤X)

)
, (4.2.4)

where the α-th column of S is given by

diag(σ ′(Wxα))aaa, ∀1 ≤ α ≤ n. (4.2.5)

We introduce the following assumptions for the random weights, nonlinear activation

function σ , and input data. These assumptions are basically carried on from Chapter 2.

Assumption 8. The entries of W and aaa are i.i.d. and distributed by N (0,1).

Assumption 9. Activation function σ(x) is a Lipschitz function with the Lipschitz constant

λσ ∈ (0,∞). Assume that σ is centered and normalized with respect to ξ ∼ N (0,1) such that

E[σ(ξ )] = 0, E[σ2(ξ )] = 1. (4.2.6)

Define constants aσ and bσ ∈ R by

bσ := E[σ ′(ξ )], aσ := E[σ ′(ξ )2]. (4.2.7)

Furthermore, σ satisfies either of the following:

1. σ(x) is twice differentiable with supx∈R |σ ′′(x)| ≤ λσ , or
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2. σ(x) is a piece-wise linear function defined by

σ(x) =


ax+b, x > 0,

cx+b, x ≤ 0,

for some constants a,b,c ∈ R such that (4.2.6) holds.

Analogously to [HXAP20], our Assumption 9 permits σ to be the commonly used

activation functions, including ReLU, Sigmoid, and Tanh, although we have to center and

normalize the activation functions to guarantee (4.2.6). Such normalized activation functions

exclude some trivial spike in the limiting spectra of CK and NTK [BP21, FW20]. The foregoing

assumptions ensure our nonlinear Hanson-Wright inequality in the proof. As a future direction,

going beyond Gaussian weights and Lipschitz activation functions may involve different types of

concentration inequalities.

Next, we present the conditions of the deterministic input data X and the asymptotic

regime for this Chapter. Recall the definition of (ε,B)-orthonormal property for our data matrix

X in Definition 4.

Assumption 10. Let n,d0,d1 → ∞ such that

(a) γ := n/d1 → 0;

(b) X is (εn,B)-orthonormal such that nε4
n → 0 as n → ∞;

(c) The empirical spectral distribution µ̂0 of X⊤X converges weakly to a fixed and non-

degenerate probability distribution µ0 ̸= δ0 on [0,∞).

In above (b), the (εn,B)-orthonormal property with nε4
n = o(1) is a quantitative version

of pairwise approximate orthogonality for the column vectors of the data matrix X ∈ Rd0×n.

When d0 ≍ n, it holds, with high probability, for many random X with independent columns xα ,

including the anisotropic Gaussian vectors xα ∼N (0,Σ) with tr(Σ) = 1 and ∥Σ∥≲ 1/n, vectors
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generated by Gaussian mixture models, and vectors satisfying the log-Sobolev inequality or

convex Lipschitz concentration property. Specifically, when xα ’s are independently sampled from

the unit sphere Sd0−1, X is (εn,B)-orthonormal with high probability where εn =O
(√

log(n)
n

)
and

B = O(1) as n ≍ d0. In this case, for any ℓ > 2, we have nεℓn → 0. In our theory, we always treat

X as a deterministic matrix. However, our results also work for random input X independent of

weights W and aaa by conditioning on the high probability event that X satisfies (εn,B)-orthonormal

property. Unlike data vectors with independent entries, our assumption is promising to analyze

real-world datasets [LGC+21b] and establish some n-dependent deterministic equivalents like

[LCM20].

The following Hermite polynomials are crucial to the approximation of Φ in our analysis.

Definition 63 (Normalized Hermite polynomials). The r-th normalized Hermite polynomial is

given by

hr(x) =
1√
r!
(−1)rex2/2 dr

dxr e−x2/2.

Here {hr}∞
r=0 form an orthonormal basis of L2(R,Γ), where Γ denotes the standard Gaussian

distribution. For σ1,σ2 ∈ L2(R,Γ), the inner product is defined by

⟨σ1,σ2⟩=
∫

∞

−∞

σ1(x)σ2(x)
e−x2/2
√

2π
dx.

Every function σ ∈ L2(R,Γ) can be expanded as a Hermite polynomial expansion

σ(x) =
∞

∑
r=0

ζr(σ)hr(x),

where ζr(σ) is the r-th Hermite coefficient defined by

ζr(σ) :=
∫

∞

−∞

σ(x)hr(x)
e−x2/2
√

2π
dx.

In the following statements and proofs, we denote ξ ∼ N (0,1). Based on Defini-
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tion 63, let us further denote that, for any k ∈ N, ζk(σ) = E[σ(ξ )hk(ξ )]. Specifically, bσ :=

E[σ ′(ξ )] = E[ξ ·σ(ξ )] = ζ1(σ). Let fk(x) = xk. We define the inner-product kernel random

matrix fk(X⊤X) ∈ Rn×n by applying fk entrywise to X⊤X . Define a deterministic matrix

Φ0 := µµµµµµ
⊤+

3

∑
k=1

ζk(σ)2 fk(X⊤X)+(1−ζ1(σ)2 −ζ2(σ)2 −ζ3(σ)2) Id, (4.2.8)

where the α-th entry of µµµ ∈ Rn is
√

2ζ2(σ) · (∥xα∥−1) for 1 ≤ α ≤ n. We will employ Φ0 as

an approximation of the population covariance Φ in (4.1.2) in the spectral norm when nε4
n → 0.

4.3 Main Results

4.3.1 Spectra of the Centered CK and NTK

Our first result is a deformed semicircle law for the CK matrix. Denote µ̃0 = (1−bσ )
2⊕

b2
σ ⊗ µ0. The limiting law of our centered and normalized CK matrix is depicted by µs ⊠ µ̃0,

where µs is the standard semicircle law and the notation ⊠ is the free multiplicative convolution

in free probability theory.

Theorem 64 (Limiting spectral distribution for the conjugate kernel). Suppose Assumptions 8, 9

and 10 of the input matrix X hold, the empirical eigenvalue distribution of

1√
d1n

(
Y⊤Y −E[Y⊤Y ]

)
(4.3.1)

converges weakly to

µ := µs ⊠
(
(1−b2

σ )⊕b2
σ ⊗µ0

)
= µs ⊠ µ̃0 (4.3.2)

almost surely as n,d0,d1 → ∞. Furthermore, if d1ε4
n → 0 as n,d0,d1 → ∞, then the empirical

eigenvalue distribution of √
d1

n

(
1
d1

Y⊤Y −Φ0

)
(4.3.3)
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also converges weakly to the probability measure µ almost surely, whose Stieltjes transform m(z)

is defined by

m(z)+
∫
R

dµ̃0(x)
z+β (z)x

= 0 (4.3.4)

for each z ∈ C+, where β (z) ∈ C+ is the unique solution to

β (z)+
∫
R

xdµ̃0(x)
z+β (z)x

= 0. (4.3.5)

Suppose that we additionally have bσ = 0, i.e. E[σ ′(ξ )] = 0. In this case, our Theorem

64 shows that the limiting spectral distribution of (4.1.1) is the semicircle law, and from (4.3.2),

the deterministic data matrix X does not have an effect on the limiting spectrum. See Figure 4.1

for a cosine-type σ with bσ = 0. The only effect of the nonlinearity in µ is the coefficient bσ in

the deformation µ̃0.

Figure 4.1. Simulations for ESDs of (4.3.3) and theoretical predication (red curves) of the limiting
law µ where activation σ(x) ∝ cos(x) satisfies Assumption 9 with bσ = 0, and X is a standard Gaussian
random matrix. Dimension parameters are given by n = 1.9×103, d0 = 2×103 and d1 = 2×105 (left);
n = 2×103, d0 = 1.9×103 and d1 = 2×105 (middle); n = 2×103, d0 = 2×103 and d1 = 2×105 (right).

Figure 4.2 is a simulation of the limiting spectral distribution of CK with activation func-

tion σ(x) given by arctan(x) after proper shifting and scaling. The red curves are implemented

by the self-consistent equations (4.3.4) and (4.3.5) in Theorem 64. In Section 4.5, we present

general random matrix models with similar limiting eigenvalue distribution as µ whose Stieltjes

transform is also determined by (4.3.4) and (4.3.5).
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Figure 4.2. Simulations for ESDs of (4.3.3) and theoretical predication (red curves) of the limiting law
µ where activation σ(x) ∝ arctan(x) satisfies Assumption 9 and X is a standard Gaussian random matrix:
n = 103, d0 = 103 and d1 = 105 (left); n = 103, d0 = 1.5× 103 and d1 = 105 (middle); n = 1.5× 103,
d0 = 103 and d1 = 105 (right).

Theorem 64 can be extended to the NTK model as well. Denote by

Ψ : =
1
d1

E[S⊤S]⊙ (X⊤X) ∈ Rn×n. (4.3.6)

As an approximation of Ψ in the spectral norm, we define

Ψ0 : =

(
aσ −

2

∑
k=0

η
2
k (σ)

)
Id+

2

∑
k=0

η
2
k (σ) fk+1(X⊤X), (4.3.7)

where fk’s are defined in (4.2.8), aσ is defined in (4.2.7), and the k-th Hermite coefficient of σ ′ is

ηk(σ) := E[σ ′(ξ )hk(ξ )]. (4.3.8)

Then, a similar deformed semicircle law can be obtained for the empirical NTK matrix H.

Theorem 65 (Limiting spectral distribution of the NTK). Under Assumptions 8, 9 and 10 of the

input matrix X, the empirical eigenvalue distribution of

√
d1

n
(H −E[H]) (4.3.9)

weakly converges to µ = µs⊠
(
(1−b2

σ )⊕b2
σ ⊗µ0

)
almost surely as n,d0,d1 →∞ and n/d1 → 0.
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Furthermore, suppose that ε4
n d1 → 0, then the empirical eigenvalue distribution of

√
d1

n
(H −Φ0 −Ψ0) (4.3.10)

weakly converges to µ almost surely, where Φ0 and Ψ0 are defined in (4.2.8) and (4.3.7),

respectively.

4.3.2 Non-asymptotic Estimations for Kernels

With our nonlinear Hanson-Wright inequality (Corollary 77), we attain the following

concentration bound on the CK matrix in the spectral norm.

Theorem 66. With Assumption 8, assume X satisfies ∑
n
i=1(∥xi∥2−1)2 ≤ B2 for a constant B ≥ 0,

and σ is λσ -Lipschitz with E[σ(ξ )] = 0. Then with probability at least 1−4e−2n,

∥∥∥∥ 1
d1

Y⊤Y −Φ

∥∥∥∥≤C
(√

n
d1

+
n
d1

)
λ

2
σ∥X∥2 +32Bλ

2
σ∥X∥

√
n
d1

, (4.3.11)

where C > 0 is a universal constant.

Remark. Theorem 66 ensures that the empirical spectral measure µn of the centered random

matrix
√

d1
n

(
1
d1

Y⊤Y −Φ

)
has a bounded support for all sufficiently large n. Together with the

global law in Theorem 64, our concentration inequality (4.3.11) is tight up to a constant factor.

Additionally, by the weak convergence of µn to µ proved in Theorem 64, we can take a test

function x2 to obtain that

∫
R

x2dµn(x)→
∫
R

x2dµ(x), i.e.,
√

d1

n

∥∥∥∥ 1
d1

Y⊤Y −Φ

∥∥∥∥
F
→
(∫

R
x2dµ(x)

) 1
2

almost surely, as n,d1 → ∞ and d1/n → ∞. Therefore, the fluctuation of 1
d1

Y⊤Y around Φ under

the Frobenius norm is exactly of order n/
√

d1.

Based on the foregoing estimation, we have the following lower bound on the smallest

eigenvalue of the empirical conjugate kernel, denoted by λmin

(
1
d1

Y⊤Y
)

.
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Theorem 67. Suppose Assumptions 8 and 9 hold and σ is not a linear function, X is (εn,B)-

orthonormal. Then with probability at least 1−4e−2n,

λmin

(
1
d1

Y⊤Y
)
≥ 1−

3

∑
i=1

ζi(σ)2 −CBε
2
n
√

n−C
(√

n
d1

+
n
d1

)
λ

2
σ B2,

where CB is a constant depending on B. In particular, if ε4
n n = o(1),B = O(1),d1 = ω(n), then

with high probability,

λmin

(
1
d1

Y⊤Y
)
≥ 1−

3

∑
i=1

ζi(σ)2 −o(1).

A related result in [OS20, Theorem 5] assumed ∥x j∥= 1 for all j ∈ [n], λσ ≤ B, |σ(0)| ≤

B, d1 ≥C log2(n) n
λmin(Φ) and obtained 1

d1
λmin(Y⊤Y )≥ λmin(Φ)−o(1). We relax the assumption

on the column vectors of X , and extend the range of d1 down to d1 = Ω(n), to guarantee

that 1
d1

λmin(Y⊤Y ) is lower bounded by an absolute constant, with an extra assumption that

E[σ(ξ )] = 0. This assumption can always be satisfied by shifting the activation function with a

proper constant. Our bound for λmin(Φ) is derived via Hermite polynomial expansion, similar to

[OS20, Lemma 15]. However, we apply an ε-net argument for concentration bound for 1
d1

Y⊤Y

around Φ, while a matrix Chernoff concentration bound with truncation was used in [OS20,

Theorem 5].

Additionally, the concentration for the NTK matrix H can be obtained in the next theorem.

Recall that H is defined by (4.2.4) and the columns of S are defined by (4.2.5) with Assumption 8.

Theorem 68. Suppose d1 ≥ logn, and σ is λσ -Lipschitz. Then with probability at least 1−n−7/3,

∥∥∥∥ 1
d1

(S⊤S−E[S⊤S])⊙ (X⊤X)

∥∥∥∥≤ 10λ
4
σ∥X∥4

√
logn
d1

. (4.3.12)

Moreover, if the assumptions in Theorem 66 hold, then with probability at least 1−n−7/3−4e−2n,

∥H −EH∥ ≤C
(√

n
d1

+
n
d1

)
λ

2
σ∥X∥2 +32Bλ

2
σ∥X∥

√
n
d1

+10λ
4
σ∥X∥4

√
logn
d1

. (4.3.13)
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Compared to Proposition D.3 in [HXAP20], we assume aaa is a Gaussian vector instead of a

Rademacher random vector and attain a better bound. If ai ∈{+1,−1}, then one can apply matrix

Bernstein inequality for the sum of bounded random matrices. In our case, the boundedness

condition is not satisfied. Section S1.1 in [AP20] applied matrix Bernstein inequality for the sum

of bounded random matrices when aaa is a Gaussian vector, but the boundedness condition does

not hold in Equation (S7) of [AP20].

Based on Theorem 68, we get a lower bound for the smallest eigenvalue of the NTK.

Theorem 69. Under Assumptions 8 and 9, suppose that X is (εn,B)-orthonormal, σ is not a

linear function, and d1 ≥ logn. Then with probability at least 1−n−7/3,

λmin(H)≥ aσ −
2

∑
k=0

η
2
k (σ)−CBε

4
n n−10λ

4
σ B4

√
logn
d1

,

where CB is a constant depending only on B, and ηk(σ) is defined in (4.3.8). In particular, if

ε4
n n = o(1), B = O(1), and d1 = ω(logn), then with high probability,

λmin(H)≥

(
aσ −

2

∑
k=0

η
2
k (σ)

)
(1−o(1)).

We relax the assumption in [NMM21] to d1 = ω(logn) for the 2-layer case and our

result is applicable beyond the ReLU activation function and to more general assumptions on X .

Our proof strategy is different from [NMM21]. In [NMM21], the authors used the inequality

λmin((S⊤S)⊙ (X⊤X))≥ mini ∥Si∥2 ·λmin(X⊤X) where Si is the i-th column of S. Then, getting

the lower bound is reduced to show the concentration of the 2-norm of the column vectors

of S. Here we apply a matrix concentration inequality to (S⊤S)⊙ (X⊤X) and gain a weaker

assumption on d1 to ensure the lower bound on λmin(H).

Remark. In Theorems 67 and 69, we exclude the linear activation function. When σ(x) = x, it

is easy to check both 1
d1

λmin(Y⊤Y ) and λmin(H) will trivially determined by λmin(X⊤X), which

can be vanishing. In this case, the lower bounds of the smallest eigenvalues of CK and NTK rely

179



on the assumption of µ0 or the distribution of X. For instance, when the entries of X are i.i.d.

Gaussian random variables, λmin(X⊤X) has been analyzed in [Sil85].

4.3.3 Training and Test Errors for Random Feature Regression

We apply the results of the preceding sections to a two-layer neural network at random

initialization defined in (4.0.1), to estimate the training errors and test errors with mean-square

losses for random feature regression under the ultra-wide regime where d1/n → ∞ and n → ∞.

In this model, we take the random feature 1√
d1

σ(WX) and consider the regression with respect

to θ ∈ Rd1 based on

fθ (X) :=
1√
d1

θ
⊤

σ(WX),

with training data X ∈ Rd0×n and training labels y ∈ Rn. Considering the ridge regression with

ridge parameter λ ≥ 0 and squared loss defined by

L(θ) := ∥ fθ (X)⊤− y∥2 +λ∥θ∥2, (4.3.14)

we can conclude that the minimization θ̂ := argminθ L(θ) has an explicit solution

θ̂ =
1√
d1

Y
(

1
d1

Y⊤Y +λ Id
)−1

y, (4.3.15)

where Y = σ(WX) is defined in (4.2.1). When σ is nonlinear, by Theorem 67, it is feasible to

take inverse in (4.3.15) for any λ ≥ 0. Hence, in the following results, we will focus on nonlinear

activation functions1. In general, the optimal predictor for this random feature with respect to

(4.3.14) is

f̂ (RF)
λ

(x) :=
1√
d1

θ̂
⊤

σ(Wx) = Kn(x,X)(Kn(X ,X)+λ Id)−1y, (4.3.16)

1As Remark 4.3.2 stated, when σ(x) = x, λmin of CK may be possibly vanishing. To include the linear activation
function, we can alternatively assume that the ridge parameter λ is strictly positive and focus on random feature
ridge regressions.
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where we define an empirical kernel Kn(·, ·) : Rd0 ×Rd0 → R as

Kn(x,z) :=
1
d1

σ(Wx)⊤σ(Wz) =
1
d1

d1

∑
i=1

σ(⟨wwwi,x⟩)σ(⟨wwwi,z⟩). (4.3.17)

The n-dimension row vector is given by

Kn(x,X) = [Kn(x,x1), . . . ,Kn(x,xn)], (4.3.18)

and the (i, j) entry of Kn(X ,X) is defined by Kn(xi,x j), for 1 ≤ i, j ≤ n.

Analogously, consider any kernel function K(·, ·) : Rd0 ×Rd0 → R. The optimal kernel

predictor with a ridge parameter λ ≥ 0 for the kernel ridge regression is given by (see [RR07,

AKM+17, LR20, JSS+20, LLS21, BMR21] for more details)

f̂ (K)
λ

(x) := K(x,X)(K(X ,X)+λ Id)−1y, (4.3.19)

where K(X ,X) is an n×n matrix such that its (i, j) entry is K(xi,x j), and K(x,X) is a row vector

in Rn similarly with (4.3.18). We compare the characteristics of the two different predictors

f̂ (RF)
λ

(x) and f̂ (K)
λ

(x) when the kernel function K is defined in (4.1.3). Denote the optimal

predictors for random features and kernel K on training data X by

f̂ (RF)
λ

(X) =
(

f̂ (RF)
λ

(x1), . . . , f̂ (RF)
λ

(xn)
)⊤

,

f̂ (K)
λ

(X) =
(

f̂ (K)
λ

(x1), . . . , f̂ (K)
λ

(xn)
)⊤

,

respectively. Notice that, in this case, K(X ,X)≡ Φ defined in (4.1.2) and Kn(X ,X) is the random

empirical CK matrix 1
d1

Y⊤Y defined in (4.2.1).

We aim to compare the training and test errors for these two predictors in ultra-wide
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random neural networks, respectively. Let training errors of these two predictors be

E(K,λ )
train : =

1
n
∥ f̂ (K)

λ
(X)− y∥2 =

λ 2

n
∥(K(X ,X)+λ Id)−1y∥2, (4.3.20)

E(RF,λ )
train : =

1
n
∥ f̂ (RF)

λ
(X)− y∥2 =

λ 2

n
∥(Kn(X ,X)+λ Id)−1y∥2. (4.3.21)

In the following theorem, we show that, with high probability, the training error of the random

feature regression model can be approximated by the corresponding kernel regression model

with the same ridge parameter λ ≥ 0 for ultra-wide neural networks.

Theorem 70 (Training error approximation). Suppose Assumptions 8, 9 and 10 hold, and σ is

not a linear function. Then, for all large n, with probability at least 1−4e−2n,

∣∣∣E(RF,λ )
train −E(K,λ )

train

∣∣∣≤ C1√
nd1

(√
n
d1

+C2

)
∥y∥2, (4.3.22)

where constants C1 and C2 only depend on λ , B and σ .

Next, to investigate the test errors (or generalization errors), we introduce further assump-

tions on the data and the target function that we want to learn from training data. Denote the true

regression function by f ∗ : Rd0 → R. Then, the training labels are defined by

y = f ∗(X)+ εεε and f ∗(X) = ( f ∗(x1), . . . , f ∗(xn))
⊤, (4.3.23)

where ε ∈ Rn is the training label noise. For simplicity, we further impose the following

assumptions, analogously to [LD21].

Assumption 11. Assume that the target function is a linear function f ∗(x) = ⟨βββ ∗,x⟩, where

random vector satisfies βββ ∗ ∼ N (0,σ2
βββ

Id). Then, in this case, the training label vector is given

by y = X⊤βββ ∗+ ε where εεε ∼ N (0,σ2
ε Id) independent with βββ ∗ ∈ Rd0 .
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Assumption 12. Suppose that training dataset

X = [x1, . . . ,xn] ∈ Rd0×n

satisfies (εn,B)-orthonormal condition with nε4
n = o(1), and a test data x ∈ Rd0 is indepen-

dent with X and y such that X̃ := [x1, . . . ,xn,x] ∈ Rd0×(n+1) is also (εn,B)-orthonormal. For

convenience, we further assume the population covariance of the test data is Ex[xx⊤] = 1
d0

Id.

Remark. Our Assumption 12 of the test data x ensures the same statistical behavior as training

data in X, but we do not have any explicit assumption of the distribution of x. It is promising

to adopt such assumptions to handle statistical models with real-world data [LC18b, LCM20].

Besides, it is possible to extend our analysis to general population covariance for Ex[xx⊤].

For any predictor f̂ , define the test error (generalization error) by

L ( f̂ ) := Ex[| f̂ (x)− f ∗(x)|2]. (4.3.24)

We first present the following approximation of the test error of a random feature predictor via

its corresponding kernel predictor.

Theorem 71 (Test error approximation). Suppose that Assumptions 8, 9, 11 and 12 hold, and σ

is not a linear function. Then, for any ε ∈ (0,1/2), the difference of test errors satisfies

∣∣∣L ( f̂ (RF)
λ

(x))−L ( f̂ (K)
λ

(x))
∣∣∣= o

(
(n/d1)

1
2−ε
)
, (4.3.25)

with probability 1−o(1), when n/d1 → 0 and n → ∞.

Theorems 70 and 71 verify that the random feature regression achieves the same asymp-

totic errors as the kernel regression, as long as n/d1 → ∞. This is closely related to [MMM21,

Theorem 1] with different settings. Based on that, we can compute the asymptotic training and
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test errors for the random feature model by calculating the corresponding quantities for the kernel

regression in the ultra-wide regime where n/d1 → 0.

Theorem 72 (Asymptotic training and test errors). Suppose Assumptions 8 and 9 hold, and σ

is not a linear function. Suppose the target function f ∗, training data X and test data x ∈ Rd0

satisfy Assumptions 11 and 12. For any λ ≥ 0, let the effective ridge parameter be

λeff(λ ,σ) :=
1+λ −b2

σ

b2
σ

. (4.3.26)

If the training data has some limiting eigenvalue distribution µ0 = lim specX⊤X as n → ∞ and

n/d0 → γ ∈ (0,∞), then when n/d1 → 0 and n → ∞, the training error satisfies

E(RF,λ )
train

P−→
σ2

βββ
λ 2

γb4
σ

VK(λeff(λ ,σ))+
σ2

ε λ 2

γ(1+λ −b2
σ )

2 (BK(λeff(λ ,σ))−1+ γ), (4.3.27)

and the test error satisfies

L ( f̂ (RF)
λ

(x)) P−→ σ
2
βββ

BK(λeff(λ ,σ))+σ
2
ε VK(λeff(λ ,σ)), (4.3.28)

where the bias and variance functions are defined by

BK(ν) := (1− γ)+ γν
2
∫
R

1
(x+ν)2 dµ0(x), (4.3.29)

VK(ν) := γ

∫
R

x
(x+ν)2 dµ0(x). (4.3.30)

We emphasize that in the proof of Theorem 72, we also get n-dependent deterministic

equivalents for training/test errors of the kernel regression to approximate the performance of

random feature regression. This is akin to [LCM20, Theorem 3] and [BMR21, Theorem 4.13],

but in different regimes. In the following Figure 4.3, we present implementations of test errors

for random feature regressions on standard Gaussian random data as input X and their limits
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(4.3.28). In Figure 4.3, regularization parameters are λ = 10−3 (left) and λ = 10−6 (right).

Here, the activation function σ is a re-scaled Sigmoid function, σε = 1 and σβββ = 2. We fix

d0 = 500, varying values of sample sizes n and widths d1. In other words, we fix n,d0, only let

d1 → ∞, and use empirical spectral distribution of X⊤X to approximate µ0 in BK(λeff(λ ,σ))

and VK(λeff(λ ,σ)), which is actually the n-dependent deterministic equivalent. However, for

Gaussian random matrix X , µ0 is actually a Marčenko-Pastur law with ratio γ , so BK(λeff(λ ,σ))

and VK(λeff(λ ,σ)) can be computed explicitly according to [LD21, Definition 1]. In Figure 4.3,

test errors in solid lines with error bars are computed using an independent test set of size 5000.

We average our results over 50 repetitions. Limiting test errors in black dash lines are computed

by (4.3.28), and we take µ0 to be the corresponding Marčenko–Pastur distributions.

Figure 4.3. Simulations for the test errors of random feature regressions with centered Gaussian random
matrix as input X and regularization parameter λ = 10−3 (left) and λ = 10−6 (right). Limiting test errors
in black dash lines are computed by (4.3.28), and we take µ0 to be the corresponding Marčenko–Pastur
distributions.

Remark (Implicit regularization). For nonlinear σ , the effective ridge parameter (4.3.26) can

be viewed as an inflated ridge parameter since b2
σ ∈ [0,1) and λeff > λ ≥ 0. This λeff leads to

implicit regularization for our random feature and kernel ridge regressions even for the ridgeless

regression with λ = 0 [LR20, MZ20, JSS+20, BMR21]. This effective ridge parameter λeff also

shows the effect of the nonlinearity in the random feature and kernel regressions induced by

ultra-wide neural networks.
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For convenience, we only consider the linear target function f ∗, but in general, the above

theorems can also be obtained for nonlinear target functions, for instance, f ∗ is a nonlinear

single-index model. Under (εn,B)-orthonormal assumption with nε4
n → 0, our expected kernel

K(X ,X)≡ Φ is approximated in terms of

lim specK(X ,X) = lim spec
(

b2
σ X⊤X +(1−b2

σ ) Id
)
, (4.3.31)

whence, this kernel regression can only learn linear functions. So if f ∗ is nonlinear, the limiting

test error should be decomposed into the linear part as (4.3.28) and the nonlinear component

as a noise [BMR21, Theorem 4.13]. For more conclusions of this kernel machine, we refer to

[LR20, LRZ20, LLS21, MMM21].

4.3.4 Neural Tangent Kernel Regression

In parallel to the above results, we can obtain a similar analysis of the limiting training

and test errors for random feature regression in (4.3.16) with empirical NTK given by either

Kn(X ,X) = 1
d1
(S⊤S)⊙ (X⊤X) or Kn(X ,X) = H. This random feature regression also refers to

neural tangent regression [MZ20]. With the help of our concentration results in Theorem 68 and

the lower bound of the smallest eigenvalues in Theorem 69, we can directly extend the above

Theorems 70, 71 and 72 to this neural tangent regression. We omit the proofs in these cases and

only state the results as follows.

If Kn(X ,X) = 1
d1
(S⊤S)⊙ (X⊤X) with expected kernel K(X ,X) = Ψ defined by (4.3.6),

the limiting training and test errors of this neural tangent regression can be approximated by the

kernel regression with respect to Ψ, as long as d1 = ω(logn). Analogously to (4.3.31), we have

an additional approximation

lim specΨ = lim spec
(

b2
σ X⊤X +(aσ −b2

σ ) Id
)
. (4.3.32)

186



Under the same assumptions of Theorem 72 and replacing n/d1 → 0 with d1 = ω(logn), we can

conclude that the test error of this neural tangent regression has the same limit as (4.3.28) but

changing the effective ridge parameter (4.3.26) into λeff(λ ,σ) =
aσ+λ−b2

σ

b2
σ

. This result is akin to

[MZ20, Corollary 3.2] but permits more general assumptions on X . The limiting training error of

this neural tangent regression can be obtained by slightly modifying the coefficient in (4.3.27).

Similarly, if Kn(X ,X) = H defined by (4.2.4) possesses an expected kernel K(X ,X) =

Φ+Ψ, this neural tangent regression in (4.3.16) is close to kernel regression (4.3.19) with kernel

K(x,z) = Ewww[σ(www⊤x)σ(www⊤x)]+Ewww[σ
′(www⊤x)σ ′(www⊤x)]x⊤z,

under the ultra-wide regime, n/d1 → 0. Combining (4.3.31) and (4.3.32), Theorem 72 can

directly be extended to this neural tangent regression but replacing (4.3.26) with λeff(λ ,σ) =

aσ+1+λ−2b2
σ

2b2
σ

. Section 6.1 of [AP20] also calculated this limiting test error when data X is

isotropic Gaussian.

4.4 A Non-linear Hanson-Wright Inequality

We give an improved version of Lemma 1 in [LLC18] with a simple proof based on a

Hanson-Wright inequality for random vectors with dependence [Ada15]. This serves as the

concentration tool for us to prove the deformed semicircle law in Section 4.6 and provide bounds

on extreme eigenvalues in Section 4.7. First, we define some concentration properties for random

vectors.

Definition 73 (Concentration property). Let X be a random vector in Rn. We say X has the

K-concentration property with constant K if for any 1-Lipschitz function f : Rn → R, we have

E| f (X)|< ∞ and for any t > 0,

P(| f (X)−E f (X)| ≥ t)≤ 2exp(−t2/K2). (4.4.1)
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There are many distributions of random vectors satisfying K-concentration property,

including uniform random vectors on the sphere, unit ball, hamming or continuous cube, uniform

random permutation, etc. See [Ver18, Chapter 5] for more details.

Definition 74 (Convex concentration property). Let X be a random vector in Rn. We say X has

the K-convex concentration property with the constant K if for any 1-Lipschitz convex function

f : Rn → R, we have E| f (X)|< ∞ and for any t > 0,

P(| f (X)−E f (X)| ≥ t)≤ 2exp(−t2/K2).

We will apply the following result from [Ada15] to the nonlinear setting.

Lemma 75 (Theorem 2.5 in [Ada15]). Let X be a mean zero random vector in Rn. If X has the

K-convex concentration property, then for any n×n matrix A and any t > 0,

P(|X⊤AX −E(X⊤AX)| ≥ t)≤ 2exp
(
− 1

C
min
{

t2

2K4∥A∥2
F
,

t
K2∥A∥

})

for some universal constant C > 1.

Theorem 76. Let www ∈Rd0 be a random vector with K-concentration property, X = (x1, . . . ,xn)∈

Rd0×n be a deterministic matrix. Define y = σ(www⊤X)⊤, where σ is λσ -Lipschitz, and Φ = Eyy⊤.

Let A be an n×n deterministic matrix.

1. If E[y] = 0, for any t > 0,

P
(
|y⊤Ay−TrAΦ| ≥ t

)
(4.4.2)

≤2exp
(
− 1

C
min
{

t2

2K4λ 4
σ∥X∥4∥A∥2

F
,

t
K2λ 2

σ∥X∥2∥A∥

})
, (4.4.3)

where C > 0 is an absolute constant.
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2. If E[y] ̸= 0, for any t > 0,

P
(
|y⊤Ay−TrAΦ|> t

)
≤ 2exp

(
− 1

C
min
{

t2

4K4λ 4
σ∥X∥4∥A∥2

F
,

t
K2λ 2

σ∥X∥2∥A∥

})
+2exp

(
− t2

16K2λ 2
σ∥X∥2∥A∥2∥Ey∥2

)
.

for some constant C > 0.

Proof. Let f be any 1-Lipschitz convex function. Since y = σ(www⊤X)⊤, f (y) = f (σ(www⊤X)⊤) is

a λσ∥X∥-Lipschitz function of www. Then by the Lipschitz concentration property of www in (4.4.1),

we obtain

P(| f (y)−E f (y)| ≥ t)≤ 2exp
(
− t2

K2λ 2
σ∥X∥2

)
.

Therefore, y satisfies the Kλσ∥X∥-convex concentration property. Define f̃ (x) = f (x−Ey),

then f̃ is also a convex 1-Lipschitz function and f̃ (y) = f (y−Ey). Hence ỹ := y−Ey also

satisfies the Kλσ∥X∥-convex concentration property. Applying Theorem 75 to ỹ, we have for

any t > 0,

P(|ỹ⊤Aỹ−E(ỹ⊤Aỹ)| ≥ t)≤ 2exp
(
− 1

C
min
{

t2

2K4λ 4
σ∥X∥4∥A∥2

F
,

t
K2λ 2

σ∥X∥2∥A∥

})
. (4.4.4)

Since Eỹ = 0, the inequality above implies (4.4.2). Note that

ỹ⊤Aỹ−E(ỹ⊤Aỹ) = (y⊤Ay−TrAΦ)− ỹ⊤AEy−Ey⊤Aỹ,
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Hence,

y⊤Ay−TrAΦ = (ỹ⊤Aỹ−E(ỹ⊤Aỹ))+(y−Ey)⊤(A+A⊤)Ey

= (ỹ⊤Aỹ−E(ỹ⊤Aỹ))+(y⊤(A+A⊤)Ey−Ey⊤(A+A⊤)Ey). (4.4.5)

Since y⊤(A+A⊤)Ey is a (2∥A∥∥Ey∥∥X∥λσ )-Lipschitz function of www, by the Lipschitz concen-

tration property of www, we have

P(|(y−Ey)⊤(A+A⊤)Ey| ≥ t)≤ 2exp
(
− t2

4K2(∥A∥∥Ey∥∥X∥λσ )2

)
. (4.4.6)

Then combining (4.4.4), (4.4.5), and (4.4.6), we have

P(|y⊤Ay−TrAΦ| ≥ t) (4.4.7)

≤ P(|ỹ⊤Aỹ−E(ỹ⊤Aỹ)| ≥ t/2)+P(|(y−Ey)⊤(A+A⊤)Ey| ≥ t/2)

≤ 2exp
(
− 1

2C
min
{

t2

4K4λ 4
σ∥X∥4∥A∥2

F
,

t
K2λ 2

σ∥X∥2∥A∥

})
+2exp

(
− t2

16K2λ 2
σ∥X∥2∥A∥2∥Ey∥2

)
.

This finishes the proof.

Since the Gaussian random vector www ∼N (0, Id0) satisfies the K-concentration inequality

with K =
√

2 (see for example [BLM13]), we have the following corollary.

Corollary 77. Let www ∼ N (0, Id0), X = (x1, . . . ,xn) ∈ Rd0×n be a deterministic matrix. Define

y = σ(www⊤X)⊤, where σ is λσ -Lipschitz, and Φ = Eyy⊤. Let A be an n×n deterministic matrix.

1. If E[y] = 0, for any t > 0,

P
(
|y⊤Ay−TrAΦ| ≥ t

)
≤ 2exp

(
− 1

C
min
{

t2

4λ 4
σ∥X∥4∥A∥2

F
,

t
λ 2

σ∥X∥2∥A∥

})
(4.4.8)
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for some absolute constant C > 0.

2. If E[y] ̸= 0, for any t > 0,

P
(
|y⊤Ay−TrAΦ|> t

)
≤ 2exp

(
− 1

C
min
{

t2

8λ 4
σ∥X∥4∥A∥2

F
,

t
λ 2

σ∥X∥2∥A∥

})
(4.4.9)

+2exp
(
− t2

32λ 2
σ∥X∥2∥A∥2∥Ey∥2

)
≤ 2exp

(
− 1

C
min
{

t2

8λ 4
σ∥X∥4∥A∥2

F
,

t
λ 2

σ∥X∥2∥A∥

})
(4.4.10)

+2exp
(
− t2

32λ 2
σ∥X∥2∥A∥2t0

)
, (4.4.11)

where

t0 := 2λ
2
σ

n

∑
i=1

(∥xi∥−1)2 +2n(Eσ(ξ ))2, ξ ∼ N (0,1). (4.4.12)

Remark. Compared to [LLC18, Lemma 1], we identify the dependence on ∥A∥F and Ey in the

probability estimate. By (1.4.1), we obtain a similar inequality to the one in [LLC18] with a

better dependence on n. Moreover, our bound in t0 is independent of d0, while the corresponding

term t0 in [LLC18, Lemma 1] depends on ∥X∥ and d0. In particular, when Eσ(ξ ) = 0 and X

is (εn,B)-orthonormal, t0 is of order 1. Hence, (4.4.9) with the special choice of t0 is the key

ingredient in the proof of Theorem 66 to get a concentration of the spectral norm for CK.

Proof of Corollary 77. We only need to prove (4.4.9), since other statements follow immedi-

ately by taking K =
√

2. Let xi be the i-th column of X . Then

∥Ey∥2 = ∥Eσ(www⊤X)∥2 =
n

∑
i=1

[Eσ(www⊤xi)]
2.
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Let ξ ∼ N (0,1). We have

|Eσ(www⊤xi)|= |Eσ(ξ∥xi∥)| ≤ E|(σ(ξ∥xi∥)−σ(ξ ))|+ |Eσ(ξ )|

≤ λσE|ξ (∥xi∥−1)|+ |Eσ(ξ )| ≤ λσ |∥xi∥−1|+ |Eσ(ξ )|. (4.4.13)

Therefore

∥Ey∥2 ≤
n

∑
i=1

(λσ (∥xi∥−1)+ |Eσ(ξ )|)2 ≤
n

∑
i=1

2λ
2
σ (∥xi∥−1)2 +2(Eσ(ξ ))2 (4.4.14)

= 2λ
2
σ

n

∑
i=1

(∥xi∥−1)2 +2n(Eσ(ξ ))2 = t0,

and (4.4.9) holds.

We include the following corollary about the variance of y⊤Ay, which will be used in

Section 4.6 to study the spectrum of the CK and NTK.

Corollary 78. Under the same assumptions of Corollary 77, we further assume that t0 ≤C1n,

and ∥A∥,∥X∥ ≤C2. Then as n → ∞,

1
n2E

[∣∣∣y⊤Ay−TrAΦ

∣∣∣2]→ 0.

Proof. Notice that ∥A∥F ≤
√

n∥A∥. Thanks to Theorem 77 (2), we have that for any t > 0,

P
(

1
n

∣∣∣y⊤Ay−TrAΦ

∣∣∣> t
)
≤ 4exp

(
−Cnmin{t2, t}

)
, (4.4.15)

where constant C > 0 only relies on C1,C2, λσ , and K. Therefore, we can compute the variance
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in the following way:

E
[

1
n2

∣∣∣y⊤Ay−TrAΦ

∣∣∣2]= ∫
∞

0
P
(

1
n2

∣∣∣y⊤Ay−TrAΦ

∣∣∣2 > s
)

ds

≤ 4
∫

∞

0
exp
(
−Cnmin{s,

√
s}
)
ds

= 4
∫ 1

0
exp
(
−Cn

√
s
)
ds+4

∫ +∞

1
exp(−Cns)ds → 0,

as n → ∞. Here, we use the dominant convergence theorem for the first integral in the last

line.

4.5 Limiting Law for General Centered Sample Covariance
Matrices

Independent of the subsequent sections, this section focuses on the generalized sample

covariance matrix where the dimension of the feature is much smaller than the sample size. We

will later interpret such sample covariance matrix specifically for our neural network applications.

Under certain weak assumptions, we prove the limiting eigenvalue distribution of the normalized

sample covariance matrix satisfies two self-consistent equations, which are subsumed into a

deformed semicircle law. Our findings in this section demonstrate some degree of universality,

indicating that they hold across various random matrix models and may have implications for

other related fields.

Theorem 79. Suppose y1, . . . ,yd ∈ Rn are independent random vectors with the same distri-

bution of a random vector y ∈ Rn. Assume that E[y] = 0, E[yy⊤] = Φn ∈ Rn×n, where Φn is

a deterministic matrix whose limiting eigenvalue distribution is µΦ ̸= δ0. Assume ∥Φn∥ ≤ C

for some constant C. Define An :=
√

d
n

( 1
d ∑

d
i=1 yiy⊤i −Φn

)
and R(z) := (An − z Id)−1. For any
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z∈C+ and any deterministic matrices Dn with ∥Dn∥≤C, suppose that as n,d →∞ and n/d → 0,

trR(z)Dn −E[trR(z)Dn]
a.s.−→ 0, (4.5.1)

and
1
n2E

[∣∣∣y⊤Dny−TrDnΦn

∣∣∣2]→ 0. (4.5.2)

Then the empirical eigenvalue distribution of matrix An weakly converges to µ almost surely,

whose Stieltjes transform m(z) is defined by (1.2.7) in Chapter 1 for each z ∈ C+, where

β (z) ∈ C+ in (1.2.7) is the unique solution to (1.2.7) in Chapter 1. In particular, µ = µs ⊠µΦ.

Remark. In [Xie13], it was assumed that d
n3E
∣∣y⊤Dny−TrDnΦn

∣∣2 → 0, where n3/d → ∞ and

n/d → 0 as n → ∞. By martingale difference, this condition implies (4.5.1). However, we are not

able to verify a certain step in the proof of [Xie13]. Hence, we will not directly adopt the result

of [Xie13] but consider a more general situation without assuming n3/d → ∞. The weakest

conditions we found are conditions (4.5.1) and (4.5.2), which can be verified in our nonlinear

random model.

The self-consistent equations we derived are consistent with the results in [Bao12, Xie13],

where they studied the empirical spectral distribution of separable sample covariance matrices

in the regime n/d → 0 under different assumptions. When n → ∞ and n/d → 0, our goal is

to prove that the Stieltjes transform mn(z) of the empirical eigenvalue distribution of An and

βn(z) := tr[R(z)Φn] point-wisely converges to m(z) and β (z), respectively.

For the rest of this section, we first prove a series of lemmas to get n-dependent deter-

ministic equivalents related to (1.2.7) and (1.2.8) and then deduce the proof of Theorem 79 at

the end of this section. Recall An =
√

d
n

( 1
d ∑

d
i=1 yiy⊤i −Φn

)
, R(z) = (An − z Id)−1, and y is a

random vector independent of An with the same distribution of yi.
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Lemma 80. Under the assumptions of Theorem 79, for any z ∈ C+, as d,n → ∞,

trD+ zE[trR(z)D]+E

[
1
ny⊤DR(z)y · 1

ny⊤R(z)y
1+
√ n

d
1
ny⊤R(z)y

]
= o(1), (4.5.3)

where D ∈ Rn×n is any deterministic matrix such that ∥D∥ ≤C, for some constant C.

Proof. Let z = u+ iv ∈ C+ where u ∈ R and v > 0. Let

R̂ :=

(
1√
dn

d+1

∑
j=1

y jy⊤j −
√

d
n

Φn − z Id

)−1

,

where y j’s are independent copies of y defined in Theorem 79. Notice that, for any deterministic

matrix D ∈ Rn×n,

D = R̂

(
1√
dn

d+1

∑
j=1

y jy⊤j −
√

d
n

Φn − z Id

)
D (4.5.4)

=
1√
dn

R̂

(
d+1

∑
i=1

yiy⊤i

)
D−

√
d
n

R̂ΦnD− zR̂D. (4.5.5)

Without loss of generality, we assume ∥D∥ ≤ 1. Taking normalized trace, we have

trD+ z tr[R̂D] =
1√
dn

1
n

d+1

∑
i=1

y⊤i DR̂yi −
√

d
n

tr[R̂ΦnD]. (4.5.6)

For each 1 ≤ i ≤ d +1, Sherman–Morrison formula (Lemma 96) implies

R̂ = R(i)− R(i)yiy⊤i R(i)
√

dn+y⊤i R(i)yi
, (4.5.7)

where the leave-one-out resolvent R(i) is defined as

R(i) :=

(
1√
dn

∑
1≤ j≤d+1, j ̸=i

y jy⊤j −
√

d
n

Φn − z Id

)−1

.
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Hence, by (4.5.7), we obtain

1√
dn

1
n

d+1

∑
i=1

y⊤i DR̂yi =
1
n

d+1

∑
i=1

y⊤i DR(i)yi√
dn+y⊤i R(i)yi

. (4.5.8)

Combining equations (4.5.6) and (4.5.8), and applying expectation at both sides implies

trD+ zE[tr R̂D] =
1
n

d+1

∑
i=1

E

[
y⊤i DR(i)yi√

dn+y⊤i R(i)yi

]
−
√

d
n
E tr R̂ΦnD

=
d +1

n
E
[

y⊤DR(z)y√
dn+y⊤R(z)y

]
−
√

d
n
E tr R̂ΦnD, (4.5.9)

because of the assumption that all yi’s have the same distribution as vector y for all i ∈ [d +1].

With (4.5.9), to prove (4.5.3), we will first show that when n,d → ∞,

√
d
n

(
E[tr R̂ΦnD]−E[trR(z)ΦnD]

)
= o(1), (4.5.10)

E[tr R̂D]−E[trR(z)D] = o(1), (4.5.11)

1
n
E
[

y⊤DR(z)y√
dn+y⊤R(z)y

]
= o(1). (4.5.12)

Recall that

R̂−R(z) =
1√
dn

R(z)
(

yd+1y⊤d+1

)
R̂,

and spectral norms ∥R̂∥,∥R(z)∥ ≤ 1/v due to Proposition 12. Notice that ∥Φn∥ ≤C. Hence, we

can deduce that

√
d
n

∣∣E[tr R̂ΦnD]−E[trR(z)ΦnD]
∣∣≤ 1

n
E[| trR(z)yd+1y⊤d+1R̂ΦnD|]

≤ 1
n2E[∥R̂ΦnDR(z)∥ · ∥yd+1∥2]

=
C

v2n2E[Tryd+1y⊤d+1] =
C TrΦn

v2n2 ≤ C2

v2n
→ 0,

as n → ∞. The same argument can be applied to the error of E[tr R̂D]−E[trR(z)D]. Therefore
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(4.5.10) and (4.5.11) hold. For (4.5.12), we denote ỹ := y/(nd)1/4 and observe that

1
n
E
[

y⊤DR(z)y√
dn+y⊤R(z)y

]
=

1
n
E
[

ỹ⊤DR(z)ỹ
1+ ỹ⊤R(z)ỹ

]
. (4.5.13)

Let R(z) = ∑
n
i=1

1
λi−zuiu⊤

i be the eigen-decomposition of R(z). Then

ỹ⊤R(z)ỹ/∥ỹ∥2 =
n

∑
i=1

1
λi − z

(⟨ui, ỹ⟩)2

∥ỹ∥2 :=
∫ 1

x− z
dµỹ (4.5.14)

is the Stieltjes transform of a discrete measure µỹ = ∑
n
i=1

(⟨ui,ỹ⟩)2

∥ỹ∥2 δλi . Then, we can control the

real part of ỹ⊤R(z)ỹ by Lemma 98:

∣∣∣Re(ỹ⊤R(z)ỹ)
∣∣∣≤ v−1/2∥ỹ∥

(
Im(ỹ⊤R(z)ỹ)

)1/2
. (4.5.15)

We now separately consider two cases in the following:

• If the right-hand side of the above inequality (4.5.15) is at most 1/2, then

∣∣∣1+ ỹ⊤R(z)ỹ
∣∣∣≥ ∣∣∣1+Re(ỹ⊤R(z)ỹ)

∣∣∣≥ 1
2
,

which results in ∣∣∣∣ ỹ⊤DR(z)ỹ
1+ ỹ⊤R(z)ỹ

∣∣∣∣≤ C√
dn

∥y∥2. (4.5.16)

• When v−1/2∥ỹ∥
(
Im(ỹ⊤R(z)ỹ)

)1/2
> 1/2, we know that

∣∣∣∣ ỹ⊤DR(z)ỹ
1+ ỹ⊤R(z)ỹ

∣∣∣∣≤ ∥ỹ⊤D∥∥R(z)ỹ∥
| Im(1+ ỹ⊤R(z)ỹ)|

=
∥ỹ⊤D∥∥R(z)ỹ∥
ỹ⊤ Im(R(z))ỹ

≤ ∥ỹ⊤D∥(
vỹ⊤ Im(R(z))ỹ

)1/2 ≤ 2∥ỹ⊤D∥∥ỹ∥
v

≤ C∥y∥2

v
√

nd
, (4.5.17)
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where we exploit the fact that (see also Equation (A.1.11) in [BS10])

∥R(z)ỹ∥= (ỹ⊤R(z̄)R(z)ỹ)1/2 =

(
1
v

ỹ⊤ Im(R(z))ỹ
)1/2

.

Finally, combining (4.5.16) and (4.5.17) in the above two cases, we can conclude the

asymptotic result (4.5.12) because E∥y∥2 = TrΦn ≤Cn in terms of the assumptions of Theo-

rem 79.

Then with (4.5.10), (4.5.11), and (4.5.12), we get

trD+ zE[trR(z)D] = E


√

d
n

1
ny⊤DR(z)y

1+ 1√
dn

y⊤R(z)y
−
√

d
n

trR(z)ΦnD

+o(1), (4.5.18)

as n → ∞. We utilize the notion Ey to clarify the expectation only with respect to random

vector y, conditioning on other independent random variables. So the conditional expectation is

Ey
[1

ny⊤DR(z)y
]
= trDR(z)Φn and

E
[

1
n

y⊤DR(z)y
]
= E

[
Ey

[
1
n

y⊤DR(z)y
]]

= E[trR(z)ΦnD].

Therefore, based on (4.5.18), the conclusion (4.5.3) holds.

Next, we apply the quadratic concentration condition (4.5.2) to simplify (4.5.3).

Lemma 81. Under the assumptions of Theorem 79, condition (4.5.2) of Theorem 79 implies that

E

[
1
ny⊤DR(z)y · 1

ny⊤R(z)y
1+
√ n

d
1
ny⊤R(z)y

]
= E

[
trDR(z)Φn trR(z)Φn

1+
√ n

d trR(z)Φn

]
+o(1), (4.5.19)

for each z ∈ C+ and any deterministic matrix D with ∥D∥ ≤C.
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Proof. Let us denote

δn :=
1
ny⊤DR(z)y · 1

ny⊤R(z)y
1+
√ n

d
1
ny⊤R(z)y

− trDR(z)Φn trR(z)Φn

1+
√ n

d trR(z)Φn
,

Q1 :=
1
n

y⊤DR(z)y, Q2 :=
1
n

y⊤R(z)y,

Q̄1 := Ey[Q1] = trDR(z)Φn, and Q̄2 := Ey[Q1] = trR(z)Φn. In other words, δn can be expressed

by

δn =
Q1Q2

1+
√ n

d Q2
− Q̄1Q̄2

1+
√ n

d Q̄2

=

Q1

(
Q2 +

√
d
n

)
1+
√ n

d Q2
−

√
d
n Q1

1+
√ n

d Q2
−

Q̄1

(
Q̄2 +

√
d
n

)
1+
√ n

d Q̄2
+

√
d
n Q̄1

1+
√ n

d Q̄2

=

√
d
n
(Q1 − Q̄1)+

√
d
n (Q̄1 −Q1)

1+
√ n

d Q̄2
+

√ n
d Q1

√
d
n (Q̄2 −Q2)(

1+
√ n

d Q̄2
)(

1+
√ n

d Q2
) .

Observe that E[Q̄i] = E[Qi] for i = 1,2. Thus, δn has the same expectation as the last term

∆n :=
Q1(Q̄2 −Q2)(

1+
√ n

d Q̄2
)(

1+
√ n

d Q2
) ,

since we can first take the expectation for y conditioning on the resolvent R(z) and then take the

expectation for R(z). Besides, notice that |Q̄1|, |Q̄2| ≤ C
v uniformly. Hence,

√ n
d Q̄2 converges to

zero uniformly and there exists some constant C > 0 such that

∣∣∣∣∣ 1
1+
√ n

d Q̄2

∣∣∣∣∣≤C, (4.5.20)

for all large d and n. In addition, observe that

√ n
d Q1

1+
√ n

d Q2
=

ỹ⊤DR(z)ỹ
1+ ỹ⊤R(z)ỹ

,
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where ỹ is defined in the proof of Lemma 80. In terms of (4.5.16) and (4.5.17), we verify that

∣∣∣∣∣ Q1

1+
√ n

d Q2

∣∣∣∣∣≤ C∥y∥2

n
, (4.5.21)

where C > 0 is some constant depending on v. Next, recall that condition (4.5.2) exposes that

E(Q2 − Q̄2)
2 → 0 and E(∥y∥2/n− trΦn)

2 → 0 (4.5.22)

as n → ∞. The first convergence is derived by viewing Dn = R(z) and taking expectation

conditional on R(z). To sum up, we can bound |∆n| based on (4.5.20) and (4.5.21) in the

subsequent way:

|∆n| ≤
C∥y∥2

n
|Q̄2 −Q2| ≤C

∣∣∥y∥2/n− trΦn
∣∣ · |Q̄2 −Q2|+C|trΦn| · |Q̄2 −Q2|.

Here, | trΦn| ≤ ∥Φn∥ and ∥Φn∥ is uniformly bounded by some constant. Then, by Hölder’s

inequality, (4.5.22) implies that E[|∆n|] → 0, as n approaching to infinity. This concludes

E[δn] = E[∆n] converges to zero.

Lemma 82. Under assumptions of Theorem 79, we can conclude that

lim
n,d→∞

(trD+ zE[trR(z)D]+E[trDR(z)Φn]E[trR(z)Φn]) = 0

holds for each z ∈ C+ and deterministic matrix D with uniformly bounded spectral norm.

Proof. Based on Lemma 80 and Lemma 81, (4.5.19) and (4.5.3) yield

trD+ zE[trR(z)D]+E

[
trDR(z)Φn trR(z)Φn

1+
√ n

d trR(z)Φn

]
= o(1).

As | trR(z)D| and | trR(z)DΦn| are bounded by some constants uniformly and almost surely, for
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sufficiently large d and n, |
√ n

d trR(z)Φn|< 1/2 and

∣∣∣∣∣E
[

trDR(z)Φn trR(z)Φn

1+
√ n

d trR(z)Φn

]
−E[trDR(z)Φn trR(z)Φn]

∣∣∣∣∣
≤ E

[
| trR(z)D| · | trR(z)DΦn| ·

∣∣∣∣∣
√ n

d trR(z)Φn

1+
√ n

d trR(z)Φn

∣∣∣∣∣
]
≤ 2C

√
n
d
→ 0,

as n/d → 0. Hence,

trD+ zE[trR(z)D]+E[trDR(z)Φn trR(z)Φn] = o(1). (4.5.23)

Considering Dn =Φn in (4.5.1), we can get almost sure convergence for trDR(z)Φn ·(trR(z)Φn−

E[trR(z)Φn]) to zero. Thus by dominated convergence theorem,

lim
n→∞

E[trDR(z)Φn · (trR(z)Φn −E[trR(z)Φn])]→ 0.

So we can replace the third term at the right-hand side of (4.5.23) with

E[trDR(z)Φn]E[trR(z)Φn]

to obtain the conclusion.

Proof of Theorem 79. Fix any z ∈ C+. Denote the Stieltjes transform of empirical spec-

trum of An and its expectation by mn(z) := trR(z) and m̄n(z) := E[mn(z)] respectively. Let

βn(z) := trR(z)Φn and β̄n(z) := E[βn(z)]. Notice that mn(z), m̄n(z),βn and β̄n(z) are all in C+

and uniformly and almost surely bounded by some constant. By choosing D = Id in Lemma 82,

we conclude

lim
n,d→∞

(
1+ zm̄n(z)+ β̄n(z)2)= 0. (4.5.24)
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Likewise, in Lemma 82, we consider D =
(
β̄n(z)Φn + z Id

)−1
Φn. Let

U =
(
β̄n(z)Φn + z Id

)−1
.

Because ∥Φn∥ is uniformly bounded, ∥D∥ ≤C∥U∥. In terms of Proposition 12, we only need to

provide a lower bound for the imaginary part of U . Observe that ImU = Im β̄n(z)Φn+v Id ⪰ v Id

since λmin(Φn) ≥ 0 and Im β̄n(z) > 0. Thus, ∥D∥ ≤ Cv−1 for all n. Meanwhile, we have the

equation β̄n(z)ΦnD = Φn − zD and hence,

β̄n(z)E[trR(z)ΦnD] = E[trR(z)ΦnD]E[trR(z)Φn] = β̄n(z)− zE[trR(z)D].

So applying Lemma 82 again, we have another limiting equation trD+ β̄n(z) → 0. In other

words,

lim
n,d→∞

(
tr
(
β̄n(z)Φn + z Id

)−1
Φn + β̄n(z)

)
= 0. (4.5.25)

Thanks to the identity

β̄n(z) tr
(
β̄n(z)Φn + z Id

)−1
Φn −1 =−z tr

(
β̄n(z)Φn + z Id

)−1
,

we can modify (4.5.24) and (4.5.25) to get

lim
n,d→∞

(
m̄n(z)+ tr

(
β̄n(z)Φn + z Id

)−1
)
= 0. (4.5.26)

Since β̄n(z) and m̄n(z) are uniformly bounded, for any subsequence in n, there is a

further convergent sub-subsequence. We denote the limit of such sub-subsequence by β (z) and

m(z) ∈ C+ respectively. Hence, by (4.5.25) and (4.5.26), one can conclude

lim
n,d→∞

(
β (z)+ tr(β (z)Φn + z Id)−1

Φn

)
= 0.
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Because of the convergence of the empirical eigenvalue distribution of Φn, we obtain the fixed

point equation (1.2.8) for β (z). Analogously, we can also obtain (1.2.7) for m(z) and β (z). The

existence and the uniqueness of the solutions to (1.2.7) and (1.2.8) are proved in [BZ10, Theorem

2.1] and [WP14, Section 3.4], which implies the convergence of m̄n(z) and β̄n(z) to m(z) and

β (z) governed by the self-consistent equations (1.2.7) and (1.2.8) as n → ∞, respectively.

Then, by virtue of condition (4.5.1) in Theorem 79, we know mn(z)− m̄n(z)
a.s.−→ 0 and

βn(z)− β̄n(z)
a.s.−→ 0. Therefore, the empirical Stieltjes transform mn(z) converges to m(z) almost

surely for each z ∈ C+. Recall that the Stieltjes transform of µ is m(z). By the standard Stieltjes

continuity theorem (see, for example, [BS10, Theorem B.9]), this finally concludes the weak

convergence of empirical eigenvalue distribution of An to µ .

Now we show µ = µs ⊠µΦ. The fixed point equations (1.2.7) and (1.2.8) induce

β
2(z)+1+ zm(z) = 0, (4.5.27)

since β (z) ∈ C+ for any z ∈ C+. Together with (1.2.7), we attain the same self-consistent

equations for the convergence of the empirical spectral distribution of the Wigner-type matrix

studied in [BZ10, Theorem 1.1].

Define Wn, the n-by-n Wigner matrix, as a Hermitian matrix with independent entries

{Wn[i, j] : E[Wn[i, j]] = 0, E[Wn[i, j]2] = 1, 1 ≤ i ≤ j ≤ n}.

The Wigner-type matrix studied in [BZ10, Definition 1.2] is indeed 1√
nΦ

1/2
n WnΦ

1/2
n . Hence, such

Wigner-type matrix 1√
nΦ

1/2
n WnΦ

1/2
n has the same limiting spectral distribution as An defined in

Theorem 79. Both limits are determined by self-consistent equations (1.2.7) and (4.5.27).

On the other hand, based on [AGZ10, Theorem 5.4.5], 1√
nWn and Φn are almost surely

asymptotically free, i.e., the empirical distribution of { 1√
nWn,Φn} converges almost surely to the

law of {s,d}, where s and d are two free non-commutative random variables (s is a semicircle
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element and d has the law µΦ). Thus, the limiting spectral distribution µ of 1√
nΦ

1/2
n WnΦ

1/2
n is the

free multiplicative convolution between µs and µΦ. This implies µ = µs⊠µΦ in our setting.

4.6 Proofs of Theorem 64 and Theorem 65

To prove Theorem 64, we first establish the following proposition to analyze the difference

between Stieltjes transform of (4.3.1) and its expectation. This will assist us to verify condition

(4.5.1) in Theorem 79. The proof is based on Lemma 23 in Chapter 2.

Proposition 83. Let D ∈ Rn×n be any deterministic symmetric matrix with a uniformly bounded

spectral norm. Following the notions in Theorem 64, assume ∥X∥ ≤C for some constant C and

Assumption 9 holds. Let R(z) be the resolvent

(
1√
d1n

(
Y⊤Y −E[Y⊤Y ]

)
− z Id

)−1

,

for any fixed z ∈ C+. Then, there exist some constants s,n0 > 0 such that for all n > n0 and any

t > 0,

P(|trR(z)D−E[trR(z)D]|> t)≤ 2e−cnt2
.

Proof. Define function F : Rd1×d0 → R by F(W ) := trR(z)D. Fix any W,∆ ∈ Rd1×d0 where

∥∆∥F = 1, and let Wt = W + t∆. We want to verify F(W ) is a Lipschitz function in W with

respect to the Frobenius norm. First, recall

R(z)−1 =
1√
d1n

σ(WX)⊤σ(WX)−
√

d1

n
Φ− z Id,
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where the last two terms are deterministic with respect to W . Hence,

vec(∆)⊤(∇F(W )) =
d
dt

∣∣∣
t=0

F(Wt)

=− trR(z)
(

d
dt

∣∣∣
t=0

R(z)−1
)

R(z)D

=− 1√
d1n

trR(z)
(

d
dt

∣∣∣
t=0

σ(WtX)⊤σ(WtX)

)
R(z)D

=− 2√
d1n

trR(z)
(

σ(WX)⊤ · d
dt

∣∣∣
t=0

σ(WtX)

)
R(z)D

=− 2√
d1n

trR(z)
(

σ(WX)⊤ ·
(
σ
′(WX)⊙ (∆X)

))
R(z)D,

where ⊙ is the Hadamard product, and σ ′ is applied entrywise. Here we utilize the formula

∂R(z) =−R(z)(∂ (R(z)−1))R(z)

and R(z) = R(z)⊤. Proposition 12 in Chapter 2 implies that ∥R(z)∥ ≤ 1
| Imz| . Therefore, based on

the assumption of D, we have

∣∣∣vec(∆)⊤(∇F(W ))
∣∣∣≤ C√

d1n
∥R(z)σ(WX)⊤∥ · ∥σ

′(WX)⊙ (∆X)∥,

for some constant C > 0. For the first term in the product on the right-hand side,

(
1√
d1n

∥R(z)σ(WX)⊤∥
)2

=
1√
d1n

∥∥∥∥R(z)
(

1√
d1n

σ(WX)⊤σ(WX)

)
R(z)∗

∥∥∥∥
≤ 1√

d1n

(
∥R(z)R(z)−1R(z)∗∥+

∥∥∥∥∥R(z)

(√
d1

n
Φ+ z Id

)
R(z)∗

∥∥∥∥∥
)

≤ 1√
d1n

(
∥R(z)∥+∥R(z)∥2

(√
d1

n
∥Φ∥+ |z|

))
≤ C

n
.
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For the second term,

∥σ
′(WX)⊙ (∆X)∥ ≤ ∥σ

′(WX)⊙ (∆X)∥F ≤ λσ∥∆X∥F ≤ λσ∥∆∥F · ∥X∥ ≤C.

Thus, |vec(∆)⊤(∇F(W ))| ≤ C/
√

n. This holds for every ∆ such that ∥∆∥F = 1, so F(W ) is

C/
√

n-Lipschitz in W with respect to the Frobenius norm. Then the result follows from the

Gaussian concentration inequality for Lipschitz functions.

Next, we investigate the approximation of Φ = Ewww[σ(www⊤X)⊤σ(www⊤X)] via the Hermite

polynomials {hk}k≥0. The orthogonality of Hermite polynomials allows us to write Φ as a

series of kernel matrices. Then we only need to estimate each kernel matrix in this series. The

proof is directly based on [GMMM19, Lemma 2]. The only difference is that we consider

the deterministic input data X with the (εn,B)-orthonormal property, while in Lemma 2 of

[GMMM19], the matrix X is formed by independent Gaussian vectors.

Lemma 84. Recall the definition of Φ0 in (4.2.8). If X is (εn,B)-orthonormal and Assumption 9

holds, then we have the spectral norm bound

∥Φ−Φ0∥ ≤CBε
2
n
√

n,

where CB is a constant depending on B. Suppose that ε2
n
√

n → 0 as n → ∞, then ∥Φ∥ ≤ C

uniformly for some constant C independent of n.

Proof. By Assumption 9, we know that

ξ0(σ) = 0,
∞

∑
k=1

ζ
2
k (σ) = E[σ(ξ )2] = 1.

For any fixed t, σ(tx) ∈ L2(R,Γ). This is because σ(x) ∈ L2(R,Γ) is a Lipschitz function and
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by triangle inequality |σ(tx)−σ(x)| ≤ λσ |tx− x|, we have, for ξ ∼ N (0,1),

E(σ(tξ )2)≤ E(|σ(ξ )|+λσ |tξ −ξ |)2 < ∞. (4.6.1)

For 1 ≤ α ≤ n, let σα(x) := σ(∥xα∥x) and the Hermite expansion of σa can be written

as

σα(x) =
∞

∑
k=0

ζk(σα)hk(x),

where the coefficient ζk(σα)=E[σα(ξ )hk(ξ )]. Let unit vectors be uα = xα/∥xα∥, for 1≤α ≤ n.

So for 1 ≤ α,β ≤ n, the (α,β ) entry of Φ is

Φαβ = E[σ(www⊤xα)σ(www⊤xβ )] = E[σα(ξα)σβ (ξβ )],

where (ξα ,ξβ ) = (www⊤uα ,www⊤uβ ) is a Gaussian random vector with mean zero and covariance

 1 u⊤
α uβ

u⊤
α uβ 1

. (4.6.2)

By the orthogonality of Hermite polynomials with respect to Γ and Lemma 99, we can obtain

E[h j(ξα)hk(ξβ )] = E[h j(www⊤uα)hk(www⊤uβ )] = δ j,k(u⊤
α uβ )

k,

which leads to

Φαβ =
∞

∑
k=0

ζk(σα)ζk(σβ )(u⊤
α uβ )

k. (4.6.3)

For any k ∈ N, let Tk be an n-by-n matrix with (α,β )-th entry

(Tk)αβ := ζk(σα)ζk(σβ )(u⊤
α uβ )

k. (4.6.4)
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Specifically, for any k ∈ N, we have

Tk = Dk fk(X⊤X)Dk,

where Dk is the diagonal matrix diag(ζk(σα)/∥xα∥k)α∈[n].

At first, we consider twice differentiable σ in Assumption 9. Similar with [GMMM19,

Equation (26)], for any ε > 0 and |t −1| ≤ ε , we take the Taylor approximation of σ(tx) at point

x, then there exists η between tx and x such that

σ(tx)−σ(x) = σ
′(x)x(t −1)+

1
2

σ
′′(η)x2(t −1)2.

Replacing x by ξ and taking expectation, since σ ′′ is uniformly bounded, we can get

∣∣E[σ(tξ )−σ(ξ )]−E[σ ′(ξ )ξ ](t −1)
∣∣≤C|t −1|2 ≤Cε

2
n , (4.6.5)

For k ≥ 1, the Lipschitz condition for σ yields

|ζk(σα)−ζk(σ)| ≤C|∥xα∥−1| ·E[|ξ | · |hk(ξ )|]≤Cεn, (4.6.6)

where constant C does not depend on k. As for piece-wise linear σ , it is not hard to see

E[σ(tξ )−σ(ξ )] = E[σ ′(ξ )ξ ](t −1). (4.6.7)

Now, we begin to approximate Tk separately based on (4.6.5), (4.6.6) and (4.6.7). Denote

diag(A) the diagonal submatrix of a matrix A.

(1) Approximation for ∑k≥4(Tk − diag(Tk)). At first, we estimate the L2 norm with

respect to Γ of the function σα . Recall that ∥σα∥L2 = E[σα(ξ )
2]1/2. Because ∥σ∥L2 = 1 and σ
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is a Lipschitz function, we have

sup
1≤α≤n

∥σ −σα∥L2 = E[(σ(ξ )−σα(ξ ))
2]1/2 ≤ C|∥xα∥−1|, (4.6.8)

sup
1≤α≤n

∥σα∥L2 ≤ 1+Cεn. (4.6.9)

Hence, ∥σα∥L2 is uniformly bounded with some constant for all large n. Next, we estimate the

off-diagonal entries of Tk when k ≥ 4. From (4.6.4), we obtain that

∥∥∥∥∥∑
k≥4

(Tk −diag(Tk))

∥∥∥∥∥≤
∥∥∥∥∥∑

k≥4
(Tk −diag(Tk))

∥∥∥∥∥
F

≤ ∑
k≥4

∥Tk −diag(Tk)∥F

≤ ∑
k≥4

(
sup
α ̸=β

|u⊤
α uβ |k

)[
n

∑
α,β=1

ζk(σα)
2
ζk(σβ )

2

] 1
2

≤

(
sup
α ̸=β

|u⊤
α uβ |4

)
n

∑
α=1

∞

∑
k=0

ζk(σα)
2

≤ n ·

(
sup
α ̸=β

|x⊤α xβ |4

∥xα∥4∥xβ∥4

)
sup

1≤α≤n
∥σα∥2

L2 ≤Cn · ε4
n , (4.6.10)

when n is sufficiently large.

(2) Approximation for T0. Recall E[σ(ξ )] = 0 and by Gaussian integration by part,

E[σ ′(ξ )ξ ] = E[ξ
∫

ξ

0
σ
′(x)xdx] = E[ξ 2

σ(ξ )]−E[ξ
∫

ξ

0
σ(x)dx] = E[ξ 2

σ(ξ )]−E[σ(ξ )].

Then, we have

E[σ ′(ξ )ξ ] = E[(ξ 2 −1)σ(ξ )] = E[
√

2h2(ξ )σ(ξ )] =
√

2ζ2(σ).

If σ is twice differentiable, then E[σ ′′(ξ )] =
√

2ζ2(σ) as well.
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Thus, taking t = ∥xα∥ in (4.6.5) and (4.6.7) implies that for any 1 ≤ α ≤ n,

∣∣∣ζ0(σα)−
√

2ζ2(σ)(∥xα∥−1)
∣∣∣≤Cε

2
n . (4.6.11)

Define ννν⊤ := (ζ0(σ1), . . . ,ζ0(σn)), then T0 = νννννν⊤. Recall the definition of mu in (4.2.8). Then,

(4.6.11) ensures that

∥µµµ −ννν∥ ≤C
√

nε
2
n .

Applying the (εn,B)-orthonormal property of xα yields

∥µµµ∥2 = 2ζ2(σ)2
n

∑
α=1

(∥xα∥−1)2 ≤ 2ζ2(σ)2
n

∑
α=1

(∥xα∥2 −1)2 ≤ 2B2
ζ2(σ)2. (4.6.12)

Hence the difference between T0 and µµµµµµ⊤ is controlled by

∥T0 −µµµµµµ
⊤∥ ≤ ∥µµµ −ννν∥(2∥µµµ∥+∥ννν −µµµ∥)≤C

√
nε

2
n . (4.6.13)

(3) Approximation for Tk for k = 1,2,3. For 0 ≤ k ≤ 3, Assumption 10 and (4.6.6)

show that

∣∣∣ζk(σα)/∥xα∥k −ζk(σ)
∣∣∣≤ 1

∥xα∥k

[
|ζk(σα)−ζk(σ)|+ |ζk(σ)| · |∥xα∥k −1|

]
≤ Cεn +C1|∥xα∥−1|

(1− εn)k ≤C2εn, (4.6.14)

when n is sufficiently large. Notice that Tk = Dk fk(X⊤X)Dk, where Dk is the diagonal matrix.

Hence, by (4.6.14),

∥Dk −ζk(σ) Id∥ ≤C2εn.
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And for k = 1,2,3, by the triangle inequality,

∥Tk −ζk(σ)2 fk(X⊤X)∥= ∥Dk fk(X⊤X)Dk −ζk(σ)2 fk(X⊤X)∥

≤ ∥Dk −ζk(σ) Id∥ · ∥ fk(X⊤X)∥(|ζk(σ)|+∥Dk −ζk(σ) Id∥)≤Cεn∥ fk(X⊤X)∥.

When k = 1, f1(X⊤X) = X⊤X and ∥X⊤X∥ ≤ ∥X∥2 ≤ B2. When k = 2,

f2(X⊤X) = (X⊤X)⊙ (X⊤X).

From Lemma 95 in Appendix 4.9, we have that

∥ f2(X⊤X)∥ ≤ max
1≤α,β≤n

|x⊤α xβ | · ∥X∥2 ≤ B2(1+ εn). (4.6.15)

So the left-hand side of (4.6.15) is bounded. Analogously, we can verify ∥ f3(X⊤X)∥ is also

bounded. Therefore, we have

∥Tk −ζk(σ)2 fk(X⊤X)∥ ≤Cεn, (4.6.16)

for some constant C and k = 1,2,3 when n is sufficiently large.

(4) Approximation for ∑k≥4 diag(Tk). Since u⊤
α uα = 1, we know

∑
k≥4

diag(Tk) = diag

(
∑
k≥4

ζk(σα)
2

)
α∈[n]

= diag

(
∥σα∥2

L2 −
4

∑
k=0

ζk(σα)
2

)
α∈[n]

.

First, by (4.6.8) and (4.6.9), we can claim that

|∥σα∥2
L2 −1|= |∥σα∥2

L2 −∥σ∥2
L2| ≤C∥σα −σ∥L2 ≤Cεn.
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Second, in terms of (4.6.14), we obtain

|ζk(σα)
2 −ζk(σ)2| ≤C|ζk(σα)−ζk(σ)| ≤Cεn,

for k = 1,2 and 3. Combining these together, we conclude that

∥∥∥∥∥∑
k≥4

diag(Tk)− (1−ζ1(σ)2 −ζ2(σ)2 −ζ3(σ)2) Id

∥∥∥∥∥
≤ max

1≤α≤n

∣∣∣∣∣(∥σα∥2
L2 −1)−

4

∑
k=0

(ζk(σα)
2 −ζk(σ)2)

∣∣∣∣∣≤Cεn. (4.6.17)

Recall

Φ0 = µµµµµµ
⊤+

3

∑
k=1

ζk(σ)2 fk(X⊤X)+(1−ζ1(σ)2 −ζ2(σ)2 −ζ3(σ)2) Id .

In terms of approximations (4.6.10), (4.6.13), (4.6.16) and (4.6.17), we can finally manifest

∥Φ−Φ0∥ ≤C
(
εn +

√
nε

2
n +nε

4
n
)
≤C

√
nε

2
n , (4.6.18)

for some constant C > 0 as
√

nε2
n → 0. The spectral norm bound of Φ is directly deduced by the

spectral norm bound of Φ0 based on (4.6.12) and (4.6.15), together with (4.6.18).

Remark (Optimality of εn). For general deterministic data X, our pairwise orthogonality

assumption with rate nε4
n = o(1) is optimal for the approximation of Φ by Φ0 in the spectral

norm. If we relax the decay rate of εn in Assumption 10, the above approximation may require

including terms of higher-degree fk(X⊤X) for k ≥ 4 in Φ0, which will lead to the invalidation of

some of our following results and simplifications. This weaker regime has been considered in

our follow-up work [WZ23].

Next, we continue to provide an additional estimate for Φ, but in the Frobenius norm to

further simplify the limiting spectral distribution of Φ.
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Lemma 85. If Assumptions 9 and 10 hold, then Φ has the same limiting spectrum as b2
σ X⊤X +

(1−b2
σ ) Id when n → ∞, i.e.

lim specΦ = lim spec
(

b2
σ X⊤X +(1−b2

σ ) Id
)
= b2

σ µ0 +(1−b2
σ ).

Proof. By the definition of bσ , we know that bσ = ζ1(σ). As a direct deduction of Lemma 84, the

limiting spectrum of Φ is identical to the limiting spectrum of Φ0. To prove this lemma, it suffices

to check the Frobenius norm of the difference between Φ0 and ζ1(σ)2X⊤X +(1−ζ1(σ)2) Id.

Notice that

Φ0 −ζ1(σ)2X⊤X − (1−ζ1(σ)2) Id

= µµµµµµ
⊤+ζ2(σ)2 f2(X⊤X)+ζ3(σ)2 f3(X⊤X)− (ζ2(σ)2 +ζ3(σ)2) Id .

By the definition of vector mu and the assumption of X , we have

∥µµµµµµ
⊤∥F = ∥µµµ∥2 = 2ζ

2
2 (σ)

n

∑
α=1

(∥xα∥−1)2 ≤ 2ζ
2
2 (σ)B2. (4.6.19)

For k = 2,3, the Frobenius norm can be controlled by

∥ fk(X⊤X)− Id∥2
F =

n

∑
α,β=1

(
(x⊤α xβ )

k −δαβ

)2

≤ n(n−1)ε2k
n +

n

∑
α=1

(∥xα∥2k −1)2 ≤ n2
ε

2k
n +Cnε

2
n .

Hence, as n → ∞, we have

1
n
∥µµµµµµ

⊤∥2
F ,

1
n
∥ fk(X⊤X)− Id∥2

F → 0, for k = 2,3,
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as nε4
n → 0. Then we conclude that

1
n
∥Φ0 −ζ1(σ)2X⊤X − (1−ζ1(σ)2) Id∥2

F ≤C(nε
4
n + ε

2
n )→ 0.

Hence, lim specΦ is the same as lim spec(ζ1(σ)2X⊤X +(1−ζ1(σ)2) Id) when n → ∞, due to

Proposition 13.

Moreover, the proof of Lemma 85 can be modified to prove (4.3.32), so we omit its proof.

Now, based on Corollary 78, Proposition 83, Lemma 84, and Lemma 85, applying Theorem 79

for general sample covariance matrices, we can finish the proof of Theorem 64.

Proof of Theorem 64. Based on Corollary 78 and Proposition 83, we can verify the conditions

(4.5.1) and (4.5.2) in Theorem 79. By Lemma 84 and Lemma 85, we know that the limiting

eigenvalue distributions of Φ and (1 − b2
σ ) Id+b2

σ X⊤X are identical and ∥Φ∥ is uniformly

bounded. So the limiting eigenvalue distribution of Φ denoted by µΦ is just (1−b2
σ )⊕b2

σ ⊗µ0.

Hence, the first conclusion of Theorem 64 follows from Theorem 79.

For the second part of this theorem, we consider the difference

1
n

∥∥∥∥ 1√
d1n

(
Y⊤Y −E[Y⊤Y ]

)
− 1√

d1n

(
Y⊤Y −d1Φ0

)∥∥∥∥2

F

≤ d1

n2∥Φ−Φ0∥2
F ≤ d1

n
∥Φ−Φ0∥2 ≤ d1ε

4
n → 0,

where we employ Lemma 84 and the assumption d1ε4
n = o(1). Thus, because of Proposition 13,

1√
d1n

(
Y⊤Y −d1Φ0

)
has the same limiting eigenvalue distribution as (4.3.1), µs ⊠ ((1− b2

σ )⊕

b2
σ ⊗µ0). This finishes the proof of Theorem 64.

Next, we move to study the empirical NTK and its corresponding limiting eigenvalue

distribution. Similarly, we first verify that such NTK concentrates around its expectation and
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then simplify this expectation by some deterministic matrix only depending on the input data

matrix X and nonlinear activation σ . The following lemma can be obtained from (4.3.12) in

Theorem 68.

Lemma 86. Suppose that Assumption 8 holds, supx∈R |σ ′(x)| ≤ λσ and ∥X∥ ≤ B. Then if

d1 = ω(logn), we have

1
d1

∥∥∥(S⊤S)⊙ (X⊤X)−E[(S⊤S)⊙ (X⊤X)]
∥∥∥→ 0, (4.6.20)

almost surely as n,d0,d1 → ∞. Moreover, if d1/n → ∞ as n → ∞, then almost surely

1√
nd1

∥∥∥(S⊤S)⊙ (X⊤X)−E[(S⊤S)⊙ (X⊤X)]
∥∥∥→ 0. (4.6.21)

Lemma 87. Suppose X is (εn,B)-orthonormal. Under Assumption 9, we have

∥Ψ−Ψ0∥ ≤CBε
4
n n, (4.6.22)

where Ψ and Ψ0 are defined in (4.3.6) and (4.3.7), respectively, and CB is a constant depending

on B.

Proof. We can directly apply methods in the proof of Lemma 84. Notice that (4.2.3) and (4.2.5)

imply

E[S⊤S] = d1E[σ ′(www⊤X)⊤σ
′(www⊤X)],

for any standard Gaussian random vector www ∼ N (0, Id). Recall that (4.3.8) defines the k-th

coefficient of Hermite expansion of σ ′(x) by ηk(σ) for any k ∈N. Then, Assumption 9 indicates

bσ = η0(σ) and aσ = ∑
∞
k=0 η2

k (σ). For 1 ≤ α ≤ n, we introduce φα(x) := σ ′(∥xα∥x) and the

Hermite expansion of this function as

φα(x) =
∞

∑
k=0

ζk(φα)hk(x),
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where the coefficient ζk(σα) = E[φα(ξ )hk(ξ )]. Let uα = xα/∥xα∥, for 1 ≤ α ≤ n. So for

1 ≤ α,β ≤ n, the (α,β )-entry of Ψ is

Ψαβ = E[φα(ξα)φβ (ξβ )] · (x⊤a xβ ),

where (ξα ,ξβ ) = (www⊤uα ,www⊤uβ ) is a Gaussian random vector with mean zero and covariance

(4.6.2). Following the derivation of formula (4.6.3), we obtain

Ψαβ =
∞

∑
k=0

ζk(φα)ζk(φβ )

∥xα∥k∥xβ∥k (x⊤α xβ )
k+1. (4.6.23)

For any k ∈ N, let Tk ∈ Rn×n be an n-by-n matrix with (α,β ) entry

(Tk)αβ :=
ζk(φα)ζk(φβ )

∥xα∥k∥xβ∥k (x⊤α xβ )
k+1.

We can write Tk = Dk fk+1(X⊤X)Dk for any k ∈ N, where Dk is diag(ζk(φα)/∥xα∥k). Then,

adopting the proof of (4.6.16), we can similarly conclude that

∥Tk −η
2
k (σ) fk+1(X⊤X)∥ ≤Cεn,

for some constant C and k = 0,1,2, when n is sufficiently large. Likewise, (4.6.10) indicates

∥∥∥∥∥∑
k≥3

(Tk −diag(Tk))

∥∥∥∥∥≤Cε
4
n n,

and a similar proof of (4.6.17) implies that

∥∥∥∥∥∑
k≥3

diag(Tk)−

(
aσ −

2

∑
k=0

η
2
k (σ)

)
Id

∥∥∥∥∥≤Cεn.

Based on these approximations, we can conclude the result of this lemma.
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Proof of Theorem Theorem 65. The first part of the statement is a straight consequence

of (4.6.21) and Theorem 64. Denote by A :=
√

d1
n (H −E[H]) and B :=

√
d1
n

(
1
d1

Y⊤Y −Φ

)
.

Observe that

B−A =
1√
nd1

[
(S⊤S)⊙ (X⊤X)−E[(S⊤S)⊙ (X⊤X)]

]
.

Hence, (4.6.21) indicates ∥B−A∥→ 0 as n → ∞. This convergence implies that limiting laws of

A and B are identical because of Lemma 97.

The second part is because of Lemma 84 and Lemma 87. From (4.2.4) and (4.3.6),

E[H] = Φ+Ψ. Then almost surely,

∥∥∥∥∥
√

d1

n
(H −E[H])−

√
d1

n
(H −Φ0 −Ψ0)

∥∥∥∥∥=
√

d1

n
∥Φ0 +Ψ0 −E[H]∥

≤
√

d1

n
(∥Φ−Φ0∥+∥Ψ−Ψ0∥)≤

√
d1

n

(√
nε

2
n +nε

4
n
)
→ 0,

as ε4
n d1 → 0 by the assumption of Theorem 65. Therefore, the limiting eigenvalue distribution of

(4.3.10) is the same as (4.3.9).

4.7 Proof of the Concentration for Extreme Eigenvalues

In this section, we obtain the estimates of the extreme eigenvalues for the CK and NTK

we studied in Section 4.6. The limiting spectral distribution of 1√
d1n(Y

⊤Y −E[Y⊤Y ]) tells us

the bulk behavior of the spectrum. An estimation of the extreme eigenvalues will show that

the eigenvalues are confined in a finite interval with high probability. We first provide a non-

asymptotic bound on the concentration of 1
d1

Y⊤Y under the spectral norm. The proof is based on

the Hanson-Wright inequality we proved in Section 4.4 and an ε-net argument.
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Proof of Theorem 66. Recall notations in Section 4.2. Define

M :=
1√
d1n

Y⊤Y =
1√
d1n

d1

∑
i=1

yiy⊤i ,

M−EM =
1√
d1n

d1

∑
i=1

(yiy⊤i −E[yiy⊤i ]) =
1√
d1n

d1

∑
i=1

(yiy⊤i −Φ),

where y⊤i = σ(www⊤
i X).

For any fixed z ∈ Sn−1, we have

z⊤(M−EM)z =
1√
d1n

d1

∑
i=1

[⟨z,yi⟩2 − z⊤Φz]

=
1√
d1n

d1

∑
i=1

[y⊤i (zz⊤)yi −Tr(Φzz⊤)]

= (y1, . . . ,yd1)
⊤Az(y1, . . . ,yd1)−Tr(AzΦ̃), (4.7.1)

where

Az =
1√
d1n


zz⊤

. . .

zz⊤

 ∈ Rnd1×nd1, Φ̃ =


Φ

. . .

Φ

 ∈ Rnd1×nd1 ,

and column vector (y1, . . . ,yd1) ∈ Rnd1 is the concatenation of column vectors y1, . . . ,yd1 . Then

(y1, . . . ,yd1)
⊤ = σ((www1, . . . ,wwwd1)

⊤X̃)

with block matrix

X̃ =


X

. . .

X

.
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Notice that

∥Az∥=
1√
d1n

, ∥Az∥F =
1√
n
, ∥X̃∥= ∥X∥.

Denote ỹ = (y1, . . . ,yd1). With (4.4.14), we obtain

∥Eỹ∥2 = d1∥Ey∥2 ≤ d1

(
2λ

2
σ

n

∑
i=1

(∥xi∥2 −1)2 +2n(Eσ(ξ ))2

)

= d1

(
2λ

2
σ

n

∑
i=1

(∥xi∥2 −1)2

)
≤ 2d1λ

2
σ B2,

where the last line is from the assumptions on X and σ . When B ̸= 0, applying (4.4.9) to (4.7.1)

implies

P
(
|(y1, . . . ,yd1)

⊤Az(y1, . . . ,yd1)−Tr(AzΦ̃)| ≥ t
)

≤ 2exp
(
− 1

C
min
{

t2n
8λ 4

σ∥X∥4 ,
t
√

d1n
λ 2

σ∥X∥2

})
+2exp

(
− t2d1n

32λ 2
σ∥X∥2∥Eỹ∥2

)
≤ 2exp

(
− 1

C
min
{

t2n
8λ 4

σ∥X∥4 ,
t
√

d1n
λ 2

σ∥X∥2

})
+2exp

(
− t2n

64λ 4
σ B2∥X∥2

)
.

Let subset N be a 1/2-net on Sn−1 with |N | ≤ 5n (see e.g. [Ver18, Corollary 4.2.13]), then

∥M−EM∥ ≤ 2 sup
z∈N

|z⊤(M−EM)z|.

Taking a union bound over N yields

P(∥M−EM∥ ≥ 2t)≤ 2exp
(

n log5− 1
C

min
{

t2n
16λ 4

σ∥X∥4 ,
t
√

d1n
2λ 2

σ∥X∥2

})
+2exp

(
n log5− t2n

64λ 4
σ B2∥X∥2

)
.
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We then can set

t =
(

8
√

C+8C
√

n
d1

)
λ

2
σ∥X∥2 +16Bλ

2
σ∥X∥,

to conclude

P
(
∥M−EM∥ ≥

(
16

√
C+16C

√
n
d1

)
λ

2
σ∥X∥2 +32Bλ

2
σ∥X∥

)
≤ 4e−2n.

Since

∥∥∥∥ 1
d1

Y⊤Y −Φ

∥∥∥∥=√ n
d1

∥M−EM∥,

the upper bound in (4.3.11) is then verified. When B = 0, we can apply (4.4.8) and follow the

same steps to get the desired bound.

By the concentration inequality in Theorem 66, we can get a lower bound on the smallest

eigenvalue of the conjugate kernel 1
d1

Y⊤Y as follows.

Lemma 88. Assume X satisfies ∑
n
i=1(∥xi∥2 − 1)2 ≤ B2 for a constant B > 0, and σ is λσ -

Lipschitz with Eσ(ξ ) = 0. Then with probability at least 1−4e−2n,

λmin

(
1
d1

Y⊤Y
)
≥ λmin(Φ)−C

(√
n
d1

+
n
d1

)
λ

2
σ∥X∥2 −32Bλ

2
σ∥X∥

√
n
d1

. (4.7.2)

Proof. By Weyl’s inequality [AGZ10, Corollary A.6], we have

∣∣∣∣λmin

(
1
d1

Y⊤Y
)
−λmin(Φ)

∣∣∣∣≤ ∥∥∥∥ 1
d1

Y⊤Y −d1Φ

∥∥∥∥.
Then (4.7.2) follows from (4.3.11).

The lower bound in (4.7.2) relies on λmin(Φ). Under certain assumptions on X and σ ,
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we can guarantee that λmin(Φ) is bounded below by an absolute constant.

Lemma 89. Assume σ is not a linear function and σ(x) is Lipschitz. Then

sup{k ∈ N : ζk(σ)2 > 0}= ∞. (4.7.3)

Proof. Suppose that sup{k ∈N : ζk(σ)2 > 0} is finite. Then σ is a polynomial of degree at least

2 from our assumption, which is a contradiction to the fact that σ is Lipschitz. Hence, (4.7.3)

holds.

Lemma 90. Assume Assumption 9 holds, σ is not a linear function, and X satisfies (εn,B)-

orthonormal property. Then,

λmin(Φ)≥ 1−ζ1(σ)2 −ζ2(σ)2 −ζ3(σ)2 −CBε
2
n
√

n. (4.7.4)

Remark. This bound will not hold when σ is a linear function. Suppose σ is a linear function,

under Assumption 9, we must have σ(x) = x and Φ = X⊤X. Then we will not have a lower

bound on λmin(Φ) based on the Hermite coefficients of σ .

Proof of Lemma 90. From Lemma 84, under our assumptions, we know that

∥Φ−Φ0∥ ≤CBε
2
n
√

n.

where Φ0 is given by (4.2.8). Thus, λmin(Φ)≥ λmin(Φ0)−CBε2
n
√

n,

and, from Weyl’s inequality [AGZ10, Theorem A.5], we have

λmin(Φ0)≥
3

∑
k=1

ζk(σ)2
λmin( fk(X⊤X))+(1−ζ1(σ)2 −ζ2(σ)2 −ζ3(σ)2).

Note that fk(X⊤X) = K⊤
k Kk, where Kk ∈ Rdk

0×n, and each column of Kk is given by the k-th
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Kronecker product xi ⊗·· ·⊗xi. Hence, fk(X⊤X) is positive semi-definite. Therefore,

λmin(Φ0)≥ 1−ζ1(σ)2 −ζ2(σ)2 −ζ3(σ)2.

Since σ is nonlinear and Lipschitz, (4.7.3) holds for σ . Therefore,

1−ζ1(σ)2 −ζ2(σ)2 −ζ3(σ)2 =
∞

∑
k=4

ζk(σ)2 > 0,

and (4.7.4) holds.

Theorem 67 then follows directly from Lemma 88 and Lemma 90.

Next, we move on to non-asymptotic estimations for NTK. Recall that the empirical

NTK matrix H is given by (4.2.4) and the α-th column of S is defined by diag(σ ′(Wxα))aaa, for

1 ≤ α ≤ n, in (4.2.5).

The i-th row of S is given by z⊤i := σ ′(www⊤
i X)ai, and E[zi] = 0, where ai is the i-th entry

of aaa. Define Dα = diag(σ ′(www⊤
α X)aα), for 1 ≤ α ≤ d1. We can rewrite (S⊤S)⊙ (X⊤X) as

(S⊤S)⊙ (X⊤X) =
d1

∑
α=1

a2
αDαX⊤XDα .

Let us define L and further expand it as follows:

L :=
1
d1

(S⊤S−E[S⊤S])⊙ (X⊤X) (4.7.5)

=
1
d1

d1

∑
i=1

(ziz⊤i −E[ziz⊤i ])⊙ (X⊤X)

=
1
d1

d1

∑
i=1

(
Di(X⊤X)Di −E[Di(X⊤X)Di]

)
=

1
d1

d1

∑
i=1

Zi. (4.7.6)

Here Zi is a centered random matrix, and we can apply matrix Bernstein’s inequality to show the

concentration of L. Since Zi does not have an almost sure bound on the spectral norm, we will
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use the following sub-exponential version of the matrix Bernstein inequality from [Tro12].

Lemma 91 ([Tro12], Theorem 6.2). Let Zk be independent Hermitian matrices of size n× n.

Assume

EZi = 0,
∥∥E[Zp

i ]
∥∥≤ 1

2
p!Rp−2a2,

for any integer p ≥ 2. Then for all t ≥ 0,

P

( ∥∥∥∥∥ d1

∑
i=1

Zi

∥∥∥∥∥≥ t

)
≤ nexp

(
− t2

2d1a2 +2Rt

)
. (4.7.7)

Proof of Theorem 68. From (4.7.6), EZi = 0, and

∥Zi∥ ≤ ∥Di∥2∥XX⊤∥+E∥Di∥2∥XX⊤∥ ≤C1(a2
i +1),

where C1 = λ 2
σ∥X∥2 and where ai ∼N (0,1) is the i-th entry of the second layer weight aaa. Then

∥E[Zp
i ]∥ ≤ E∥Zi∥p ≤C2p

1 E(a2
i +1)p ≤C2p

1

p

∑
k=1

(
p
k

)
(2k−1)!!

=C2p
1 p!

p

∑
k=1

(2k−1)!!
k!(p− k)!

≤C2p
1 p!

p

∑
k=1

2k ≤ 2(2C2
1)

p p!.

So we can take R = 2C2
1 ,a

2 = 8C4
1 in (4.7.7) and obtain

P

(∥∥∥∥∥ d1

∑
i=1

Zi

∥∥∥∥∥≥ t

)
≤ nexp

(
− t2

16d1C4
1 +4C2

1t

)
.

Hence, L defined in (4.7.5) has a probability bound:

P(∥L∥ ≥ t) = P

(
1
d1

∥∥∥∥∥ d1

∑
i=1

Zi

∥∥∥∥∥≥ t

)
≤ nexp

(
− t2d1

16C4
1 +4C2

1t

)
.

Take t = 10C2
1

√
logn/d1. Under the assumption that d1 ≥ logn, we conclude that, with high
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probability at least 1−n−7/3,

∥L∥ ≤ 10C2
1

√
logn
d1

. (4.7.8)

Thus, as a corollary, the two statements in Lemma 86 follow from (4.7.8). Meanwhile, since

∥H −EH∥ ≤
∥∥∥∥ 1

d1
Y⊤Y −Φ

∥∥∥∥+∥L∥,

the bound in (4.3.13) follows from Theorem 66 and (4.7.8).

We now proceed to provide a lower bound of λmin(H) from Theorem 68.

Proof of Theorem 69. Note that from (4.2.4), (4.3.6) and (4.7.5), we have

λmin(H)≥ 1
d1

λmin((S⊤S)⊙ (X⊤X))

≥ 1
d1

λmin((ES⊤S)⊙ (X⊤X))−∥L∥= λmin(Ψ)−∥L∥.

Then with Lemma 87, we can get

λmin(H)≥ λmin(Ψ0)−Cε
4
n n−∥L∥ ≥

(
aσ −

2

∑
k=0

η
2
k (σ)

)
−Cε

4
n n−∥L∥.

Therefore, from Theorem 68, with probability at least 1−n−7/3,

λmin(H)≥ aσ −
2

∑
k=0

η
2
k (σ)−Cε

4
n n−10λ

4
σ∥X∥4

√
logn
d1

≥ aσ −
2

∑
k=0

η
2
k (σ)−Cε

4
n n−10λ

4
σ B4

√
logn
d1

.

Since σ is Lipschitz and non-linear, we know σ ′(x) is not a linear function (including the

constant function) and |σ ′(x)| is bounded. Suppose that σ ′(x) has finite many non-zero Hermite
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coefficients, σ(x) is a polynomial, then we get a contradiction. Hence, the Hermite coefficients

of σ ′ satisfy

sup{k ∈ N : η
2
k (σ)> 0}= ∞ and aσ −

2

∑
k=0

η
2
k (σ) =

∞

∑
k=3

η
2
k (σ)> 0. (4.7.9)

This finishes the proof.

4.8 Proofs of Theorem 70 and Theorem 72

By definitions, the random matrix Kn(X ,X) is 1
d1

Y⊤Y and the kernel matrix K(X ,X) = Φ

is defined in (4.1.2). These two matrices have already been analyzed in Theorem 66 and Theorem

67, so we will apply these results to estimate how great the difference between training errors of

random feature regression and its corresponding kernel regression.

Proof of Theorem 70. Denote Kλ := (K +λ Id). From the definitions of training errors in

(4.3.20) and (4.3.21), we have

∣∣∣E(RF,λ )
train −E(K,λ )

train

∣∣∣= 1
n

∣∣∣∥ f̂ (RF)
λ

(X)− y∥2 −∥ f̂ (K)
λ

(X)− y∥2
∣∣∣

=
λ 2

n

∣∣∣Tr[(K(X ,X)+λ Id)−2yy⊤]−Tr[(Kn(X ,X)+λ Id)−2yy⊤]
∣∣∣

=
λ 2

n

∣∣∣y⊤[(K(X ,X)+λ Id)−2 − (Kn(X ,X)+λ Id)−2]y∣∣∣
≤ λ 2

n
∥(K(X ,X)+λ Id)−2 − (Kn(X ,X)+λ Id)−2∥ · ∥y∥2

≤ λ 2∥y∥2

nλ 2
min(K(X ,X))λ 2

min(Kn(X ,X))
∥(K2

λ
− (Kn(X ,X)+λ Id)2∥. (4.8.1)

Here, in (4.8.1), we employ the identity (2.4.3) in Chapter 2 for A = (K(X ,X)+λ Id)−2 and

B = (Kn(X ,X)+λ Id)−2, and the fact that

∥(K(X ,X)+λ Id)−1∥ ≤ λ
−1
min(K(X ,X))
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and (Kn(X ,X)+λ Id)−1∥ ≤ λ
−1
min(Kn(X ,X)). Next, before providing uniform upper bounds for

λ
−2
min(K(X ,X)) and λ

−2
min(Kn(X ,X)) in (4.8.1), we can first get a bound for the last term of (4.8.1)

as follows:

∥(K(X ,X)+λ Id)2 − (Kn(X ,X)+λ Id)2∥

= ∥K2(X ,X)−K2
n (X ,X)+2λ (K(X ,X)−Kn(X ,X))∥

≤ ∥K2(X ,X)−K2
n (X ,X)∥+2λ∥(K(X ,X)−Kn(X ,X))∥

≤
(
∥Kn(X ,X)−K(X ,X)∥+2∥K(X ,X)∥+2λ

)
· ∥K(X ,X)−Kn(X ,X)∥

≤ C
(√

n
d1

+C
)√

n
d1

. (4.8.2)

for some constant C > 0, with probability at least 1−4e−2n, where the last bound in (4.8.2) is

due to Theorem 66 and Lemma 101 in Appendix 4.9. Additionally, combining Theorem 66 and

Theorem 67, we can easily get

∥(Kn(X ,X)+λ Id)−1∥ ≤ λ
−1
min(Kn(X ,X))≤C (4.8.3)

for all large n and some universal constant C, under the same event that (4.8.2) holds. Theorem 90

also shows λ
−1
min(K(X ,X))≤C for all large n. Hence, with the upper bounds for λ

−2
min(K(X ,X))

and λ
−2
min(Kn(X ,X)), (4.3.22) follows from the bounds of (4.8.1) and (4.8.2).

For ease of notation, we denote K := K(X ,X) and Kn := Kn(X ,X). Hence, from (4.3.24),

we can further decompose the test errors for K and Kn into

L ( f̂ (K)
λ

) = Ex[| f ∗(x)|2]

+Tr
[
(K +λ Id)−1yy⊤(K +λ Id)−1Ex[K(x,X)⊤K(x,X)]

]
(4.8.4)

−2Tr
[
(K +λ Id)−1yEx[ f ∗(x)K(x,X)]

]
,
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and

L ( f̂ (RF)
λ

) = Ex[| f ∗(x)|2]

+Tr
[
(Kn +λ Id)−1yy⊤(Kn +λ Id)−1Ex[Kn(x,X)⊤Kn(x,X)]

]
(4.8.5)

−2Tr
[
(Kn +λ Id)−1yEx[ f ∗(x)Kn(x,X)]

]
.

Let us denote

E1 :=Tr
[
(Kn +λ Id)−1yy⊤(Kn +λ Id)−1Ex[Kn(x,X)⊤Kn(x,X)]

]
,

Ē1 :=Tr
[
(K +λ Id)−1yy⊤(K +λ Id)−1Ex[K(x,X)⊤K(x,X)]

]
,

E2 :=Tr
[
(Kn +λ Id)−1yβββ

∗⊤Ex[xKn(x,X)]
]
,

Ē2 :=Tr
[
(K +λ Id)−1yβββ

∗⊤Ex[xK(x,X)]
]
.

As we can see, to compare the test errors between random feature and kernel regression models,

we need to control |E1 − Ē1| and |E2 − Ē2|. Firstly, it is necessary to study the concentrations of

Ex[K(x,X)⊤K(x,X)−Kn(x,X)⊤Kn(x,X)]

and

Ex[ f ∗(x)(K(x,X)−Kn(x,X))].

Lemma 92. Under Assumption 9 for σ and Assumption 12 for x and X, with probability at least

1−4e−2n, we have

∥Kn(x,X)−K(x,X)∥ ≤C
√

n
d1

, (4.8.6)

where C > 0 is a universal constant. Here, we only consider the randomness of the weight matrix

in Kn(x,X) defined by (4.3.17) and (4.3.18).
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Proof. We consider X̃ = [x1, . . . ,xn,x], its corresponding kernels Kn(X̃ , X̃) and K(X̃ , X̃) ∈

R(n+1)×(n+1). Under Assumption 12, we can directly apply Theorem 66 to get the concentration

of Kn(X̃ , X̃) around K(X̃ , X̃), namely,

∥∥Kn(X̃ , X̃)−K(X̃ , X̃)
∥∥≤C

√
n
d1

, (4.8.7)

with probability at least 1− 4e−2n. Meanwhile, we can write Kn(X̃ , X̃) and K(X̃ , X̃) as block

matrices:

Kn(X̃ , X̃) =

Kn(X ,X) Kn(X ,x)

Kn(x,X) Kn(x,x)

 and K(X̃ , X̃) =

K(X ,X) K(X ,x)

K(x,X) K(x,x)

.

Since the ℓ2-norm of any row is bounded above by the spectral norm of its entire matrix, we

complete the proof of (4.8.6).

Lemma 93. Assume that training labels satisfy Assumption 11 and ∥X∥ ≤ B, then for any

deterministic A ∈ Rn×n, we have

Var
(

y⊤Ay
)
,Var

(
βββ
∗⊤Ay

)
≤ c∥A∥2

F ,

where constant c only depends on σβββ , σε and B. Moreover,

E[y⊤Ay] = σ
2
βββ

TrAX⊤X +σ
2
ε TrA, E[βββ ∗⊤Ay] = σ

2
βββ

TrAX⊤.

Proof. We follow the idea in Lemma C.8 of [MM22] to investigate the variance of the quadratic

form for the Gaussian random vector by

Var(g⊤Ag) = ∥A∥2
F +Tr(A2)≤ 2∥A∥2

F , (4.8.8)
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for any deterministic square matrix A and standard normal random vector g. Notice that the

quadratic form

y⊤Ay = g⊤

σ2
βββ

XAX⊤ σεσβββ XA

σεσβββ AX⊤ σ2
ε A

g, (4.8.9)

where g is a standard Gaussian random vector in Rd0+n. Similarly, the second quadratic form

can be written as

βββ
∗⊤Ay = g⊤

σ2
βββ

AX⊤ σεσβββ A

0 0

g.

Let

Ã1 :=

σ2
βββ

XAX⊤ σεσβββ XA

σεσβββ AX⊤ σ2
ε A

, Ã2 :=

σ2
βββ

AX⊤ σεσβββ A

0 0

.

By (4.8.8), we know Var
(
y⊤Ay

)
≤ 2∥Ã1∥2

F and Var
(
βββ ∗⊤Ay

)
≤ 2∥Ã2∥2

F . Since

∥Ã1∥2
F = σ

4
βββ
∥XAX⊤∥2

F +σ
2
ε σ

2
βββ
∥XA∥2

F +σ
2
ε σ

2
βββ
∥AX⊤∥2

F +σ
4
ε ∥A∥2

F ≤ c∥A∥2
F

and similarly ∥Ã2∥F ≤ c∥A∥2
F for a constant c, we can complete the proof.

As a remark, in Lemma 93, for simplicity, we only provide a variance control for the quadratic

forms to obtain convergence in probability in the following proofs of Theorems 71 and 72.

However, we can apply Hanson-Wright inequalities in Section 4.4 to get more precise probability

bounds and consider non-Gaussian distributions for βββ ∗ and ε .

Proof of Theorem 71. Based on the preceding expansions of L ( f̂ (RF)
λ

(x)) and L ( f̂ (K)
λ

(x)) in

(4.8.4) and (4.8.5), we need to control the right-hand side of

∣∣∣L ( f̂ (RF)
λ

(x))−L ( f̂ (K)
λ

(x))
∣∣∣≤ |E1 − Ē1|+2|Ē2 −E2|.

In the subsequent procedure, we first take the concentrations of E1 and E2 with respect to normal

random vectors βββ ∗ and ε , respectively. Then, we apply Theorem 66 and Lemma 92 to complete
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the proof of (4.3.25). For simplicity, we start with the second term

|Ē2 −E2| ≤
∣∣∣βββ ∗⊤Ex[x(Kn(x,X)−K(x,X))](Kn +λ Id)−1y

∣∣∣
+
∣∣∣βββ ∗⊤Ex[xK(x,X)]

(
(Kn +λ Id)−1 − (K +λ Id)−1)y∣∣∣

≤ |I1 − Ī1|+ |I2 − Ī2|+ |Ī1|+ |Ī2|, (4.8.10)

where I1 and I2 are quadratic forms defined below

I1 := βββ
∗⊤Ex[x(Kn(x,X)−K(x,X))](Kn +λ Id)−1y,

I2 := βββ
∗⊤Ex[xK(x,X)]

(
(Kn +λ Id)−1 − (K +λ Id)−1)y,

and their expectations with respect to random vectors βββ ∗ and ε are denoted by

Ī1 := Eε,βββ ∗ [I1] = σ
2
βββ

Tr
(
Ex[x(Kn(x,X)−K(x,X))](Kn +λ Id)−1X⊤

)
,

Ī2 := Eε,βββ ∗[I2] = σ
2
βββ

Tr
((

(Kn +λ Id)−1 − (K +λ Id)−1)X⊤Ex[xK(x,X)]
)
.

We first consider the randomness of the weight matrix in Kn and define the event E where

both (4.8.3) and (4.8.7) hold. Then, Theorem 67 and the proof of Lemma 92 indicate that event

E occurs with probability at least 1−4e−2n for all large n. Notice that E does not rely on the

randomness of test data x.

We now consider A = Ex[x(Kn(x,X)−K(x,X))](Kn +λ Id)−1 in Lemma 93. Condition-

ing on event E , we have

∥A∥2
F ≤ Ex

[∥∥∥x(Kn(x,X)−K(x,X))⊤
∥∥∥2

F

]
·
∥∥∥(Kn +λ Id)−1X⊤

∥∥∥2

≤ ∥X∥2∥∥(Kn +λ Id)−1∥∥2 ·Ex
[
∥x∥2∥Kn(x,X)−K(x,X)∥2]≤C

n
d1

, (4.8.11)

for some constant C, where we utilize the assumption E[∥x∥2] = 1. Hence, based on Lemma 93,
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we know Varε,βββ ∗(I1)≤ cn/d1, for some constant c. By Chebyshev’s inequality and event E ,

P
(
|I1 − Ī1| ≥ (n/d1)

1−ε

2

)
≤ c
(

n
d1

)ε

+4e−2n, (4.8.12)

for any ε ∈ (0,1/2). Hence, (d1/n)
1
2−ε · |I1− Ī1|= o(1) with probability 1−o(1), when n/d1 → 0

and n → ∞.

Likewise, when A = Ex[xK(x,X)]
(
(Kn +λ Id)−1 − (K +λ Id)−1), we can apply (2.4.3)

and

∥K(x,X)∥ ≤ ∥K(X̃ , X̃)∥ ≤Cλ
2
σ B2, (4.8.13)

due to Lemma 101 in Appendix 4.9, to obtain ∥A∥2
F ≤Cn/d1 conditionally on event E . Then,

similarly, Lemma 93 shows Varε,βββ ∗(I2)≤ cn/d1. Therefore, (4.8.12) also holds for |I2 − Ī2|.

Moreover, conditioning on the event E ,

|Ī1|= σ
2
βββ

∣∣∣Ex

[
(Kn(x,X)−K(x,X))(Kn +λ Id)−1X⊤x

]∣∣∣
≤ σ

2
βββ
Ex
[
∥x∥ · ∥Kn(x,X)−K(x,X)∥ · ∥X∥ ·

∥∥(Kn +λ Id)−1∥∥],
≤ σ

2
βββ
Ex
[
∥x∥2] 1

2Ex

[
∥Kn(x,X)−K(x,X)∥2

] 1
2∥X∥

∥∥(Kn +λ Id)−1∥∥≤C
√

n
d1

, (4.8.14)

for some constant C. In the same way, with (4.8.13), |Ī2| ≤C
√

n
d1

on the event E . Therefore, from

(4.8.10), we can conclude |Ē2 −E2| = o
(
(n/d1)

1/2−ε
)

for any ε ∈ (0,1/2), with probability

1−o(1), when n/d1 → 0 and n → ∞.

Analogously, the first term |Ē1 −E1| is controlled by the following four quadratic forms

|Ē1 −E1| ≤
4

∑
i=1

∣∣∣y⊤Aiy
∣∣∣,
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where we define by Ji := y⊤Aiy for 1 ≤ i ≤ 4 and

A1 := (Kn +λ Id)−1Ex[Kn(x,X)⊤(Kn(x,X)−K(x,X))](Kn +λ Id)−1,

A2 := (Kn +λ Id)−1Ex[(Kn(x,X)−K(x,X))⊤K(x,X)](Kn +λ Id)−1,

A3 :=
(
(Kn +λ Id)−1 − (K +λ Id)−1)Ex[K(x,X)⊤K(x,X)](Kn +λ Id)−1,

A4 := (K +λ Id)−1Ex[K(x,X)⊤K(x,X)]
(
(Kn +λ Id)−1 − (K +λ Id)−1).

Similarly with (4.8.11) and (4.8.14), it is not hard to verify ∥Ai∥F ≤C
√

n/d1 and |Eε,βββ ∗[Ji]| ≤

C
√

n/d1 conditioning on the event E . Then, like (4.8.12), we can invoke Lemma 93 for each

Ai to apply Chebyshev’s inequality and conclude |Ē1 −E1|= o
(
(n/d1)

1/2−ε
)

with probability

1−o(1) when d1/n → ∞, for any ε ∈ (0,1/2).

Lemma 94. With Assumptions 9 and 12, for (εn,B)-orthonormal X, we have that

∥∥∥∥Ex[K(x,X)⊤K(x,X)]− b4
σ

d0
X⊤X

∥∥∥∥≤ ∥∥∥∥Ex[K(x,X)⊤K(x,X)]− b4
σ

d0
X⊤X

∥∥∥∥
F

≤ C
√

nε
2
n , (4.8.15)∥∥∥∥Ex[xK(x,X)]− b2

σ

d0
X
∥∥∥∥≤ ∥∥∥∥Ex[xK(x,X)]− b2

σ

d0
X
∥∥∥∥

F
≤C

√
nε

2
n , (4.8.16)

for some constant C > 0.

Proof. By Lemma 100, we have an entrywise approximation

|K(x,xi)−b2
σ x⊤xi| ≤Cλσ ε

2
n ,

for any 1 ≤ i ≤ n. Hence, ∥K(x,X)−b2
σ x⊤X∥ ≤Cλσ

√
nε2

n . Assumption 12 of x implies that
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b4
σ

d0
X⊤X = b4

σEx[X⊤xx⊤X ]. Then, we can verify (4.8.15) based on the following approximation

∥∥∥∥Ex[K(x,X)⊤K(x,X)]− b4
σ

d0
X⊤X

∥∥∥∥
F
≤ Ex

[∥∥∥K(x,X)⊤K(x,X)−b4
σ X⊤xx⊤X

∥∥∥
F

]
≤ Ex

[∥∥∥K(x,X)⊤
(

K(x,X)−b2
σ x⊤X

)∥∥∥
F
+b2

σ

∥∥∥(K(x,X)⊤−b2
σ X⊤x

)
x⊤X

∥∥∥
F

]
≤ Ex

[
∥K(x,X)−b2

σ x⊤X∥
(
∥K(x,X)∥+∥b2

σ x⊤X∥
)]

≤C
√

nε
2
n ,

for some universal constant C. The same argument can also be employed to prove (4.8.16), so

details will be omitted here.

Proof of Theorem 72. From (4.3.22) and (4.3.25), we can easily conclude that

E(RF,λ )
train −E(K,λ )

train
P→ 0, (4.8.17)

L ( f̂ (RF)
λ

(x))−L ( f̂ (K)
λ

(x)) P→ 0, (4.8.18)

as n → ∞ and n/d1 → 0. Therefore, to study the training error E(RF,λ )
train and the test error

L ( f̂ (RF)
λ

(x)) of random feature regression, it suffices to analyze the asymptotic behaviors of

E(K,λ )
train and L ( f̂ (K)

λ
(x)) for the kernel regression, respectively. In the rest of the proof, we will

first analyze the test error L ( f̂ (K)
λ

(x)) and then compute the training error E(K,λ )
train under the

ultra-wide regime.

Recall that Kλ = (K +λ Id) and the test error is given by

L ( f̂ (K)
λ

) =
1
d0

∥βββ
∗∥2 +L1 −2L2, (4.8.19)

where L1 := y⊤K−1
λ

Ex[K(x,X)⊤K(x,X)]K−1
λ

y, L2 :=βββ ∗⊤Ex[xK(x,X)]K−1
λ

y. The spectral norm

of Kλ is bounded from above and the smallest eigenvalue is bounded from below by some

positive constants.
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We first focus on the last two terms L1 and L2 in the test error. Let us define

L̃1 :=
b4

σ

d0
y⊤K−1

λ
X⊤XK−1

λ
y and L̃2 :=

b2
σ

d0
βββ
∗⊤XK−1

λ
y.

Then, we obtain two quadratic forms

L1 − L̃1 = y⊤K−1
λ

(
Ex[K(x,X)⊤K(x,X)]− b4

σ

d0
X⊤X

)
K−1

λ
y =: y⊤A1y,

L2 − L̃2 = βββ
∗⊤
(
Ex[xK(x,X)]− b2

σ

d0
X
)

K−1
λ

y =: βββ
∗⊤A2y,

where ∥A1∥F and ∥A2∥F are at most C
√

nε2
n for some constant C > 0, due to Lemma 94. Hence,

applying Lemma 93 for these two quadratic forms, we have Var(Li − L̃i)≤ cnε4
n → 0 as n → ∞.

Additionally, Lemma 93 and the proof of Lemma 94 verify that E[y⊤A1y] and E[βββ ∗⊤A2y] are

vanishing as n → ∞. Therefore, Li − L̃i converges to zero in probability for i = 1,2. So we can

move to analyze L̃1 and L̃2 instead. Copying the above procedure, we can separately compute

the variances of L̃1 and L̃2 with respect to βββ ∗ and ε , and then apply Lemma 93. Then, |L̃1 − L̄1|

and |L̃2 − L̄2| will converge to zero in probability as n,d0 → ∞, where

L̄1 := Eε,βββ ∗ [L̃1] =
b4

σ σ2
βββ

n

d0
trK−1

λ
X⊤XK−1

λ
X⊤X +

b4
σ σ2

ε n
d0

trK−1
λ

X⊤XK−1
λ

,

L̄2 := Eε,βββ ∗ [L̃2] =
b2

σ σ2
βββ

n

d0
trK−1

λ
X⊤X .

To obtain the last approximation, we define K̄(X ,X) := b2
σ X⊤X +(1−b2

σ ) Id and

K̄λ := b2
σ X⊤X +(1+λ −b2

σ ) Id . (4.8.20)

We aim to replace Kλ by K̄λ in L̄1 and L̄2. Recalling the identity (2.4.3), we have

K−1
λ

− K̄−1
λ

= K̄−1
λ

(K(X ,X)− K̄(X ,X))K−1
λ

.
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Since σ is not a linear function, 1−b2
σ > 0. Then, with (4.8.3), the proof of Lemma 85 indicates

∥∥K−1
λ

− K̄−1
λ

∥∥
F ≤C

√
n2ε4

n +nε2
n , (4.8.21)

where we apply the fact that λmin(K̄(X ,X))≥ 1−b2
σ > 0. Let us denote

L0
1 :=

b4
σ σ2

βββ
n

d0
tr K̄−1

λ
X⊤XK̄−1

λ
X⊤X +

b4
σ σ2

ε n
d0

tr K̄−1
λ

X⊤XK̄−1
λ

, (4.8.22)

L0
2 :=

b2
σ σ2

βββ
n

d0
tr K̄−1

λ
X⊤X . (4.8.23)

Notice that for any matrices A,B ∈ Rn×n, ∥AB∥F ≤ ∥A∥∥B∥F , |Tr(AB)| ≤ ∥A∥F∥B∥F . Then,

with the help of (4.8.21) and uniform bounds of the spectral norms of X⊤X , K−1
λ

and K̄−1
λ

, we

obtain that

|L̄1 −L0
1|

≤
b4

σ σ2
βββ

d0

∣∣∣TrK−1
λ

X⊤X(K−1
λ

− K̄−1
λ

)X⊤X
∣∣∣+ b4

σ σ2
βββ

d0

∣∣∣Tr(K−1
λ

− K̄−1
λ

)X⊤XK̄−1
λ

X⊤X
∣∣∣

+
b4

σ σ2
ε

d0

∣∣∣Tr(K−1
λ

− K̄−1
λ

)X⊤XK̄−1
λ

∣∣∣+ b4
σ σ2

ε

d0

∣∣∣TrK−1
λ

X⊤X(K−1
λ

− K̄−1
λ

)
∣∣∣

≤ C
√

n
d0

∥∥K−1
λ

− K̄−1
λ

∥∥
F ≤C

n
d0

√
nε4

n + ε2
n → 0,

as n → ∞, n/d0 → γ and nε4
n → 0. Combining all the approximations, we conclude that Li and

L0
i have identical limits in probability for i = 1,2. On the other hand, based on the assumption of

X and definitions in (4.8.20), (4.8.22) and (4.8.23), it is not hard to check that

lim
n→∞

L0
1 = b4

σ σ
2
βββ

γ

∫
R

x2

(b2
σ x+1+λ −b2

σ )
2 dµ0(x)+b4

σ σ
2
ε γ

∫
R

x
(b2

σ x+1+λ −b2
σ )

2 dµ0(x),

lim
n→∞

L0
2 = b2

σ σ
2
βββ

γ

∫
R

x
b2

σ x+1+λ −b2
σ

dµ0(x).

Therefore, L1 and L2 converge in probability to the above limits, respectively, as n → ∞. In the
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end, we apply the concentration of the quadratic form βββ ∗⊤βββ ∗ in (4.8.19) to get 1
d0
∥βββ ∗∥2 P−→ σ2

βββ
.

Then, by (4.8.18), we can get the limit in (4.3.28) for the test error L ( f̂ (RF)
λ

). As a byproduct,

we can even use L0
1 and L0

2 to form an n-dependent deterministic equivalent of L ( f̂ (RF)
λ

) as well.

Thanks to Lemma 93, the training error, E(K,λ )
train = λ 2

n y⊤K−2
λ

y, analogously, concentrates

around its expectation with respect to βββ ∗ and ε , which is σ2
βββ

λ 2 trK−2
λ

X⊤X +σ2
ε λ 2 trK−2

λ
. More-

over, because of (4.8.21), we can further substitute K−2
λ

by K̄−2
λ

defined in (4.8.20). Hence, we

know that, asymptotically,

∣∣∣E(K,λ )
train −σ

2
βββ

λ
2 tr K̄−2

λ
X⊤X −σ

2
ε λ

2 tr K̄−2
λ

∣∣∣ P−→ 0,

where as n,d0 → ∞,

lim
n→∞

σ
2
βββ

λ
2 tr K̄−2

λ
X⊤X = σ

2
βββ

λ
2
∫
R

x
(b2

σ x+1+λ −b2
σ )

2 dµ0(x), (4.8.24)

lim
n→∞

σ
2
ε λ

2 tr K̄−2
λ

= σ
2
ε λ

2
∫
R

1
(b2

σ x+1+λ −b2
σ )

2 dµ0(x). (4.8.25)

The last two limits are due to µ0 = lim specX⊤X as n,d0 → ∞. Therefore, by (4.8.17), we obtain

our final result (4.3.27) in Theorem 72.

4.9 Auxiliary Lemmas

Lemma 95 (Equation (3.7.9) in [Joh90]). Let A,B be two n×n matrices, A be positive semidefi-

nite, and A⊙B be the Hadamard product between A and B. Then,

∥A⊙B∥ ≤ max
i, j

|Ai j| · ∥B∥. (4.9.1)

Lemma 96 (Sherman–Morrison formula, [Bar51]). Suppose A ∈ Rn×n is an invertible square
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matrix and u,v ∈ Rn are column vectors. Then

(A+uv⊤)−1 = A−1 − A−1uv⊤A−1

1+v⊤A−1u
. (4.9.2)

Lemma 97 (Theorem A.45 in [BS10]). Let A,B be two n×n Hermitian matrices. Then A and B

have the same limiting spectral distribution if ∥A−B∥→ 0 as n → ∞.

Lemma 98 (Theorem B.11 in [BS10]). Let z = x + iv ∈ C,v > 0 and s(z) be the Stieltjes

transform of a probability measure. Then |Res(z)| ≤ v−1/2
√

Ims(z).

Lemma 99 (Lemma D.2 in [NM20]). Let x,y ∈ Rd such that ∥x∥= ∥y∥= 1 and www ∼ N (0, Id).

Let h j be the j-th normalized Hermite polynomial given in Definition 63. Then

Ewww[h j(⟨www,x⟩)hk(⟨www,y⟩)] = δ jk⟨x,y⟩k.

Lemma 100. Recall the definition of Φ in (4.1.2). Under Assumption 9, if X is (ε,B)-orthonormal

with sufficiently small ε , then for a universal constant C > 0 and any α ̸= β ∈ [n], we have

|Φαβ −b2
σ x⊤α xβ | ≤ Cε

2,

|Ewww[σ(www⊤xα)]| ≤ Cε.

Proof. When σ is twice differentiable in Assumption 9, this result follows from Lemma 16.

When σ is a piece-wise linear function defined in case 2 of Assumption 9, the second inequality

follows from (4.6.7) with t = ∥xα∥. For the first inequality, the Hermite expansion of Φαβ

is given by (4.6.3) with coefficients ζk(σα) = E[σ(∥xα∥ξ )hk(ξ )] for k ∈ N. Observe that the

piece-wise linear function in case 2 of Assumption 9 satisfies

ζk(σα) = ∥xα∥ζk(σ), for k ≥ 1,

ζ0(σα) = b(1−∥xα∥),
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because of condition (4.2.6) for σ . Recall uα = xα/∥xα∥ and ζ1(σ) = bσ . Then, analogously

to the derivation of (4.6.10), there exists some constant C > 0 such that

|Φαβ −b2
σ x⊤α xβ |=

∣∣∣∣∣∑k ̸=1
ζk(σα)ζk(σβ )(u⊤

α uβ )
k

∣∣∣∣∣
≤ b2(1−∥xα∥)(1−∥xβ∥)+

|x⊤α xβ |2

∥xα∥∥xβ∥
∥σ∥2

L2 ≤Cε
2,

for ε ∈ (0,1) and (ε,B)-orthonormal X . This completes the proof of this lemma.

With the above lemma, the proof of Lemma 17 directly yields the following lemma.

Lemma 101. Under the same assumptions as Lemma 100, there exists a constant C > 0 such

that ∥K(X ,X)∥ ≤CB2. Additionally, with Assumption 12, we have ∥K(X̃ , X̃)∥ ≤CB2.
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Chapter 5

Spectral Analysis in Trained Neural Net-
works

In many theoretical results, the conjugate kernel (CK) and the neural tangent kernel

(NTK) remain fixed throughout training, which leads to a kernel gradient descent with the initial

kernel [JGH18, BM19], whereas in practice the spectra of the weight matrix, CK, and NTK of

the NN change tremendously while learning the features from the training data [MM19, MM21,

FW20, CHS20, OJMDF21]. In this Chapter, under the linear-width regime, we experimentally

and theoretically explore the following question:

How do the spectra of weight and kernel matrices of the NN evolve during the training process?

This question is crucial to extend our understanding beyond the kernel regime. It will help us

analyze the generalization of the NN in instances when it performs better than the kernel machine.

For this case, the spectral properties of the trained NN could be entirely different from the initial

kernel [Lon21, BGL+21, SB21]. Also, various spectral properties of weight and kernel matrices

can reveal different features learned by different training procedures [WHS22]. Understanding

the dynamics of the spectral properties may aid in finding better approaches to training and

tuning hyper-parameters for NNs. From a theoretical perspective, random matrix theory (RMT)

can be further exploited to study and elucidate the NN training under the proportional limit in

high dimensions [LCKS91, PB17, LLC18, PW18, HN20, MM22].
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5.1 Related Work

Global convergence of GD for ultra wide NNs.

A recent line of work has shown the global convergences of the learning dynamics

of gradient-based methods in a certain overparameterized regime, e.g. [DZPS19b, DLL+19a,

OFLS19, OS19, Ngu21, LZB22, PC22, Cha22]. We refer to Table 1 of [PC22] as a summary of

these recent results. Most of the theorems in the literature require h ≫ n, which implies that

the NTK is almost static during training, while [OS19, Ngu21] can consider LWR under some

specific assumptions. Recently, [Cha22] established a new criterion for the convergence of GD

which results in the global convergence of general NNs with finite width h and d ≥ n.

Beyond NTK regime.

Under the proportional limit, the initial kernel regression can only learn a linear com-

ponent of the target [GMMM21]. Thus, it is reasonable to consider the cases beyond the NTK

regime. To this end, [DGA20, HY20] considered the dynamics of NTK throughout training

while [AZLL19, BL20] have shown a second-order approximation of NTK, outperforming the

initial kernel. In addition, there are many theoretical works analyzing when a NN outperforms

the initial kernels in some specific settings: [LMZ20] proved a two-layer ReLU NN that is shown

to beat any kernel method; [KWLS21] verified a two-layer CNN with some simple dataset

can outperform the initial NTK for image classifications; [BES+22] showed a NN can escape

the kernel regime by only taking one specific large gradient step; [DLS22] showed a specific

gradient-based training can even learn polynomials with low-dimensional latent representation.

Evolution of NTK and alignment in NNs.

The feature learning can be characterized by the evolution of the kernel during training

[FDP+20, OJMDF21, Lon21, ABP22, LHAR22]. Specifically, [Lon21] studied the hard-margin

SVM for “after kernels” which are the CK and NTK matrices of trained NNs. One of the

effective ways of depicting how the kernels evolve during training is to capture the evolution of

kernel alignment [BGL+21, SB21, ABP22, LHAR22]. Kernel alignments between kernels and
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training labels essentially reveal how the NN accelerates training [SB21]. Also, several papers

showed that the top eigenfunctions of the kernel align with the target function learned by the

NN [KI20, OJMMF20, OJMDF21]. This becomes an efficient way of analyzing how NNs learn

features through a particular gradient-based optimization.

Large learning rate regime.

As mentioned earlier, the large learning rate may contribute to feature learning. The

benefits of large-learning-rate training have been studied from different aspects [LWM19, Nak20,

BMR22, AVPVF23]. Specifically, [LM20] observed that training dynamics with large learning

rates differ from the small learning rate regime, where the latter regime exhibits monotone and

fast convergence of training loss but may not generalize well on test data. At the early phase of

training, [JSF+20] showed using lower learning rates may result in finding a region of the loss

surface with worse conditioning of kernel and Hessian matrices. In [Lon21], the after kernels of

NNs trained with larger learning rates generalize better and stay more stable. [LBD+20] raised a

“catapult mechanism”, where gradient descent dynamics converge to flatter minima for extremely

large learning rates. There is a transition as a function of the learning rate, from lazy training to

the catapult regime. Section 5.2.2 illustrates a similar transition in our situations.

Heavy-tailed phenomenon.

The heavy-tailed phenomenon has appeared in many places in deep learning theory.

[MM19] and [MM21] observed that many state-of-the-art pre-trained models obtain heavy-tailed

weight spectra. More precisely, these spectra have a “5+1” phase transition which relates to

different degrees of regularization of the NN. With this heavy-tailed self-regularization the-

ory, [MPM21] further showed how to distinguish well-trained and poorly trained models by

a power-law-based approximation. [MY23] classified trained weight spectra into three types:

Marčenko–Pastur law, bulk with (few) outliers, and heavy-tailed spectra. We extend this classifi-

cation to both weight and kernel matrices in Figure 5.1. Additionally, similarly to the discussion

in 5.2.3, [MY23] showed that the difficulty of the classification problem is related to the emer-
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gence of heavy-tailed spectra in weight matrices. This heavy-tailed phenomenon can be used

to construct metrics for evaluating the generalization of NNs [MPM21, YTH+22], and early

stopping of NNs to avoid over-fitting [MY23].

5.2 Empirical Study for the Spectra in Trained NNs

In this section, we empirically investigate a two-layer NN with synthetic data. This

setting is promising for future theoretical studies by virtue of RMT. We will showcase the

evolution of its spectral properties through the training process of a two-layer NN in (1.1.1) with

L = 2 defined by

fθθθ (xxx) :=
1√
h

h

∑
i=1

viσ(www⊤
i xxx/

√
d). (5.2.1)

At initialization, we assume that the first hidden-layer WWW = [www1, . . . ,wwwh]
⊤ ∈ Rh×d is composed

of independent standard normal random vectors and all entries of vvv := [v1, . . . ,vh]
⊤ ∈ Rh are

independently distributed either by N (0,1) or by Unif(−1,1). We consider the dataset size n to

be proportional to width h and feature dimension d, i.e. linear-width regime (LWR).

Assumption 13 (Synthetic dataset and teacher model). Training data is XXX := [xxx1, . . . ,xxxn] ∈

Rd×n, where xxxi
i.i.d.∼ N (0, IIId). The training labels yyy = [y1, . . . ,yn] are defined by yi = f ∗(xxxi)+

εi, for i ∈ [n], where f ∗ : Rd → R is the teacher model, and εi is centered sub-Gaussian noise

with variance σ2
ε .

One of the simplest nonlinear teacher models we can generate is the single-index model,

namely f ∗(xxx) = σ∗(xxx⊤βββ ) for a fixed vector βββ with ∥βββ∥ = 1 and nonlinear function σ∗; the

hidden feature is simply βββ ∈ Rd . In general, we can consider a multiple-index model

f ∗(xxx) =
1
k

k

∑
i=1

σ
∗(xxx⊤βββ i) (5.2.2)

where βββ i are some orthogonal unit vectors. We will specifically consider a mixture of single-
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Table 5.1. Four models with the same architecture (n = 2000, h = 1500, d = 1000, and σ is normalized
tanh), but different choices of initial learning rates and optimization tools. The last column summarizes
the spectral behavior of weight and kernel matrices after training.

Optimization Learning rate η R2 score Test error Spectra

Case 1 GD 5.0 0.63582 0.36381 Invariant Bulk
Case 2 SGD 0.1 0.60605 0.36879 Invariant Bulk
Case 3 SGD 22.0 0.76081 0.23791 Bulk+spike
Case 4 Adam 0.092 0.78829 0.21071 Heavy tail

Lazy regime 0.68092 0.3185

index and quadratic models as our teacher model in this section:

f ∗(xxx) = σ
∗(xxx⊤βββ )+

τ

d
∥xxx∥2, (5.2.3)

for some nonlinear target σ∗, signal βββ and constant τ . Here, the norm term of xxx in (5.2.3)

is designed to make the teacher model more complicated to be learned. All our empirical

results still hold when τ = 0. The advantage of this toy model is that we can easily extract the

spectral behaviors over training and then compare them with the kernel machine. We use lazy

training defined in (1.1.9) as our benchmark to assist us in determining whether a neural network

outperforms the associated kernel machine (Table 5.1).

Following the above assumptions and constructions, we show different spectral properties

(Figure 5.1) for this two-layer NN using different training procedures (Table 5.1). Figure 5.1

exhibits three types of spectra after training: unchanged bulk distribution, bulk with one spike,

and heavy tail in spectra. Putting things together, Table 5.1 exhibits close relationships between

the spectra and the generalization of the NN. These different spectral properties actually reveal

disparate features learned via different training strategies.

Table 5.1 compares the test errors and R2 scores for different optimization cases and

the lazy training. By tuning the hyper-parameters, we can find specific situations where NN

outperforms the lazy training. Here in Table 5.1, n = 2000, h = 1500, d = 1000, and σ is
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(a) Weight spectra in Case 1. (b) CK spectra in Case 2. (c) CK spectra in Case 3.

Figure 5.1. Different spectral behaviors in Table 5.1: (a) The initial and trained spectra of WWW in Case 1.
The spectrum is invariant based on the Q-Q subplot. (b) The initial and trained spectra of KKKCK in Case 3.
There is an outlier (red arrow) after training. (c) The initial and trained spectra of KKKCK in Case 4.

normalized tanh in (5.2.1). The training label noise σε = 0.3 and the teacher model is defined by

(5.2.3) with σ∗ a normalized softplus and τ = 0.2. We observe that simply choosing an optimizer

and learning rate can affect the shapes of the final spectra and the performance of the NN, as

measured by R2 scores and test errors. Figure 5.1 presents the spectra of weight/kernel matrices

of the initial/trained NN in different cases of Table 5.1. Notice that the subfigures in Figure 5.1

present the Q-Q plots to compare the initial and trained spectra for different cases.

We now further explore the spectral behaviors in different cases of Table 5.1 by clarifying

how the spectra evolve through different training processes and how this evolution may affect the

NN. Following Figure 5.1, we study the training processes case-by-case: invariant bulk, spikes

outside the bulk, and heavy-tailed distribution. Figure 5.1 summarizes these three situations for

both weights and empirical kernels.

5.2.1 Invariant Spectra Throughout Training

In Figure 5.1(a), we observe the bulk distributions of the weight matrix and CK in Cases

1&2 remain globally unchanged (invariant) over certain training processes, respectively. We now

further explore the invariant spectra in Cases 1&2 when training NNs.

In the setting of Case 1, Figures 5.1(a) and 5.2 present results of the weight matrix

and NTK on GD training and indicate evidence of kernel regime in Case 1. This shows that,

from a spectral point of view, the weight matrix, CK, and NTK are almost invariant and static
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(a) CK spectra in Case 1. (b) NTK spectra in Case 1.
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(c) Losses and R2 scores.

Figure 5.2. Performance of Case 1 in Table 5.1: (a) The initial and trained spectra of the first-hidden
layer WWW . (b) The initial and trained spectra of empirical NTK matrix defined by (1.1.5). Q-Q subplot
shows these two spectra are almost the same. (c) Training and test losses and R2 scores vs. epochs for GD.

through training. The initial spectrum of weight WWW 0 converges to Marčenko–Pastur law; the

initial spectrum of NTK under proportional limit has been studied in Chapter 2. Based on

Figures 5.1(a) and 5.2, we can empirically verify that, globally, the spectra of WWW , KKKCK and KKKNTK

are not changing over training as n/d → γ1 and h/d → γ2. This can be explained by the fact

that NN trained by GD with a small learning rate will eventually converge to a global minimum

point that is close to the initialization. Figure 5.2(c) demonstrates the global convergence for GD

under the proportional regime, as proved in Theorem 103 from Section 5.4.1. In Section 5.4.1,

by investigating the global convergence of GD, we prove this invariant-bulk phenomenon under

some specific assumptions.

As a complement of Figure 5.1(b), Figure 5.3 exhibits the spectra of WWW , KKKCK and KKKNTK

for Case 2 in Table 5.1. The phenomena are similar to Case 1. This observation provides evidence

that all results in Section 5.4.1 can be extended to SGD training with sufficiently small learning

rates, which is subject to future work. Analogously to GD case, we conjecture that the global

convergence when training both layers of NN with SGD still holds in this proportional limit.

In summary, from Figures 5.1(a), 5.2 and 5.3, one can observe the spectral distributions of the

weight, CK and NTK matrices remain invariant and static during training in Cases 1&2, which

indicates both cases still belong to the lazy regime. This spectral invariance impedes further

feature learning during the training process.
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(a) Weight spectra. (b) NTK spectra. (c) CK spectra.

Figure 5.3. Spectral properties for Case 2 in Table 5.1: (a) The initial and trained spectra of the
first-hidden layer WWW . (b) The initial and trained spectra of empirical NTK are defined by (1.1.5). (c) The
initial and trained spectra of empirical CK defined by (1.1.4).

5.2.2 Emergence of Outliers and Spike Alignments

As suggested in Figure 5.1(b) for Case 3 in Table 5.1, the outlier eigenvalues may appear

in the spectra of the trained weight matrix, CK, and NTK when NNs are optimized with large

learning rates. Heuristically, this indicates that the NN is learning the feature from the teacher

model f ∗. We further explore this phenomenon in this section. Additionally, in the Appendix

of [WES+23], one can find out more experiments on this phenomenon for WWW , KKKCK and KKKNTK

through different training processes.

Spike alignments of weight matrices.
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Figure 5.4. Alignment between
teacher feature βββ and first PC uuu1 of the
trained and initial weights, respectively,
in Case 3 of Table 5.1.

The differences between Cases 2&3 empirically

validate the benefits of training with large learning rates

[LWM19, Nak20, Lon21, BMR22, AVPVF23]. Inspired

by [BES+22], we consider the alignment between the lead-

ing right singular vector uuu1 of WWW t and the signal βββ in the

teacher model defined by (5.2.3). For Case 3, a notable

alignment appearing in Figure 5.4 after training suggests

that WWW t is capturing the feature βββ during training. Al-

though this does not ensure NN will entirely beat the opti-

mal kernel lower bound, this alignment reveals a non-negligible feature selection [BGL+21] via
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large-stepsize training. This dynamical alignment along the task-relevant direction may further

interpret the generalization of the NN, which has been proved in [BES+22] at the early stage

of the training process. A similar phenomenon on the alignment between spike eigenvector of

trained CK and data labels will be theoretically justified in Section 5.4.2.

Spikes of kernel matrices.
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Figure 5.5. Evolution of KTA of CK
defined by (5.2.4) with respect to train-
ing labels for Cases 1, 3&4 in Table 5.1.
We normalize the epoch scales (x-axis)
for better observations.

From [CSTEK01], the alignment of the kernel ma-

trix with the training labels yyy is defined, called Kernel

Target Alignment (KTA), as follows: when kernel KKK is

either CK or NTK,

KTA =
⟨KKK,yyy⊤yyy⟩
∥KKK∥F∥yyy∥2 . (5.2.4)

Analogously to [BGL+21, ABP22, SB21], Figure 5.5 de-

picts the evolution of KTA of CK in several cases. Based

on Figure 5.6(c), when the spike appears outside the bulk

(Case 3), its corresponding (leading) eigenvector vvv1 of kernel matrix naturally dominates the

alignment with yyy (also see Figure 5.12 in Section 5.4.2), which is regarded as a kernel rotation

during training in [OJMDF21]. Notice that this is not the common situation in Cases 1&2 of

Table 5.1. On the other hand, KTA measures the alignment between yyy and the full eigenbasis of

the kernel. These kernel alignments improve the speed of the convergence of training dynamics

but may hurt or boost the generalization of the NNs [OJMDF21, SB21, BGL+21]. Moreover,

Figure 5.5 indicates that Case 4 with heavy-tailed spectra after training with Adam [KB14] has a

larger KTA than the other cases. In this case, the emergence of a heavy tail in the spectrum is

closely related to a better generalization of the NN and more significant feature learning.
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Transitions of the spike as a function of learning rate η .

From Case 2 to Case 3, we observe the emergence of outliers in the trained spectra

when increasing the learning rate η . This indicates a transition of the emergence of the spike

outside the bulk distribution. Figure 5.6, analogously to the well-known BBP transition by

Baik, Ben Arous, and Péché in [BAP05] from the RMT community, shows there is a threshold

(yellow region) for learning rate: the outliers only appear when η exceeds this threshold. We fix

the same NN and dataset for all trials of training. In the green region, the largest eigenvalues

are attached to the bulk (black horizontal lines) and the alignments are weak; in the orange

one, outliers become apparent and the alignments become stronger. Here, the x-axis represents

varying learning rates η . The flat black lines in Figures 5.6(a) and (b) are the right edges of the

limiting spectra at initialization. Figure 5.6(c) records the angles between βββ and the leading

eigenvector of WWW⊤
t WWW t/d, and yyy and the leading eigenvectors of KKKCK

t and KKKNTK
t after training for

different η . Similarly with [BGL+21], when η is sufficiently large (orange region), we obtain

significant alignments which suggest potential feature learning. These transitions of leading

eigenvalue and eigenvector alignment have been proved for WWW t by [BES+22] for a different

scenario. We apply NTK parameterization for our neural networks and train both layers until

convergence, while [BES+22] considers the mean-field initialization and early stage of training

dynamics of GD for the first layer.

(a) η v.s. λmax(WWW tWWW⊤
t /d). (b) η v.s. λmax(KKKCK

t ). (c) η v.s. Alignments.

Figure 5.6. (a)-(c) Transitions of λmax(WWW tWWW⊤
t /d), λmax(KKKCK

t ) and alignments (|βββ⊤uuu1|/∥βββ∥ and
|yyy⊤vvv1|/∥yyy∥ where uuu1 and vvv1 are the first singular vectors of WWW t and either KKKCK

t or KKKNTK
t , respectively)

when increasing the learning rate η while training the NN with SGD until training loss is less than 10−5.
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Overall, based on our analysis in this section, the emergence of the outlier eigenvalue

in Figures 5.1(b) shows the improvement over lazy training and potential feature learning via

the training process, where the spectra possibly inherit the structures in teacher models (see

Section 5.4.2). Comparing with Case 2, Case 3 of Table 5.1 suggests the importance of the

large learning rate regime for training NNs [LWM19, Nak20, Lon21, BMR22, AVPVF23]. As a

remark, our spectral results of Case 3 are consistent with the observations in [TSR22] through

RMT hypothesis testing, where the majority of trained weight matrices remain random, and the

learned feature may be contained in the outlier singular value and associated singular vector.

5.2.3 Phenomenon of Heavy-tailed Spectra

From Figures 5.1(c), Case 4 further exhibits heavy tails in the spectra of trained NNs,

which thoroughly goes beyond the realm of the initial kernel machine. Notably, this phenomenon

is not unique to Adam since heavy tails also occur with AdaGrad (see Appendix A of [WES+23]).

Although all of these cases have the same initialization, different optimization methods eventually

lead to various training trajectories and evolutions of the spectra of the weight and kernel matrices.

To acquire feature learning, Cases 3&4 cause weights to deviate far from initialization. This

section will provide more refined analyses of heavy tails regarding feature learning.

As mentioned in Section 5.1, [MM19, MM21] found a strong correlation between the

heavy-tailed spectra of trained state-of-the-art models with better generalization. [MPM21]

established several metrics, power α , weighted Alpha and Log α-norm, to measure how heavy

the power-law tail is. Following the setting of Case 4 in Table 5.1, Figure 5.7(a) additionally

presents the evolution of power α , weighted Alpha and Log α-norm during the training process.

We can observe that in Figure 5.7(a) the tail in the spectrum of WWW t is becoming heavier as the

number of steps t is increasing, and the spectrum changes sharply at the early stage of training.

Heavy-tailed spectra can be viewed as an extreme of “bulk+spikes”, where a fraction of the

eigenvalues move out of the initial bulk. In RMT, heavy-tailed spectra generally appear when the

entries of the matrix are highly correlated [MM21]. This could heuristically explain heavy-tailed
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(b) Heavy-tailed initial CK.
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Figure 5.7. (a) The evolution of power α , weighted Alpha and Log α-norm during the training process
in Case 4 of Table 5.1. (b) The CK spectra at two initializations for WWW : standard Gaussian and Cauchy
distributions. (c) Weight spectra at initial and after SGD training without good generalization error.

phenomena in the spectra since the entries of well-trained WWW t should be strongly correlated.

We emphasize that heavy tails are not sufficient for good generalization, in general,

[MPM21, MY23]. Figures 5.7(b) and (c) exhibit NNs with heavy-tailed weights but in the

absence of good performance at initialization. Figure 5.7(b) exhibits the heavy-tail phenomenon

even at random initialization with Cauchy distribution. In Figure 5.7(b), after training, the weight

reveals a heavy tail but generalizes not as well as former examples, where the final test loss is

1.47504 and R2 score is −0.48. In fact, it is the alignments between the features learned from the

heavy-tailed part and the features in the teacher model that finally determine the generalization

error of NNs. Unlike [MM19, MM21], we focus on the heavy-tailed phenomena for both weight

and kernel matrices in a simpler model (5.2.1) and provide a connection between feature learning

and heavy-tailed spectra, which opens an important avenue for further theoretical analysis.

Multiple-index examples for heavy-tailed spectra.

In Figure 5.8, we provide an example of when heavy tails indicate better generalizations.

Consider the multiple-index teacher model (5.2.2) with k = 5 feature directions βββ i, and train

NNs (5.2.1) with GD, SGD, and Adam to get invariant bulk, bulk with one spike and heavy tails,

respectively, after training.

In this experiment, we consider σ = ReLU, n = 5000, h = 2500 and d = 1000 for NN

(1.1.3). Comparing with the teacher model (5.2.3) used in Table 5.1, we employ the multiple-
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Figure 5.8. (a) Evolutions of the first PC angle θ1 between feature subspace U of the multiple-index
model and the eigenspace spanned by top 100 of eigenvectors of WWW⊤

t WWW t during training with Adam, SGD,
and GD. (b) Evolution of PC angles θi between feature subspace U and top 100 eigenspace of WWW⊤

t WWW t . (c)
Initial and trained spectra for weight matrices when training with Adam (blue solid line in (a)).

index teacher model (5.2.2) with k = 5 and σ∗ = σ . We trained this student-teacher model using

GD (η = 15), SGD (η = 7.25 and batch size 8), and Adam (η = 0.007 and batch size 16) for

training this NN, respectively. Similarly with Figure 5.1, correspondingly, we observe invariant

spectrum, bulk with one spike, and heavy tails after training respectively. Heuristically, to learn

this f ∗, the weight WWW of NN should gradually align with the feature subspace U = span{βββ i}k
i=1.

Hence, to study feature learning, we can apply principle angles to measure the alignment between

WWW and U . Consider the eigen-decomposition of WWW⊤
t WWW t = ∑

d
i=1 λivvvivvv⊤i with λ1 ≥ λ2 ≥ . . .≥ λd .

Figure 5.8 shows the heavy-tailed part (the eigenspace E := span{vvvi}100
i=1) is aligned with U

after training, which shows how features are learned in the heavy-tailed spectra. Remarkably,

the test errors for training processes with SGD and Adam are even smaller than ∥P>1 f ∗∥2 and

∥P>2 f ∗∥2, where P>1 denotes the orthogonal projection onto the nonlinear part of the function

w.r.t. Gaussian measure. Thus, we experimentally showed that NNs with heavy-tailed spectra

can obtain feature learning and generalize better than the other two cases.

In Figure 5.8(a), we present the evolutions of the top principle angle θ1 between feature

subspace U = span{βββ i}k
i=1 and top 100 eigenspace of WWW⊤

t WWW t during different training processes

with Adam (blue solid line), SGD ( red dashed line) and GD (green dash-dot). The final test error

is 0.33865 and the R2 score is -0.71065 for GD. The test error is 0.10814 and the R2 score is

0.45373 for SGD, where one spike emerges in the weight spectrum after training. The test error
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Figure 5.9. (a) Initial and trained spectra for weight matrices when training with Adam. Five leading
spikes emerge in this case. (b) Evolution of the angles between the first four PCs of WWW⊤

t WWW t and feature
subspace U during training with Adam.

is 0.08672 and the R2 score is 0.56195 for Adam. In Figure 5.8(a), we show the evolution of PC

angles θi (i = 2,3,4) between feature subspace U of (5.2.2) and top 100 eigenspace of WWW⊤
t WWW t

during training with Adam (solid line), SGD (dashed line) and GD (dash-dot). This eigenspace

for the top 100 eigenvalues of WWW⊤
t WWW t corresponds to the heavy-tail part of the spectrum in WWW⊤

t WWW t .

Comparing with GD and SGD training processes, we observe strong alignments between feature

space U and eigenspace w.r.t heavy tails in Adam case in Figures 5.8(a) and (b), which explains

why Adam case (NNs with heavy-tailed spectra) generalizes better than the other two cases.

This concludes that NNs with heavy-tailed spectra in Figure 5.8(c) can generalize better only

when the teacher features from data are aligned with the heavy-tailed part of spectra. Suppose

the feature dimension in the teacher model is high (i.e. the teacher model is more complicated

and intrinsically high-dimensional). In that case, we expect a heavy-tailed weight spectrum of

well-trained NN where the heavy-tailed part learns all the features in the teacher modes. This

example explains why we can use the heavy tails to discriminate well-trained and poorly-trained

large models [MPM21, MY23, YTH+22].

Another example is exhibited in Figure 5.9. In this case, k = 5 in teacher model (5.2.2)

and there are five leading outlier eigenvalues in the spectrum of the trained weight matrix with

Adam optimizer, along with a heavy-tailed bulk in Figure 5.9(a). The test error is 0.01681 and

R2 score is 0.9154 for Adam. Figure 5.9(b) shows the evolution of the angles between the first
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four PCs of WWW⊤
t WWW t and feature subspace U = span{βββ i}k

i=1 of the multiple-index model (5.2.2)

during training with Adam. Interestingly, Figure 5.9(b) justifies that the eigenspace of these five

leading outlier eigenvalues in WWW⊤
t WWW t is strongly aligned with features βββ i for 1 ≤ i ≤ 5. This

indicates that heavy-tailed spectra with large spikes may have a correlation with feature learning

and good generalizations.

5.3 Further Discussions on Real-world Dataset

Above, we empirically investigated how the spectra of WWW , KKKCK, and KKKNTK evolve under

the LWR for an idealized student-teacher setting. Our work implies that understanding the

relationship between feature learning and training processes requires understanding the evolution

of the spectra of both weight and kernel matrices. In particular, we show that different training

processes affect the eigenstructure of weight and kernel matrices. While synthetic data is easier

to analyze theoretically, we also investigate these spectral properties on real-world data and more

complicated tasks below. In practice, people mainly focus on analyzing spectra of the weight

matrices in fully connected layers; we study the spectral properties of kernel matrices induced by

the NNs, which contain abundant information [CHS20, Lon21, ABP22, SB21].
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Figure 5.10. Different NTK spectra for a small-CNN model on CIFAR-2. The subplots are Q-Q plots
for the comparison between initial and trained spectra. Test accuracies: (a) 79%, (b) 84%, (c) 86.4%.

First, we show the spectra of KKKNTK before and after different training processes for

binary classification on CIFAR-2 through small CNNs in Figure 5.10. Similarly with Case 1,

Figure 5.10(a) (especially in the Q-Q subplot) manifests the invariant spectral distribution of
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NTK through GD training while SGD exhibits a heavier tail in NTK spectrum in Figure 5.10(b).

This phenomenon is more evident when trained by Adam in Figure 5.10(c) with improved

accuracy. Figure 5.10 suggests that our observations on synthetic data in Section 5.2 can be

extended to real-world data and on more practical architectures. We note that there is a lack of

the emergence of spikes after training because spikes already exist in the initial NTK spectrum

for this complicated neural architecture on real-world datasets. Figure 5.10(a) also indicates that

the spectral invariance of NTK through training will impede the feature learning and the NN

does not generalize well in this training process.
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Figure 5.11. We use SGD for fine-tuning the BERT model. (a) The evolution of first and second
eigenvalues of empirical CK during fine-tuning. (b) The alignments of training labels with first and second
eigenvectors of CK during fine-tuning.

We also investigate the spectral properties on the pre-trained model, BERT [DCLT18],

with fine-tuning on Sentiment140 dataset of tweets1 from [GBH09]. We fine-tune the BERT

model for a binary classifier on Sentiment140 and capture the evolution of CK spectra, rather

than the NTK due to the size of BERT, in Figure 5.11. The training accuracy is 95.90% and the

test accuracy is 84%. A heavy-tailed CK spectrum with several spikes already exists in this pre-

trained model. Unlike Figure 5.10 (and cases in Table 5.1) where the first spike of NTK becomes

larger than at random initialization after training, in Figure 5.11(a), the leading eigenvalue first

decreases and then increases. Moreover, similarly to Figure 5.6, our Figure 5.11(b) shows that the

alignment of the first eigenvector of the CK and training labels becomes more apparent through

1https://www.kaggle.com/datasets/kazanova/sentiment140
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fine-tuning with the leading eigenvalue decrease. Heuristically, this process seems to unlearn

the features in the pre-trained model and, remarkably, learn new features on the new dataset in

only a few epochs of fine-tuning. We believe that the evolutions of the kernel matrices and some

spectral metrics are crucial for understanding feature learning through fine-tuning [WHS22]. A

more comprehensive exploration of the evolutionary spectral properties of “foundation models”

may help shed further light on these phenomena.

5.4 Theoretical Study of the Spectra in Trained NNs

Inspired by our empirical simulations in Section 5.2, we now theoretically analyze the

trained weight and kernel matrices in two simple cases:

Invariant spectra through training processes.

We justify the invariant spectra after training with full-batch GD with small learning rates

observed in Section 5.2.1. Following the global convergence of GD [OFLS19, OS19] and NTK

theory [JGH18], we can prove that the spectra of NNs trained with full batch gradient descent

(GD) are globally invariant, indicating that the NN is still close to a kernel machine.

Spiked weight and kernel matrices in early training.

It is known that NNs can learn useful representations that adapt to the learning problem,

and outperform the random features model defined by randomly initialized weights [GMMM19,

WLLM19, AAM22]. Recent works have shown that when the target function is low-dimensional,

the gradient update with a large learning rate for two-layer NNs around initialization is low-

rank, e.g., [BES+22, DLS22, WES+23], and hence the updated weight matrix WWW is well-

approximated by a spiked random matrix model. Following the spiked sample covariance model

we characterized in Chapter 3, we can show that finite steps of gradient descent updates produce

a spiked structure in the pre-trained kernel model of NNs and this spike structure implies a useful

representation learning in the dataset.
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5.4.1 Invariant Bulk Distributions

Figures 5.1(a), 5.2 and 5.3 have already present that the bulk distributions of weight and

kernel matrices in Cases 1&2 remain globally unchanged (invariant) over the training process.

Now, by investigating the global convergence of GD, we prove this invariant-bulk phenomenon

under certain assumptions.

Assumption 14 (Linear-Width Regime (LWR)). Assume that n
d → γ1 and h

d → γ2 as n → ∞

where the aspect ratios γ1,γ2 ∈ (0,∞) are two fixed constants.

LWR stands as a pivotal setting grounded in high-dimensional statistics [AP20, MM22].

It offers valuable insights especially when addressing real-world datasets. This is in contrast

to the infinite-width regime, in which we are already in the asymptotic limit for width at first.

Hence, LWR is a better approximation of real-world datasets and practical neural networks

compared with the infinite-width regime.

Assumption 15 (Activation function). Suppose that the activation function σ(x) is nonlinear and

λσ -Lipschitz with |σ ′(x)|, |σ ′′(x)| ≤ λσ for all x ∈ R. Moreover, E[σ(z)] = 0 for z ∼ N (0,1).

For simplicity, we focus on analyzing the training process of the first-hidden layer with

the second layer vvv fixed. Denote fθθθ (XXX) by fWWW (XXX) in this case. At any time t ∈ N, consider the

gradient steps:

WWW t+1 =WWW t −η∇WWW L (WWW t). (5.4.1)

Denote the CK and NTK at gradient step t ∈ N by KKKCK
t := 1

hσ(WWW txxx)⊤σ(WWW txxx), and KKKNTK
t :=

1
d xxx⊤xxx⊙ 1

hσ ′
(

1√
d
WWW txxx

)⊤
diag(vvvt)

2σ ′
(

1√
d
WWW txxx

)
respectively. First, we present an elaborate de-

scription of the changes in the weight, CK, and NTK at the early phase of the training (after any

finite t steps) as follows.

Lemma 102 (Early phase). Under Assumptions 13, 14, and 15, we further assume that ∥vvv∥
∞
≤ 1

and f ∗ is a λσ -Lipschitz function. Given any fixed t ∈ N and learning rate η = Θ(1), after t
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gradient steps, the changes 1√
d
∥WWW t −WWW 0∥F ,

∥∥KKKCK
t −KKKCK

0

∥∥
F , and

∥∥KKKNTK
t −KKKNTK

0
∥∥ are all less

than C
n , with probability at least 1−4nexp(−cn), for some positive constants c,C > 0 which

only depend on step t and parameters η ,γ1,γ2,λσ ,σε .

Lemma 102 shows 1√
d
∥WWW t −WWW 0∥,

∥∥KKKCK
t −KKKCK

0
∥∥, and

∥∥KKKNTK
t −KKKNTK

0
∥∥ are asymptoti-

cally vanishing for any fixed time t. Therefore, all the eigenvalues/eigenvectors are asymptotically

unchanged at the early phase of the training (see Corollary 108 in Section 5.5). Now we aim

to analyze the spectra at the end of the training process (5.4.1). In this case, although we are

unable to show the invariance for each eigenvalue, we can verify the invariance of the limiting

bulk distributions for KKKCK
t and KKKCK

t for all t.

By Theorem 69, the smallest eigenvalue of KKKNTK
0 has an asymptotic lower bound:

λmin(KKKNTK
0 )≥

(
aσ −

2

∑
k=0

η
2
k

)
(1−od,P(1)), (5.4.2)

where aσ := E[σ ′(ξ )2] and ηk is the k-th Hermite coefficient of σ ′. Hence, we can claim

there exists some constant α > 0 only dependent on σ such that λmin(KKKNTK
0 )≥ 4α2 with high

probability. Note that α is not vanishing since σ is nonlinear. With this lower bound, we obtain

the following global convergence for (5.4.1) and norm control of WWW t as n/d → γ1 and h/d → γ2.

Theorem 103 (Global convergence). Under the same assumptions of Lemma 102, we further

assume vi’s are independent and centered random variables in the second layer. For any

η < min{α2n
2 , n

4λ 2
σ (1+

√
γ1)2} and all t ∈ N, there exists some γ∗ > 0 such that, when γ2 ≥ γ∗, the

gradient steps (5.4.1) will satisfy

ℓ(WWW t)≤
(

1− ηα2

2n

)t

ℓ(WWW 0), (5.4.3)

1
4

α∥WWW 0 −WWW t∥F + ℓ(WWW t)≤ ℓ(WWW 0), (5.4.4)
∞

∑
t=0

∥WWW t+1 −WWW t∥F ≤ 4ℓ(WWW 0)

α
, (5.4.5)
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with high probability, as n/d → γ1 and h/d → γ2. Here, training loss ℓ(WWW ) := ∥yyy− fWWW (xxx)∥.

We apply the techniques and results by [OFLS19, OS19] to obtain Theorem 103. Notice

that, unlike Lemma 102, the largest learning rate we can choose is of order Θ(n). As a byproduct,

the Frobenius norm in (5.4.4) implies the following corollary for the invariance of limiting bulk

distribution.

Corollary 104. Under the same assumptions of Theorem 103, for all t ∈N, with high probability,

there exists some constant R > 0 such that the changes 1√
d
∥WWW t −WWW 0∥F ,

∥∥KKKCK
t −KKKCK

0

∥∥
F , and∥∥KKKNTK

t −KKKNTK
0
∥∥

F are all less than R with high probability. This implies the limiting empirical

spectra of 1
hWWW⊤

t WWW t , KKKCK
t and KKKNTK

t are the same as the limiting spectra of 1
hWWW⊤

0 WWW 0, KKKCK
0 and

KKKNTK
0 respectively, almost surely as n/d → γ1 and h/d → γ2.

Corollary 104 is empirically validated by Figure 5.14 in Section 5.5. In addition, based

on Figure 5.3, one can further extend Corollary 104 to the SGD training process. The total path

is O(
√

h) in (5.4.4) and (5.4.5), which is negligible compared with the Frobenius norm of initial

weight matrix (which is of order Θ(h)). Thus, gradient descent iterates (5.4.1) remain close to

initialization and small perturbation of NTK ensures the smallest eigenvalue (5.4.2) of NTK

is always lower bounded away from zero. Theorem 103, however, does not require that the

NTK stays unchanged all the time. Moreover, Corollary 104 only shows the invariance of the

bulk distribution, while the emergence of outliers cannot be excluded from this result. Though

we have global convergence in general, we may still move out of the kernel regime. Global

convergence does not indicate when the NN in LWR outperforms the kernel regime. Notice

that [BMR21, Theorem 5.4] is not directly applicable to show that a network is still close to lazy

training under the LWR. It requires deeper analysis to claim whether the NN still belongs to the

kernel regime or already goes beyond in our case. As we will show in Section 5.2.2, this also

relies on the magnitude of the learning rate for GD/SGD.
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5.4.2 Feature Learning in CK Matrix After Finitely Many Steps of GD

The preceding section studied the spike eigenstructure of the CK induced by low-rank

structure in the input data. Here, focusing on a two-layer model, we study an alternative setting

where spiked structure arises instead in the weight matrix WWW from gradient descent training.

We consider an early training regime studied in [BES+22], with a width-N two-layer

feedforward NN,

fNN(xxx) =
1√
N

N

∑
i=1

aiσ(⟨xxx,wwwi⟩) =
1√
N

σ(xxx⊤WWW )aaa. (5.4.6)

Here xxx ∈ Rd is the input, and WWW = [www1, . . . ,wwwN ] ∈ Rd×N and aaa ∈ RN are the network weights.

For clarity of the subsequent discussion, we will transpose the notation for XXX and WWW from the

preceding section, and incorporate a 1/
√

d scaling into WWW rather than into the input data XXX .

Given are an input feature matrix XXX = [xxx1, . . . ,xxxn]
⊤ ∈ Rn×d and labels yyy ∈ Rn for n

samples, where yi = f∗(xxxi)+noise. We consider the training of first-layer weights WWW to minimize

the mean squared error

L (WWW ) =
1

2n

n

∑
i=1

( fNN(xxxi)− yi)
2,

fixing the second-layer weight vector aaa. From a random initialization WWW 0 ∈ Rd×N , and over T

steps with learning rates η1, . . . ,ηT scaled by
√

N, the gradient descent (GD) updates take the

form

WWWt+1 =WWWt +ηt+1
√

N ·GGGt , GGGt =−∇L (WWW t). (5.4.7)

Of interest is the information about the label function f∗ that is learned by WWW trained ≡WWW T , which

may be characterized by the spectral alignment of the CK matrix with the class label vector

on independent test data (X̃XX , ỹyy). This use of independent test data may be understood as a

pre-training setup, also considered previously in [BES+22, MLHD23] and studied for real-world

data in [WHS22].

259



It was shown in [BES+22] that in a training regime with initialization ∥WWW 0∥≍ 1 such that

| fNN(xxxi)| ≪ 1 for each i = 1, . . . ,N, and with learning rates η1, . . . ,ηT ≍ 1 for a fixed number T

of GD steps, the weight matrix WWW undergoes a change during training that is O(1) in operator

norm and approximately rank-1,

WWW trained ≈WWW 0 +
ηbσ

n
XXX⊤yyyaaa⊤ where η =

T

∑
t=1

ηt .

[BES+22, Conjecture 4] conjectured that for the CK matrix

KKK =
1
N

σ(X̃XXWWW trained)σ(X̃XXWWW trained)
⊤ ∈ Rn×n (5.4.8)

defined by the pre-trained weights and test data X̃XX , the resulting spike eigenvalue and the

alignment of its spike eigenvector with the test labels ỹyy ∈ Rn are accurately predicted by a

Gaussian equivalent model. Our main result of this section is an affirmative verification of

this conjecture and precise characterization of the spike eigenstructure of KKK, in the following

representative setting.

Assumption 16. For a two-layer NN in (5.4.6) with GD training defined by (5.4.7), we assume

that

(a) (LWR) n,d,N → ∞ such that N/d → γ0 ∈ (0,∞) and N/n → γ1 ∈ (0,∞).

(b) Training features XXX = [xxx1, . . . ,xxxn]
⊤ ∈ Rn×d have entries [XXX ]i j

iid∼ N (0,1), training labels

yyy ∈ Rn have entries yi = σ∗(βββ
⊤
∗ xxxi)+ εi where βββ ∗ ∈ Rd is a deterministic unit vector and

εi
iid∼ N (0,σ2

ε ), and test data (X̃XX , ỹyy) is an independent copy of (XXX ,yyy).

(c) The NN activation σ : R→ R and label function σ∗ : R→ R both satisfy Assumption 5,

with bσ := E[σ ′(ξ )] ̸= 0 and bσ∗ := E[σ ′
∗(ξ )] ̸= 0.

(d) The weight initializations satisfy [WWW 0]i j
i.i.d.∼ N (0,1/d) and a j

i.i.d.∼ N (0,1/N).
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Figure 5.12. (a) We set n = 2000,d = 1600,N = 2400,η · t = 2, and σ = σ∗ = erf. (b) We set
d = 2048,N = 1024,η = 0.2, σ = tanh,σ∗ = SoftPlus, and vary the sample size n and number of GD
steps t; dots represent empirical simulations (over 10 runs) and solid curves are theoretical predictions
from Theorem 105.

(e) The number of iterations T and learning rates η1, . . . ,ηT are fixed independently of n,d,N.

Notice that the initialization in Assumption 16(d) is different from the initialization for

(5.2.1) in Section 5.4.1. Under these assumptions, the following theorem characterizes the spike

eigenvalue of the CK matrix and the alignment between the corresponding eigenvector and the

test labels, as a function of the learning rate ηt and the number of gradient descent steps T .

Theorem 105. Suppose that Assumption 16 holds, and set η = ∑
T
t=1 ηt . Define

θ1 = bσ η ·
√

(γ1/γ0)(1+σ2
ε )+b2

σ∗, θ2 = bσ bσ∗η . (5.4.9)

Let z(·) and ϕ(·) be defined by (3.2.6) for ℓ= 1 with γ1 and ν0 = b2
σ ⊗ρMP

γ0
⊕ (1−b2

σ ), and set

λ1 = b2
σ

(1+θ 2
1 )(γ0 +θ 2

1 )

θ 2
1

+1−b2
σ .

Then KKK defined by (5.4.8) has a spike eigenvalue if and only if θ1 > γ
1/4
0 and z′(−1/λ1)> 0. In

this case, λmax(KKK)→ γ
−1
1 z(−1/λ1) a.s., and the leading unit eigenvector ûuu ∈ Rn of KKK satisfies

1√
n
|ỹyy⊤ûuu| → bσ bσ∗

√
z(−1/λ1)ϕ(−1/λ1)

λ1
·

θ2

√
(θ 4

1 − γ0)(γ0 +θ 2
1 )

θ 3
1

> 0 a.s. (5.4.10)
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Numerical illustration.

Figure 5.12 empirically validates the predictions of Theorem 105, for a two-layer NN

trained with a small number of GD steps. Figure 5.12(a) shows that one spike eigenvalue emerges

over training in the test-data CK, the location of which is accurately predicted by Theorem 105;

moreover, the leading eigenvector ûuu aligns with the labels ỹyy. This is quantified in Figure 5.12(b),

where above a phase transition threshold, the alignment ⟨ûuu, ỹyy⟩2 (predicted by (5.4.10)) increases

with the learning rate or number of GD steps; in addition, alignment also increases with the

training set size n. Then, compared with random initialization (η = 0), this illustrates that

training improves the NN representation, and the test-data CK contains information on the label

function f∗.

5.5 Proofs of Results in Section 5.4.1

Recall the definition of the entry-wise 2-∞ matrix norm ∥MMM∥2,∞ in Section 1.4. For any

matrix MMM ∈ RN×d , notice that

∥MMM∥2,∞ ≤ ∥MMM∥ ≤ ∥MMM∥F . (5.5.1)

5.5.1 GD Analysis at Early Phase

From (5.4.1), the GD process with learning rate η > 0 can be written by

WWW t+1 = WWW t +η ·GGGt , where (5.5.2)

GGGt =
1

n
√

dh

[(
vvv
(

yyy− 1√
h

vvv⊤σ(WWW tXXX/
√

d)
))

⊙σ
′(WWW tXXX/

√
d)
]

XXX⊤, (5.5.3)

for t ∈ N, where yyy ∈ R1×n. Following [BES+22, Appendix B], in this section, we prove the

control for gradient step GGGt . For simplicity, denote ft(XXX) := fθθθ t (XXX) = 1√
h
vvv⊤σ(WWW tXXX/

√
d) for

t ∈ N.
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Lemma 106. Under the same assumptions as in Lemma 102, we have

P
(∥∥∥σ(WWW 0XXX/

√
d)
∥∥∥≥C

√
n
)
≤ 2e−cn,

P
(
∥yyy∥ ≥C

√
n
)
≤ 2e−cn,

for some constants C,c > 0 only depending on σε , λσ , γ1, and γ2.

Proof. Due to Lemma 17, we can directly obtain that

P

(∥∥∥σ(WWW 0XXX/
√

d)
∥∥∥≥C′(

√
n+

√
h)

√
h
d

)
≤ 2e−cn.

Here we use the fact that both WWW 0 and XXX are i.i.d. Gaussian random matrices. Then by

Assumption 14, we conclude that we control σ(WWW 0XXX/
√

d). Recall that Assumption 13 implies

that yyy = f ∗(XXX)+ εεε . Hence, by Lipschitz Gaussian concentration inequality [Ver18, Theorem

5.2.2], each entry of f ∗(XXX) has independent sub-Gaussian coordinates, whence we can get

∥ f ∗(XXX)∥ ≤C
√

n with probability at least 1−2ne−cn for some constants c,C > 0. On the other

hand, [εεε]i = εi are i.i.d. centered sub-Gaussian noises with variance σ2
ε . By [Ver18, Theorem

3.1.1], we have

P
(
∥εεε∥ ≤ 2σε

√
n
)
≥ 1−2exp

(
− cn

K4

)
,

where the constant K is the sub-Gaussian norm defined by K = maxi∈[n] ∥εi∥ψ2 . Hence, combin-

ing all things together, we obtain the second inequality of this lemma.

Lemma 107. Under the assumptions of Lemma 102, given any fixed t ∈ N and learning rate

η = Θ(1), the weight matrix after t gradient steps WWW t defined in (5.5.2) satisfies

P
(
∥WWW t −WWW 0∥F ≥ C√

n

)
≤ exp(−cn), (5.5.4)

for some positive constants c,C > 0 only depending on t,η , σε , λσ , γ1 and γ2.
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Proof. Denote σ⊥(x) = σ(x)−µ1x which is the nonlinear part of σ and µ1 = E[zσ(z)]. Thus,

E[σ⊥(z)z] = 0 for z ∼ N (0,1). Based on this, we can further decompose the gradient GGGt into

GGGt =
µ1

n
√

dh
vvv(yyy− ft(XXX))XXX⊤︸ ︷︷ ︸

AAAt

+
1

n
√

dh

(
vvv(yyy− ft(XXX))⊙σ

′
⊥(WWW tXXX/

√
d)
)

XXX⊤︸ ︷︷ ︸
BBBt

. (5.5.5)

At first, consider t = 0 in (5.5.2) and bound the spectral norm of WWW 1. By assumption, we know

∥vvv∥ ≤
√

h. Due to Corollary 7.3.3 in [Ver18], we have

P
(

1√
d
∥XXX∥ ≥ 2

(
1+
√

n
d

))
≤ 2exp(−cn). (5.5.6)

Therefore, by (5.5.5), we can control AAA0 and BBB0 separately. Notice that, as a rank-one matrix,

∥∥∥AAA0
∥∥∥= ∥∥∥AAA0

∥∥∥
F
≤ µ1√

n
∥XXX∥√

d
1√
n
(∥yyy∥+∥ f0(XXX)∥)∥vvv∥√

h

≤ µ1√
n
∥XXX∥√

d

∥vvv∥√
h

1√
n

(
∥yyy∥+ ∥vvv∥√

h

∥∥∥σ(WWW 0XXX/
√

d)
∥∥∥).

Hence, by Lemma 106 and (5.5.6), one can easily claim that ∥AAA0∥ ≤C/
√

n with probability at

least 1−e−cn for some constants c,C > 0. On the other hand, since vvv(yyy− ft(XXX)) is rank-one and

σ ′
⊥ = σ ′−µ1 with |σ ′(x)| ≤ λσ , we can similarly obtain

∥∥BBB0∥∥
F ≤ 1

n
√

dh

∥∥∥vvv(yyy− ft(XXX))⊙σ
′
⊥(WWW tXXX/

√
d)
∥∥∥

F
∥XXX∥

≤ 1
n
√

hd
∥XXX∥(∥yyy∥+∥ f0(XXX)∥)∥vvv∥max

i, j

∣∣∣σ ′
⊥(WWW 0XXX/

√
d)
∣∣∣
i, j

≤ µ1 +λσ√
n

∥XXX∥√
d

∥vvv∥√
h

1√
n

(
∥yyy∥+ ∥vvv∥√

h

∥∥∥σ(WWW 0XXX/
√

d)
∥∥∥).

As AAA0, we can apply Lemma 106 and (5.5.6) again to conclude (5.5.4) for t = 1.

For general t, we apply induction. We assume that after the t-th gradient step with

η = Θ(1), Eq. (5.5.4) holds for some constants C,c > 0. Following [BES+22, Lemma 16], we
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now show that the similar high-probability statement also holds for WWW t+1 (for some different

constants c′,C′). Firstly, following the same argument as [OS20, Setion 6.6.1], we know that

∥ ft(XXX)∥ ≤∥ f0(XXX)∥+∥ ft(XXX)− f0(XXX)∥

≤∥ f0(XXX)∥+ λσ√
h
∥vvv∥∥XXX∥√

d
∥WWW t −WWW 0∥F . (5.5.7)

Note that ∥WWW t −WWW 0∥F = O(1/
√

n) with high probability by the induction hypothesis. Hence, by

Lemma 106 and (5.5.6), we have ∥ ft(XXX)∥ ≤C
√

n with high probability. Indeed, the difference

between ft(XXX) and f0(XXX) is significantly negligible comparing with the initial value f0(XXX).

Similarly with AAA0, AAAt satisfies

∥∥AAAt∥∥= ∥∥AAAt∥∥
F ≤ µ1√

n
∥XXX∥√

d
1√
n
(∥yyy∥+∥ ft(XXX)∥)∥vvv∥√

h
.

Analogously for BBBt , we have

∥∥BBBt∥∥
F ≤ µ1 +λσ√

n
∥XXX∥√

d

∥vvv∥√
h

1√
n
(∥yyy∥+∥ ft(XXX)∥).

Thus, Lemma 106, (5.5.6), and (5.5.7) ensure that

P
(∥∥AAAt∥∥

F ≥ C′
√

n

)
≤ exp

(
−c′n

)
, P
(∥∥BBBt∥∥

F ≥ C′
√

n

)
≤ exp

(
−c′n

)
,

for constants c′,C′> 0. Since ∥WWW t+1 −WWW 0∥F ≤∥WWW t −WWW 0∥F +η
∥∥AAAt∥∥

F +η∥BBBt∥F , by induction

hypothesis, we can conclude that (5.5.4) holds for the (t+1)-th step with some constants C,c> 0,

which are different from the constants at the t-th step.

As a corollary, by (5.5.1), we can also deduce the following norm bounds:

P
(
∥WWW t −WWW 0∥ ≥

C√
n

)
≤ exp(−cn), P

(
∥WWW t −WWW 0∥2,∞ ≥ C√

n

)
≤ exp(−cn).
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Lemma 107 and the above bounds are empirically verified by Figure 5.13(a) for t = 3. Not

only upper bounds, this simulation also shows that at early phase ∥WWW t −WWW 0∥, ∥WWW t −WWW 0∥F , and

∥WWW t −WWW 0∥2,∞ are all of the same Θ(1/
√

n) order.

As a remark, from the bound of the second term of (5.5.7), we can deduce that the change

of the output of the NN satisfies

| ft(XXX)− f0(XXX)| ≤ C√
n
,

for some t-dependent constant C > 0, any XXX ∼ N (0,1) and any finite time t. In other words,

when η = Θ(1), the change of the output of the NN at the early phase (i.e. t = Θ(1)) is negligible

and its order is O( 1√
n).

5.5.2 Proof of Lemma 102

In this section, we complete the proof of Lemma 102. We first mention the empirical

validation of Lemma 102 in Figure 5.13. Here σε = 0.2, activation σ is a normalized ReLU and

the target function σ∗ is normalized tanh. Fix d/n = 0.6 and N/n = 1.2 as n is increasing. At

each dimension, we take 25 trials to average. Notice that the changes in Frobenius norm for WWW

and KKKCK are exactly Θ(1/
√

n) and Θ(1/n), respectively. The operator norm of KKKNTK matches

with Lemma 102, while the Frobenius norm of the change decays slower than the rate Θ(1/n).

Additionally, in the simulation, we use vvv ∼ N (0,1), which indicates that our assumption for vvv

in Lemma 102 can be weakened.

Proof of Lemma 102. Lemma 107 directly validates the control of 1√
d
∥WWW t −WWW 0∥F . By virtue

of this result, we now present estimates for CK and NTK. Based on [OS20, Section 6.6.1], we

have

∥∥∥σ(WWW 0XXX/
√

d)−σ(WWW tXXX/
√

d)
∥∥∥≤ λσ√

d
∥XXX∥∥WWW 0 −WWW t∥F . (5.5.8)
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103 2 × 103 3 × 103

Sample Dimension n

10 2

10 1

Weight differences

(1/ n )
|W0 Ws|2
|W0 Ws|F
|W0 Ws|2,

(a) Early phase for WWW t .

103 2 × 103 3 × 103

Sample Dimension n

10 2

10 1 CK differences
(1/n)

|CK0 CKs|2
|CK0 CKs|F

(b) Early phase for KKKCK.

103 2 × 103 3 × 103

Sample Dimension n

10 2

10 1

NTK differences

(1/ n )
|NTK0 NTKs|2
|NTK0 NTKs|F

(c) Early phase for KKKNTK.

Figure 5.13. Empirical validations for Lemma 102 and Lemma 107 at t = 3. (a) Norms of the changes
for WWW 3 −WWW 0. (b) Norms of the changes for KKKCK

3 −KKKCK
0 . (c) Norms of the changes for KKKNTK

3 −KKKNTK
0 .

We apply the mean value theorem to obtain this inequality. Recall the operator norm bound for

Gaussian random matrix XXX in (5.5.6). We know ∥XXX/
√

d∥≲ 1+
√

γ1 with high probability as

n/d → γ1. Hence, with the help of Lemma 107, we can claim

∥∥∥σ(WWW 0XXX/
√

d)−σ(WWW tXXX/
√

d)
∥∥∥≤Cλσ (1+

√
γ1)/

√
n,

with probability at least 1− exp(−cn), for any fixed finite t ∈ [n]. Similarly, we can control the

change in the Frobenius norm as follows:

∥∥∥σ(WWW 0XXX/
√

d)−σ(WWW tXXX/
√

d)
∥∥∥2

F
≤ λ 2

σ

d
∥XXX∥2∥WWW 0 −WWW t∥2

F ≤Cλ
2
σ (1+

√
γ1)

2/n, (5.5.9)

with probability at least 1−exp(−cn). Therefore, we can control the change in the CK matrix in

the Frobenius norm by the following inequalities:

∥∥∥KKKCK
t −KKKCK

0

∥∥∥
F

≤ 1
h

(∥∥∥σ(WWW tXXX/
√

d)−σ(WWW 0XXX/
√

d)
∥∥∥+∥∥∥σ(WWW 0XXX/

√
d
∥∥∥) ·∥∥∥σ(WWW tXXX/

√
d)−σ(WWW 0XXX/

√
d)
∥∥∥

F

+
1
h

∥∥∥σ(WWW 0XXX/
√

d)
∥∥∥ ·∥∥∥σ(WWW tXXX/

√
d)−σ(WWW 0XXX/

√
d)
∥∥∥

F
.

Therefore, by (5.5.8), (5.5.9) and Lemma 106, we can claim that there exist constants c,C > 0
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such that with probability at least 1− exp(−cn),
∥∥KKKCK

t −KKKCK
0

∥∥
F is upper bounded by C/n in

the LWR.

Now we consider the change in the NTK matrix during training. Since the empirical

NTK can be decomposed into two parts, one of which is exactly the CK, it suffices to consider

the change of the first part of the empirical NTK. Recall that

KKKt :=
1
d

XXX⊤XXX ⊙ 1
h

σ
′
(

1√
d

WWW tXXX
)⊤

diag(vvvt)
2
σ
′
(

1√
d

WWW tXXX
)
.

Following the notation in [OS20], we denote J (WWW t) := [J (WWW t
1), . . . ,J (WWW t

N)] ∈ Rn×hd with

J (WWW i) := vi√
h

diag(σ ′(XXX⊤WWW i/
√

d))XXX⊤/
√

d ∈ Rn×d . Hence, KKKt = J (WWW t)J (WWW t)
⊤ and

∥KKKt −KKK0∥=
∥∥∥J (WWW t)J (WWW t)

⊤−J (WWW 0)J (WWW 0)
⊤
∥∥∥

≤ 2∥J (WWW 0)∥∥J (WWW t)−J (WWW 0)∥+∥J (WWW t)−J (WWW 0)∥2. (5.5.10)

By [OS20, Lemma 6.6], we know ∥J (WWW 0)∥2 =
∥∥KKKNTK

0
∥∥ is upper bounded by some constant

C > 0 with high probability. Then, we apply the inequalities from Lemma 6.5 of [OS20] to

obtain that

∥J (WWW t)−J (WWW 0)∥2

≤
∥∥∥∥(σ

′(WWW tXXX/
√

d)−σ
′(WWW 0XXX/

√
d)
)⊤diag(vvv)√

h

∥∥∥∥2(
max
i∈[n]

∥∥∥XXX i/
√

d
∥∥∥2
)

≤ 1
h
∥vvv∥2

∞

∥∥∥σ
′(WWW tXXX/

√
d)−σ

′(WWW 0XXX/
√

d)
∥∥∥2
(

max
i∈[n]

∥∥∥XXX i/
√

d
∥∥∥2
)

≤ λ 2
σ

h
∥XXX∥2

d
∥WWW t −WWW 0∥2

F

(
max
i∈[n]

∥∥∥XXX i/
√

d
∥∥∥2
)
, (5.5.11)

where the last inequality is due to the mean value theorem, the uniform bound on σ ′′, and the
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assumption on the second layer vvv. Notice that Gaussian random vectors satisfy

P
(

max
i∈[n]

1
d
∥XXX i∥2 ≥ 2

)
≤2ne−cn, (5.5.12)

as n/d → γ1 and h/d → γ2. Thus, with (5.5.6) and Lemma 107, we obtain

P
(
∥J (WWW t)−J (WWW 0)∥ ≥

Cλσ (1+ γ1)

n

)
≤ 4ne−cn,

where constant C relies on the number of steps t. Hence, by (5.5.10), we finally bound in norm

the difference between the initial and the trained NTK matrices at the early phase (t is finite).

Corollary 108. For any fixed t ∈ N, i ∈ [d] and k ∈ [n], denote λ t
i , ν t

k and µ t
k the i-th, and

k-th eigenvalues of 1
hWWW⊤

t WWW t , KKKCK
t and KKKNTK

t , respectively. Then, under the assumptions of

Lemma 102, we have

|λ t
i −λ

0
i |, |ν t

k −ν
0
k |, |µ

t
k −µ

0
k | → 0,

almost surely in LWR. Consequently, the eigenvalues of 1
hWWW⊤

t WWW t , KKKCK
t and KKKNTK

t are the same

as corresponding the eigenvalues of initial 1
hWWW⊤

0 WWW 0, KKKCK
0 and KKKNTK

0 , respectively.

This corollary is a direct outcome of Weyl’s inequality from Theorem A.46 in [BS10].

Consequently, this corollary concludes that for any fixed t ≥ 0, almost surely, the limiting spectra

of 1
hWWW⊤

t WWW t , KKKCK
t and KKKNTK

t are the same as those of 1
hWWW⊤

0 WWW 0, KKKCK
0 and KKKNTK

0 in LWR. This

corollary claims that not only does the bulk of distributions stay identical to the initialization,

but also that any eigenvalues stay the same as at the initialization. This shows that the smallest

eigenvalue of KKKNTK
t has the same lower bound as KKKNTK

0 in the early phase of training.

5.5.3 Global Convergence for GD Under Linear-Width Regime

In this section, we study the final stage of (5.4.1) as training loss is approaching zero

and prove Theorem 103. Figure 5.14 shows that the spectra are unchanged globally, even after
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training in this case. Here the training loss is less than 10−5, h = 3000,n = 2000, and d = 1000.

The final R2 score is 0.55964 and the test loss is 0.44724. The activation is a normalized ReLU,

and the target is Sigmoid. In Corollary 104, we confirm this observation for the weight, CK, and

NTK matrices via Frobenius norm control. In the simulation, the second layer is initialized as

vvv ∼ N (0,1), which is more general than our assumption on vvv in Theorem 103.

(a) Weight Spectra. (b) CK Spectra. (c) NTK Spectra.

Figure 5.14. The initial and trained spectra with GD only for the first layer: (a) Weight spectra. (b) KKKCK

spectra. (c) KKKNTK spectra. Here Q-Q subplots indicate the invariant spectra of weight and kernel matrices.

Proof of Theorem 103. Recall the Jacobian matrix J (WWW ) defined in the proof of Lemma 102,

and the definition of α based on (5.4.2) in Section 5.2. Denote the event

A :=
{
∥XXX∥ ≤ 2(1+

√
γ1)

√
d, max

i∈[n]
∥XXX i∥2 ≤ 2d,σmin(J (WWW 0))≥ 2α

}
.

By (5.5.6), (5.5.12) and Theorem 69, we have P(A ) ≥ 1− 2e−cn − 2ne−cn − n−7/3 for some

constant c > 0 and all large n in LWR. In the following, conditionally on event A , we will apply

Theorem 6.10 of [OS20] to obtain the global convergence. Conditionally on A , Lemma 6.6 of

[OS20] implies

∥J (WWW )∥ ≤ λσ∥vvv∥
∞

∥∥∥XXX/
√

d
∥∥∥≤ 2λσ (1+

√
γ1), (5.5.13)

for any WWW . Define β = 2λσ (1+
√

γ1). Moreover, in terms of (5.5.11), we can verify the Lipschitz
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property for the Jacobian matrix as follows: conditionally on A ,

∥∥J (W̃WW )−J (WWW )
∥∥≤ 2β√

h

∥∥W̃WW −WWW
∥∥

F , (5.5.14)

for any W̃WW ,WWW ∈ Rh×d . Therefore, conditionally on A , J (WWW ) is a L-Lipschitz function with

respect to WWW where L := 2β√
h
. To complete the proof, it suffices to investigate the smallest singular

value of J (WWW ) when WWW is in the vicinity of WWW 0. Recall ℓ(WWW ) = ∥yyy− fWWW (XXX)∥. Notice that

for any unit vector uuu ∈ Rn, we have uuu⊤ fWWW 0(XXX) = 1√
h ∑

h
i=1 viσ(WWW⊤

i XXX/
√

d)uuu, where WWW⊤
i is the

i-th row of WWW 0 for i ∈ [N]. Consider event B :=
{∥∥∥σ(WWW 0XXX/

√
d)
∥∥∥≤C

√
n
}

for some universal

constant C > 0. Lemma 106 proves P(B)≥ 1−2e−cn. By the assumption of vvv, we know each

entry vi is a sub-Gaussian random variable with a sub-Gaussian norm at most 1. Then, according

to Hoeffding’s inequality, conditionally on the event B, we have

P

(∣∣∣∣∣ 1√
h

h

∑
i=1

viσ(WWW⊤
i XXX/

√
d)uuu

∣∣∣∣∣≥ t

)
≤ 2exp

(
−ct2),

for every t ≥ 0 and some constant c > 0. Let t = 2
√

n. Considering an 1
4-net N of the unit

sphere Sn−1, we can get

P
(∥∥ fWWW 0(XXX)

∥∥≥√
n
)
≤ P

(
2 max

uuu∈N

∣∣∣uuu⊤ fWWW 0(XXX)
∣∣∣≥√

n
)
≤ 9n2exp(−cn)≤ 2e−c′n, (5.5.15)

for some constant c′ > 0. Hence, based on Lemma 106 and (5.5.15), we can obtain ℓ(WWW 0) ≤

C0
√

n with high probability for some universal constant C0 > 0. Let us denote this event as

C : {ℓ(WWW 0)≤C0
√

n}. Define R := 4ℓ(WWW 0)/α . For any WWW in a ball of radius R centered at

WWW 0, we have ∥WWW 0 −WWW∥F ≤ R and ∥J (WWW )−J (WWW 0)∥ ≤ LR, conditionally on event A . Thus,

by (5.5.14), on event A ∩C , the smallest singular value σmin(J (WWW )) of the Jacobian matrix
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J (WWW ) can be bounded by

σmin(J (WWW ))≥ σmin(J (WWW 0))−∥J (WWW )−J (WWW 0)∥

≥ 2α −LR ≥ 2α − 8β

α

ℓ(WWW 0)√
h

≥ 2α − 8Cβ

α

√
γ1

γ2
,

for some universal constant C > 0 and sufficiently large n,d,h. Notice that here constants C,β ,

and α do not rely on γ2. Therefore, there exists a sufficiently large γ∗ > 0 such that for all

γ2 ≥ γ∗, we have 2α − 8Cβ

α

√
γ1
γ2
≥ α . In other words, when h is sufficiently large but still in

the same order as n and d, for all ∥WWW −WWW 0∥F ≤ R, we have σmin(J (WWW )) ≥ α conditionally

on C ∩A . Combining with (5.5.13) and (5.5.14), conditionally on C ∩A , all the assumptions

of Theorem 6.10 by [OS20] are satisfied when ∥WWW −WWW 0∥F ≤ R. Therefore, when the learning

rate η

n ≤ 1
β 2 min

{
1, 4α

LR

}
, we can get (5.4.3)-(5.4.5) for all t ∈ N, conditionally on C ∩A . Both

events A and C occur with high probability and only depend on initialization WWW 0, XXX and yyy.

Hence we complete the proof of this theorem. Notice that since γ2 ≥ γ∗ is sufficiently large,

4α

LR ≥ α2

2Cβ

√
γ2
γ1
> 1. Therefore, it suffices to require η ≤ n/β 2 to conclude that (5.4.3), (5.4.4)

and (5.4.5) hold with high probability. This completes the proof. Moreover, (5.4.5) further shows

that for all t ∈ N,

∥WWW 0 −WWW t∥F ≤ R ≤C
√

n+od,P(1), (5.5.16)

where we again apply Lemma 106 in the following way:

ℓ(WWW 0)≤C
√

n+od,P(1),

for some constant C > 0 only depending on γ1,γ2,σε ,σ and σ∗.

As a corollary, (5.4.5) controls the deviation of the final step weight from the initial

weight. In Figure 5.15, we empirically verify this result. For instance, Figure 5.15(a) shows that

1√
d
∥WWW t −WWW 0∥, 1√

d
∥WWW t −WWW 0∥F , and 1√

d
∥WWW t −WWW 0∥2,∞ are Θ(1) when trainable parameters are
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lMbbghÑ

(a) Changes for 1√
d
WWW .

-BffFpSEgE÷-t

(b) Changes for CK.

_fEEfEgfIfoI-

(c) Changes for NTK.

Figure 5.15. The change for the weight, CK, and NTK matrices when training NN. (a) The
changes 1√

d
∥WWW t −WWW 0∥, 1√

d
∥WWW t −WWW 0∥F , and 1√

d
∥WWW t −WWW 0∥2,∞. (b) The changes

∥∥KKKCK
t −KKKCK

0

∥∥ and∥∥KKKCK
t −KKKCK

0

∥∥
F . (b) The changes ∥vvvt − vvv0∥,

∥∥KKKNTK
t −KKKNTK

0

∥∥ and
∥∥KKKNTK

t −KKKNTK
0

∥∥
F .

convergent, where WWW t represents the weight matrix after training. This implies that the final WWW t

is still close to the initial weight WWW 0, even after training. Here, we fix d/n = 1.2 and h/n = 0.6

when n is increasing. Here, σ is normalized ReLU and the target is normalized tanh. The largest

n = 6400 and the learning rate η = 5.0 for all training processes. We train each neural network

until the training losses approach zero. Each experiment repeats 4 times. Next, we prove this

observation and Corollary 104.

Proof of Corollary 104. Based on (5.5.16), we know 1√
d
∥WWW 0 −WWW t∥F ≤C0 holds with high

probability for some universal constant C0 > 0. Conditionally on this event, we can then estimate

changes in CK and NTK after training. The method is analogous to Lemma 102. For CK, we

employ Lemma 106 and (5.5.9) to get

∥∥∥KKKCK
t −KKKCK

0

∥∥∥
F

≤ 2
h

(∥∥∥σ(WWW tXXX/
√

d)−σ(WWW 0XXX/
√

d)
∥∥∥+∥∥∥σ(WWW 0XXX/

√
d
∥∥∥) ·∥∥∥σ(WWW tXXX/

√
d)−σ(WWW 0XXX/

√
d)
∥∥∥

F

≲
2λ 2

σ (1+
√

γ1)
2

h
∥WWW 0 −WWW t∥2

F +
2C

√
nλσ (1+

√
γ1)

h
∥WWW 0 −WWW t∥F

≲
2λσ (1+

√
γ1)C0

γ2
2

(λσ (1+
√

γ1)C0 +C
√

γ1) = Od,P(1).

This shows control of the change for the CK matrix after training, compared with the initial CK.
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Let us denote WWW t
i ∈ R1×d as the i-th row of WWW t , and XXX j as the j-th column of XXX . Addi-

tionally, by Assumption 15, we know that

|σ ′(x)−σ
′(y)| ≤ λσ |x− y|, (5.5.17)

for any x,y ∈ R. For NTK, by modifying (5.5.11), one can deduce that

∥J (WWW t)−J (WWW 0)∥2
F =

h

∑
i=1

∥∥J (WWW t
i)−J (WWW 0

i )
∥∥2

F

(i)
≤ 1

h

h

∑
i=1

∥∥∥diag
(

σ
′(WWW t

iXXX/
√

d −σ
′(WWW 0

i XXX/
√

d)
)∥∥∥2

F

∥∥∥∥ XXX√
d

∥∥∥∥2

(ii)
≤

(1+
√

γ1)
2

h

h

∑
i=1

∥∥∥diag
(

σ
′(WWW t

iXXX/
√

d −σ
′(WWW 0

i XXX/
√

d)
)∥∥∥2

F
+od,P(1)

(iii)
≤

λ 2
σ (1+

√
γ1)

2

h

h

∑
i=1

n

∑
j=1

(
1√
d
(WWW t

i −WWW 0
i )XXX j

)
+od,P(1)

(iv)
≤

λ 2
σ (1+

√
γ1)

4

h
∥WWW t −WWW 0∥2

F +od,P(1)≤
λ 2

σ (1+
√

γ1)
4C2

0
γ2

+od,P(1),

where (i) is because of [Ver18, Exercise 6.3.3] and the assumption on vvv, (ii) is due to (5.5.6), (iii)

is due to the definition of Frobenius norm and (5.5.17), and (iv) is due to [Ver18, Exercise 6.3.3]

and (5.5.6). As a result, from (5.5.10), we can finally conclude that
∥∥KKKCK

t −KKKCK
0
∥∥

F = Od,P(1)

as n/d → γ1 and h/d → γ2.

As for the limiting spectra of weight and kernel matrices, since we know that

1√
d
∥WWW t −WWW 0∥F ,

∥∥∥KKKCK
t −KKKCK

0

∥∥∥
F
,
∥∥KKKNTK

t −KKKNTK
0

∥∥
F = Od,P(1),

we can automatically apply Corollary A.41 of [BS10]. This directly implies that the limiting

empirical spectra of 1
hWWW⊤

t WWW t , KKKCK
t and KKKNTK

t are the same as the limiting spectra of 1
hWWW⊤

0 WWW 0,

KKKCK
0 and KKKNTK

0 , respectively, as n/d → γ1 and h/d → γ2 (see Figure 5.14).
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5.6 Proofs for Spiked Eigenstructure of the Trained CK

In this section, we prove Theorem 105. The proof is an application of Theorem 40 in

Chapter 3 as in the one-layer setting of the preceding section, but now reversing the roles of XXX

and WWW . We abbreviate

WWW =WWW trained, YYY =
1√
N

σ(X̃XXWWW ), KKK = YYYYYY⊤

where KKK is the CK matrix of interest. In contrast to the preceding section, the theorem requires

characterizing the left spike singular vector of YYY , and we will do so using Theorem 40(c). Notice

that Theorem 34 studied the spikes in dataset XXX , while here we

We first recall the following approximation of WWW from [BES+22].

Proposition 109. Under Assumption 16, set η = ∑
T
t=1 ηt , and let θ1,θ2 be as defined in (5.4.9).

Then

∥WWW −W̃WW∥ ≺ N−1/2 where W̃WW =WWW 0 +
bσ η

n
XXX⊤yyyaaa⊤. (5.6.1)

The largest singular value smax(WWW ) falls outside the limit of its empirical singular value distribu-

tion if and only if θ1 > γ
1/4
0 , in which case smax(WWW ) and its unit-norm left singular vector uuu(WWW )

satisfy

smax(WWW )→ s1 :=

√
(1+θ 2

1 )(γ0 +θ 2
1 )

θ 2
1

, |uuu(WWW )⊤βββ ∗|2 →
θ 2

2
θ 2

1

(
1−

γ0 +θ 2
1

θ 2
1 (θ

2
1 +1)

)
a.s. (5.6.2)

Proof. Notice that each gradient update matrix GGGt of (5.4.7) takes the form

GGGt =
1
n

XXX⊤
[(

1√
N

(
yyy− 1√

N
σ(XXXWWWt)aaa

)
aaa⊤
)
⊙σ

′(XXXWWWt)

]
,

From the proof of [BES+22, Lemma 16], for each t = 1, . . . ,T , this matrix GGGt satisfies the same
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rank-one approximation ∥∥∥√N GGGt −
bσ

n
XXX⊤yyyaaa⊤

∥∥∥≺ N−1/2.

This implies (5.6.1) in light of (5.4.7), and the statements of (5.6.2) then follow from [BES+22,

Theorem 3].

We denote the columns of WWW ≡WWW trained ∈ Rd×N and of the initialization WWW 0 ∈ Rd×N by

wwwi ∈ Rd, wwwi,0 ∈ Rd for i ∈ [N]

respectively. Fixing a large constant B > 0 and small constant ε > 0, define the event

E (WWW ) =
{
∥WWW∥< B, |www⊤

i www j|< n−1/2+ε and |∥wwwi∥−1|< n−1/2+ε for all i ̸= j ∈ [N]
}
.

Lemma 110. Under Assumption 16, for some sufficiently large constant B > 0 and any fixed

ε > 0, E (WWW ) holds almost surely for all large n and any fixed T ∈ N.

Proof. By the assumption [WWW 0]i j
iid∼ N (0,1/d), it is immediate to check that E (WWW 0) holds

almost surely for all large n. To show that E (WWW ) holds, we apply the approximation (5.6.1).

Here, under Assumption 16, we have by standard tail bounds for Gaussian vectors and matrices

that

1{∥XXX⊤yyy∥>Cn} ≤ 1{∥XXX∥ · (λσ∗∥XXXβββ ∗∥+∥εεε∥)>Cn} ≺ 0, 1{∥aaa∥>C} ≺ 0

for a sufficiently large constant C > 0, and also ∥aaa∥∞ ≺ N−1/2. Then this implies

max
1≤i≤N

∥wwwi −wwwi,0∥ ≤ max
1≤i≤N

∥w̃wwi −wwwi,0∥+∥WWW −W̃WW∥ ≺ N−1/2 (5.6.3)

and 1{∥WWW −WWW 0∥>C′} ≺ 0 for a constant C′ > 0. Then E (WWW ) also holds almost surely for all
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large n, as claimed.

Analogous to the argument of Section 3.7.1, we may now condition on WWW , i.e. we assume

that WWW is deterministic and satisfies E (WWW ) for all large n, and we write E for the expectation

over only the randomness of the new data (X̃XX , ỹyy). Defining

GGG =

√
N
n
(YYY −EYYY ) ∈ Rn×N , uuu =

1√
n

ỹyy ∈ Rn where YYY =
1√
N

σ(X̃XXWWW ), (5.6.4)

observe that [uuu,GGG] ∈ Rn×(N+1) has centered i.i.d. rows with respect to the randomness of (X̃XX , ỹyy).

We will write Exxx for the expectation with respect to a standard Gaussian vector xxx ∼ N (0, IIId).

Lemma 111. Suppose WWW satisfies E (WWW ) for all large n. Then

∥Exxx[σ(xxx⊤WWW )]∥→ 0, ∥EYYY∥→ 0, ∥ΣΣΣ−ΣΣΣlin∥→ 0 (5.6.5)

where

ΣΣΣ := Exxx[σ(xxx⊤WWW )⊤σ(xxx⊤WWW )]−Exxx[σ(xxx⊤WWW )]⊤Exxx[σ(xxx⊤WWW )] (5.6.6)

ΣΣΣlin := b2
σ (WWW

⊤WWW )+(1−b2
σ )IIIN . (5.6.7)

Proof. The proof is the same as Lemmas 58 and 59 in Chapter 3. We ignore the details for

simplicity.

Proof of Theorem 105. We condition on WWW satisfying E (WWW ) for all large n, and we apply

Theorem 40(c) for [uuu,GGG]∈R(n+1)×N (exchanging n and N). It may be checked that Assumption 6

holds for [uuu,GGG] by the same argument as in Lemma 62.

By the convergence ∥ΣΣΣ−ΣΣΣlin∥ → 0 in Lemma 111 and Proposition 109, if θ1 > γ
1/4
0 ,

277



then Assumption 7 holds for ΣΣΣ with r = 1 and

ν = b2
σ ⊗ρ

MP
γ0

⊕ (1−b2
σ ), λ1 = b2

σ

(1+θ 2
1 )(γ0 +θ 2

1 )

θ 2
1

+(1−b2
σ ) /∈ supp(ν),

where ρMP
γ0

is the standard Marčenko-Pastur limit for the empirical eigenvalue distribution of

WWW⊤WWW , hence ν is the limit empirical eigenvalue distribution of ΣΣΣ, and λ1 is the limit of λmax(ΣΣΣ).

If instead θ1 ≤ γ
1/4
0 , then Assumption 7 holds with r = 0.

Then Theorem 40(a,c) characterizes the outlier eigenvalue and eigenvector of GGGGGG⊤,

showing:

• GGGGGG⊤ has a spike eigenvalue if and only if θ1 > γ
1/4
0 and z′(−1/λ1) > 0, where z(·) is

defined by (1.2.6) with γ = γ1 and the measure ν given above. In this case, λmax(GGGGGG⊤)→

z(−1/λ1) almost surely.

• When θ1 > γ
1/4
0 and z′(−1/λ1) > 0, letting uuu(GGG),vvv(ΣΣΣ) be the leading unit-norm left

singular vector of GGG and leading unit-norm eigenvector of ΣΣΣ, almost surely

|uuu⊤uuu(GGG)|−
√

z(−1/λ1)ϕ(−1/λ1)

λ1
·
∣∣∣Exxx[σ∗(βββ

⊤
∗ xxx)σ(xxx⊤WWW )]vvv(ΣΣΣ)

∣∣∣→ 0.

where ϕ(·) is defined by (3.3.6) also with γ = γ1 and the above measure ν .

By an application of Weyl’s inequality and the Davis-Kahan Theorem as in the proof

of Theorem 34, this implies for KKK = YYYYYY⊤ that if θ1 > γ
1/4
0 and z′(−1/λ1)> 0, then its leading

eigenvalue λmax(KKK) and unit eigenvector ûuu satisfy

λmax(KKK)→ γ
−1
1 z(−1/λ1),

|uuu⊤ûuu|−
√

z(−1/λ1)ϕ(−1/λ1)

λ1
·
∣∣∣Exxx[σ∗(βββ

⊤
∗ xxx)σ(xxx⊤WWW )]vvv(WWW )

∣∣∣→ 0,
(5.6.8)

where vvv(WWW ) is the leading unit eigenvector of ΣΣΣlin, i.e. the leading right singular vector of WWW .

If θ1 ≤ γ
1/4
0 or z′(−1/λ1)≤ 0, then all eigenvalues of KKK converge to the support of its limiting
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empirical eigenvalue law.

Finally, in the case of θ1 > γ
1/4
0 and z′(−1/λ1) > 0, we may conclude the proof by

showing ∥∥∥Exxx[σ∗(βββ
⊤
∗ xxx)σ(xxx⊤WWW )]−bσ bσ∗βββ

⊤
∗ WWW
∥∥∥→ 0 a.s. (5.6.9)

For each column i ∈ [N], we have from (5.6.3) that

∥wwwi −wwwi,0∥ ≺ N−1/2,

where wwwi,0 ∼ N (0,d−1III) and βββ ∗ is deterministic. Hence (wwwi,βββ ∗) satisfy the approximate

orthonormality conditions |∥wwwi∥− 1| ≺ N−1/2, ∥βββ ∗∥− 1 = 0, and |www⊤
i βββ ∗| ≺ N−1/2. Then

Lemma 16 implies

∣∣∣Exxx[σ∗(βββ
⊤
∗ xxx)σ(xxx⊤wwwi)]−bσ bσ∗βββ

⊤
∗ wwwi

∣∣∣≺ N−1.

(We note that Lemma 16(a) assumes σ = σ∗, but the proof is identical for σ ̸= σ∗ both sat-

isfying Assumption 5.) Applying this to each coordinate i ∈ [N] yields (5.6.9). Observe that

βββ
⊤
∗ WWWvvv(WWW ) = smax(WWW ) ·βββ⊤

∗ uuu(WWW ) where smax(WWW ) and uuu(WWW ) are the leading singular value and

left singular vector of WWW , and recall from the definitions (5.6.4) that uuu = 1√
n ỹyy. Then we can apply

(5.6.9) and Proposition 109 to (5.6.8) to conclude that

1√
n
|ỹyy⊤ûuu| → bσ bσ∗

√
z(−1/λ1)ϕ(−1/λ1)

λ1
·

θ2

√
(θ 4

1 − γ0)(γ0 +θ 2
1 )

θ 3
1

> 0 a.s.
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