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ABSTRACT

Adaptive Photothermal Emission Analysis Techniques for Robust Thermal

Property Measurements of Thermal Barrier Coatings
Raymond Valdes

The characterization of thermal barrier coating (TBC) systems is increasingly
important because they enable gas turbine engines to operate at high temperatures and
efficiency. Phase of photothermal emission analysis (PopTea) has been developed to
analyze the thermal behavior of the ceramic top-coat of TBCs, as a nondestructive and
noncontact method for measuring thermal diffusivity and thermal conductivity. Most
TBC allocations are on actively-cooled high temperature turbine blades, which makes
it difficult to precisely model heat transfer in the metallic subsystem. This reduces the
ability of rote thermal modeling to reflect the actual physical conditions of the system
and can lead to higher uncertainty in measured thermal properties. This dissertation
investigates fundamental issues underpinning robust thermal property measurements
that are adaptive to non-specific, complex, and evolving system characteristics using

the PopTea method.

A generic and adaptive subsystem PopTea thermal model was developed to account
for complex geometry beyond a well-defined coating and substrate system. Without a
priori knowledge of the subsystem characteristics, two different measurement
techniques were implemented using the subsystem model. In the first technique, the

properties of the subsystem were resolved as part of the PopTea parameter estimation
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algorithm; and, the second technique independently resolved the subsystem properties
using a differential “bare” subsystem. The confidence in thermal properties measured
using the generic subsystem model is similar to that from a standard PopTea

measurement on a “well-defined” TBC system.

Non-systematic bias-error on experimental observations in PopTea measurements
due to generic thermal model discrepancies was also mitigated using a regression-based
sensitivity analysis. The sensitivity analysis reported measurement uncertainty and was
developed into a data reduction method to filter out these “erroneous” observations. It
was found that the adverse impact of bias-error can be greatly reduced, leaving
measurement observations with only random Gaussian noise in PopTea thermal

property measurements.

Quantifying the influence of the coating-substrate interface in PopTea
measurements is important to resolving the thermal conductivity of the coating.
However, the reduced significance of this interface in thicker coating systems can give
rise to large uncertainties in thermal conductivity measurements. A first step towards
improving PopTea measurements for such circumstances has been taken by
implementing absolute temperature measurements using harmonically-sustained two-
color pyrometry. Although promising, even small uncertainties in thermal emission
observations were found to lead to significant noise in temperature measurements.
However, PopTea analysis on bulk graphite samples were able to resolve its thermal

conductivity to the expected literature values.
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Chapter 1 Introduction

High efficiency power generation through gas-turbine engines (GTE) is possible
through increased operating temperatures and more efficient thermal management
systems [1]-[3]. Since operating temperatures are in excess of the metallurgical
temperature limits of super-alloys [3] further near term increases to thermal efficiency,
using super-alloys, will be dependent on the use improved of Thermal Barrier Coatings
systems (TBCs) to provide thermal protection. TBCs are refractory ceramic coatings
that protect underlying metallic surfaces from high temperature exposure and, with
active cooling [4], have enabled the use of higher gas operating temperatures. Design

of TBCs materials is functionally driven by thermomechanical requirements, including



low thermal conductivity, and the desire to provide “prime-reliant” performance over

the designed lifetime of these coatings [5]-[7].

Thermal property measurements are beneficial to research and development,
manufacturing, and for life-time monitoring of TBCs. Schulz, et al. summarized some
of the benefits of measuring TBC thermal properties [8]: First, thermal conductivity is
an important performance criterion, it can be used as a metric for ranking existing and
novel coatings based on their thermal insulation efficiency. Second, the TBC
fabrication process can be highly variable and can significantly impact thermal
properties [9]. Third, isolating and determining the contribution of porosity, fine
interlamellar defects, cracks, and other manufacturing variations on the resulting
thermal properties can help provide guidelines for engine manufacturing to produce
better coatings. Measuring thermal property changes on TBCs that have seen engine
service will lead to more comprehensive lifetime prediction modeling that can better
reflect the degradation effects of thermal cycling [10], thermal-shock [11], calcium-
magnesium-aluminosilicate (CMANS) attack [12], syngas exposure [13], impact (FOD)
[14], and other high-temperature effects. Finally, thermal properties are highly
dependent on coating morphology and deposition on geometric curvature, common to
gas turbine airfoil blades, can lead to significant morphological differences between

coatings deposited on engine components as oppose to flat sample surfaces.

Despite its vital importance, in practice the desired level of thermal property

characterization during production and post-service measurements of TBCs has not



been realized. Conventional thermal analysis techniques are unable to nondestructively
evaluate the thermal properties of coatings on intact gas turbine components.
Conventional methods require bulk or “free standing” samples to access both the front
and rear side of the specimen [15]. Preparation of such samples can be unreliable, and
working with a limited number of such samples may not capture all the manufacturing
variability of coatings [15], [16]. In addition, conventional methods require optically
opaque samples, that necessitate the use of optical coatings on semi-transparent TBCs,

and are fundamentally thermal diffusivity () measurements that require additional

heat capacity (C,) and density (p) measurements to evaluate thermal conductivity:
k=a-p-C,.

To increase the level of thermal property characterization of TBCs, some
nondestructive front-sided thermal property measurements have emerged in recent
years that address some of the limitations of conventional techniques. Nondestructive
techniques share a common basis in optical heating, thermal transport modeling, and
thermal response observations to estimate thermal properties. For example, the Pulsed
Thermal Imaging (PTI) method applies a spatially uniform heat pulse to a TBC surface
and measures the transient surface temperature with an infrared camera to resolve both
the thermal diffusivity and thermal conductivity of the coating [17]. Bison et al.
developed the Pulsed Thermography (PT) method that applies a Gaussian laser pulse

to a TBC surface and the anisotropic in-depth and in-plane thermal diffusivity and



thermal conductivity is measured by tracking the transient temperature response [18],
[19]. Phase of Photo-Thermal Emission Analysis (PopTea) measures the thermal phase
response of coatings to sustained harmonic heating using a radiometric measurement
of a single location on the front surface [20], [21]. The dependence on accurate thermal
transport modeling that reflects the heating and sample characteristics has restricted
both conventional and nondestructive techniques to well-defined and strictly controlled

test samples and environments.

The motivation to move nondestructive methods away from imposing strict control
over the characteristics of the samples is desired for making accurate measurements on
complex, or unknown hardware configurations, and for evolving coating systems.
Some simple examples of sample characteristics that can complicate coating
measurements are effects of additional deposits developing on the TBC “topcoat”, or
delamination of the coating and substrate interface, or the underlying wall thickness.
Most TBC are on actively-cooled high temperature turbine blades, illustrated Figure
1.1. Hollowed out cores on some parts of the turbine blade makes it difficult to precisely
model the behavior of heat transfer into the metallic subsystem (below the coating) for
specific thermal property measurement methods. This reduces the ability of rote
thermal modeling to reflect the actual physical conditions of the sample, and can lead
to higher uncertainty in measured thermal properties. This issue is a primary focus of
the present dissertation. Building adaptive thermal modeling that can reflect changing

sample characteristics and designing adaptive data reduction strategies to minimize and



filter out the use of ill-modeled experimental data is the key to developing robust

measurement methods that can report thermal properties with the lowest uncertainty.

In general, PopTea, like other transient measurements, is highly sensitive to thermal
diffusivity because of its prevalent role in the heat diffusion equation. However,
PopTea has only a limited ability to resolve thermal conductivity from phase
measurements that comes from the heat flow boundary condition at the interface
between the coating and substrate material. This required thermal effusivity contrast
may be obscured by the thickness of the coating or delamination between the coating
and substrate, leading to inaccurate thermal conductivity measurements. However,
incorporating temperature amplitude measurements into PopTea may lead to a
desirable increase in sensitivity to thermal conductivity because of its direct
relationship to the temperature scale. Exploring this possibility is another goal of the

present dissertation.

This dissertation examines fundamental issues underpinning robust thermal
property measurements that are adaptive to non-specific, complex, and evolving
sample characteristics using the PopTea method. The motivation behind this research
is the need to be able to make thermal property measurements of intact and serviceable
TBCs on turbine hardware. To this end, the central challenges addressed in this

dissertation are:



a) Develop an adaptive complex substrate model to reduce the influence
of uncertainty of substrate geometries on the accuracy of thermal
property measurements in Chapter 4.

b) Develop an uncertainty measurement optimization method of data
reduction to minimize uncertainty by selectively filtering out
experimental observations that deviate from a well-defined thermal
model in Chapter 5.

c) Develop a harmonic two-color pyrometry method to enhance PopTea
measurement through temperature amplitude analysis in Chapter 6. This
is a preliminary step towards front-surface temperature measurements

for reducing thermal conductivity uncertainty.

The unifying theme of these chapters is to reduce measurement error under
uncertain physical conditions. This dissertation is organized as follows: In the chapters
that follow this introduction, a thorough review of the state-of-the art understanding
thermal property measurements of TBC systems is presented, with emphasis on the
PopTea method, in Chapter 2. In Chapter 3, an overview of the experimental methods
is presented, which includes a description of the optical heating and the thermal

detection.

Chapter 4 presents the results of introducing an adaptive and generic subsystem

thermal model to account for complex geometry beyond a well-defined coating and



substrate system. Experimental results are included to illustrate the method, including
the demonstration of a differential PopTea approach for subsystem characterization.
Complementary to addressing thermal behavior beyond a well-defined substrate,
Chapter 5 will later explore a data reduction method for addressing model

discrepancies.

In Chapter 5, the development of a regression-based sensitivity analysis is used to
address the need to assess the uncertainty of the parameter estimation. The uncertainty
method is applied to phase-spectra datasets with non-systematic bias-error introduced
by model conformity discrepancies. This method’s role in filtering out error for
measurement optimization is discussed. This uncertainty measurement method is then

the basis of uncertainty quantification in Chapter 6.

Chapter 6 extends the conventional two-color pyrometry method to make
temperature measurements of a harmonically-sustained temperature field. This is the
first time that the harmonic temperature amplitude-spectra are used in addition to the
phase-spectra for the PopTea method. This is developed in conjunction with a single-
layer disk thermal model to make thermal conductivity measurements using the

temperature amplitude-spectra.

Finally, conclusions and recommendations for future directions are presented in

Chapter 7.
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Figure 1.1: Cooling is routed through the turbine airfoil cross-section to remove heat

absorbed by the component to maintain the temperature difference between the gases

and the interior of the component. Figure adapted from Ref [22].



Chapter 2 Background

2.1 Gas Turbine Engines and Thermal Barrier Coatings

Gas Turbine Engines (GTEs) are used in a wide variety of applications, including,
electricity generation, marine propulsion, aircraft propulsion ---both rotor and fixed-
wing; a few of these implementations are illustrated in Figure 2.1. The Brayton
thermodynamic cycle can be used to describe the thermodynamic states, heat transfer
and work generated by GTEs. There are three fundamental components that drive this
cycle, a compressor, combustor, and a turbine. The compressor increases the pressure
of the inlet gas through a series of compressor stages, with typical overall pressure
increases of 40:1 in aircraft GTEs [23]. The combustor elevates the temperature of the

high-pressure gas; then, the high-pressure and high-temperature gas is expanded



through the turbine to produce work, Figure 2.2 shows a typical implementation for
aircraft propulsion. The most demanding environments in a GTE are in the combustor

and turbine stages.

Since the 1950’s, when the first large-scale introduction of gas turbine engines for
aircraft propulsion occurred, component operating temperatures have risen to well over
1300°C [24]. This rise in temperature has been made possible through advances in
structural metal alloys, active cooling strategies, and advances in thermal barrier
coatings (TBCs). This march towards higher temperatures is driven by the
thermodynamics of an ideal Brayton cycle, which approaches the Carnot cycle
efficiency given by:

Mearnor =1 —% 2.1)

where, 7’ is the operating temperature of the gas at the turbine inlet and, for an open-

loop cycle, and 7, is (ideally) the atmospheric temperature at the turbine outlet.

However, the actual efficiency of GTEs are significantly lower due, in part, by active

cooling methods necessary to remove heat absorbed by the turbine components [4].

Internal cooling of GTE parts is performed by heat convection, through jet
impingement, pin-fin, and forced convection along a ‘“serpentine” path within the
component. Jet impingement is the redirection of a coolant flow directly against

internal surfaces of the engine component. Pin-fin cooling is implemented by building

10



an array of fins or ribs within the component structure that serve as heat sinks that draw
thermal energy from the component and into the coolant flow. External cooling is
implemented by strategically placed holes and slots that sustain a coolant film over the
engine component that increases the thermal boundary layer between the hot
surrounding gases and the structure. Illustrations of these cooling methods are shown
in Figure 2.3 and form the basis for the complex geometry and curvature within turbine

components.

In addition to active cooling methods, high gas temperatures have been achieved
by using TBCs. TBCs were first used in the 1980s to prolong the life expectancy of
engine components under high temperature environments, and, as operating
temperatures increase, they have become critical to maintaining the structural integrity
of engine components. Figure 2.4 shows the general increase in gas operating

temperatures due to advances in active cooling and TBC technologies.

Typical TBCs are a three-layer system, illustrated as Figure 2.5, which are
deposited or grown on metallic substrates. The metal substrates are typically single-
crystal nickel-alloys that have excellent thermal creep resistance. The first layer is an
aluminum rich bonding coat that provides an aluminum reservoir for the thermally

grown oxide (TGO). The a-Al,O, TGO (second layer) serves as a thin ~10 um but

mechanically robust oxygen diffusion barrier that prevents corrosion of the metal
substrate. The final topcoat is a thermally insulating oxide layer that is typically yttria

partially stabilized zirconia (YSZ). Among high temperature ceramics, YSZ is uniquely

11



suited because it has low thermal conductivity and weight, can remain intact while
withstanding large thermal stress and shock, and is chemically compatible with the
underlying TGO and metallic substrates [25]. Top coats are typically deposited using
electron beam-phase vapor deposition (EB-PVD) or air plasma spray (APS) methods.
The EB-PVD process grows columnar grains normal to the surface that provides high
“strain tolerance” to thermal stress by having the cracks and porosity between the
vertical grains. The APS deposition melts powders and propels material as a spray to
create a coating with a layered “splat” microstructure, having pores and cracks at the
splat boundaries. The choice between these methods is based on the desired
microstructure, thermal conductivity, and surface texture of the YSZ coating; an

illustration of their microstructure is shown in Figure 2.6.

The key performance characteristic of the YSZ topcoat is that it has a much smaller
thermal conductivity (0.8—1.9 W-m"'K™) [26] than the bond-coat and substrate layers
(~10 W-m"'K™) [27]. This means that even a very small deposition (100 um to 1 mm)
can create a significant 100 —300°C temperature drop from the YSZ surface to the
metallic substrate. Since the TGO is thin, relative to the other layers, and the bond-coat
has similar thermal properties to the substrate, it is a valid simplification to consider

the TBC system as a two-layer structure, consisting of a topcoat and substrate material,

with respect to thermal modeling.
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For a given heat flux (¢"), the top coat’s thermal conductivity (k) and thickness

(L) are the key properties that determine the temperature drop AT across the TBC:

AT = % 2.2)

Increasing this temperature drop, to maintain a desired substrate temperature, can be
achieved by either reducing thermal conductivity, increasing the TBC thickness, or
increasing the heat flux passing through the TBC system by the active cooling strategies
previously described. Although modern GTEs use active cooling, there is a penalty
with respect to the overall system pressure ratio and efficiency as air is bypassed from
the compressor to the turbine components and is mixed with the hot gases. There are
also practical limits on increasing coating thicknesses. In some applications,

predominately in ground-based power generation, TBC coating can be 2 —3 mm thick.

Thicker coatings can offer better durability and wear performance [28]. However,
increasing the parasitic weight of engine parts can also pose significant problems,
particularly in propulsion systems. Parasitic weight increases the startup rotational
inertia of the turbines, increases the steady centrifugal loads on the turbine blades, and
increases the overall weight of the engine. However, land based power generation
engines are less sensitive to parasitic weights and this is often where thicker coatings

are used.

13



The most desirable means for increasing the temperature drop across the coating is
to reduce its thermal conductivity. Since thermal conductivity depends on the coating
composition and microstructure, much active research is being done to improve the
deposition processes and find alternatives materials that can lower thermal conductivity
without sacrificing other performance criteria. The importance of predicting and
estimating thermal conductivity based on material selection and processing conditions
have lead researchers to develop analytical, numerical, and experimental methods for

this objective.

The first-principles approaches for estimating thermal conductivity of
heterogeneous materials are based on structural models using Series and Parallel
Theory [29], two forms of Maxwell-Eucken Theory [30], [31], and Effective Medium
Theory [32], [33]. The Series and Parallel structural methods are based on assuming
components are in the direction or parallel to the direction of heat flow [34]. The well-
known Maxwell-Eucken models assume the components are spherical elements are in
a dilute medium. The Effective Medium Theory is a statistical approach to structural
modeling and has been reviewed by [35]-[37]. Wang presented a unifying equation
that combines these five models based on simple combinatory rules [38]. The benefit
of using analytical approaches come from their physical basis, and rapid and low
computational cost of calculation. They serve an important role in validating numerical
approaches [39], but their widespread use in thermal conductivity predictions for TBCs

is limited by their difficulty to deal with nonuniform and evolving microstructures.
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Numerical approaches using finite-element methods have shown much promise in
predicting thermal conductivity. Emerging numerical methods tackle the challenge of
nonuniform and complex microstructure by using micrographs to build numerical
models based on the actual microstructure of the coating [40]-[42]. The benefits of
these approaches is that they are useful in the parametric design of coatings and for
elucidating the effects of microstructure. However, unless the microstructure of the
coatings can be revealed using nondestructive methods, micrograph based numerical

techniques will continue to remain as destructive measurement tools.

Analytical and numerical approaches for predicting thermal conductivity will
continue to play an important role in the development of TBCs [42], [43]. The accuracy
and precision of these approaches will continue to develop; however, the practical
application of these methods are limited by their need for well-characterized
microstructures, i.e. micrographs, that makes these destructive measurement methods.
Their role should continue to grow as important verification and validation methods for

experimental thermal conductivity measurements [44]-[46].

2.2 Conventional Thermal Property Measurements of TBCs

The ubiquitous use of coatings in gas turbine engines (GTE) drives the need for
nondestructive evaluation (NDE) of thermal barrier coating systems (TBCs). Thermal
property measurements infer the thermophysical properties of a material through its

response to a heat source or heat flux. Several methods have been developed to address
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the need for such measurements. All techniques fundamentally share three
characteristics: (1) a heat transport model describing the flow of energy through the
material, (2) an experimental means to probe the temperature field that results from this
flow of energy, and (3) an inverse solution to the model based on a parameter estimation

algorithm to determine unknown thermophysical properties [47].

Heat transport requires two thermophysical properties to describe the behavior of a

system: thermal conductivity & and the volumetric heat capacity pC, (or equivalently
k and thermal diffusivity o = k/ pC, ). However, most thermal property measurements

seek to determine only one of these properties, with the advantage of simplifying the
measurement method. For example, the conventional guarded hot plate technique [48],
[49] utilizes steady-state heat diffusion to determine thermal conductivity. However,
by eliminating time-dependent behavior it is impossible to measure properties related

to thermal storage (i.e. oC,). On the other hand, methods that probe the transient

behavior of heating, such as the thermal flash method [50], are used to measure thermal
diffusivity. Dependencies on thermal conductivity are typically removed with the use
of adiabatic or Direchlet boundaries [51]. Thermal Flash Method (also called Heat
Pulse, Pulse, Flash, and Laser Flash method) [52], which is a ASTM standard method
(E1461), is the most commonly used method for analyzing TBC thermal properties
because is highly standardized and relatively simple. The thermal flash method

generally requires separate measurements of density and heat capacity to resolve the
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thermal conductivity of a material [53]-[56], or assumes a heat capacity value using
the high temperature Dulong-Petit rule [57]. Relying on literature values of density and
heat capacity to determine thermal conductivity from thermal diffusivity measurements
can introduce a large degree of uncertainty [58]. For this reason, it is desirable to have
a thermal property measurement method that is able to simultaneously resolve two

independent thermal properties.

Measurements of thermal diffusivity require temporal measurements of
temperature under conditions of known spatial scales for heat transfer. Scaling analysis

[59] of the heat equation demonstrates that the spatial scale (Ax) and time scale (Af)

for heat transfer are related to thermal diffusivity by

2
o~ AA"—Z 2.3)

For example, for the thermal flash method, the time scale for heat transfer is determined
from the thermogram (the temperature rise of the back surface - generally the time
difference between the mid and max temperature values - in response to impulse
heating of the front surface of the sample). The spatial scale for heat transfer in the

thermal flash method is the thickness of the sample.

Alternatively, some thermal diffusivity methods use sustained harmonic heating,
rather than the impulse heating of thermal flash. These methods have been implemented

using the mirage effect [60], interferometry [61], optical reflectance [62], surface
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displacement [63], and PopTea [21]. In such methods, the phase lag between heating
and the thermal response of the sample is the measured time scale (when divided by
the frequency of heating). Heat transfer can interact with known geometric scales in
these measurements to determine thermal diffusivity. The benefit of using sustained
harmonic heating is that the length scale of thermal penetration can be controlled by
the heating frequency. This can be leveraged to make a large number of unique
experimental observations as the thermal penetration probes deeper into the sample.
However, the thermal flash method has had a long history of development and has been
extended from bulk sample measurements to complex TBC systems. A common

implementation of the thermal flash method is illustrated in Figure 2.7.

The thermal flash method, first developed by Parker, Jenkins, Butler and Abbott
[50] ushered a family of non-contact methods which relied on heating the front surface
of a sample and measuring the transient temperature evolution on the back surface
through the use of an infrared detector. This method minimized much of the
uncertainties associated with classical methods [49] by reducing the length of time
required to make measurements and allowing the use of much smaller test samples
[50]. The transient heat transport model and solution used by Parker is developed in
Carslaw and Jaeger [64] for an opaque solid exposed to an instantaneous, uniform, and

high pulse of energy at the front surface. This allowed for a relatively simple inversion

for the thermal diffusivity (a = k/ pC p), such that the thermal diffusivity could be

expressed as a function of the sample thickness and a time-scale parameter:
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(2.4)

where, the time-scale parameter (tl/z) is the time it takes the back face of the sample

to reach half of its maximum temperature. This method can make measurements in a
wide range of temperatures; for example, by increasing the sample steady state
temperature Rudkin, Jenkins, and Parker were able to use the thermal flash method to
measure the thermal diffusivity of titanium, molybdenum and Armco iron from

300-1800°C [65].

Thermal flash requires a high degree of sample preparation and measurement
control for accurate measurements. Cowan [66] and Cape [67] demonstrated the need

for including radiation and convective losses at temperatures greater than 1000 K or

by decreasing the sample thickness to reduce the timescale for thermal losses. Then, to
allow accurate measurements of very thin samples, Cape, Taylor, Larson, Heckman,
and Azumi [67]-[71] modeled the heat flux as a finite-pulse width. Furthermore, Chu,
Taylor and Donaldson [51] argued that accounting for radial heat spreading was more
relevant than the radiation or convection losses at elevated temperatures. These
contributions have led to numerous solutions to the heat conduction equation that were
developed to address multiple forms of heat loss and have emphasized the need for a
strictly-controlled thermal flash experimental apparatus that can closely standardize

these heat losses.
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Thermal property measurements on TBCs differs from bulk samples because (1)
they are composed of two or more distinct layers, (2) the topcoat can be semi-
translucent to the heating wavelengths [72], [73] and (3) their thermophysical
properties may be particularly dependent on the deposition process. The need for
layered composite measurements were recognized and developed for the thermal flash
method through changes in the heat conduction modeling [74]-[80]. The translucency
of TBC:s to radiative heating and thermometry [81] is typically addressed by applying
optical coatings. However, the application of optical coatings, such as colloidal
graphite, is not desirable. The porous nature of the coatings means the graphite is
absorbed into the coating and this may make it difficult to remove from the surface.
Furthermore, the graphite coating may act as a distinct thermal layer which influences
the thermal modeling. Finally, it may be difficult to replicate the coating thickness in a
systematic process [82]—[84]. The thermal flash method’s need for front and rear access
of the sample material means that measurements on engine hardware would require the
destruction of the component. This would make the standardized thermal flash method
unsuitable for tracking the evolution of the thermal properties due to in-service

conditions.

In summary, the thermal flash method is widely used due to its long history and
development, standardization, and many commercially available implementations (TA
Insturments, Linseis, Netzsch Group). However, its need for front and rear access,

optical coatings, and additional heat capacity and density measurements makes it
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undesirable for nondestructive evaluation of TBCs on engine hardware. Front surface
photothermal methods have emerged that address the limitations of the conventional

thermal flash method.

2.3 Front Surface Photothermal Methods

The family of photothermal methods encompasses a wide range of techniques that
uses optical heating as a convenient and precise form of heating [85]. The methods
described in this section are three photothermal techniques that have been used to make
thermal property measurements of TBCs. These methods all use optical heating sources
(either by laser or flashlamp) to induce a temperature response in the TBC that can be
measured. Since heating and thermal interrogation are both done at the front surface of
the sample, these methods can be used for nondestructive evaluation of TBCS. This

makes them promising candidates for making measurements on engine hardware.

2.3.1 Pulsed Thermal Imaging

Pulsed Thermal Imaging (PTI) was first developed as a “front-flash” thermal
imaging nondestructive evaluation method to measure thermal diffusivity of ceramic
composites, by Stuckey [86] and Sun [87]. The first implementation uses two Zenon
flashlamps to apply a uniform pulse of thermal heating to the surface of a sample. A
well-calibrated thermal imaging camera then measures the temperature response from
the front surface, an illustration of the experiment is shown in Figure 2.8. A heat

conduction model describes the pulse heating of the sample and is used to fit for thermal
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diffusivity (o) and thermal effusivity (e) in a nonlinear parameter estimation

algorithm. Thermal conductivity can be resolved from these thermal parameters by:

k = e . PTI has been used to detect small cracks and changes in porosity, and
material nonunformity in ceramic composites [88] and delaminations of environmental
barrier coatings on gas turbine vanes [89]. Further developments of this approach have
been applied to TBCs on thin substrates [17] and the measurement has been expanded

to make both thermal diffusivity and thermal conductivity measurements [90].

Some advantages of the PTI technique are that it can resolve both thermal
conductivity and thermal diffusivity and it is fast for spatial mapping of coating
properties because it captures the thermal imaging of a two-dimensional field [91]. The
heat transfer model can accommodate a coating on a finite substrate which makes it a
candidate for measurements on actual turbine structures. The limitation of PTI method
is that the parameter estimation algorithm depends on a model of a surface temperature,
similar to the thermal flash method. In order to measure the surface temperature of
semi-translucent coatings the PTI method has needed to apply colloidal-graphite
coatings to make thermal property measurements [17], [91]. The drawbacks of applying

additional optical coatings to TBCs have already been previously described.

2.3.2  Pulsed Thermography Method

The Pulsed Thermography (PT) method is another type of “front-flash” thermal

property measurement technique. The key characteristics of this method is that it uses
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a laser to deliver a focused Gaussian-distributed heat pulse and a thermal imaging
camera to view the thermal response, the experiment is illustrated in Figure 2.9. Two-
dimensional anisotropic thermal modeling allowed for the resolution of both in-plane
and through-plane thermal diffusivity and conductivity [18], [19]. This method has
been used to study sintering and cracking of APS TBC coupons [92], the effects of APS
deposition parameters [93], coating thickness of gypsum on marble [94], porosity of
TBCs [95], and measurements on bulk solids [96]. The main drawback to this method
is that it models laser heat absorption as a surface heat flux and circumvents the semi-
translucency of the TBCs by applying optical coatings to the samples. The drawbacks
of applying additional optical coatings to TBCs, to satisfy this thermal model, have

already been previously described.

2.3.3 Phase of Photothermal Emission Analysis Method

The Phase of Photo-thermal Emission Analysis (PopTea) method was developed to
address the limitations of the thermal flash method described in Section 2.2, the
experiment is illustrated as Figure 2.10. It requires little sample preparation in that there
is no need to apply optical coatings because the heat transport model accounts for the
volumetric absorption and emission of thermal energy within the semi-transparent
coatings [20], [21]; this makes it a truly noncontact evaluation method. Thermal

modeling has been developed to address anisotropic thermal properties [20] that may
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arise in EB-PVD coatings. And the PopTea method can resolve both thermal diffusivity

and thermal conductivity.

The PopTea method shares some similarities with the thermal flash method, the
PTI “front-flash” method, and the PT method; these methods measure a transient
response to heating, and use infrared detectors to measure the thermal response from a
heat source. However, differences are readily apparent in that the PTL, PT, and thermal
flash method probes the sample with a heat pulse on one side and it then uses the
temperature response on the back side (thermal flash Method) or front side (PTI and
PT) to infer the thermal diffusivity of the sample. However, evaluating the temperature
response needs a well-calibrated thermal detector. The PopTea method uses harmonic
laser heating [97] and requires access to only the front side of the TBC. The harmonic
thermal emission response from the front surface is interpreted by hemispherical and

volumetric thermal emission modeling for the TBC system [98], [99].

For the PopTea method, assuming the harmonic temperature amplitudes are small
relative to the steady state temperature, the thermal emission and laser heating will

converge to the same harmonic functional form:

where the observed experimental measurements are based on the phase difference ¢ at

an experimental laser modulation frequency w =27z f", as illustrated in Figure 2.11.
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The phase difference is independent to the emission signal strength and temperature
amplitude; and, the measurement does not require either laser-power or detector
calibration. The laser modulation frequency controls the depth of harmonic heating and

this can be expressed as the thermal penetration

thermal pentration ~ \/g (2.6)
@

Each change in thermal penetration results in a unique phase observation based on the
thermophysical and optical parameters of the TBC system. Sweeping the laser
modulation frequency makes it possible to make a large number of unique experimental
observations that thermally probe the sample from the coating surface to deep into the
system, a thermal penetration sweep is shown in Figure 2.11. As long as the thermal
penetration reaches the coating and substrate interface, the heat conduction will have a
dependence on thermal conductivity due to the heat flow continuity condition at the

interface:

Qi: = Qz’)’ut
2.7)
_kcoat a_T = _kvub a_T:l
aZ A 62 interface

The heat conduction and then thermal emission model dependence on thermal

diffusivity and thermal conductivity means that there is a reduced need for additional
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“auxiliary” thermal property measurement methods to measure volumetric heat

capacity and then thermal conductivity.

The ability of the method to make measurements without the need for access to the
rear face of the sample has made it possible to make measurements on intact TBC
systems. This has led to a series of investigations to demonstrate the capability of the
PopTea method to track in-service coating degradations. Studies have elucidated
thermal conductivity changes due to CMAS attack [100], thermal cycling [101], and
thermal shock [102] on TBC samples. The thermal shock investigation by Yu
incorporated a thermal resistance at the coating and substrate interface to identify
delamination gaps. Additional studies, by Zhao, used the PopTea method to track
changes in thermal conductivity due morphologies induced by rotating the substrate
during deposition [103]. Finally, measurements have been made to study spatial

variations in thermal properties on intact gas turbine engine components [102].

In summary, key strengths of the PopTea method is its ease of implementation
because there is no need to characterize laser power or calibrate the thermal detector.
The front face measurements have made it possible to make measurements on intact
TBC systems. Volumetric thermal emission modeling has removed the need for
additional optical coatings. Measurements that thermally probe into the substrate can
resolve both thermal diffusivity and thermal conductivity; this reduces the need for
additional thermal property measurement methods. However, PopTea is limited in that

thermal conductivity measurements require a system with well-defined semi-infinite
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substrate. The coating thickness must be known a priori, and the semi-steady harmonic
nature of the experiment can lead to long measurement times. Finally, current
implementations use a thermal detector to interrogate a small measurement spot; this

makes it difficult to create 2-d thermophysical property maps.

2.4 Summary

Increases in thermal efficiency and performance of gas turbine engines have been
made possible, in part, by thermal barrier coatings (TBCs) and active cooling methods.
TBCs play a critical role in providing a thermal resistance between high temperature
gasses and engine hardware and active cooling methods remove heat absorbed by the
hot gasses. Characterizing and studying the evolution of the thermal properties of TBCs
has been hindered by conventional thermal property measurement methods that need
front and rear access to the TBC system. Furthermore, nondestructive thermal property
measurements on gas turbine components presents unique thermal modeling challenges
to front-surface thermal property measurement methods because TBC applications may

be on structures with complex substrate geometries.
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Figure 2.1: Gas turbine configurations, the compressor (blue), combustor (red-outline),
and turbine (red) are shown. (1) turbojet (2) turboprop (3) turboshaft (4) high-bypass
turbofan (5) low-bypass afterburning turbofan. Used under Creative Commons

License, Ref [104].
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Figure 2.2: Typical high-performance jet engine for acrospace applications. Used under

Creative Commons License, Ref. [105].
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Figure 2.3: Turbine airfoil cross-section showing a combination of holes, coolant
channels for film, impingement, internal, and pin-fin cooling; the geometric
characteristics shown are meant to demonstrate the wide-variety of cooling
implementations and may not all appear in any particular turbine blade. Figure adapted

from US Patent US20120269648A1.
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Figure 2.4: Increase of surface temperature of engine components due to high-

temperature enabling technology. Figure adapted from [6], [8].
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Figure 2.5: Typical Thermal Barrier Coatings systems are most often composed of a
yttria stabilized zirconia (YSZ) topcoat, a thin thermal growth oxide, and a metallic
bond coat adhered to a super-alloy. The coating may be designed to induce a
100-300°C temperature drop between the surface of the coating and the superalloy

substrate. Figure adapted from Ref. [106] and is not drawn to scale.
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Figure 2.6: Microstructure of typical TBC coatings. Showing (a) the surface and (b)

the cross-section of an APS coating. Showing (c) the surface and (d) the cross-section

of an EB-PVD coating. Reprinted, with permission, Ref. [91].
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Figure 2.7: Flash Method experimental setup. Reprinted, with permission, from

reference [107].
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Figure 2.8: Pulsed Thermal Imaging experimental setup with a flash lamp providing
the heat source and an infrared camera measuring the thermal response. Figure adapted

from US Patent 7769201 B2.
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Figure 2.9: Pulsed Thermography method experimental apparatus uses a focused laser
heating pulse; the temperature response is measured through thermal imaging.

Reprinted, with permission, from Ref. [18].
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Figure 2.10: PopTea interrogates transient thermal emission from a coating that is

heated from an intensity-modulated optical beam. Thermal response is based on the

heat transport through the system.
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Figure 2.11: PopTea phase of emission experimental data and model best-fit. The

harmonic heating and thermal emission are used to evaluate the phase at each
frequency.
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Chapter 3 Experimental Methods

This chapter describes the experimental apparatus common to the PopTea
investigations carried out and reported in Chapter 4, Chapter 5, and Chapter 6. This
encompasses a description of the optical heating, thermal detection, and data
acquisition system of the PopTea method. Discussion of specific thermal modeling and
analysis will be described in subsequent chapters. Similar implementations of this
experiment have been described by Yu [108] and Kakuda [109]. The experiment is
designed to use focused optical heating to create a harmonically-sustained temperature
field in a sample and collect the hemispherical thermal emission centered at the heating

point, this is illustrated in Figure 3.1. The optical heating is provided by a laser, the
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intensity of the beam is controlled using an opto-acoustic modulator (AOM), and the

thermal emission is monitor using a thermal detector and high-speed digitizer.

3.1 Optical Heating

Lasers have been used as a source of thermal heating in a wide-variety of
applications, this includes material processing, to laser surgery, and manufacturing
[110]. It is widely recognized that lasers are used because they provide a known and
consistent level of power, the optical beam can focused to a small region and positioned
accurately, and it is simple to automated their control using standard laboratory
equipment and software [111]. The laser used for the thermal heating of the samples in
the PopTea measurements was an air-cooled Synrad 60 Watt Firestar t-Series laser. The

lasing gas was carbon dioxide, CO», emitting with a peak wavelength at 10.6 um . The

beam diameter at the output aperture of the optical resonator was 2 mm with less than

a 7 milliradians full angle divergence.

3.1.1 Laser Power

The laser power was controlled using a Synrad UC-2000 Universal Laser Controller
that provided the pulse width modulation (PWM) signals to the laser. This includes the
PWM duty cycle, and PWM frequency. The PWM frequency is the switching rate, and
the PWM duty cycle describes the percentage of the period that the laser beam is on

and is used to control the time-averaged intensity of the beam. For example, a 25%
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duty cycle at a PWM frequency of 20 kHz means that the laser is on for 12.5 ps and

off for 37.5 ps.

The Synrad laser can be operated with a range of discrete possible PWM
frequencies between 5 kHz and 20 kHz. Selecting the best PWM frequency of the laser
was done by using the apparatus illustrated in Figure 3.2; the laser beam response was
monitored by using a Judson Teledyne Technologies mercury cadmium telluride
(HgCdTe) detector, J15D12-M204-S01M-60. The signal from the detector was
amplified using a paired Judson preamplifier PA101 powered with a +15V power
supply. The signal was captured using a Hewlett Packard 54601A Oscilloscope.
Sample results from this test are shown in Figure 3.3 that illustrate a small reduction in
laser beam ripple by selecting the a high PWM frequency. During this measurement,

the laser beam is modulated using an opto-acoustic modulator (AOM, modulator).

In order to observe the effects of PWM frequency on the phase of photothermal
emission, a graphite sample was setup as illustrated in Figure 3.1 and was tested at two
PWM frequencies at 5 kHz and 20 kHz. The results are illustrated in Figure 3.4 and
show no significant change in the phase of photothermal emission. Discussions with
Synrad application engineering revealed that increasing the PWM frequency may
decrease laser power because the laser cavity temperature is expected to increase. An
evaluation of the laser power was completed using a Scientech 100mm Calorimeter,
model 380402 using the experimental apparatus described in Figure 3.5. The results,

which are summarized in Table 3.1, showed only a 4.8% drop in power from a PWM
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frequency of 5 kHz to 20 kHz. Since it appears that increasing the PWM frequency
reduces ripple in the modulated beam, there are no significant changes in phase of
emission, and only a small drop in laser power was observed, a PWM frequency of 20

kHz was used for the PopTea measurements.

The intensity of the beam should be approximately linear throughout the range of
the duty cycle. In order to test the effect of PWM duty cycle on the quality of the
modulated laser beam, the laser beam response was measured using an HgCdTe
detector as illustrated in Figure 3.2. The results from the test are shown in Figure 3.6;
it was expected that the intensity of the modulated laser signal would decrease with a
reduction in PWM duty cycle but the results also showed an increase in noise to the
modulated laser signal. In order to increase the signal-to-noise and reduce the number
of signal averaging necessary, a PWM duty cycle of 99% was used for the PopTea
measurements. The laser power delivered to a sample was then controlled using the

acoustic-optic modulator.

3.1.2 Laser Power and Stability

Controlling the intensity of the heating requires a precise characterization of the
laser power levels and stability. To perform this characterization, the laser power was
monitored at 5 and 10 minute intervals with a large-aperture calorimeter for 3 hours, as
illustrated in Figure 3.5. The results from a test, performed at a 99% duty cycle, 20 kHz

PWM frequency, and 0.50 Volt AOM offset is shown in Figure 3.7. From this
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measurement the laser power stabilized after 45 minutes with a time-averaged power

level of 10.26 W +£0.3% . This means we can expect a steady and consistent heat flow

from the laser beam. However, the laser power measured was time-averaged on the
order of several minutes; fluctuations on timescales shorter than 2 minute could not be
captured using the large-aperture calorimeter due to its long time constant. The
measurements reported here are consistent with the precision of the calorimeter < 1.0%;
the accuracy of the calorimeter is specified to be 5%. All PopTea measurements in

subsequent work is allowed at least 45 minutes for the laser output to stabilize.

3.1.3 Laser Shape

The optical beam exiting the laser resonator is approximately circular at the
aperture and transitions to a Gaussian beam in the mid and far fields. An optical
distance of more than the recommended 0.75 meters was used between the resonator
aperture and the sample to generate Gaussian heating beam. A traversing knife-edge
measurement, as illustrated in Figure 3.8 is used to characterize the quality of the
Gaussian beam and the 1/e beam radius. Details of the knife-edge measurement
technique are described by Araajo [112]; in short, the laser power is measured using a
power meter and measurements are taken as the beam is partially blocked by a sharp
blade. The results from the power measurements are then fitted to a theoretical power
function to resolve the laser beam radius. A well-fitted curve is only possible if the

beam has a Gaussian distribution. The limitation to this approach is that it can only
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characterize a single axis and requires a long measurement time. The results from a
sample measurement using the Scientech Large Aperture Calorimeter are shown in
Figure 3.9 and illustrate a high quality Gaussian shape. Changes in the focusing optics

and its position were used to control the beam radius.

3.1.4 Acoustic-Optical Modulation

The laser beam intensity was controlled using an IntraAction Model AGM-406B1
Infrared Acousto-optic Modulator (AOM) and the physics of the instrument are
detailed in Ref [113]. The modulator is powered and controlled by an IntraAction
Model GE-4030 Modulator Driver that takes a low-power voltage input signal from a
function generator and generates a high-powered radio frequency (RF) power driver
that controls the AOM. The modulator operates using Bragg diffraction to transform a
continuous input optical beam into a sinusoidal modulated beam (or any arbitrary
function). Details on the physics of Bragg diffraction are explored in references [114]—
[117]. For a harmonically modulated beam, defining the offset and amplitude in terms

of the normalized RF drive power (P/Pmax), the laser output power is:

Laser Output Power

= offset + amplitude « sin (- 1) (3.1
Laser Input Power

where, w=2xf is the drive modulation frequency. An experiment was setup to

determine the linear range of the AOM with respect to its RF drive power; the

experiment is illustrated in Figure 3.5. The results from the experiment are presented
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in Figure 3.10 and show that the modulator’s linear range is from a voltage input of
0.20 V to 0.70 V. Exceeding this linear range results in a degradation of the harmonic
laser output as shown in Figure 3.11 when tested using the experimental apparatus

described in Figure 3.2.

3.2 Thermal Emission

The thermal emission was collected using a hemispherical elliptical mirror. An
elliptical mirror is used because it redirects beams between its two focal points, an
illustration is shown in Figure 3.12. One focal point was placed at the center of the
heating beam on a sample, after it passes through the mirror aperture, and a thermal
detector was placed at the second focal point. This allowed the redirection of the
thermal emission to an Indium Antimonide (InSb) thermal detector. This detector was

chosen for its high sensitivity at 3—5um and its exclusion of the 10.6 um laser

wavelength. The detector signal was amplified using a photodiode transimpedence
preamplifier and monitored using a National Instruments PCI-5112 high-speed
digitizer with an internal synchronization signal. This signal was used to synchronize

the function generator, AOM, and the high-speed digitizer.

Signal averaging at each AOM modulation frequency was used to increase the
signal-to-noise ratio of each measurement. The data acquisition system was designed
to report a single file for each measurement that contained six-waveforms of the signal-

averaged function generator signal, which represented the laser signal, and the InSb
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thermal detector signal. Fitting a sinewave to each of these two signals was used to
determine the phase lag of the thermal emission with respect to the laser signal. An
illustration of the two signals and a phase-spectrum sweep that was generated by taking

measurements at various AOM modulation frequencies are shown in Figure 3.13.

3.3 Sample Mount

There were two types of samples mounts used in this dissertation. They are
described as either a heated stage or an adiabatic “low-contact” holder. The heated
stage is a large thermal mass (steel) that is held at a constant temperature using a PID
controller and an embedded thermocouple. This heated stage facilitated measurements
in which the rear temperature of the TBC system and substrate were maintained at a

constant temperature. An illustration of this stage is shown in Figure 3.14.

The adiabatic “low-contact” holder consists of a vacuum chuck, formed from a
Swagelok fitting, which contacts the outer boundaries of the sample. The vacuum held
the sample in place and the low contact area of the front ferrule of the fitting minimized
heat loss through the rear contact with the sample. Several mounts were created for
testing samples of various diameters. An illustration showing the mounting hardware

is shown as Figure 3.15.
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Figure 3.1: Phase of Photothermal Emission Analysis (PopTea) method, experimental

apparatus.
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Figure 3.2: Laser Characterization, experimental apparatus.
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Opto-Acoustic Modulator Frequency = 32 Hz
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Figure 3.3: Laser detector was used to monitor changes in the modulated laser signal
due to changes in the PWM frequency. The first column represents a single waveform
and the second column has been signal averaged for 256 waveforms. Increased PWM

frequency reduced ripple in the laser signal.
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Figure 3.5: Laser power experimental apparatus; a Scientech 100mm Calorimeter,

Model 380402 is used to evaluate the laser power.
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Normal Scan Averaged #8

Figure 3.6: Reducing the PWM duty cycle degrades the sinusoidal modulation of the
laser. The first column is a single scan and the second column is averaged over 8

waveforms. The AOM settings are 0.3 V offset, 0.1 V amplitude, at 32 Hz. The PWM

frequency is 20 kHz.
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Figure 3.7: Laser stabilization power test taken at 5 minute and 10 minute intervals

using experimental apparatus illustrated in Figure 3.5.
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Figure 3.8: Knife-edge technique experimental apparatus for beam shape

characterization. Figure adapted from Ref. [112] .
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Figure 3.9: Knife-edge measurement for characterizing beam shape and radius using

experimental apparatus illustrated in Figure 3.8.
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Figure 3.10: AOM Diffraction Efficiency is linear from a modulated drive power of

0.20 V to 0.70 V, evaluated using experimental apparatus illustrated in Figure 3.5.
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Figure 3.11: AOM nonlinearity affecting sinusoidal waveform was observed using

experimental apparatus illustrated in Figure 3.2. The offset was 0.50 V to AOM.
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Figure 3.12: Thermal emission detection system using a hemispherical elliptic mirror.
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Figure 3.14: Sample mount for a semi-infinite and temperature controlled rear

boundary condition.
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Figure 3.15: Sample mount for an adiabatic rear boundary condition.
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Table 3.1: Drop in power level due to an increase in PWM modulation frequency.

PULSE WIDTH POWER [W] REDUCTION IN
MODULATION INTENSITY FROM §
FREQUENCY KHZ

5 KHZ 19.23 -

10 KHZ 18.50 3.88%

20 KHZ 13.31 4.80%
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Chapter 4 Di erential Phase of
Photothermal Emission Analysis for

Thermal Barrier Coatings

4.1 Introduction

Thermal imaging techniques generally attempt to characterize the thermal
properties of materials by using the transient surface thermal emission that results from
an applied heat input (often in the form of a pulse). Most applications of these
techniques have not entered the realm of quantitative thermal property measurements.
Instead, they have focused on seeking qualitative coating information that can reveal

"defects" in the subsurface material [85], [118], [119]. However, one application
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offering significant reward for overcoming the challenges of making quantitative

thermal property measurements is the thermal barrier coating.

Thermal barrier coatings (TBCs) are applied to metallic components in aerospace
and power turbines to provide thermal and environmental protection [24]. Typical
topcoats for TBCs are zirconia-based ceramics that can be deposited by a variety of
methods, including air plasma spray (APS) and electron beam physical vapor
deposition (EB-PVD). Coating thicknesses can range from 100 um to greater than
2 mm, depending on the application. In turbine engines, the structural metal under
these coatings are often superalloys exhibiting excellent mechanical strength and creep
resistance at high temperatures [120], [121]. A bond coat, underlying the topcoat, is
required to protect the superalloy from oxidation and hot corrosion attack and to form

an adherent oxide surface for the topcoat [122].

Achieving and sustaining the designed performance of a TBC is necessary to
realizing a predictable life operation or "prime reliance" of the coating [6].
Consequently, the ability to quantitatively characterize the heat transfer performance
of coatings is fundamental to the goal of attaining prime reliance. Despite its vital
nature, in practice the desired level of thermal characterization in TBC production and
service is currently unattained because of the inability of conventional techniques to
measure coating thermal properties on engine hardware. Thermal imaging has been
employed to detect delamination of coating materials [98]. However, mechanical

failure of the coating is only one aspect of a TBC's "health" that indicates approach to
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end of life. For prime reliance, a more complete and quantitative picture of the thermal
performance of a coating is required that goes beyond detecting imminent catastrophic

failure.

Two techniques have recently emerged that address the issue of making quantitative
thermal property measurements of TBC topcoats: Pulsed Thermal Imaging (PTI) [123]
and Phase of Photothermal Emission Analysis (PopTea) [20]. Both techniques exploit
the thermal contrast between the coating and substrate material to measure two
independent thermal properties of the coating. This allows both the thermal diffusivity
and thermal conductivity (and volumetric heat capacity) to be established. The primary
differences between these techniques are that in PTI analysis the thermal response to a
heating pulse is conducted in temporal space, while in PopTea the thermal response to
periodic heating is measured and analyzed in frequency space. In both measurements,
thermal emission is used to evaluate the thermal response of the coating to heating. PTI
uses optical coatings to confine radiative heating and emission to the surface of the
sample. In contrast, PopTea does not require optical coatings, in which case thermal
emission is interpreted as a volumetric signature of thermal transport through the
coating system. Although both methods can measure coating properties on coupon
samples, measurements on an actual engine blade has only been demonstrated in the
open literature with PopTea [102]. Additionally, PopTea has been used to investigate
the consequence of service related changes to coatings thermal properties resulting

from high temperature exposure [101] and foreign material infiltration [100].
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4.2 Need for differential PopTea measurements

In coating property measurements, it is often appropriate to assume that the
thickness of the substrate material is significantly greater than the coating material. In
the case of conventional PopTea measurements, the critical assumption is that the
substrate material behaves as though it is semi-infinite. In practice, this assumption
requires that the transient heat transfer does not extend beyond the thickness of the
substrate material, and thereby does not interact with any underlying interface. To
assess this requirement, there are two measures of thermal penetration depth that must

be compared, one in the coating and one in the substrate. The substrate material thermal

penetration depth is related to the coating value by a constant multiplier: \/a,,, /... ,

S

where «,, and «,, are the thermal diffusivities of the substrate and coating,

coat
respectively. For typical coating-superalloy combinations, this multiplier is
approximately three. Therefore, the assumption of a semi-infinite substrate material
will require that the substrate material be at least three times as thick as the TBC
topcoat. Some engine parts may not satisfy this requirement. For example, some parts
in the high temperature gas stream are hollow and contain cooling channels to support
film cooling [124]. Additionally, when the function of the part is not primarily load
bearing, coated solid-wall parts may be relatively thin. Therefore, it should be expected
that some thermal property measurements of coated parts will involve heat transfer

scales that are deeper than a well-defined region of the substrate material.
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Unfortunately, it is prohibitively difficult to provide a well-characterized picture of heat
transfer beyond a certain thickness associated with the wall of a coated part. To address
this issue, a "differential" technique is developed in this paper for PopTea
measurements. The goal is to be able to extend thermal property measurements to a

wider range of coated part conditions found in gas turbine engines.

Differential techniques applied to thermal property measurements methods
incorporates measurements from two thermal systems that are the same except for one
distinguishing “differential” thermal element. The first set of measurements serves as
a reference system; a change to the thermal system is made and the contrast against a
second set of measurements are used to learn from the distinguishing or differential

thermal element.

Differential techniques that address unknown characteristics in measurements are
ubiquitous to thermal property measurements. For example, a large family of
differential scanning calorimetry (DSC) methods have been developed that can be
categorized as either heat-flux DSCs or power-compensated DSCs [125], [126]. The
heat-flux DSC approach measures the difference in temperature of a reference and a
test sample for a given heat flux. The difference in temperature between the sample and
a reference is used to resolve the heat capacity of the sample. The power-compensated
approach sets a reference and a sample in two different chambers that are maintained
at a constant temperature. The difference in thermal power needed to maintain a

constant temperature is used to resolve the heat capacity. These two examples illustrate
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how differential techniques can be used to make highly sensitive measurements by
removing the thermal effects common to both the reference and sample thermal system.
External effects such as thermal radiation, convection, any other thermal interactions

with the environment can be then encapsulated and accounted for in the modeling.

Use of differential methods have been implemented for modulation-based thermal
conductivity measurement methods. The 3@ method requires a metal wire imbedded
in the test sample. In the case of semiconducting samples, an additional dielectric
insulation layer is sandwiched between the metal wire and the sample to prevent current
leakage. Ideally, this layer would be thin enough to be an electrical insulator without
contributing to thermal resistance. However, Venkatasubramanian found it necessary
to develop the differential 3@ method to account for thermal resistance in measuring

the thermal conductivity in superlattice structures, Bi,Te,/Sb,Te, [127]. Further use

of differential 3w have been studied by Borca-Tascius [128], [129], Jacquot [130], and

Kudo [131].

Likewise, the goal of differential PopTea will be to remove most of the impact of
unknown heat transfer characteristics (beyond a critical thermal penetration depth)
from the interpretation of measurements used to determine coating properties.
Therefore, in differential PopTea measurements, some aspects of heat transfer into the
substrate system must be learned through the measurement. This contrasts with
conventional PopTea measurements, where it is assumed that there is nothing to be

learned about heat transfer into a semi-infinite body underlying the coating.
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The development of differential PopTea measurements requires implementation of
a "sub-substrate system" (which will be referred to as the "subsystem" for brevity). The
subsystem is incorporated into the overall heat transfer model along with strategies for

measuring variables associated with this subsystem. The subsystem is defined as the

extent of material beyond a well-defined thickness L

su

, associated with the wall of the

coated part. The goal of introducing the subsystem is not to fully describe the heat

transfer beyond the length scale of L

sub *

Rather the goal is to minimize the significance

of the heat transfer characteristics associated with thermal penetration depths exceeding

the substrate thickness by developing a suitably generic subsystem model.

To this end, a subsystem model illustrated Figure 4.1 is proposed to describe heat
transfer in the low frequency limit of PopTea measurements. The subsystem model
characterizes a thermal mass beyond the substrate material. This added mass is semi-
infinite and has two effective thermal properties that need to be determined in the
measurement, thermal conductivity and heat capacity. Additionally, the subsystem
model includes a thermal contact resistance Ry, which may exist between the substrate
and the added mass. Therefore, the subsystem model contains three heat transfer
variables that are fitted in differential PopTea measurements. These thermal properties
are only “effective” properties associated with the subsystem model because the point
of the subsystem is only to mimic the behavior of heat transfer characteristics at scales

greater than L_,. The most direct strategy for determining the unknown effective
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properties of the subsystem is through two sets of PopTea measurements. The first
measurement can be performed on an uncoated sample and the second measurement
performed after the coating is applied. This approach decouples the task of determining
the unknown thermal transport properties of the subsystem from the coating. For
application of this approach to engine hardware, this requires an uncoated part to be
available for reference measurements. A second strategy utilizes a single PopTea
measurement to determine the variables of the substrate system as part of the task of
resolving the coating thermal properties. However, the risk associated with a single
PopTea measurement is in the loss of uniqueness with respect to determining the

coating thermal properties.

4.3 Model of heat transfer through coating, substrate, and
subsystem

In terms of the dimensionless spatial variables, the axisymmetric two-dimensional

conduction equation for an anisotropic medium in cylindrical coordinates is:

2
L 2 2 L2 )
— 8_€+18_T +a—{—ﬂa—T+S(z,t)e" =0 4.1)
R, )\or ror) oz a Ot

The radial coordinate r is made dimensionless by the 1/e 1 radius of the Gaussian

heating beam R, ,, while the axial coordinate z is made dimensionless by the coating

heat

thickness L . Far from the source of heat, the temperature field approaches the
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ambient value of 7 . Therefore, to simplify the boundary conditions, the conduction
equation will be used to determine the relative temperature 7 above the ambient, such
that the absolute temperature is given by 7'+7 . The heat equation will be used to
describe heat transfer in three layers, comprising of: the coating (0£z<1), the
substrate (1<z<1+Z,) and the subsystem (z>1+Z,). The dimensionless

substrate thickness is defined as Z, =L, /L., . All three layers are assumed to be

coat
spatially homogeneous and isotropic. The axial heating function in the conduction eq.

(4.1) is given by:

-z z—1
L2
z<1 coat I (O) . 650171/1‘50411 + ERI A (1) . 650171/1‘50411
S(Za t) = kz,coat§opt (42)
z21 0

where /7(0) is the heating radiosity traveling into the coating from the surface, and

I" (1) is the radiosity approaching the interface with the substrate. These radiosities are

evaluated from:

I (0)=1,(¢)-(1-R, )| 1+ 4.3)

opt

1-%,-R, e
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L(‘oat

[+(1):Iu(t)'(1_m0)'e " (44)

_ 2L pu

1-R,-R,-e ™

At the wavelength of heating, the reflectivity of the surface is R, the reflectivity

of the substrate is R, , and J, , is the optical penetration depth of heat into the coating

opt
material. These radiosities account for multiple reflections between the coating surface,
but do not account for interference effects. The first four boundary conditions to be

imposed on the relative temperature solution to the heat equation are:

aT
67" r=0
T(r - OO) =0
4.5
a]-;’()tlt 0 ( )
0z |._
T, (Z - oo) =0

The present solution will assume negligible thermal resistance at the interface between

the coating and the substrate, such that:

(4.6)
_ ksub a];ub

L Oz

coat

z=1
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However, the subsystem model includes a

thermal contact resistance R for heat

transfer from the substrate. Therefore, the interface with the subsystem is described by:

T
T MM :T;ub (Z:1+Zsub)_7—;s (Z:1+Zsub)
Lcoat aZ z=14+Z,, (4 7)
_ ksub 6Tsub _ kss 67;5 ‘
Lc'uat 0z z=1+Z,, Lc'aat Oz z=1+Z,,

Temporal heating can be decomposed into the form / (t) = Tu + re{fuei‘”’} , Where

I, is a steady offset to the harmonic heat flux fo and wis the angular frequency of

heating (a) =2rf ) . The superposition of steady and transient temperature fields

T(r,z,t)z7_“(7”,2)+T*(r,z,t)

(4.8)

can be used to express a solution to the heat equation and boundary conditions. This

decomposition applied to the conduction equation and boundary conditions yields two

problems similar in form to the original. However, heating for the transient 7" problem

is given by re{foei”’} and heating for the

steady T problem is given by I . For

determining the phase of the thermal emission from the coating, only the 7~

temperature field needs to be evaluated. Us

the transient temperature can be expressed

73
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through the relation: T (r,z,t)= re{f (r, z)e”‘”} . With this transformation, the

conduction equation (4.1) becomes:

2 2755 ~ 2 . 2
Lo | [OT XOTY OF 10l 52 1)e” =0 (49)
Rheat ar r ar aZ @

z

The definition of the axial heating function S remains similar to that for S except

that appearances of [ (t) are replaced with fo. The problem for the complex

temperature field is made dimensionless with the following definitions:

L, (1-R))/k (+10)

sub

aCO(%
A A 4.11)

/=
Lcoat
a= % (4.12)
asub
y= [FPC (4.13)
[k pC]sub
R
b=— 4.14
7 (4.14)
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5{)[
A=—2 (4.15)

coat

The variable “/” is a thermal diffusion length scale, or thermal penetration depth,

related to the coating diffusivity and made dimensionless by the coating thickness L

coat
. The variable “a” normalizes the thermal diffusion length scale with that in the

substrate, while the variable “»” normalizes the thermal effusivity with that of the
substrate. Note that ¢ and y have different values in the coating, substrate and
subsystem materials. In the substrate a_, =y, =1. The variable “b ” normalizes the

beam radius by the coating thickness. The variable “A” is the heating optical
penetration depth in the coating normalized by the coating thickness. In terms of the

dimensionless variables, the conduction eq. (4.9) may be expressed as:

1(8°0 100\ 0*0 id
p\ o ror

? o +§—ﬁ0+§(2)€ﬁ =0 (416)

For simplicity it is assumed that R, =0, such that the axial heating function in the

conduction equation becomes:

fohoS
Lcoat '[a '(I_SRO)
(4.17)
;{ei +R -621‘_2} (z < 1)
=3 oYM 1
0 (z > 1)
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In terms of the dimensionless variables, the boundary conditions are:

29 _y
or | _,
O(r—o)=0
~ (4.18)
aHcoat O
oz |,
0,(z>®)=0
At the interface between the coating and the substrate
~coat (Z = 1) = ésub (Z = 1)
~ - (4.19)
(1 - ER1 ) ) e_%\eﬂ‘z - acoat coat a - - agsub
aZ ‘z:l aZ ‘2:1
and at the interface with the subsystem:
_Rss % = acuat coat ':ésub (Z = 1 + Zsub ) - éss (Z = 1 + Zsub ):|
Z
T i (4.20)
aesub agss
A = aSS)/SS
0z z=1+Z,, Oz 2=+ Z g,

The contact resistance in the subsystem model has been nondimensionalized by the

thermal resistance of the coating, such that:
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R:&' = RYY kcaat
: ) Lcoat

4.21)

The heat diffusion equation can be solved semi-analytically through the use of the

Hankel transform defined by:

Applying this transformation to the heat eq. (4.16) yields:

2

d*h
dz*

0= —ﬁzﬁ+le%§(z)

where

(4.22)

(4.23)

(4.24)

(4.25)

where C, and C, are integration constants. The transformed boundary conditions

(4.18) through (4.20) become, for the surface and far-fields:
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on - _,
ar r=0
iz(r —0)=0
N (4.26)
ahcaat — 0
0z
z=0
hss (z>®0)=0
for the interface between the coating and substrate:
Ecoat (Z = 1) = ]:;sub (Z = 1)
oo _ _ (4.27)
(1 - i‘Rl ) 67X677 _ ammymm coat —_ ahsub
2 82 ‘z:l 62 ‘z:l
and for the interface between the substrate and the subsystem:
* aI:lvsub _ A _ 7 _
T 6Z o - acoat coat ':hsub (Z - 1 + Zsub ) - hss (Z - 1 + Zsub )]
_ " . (4.28)
ahvub ahw
B— = aS‘SySS -
oz ’ oz
z=14Z,,, z=1+Z,,

The solution for / in the coating can be expressed in the form:
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v? 2

L ¢ : g 1-R 67X —VeoatZ
hc'oat (Z):—l S(Z)—ﬁ coat
2(176206” — 2) L’Oatycoat coat (429)

+2C, cosh(7,,,z)

where the integration constants C, is determined as a part of satisfying the boundary
conditions (4.26) through (4.28). The evaluation of C, is provided in Appendix A. The

complex temperature solution for the coating can be found from the inverse

transformation:
O(r,z2)=H"[h(z)] or 6= h-Jy(v-r)-v-dv (4.30)

Using a linear approximation for the relationship between changes in thermal
emission and temperature, the thermal emission originating from the coating as a

function of radiation position is given by:

=[ [T h(2)y (vor)v-dvz (4.31)

:jj(ﬁﬁ(z)-dz)Jo(v-r)-vdv

If the emission detector views an area of 77 centered on the heated area of the coating,

the total emission from the coating is determined from:
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J-;J-:(,[;E(V’Z)dz )JO(V'I”)'V'dVQﬁr-dr

| (4.32)
= 2ﬂreI:(Ioﬁ(v,z)-dz )J1 (v-r,)dv

Further details of the radiation model used to detect the temperature field in the coating

are given by Bennett and Yu [22].

4.4 Application of subsystem model to dPopTea measurements

To investigate differential PopTea (dPopTea) measurements, the three
configurations shown in Figure 4.2 were studied. The TBC/substrate/subsystem are
axisymmetric with respect to the centerlines shown in the illustration. Dimensions and
materials associated with these configurations are provided in Table 4.1.
Configurations (i) and (ii) show measurement conditions where heat transfer beyond

the length scale of the substrate L , is characterized by the "ill-defined" subsystem.
The subsystem is comprised of a composite layer of finite thickness L, overlying a

semi-infinite material (material-2). The composite layer contains a void space with
surrounding material (material-1). Configuration (i) of Figure 4.2 has a 323 um APS
coating whose thermal properties are to be determined. Configuration (ii) illustrates
conditions where heat transfer into the substrate/subsystem is characterized in the
absence of the TBC. Finally, configuration (iii) defines the standard measurement
conditions for PopTea, where heat transfer into the substrate/subsystem is "well-

defined." This means that the substrate and subsystem are a continuous semi-infinite
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body with negligible thermal contact resistance. In the current investigation, the thin
substrate material allows thermal penetration depths into material-2. This is not ideal
for standard PopTea because of the additional interface. However, in the present
investigation, care is taken to provide good thermal contact (with silicon thermal paste)
between the substrate and material-2, such that heat transfer into the

substrate/subsystem satisfies the "well-defined" semi-infinite requirement.

In order to determine the thermal properties of the coating, dPopTea measurements
are performed using configurations (i) and (ii) shown in Figure 4.3. For configuration
(i1), where the topcoat is absent, an optical coating of carbon is applied to the metal
surface in order to achieve satisfactory coupling of radiant energy with the surface. For
validation of the differential measurements, the traditional PopTea measurement is

performed for configuration (iii).

Initially the strategy was to establish the five thermal parameters: a

coat > coat ? ass 2

7., and R, (as well as unknown optical parameters) from the measurements. However,

investigations of configuration (ii) demonstrated that determining a value of an
effective heating beam radius b is also necessary. Despite a priori knowledge of the
true heating beam radius, an effective value is necessary because of the influence of the
void region behind the substrate layer. The underlying metal sublayers predominately
account for the heat spreading that occurs within the system; the presence of the void

region reduces the degree of transient heat spreading on the TBC system.
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Compensation for this factor can be achieved by artificially increasing the heating beam
radius; thereby reducing the effects of heat spreading on the phase of thermal emission.
Therefore, the parameters associated with fitting the model to experimental data of the
two configurations are:

config. (): {ay,} 1h) fa) ) (R} {0}
|| I || and ||

config. (ii): ta) {ny RS { 0]
The thermal parameters of the subsystem (ss) and beam radius are common to both
configurations. Therefore, these parameters are constrained to be identical between the

two measurement conditions during fitting.

Figure 4.3 shows the dPopTea spectra obtained for a pair of differential
measurements, corresponding to configurations (i) and (ii) shown in Figure 4.2. The
phase of thermal emission is shown as a function of two dimensionless thermal

penetration depths. For configuration (i) the dimensionless thermal penetration depth
has the standard interpretation ¢’ =/¢, while for configuration (ii) the thermal
penetration depth (" = W / L, reflects heat transfer in the substrate material.
Notice that there is a one-to-one correspondence between the two measurements
throughout the test frequency range, as indicated for the 2 Hz measurement in Figure

4.3. It is significant that for the current TBC system to achieve the required range of

thermal penetration depths through the coating, the resulting range of dimensionless
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thermal penetration depths through the substrate is nearly identical. This indicates that
transient heat transfer will penetrate through the well-defined substrate material. For
ordinary PopTea measurements, the dimensionless thermal penetration depth in the
substrate should be significantly smaller than unity to avoid the effects of transient heat

transfer into the subsystem.

Figure 4.3 shows the best fit of the heat transfer model (solid lines) to the
experimental data (open symbols) for configurations (i) and (ii). The fit for
configuration (i) is noticeably better than for configuration (ii), in which the importance
of the subsystem model is greater. This is expected since the subsystem model is clearly
an imprecise idealization of the heat transfer conditions below the substrate. It is

noteworthy that the model predicts a frequency limit of z/4 for configuration (ii),

corresponding to the situation where the substrate appears to be semi-infinite to the
scales of heat transfer. This asymptotic behavior also requires that the optical
penetration for heating and emission be vanishingly small. This limit is not fully
realized experimentally because of the influence of the carbon layer used to achieve
good energy coupling between the heating radiation and the surface. Nevertheless, the
experimental data for configuration (ii) suggests a departure from the semi-infinite

substrate behavior (approach to the 7/4 limit) as the dimensionless thermal penetration

depth exceeds 0.2 in the substrate. This implies that the influence of the adiabatic
boundary created by the void space is felt when the penetration depth into the substrate

exceeds as little as 20% of the substrate thickness. By definition, the "thermal
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penetration depth" is a distance over which the amplitude of thermal transients
diminishes to 1/e of the peak value. Therefore, it is inaccurate to interpret the

penetration depth as defining a clear cutoff after which the effects of transient heat

transfer are no longer influential.

As previously mentioned, a second approach to performing dPopTea measurements
may be considered, where determining the variables of the subsystem is undertaken as
part of the task of resolving the coating thermal properties from a single dPopTea
measurement taken for configuration (i), shown in Figure 4.2. This approach alleviates
the need for making a separate measurement of the uncoated substrate system. This
provides a significant benefit to measurements on engine components removed from
service, where the possibility of making measurements on the uncoated part is more

remote.

A comparison of results between the differential measurements made on the poorly
characterized subsystem and the traditional PopTea measurement are shown in Table
4.2. The differential measurements are analyzed using configuration (i) alone, and with
configuration (i) and (ii) measurements coupled. The differential measurements can be
contrasted with the traditional PopTea measurement corresponding to configuration
(ii1). Measured values of thermal diffusivity, thermal conductivity and volumetric heat
capacity all fall within approximately 10% for the three measurement conditions, as
shown in Table 4.2. Agreement with the traditional PopTea measurement demonstrates

that dPopTea measurements can be used to successfully measure the TBC thermal
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properties, even when the coating is in close thermal proximity to poorly defined heat

transfer conditions.

4.5 Conclusion

In this chapter, differential phase of photothermal analysis (dPopTea) was
developed with the goal of extending the utility of PopTea measurements to a wider
range of engine parts. The need for the differential technique arises in coating
measurements when transient heat transfer extends beyond a length scale over which
the substrate material is well-defined. A subsystem model was developed to
characterize heat transfer beyond the extent of a finite substrate thickness. It was
demonstrated that the parameters of the subsystem model could be determined through
an independent measurement of the substrate system (in the absence of the TBC) or
simultaneously to a measurement of the TBC system. Comparison of both differential
measurement strategies with traditional PopTea measurements of thermal properties
suggest that dPopTea measurements of a coating in close proximity to ill-defined heat

transfer conditions can be achieved to within 10%.
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Figure 4.1: Subsystem model for the differential PopTea measurement
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Figure 4.2: Three configurations of the PopTea measurement
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Table 4.1: Properties of the substrate/subsystem

substrate material-1 material-2
L [m] 0.0014 0.0030
w
9.8 180 15
k an ‘K
J 6 6 6
pC — 3.6x10 2.4x10 3.8x10
kg-K
R, [m] 0.0033
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Table 4.2: Results of differential and standard measurements

dPopTea dPopTea PopTea
(1) (1) & (ii) (iif)
I112
a — 2.65 x107 2.78 x1077 2.57 x107
s
W
k D 0.726 0.768 0.786
| m”-K
] 6 6 6
pC — 2.74 x10 2.76 x10 3.06 x10
kg-K
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Chapter 5 Coating Thermal
Di usivity and E usivity
Measurement Optimization using

Regression-based Sensitivity

5.1 Introduction

In general, thermophysical properties are determined from the temperature
response of a material to an applied heat load. A model is required to establish the
mathematical relationship between material properties and this temperature response.

Material properties are often determined through regression analysis [47], [132]-[139].
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The sensitivity of a measurement to the properties of interest can be established with
the following definition offered by Beck [139]: Suppose that a temperature

measurement Tz is taken at a specific time and location in the material; the sensitivity

of a material property x; to this measurement is defined by the slope 07, / Ox; . Ideally,

the magnitude of this slope is large, corresponding to a high sensitivity that minimizes

the uncertainty in measurement results. For example, if a single unknown property x,
is obtained from a single measurement 7; having uncertainty 7;,, the uncertainty in

property value is given by

xl,u = y % (51)
ox,

When two or more material properties are determined from a set of measurements,
the measurement conditions must contain sufficient information to uniquely establish
these properties. In Beck’s analysis of an experiment by Hsu [140], observational data
from five equally spaced thermocouples embedded in a slab was used to determine the
volumetric heat capacity pC and thermal conductivity k& of nickel. In Beck’s study,
regression analysis utilized a Gauss-Newton algorithm for minimizing the sum of
squares differences between the observational data and the temperature response of the
model based on candidate thermophysical properties. Although a minimum of two

thermocouples is required to collect sufficient observational data for determining the
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two unknowns, analysis of five widely spaced thermocouples provides better
uniqueness of the temperature response and helps mitigate the influence of random
errors. It is well known that the effects of random error on the uncertainty of parameter
estimates can be statistically reduced by signal averaging with a redundancy of

measurements [134], [141], [142].

To optimally design a measurement requires investigating what measurement set
will yield the greatest sensitivity to the desired material properties. This investigation
can be done with the model used for the measurement. An optimal set requires a
“spread” in measurement conditions that reflects a separation of data points in either
space or time. However, practical limits always curtail the extent to which
measurements can be separated, which in turn affects the uncertainty of results.
Additionally, and perhaps of even greater concern, these practical limits may not
always be respected in the collection of data. This can lead to a situation in which
measurements become biased by a discrepancy between the conditions assumed in a
model and the actual physical situation arising in the experiment. Biased data can
severely degrade the performance of a measurement. The erroneous interpretation of
data can lead to poor accuracy of results and high uncertainty caused by the eroded

quality of the fit between the model and experimental data.

In general, it is difficult to address the effects of bias-error without first identifying
the nature of this error. For this reason, little guidance is found in the literature

concerning disciplined approaches to reducing the effects of bias-error. This chapter
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addresses an approach for contending with the presence of non-systematic bias-error in
experimental data. Here, the label “non-systematic” refers to a source of bias-error that
affects only a portion of a complete data set. Although Beck’s analysis did not present
any form of bias-error, non-systematic bias-error is ubiquitous to experimental

measurements designed around a physical model.

To illustrate non-systematic bias-error, consider a simple experiment designed to
measure a constant rate of fluid discharge from a pipe. Suppose the fluid is collected
using a bucket, and the height of the fluid in the bucket is measured with respect to
time. Multiple measurements over the course of the discharge can be made, and the
volume discharge rate can be determined from the slope of a fitted linear line through
the measured fluid heights in the bucket. However, suppose some of the height
measurement data was collected after the fluid began to overflow the bucket. That
subset of the data would suffer from a source of bias-error not present in the preceding
data, and including this erroneous data would clearly be detrimental to the results of
regression analysis. This example illustrates that non-systematic bias-error can result
from a failure of the model to reflect the true physical process for some, but not all,

conditions of data collection.

The bucket example illustrates two competing factors in the task of minimizing
uncertainty in the results of regression analysis. First, the further apart in time
measurements can be made, the less uncertainty will exist in determining the slope of

the height data. However, this is true only so long as the experimental data is consistent
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with the model being used. At some point in time, the non-systematic bias-error of the
bucket overflowing starts. Further collection of data beyond this point will degrade the
ability of the model to fit the experimental data, which leads to increased uncertainty
in the perceived slope as well as a loss of accuracy in the measurement. Therefore,
without eyes to observe the event of the bucket overflow, the task of determining the
discharge rate with the least amount of uncertainty entails using the model to help
identify the occurrence of non-systematic bias-error in the data set. When done
correctly, this allows reporting of the highest precision in measurement results, which

hopefully is accompanied by the greatest possible accuracy of results.

A framework for assessing and minimizing uncertainty in parameter estimation
using experimental data that suffers from non-systematic bias-error is developed in the
context of Phase of Photothermal Emission Analysis (PopTea). PopTea was developed
to nondestructively measure thermal properties of thermal barrier coatings (TBC). The
measurement of TBC thermal properties is of wide interest in the scientific community
involved in improving the overall performance of turbine systems used in propulsion,

power generation, and diesel engines [6], [7], [24], [143]-[147].

5.2 PopTea

A detailed understanding of the PopTea method is not required for the goals of the
present investigation. It is sufficient to understand that the measurement is based on a

heat transfer model of a coating and substrate system undergoing periodic heating from
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a laser. A radiative model is required to describe thermal emission from the TBC as
viewed by a photodetector directed at the surface of the coating. The PopTea
experimental setup is shown in Figure 5.1. The observational data consists of phase
measurements that represent the peak-to-peak phase difference between the heating
laser modulation and the volumetric thermal emission. The phase lag in emission is a
consequence of the physical principles of heat transfer, in which the thermal diffusivity
of the coating and thermal effusivity contrast between the coating and the substrate are
in play. These parameters are introduced as dimensionless variables in the thermal

model with the definitions:

y= [e]substrate (52)
[e]coating

where,

e=+JkpC (5.3)

and

a= [a ]substrate (5 4)

[ o ] coating
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Notice, that from the thermal diffusivity and effusivity values, it is possible to
independently evaluate the thermal conductivity, k= eJa, and volumetric heat
capacity, poC = e/ Ja , of the coating.

Interpretation of PopTea measurements is complicated by the role that optical
properties contribute to the heat transfer and emission models. In terms of the

dimensionless variables of the model, the unknown optical properties determined as

part of the regression analysis are:

S

A= —PL’ (5.5)

E = % (5.6)
A

The optical penetration of the laser into the coating is J,, and has been cast in

tical >
nondimensional form by scaling with the coating thickness, L. The thermal emission

fraction, E,, is proportional to the substrate emissivity, ¢, , and inversely proportional
to the optical thickness of the coating, a,L; both are dependent on the detector

wavelength A . The final optical property relevant to the model is the fraction of laser

energy reflected from the interface back into the coating, R,. If the laser penetration
into the coating is small (A < 1) the value of R, is unimportant to model predictions

[97] (and is assigned the value of 0.8 in the current analysis).
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More than one PopTea model has been developed to address some of the specific
measurement conditions that have been investigated [21], [97], [99]. For relatively thin
coatings, the one-dimensional thermal model and emission model are discussed in

references [21], [99]. The four unknown parameters for this model include the two

thermal parameters ( 7/,a), and two optical parameters (A,El) as described above.

With the one-dimensional thermal model (model C of reference [99]) the measured

phase lag of thermal emission, ¢, is related to the optical and thermal properties of the

coating by the analytic solution:
M
j V (iAz) (5.7)

where,
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_veosh| Y| /cosn[
N(x)zl hg/ J/ h(iAj (5.9)

and A = A/ . The thermal penetration is a function of the modulation frequency of the
laser coating f and the thermal diffusivity, and can be nondimensionalized by the

coating thickness:

[a—y

P U 2 S iy 2 (5.10)

L\ 2xf L\ 2raf
Thermal penetration describes the depth of transient thermal probing of heat into
the coating. Eq. (5.2) through eq. (5.10) reflect the model that has been used for the
analysis in this investigation. However, the methodology developed in this chapter can
be used with any model to establish the minimal uncertainty in property measurements

from regression analysis.

5.3 Regression Analysis and Parameter Interval Estimates

This section describes a method to determine the uncertainty of best-fit parameter
estimates established with regression analysis using a model and a set of experimental
observations. The methodology is extended to minimizing the uncertainty in parameter

estimates by identifying and removing non-systematic bias-error in the observational
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data. This leads to a procedure by which the parameter estimation analysis can be

optimized to report the lowest possible uncertainty in the best-fit estimates.

A metric for the conformity between model predictions and observational data is
used to quantify how well the model is fitted to the system. In the present analysis, this
conformity is defined to be the biased sample variance. Let ¢3 be a set of observational
experimental measurements and ¢(x) be the corresponding model predictions that are

based on the set of parameter estimates, x. Then the sample variance, S, is defined

by:

S(x)%ﬁ(&- —¢,-<x))2 : (5.11)

i=1

where the i-index reflects the individual data points that comprise a set of
measurements. Regression analysis using the model and observational values will find

the best-fit parameter estimates, x,,, where the minimum of eq. (5.11) exists.

If an alternate set of parameter estimates, x’ can be found that produces essentially
the same model results as x,,, then the fit is not unique. Uncertainty bounds on x,;

can be developed based on identifying the parameter intervals over which the model

results corresponding to x’ cannot be confidently distinguished from the results of x,;

. By individually perturbing each of the & parameters away from its best-fit-value, and

then performing regression analysis on the remaining k —1 parameters, alternate sets
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x' that exhibit a minimal change from the model results based on x,; can be found.

The regression analysis performed during the perturbation allows the other estimated
parameters of x’ to compensate for the forced perturbation of an individual parameter
estimate (to the extent allowed by the model). The sample variance between the model

results for x,; and x' is used as the metric for quantifying this change:

S(x) %Z(mx')—cfz(xbf)) (5.12)

i=1

The extent to which individual parameter estimates can be perturbed (upward and
downward) before the sample variance defined by eq. (5.12) exceeds the original
sample variance between the observational data and the best-fit model results defined
by eq. (5.11) defines the parameter interval estimates (PIE). This range establishes the
uncertainty associated with the best-fit values. The percent uncertainty in each

parameter can be defined as:

! !

x = xupper bound xlower bound x 1 00 (5 ) 1 3)

Xpg

The magnitude in uncertainty associated with each variable is influenced by two
factors. The first is the uniqueness with which a variable is constrained by the
comparison between the model and experimental data. If the value of a variable can be

changed without significantly changing this comparison, then the uniqueness of the
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best-fit value is not good. The second factor influencing the assignment of uncertainties
is the quality of the original best-fit results defined by eq. (5.11). If the model results

using best-fit estimates x,, exhibits a large variance from the experimental data, it

becomes possible to perturb the parameter estimates further before the sample variance
given by eq. (5.12) becomes comparable. However, if a large sample variance given by
eq. (5.11) is due to non-systematic bias-error, then it may be possible to find best-fit
estimates with smaller uncertainty by a reduction of the experimental data. However,
care must be taken not to excessively reduce the observational dataset because the
parameters will increasingly lose sensitivity to the model response and begin to lose
uniqueness due to insufficient information in the dataset. Balancing these two needs is
its own optimization problem, where the objective function for this minimization task
is based on eq. (5.13). The observational dataset can now be reduced in a way that
minimizes the uncertainty in parameter estimates. Using these ideas, a search for the
optimal subset from the original observational dataset can be sought using a

minimization algorithm.

5.4 Application to thermal diffusivity measurements

The thermal modeling and analysis of the PopTea method were all carried out using
the authors’ custom written C++ code. To illustrate the analysis, observational data sets
were generated using the thermal model. Generation of data is preferred in the present

study to eliminate any uncertainty about the “true” thermal properties of the TBC. Each
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dataset was created by sampling from a wide range of laser modulation frequencies.
This creates a range of independent observational values that vary with respect to the
thermal penetration depth, as given by eq. (5.10). Sources of error were added to the
data in the form of random Gaussian noise and non-systematic bias-error. In PopTea,
non-systematic bias-error typically occurs at the high and the low limits of thermal
penetration depths. Such sources of bias-error are associated with heat transfer
interacting with scales of the coating system that are not accurately reflected in the
model. For example, at shallow thermal penetration depths, heat diffusion begins to
interact with near surface scales of the coating. This can reflect physical characteristics
such as surface roughness and contamination that are not accounted for in the thermal
model. At long thermal penetration depths, heat transfer can interact with scales that
are larger than the well-defined substrate thickness. Since the model assumes a semi-

infinite substrate this would also lead to bias-error.

Figure 5.2 illustrates a dataset with random noise and bias-error at both high and low
thermal penetration depths. The true thermal properties of the coating system are given
in Table 5.1. Notice that the dataset shown in
Figure 5.2 spans a range of thermal penetration depths from 0.01</<10. To explore
the effect of bias-error and noise on the regression analysis, four observational data sets
were constructed using different combinations of error. Each dataset has random

Gaussian error; the first dataset (random) has no bias-error. There are two more data
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sets for which bias-error is added to either the short (bias-L) or long (bias-R) thermal
penetration depths. Finally, the fourth dataset exhibits bias-error on both short and long
(bias-LR) thermal penetration depths. The model was fitted to the four observational
data sets using the Levenberg-Marquardt Algorithm (LMA), which was adopted from
the MINPACK implementation. The minimization or objective function for the LMA
was eq. (5.11) using the observational data and the model predictions. Since the true
coating properties are known, it is possible to contrast the best-fit results with the true
values for the different cases of data error. Note that in these baseline fittings, the
unknown parameters were estimated using the full-range of observational data,

0.01</<10. In addition to the best-fit values, x,,, the parameter uncertainty, x, , was

also reported as calculated using the PIE analysis and eq. (5.13). The results from the

best-fit and PIE analysis are shown in Table 5.2.

Inspecting the results in Table 5.2 for the best-fit and PIE analysis shows several
clear trends. In general, addition of bias-error broadens the uncertainty associated with

the measurements. With the exception of the thermal effusivity, y, the increase in

uncertainty is associated with a decrease in precision but not accuracy in the nominal
best-fit. The values for the thermal diffusivity and optical properties did not stray
significantly from their true values with the addition of bias-error. However, thermal
effusivity exhibited a significant increase in uncertainty and drift from the true value.
The ability to measure the thermal effusivity is dependent on the observational data

that probes the interface between the coating and the substrate. Therefore, it is then not
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surprising to see large increases in uncertainty of thermal effusivity for the Bias-R and
Bias-LR scenarios since both cases degrade the quality of measurements having

thermal penetration depths sufficient to probe the interface condition ¢/ >1.

The only way to improve the results of regression analysis is to reduce the effects
of bias-error in the observational data. To this end, the use of subsets of the
observational data is explored as a means of reducing fitting uncertainties. To
emphasize the importance of thermal parameter estimates, an average uncertainty of
the thermal diffusivity, thermal effusivity, and optical penetration is defined by:

S :l( et X, T%,0) (5.14)

PopTea 3

Subsets of the observational data can be defined by a range of thermal penetration

depths ¢ . to ¢, where 0.01</¢ . </ <10.0.For each subset of observational

max ? ma

data, regression analysis is performed to determine the best fit and PIE analysis is
performed to determine the average uncertainty defined by eq. (5.14). The average
uncertainty may be contoured as a function of the subset range, with the goal of

identifying an optimal subset that minimizes the uncertainty in parameter estimates.

Figure 5.3 shows the results in subset analysis when only random noise is applied
to the observational data. The minimum in average uncertainty can be achieved so long
as the subset of data is roughly bounded by a thermal penetration minimum of

? o <0.157 and thermal penetration maximum of ¢, >1.5. This means that taking
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any data subset that meet these constraints will yield a similar level of uncertainty in
the PopTea measurement. This region is indicated with hatch marks in the contour plot.

When values of ¢ . exceed 0.157 the dataset begins to lack sufficient information to

correctly resolve all of the fitted variables. In particular, it is difficult to determine the
correct optical penetration depth without sufficiently short thermal penetration depth

data. Likewise, when ¢ falls below 1.5, the amount of information in the data set

that resolves the thermal properties concerning the interface begins to suffer. Since the
full dataset shown in Figure 5.4 does not have bias noise, the model is able to fit
perfectly through the random noise. Trimming the outer bounds of this dataset will not

reduce the effect of random noise.

The Bias-L observational data case has short thermal penetration bias-error added

to the random noise. The S, .,

mapping to the data subsets is shown in
Figure 5.5 and best-fit model predictions after dataset optimization is shown in Figure
5.6. Notice that there is a range of observational data subsets that have a similarly low

level of mean uncertainty given by S, The results show that any dataset with a

opTea *
minimum thermal penetration in the range of 0.018</ . <0.16 and a maximum

/. now

opTea * ™ min

thermal penetration ¢ >1.42 will yield comparably low values of §,

exhibits a finite range of acceptable values because for values less than 0.018 the
dataset is afflicted by the presence of bias-error, and for values greater than 0.16 the

dataset begins to lack sufficient information to correctly resolve the fitted variables.
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Notice that the fitted range demarcated by cross-hatch in Figure 5.6 effectively rejects

the biased data.

The Bias-R dataset has bias-error added to the random noise at long thermal

penetration depths. The S

ppTea Mapping to the data subsets is shown in
Figure 5.7 and best-fit model predictions after dataset optimization is shown in Figure
5.8. Since the bias-error only affects the right hand side of the observational data, there

is no penalty for using all of the observational data at shorter thermal penetration

depths. The minimum thermal penetration is bounded by ¢ ., <0.16, as required for

acquiring sufficient short thermal penetration depth data to resolve the fitted
parameters. However, now the maximum thermal penetration for the optimized dataset

is bounded by 1.3</ <3.4. ¢ _ now exhibits a finite range of acceptable values

because for values less than 1.3 the dataset begins to lack sufficient information to
correctly resolve the interface condition, and for values greater than 3.4 the dataset is

afflicted by the presence of bias-error.

The final biased observational data set, Bias-LR, has bias-error for both short and

long thermal penetration depths, in addition to random noise. The SpopTea mapping to
the data subsets is shown in
Figure 5.9 and a model predictions corresponding to best-fit results for the optimized
data subset is shown in Figure 5.10. Now the optimized data subset is required to have

a minimum thermal penetration that is roughly bounded by 0.024</_. <0.15 and the
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maximum thermal penetration that is bounded by 1.6 </ <3.8. Both short and long

thermal penetration depths of the optimized dataset are bounded by the competing
requirements of having sufficient information in the data set to resolve the fitted

parameters, and having minimal bias-error.

In general, an optimization algorithm that minimizes S, given by eq. (5.14) can

opTea
be implemented as part of regression analysis without investigating the complete
mapping of S,

opTea - LNIS dataset optimization procedure can be implemented with the

Levenberg-Marquardt Algorithm using /_. and ¢ as the unknown parameters. In

n

Figure 5.3 through Figure 5.10 the marker ® shows optimal values of /_. and ¢ __ as

n

determined from the S, .,

minimization procedure. The best-fits and PIE
uncertainties from using these data subsets are shown in Table 5.3. Notice that for the

three datasets with bias-error, the optimized data subsets coincide with a range of

thermal penetration depths that are minimally affected by bias-error.

The results of the PIE uncertainty analysis of the optimal data subsets in Table 5.3
can be compared with the benchmark PIE analysis results from the full data sets in
Table 5.2. The results from the optimal data subsets showed remarkable improvement
in reducing the uncertainty of the parameter estimates for the three data sets exhibiting
non-systematic bias-error. Although, it is not possible to ensure that the accuracy of the
parameter estimates will improve without knowing the exact values a priori. The

premise of the current uncertainty minimization method is that the bias-error is non-
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systematic that affects a small but non-negligible portion of the observational data. The
systematic biases are typically resolved by experimental calibration or by adding an
error contribution to the model. Reducing this non-systematic bias-error results in data
and parameter estimates that best describe the physical system. Therefore, it is not
surprising that not only did the uncertainty in the parameter estimates decrease, but also
the accuracy of the estimates for the thermal effusivity were now much closer to their
true values. After dataset optimization, the parameter uncertainties corresponding to
the datasets with bias-error were comparable to parameter uncertainties determined
from the data set with only random noise. This is possible because the dataset
optimization procedure reduced the dataset in a way that increases conformity of the
model to the data without sacrificing too much information needed to make parameter
estimates. Most importantly, the optimization procedure resulted in the exclusion of
most of the bias-error in the observational data subsets that can reduce the accuracy of

the measurement.

As a final note, the parameter uncertainties corresponding to the dataset with only
random Gaussian noise are simply dependent on the model sensitivity to the thermal
penetration range and not errors in the observational data. As long as the observations
include sufficient data for both shallow and deep thermal penetration measurements,
there cannot be a significant improvement in the results of regression analysis by using
a subset of the observational data. Nevertheless, the dataset optimization procedure

may reject some of the non-bias random-noise data at both limits of the range. This is
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a consequence of the diminishing sensitivity of the estimated parameters to the

observational data associated with the limiting cases of / <1 and />1.

5.5 Summary and Conclusion

An approach has been presented to determine the uncertainty of a parameter
estimation method. The approach was expanded to determine the minimal uncertainty
in fitted parameters by searching for an optimal subset in the observational data that
reduces the effect of non-systematic bias-error at the limits of the observational data.
The expanded approach searched for the optimal data subset by treating the data

measurement span as two independent variables to manipulate, ¢/ . and /¢ __ . This

uncertainty minimization approach effectively uses the model for the experimental data
to help identify and eliminate non-systematic bias-error in the observational data. The
uncertainty minimization was designed for the a priori known characteristics of the
bias-error, endemic to the ends of the observational data; however, the procedure
should be adapted to the types of error expected in their specific applications. An
example of an alternative approach would be for a system that has random outliers or
errors throughout the observational data. This type of system may benefit from an
uncertainty minimization algorithm that is based on cycling through the observational
data and eliminating those data values that lead to reduced uncertainty in the parameter

estimates.
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An illustrative example was carried out on the PopTea method for simultaneous
measurements of thermal diffusivity and thermal effusivity of a thermal barrier coating.
It was found that the effects of bias-error in the data can be greatly reduced by the
appropriate selection of a subset of the observational data. Mapping parameter
uncertainties showed that a wide-range of data subsets may exist having a similar level
of minimal parameter uncertainty. By eliminating bias-error with the use of a data
subset, the uncertainty in parameter estimates can be made comparable to the results of
a dataset having only random Gaussian noise. However, if there is only random
Gaussian noise in the full dataset, then no significant benefit results from trying to find

an optimal subset of the observational data.
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Figures and Tables
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Figure 5.1: Experimental design of the non-destructive thermal diffusivity and thermal
effusivity measurement technique, PopTea. The laser heating is modulated using an
opto-acoustic modulator and the thermal response is measured using an In-Sb detector.

The thermal reservoir maintains the coating and substrate at a constant temperature.
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nominal model response to create the observational data
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Figure 5.3: The contour plot shows the overall fitting uncertainty as a function of the
Bias-R observational data subsets. The hatched area illustrates the spread of data

subsets that have a similar low level of uncertainty in the fitted parameters.
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Figure 5.4: The Bias-R observational data is shown with an optimal best-fit result from

the full data set. The single hatch represents the maximum extents of the data with the

same level of low uncertainty.
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Figure 5.5: The contour plot shows the overall fitting uncertainty as a function of the
Bias-L observational data subsets. The hatched area illustrates the spread of data
subsets that have a similar low level of uncertainty. The optimal data subset ® was

found by minimizing SpopTea -
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Figure 5.6: Bias-L observational data shown with the model results for best-fit
parameters estimates obtained from the optimized ® data subset (as demarcated by
cross-hatch). The single hatch represents the maximum extents of the data with the

same level of low uncertainty.

117



101 . . —

L (a) :
[ 0.200 :
- 0.100 1
0
i '00‘0 ]
e
g
: _ ]
100 _\ ]
\ T
| Spopteavs. (Emlny Emax) ]
. L L T R . . .
10—2 1071

emin

Figure 5.7: The contour plot shows the overall fitting uncertainty as a function of the
Bias-R observational data subsets. The hatched area illustrates the spread of data
subsets that have a similar level of uncertainty. The optimal data subset ® was found

by minimizing S, ., -
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Figure 5.8: Bias-R observational data shown with the model results for best-fit
parameters estimates obtained from the optimized ® data subset (as demarcated by
cross-hatch). The single hatch represents the maximum extents of the data with the

same level of low uncertainty.
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Figure 5.9: The contour plot shows the overall fitting uncertainty as a function of the
Bias-LR observational data subsets. The hatched area illustrates the spread of data
subsets that have a similar level of uncertainty. The optimal data subset ® was found

by minimizing ® .
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cross-hatch). The single hatch represents the maximum extents of the data with the

same level of low uncertainty.
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Table 5.1: Thermophysical properties of the TBC system. The emission ratio is

E, =42 . The coating has perfect thermal contact with the substrate.

Layer L (um) k[i) ,OC( ! J A2b  a® 7P

m-K cm® - K

Coating 71.70 1.44 2.10 0.57 2320 3.801

Substrate o0 12.70 3.44 - - -

®The laser optical penetration depth 6 =40.9umis nondimensionalized by the

coating thickness.

"Dimensionless unit.
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Table 5.2: Best-fit results and PIE uncertainty analysis. The observational data consists

of the full range of thermal penetration depths: 0.01</<10.

Obs.error Ay (Xyr,%,) Y (Xy5x,) A (x,x,) E\ (xy.x,)

Random 2.33:7.4% 3.81:35.6% 0.569 :5.2% 42.03:35.2%
Bias-L 2.38:16.3% 3.75: 80.3% 0.545:11.4% 34.48: 77.4%
Bias-R 2.39:20.3% 5.72: 203% 0.560: 14.9% 56.94: 190%
Bias-LR 2.45:23.6% 5.48:233% 0.535:16.9%  45.41:220%
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Table 5.3: These are the best-fit and PIE uncertainty results using an optimal
observational data subset. The recommended thermal penetration sweep is given based
on the observational data subsets that give a similarly level of uncertainty. The

uncertainty is calculated using eq. (5.13) and does not reflect any asymmetries in the

uncertainty bounds.
asub [min s £ max
Obs. error 7 (%ex,) A (xex,)  E (%0x,)
(xbf X, ) (optimal)

Random  2.33:7.4%  3.79:24.1% 0.569:10.1% 41.73: 59.3% 0.010, 10.

Bias-L 234:72%  3.83:23.5% 0.557: 10.0% 39.44:56.3% 0.018, 10.

Bias-R 2.32:62%  4.20:32.3% 0.569: 6.6% 45.39:37.2% 0.010,3.4

Bias-LR  2.38:8.3%  4.52:35.2% 0.547: 10.9% 41.73: 60.3% 0.024, 3.8
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Chapter 6 Two Color Pyrometry for
Thermal Di usivity and Thermal

Conductivity Measurements

6.1 Introduction

In many thermal diffusivity measurements, analysis of the temperature response is
limited to the phase-response because of the difficulty in calibrating the absolute
temperature scale [98], [148]. However, temperature scales measurements have long

been used to determine thermal conductivity [149] through Fourier’s Law [59], [64]:
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k~0—r (6.1)

where Q is the heat flow and Ax is a characteristic spatial scale over which there

occurs a characteristic temperature drop AT . Therefore, just as the phase-response may
be used to resolve thermal diffusivity, observing the amplitude-response may be used

to resolve thermal conductivity, if temperature measurements are calibrated.

Surface temperatures can be determined by pyrometry from thermal emission
measurements if the surface emissivity of a sample is known [150]. However, the
variability of surface conditions makes it difficult to know the emissivity of the surface
a priori. Two-color pyrometry can be used to eliminate the emissivity dependency of
the measurement, if the two emission wavelengths selected for measurement are
sufficiently close [151]. In this study, an approach to using two-color pyrometry is
developed to determine the steady-state temperature and harmonic temperature
amplitudes of the sample during harmonic heating. The goal is to be able to exploit
additional information from the amplitude-response of the sample to heating, to better
inform thermal property measurements. In this manner, it should be possible to
determine both the thermal diffusivity and thermal conductivity of the sample in a

single set of measurements, even when the sample is monolithic.

In order to implement and test the utility of making two-color amplitude-response

measurements in the poptea method, this study develops a thermal and emission model
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for a finite disk harmonically heated by a surface absorbing Gaussian laser beam.
Experimental measurements were carried out on Poco graphite disks of different

thickness.

6.2 Photothermal Modeling

6.2.1 Model for temperature field

A parameter estimation algorithm to determine the thermal diffusivity and thermal
conductivity of a sample requires a model to interpret experimental observations. The
model presented in this section describes thermal transport through a disk heated by a
harmonically modulated optical beam. The model solves for the phase and amplitude
of the harmonically sustained temperature field in which the phase is measured with

respect to the modulated heating source.

The heat conduction equation in cylindrical coordinates is used to describe sample
heating by an optical beam centered on the axis of symmetry. It is assumed that the
thermal conductivity is not temperature-dependent and is isotropic with respect to the

radial and axial directions. The time dependent temperature field 7(r,z,¢) is described

by the heat equation, which is expressed in spatially dimensionless coordinates as:

(6.2)

T (107 0T\ Ri,oT
0z* ror  or a Ot
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The radial coordinate » and the axial coordinate z have been made dimensionless by

the 1/e radius of the Gaussian heating beam R, ,. The model assumes that moving

eat *

radially away from the heating beam, the temperature field approaches the steady-state
value of 7, that the front optically heated surface and peripheral edge of the sample
are exposed to convection, and that the back surface of the sample is adiabatic.

Therefore, the four boundary conditions to be imposed on the heat equation for a disk

with a finite thickness L and radius R are:

ﬂ.Rheatk
r._
aT"O (6.3)
=1 =0
0z |,
oT }
4 Bi(T-T =0
[ar H(T=T)]

where w and s are the nondimensional thickness and radius of the disk and the heat

absorbed by the sample is O, . Note, that z=w is the surface of the disk heated by

the optical beam centered at »=0. Convective heat transfer is described by a

coefficient %, as presented in terms of the Biot numbers,

Bi =—Wz’m (6.4)
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at the heating surface and

Bi, = }’2% (6.5)

at the peripheral edge. See Figure 6.1 for an illustration of the heat conduction problem.

The temporal absorbed heating Q, . rate can be decomposed into a steady-state

and harmonic components using the expression:
) m = iot
Qheat = Qheat t+re Qheate (66)
2—-m

where Q,W is the steady heating power absorbed by sample, m is the modulation depth

(0<m<1) and w is the angular frequency of heating (v =2xf).

Heat conduction is described by a linear differential equation, which allowed the
temperature field to be decomposed into steady-state and harmonically sustained fields

using the method of superposition [152]:
T(r,z,t)=T(r,z)+T (r,z,t) (6.7)

So long as the resistance to heat spreading is small, the steady-state temperature

solution can be taken as a constant 7 (r,z) =T that depends on the steady-state heat

losses due to heat convection and radiation.
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The harmonically sustained temperature field can be expressed in terms of a

complex variable T (r, z) using the method of complex combination [153], through the

relation:

T (r,z,t)= re{f(r,z)ei"”}

(6.8)

The problem for the complex temperature field can be made dimensionless with the

following definition:

In this manner, the conduction equation, eq. (6.2) becomes:

=—0

9 (100 0%
ror  or

?\N|N.

0z*

and the boundary conditions becomes:
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9 ~ exp(—r°
9 pig| =" (')
0z ., 2-m Vs
a0 _y
or| _,
e (6.11)
2 _y
oz | _,
{% + Bizé =0
or 1.
where a radial thermal penetration depth has been defined by:
\Z2es
V4
(="-— 6.12
z (6.12)

heat

The governing equation, eq. (6.10), with boundary conditions, eq. (6.11), can be

integrated using separation of variables. Furthermore, assuming

N

.Texp(—rz )JO (A )rdr = Iexp(—rz)JO (A,r)rdr (6.13)

0

the complex temperature field solution is found to be:

o0

0(r.z)=Y.C,J,(4,r)cosh(4,z) (6.14)

n

where the coefficients are expressed by
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/12
exp| ——=
C - 1 m p[ 4 J

"1 sinh(/inw)+Bi1 cosh(/inw) (2—m) 75’ [JOZ (A,8)+J] (lns)]

with (6.15)
A= £7+ A

where the transcendental equation for A, is given by:

2,80, (A,5)—Biys-J,(4,5)=0 (6.16)

6.2.2 Model for thermal emission

The thermal emission from a harmonically sustained temperature field must be
interrogated to interpret detector measurements. The sample is assumed to be optically

thick to the detector wavelength. The detector views a spot which is centered on the

optical heating beam (7 =0, z =w) and that has a radius

y o= e (6.17)

Hemispherical emission from the heated area viewed by the detector can be integrated

for the result:

(E)=r[1,-27r-dr (6.18)
0
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The radiative intensity from the sample can be described by a Taylor series expansion

about the steady-state temperature T such that

T*+..} (6.19)

where ¢, is the surface emissivity, and A is the emission wavelength. For simplicity

of presentation, it is useful to adopt Wien’s approximation of the Plank function to

approximate the black body radiative intensity:
— L e
Ly(T)x—%e 7 (—2_ > 1) (6.20)

where C, =3.7418e-16 W-m’ and C, =0.01439 m-K [150]; however, use of Wien’s
approximation is discretionary. Additionally, it is assumed that the amplitude of the
temperature fluctuations ‘f‘ ‘ is sufficiently small compared to 7 that only the first two
terms in the Taylor series equation, eq. (6.19), are needed to describe the radiative

intensity. Substituting in Wien’s approximation, eq. (6.20), into the linearized radiative

intensity, eq. (6.19), yields

I,=¢,, (T)[H ﬂCZ T*} (7| <T) (6.21)

TZ

133



Using the radiative intensity, eq. (6.21), the complex hemispherical emission from the

sample surface is found to be:

<Eﬂ>:‘9zjl_ﬂ,b'(1+/l(;—22 f(l’,ZZW)j-Zm"-dr (6.22)
1]

By virtue of the Taylor series linearization, total emission from the sample can be

decomposed into the steady-state <E /1> and harmonic <E /1> contributions:

(E.)=(E,)+ <El> (6.23)
where
(E,)=r’zs,1,, (6.24)
and
(E)=r’ne,T,, [%<T >j (6.25)

where the average harmonic component of the surface temperature viewed by the

detector is defined as

72| Lo ) L 10 2 )2 (6.26)
< > Rk rzo

heat e
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The detector measurements of the phase and the amplitude of harmonically-sustained

thermal emission can be related to the surface temperature conditions of the sample

during measurements using eq. (6.25). In the limited case where the detector view

radius is much smaller than the beam radius, the phase of thermal emission can then be

evaluated in the limit of », <1, for which the average harmonic surface temperature,

eq. (6.26), becomes:

R, .k

heat

(T..)= [Q—j 0(r=0,z=w)

For the limit of », <1, the phase of emission may be evaluated from:

Fynac =are| (£, )| =ore[

Nyl
—_
~
Il
5::
N
Il
=
N—
[

the temperature amplitude may be evaluated from:
abs[<}§’l>} =A- abs[é(r =0,z= w)]
and the temperature scale, A

Z& — é?heat
R, k

heat
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(6.28)

(6.29)

(6.30)



It is important to note that the thermal diffusivity of the sample o influences both the
phase and the amplitude of the harmonic temperature through the variable describing
thermal penetration depth. However, the thermal conductivity k affects only the

amplitude of harmonic temperature, not phase.
6.3 Harmonically-Sustained Two-Color Pyrometry

6.3.1 Model for Surface Temperature Observations

Although the thermal diffusivity can be determined solely from the phase of
thermal emission of the sample with eq. (6.28), it should be possible to also estimate

the thermal conductivity using the harmonic temperature amplitude with eq. (6.29).

To perform pyrometry of the sample surface without knowledge of the emissivity

&, , two-color pyrometry is employed. When two wavelengths of emission detection
are sufficiently close, such that ¢,, = ¢,,, the signal ratio becomes independent to the

emissivity. The ratio of emission signals is expressed by:

SR(t)= La (1) (6.31)

For the limiting case of ‘f ‘ << T, substituting in the radiative intensity, eq. (6.21), into

the signal ratio, eq. (6.31) ,yields
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ln(SR(t))—Sln(ij 1 re{fei”’}
g_cz :?—T (632)
h A

For the special case of ‘f ‘ =0, the result given by the pyrometry equation, eq. (6.32),

is the well-known two-color pyrometry equation [151]. For the case of harmonic

heating, this pyrometry equation can be applied to determine the amplitude of surface

, in addition to the steady-state temperature T , from two-

temperature fluctuations ‘T

color pyrometry measurements. For a harmonically-sustained temperature source, the

LHS of eq. (6.32) is the normalized signal ratio and is obtained from a temporal

measurement of surface emission; it is fitted to a function of the form 4+ B cos(a)- t)

where
A= l (6.33)
= )
and
7
B= —? (6.34)

In this way, the harmonic amplitude ‘f ‘ and steady-state temperature I can be

resolved; see Figure 6.2 for an illustration of a fitted signal ratio.
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6.4 Illustrative Experiments

6.4.1 Experimental Apparatus

The experimental implementation of a two-color pyrometer is illustrated in Figure
6.3. An ellipsoidal mirror collects the hemispherical emission from a small focused
spot on the sample and redirects it to a Judson J10D Indium Antimonide (In-Sb)
photodiode thermal detector. A Judson transimpedence current-to-voltage preamplifier
provided a gain to the detector signal and the data were recorded using data acquisition

software.

Although the photodiode has a peak detector wavelength at 5 um, it is sensitive to
IR radiation over the range of 2 umto 5.5 um. In comparing the current photodetection
system to the implementations described in [101], [154], the current setup filters
emission reaching the detector with a Spectrogon bandpass filter having a center
wavelength at either 4.081 umor 5.228 um. These filters are interchanged to make

thermal emission measurements at two wavelengths.

The samples were mounted on a minimal-contact area steel vacuum chuck and
positioned as described in the experimental apparatus in Figure 6.4. The optical heating
was provided by a Synrad Firestar t60 CO: laser at an operating wavelength of 10.6pm.
From the data acquisition software, a Stanford Research Systems DS345 function
generator controlled the IntraAction AGM-406B acoustic-optical modulator (AOM)

driver. This allowed for precise control of the laser beam harmonic modulation
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frequency f, and the modulation depth m =0.7143. The laser power was
characterized using a Scientech Large-Aperture Calorimeter (model 380402) and

represents a 2-minute time-averaged laser power output, O, . =10.34 W =£5%. The

actual heat absorbed by the samples was calculated after making separate reflectivity

measurements.

The temperature amplitudes were measured using the experimental apparatus
described in this section and the two-color pyrometry method described in Section
6.3.1. The emission from the sample was isolated by recording and subtracting the
background emission. The true sample SR was measured after calibrating for the

thermal detector SR gain (g)

SR =g-SR (6.35)

true detector

which was determined by making measurements against a known black-body source

SI zBB

detector

where SR,, was evaluated using the steady state simplification of eq. (6.32), the filter

wavelengths, and the source temperature. The detector gain used for this investigation

was g=0.7886£1.1%.
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6.4.2 Samples

Poco graphite was chosen to demonstrate the two-color pyrometry and thermal
property measurements based on the following criteria: it is a material with extensive
literature references, it remains stable after repetitive measurements for a prolonged
period (below the 450°C oxidation threshold), and has full compatibility with our
thermal modeling. As oppose to pyrolytic graphite, ultra-fine graphite is the ideal
material because it has highly isotropic thermal properties due to a lack of grain
orientation. The graphite material has high emittance at the detector wavelengths, high
absorption at the laser wavelength, and is optically thick in the IR spectrum. This
ensures that the laser optical heating occurs at the surface of the sample and the

emission viewed by the detector is also from the surface.

This work uses a Poco Graphite EDM-3 that is manufactured by Entegris Inc. The
thermal properties for EDM-3 were available by the Entegris Inc. literature [155] and
these were summarized by Maradia et al. [156] and used for electron discharge
machining thermal modeling. However, a literature review also found an international
round-robin set of thermal diffusivity measurements (9 investigators, various
modulated and pulse heating methods) and thermal conductivity measurements (5
investigators, 5 methods) performed on Poco Graphite grade AXM-5Q. Both Poco
grades are ultra-fine and highly isotropic graphites that are made with particle sizes of

5 um. Since AXM-5Q has been extensively characterized, it was desirable to use this

grade as a reference for the EDM-3 PopTea thermal property measurements.
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Graphite has high electrical conductivity, the Wiedemann-Franz law [157] has been
used to relate thermal conductivity k£ to the electrical resistance o of graphite [158]—

[162] and is

k=cTA (6.37)

where the evaluation temperature is 7 and the Lorenz Ratio is A. To estimate the
difference in thermal conductivity between the two graphite grades, assume a constant

Lorenz ratio at a given temperature

kEDM-3 — O_EDM-3 (638)
k

AxMsQ O axm-sQ

The electrical resistance of the two grades is provided by the manufacturer’s literature
[155] and is presented in Table 6.1. Evaluating eq. (6.38) yields a thermal conductivity

and a thermal diffusivity (a = k/ pC,) difference of approximately 4%. Since this is

well within the expected thermal conductivity scatter £7.5% and thermal diffusivity
scatter +5.7% reported by Minges [163] in the round-robin investigation, AXM-5Q

was selected as the reference material for this work’s thermal property evaluation.

The sample preparation procedure was as followed: All samples were cut from a
POCO Graphite EDM-3 diameter rod. Once cut from the rod, each one was
ultrasonically cleaned for 5 minutes in de-ionized (DI) water. The samples were then

polished using 600-grit ,800-grit,1200-grit fine-grained sandpaper; between each
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polishing step, the sample was ultrasonically cleaned in 5 minutes of DI water. After
polishing, a final ultrasonic cleaning to remove surface oils was done using fresh
methanol in three 5-minute intervals. The samples were then dehydrated in air using a
furnace at atmospheric pressure. Using this process, three disk-shaped samples were

prepared with a 25.4 mm diameter and thicknesses 0.424 mm, 0.894 mm, 1.620 mm.

6.4.3 Measurement Results and Discussion

A set of measurements for each sample was performed by varying the modulation

frequency of the laser over a wide range of frequencies (1.0 Hz to 11585.2 Hz). Each

frequency corresponds to a different thermal penetration depth for heating. At each

laser modulation frequency, the phase of emission ¢ and the temperature amplitude
‘f’ ‘ was measured. Figure 6.5, Figure 6.6 and Figure 6.7 shows the temperature

amplitudes and phase of emission measured from the three disk samples and Table 6.2

reports the measured steady-state temperatures T .

The extended range of laser modulation frequencies results in an axial thermal

penetration
(94
2
¢ ﬁ (6.39)

that probes from the near surface to the through-thickness length scale of the disks. For

the three samples tested, the phase of emission approaches 7/4 in the high frequency
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limit as /_ < 1. For very shallow thermal penetration measurements, the far boundary

condition effectively moves infinitely away from the source of heat and a sample will
appear to behave as a semi-infinite disk or slab. In this limit, the phase of emission
loses sensitivity to thermal diffusivity as the axial length scale is obscured. For very
thin samples, a higher frequency is needed in order to approach the semi-infinite

behavior so that the axial thermal penetration, eq. (6.39), satisfies /. < 1. A discussion

on the radial thermal penetration and its interaction with the peripheral boundary is

reserved for Appendix D.

Thermal diffusivity was measured by regression analysis on experimental phase of
emission measurements and thermal conductivity measured by regression analysis on
the temperature amplitudes. The model used for the analysis was developed in Section
6.2.2. To interpret the experimental data, the small detection area model, eq. (6.28),
was used because the detector view radius was much smaller than the heating beam
radius. For the model evaluations a Biot number equal to zero was used to represent
the heated surface and radial boundaries; a discussion on the Biot number is provided
in Appendix C. The phase of emission is only a function of thermal penetration, eq.
(6.12), in which thermal diffusivity is the only unresolved parameters; however, this
investigation also resolved heating radius as part of the fitting process. The physical

depth w and radius s of the disks were known a priori.
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The phase regression analysis was carried out using a Levenberg-Marquardt

nonlinear parameter estimation algorithm to estimate thermal diffusivity and the

heating beam radius. The model conformity between the model predictions ¢ and the

observational phases ¢, defined as the biased sample variance, was the minimization

function:

5(9=1 (4 ~40) (6.40)

i=1

where the i-index reflects the N unique modulation laser frequencies that comprise a
set of measurements. Figure 6.5, Figure 6.6 and Figure 6.7 and Table 6.2 has the fitting
result for which thermal diffusivity, and the beam radius were fitted. The regression-

based sensitivity method described in [164] and similarly used by Yu and Bennett [21]

determined confidence intervals (CI) for the fitted parameters. Assuming a 90%

confidence level, an estimate of the standard error is derived from the CI [165]. This
uncertainty approach identifies the confidence intervals by exploring the uniqueness of
the fit with respect to varying the unknown parameters around their best-fit and
reevaluating the regression analysis. The three samples tested achieved a steady state
temperature of 210.4°C, 203.6°C, 189.5°C for the 0.424 mm, 0.894 mm, and 1.620
mm samples, respectively. Although the samples were tested with same laser heat flow
and modulation, the temperature difference should represent the small differences in

heat losses to the environment and sample mount. These temperatures were used to
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calculate the expected thermal diffusivity based on Minge’s round-robin measurement
summary [163]. Minge summarized the results of the round-robin measurements by
developing a temperature-dependent experimental correlation for thermal diffusivity
with a consistent uncertainty of 5.7%. The thermal diffusivity and uncertainty
measurements are in close agreement with Minge’s summary and the results are

presented in Table 6.2.

The temperature amplitude regression analysis was also carried out using the
Levenberg-Marquardt parameter estimation algorithm. The minimization function was
reformulated as a weighted least squares by normalizing the residuals based on the

model temperature scales:

A 2

1 &[T -T(x)
S(x)=—) | =—"— 6.41
=32 (6.41)
so that each residual is weighted equally. The model evaluations used the thermal
diffusivity and beam radius that were estimated from the phase of emission in addition
to the other model parameters. This decoupled the thermal diffusivity and thermal

conductivity estimation algorithms. The unknown parameter to be fitted was the

temperature scale A :(Qhem / Rhemk) from eq. (6.30). The absorbed steady-state heat

flow was found by measuring the laser power using a calibrated Scientech Large

Aperture Calorimeter and making reflectivity measurements of the sample surface,
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O =(1-R) 0, (6.42)

The reflectivity measurements were made by using the ratio of the power readings

reflected by a mirror and the highly polished samples,

Qsample
Qmirror

R = (6.43)

A measured reflectivity R =28.6%+2.6% was used for this study; this reflectivity

value is consistent with 25% reflectivity of a CO2 laser on graphite coatings reported

by Kruetz et al [166] and reflects a heat absorption of 0, , =7.383 W+5.1%

The uncertainty for the thermal conductivity was calculated by first normalizing the

temperature amplitudes by the best-fit predicted values
T =log L; J+1 (6.44)

From the normalized temperature amplitudes, the mean, standard deviation and number
of measurements were used to calculate the 90% confidence limits; the confidence
limits were used as the uncertainty of the temperature scale A. The uncertainty in the

temperature scale u, was then propagated through to thermal conductivity uncertainty

using eq. (6.30) and the propagation of uncertainty [167]:
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Figure 6.5, Figure 6.6, and Figure 6.7 has the best-fit temperature amplitudes and

(6.45)

u, =

the resolved thermal conductivity and uncertainty is reported in Table 6.2. The thermal
conductivity was found to be within the uncertainty scatter predicted by Minge’s
thermal conductivity summary. The overall uncertainty for thermal conductivity was

8.8% —13.8% and it is higher than 7.5% uncertainty scatter observed by Minges [163].

The uncertainty for the two-color pyrometry measurements was also evaluated for
the 0.892 mm sample by making eight steady state and harmonic emission

measurements at a laser modulation frequency 64 Hz. The measured temperature was

476.3K £5.2 K and the temperature amplitude was 0.0929 K +0.0268 K (28.8%), the

temperature amplitudes are shown in Figure 6.8. The thermal emission was collected
as the sum of steady state and transient components; the thermal emission steady
component had an uncertainty of approximately 0.8% and the emission amplitudes
approximately 3.8% . An uncertainty analysis was developed in Appendix D to explain
the large uncertainty in temperature amplitude. The propagation of uncertainty for
steady state temperature is available as eq. (D.8), and temperature amplitudes as eq.

(D.12). It was found that the large increase in temperature amplitude uncertainty is
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driven, in part, by an uncertainty amplification factor that scales with the square of the

steady state temperature, 7.

6.5 Conclusion

Harmonically-sustained two-color pyrometry has been presented as a technique for
evaluating steady-state and surface temperature amplitudes from a harmonically-
sustained thermal emission field. A photothermal analysis method for determining two
independent thermal properties was developed by modeling a harmonically-sustained
heat conduction and thermal emission model for single-layer disks. First, we showed
how to solve for thermal diffusivity from the experimental phase of emission
measurements; then, we used those results and the measured temperature amplitudes
to resolve the thermal conductivity. The uncertainty associated with thermal diffusivity
measurements are consistent with values reported in the literature; however, the
uncertainty associated with thermal conductivity measurements had an uncertainty

higher than the values reported in the literature for graphite.

This work demonstrates the effectiveness performing photothermal analysis on
bulk specimens. The benefits of our approach is that it is a non-contact, nondestructive
that only requires access to one side of the sample. These results demonstrate that it
could be used in place of the thermal flash technique for making diffusivity

measurements, however, reducing the noise in the temperature amplitudes would be
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necessary in order to reduce overall uncertainty in the thermal conductivity

measurements.
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Figure 6.1: Nondimensional heat conduction model of a sample heated by a centered

Gaussian optical heating beam.
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Figure 6.2: A sample pyrometry measurement to measure steady and temperature

fluctuations at 16Hz. The steady-state temperature is resolved to

T =501.7 K (228.5°C) and the harmonic temperature amplitude was ‘f‘ =0.365K.
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Figure 6.6: Phase and amplitude fitting with uncertainty bounds shown for the

L =0.892 mm sample.
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represent additional measurements taken at 64 Hz.
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Table 6.1: Poco graphite grade comparison at room temperature.

Characteristic AXM-5Q EDM-3
Apparent Density 1.757% 1.774° g-cm”
Average Particle Size 5¢ 54 pm
Electrical Resistivity 1601° 15384 pu-ohm-cm
Heat Capacity 721.4¢ 721.4¢ 7
kg-K

2 Reference [163]
® The bulk density was measured from several rods.
¢ Manufacturer Specification POCO AXM-5Q

4 Manufacturer Specification POCO EDM-3
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Table 6.2: Fitted parameters and literature reference comparison.

¢ — fit T - fit
Sample
Length T, Ryeus a et © k Ker ©
mm °C mm mm’®-s’  mm?®-s’ W-m'K' W.-m'K'
0.424 2104  63%7¢ 3815 408E£57% 9147 07%  90.6+7.5%
0.894  203.6 6375 4327500 4L7£57% 949700 91.5£7.5%
1.620 1895 6370 422n% 435%57% 1041135 93.3%£7.5%

¢ Evaluated at the steady-state temperature, 7,, error shown is based on accuracy of experimental

correlation from Reference [163]
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Chapter 7 Conclusions

This dissertation examines fundamental issues underpinning robust thermal property
measurements that are adaptive to non-specific, complex, and evolving sample
characteristics using the Phase of Photothermal Emission Analysis (PopTea) method. This
is part of the goal to make reliable thermal property measurements of intact and serviceable
thermal barrier coatings systems (TBCs) on turbine hardware necessary to characterizing

the degradation of TBC performance due to in-service conditions.

The PopTea method has a basis in modeling heat transfer through a coating perfectly
adhered to a semi-infinite substrate and thermal models formulated with this assumption
were found to lead to large uncertainties in measured thermal properties when making

measurements on coatings deposited on substrates where transient heat transfer extended
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beyond a well-defined substrate layer. It was found that using a generic subsystem model
beyond the substrate layer allowed for the characterization of heat transfer beyond the

extent of a finite substrate thickness. Experiments were carried out on a 323 um thick air
plasma spray (APS) TBC for conditions of a semi-infinite substrate and a 1.4 mm substrate

with internal voids beyond the well-defined layer. It was demonstrated that the “thermal

parameters” of the generic subsystem reflecting the heat transfer beyond the 1.4 mm

substrate layer could be independently measured and used in differential PopTea
measurement of the TBC to resolve the thermal conductivity and thermal diffusivity of a
TBC coating. The results suggested the uncertainty of the differential PopTea
measurements, with respect to conventional PopTea, can resolved thermal conductivity and

thermal diffusivity to within 10% of each other.

The motivation for developing and experimentally supporting the differential PopTea
approach was to increase the robustness of PopTea by reducing the uncertainty of thermal
property measurements on gas turbine engine hardware. Since TBCs may be deposited on
gas turbine engine components that have complex or unknown internal hardware
configuration, this approach now makes it possible to create a set of independent reference
measurements against a “bare” engine component and use those for differential PopTea
measurements of a TBC on the same engine hardware configuration. The differential model
developed in this dissertation would also facilitate multi-layer measurements on complex

engine hardware by using a single unified thermal model for the analysis.
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The need to address transient heat transfer beyond a well-defined substrate was due to
the mismatch in the thermal modeling assumption of a semi-infinite substrate and the actual
experimental conditions. In cases of high thermal conductive samples, the mismatch in the
thermal modeling assumption of a semi-infinite radial dimension can also contribute
modeling errors when radial thermal penetration begins to interactive with “ill-defined”
heat transfer paths; it is recommended that future work investigate adaptive modeling to
address this type of mismatch. Finally, additional mismatch between the thermal model
and the coating system can occur at near surface length scales where surface roughness and
contaminants can influence the behavior of the TBC system. This motivated an
investigation of regression-based sensitivity analysis to address the generic mismatches

between modeling and experimental data.

Use of poorly-fitted experimental data was shown to lead to large uncertainties in
estimated thermal properties. The uncertainty in the thermal properties was accessed using
a developed regression-based sensitivity analysis that combines the regression analysis and
thermal modeling to report uncertainty in the parameters. This led to a measurement
optimization method to minimize uncertainty by selectively filtering out experimental
observations that deviated from a well-defined thermal model and selecting an optimal
subset of the experimental observations for analysis. This was numerically tested by
simulating a set of experimental measurements with bias-error at either end of the phase-
spectra frequency sweep and evaluating the best-fit uncertainty. It was found that even in

the presence of significant non-systematic bias-error, the algorithm was able to reduce
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uncertainty to the level of random noise. The advantage of the measurement optimization
method is that it does not depend on the development of any new thermal modelling to
address model discrepancies and does not depend on a precise description of the type of
experimental error. However, if characteristics of the experimental error are known a priori
they should be used to adapt this method to a specific application in order to expedite the
optimal data subset search. The implications of this method is that the model can be used
to filter out “poor” data to increase measurement confidence. This means as a TBC system
evolves, for example, with changing service conditions, small deviations from the thermal
model can be minimized or errors in the experimental apparatus can be minimized for
maximum confidence in the results. It is recommended that future experimental
investigations that have non-systematic bias-error can demonstrate the efficacy of the data

subset optimization search.

The PopTea method is able to make thermal diffusivity and thermal conductivity
measurements, in part, by the thermal effusivity contrast between the coating and substrate
interface. Obscuring this interface reduces the ability of the PopTea method to resolve
thermal conductivity. An extension of two-color pyrometry was developed to make surface
measurements of both the steady-state and the harmonically fluctuating component of
temperature during PopTea measurements. This was an important first-step because it was
demonstrated that thermal conductivity can be resolved by the temperature scales measured
with pyrometry. However, experimental measurements carried out graphite samples

revealed that very small uncertainties in the thermal detector signal propagated to large
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uncertainties in the temperature measurements. This was supported by an uncertainty
analysis on the measurements and recommendations were provided to reduce this
uncertainty propagation. The temperature measurements used a thermal emission model
that assumed surface emittance; it is recommended that future work to develop a thermal
emission model that that incorporates the translucent nature of the TBCs be used to

eliminate the need for any optical coatings.

The work presented in this dissertation has provided considerable insight into reducing
uncertainty in thermal property measurements under uncertain physical conditions that
occur when the theoretical thermal modeling deviates from the experimental measurements
by using adaptive and generic modeling and data reduction techniques. As part of the
broader goal of reducing uncertainty in measurements, a first step towards using
temperature amplitudes in addition to the thermal emission phase is demonstrated as a way
to make thermal conductivity measurements. These advances facilitate and simplify
nondestructive thermal property measurements on complex systems by reducing the a
priori characterization needed for the system. It is recommended that future work towards
reducing model characterization should be possible by using a tightly-focused beam to
exploit the radial-heating thermal penetration scale to resolve thermal diffusivity; which
can be combined with surface temperature measurements to determine thermal
conductivity. Measurements made using this approach, and aided by filtering out non-
conforming measurements using the data reduction technique developed in this

dissertation, should be able to reduce the required knowledge of coating thickness.
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Appendix A: Differential PopTea Solution

The general solution of the transformed governing equation eq. (4.25) in the coating,

substrate, and subsystem may be applied to the boundary conditions eq. (4.26)-(4.28) to

solve for the unknown coefficients. The solution for Peva (Z) may be put into the form of

~ exp(—v>/4) (. 1-R, exp(-2/ A -
h " )=—=——————>_| § - ~ ex _vc‘oatZ
- ( ) 2(‘/30111 -1/ Az) ( ) A oar? coar vwatAz p( )
+2Cl COSh(ﬁcoatZ) (Al)

The remaining integration constant can be evaluated from:
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Appendix B: Reflectivity Measurement

This section describes reflectivity measurements of an optical beam with its incident
angle normal to a sample. A hemispherical elliptic mirror was used to collect the reflected
power of the beam and redirect it to a laser calorimeter. A Synrad Firestar t60 CO: laser at
10.6 ym provided the optical heating and a Scientech Large Aperture Calorimeter, model
380402, for the power measurements; an illustration of the experimental apparatus is

shown in Figure B.1.

Measuring the reflectivity does not require an absolute laser power measurement, only
the relative drop in power measured from the calorimeter with respect to a highly polished

surface. From this the reflectivity is expressed as
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0
R =— B.1
’ Qmirror ( )

where Q. is the reflected power of a specimen and Q,, is the reflected power of a mirror

irror

surface.

The reflecting surface can be mounted in any practical way, but must be normal to the
elliptic mirror. The positioning of the laser calorimeter need only to ensure that the
reflected beam was expanded over the sensing area of the calorimeter. The laser apparatus
was powered on and allowed to stabilize for at least 45 minutes. A plane mirror was used

for the Q

mirror

measurements. A second measurement for the sample reflected power O,

was recorded. Each individual measurement was taken after an additional 10-minute

stabilization.
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Figure B.1: Reflectivity of sample; experimental apparatus.
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Appendix C: Biot Analysis for disk PopTea Model

The heat transfer model developed in Chapter 6 as eq. (6.2) and eq. (6.3) is the first
PopTea model (i) of a finite disk and to (ii) include heat losses at the heated surface and
peripheral radial boundaries. In the steady state, the heat absorption is balanced by the heat
losses at the boundaries, as illustrated in Figure C.1. The heat losses are modeled as a
nondimensional Biot number in the boundary conditions. Although these boundaries were
developed for convective heat transfer, other forms of heat losses can be manifested

through equivalent heat transfer coefficients and Biot numbers.

The predominate forms of heat transfer at the heated surface was the absorption of the

laser, heat convection to the laboratory air, and thermal radiation exchange with the
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environment. The Nusselt number is used to estimate the natural heat convection

coefficient for the surface of disk with a diameter 25.4 mm

Nu.kair
h=— (C.1)

The Churchill and Chu correlation [168] for the average Nusselt number Nu for a vertical

1sothermal surface is

o/16 174
Nu =0.68+0.67 Ra"* {1 + (O'I‘)ﬁj } (C.2)
T

where, the Rayleigh number (Ra ) describes the contribution of heat convection with

respect to heat conduction for a buoyancy driven fluid:

Ra =28 AT D (C3)
vo

The temperature difference A7 that is driving the natural convection is based on the steady

state temperature of the sample 7 , approximately 200°C, and the bulk air and
environmental temperature 7, at 20°C. The air is described by a thermal expansion
coefficient S =0.00341K" , thermal diffusivity a, =2.203-10° m’s”, viscous

diffusivity v,, =1.568-10~° m’s™, and thermal conductivity k, =0.0257 W-m'K" in a

gravitational field with acceleration g =9.81m-s™. The Prantl number ( Pr) is the ratio of
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the viscous to thermal diffusivity, Pr=v/a . These values evaluate to a Ra = 2.96-10°,
Pr=0.71, Nu=12.6 and a surface convection heat transfer coefficient

h =127 W-m’K™".

1,conv

The thermal radiative exchange with the environment can be expressed using a

radiation heat transfer coefficient [169]:

(C.4)

Evaluating the contribution of thermal radiation with an environmental temperature of

20°C, sample emissivity of unity, and  Stephan-Boltzmann constant

0 =5.670367-10"° W-m”K™ results in radiative surface heat transfer coefficient of
My =12.8 W m’K™" and this is the same order of magnitude as natural convection. Since

both of these heat transfer modes operate in parallel, the equivalent contribution can be

evaluated by taking the combined resistance (R" =1/h) in parallel

" "
Rr! _ 1,conv 1,rad

+R'

1,rad

"_ pn
Rl - Rl,conv || 1,rad — R”

1,conv

(C.5)
h =2548 W-m’K"

The effective heated surface Biot number for a sample with a thermal conductivity

90 W-m'K™" and heating radius 6 mm results in Bi, =1.7-10~ with no dependence on
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the thickness of the sample. Since Bi, <1, assuming the heated surface Biot is zero is well
justified.

The peripheral radial heat losses are also described by an effective heat transfer
coefficient and Biot number. An analysis of the heated surface revealed that the heat losses
by convection and radiation is negligible, and these contributions are expected to be less
significant at the radial boundaries where the exchange area is much smaller. However, the
experimental apparatus holds the sample at the peripheral boundary using a steel chuck and
the steady state temperature is maintained by heat losses through this fixture. Neglecting
the natural convection and thermal radiation, the heat losses through the peripheral is equal

to the heat absorbed from the laser, approximately QO , . .~ =7.38 W . In order to support

this heat loss, the heat transfer coefficient for the disk is

Q bsorbed
h — Zabsorbe C6
2 =T LAT (C.6)

where, the peripheral area (A4) is calculated for the disk with a thickness of 0.424 mm, and
AT =180 K . This results in a peripheral heat transfer coefficient #, =1212 W-m’K™" and
a peripheral Bi, =8.1-107 that decreases with increasing thickness of the sample.
Although larger than the heated surface Biot number, it is still Bi, <1, and assuming the

peripheral Biot is zero is well justified.
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An exploration of the impact of increased Biot number is shown in Figure C.2. These

plots show that even in cases of large Biot numbers, Bi, > 1, the effect of heat losses at

the radial boundary is limited to measurements at low frequencies. This is expected to occur
because the phase and amplitude respond to the peripheral Biot only in cases that the radial
thermal penetration approaches the peripheral boundary; however, the measurements in the
two-color PopTea investigation are limited to frequencies greater than or equal 1.0 Hz so

even large Biot numbers would not impact the thermal property measurements.

174



Natural Heat
Convection

SR S PO e | )

Laser  Swc--c--—- . Radial Heat
1_- Loss from
Heat absorption | Peripheral
| Boundary
Thermal "‘
Radiation 1
Exchange Sample \

Figure C.1: Steady state heat flow in a disk sample with heat absorption and heat losses at

the heated surface and peripheral boundaries.
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Figure C.2: Parametric peripheral Biot results of phase and temperature amplitude
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Appendix D: Uncertainty Analysis for Two-Color

Pyrometry

This section develops the uncertainty analysis for two-color pyrometry described in
Chapter 6. The uncertainty analysis is carried out using the Propagation of Uncertainty

Method [167]. Consider a generic model that evaluates a quantity from parameters
g=f(X) (D.1)

For a vector of N input parameters, the uncertainty of the output is evaluated to

u—\/[iuxj +( 2 uXJ +...+[ 2 Uy j (D.2)
¢ ox, ™ ox, oX,
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Steady state temperature uncertainty

The steady state temperature is evaluated from two-color detector measurements, the

thermal emission detector signal at two emissive wavelengths using the steady form of

equation (6.32). There are four measurements that are required to make this assessment.

The scene radiance /, is determined by removing the background radiance /,, from the

total detector signal / by using an external shutter.
I, =1-1,

The uncertainty for the scene radiance is then

_ 2 2
u, = \JU; +u;

Evaluating the scene uncertainty for each of the two color wavelengths becomes

[ 2 2
u, = u, +u
I, I In |,

_ 2 2
u, —[Ju, +u; L

The detector steady signal ratio, eq. (6.31), evaluates to an uncertainty

(D.3)

(D.4)

(D.5)

(D.6)



The SR used in the two-color analysis needed to be calibrated by the SR gain, eq. (6.36)

The uncertainty in the signal ratio is then

Ug = \/gzuéRd +SR§u§ (D.7)

The uncertainty for the two-color steady state temperature using the steady state form of

eq. (6.32) is

% 03)
SR -(ln(SR) —SIn(% Dz

Amplitude temperature uncertainty

Ur =

The harmonic detector signal ratio can be formulated as a summation of the steady state

scene radiance and the harmonic component, when cos (a)t) =1 (highest uncertainty)
— —‘2‘ (D.9)

The uncertainty in the detector signal ratio is

179



Ugp, =

e

—_ ~ 2 2
I, +1 1
— _12 ~122u1]l +(7 [~ ulﬂz}
(ﬂ]+ 4,) 4 T4
_ 5 2
I, +1 1
H T
+| ——— 2“1}, J{T 7
(14,4' z,) 4 T

(D.10)

And the uncertainty in the calibrated signal ratio, after SR gain, has already been presented

as eq. (D.7). An explicit relationship for the temperature amplitudes can be formulated in

terms of the steady state temperature using eq. (6.32) and cos(wt)=1.

\ﬂ:T—Tz

ln(SR)—Sln(%j

(D.11)

Propagating the uncertainty in the signal ratio and steady state temperature results in

1-2T

ln(SR)—Sln(%)

Ur

2

- fz Ugp
1 (55-%)

180

2

(D.12)
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