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ABSTRACT OF THE DISSERTATION

New Resonances, Gratings, and Slow-wave Structures Based on 2D Periodic Structures

by

Xiaoqiang Li

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2018

Professor Tatsuo Itoh, Chair

Periodic structure is made of a finite or infinite repetition of a unit cell in one, two or

three dimensions. It has been intensively investigated in electromagnetics and widely used

in metamaterials, metasurfaces, photonic crystals, frequency selective surfaces (FSS), slow-

wave structures, diffraction gratings, etc. Metamaterials and metasurfaces are subsets of

periodic structures whose unit cell is much smaller than the wavelength. By proper design of

the sub-wavelength unit cell of a periodic structure, its macro properties can be engineered

as we wish. This dissertation introduces three novel devices/phenomena which are based on

2D metamaterials/metasurfaces. This dissertation has three sections.

In section I, a new resonance phenomenon is demonstrated in waveguide cavities, which

simultaneously uses two orthogonal modes (polarizations). This resonance is formed by

bouncing waves with similar handedness, between two simple anisotropic metasurfaces hav-

ing a relative rotation angle. The tilted anisotropic metasurfaces can cross-couple the waves

from one polarization to the other at the cavity end. The field profile of the resonant mode

does not exhibit nodes and antinodes, thus the resonant frequency is not solely determined

by the cavity length. The resonance condition is theoretically demonstrated from both field

and transmission-line perspectives, and is validated by simulations showing the existence of

the new resonance. The concept is experimentally demonstrated in an X-band dual-mode

circular waveguide, demonstrating a very short cavity resonance. The concept brings new
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possibilities for resonator design with size and tunability benefits at different frequencies.

In section II, a metasurface diffraction grating for circularly polarized (CP) incident wave

operating at 10 GHz is introduced. Such structure can provide strong auto-collimation for

the CP incident wave. Unlike the conventional scatterer, which would typically reverse the

handedness of the incident CP wave upon reflection, the proposed grating can preserve the

handedness. strong auto-collimation blazing effect and handedness preservation are achieved

with specially designed reactive impedance surface, which allows independent control of the

responses to transverse electric (TE) and transverse magnetic (TM) polarization. Simu-

lation and measurement are carried out to demonstrate such effect, and comparison with

conventional sawtooth grating is made.

In section III, a novel slow-wave substrate integrated waveguide (SIW) is proposed and

investigated. The slow-wave effect is achieved by the enhanced capacitance between the

signal trace grid and periodic grounded patches on the same top layer. Such slow-wave

effect can provide more than 40% size reduction in lateral dimension compared with the

conventional SIW with the same cutoff frequency. Meanwhile, the longitudinal dimension

can also be reduced by more than 40%. Two-pole bandpass filters (BPF) built from conven-

tional SIW and proposed slow-wave SIW (SW-SIW) are compared through simulations and

experiments to demonstrate the applications of our SW-SIW. The BPF implemented with

SW-SIW shows a size reduction of 58.8%. Its measured unloaded quality factor (Qu) is up

to 120.2.
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CHAPTER 1

A New Cavity Resonance Assisted by Anisotropic

Metasurfaces

1.1 Introduction

The conventional standing wave exhibit nodes and anti-nodes regardless of whether it is the

result of two counter propagating linearly polarized (LP) waves or two circularly polarized

(CP) waves of opposite handedness. By placing different boundary conditions, i.e. short

(electric walls) at the nodes, and open (magnetic walls) at the anti-nodes along the axis of

propagation, resonant cavities can be formed (Fig. 1.1). These conditions require the cavity

length to be integer multiples of quarter wavelength [1–4].

It is proposed in a recent study that a chiral handedness preserving mirror may help to

break the cavity length rule for CP plane-waves (PWs) [5]. While a conventional mirror

will reverse the handedness of a CP PW incident upon reflection, the chiral mirror will

preserve the handedness. The superposition of two counter-propagating CP PWs with the

same handedness, leads to a constant amplitude standing wave, termed as the polarization

standing wave (PSW) in [6]. With the absence of nodes and anti-nodes in PSWs, the cavity

length can be arbitrarily reduced, as long as the two end walls are appropriately chosen to

meet the boundary conditions of the PSW. This is a similar end-result as the zeroth order

CRLH resonator [7, 8] concept. The PSW concept is a rather interesting and new topic

of investigation which utilizes both field polarizations. Refs [5] and [6] only theorized the

PSW concept for counter-propagating plane-waves of similar handedness, thus proposing a

theoretical Fabry-Perot type cavity with such concept. In addition,they utilized chiral 2D
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Figure 1.1: Conventional standing waves
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surfaces in their designs to preserve the handedness of the CP waves upon reflection. Lastly

the overall resonance condition for such a standing wave was not formulated and no resonant

cavity (Fabry-Perot type or other) using the PSW was experimentally demonstrated.

In this work [9], we expand our initial results of [10] and present a theoretical solution to

this new resonance condition using both a field analysis approach, as well as a transmission-

line model. A simple network justification to the resonance phenomenon is provided using the

latter approach. The new resonance is then shown to be established by assistance of simple

anisotropic boundary condition placed at the cavity ends to serve as handedness preserving

reflection surfaces. The handedness preserving reflectors are realized with anisotropic meta-

surfaces with relative rotational offset. Each surface provides a perfect electric conductor

(PEC) type reflection for one field polarization, while providing a perfect magnetic conductor

(PMC) type reflection for the orthogonal field polarization. Therefore such boundaries are

termed as PEC-PMC metasurface. It is seen that by proper relative rotation of axis between

the two anisotropic end walls, the cavity can resonate at the desired frequency regardless of

the cavity length. The dispersion of the metasurfaces are analyzed to investigate the tun-

ability of the resonance frequency. To verify the theoretical solutions, full-wave eigenmode

simulations are performed. The concept of the new resonance is then extended to guided

waves and waveguide resonators. The PEC-PMC metasurfaces are placed as two end walls of

a circular waveguide cavity. This leads us to demonstrate, for the first time, a new resonance

condition in a dual-mode circular waveguide cavity, which has not been observed before in

such structures. Simulation and experimental results demonstrate the validity of the new

resonance.

1.2 Analysis for Resonance Conditions

A handedness preserving mirror can be implemented by utilizing a basic property of CP

Plane Waves. Any CP PW can be decomposed into two equal amplitude orthogonal LP PWs

with a ±90◦ phase difference (in phasor form), where the sign determines the handedness

based on the propagation direction. An electric wall, such as a metal reflector, reverses the

3



handedness of an incident CP PW upon reflection, as it is isotropic and provides the same

π reflection phase for the two orthogonal LP wave components. Any other isotropic surfaces

have similar handedness reversing behavior.

On the other hand, an anisotropic PEC-PMC wall can preserve the handedness upon

reflection. LP waves with electric field polarized along the PEC axis, undergo a π radian

reflection phase. Whereas the other orthogonal polarization sees a PMC behavior at the

surface, and undergoes a 0 radian reflection phase. Upon reflection of a CP wave from such

a surface, the sign of the phase difference is reversed and thus the handedness is preserved.

Other anisotropic surfaces can also act as handedness preserving mirrors as long as they

can provide a π radian reflection phase difference between the two orthogonal axis. Thus,

if a CP wave incidents on a handedness preserving mirror, the reflected CP wave shall have

the same handedness as the incident CP wave, therefore forming the PSW. Utilizing such

handedness preserving surfaces, we can establish a resonant cavity which simultaneously

uses both field polarization (in the case of PWs) or both orthogonal guided modes (in a dual

mode waveguide). The plane wave (infinite cross section) cavity case is first discussed for

simplicity, and then extended to guided modes.

The resonant cavity scenario of interest is presented in Fig. 1.2(a). The cavity axis,

and therefore the direction of wave propagation is the z-axis, and the electric field can take

any polarization in the x − y plane. One anisotropic end-wall is placed at z = 0 whose

PMC axis is parallel to the x−axis while its PEC axis is parallel to the y−axis. The second

end-wall is placed at z = L. The PEC-PMC axes of the second wall are tilted by an angle

θ around the z-axis with respect to the first metasurface. Since the PEC-PMC metasurface

is rotationally symmetric around the z-axis by every 180◦, the value of the tilt angle θ can

only be 0 ≤ θ ≤ π. A 1D Fabry-Perot type cavity can be formed between these PEC-PMC

end-walls, which are infinite in size in the x − y plane. We pursue the eigen-solutions to

resonances in such a 1D cavity (along z), where the two surfaces can have arbitrary rotational

offset with respect to each other.

4



Figure 1.2: (a) A cavity formed with two PEC-PMC anisotropic walls at the two ends. The

axes of the wall at z = L are rotated by θ with respect to the first wall. (b) Equivalent

transmission line model of the cavity. The two pair of transmission lines represent the two

polarizations. The reflecting metasurfaces are equivalent to two-port networks characterized

by a 2× 2 S-matrix.
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1.2.1 Field Analysis Approach

The allowable resonant modes in such a structure may be investigated from two perspectives.

The first perspective is to use a field analysis approach [10]. The boundary conditions at

the anisotropic surfaces are crucial. The PEC axis boundary condition requires the total

tangential E field to be zero along that axis, while the PMC axis boundary condition requires

that the maximum tangential E field at the surface to be in this direction. In the case where

the anisotropic surface is designed to be PEC-PMC, the boundary condition can be written

as:

PÊC · ~Et = 0 (1.1)

PM̂C × ~Et = 0 (1.2)

Since the PEC axis is orthogonal to the PMC axis, (1.1) and (1.2) are effectively equiv-

alent to each other. In other words,the total tangential E field must only exist along the

PMC axis at the surface, which makes the total tangential E field perpendicular to the PEC

axis.

Now consider the cavity as shown in Fig.1.2. Suppose that both polarizations can exist

in the cavity, i.e. the x and y polarization. The general field inside the cavity is

~Ex(z) = x̂(Ae−jk0z +Be+jk0z) (1.3)

~Ey(z) = ŷ(Ce−jk0z +De+jk0z) (1.4)

where A,B,C,D are the complex amplitudes of the corresponding PWs, and k0 is the

wavenumber of the PWs propagating in free space between the end walls. Applying boundary

condition (1.1) to the field at z = 0 (the left wall), the relationship between the coefficients

are established

A = B, C +D = 0 (1.5)
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Thus the field in the cavity can be rewritten as

~Ex(z) = 2A cos(k0z)x̂ (1.6)

~Ey(z) = −2jC sin(k0z)ŷ (1.7)

At z = L, due to the rotational offset of the surface, the direction of the PEC axis is

PÊC = x̂ sin θ + ŷ cos θ (1.8)

Applying the boundary condition (1.1) at z = L

A cos(k0L) sin θ = jC sin(k0L)cosθ (1.9)

Equation (1.9) is the general solution to the resonance in this cavity. One possible and

somewhat intuitive solution to (1.9) would be θ = 0 or π/2, along with a second condition

on k0l which make both sides equal to zero. When θ = 0, sin θ = 0, and the left-hand side

of (1.9) equals to zero. To satisfy the right-hand side of (1.9) we have,

sin(k0L) = 0⇒ k0L = nπ, (n = 0, 1, 2, · · · ) (1.10)

When θ = π/2, cos θ = 0 and the right-hand side of (1.9) equals to zero. In this case, we

need

cos(k0L) = 0⇒ k0L = nπ +
π

2
, (n = 0, 1, 2, · · · ) (1.11)

Therefore in both cases, we obtain the solution by forcing one side of (1.9) equals zero

by properly setting the rotation angle, and equating the other side to zero by imposing a

condition on the cavity length. The two polarizations would decouple, and waves along

each polarization would resonate independently in both cases. In other words, there is no

interaction between the two polarizations in the cavity. These two scenarios correspond to

the classic resonances in a 1D cavity. For each polarization, the case of θ = 0, corresponds

to the case where either both ends of the cavity are short (PEC) or both are open (PMC).

The case of θ = π/2 corresponds to the so called half-mode resonances, where one cavity end
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is PEC and the other is PMC for one polarization, and vice versa for the other polarization.

These classic modes can resonate independently from the other polarization.

However, magic happens when θ takes any other value aside from 0, π. The field of the

two polarizations cannot be decoupled and θ cannot be eliminated in such scenario. Another

solution to (1.9) may be obtained by assuming

A = ±jC (1.12)

This is essentially assuming that the PWs traveling in the cavity are CP type, where one po-

larization is equal and in quadrature phase with respect to the other polarization. Such

assumption is based on the knowledge that PSW is essentially formed by two counter-

propagating CP wave with the same handedness. Substitute (1.12) in (1.9), we obtain

sin(k0L) cos θ ∓ cos(k0L) sin θ = sin(k0L∓ θ) = 0 (1.13)

Clearly, the solution to (1.13) is a new resonance condition where

k0L∓ θ = nπ, (n = 0, 1, 2, · · · ) (1.14)

One immediate observation is that the resonance condition is not only dependent on k0l but

also on values of θ between 0, π. The relationship also depends on the handedness of the

CP wave. It also suggests a potential tunability of the resonance frequency by rotating the

surface instead of changing the cavity length. Higher order resonances of order n > 0 are

also possible.

If we apply the assumption (1.12) in (1.6) and (1.7), the total field in the cavity can be

rewritten as

~Et(z) = 2jC(± cos(k0z)x̂− sin(k0z)ŷ) (1.15)

therefore

|Et(z)| = 2C (1.16)

which shows that the amplitude of the total E field is constant along the z-direction and no

nodes and anti-nodes are present. It should also be noted that the direction of the E field

8



at any given z is

Angle(z) = arctan
Ey(z)

Ex(z)
= ∓k0z (1.17)

which has a linear dependency on z. It shows that the tip of the E field vector follows a

helical path around z-axis. In addition, the direction of the E field is only dependent on z

given the frequency. The features of this field distribution fits the PSW profile [6].

Researchers have tried to break the cavity size limitation in the past by placing metafilms

in Fabry-Perot cavities [11, 12]. While such resonance conditions as proposed in [11] seem to

have a similar format with (14), the principles behind them are quite different. In [11, 12],

classic linearly polarized resonances were used. The metafilm behaves as a L-C network

providing additional phase as if there were an additional length of a transmission line. This

is similar to using shunt lumped L-C elements in a microstrip resonator to decrease the

resonance frequency. Their approach works for either eigen-polarizations independently in

the Fabry-Perot Cavity, and is utilizing the traditional resonances (i.e. the two polarizations

are not coupled to form a new resonance). However, in PSW resonance, the two eigen-

polarizations in the Fabry-Perot Cavity must be related together to form such a new standing

wave without nodes and anti-nodes. The rotation angle of the end walls here will provide the

additional phase. In addition, their approach does not provide tunability since the topology

of the metafilm decides the resonance frequency for a given cavity. It would demand changing

the geometry of the metafilm to change the resonance frequency without changing the cavity

size. On the other hand, we only need to rotate the anisotropic surface to tune our new

resonance.

The field analysis approach provides an efficient and intuitive way for the analytical

solution to the resonance condition of PSW. However, the solution is not exclusive. We

manually imposed (1.12) and reached a solution. As much plausible as the assumption (1.12)

might be, one may argue that there could be other modes aside from the aforementioned

three types of modes based on the different relationship of A and C in (1.9). For example,

assume A and C also have a magnitude difference

A = ±jCM (1.18)
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Now (1.9) can be rewritten as

tan(k0L) = ±M tan θ (1.19)

Eq. (1.19) results in a new resonance condition where the magnitude ratio between each

polarization also comes into the picture. In this scenario, the field is like PSW except that

it has an elliptically polarized nature. However, a few problems arise from this result. The

first is that there would be infinitely many modes for a given configuration of the cavity

and a given frequency, due to infinitely many possible different magnitude ratios between A

and C, which seems impossible. The second is that this mode cannot be captured by full

wave simulation tools, which make its existence even more questionable. In addition, the

field perspective cannot be used to analyze the cases other than the PEC-PMC anisotropic

surface scenario. The answer to these questions can be easily seen from a circuit perspective.

1.2.2 Transmission Line Model Analysis

It is natural to take the x and y polarization LP waves as a set of eigen-polarizations for

the 1D propagation since the resonance is caused by the PWs bouncing back and forth

between the two walls. Any PWs that propagates along z can therefore be interpreted as

a linear superposition of the two eigen-polarizations. Note that there is no energy coupling

between the two eigen-polarization PWs in free space (unless this region is filled with a chiral

material itself [13], which is not the case here). Fig. 1.2(b) shows a network representation

of the scenario at hand with such perspective. The free-space propagation path between

the two end walls is equivalent to a two transmission-line network. Each transmission-line

corresponds to one eigen-polarization with a propagation constant equal to k0 for free space.

The end walls are modeled as four-port networks responsible for reflections and transmissions

on both polarizations. In the most general case, the matrix representation of scattering from
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a discontinuity in the propagation path of a two-transmission line system is:

b1x

b1y

b2x

b2y


= [S]



a1x

a1y

a2x

a2y


where

S =



s1x1x s1x1y s1x2x s1x2y

s1y1x s1y1y s1y2x s1y2y

s2x1x s2x1y s2x2x s2x2y

s2y1x s2y1y s2y2x s2y2y


(1.20)

Here 1x and 1y notations denote the x- and y-polarization scatterings on the left side of

the discontinuity, and 2x and 2y for the right side. In the particular discontinuity of Fig.

1.2(b), there are only reflections and no transmission. Therefore, only one side of the surface

is of interest. The scattering matrix of each surface can then reduce to a two-port network

where only the reflected fields on the same side are of interest: V −x

V −y

 = [S]

 V +
x

V +
y


where

S =

 sxx sxy

syx syy

 (1.21)

The equivalent transmission-line model of the dual-polarized cavity and the reflection

discontinuities are given in Fig. 1.2(b). Since the circuit model can describe the end-walls

by using the scattering matrix, it is not required for the end-wall to be PEC-PMC anisotropic

surface for the deduction. Any handedness preserving mirror can be used as the reflector for

this problem. The scattering matrix describing this reflector is

Sl =

 ejφ 0

0 −ejφ

 (1.22)
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The end-well degenerates into PEC-PMC anisotropic surface when φ = 0.

However, the scattering matrix for the right wall is not as straightforward. The principal

axes of this wall have a rotation around the z-axis, by an amount θ. The scattering matrix of

the right wall Sr, defined in the x− y coordinate system, can be obtained by the coordinate

transformation of Sl using the rotation matrix R(θ):

Sr = R(θ)SlR(θ)T =

 ejφ cos 2θ ejφ sin 2θ

ejφ sin 2θ −ejφ cos 2θ

 (1.23)

where

R(θ) =

 cos θ − sin θ

sin θ cos θ

 (1.24)

Now consider the resonance path. The plane waves in +z direction from z = 0 reach z = L

and are reflected by the second end-wall, then travel in z direction, are reflected by the

first end-wall at z = 0, and reach their initial position. Assuming everthing is lossless.the

resonance requires that the wave and all its derivatives be continuous after this one round-

trip. Letting E1 and E2 represent the initial complex amplitude of the two eigen-polarization

PWs, the described resonance round-trip can be written in matrix form as: ejφ 0

0 −ejφ


 ejφ cos 2θ ejφ sin 2θ

ejφ sin 2θ −ejφ cos 2θ


 E1

E2


·e−2jk0l =

 E1

E2

 ej2mπ, (m = 0, 1, 2, · · · )

(1.25)

Rearranging equation (1.25) we have cos 2θ sin 2θ

− sin 2θ cos 2θ


 E1

E2

 = ej2(mπ+k0l−φ)

 E1

E2

 (1.26)

Denote the left-most matrix of (1.26) as A. It can be observed that ej2(mπ+k0l) is the eigen-

value, and (E1, E2)
T is the eigenvector of A.

When θ = 0 , A is an identity matrix whose eigenvalues are λ1 = λ2 = 1. In this case,

ej2(mπ+k0l−φ) = 1⇒ k0l = nπ + φ, (n = 0, 1, 2, · · · ) (1.27)
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When θ = π/2, A is again an identity matrix with a minus sign. Its eigenvalues are

λ1 = λ2 = −1. In this scenario,

ej2(mπ+k0l−φ) = −1⇒ k0l = nπ +
π

2
+ φ, (n = 0, 1, 2, · · · ) (1.28)

The eigenvectors for θ = 0 and θ = π/2 are x1 = (1, 0)T and x2 = (0, 1)T respectively. These

eigenvectors indicate that E1 and E2 are independent. These two resonances correspond to

the classic resonant modes described earlier and agree with the results in (1.10) and (1.11)

from the field analysis when φ = 0.

However, A is no longer an identity matrix when θ is any other value. The eigenvectors

of A in general can be obtained as

x =


cos 2θ∓2j sin θ cos θ−cos 2θ

sin 2θ

1

 =


∓2j sin θ cos θ

sin 2θ

1

 (1.29)

which leads to two fixed eigenvectors:

x1 =

 j

1

 , x2 =

 −j
1

 (1.30)

This shows that the eigenvectors are independent of the tilt angle θ. More importantly,

by using (1.29), the relationship of E1 and E2 can be obtained as

E1 = ±jE2 (1.31)

Eq. (1.30) reveals the circularly polarized nature of the waves inside the cavity at reso-

nance. The sign also indicates the handedness of the CP PWs. In addition, the CP nature is

independent of the tilt angle θ. More importantly we have not imposed any presumptions on

the PWs in the cavity, yet the CP PWs revealed themselves as the only eigen solutions for

resonance as long as θ 6= π, π/2. The possibility of elliptical PSW is ruled out by this trans-

mission line argument. By solving the matrix, the eigenvalues are λ1 = e−j2θ, λ2 = e+j2θ. In

this case, the resonance condition is

ej2(nπ+k0l−φ) = λ = e∓j2θ

⇒ k0l = nπ + φ∓ θ, (n = 0, 1, 2, · · · )
(1.32)
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which agrees with (1.14) when φ = 0. The total field inside the cavity can be obtained by

superposition of the two counter propagating CP PWs of same handedness:

−→
E t(z) =

−→
E +(z) +

−→
E −(z) =

 E0

±jE0

 e−jk0z+

S−11

(
E0±jE0

)
e+jk0z =

 E0 cos k0z

∓E0 sin k0z


(1.33)

which agrees with (1.15) when φ = 0. The presence of the off-diagonal elements in Sr and

thus in A, cause the coupling between the two eigen-polarizations at the cavity ends, and

form the new resonance.

1.2.3 Resonance Condition with Dispersion

In reality, the surfaces realizing the handedness preserving boundaries are dispersive over

frequency (their reflection phase on the two axises does not necessarily keep the same dif-

ference as the frequency changes). When the tuning of the resonance frequency is desired,

the dispersion of these metasurfaces is therefore inevitable. Fortunately, the transmission

line model can accommodate this. For a PEC-PMC metasurface as example, the wave will

see PEC for one polarization for all frequencies. While the wave with the other polarization

will see PMC only at the center frequency and deviate on other frequencies [10]. Thus, the

scattering matrix can be modified as

S1 =

 ejφ(f) 0

0 −1

 (1.34)

where φ is the reflection angle caused by the dispersion, which is a function of frequency

for a given metasurface. The scattering matrix for the second wall can also be obtained by

applying the rotation matrix

Sr = R(θ)SlR(θ)T

=

 −sin2θ + ejφ(f)cos2θ sin 2θ(1+ejφ(f))
2

sin 2θ(1+ejφ(f))
2

−cos2θ + ejφ(f)sin2θ

 (1.35)
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The final equation can be obtained by using the same procedure as in previous sections, −e
jφ(f)(sin2θ − ejφ(f)cos2θ) sin 2θejφ(f)(1+ejφ(f))

2

− sin 2θ(1+ejφ(f))
2

cos2θ − ejφ(f)sin2θ


·

 E1

E2

 = ej2(mπ+k0l)

 E1

E2


(1.36)

This is again an eigenvalue problem where the eigenvalues can be calculated

λ = ejφ(f)(cos2θ + cosφ(f)cos2θ − 1)

∓ cos φ(f)
2
ejφ(f) cos θ

√
2(cos2θ + cos2θ cosφ(f)− 2)

(1.37)

Thus the resonance condition can be numerically written as

λ− ej2k0l = 0 (1.38)

Equation (1.38) is a function of cavity length l, the tilt angle θ and resonance frequency f .

The analytical solution is not obvious, yet the graphical method can be employed by plotting

the curve where ∣∣∣λ− ej2k0l∣∣∣ = 0 (1.39)

From (1.39), the resonance frequency can be obtained once the cavity length and the rotation

angle is given. It would allow the precise tuning over a large frequency band with realistic

metasurface designs.

1.3 Design and Validation

To verify the above theory and solutions, full-wave simulations are performed on cavities

formed with the realistic handedness preserving surfaces of the PEC-PMC metasurface type.

Many studies have demonstrated PMCs in microwaves and optics [14–19]. However, they are

not all compatible with an anisotropic PEC-PMC feature. Studies on anisotropic metasur-

faces are also widely investigated [20–24]. However, they are either complex to fabricate or

too hard to obtain PEC-PMC characteristics. In this paper, a novel and simple PEC-PMC
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metasurface design at 10 GHz is utilized. We demonstrated in [25] that sub-wavelength

periodic parallel metal traces on a grounded substrate respond differently to orthogonal po-

larizations. This structure is a planar implementation of the artificial soft and hard surface,

which is typically implemented with 3D corrugated structures [26]. Such a structure is shown

in Fig. 1.3a. If the incident E field is parallel to the traces, denoted as the TE mode, the

surface behaves as a PEC. If the E field is perpendicular to the metal traces, denoted as

TM mode, it acts as an reactive impedance surface whose refection phase can be designed.

Therefore, we can obtain an anisotropic PEC-PMC surface by simply designing the TM

reflection phase to be 0 radians at the center frequency.A unit-cell of the structure used in

simulations is shown in Fig. 1.3b. The substrates have a relative permittivity εr = 10.2 and

a thickness H = 2.22 mm. The periodicity of the structure is d = 2.25 mm. The strip width

w is to be optimized to implement a proper reflection phase.

Fig. 1.3c shows the reflection phase for both TE and TM mode over 4 − 16 GHz when

strip width w = 0.75 mm. It can be observed that the reflection phase is 0.205◦for TM mode

and 174.5◦ for TE mode at 10 GHz. The results indicate that the surface behaves as an

almost perfect PMC for TM mode at 10 GHz. For TE mode, since the electric field sees a

dense array of metal strips and some effects of dielectric, the reflection phase is not exactly

π radians instead of a solid metal surface. This concludes the design of the PEC-PMC

anisotropic boundary condition, using a very simple metasurface. It should be noted that

although an empirical method based on simulation of the reflection phase was used to design

the desired strip width, relatively accurate circuit models[27] may also have been used to

reach the same result.

1.3.1 Validation for Free Space

Full-wave eigenmode simulations are then carried out for a cavity constructed with two

of such anisotropic metasurfaces placed at some distance apart. As shown in Fig.1.4, the

cavity is formed by placing two PEC-PMC metasurfaces in parallel with a distance L in the

z-direction . Such a cavity is periodic in the transverse x − y plane and thus has infinite
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Figure 1.3: (a) Proposed PEC-PMC anisotropic metasurface structure. (b) the unit cell

simulation of the metasurface. Floquet port is deembeded to the surface of the metal strips.

(c) the reflection angle over 4-16 GHz.
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transverse cross-section. In the cases shown in Fig. 1.4, the rotation angle θ between the

two end walls can either be 0 or π/2 radians. The periodic boundary condition is employed

to mimic the infinite PEC-PMC surface and the infinite cavity cross section.

According to (1.10) and (1.27), the resonance will occur at 10 GHz by setting l = 15

mm and θ = 0. Moreover, there are two possible resonances that can be captured. One

resonance is a PEC-PEC type and the other is for a PMC-PMC type. That is indeed the

case from the simulation results. Fig. 1.4a shows the former type of resonance which has

E field nodes (short circuit) on the two end walls and one anti-node in the center, with the

resonance frequency f1 = 9.71 GHz. The field only has one polarization which is parallel

to the PEC axis. Fig. 1.4b shows the other type of resonance which has E field anti-nodes

on the two end walls (open circuit) and one node in the center. The field only has one

polarization which is parallel to the PMC axis. The resonance frequency is exactly 10 GHz.

According to (1.11) and (1.28), a half-mode resonance should also occur at 10 GHz by

letting l = 7.5 mm and θ = 90◦. As in previous discussions, the field would meet the PEC

boundary condition at one end and PMC boundary condition at the other end thus forming

a half-mode resonator. This is exactly the situation shown in Fig. 1.4c. The maximum field

at one end along the PMC axis and the minimum field at the other end along the PEC axis.

The resonance frequency is 9.92 GHz.
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Figure 1.4: Eigenmode simulations of a cavity with independent resonances on each polar-

ization. (a) When l = 15 mm and θ = 0, the eigen-mode have nodes on the two end walls

and one anti-node in center. The resonance frequency f1 = 9.71 GHz. (b) When l = 15 mm

and θ = 0, the eigenmode have anti-nodes on the two end walls and a node in center. The

resonance frequency f2 = 10.00 GHz. (c) When l = 7.5 mm and θ = 90◦, the eigenmode

shows the maximum field at one end along the PMC axis and the minimum field at the other

end along the PEC axis. The resonance frequency f3 = 9.92 GHz.
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Figure 1.5: Eigenmode simulations when the two surface have arbitrary rotation angle. (a)

Rhombus unit cell of the metasurfaces to form a cavity for θ = 60◦ and 120◦ rotation.

(b)the rotation angle between the two end walls θ1 = 60◦ and the distance l1 = 5 mm. The

eigenmode fields have constant field amplitude and a helix profile. The tip of the E field

rotates 60◦ from one end wall to the other. The resonance frequency f1 = 9.93 GHz. (c)

the rotation angle between the two end walls θ2 = 120◦ and the distance l2 = 10 mm. The

eigenmode field have constant field amplitude and a helix profile. The tip of the E field

rotates 120◦ from one end wall to the other. The resonance frequency f2 = 9.92 GHz.
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What the previous simulations described is simply nothing but the classic resonances

typically seen in 1D cavities with short or open ends. To verify the resonance conditions

(1.14) and (1.32), eigenmode simulations are required where the two end walls have other

relative rotation angles with respect to each other. As presented in Fig. 1.5a, a rhombus

unit-cell is used to implement the rotation angle θ. The rotation angle θ = 60◦ and 120◦

are chosen for demonstration. The rhombus cell is only chosen to accommodate the rotation

angle between the two parallel metasurfaces in the context of an eigenmode simulation of

the full cavity and they exactly recover the same metasurface as in Fig. 1.3a.

As shown in Fig. 1.5b and 1.5c, two periodic PEC-PMC metasurfaces are placed parallel

with a distance of l1 = 5 mm and l2 = 10 mm respectively to form a cavity. The rotation

angle between the principal axes of the two end walls are θ1 = 60◦ and θ2 = 120◦ respectively.

According to (1.14) and (1.32), the resonance frequency will be 10 GHz when l1 = 5 mm

for θ1 = 60◦ (Fig. 1.5b) and l2 = 10 mm for θ2 = 120◦ (Fig. 1.5c). That is indeed the case.

For the former scenario, the resonance frequency f1 = 9.93 GHz and for the latter scenario,

a resonance frequency f2 = 9.92 GHz are observed in the full-wave eigenmode simulations.

The field along the main axis of the cavity has uniform amplitude in both cases. The tip

of the electric field forms a helical path and it rotates 60◦ and 120◦ respectively from one

end wall to the other. The direction of the electric field at a given point does not rotate

with time. The direction which E-field oscillates along is determined by the position and

frequency. The field profile exactly fits the descriptions in (1.15) (1.17) and (1.33).

1.3.2 Validation for Free Space Considering Dispersion

As we mentioned, the metasurface will deviate from PEC-PMC response when the fre-

quency is off from the center frequency. In this case, the aforementioned graphic solution in

(1.34)-(1.39) can be used. The relationship between reflection phase and frequency of the

metasurface shown in Fig. 1.3c within 8-12 GHz can be approximated by using linear curve

fitting as

φ(f) = c1f + c2 (1.40)
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Figure 1.6: Graphical solution and the eigenmode simulation results. The cavity length l = 9

mm.
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where c1 = −50.04 o/GHz and c2 = −500.08o.

In real application scenario, the cavity length is fixed while the rotation angle of the

end wall will be changed for tuning. Thus the cavity length is set to be l = 9 mm for

demonstration. The unit cell presented in Fig. 1.5a is employed to simulate the cases where

the rotation angle θ equals to 20◦, 40◦, 60◦ and 80◦. The symmetry of the metasurface

implies that these cases are equivalent to 160◦, 140◦, 120◦, and 100◦ respectively. The result

from the eigenmode simulation and the graphical solution from the modified transmission

line model are shown in Fig. 1.6. The simulated results perfectly fit the graphic solution

from (1.39).

1.4 New Resonance in Dual-Mode Waveguide Cavities

The previous discussions covered a resonance for plane-waves with an infinite transverse area.

However, this resonance condition inspires us to seek a similar resonance condition in closed

guided-wave cavities. Unlike PWs, waves in waveguides are not infinite and uniform in their

transverse plane, and they typically follow a sinusoidal variation. However, many waveguides,

such as dual-mode waveguides, can simultaneously support two orthogonal modes, having

two E fields polarized orthogonal to each other in the transverse plane. An experiment using

a dual-mode circular waveguide cavity is carried out for demonstration of the new resonance

and verification of the theoretical solution, as shown in Fig. 1.7.

The circular waveguide is made of a copper tube with an inner diameter D = 25.27

mm. Two PEC-PMC anisotropic metasurfaces using the similar design as in Fig. 1.3a are

placed at the two ends of the waveguide. Rogers RT/duroid 6010LM with dielectric constant

εr = 10.2 at 10 GHz and thickness h = 1.91 mm is used to implement the surfaces. A relative

rotation angle between the two surfaces is set as θ = 135◦.

It has to be noted the excitation of a such resonance is rather simple even though the new

resonance has CP nature. It does not require two orthogonal probes with 90◦ phase delay

to enforce the CP wave inside the cavity. As we presented in the early sections, the new
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Figure 1.7: A circular waveguide cavity with PEC-PMC end walls excited with a standard

waveguide through a coupling slot.

resonance is an eigenmode of the cavity. As long as the power is properly coupled into the

cavity, the new resonance mode can be excited. In this demonstration, the cavity is excited

by a standard WR-90 rectangular waveguide through a coupling slot with dimension sl = 8

mm by sw = 0.5 mm. The coupling slot is etched on the ground back of the metasurface

that joins the input WR-90 WG to the cavity. The slot also acts as polarizing the field along

the particular PMC direction.

We still have two orthogonal polarizations of the guided TE11 modes of the circular

waveguide cavity While we do not deal with CP plane waves anymore. These two modes

can be made to have ±90◦ phase difference, and thus represent a similar type of handed

propagation. This is particularly applicable to the center axis of the guide along the z-axis,

where the TE11 mode has a strong and uniform distribution. The guided wave number β for

TE11 mode in this waveguide is [3]

β =

√
k0

2 − χ′11
D/2

(1.41)

The cavity length L can be obtained by using (1.14) or (1.32) to design the n = 0 order
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resonance frequency to be at 10 GHz for a rotation angle of θ = 135◦,

L =
θ

β
= 15.84 mm (1.42)

The reason why θ = 135◦ was chosen in our prototype instead of θ = 45◦ is to have a

larger device that can be built and measured more easily. According to (1.14) or (1.32), if

θ = 45◦, the cavity length L would be 5.28 mm. It must be noted that these cavity lengths

do not correspond to cavity lengths of any resonant orders of a conventional TE11 metallic

dual-mode waveguide cavity of the same cross section.

The resonant structure is 3D, rather than the one-dimensional plane wave discussion in

previous discussions and [6]. To verify that the resonance is the one theorized, we carry out

full-wave simulations of the entire structure with no periodic conditions. Fig. 1.8a shows

the field inside the circular cavity along the center z-axis for the resonance frequency. The

E field vector follows a helical path with about 135◦ total rotation, and relatively uniform

amplitude. Closer observation shows that the field at the two end boundaries are aligned

with the PMC axis. These features meet the desired field profile described in (1.16) (1.17)

(1.33), but now for a guided wave.

A more complete field distribution within the cross section is given in Fig. 1.8b. We can

see that the electric field is very close to the TE11 mode in the circular wave guide. The mode

profile is perturbed at the end walls. The metasurface is designed to have a PEC axis and

PMC axis. However, the electric field of TE11 mode in the circular cavity is not uniform on

the whole transverse plane. Therefore, at the metasurface, the direction of the E field varies

with the position and sees different reflection coefficients. That causes the deformation of the

mode. Nevertheless, the E field of TE11 mode in the vast center part is relatively strong and

uniform, which enables us to approximate the field inside to be a PW and apply the previous

theory. Though the field near the side wall is more distorted, the magnitude of these field

and the area it possesses is too small to significantly affect the overall field compared with

the field in the center. It can also be observed that the polarization of the perturbed TE11

mode rotates based on their locations along the z-axis, which is the same as the rotation of

the E field polarization in (1.16) (1.17) (1.33). A series of simulations of the cavity structure
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Figure 1.8: Electric field in the circular cavity at resonance. (a) The E field along the center

line. (b) The E field in the cross sections of the cavity. The field is very close to TE11 mode

profile in different polarizations based on their positions.
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Figure 1.9: The resonance frequencies under different combinations of cavity lengths and

rotation angles
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Figure 1.10: Measured and simulated S-parameters showing a new resonance at 10 GHz for

a dual-mode wave-guide cavity of length 15.84 mm.

shown in Fig.7 are conducted under different combinations of cavity lengths and rotation

angles, to further verify the resonance condition and demonstrate the possibility of the size

reduction. The combinations are designed under (1.14) (1.32) (1.42) such that the resonance

frequencies shall be at 10 GHz. The results are presented in Fig. 1.9. The metasurfaces

used in each case are the same, and only the rotation angle and cavity length is adjusted.

It can be seen that as the rotation angle decreases, the required cavity length for the given

resonance frequency also decreases.

Fig. 1.10 shows the single port S-parameter of both simulation and measurement of the

circular cavity. The simulation result clearly indicates that a resonance occurs at 9.97 GHz.

This matches the theoretic prediction perfectly. The measurement also shows the resonance

is at 9.89 GHz, which agrees well with the simulation results. We fixed the rotation angle for

demonstration for simplicity. However the resonance can be tuned by turning the end walls

according to (1.39). This tuning process can be accordingly controlled by a step motors etc.,

providing a reliable way of tuning the resonance. If the device is big, the rotation can also
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be achieved by hand. We are able to achieve both discrete and continuous levels of tuning.

This provides a new possibility for tunning the resonance frequencies as opposed to the

conventional tunable resonators [28–35], in which the dimensions of the cavities are changed,

MEMs switches are used, and tuning screws or liquid metals are inserted. Moreover, one can

envision coupling of such resonators, to realize multipole coupled resonator filters [36, 37].

The simulated unloaded quality factor Qu for this cavity is 590. The major loss comes

from the dielectric loss, and conductor loss is also an important source. If an all-dielectric

metasurface is employed with very low loss dielectrics[20] or utilize all-metal corrugated

structures, the cavity′s Qu can be improved up to 6000. So that the applications could be

extended into optical and THz regime.

1.5 Conclusion

A new resonance is presented in cavities. Such resonance is a result of dual-polarized prop-

agation reflecting from anisotropic boundary conditions that can relate the two polariza-

tions. Two approaches toward the analytical solution of the resonance condition is presented,

namely a transmission line model as well as a fields perspective.The dispersion of the end

walls are also characterized using the transmission line model. Anisotropic PEC-PMC meta-

surfaces were employed to implement a handedness preserving reflection surface and used

as cavity boundary conditions. The theoretical solution to this resonance was verified using

full-wave eigenmode simulations. A new resonance in dual-mode circular waveguide cavities

was then reported, and experimentally demonstrated, inspired from the earlier plane wave

discussions. This new resonance has potential application in tunable resonator design at

microwave, mm-wave and the THz regions.
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CHAPTER 2

Blazed Metasurface Grating with Handedness

Preservation for Circularly Polarized Incident Wave

2.1 Introduction

Diffraction grating is a periodic structure which can diffract incident wave into different

directions (diffraction orders). The diffraction orders are dictated by the frequency and

angle of the incident wave, and the periodicity of the gratings [38–43].

For any diffraction grating, the relationship between the operation wavelength λ0, the

periodicity d, the diffraction order m, the incident angle θi, and the diffraction angle of the

mth order θm can be expressed using the grating equation. As shown in Fig. 2.1, the grating

equation 2.1 can be obtained by simply regarding the diffraction beams as the consequence

of constructive interference.

(sin θi + sin θm)d = mλ (2.1)

In the Littrow configuration, the incident angle and the diffraction angle of the m = −1

mode are the same, i.e. θi = θ−1. The grating equation can be rearranged as

k0d sin θi = π (2.2)

Eq. (2.2) is also referred to the Bragg condition [39].

Conventional diffraction gratings are typically 3D structure, e.g. sawtooth gratings [38]

and groove gratings [39]. These gratings have many applications in optics and microwave.

For example, diffraction grating can be used in tunable external-cavity diode lasers [44]. As
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Figure 2.1: Illustration of a diffraction grating.

illustrated in Fig. 2.2, the diffraction grating acts as an output coupler. m = −1 mode is

coupled back to the cavity whereas the specular reflection (m = 0 mode) forms the output

beam.

However, 3D structures can be difficult and expensive to fabricate. In addition, it is hard

for these 3D structures to provide independent control over different polarizations. There-

fore, alternative approaches are sometimes desired. Metasurfaces [43] are planar periodic

structures which allow people to engineer its properties, e.g. the local magnitude and phase

of reflection/transmission coefficients of the surface. Such technology can be employed to

manipulate the scattered wave front, thus can serve as the planar equivalent of a 3D diffrac-

tion gratings. There are several metasurface gratings that have been proposed recently. In

[25], a metasurface grating is proposed to replace a sawtooth grating in Littrow configuration

for TE polarization by reproduce the phase distribution of the scattered field of a sawtooth

grating. Similar approach is used in [45–47] to operate on both TE and TM polarizations si-

multaneously. In [48–51], resonant type blazed metasurface gratings are proposed to achieve
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Figure 2.2: Illustration of a tunable external-cavity diode laser.

strong auto-collimation in TM polarization. Meanwhile, non-periodic metasurface which can

create strong retro reflection in TE polarization is investigated in [52, 53] by using genetic

algorithm for optimization.

Nevertheless, to our best recollection, there has been no diffraction grating, either meta-

surface grating or classic 3D grating, reported to operate on CP incident wave and can

preserve the handedness. However, such diffraction grating is desired if we would like to

use it into an external-cavity diode laser with the new resonance mode that we discussed in

chapter 1. In this work [54], we propose a novel metasurface grating operating at 10 GHz,

which not only provides strong auto-collimation for CP incident wave, but also preserves the

handedness (Fig. 2.3).

2.2 principle of operation

The grating we desire in this work has two features: strong blazing and handedness preser-

vation. We may divide and conquer the problems. First is to achieve strong blazing. As

we discussed in previous sections, Bragg condition is needed to achieve the auto-collimation.

However, satisfying Bragg condition does not guarantee strong auto-collimation blazing ef-
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Figure 2.3: Concept of the blazed metasurface grating with handedness preservation for CP

incident wave

fect. The properties of the unit-cell is also important. In this project, we propose a novel

method to create very strong blazing reflection by putting perfect electric condutor (PEC)

and perfect magnetic conductor (PMC) scatters together in one period. An example of in-

cident wave at 10 GHz with incident angle θi = −30o is shown in Fig. 2.4 to illustrate the

concept.

According to Bragg condition, the periodicity of the unit-cell d = λ0 in this case. Thus

the two scatters (blue for PEC, red for PMC) are placed λ0/2 away from each other. It

can be readily calculated that the scattered waves from the two scatters in m = 0 mode

(specular reflection) are in destructive interference, whereas the scattered waves in m = −1

mode are in constructive interference. Therefore the specular reflection is suppressed while

the m = −1 mode is enhanced.
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Figure 2.4: Illustration for a unit-cell of the diffraction grating: the incident wave is at 10

GHz, and incident angle is θi = −30o. The blue dot and red dot represent PEC and PMC

scatterers respectively.
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On the other hand, the handedness preservation requires the unit-cell to provide 180o

degree difference between the reflection phases of TE (E-field in y-direction) and TM (E-field

in x-z plane) polarizations, as we discussed in chapter 1. One way to achieve such effect is

to let the blue scatter in Fig. 2.4 to behave as PEC for TE wave and PMC for TM wave,

and let the red scatter to behave as PEC for TM wave and PMC for TE wave, vice versa.

In this way, the TE and TM ploarizations seems opposite boundary conditions and undergo

180o reflection phase difference with respect to each other.

2.3 Implementation

The idea in previous section can be implemented by strip-type reactive impedance surface.

Such surface is similar as the surface we use in chapter 1 for implementing PEC-PMC

anisotropic surface. However, the discussion in previous section is based on ideal case, i.e.

the PEC and PMC scatters are point sources that are separated λ0/2 away. In reality, they

are two continuous regions that are distributed in each unit-cell. Therefore many parameters,

such as the ratio between two regions and actual reflection phases of PEC/PMC regions,

have to be optimized.

Fig. 2.5 shows the proposed structure. The substrate is Rogers RT/duroid 6010 with

dielectric constant εr = 10.2, thickness h = 1.27mm, and copper cladding tc = 35um. The

period of the unit-cell in x-direction d is chosen to be 30 mm to meet the Bragg condition

at 10 GHz and θi = θ−1 = −30o. The period in y-direction a = 2mm is chosen for design

simplicity. The length of region I is d1 = 20mm, and the copper strip width is w1 = 1.85mm.

The length of region II is d2 = 10mm. There are 5 parallel copper strips in y direction, and

the width of the strips is w2 = 1.82mm.

We can speculate the responses of two regions for TE and TM polarizations. Region I

would behave as PEC for TM wave and PMC for TE wave, whereas region II would behave

as PEC for TE wave and PMC for TM wave. This is what we desired as discussed in the

previous section.
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Figure 2.5: Unit-cell of the metasurface grating optimized for auto-collimation at

θi = θ−1 = −30o.

Full wave simulation is preformed on this unit-cell with periodic boundary conditions

(PBC) and Floquet port. The magnitude and phase of the reflection coefficients for TE and

TM polarizations in m = −1 mode are shown in Fig. 2.6.

At 10 GHz, the magnitudes of m = −1 mode for both TE and TM polarizations are

very strong, and their values are close to each other. Meanwhile, the difference of reflection
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Figure 2.6: (a) The magnitude of the reflection coefficient for m=-1 mode. (b) The phase of

the reflection coefficient for m=-1 mode
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Figure 2.7: Simulated scattering field at 10GHz with LHCP wave incident at θi = −30o(a)

A finite 4-cell sample. (b) Simulated scattering (in dB) from metasurface grating. (c)

Simulated scattering (in dB) from same size PEC sheet.
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phase between TE and TM polarizations in m = −1 mode is 151.8o, which is close to 180o.

Therefore, we can expect a strong m = −1 mode with the same handedness as the incident

CP wave. It can be noticed that there is a dip in Fig. 2.6a for TM polarization. Such effect

is common in blazed gratings for TM polarization, and it has been reported in [41].

To validate the concept, the simulation of the scattering from a finite metasurface grating

is performed. The sample is shown in Fig. 2.7a. The size of the structure is 12 cm x 12

cm, i.e. 4 x 4 unit-cells. The incident wave is LHCP at 10 GHz, and the incident angle is

θi = −30o. The scattered field of the finite sample is shown in Fig. 2.7b. It can be observed

that strong auto-collimation is achieved and there is almost no specular reflection. More

importantly, the scattered field in m = −1 mode is dominantly LHCP, which is the same

handedness as the incident wave. The side lobes are due to the finite size of the scatter, and

can be narrower if larger size sample is used.

A similar simulation is made for a 12 cm x 12 cm PEC plate with the same incident wave

for comparison. The result is shown in Fig. 2.7c. As we expected, the specular reflection

is very strong, and there is no scattered wave in m=-1 mode. Also, the handedness of the

specular reflection wave is opposite to the incident wave.

2.4 measurements

2.4.1 Measurement setup

To validate the auto-collimation and handedness preservation effects, experimental sample

based on the proposed idea is fabricated and measured (Fig. 2.8). For comparison, a same

size sawtooth grating with the blazed angle θb = 30o is also fabricated and measured (Fig.

2.8).

Fig. 2.9 shows the scheme of the measurement setup. The sample is placed on top of a

rotator that can rotate for different incident angles θi. An X-band horn antenna is used to

illuminate the sample with the linearly polarized (LP) wave. The horn antenna is connected

to a vector network analyzer (VNA) to perform one-port measurement. In theory, the
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Figure 2.8: Fabricated samples of the metasurface grating and the sawtooth grating, with

the picture of the measurement setup.

40



Figure 2.9: Scheme of the measurement setup.

measured S11 should correspond to the power that is scattered back from the environment,

i.e. the strength of the sample’s auto-collimation in this setup. In realty, the port reflection

at the horn antenna also contributes to S11 and causes interference. Time gating technique

is used to eliminate the effect of the port reflection to rule out such interference.

Since the horn antenna can only generate LP wave, the measurements for both hori-

zontal polarization (TM polarization) and vertical polarization (TE polarization) must be

performed to evaluate the CP operation of the sample. Denote the measured complex S11

for v-pol and h-pol as the magnitude and phase of auto-collimation wave Eh and Ev respec-

tively. In this project, we assume LHCP incident wave. Then the total scattered field in

auto-collimation can be written as

~Etotal = Ehĥ+ jEvv̂, (2.3)

where j =
√
−1.

Since LHCP and RHCP are a set of orthogonal basis for plane wave, the total field can
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be decomposed as

|ELHCP | = | ~Etotal · êLHCP | (2.4a)

|ERHCP | = | ~Etotal · êRHCP | (2.4b)

where

êLHCP =
1√
2

(ĥ− jv̂) (2.5a)

êRHCP =
1√
2

(ĥ+ jv̂). (2.5b)

It has to be noted that the definition of LHCP and RHCP in 2.5 seems to be opposite to

conventional definition. The reason is that the scattered field in auto-collimation propagates

along the opposite direction of the incident wave.

2.4.2 Measurement Result

Fig. 2.10a presents the measurement results of the metasurface grating. The vertical axis

represents the synthesized magnitude of the auto-collimation waves. Here, we only presented

the result with the strongest blazing appeared in the measurements, which correspond to the

incident angle θi = −28o in this scenario. The red curve is the magnitude of normal reflection

from a PEC plate of the same size as the metasurface grating. It serves as the reference.

The blue curve represent the LHCP component of the auto-collimation wave, whereas the

green dotted curve is the RHCP component. It can be observed that the strongest auto-

collimation is achieved at 10.65 GHz, where the magnitude of LHCP is higher than RHCP

by 13.39 dB. Meanwhile, the magnitude of the LHCP wave is only 1.13 dB lower than the

normal reflection from the PEC plate. This demonstrated a strong auto-collimation so that

almost all of the incident LHCP wave is scattered back in LHCP wave in the measurement.

The shift of the center frequency is caused by fabrication and measurement errors.

Same measurement is performed on a same size metallic sawtooth grating for comparison.

The result is shown in Fig. 2.10b. Again, only the measurement result with the strongest

auto-collimation is presented. The incident angle θi = −31o in this case. The maximum
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Figure 2.10: Auto-collimation measurements with LHCP incident wave. (a) Proposed meta-

surface grating. (b) Metallic sawtooth grating.
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auto-collimation is achieved at 9.45 GHz and the magnitude of RHCP wave is higher than

LHCP wave by 14.2 dB. It can be seen that the most of the incident LHCP wave is scattered

into the auto-collimation direction, but the handedness is reversed. In addition, we can see

that the auto-collimation wave magnitude of both meatsurface grating and sawtooth grating

is around -30dB, which shows that the LHCP handedness preservation is almost as good as

a PEC sawtooth reflection of RHCP.

2.5 Conclusion

A novel metasurface grating is proposed and validated to provide both strong auto-collimation

and handedness preservation for the CP incident wave. The strong blazing effect is achieved

by combining PEC and PMC scatterer according to Bragg condition. Its unique features

can be potentially used at microwave, mm-wave, THz, and optical frequencies.
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CHAPTER 3

Single-Layer Slow-Wave Substrate Integrated

Waveguide with Enhanced Capacitance

3.1 Introduction

The planar transmission line structures, such as microstrip and coplanar waveguide (CPW),

have been the fundamental components of RF and microwave engineering [55, 56]. Substrate

integrated waveguide (SIW), which was proposed in recent years, has been widely used in

high frequencies (typically > 10 GHz) for its high efficiency and compatibility with planar

circuits [37, 57–62]. The concept of SIW is quite straight forward. As shown in Fig. 3.1,

a rectangular waveguide is formed in a substrate by placing a top metal layer over the

ground plane and enclose the structure with rows of though hole vias (THVs) on both

sides. However, the applications of SIW at low frequencies are limited because of its high-

pass nature. Since it is essentially a rectangular waveguide, the cutoff frequency of SIW

is inversely proportional to its broadside dimension. Several studies have been presented

to solve this problem, such as substrate integrated folded waveguide (SIFW) [63] and half

mode SIW (HMSIW)[64, 65]. Fig. 3.2 shows the geometry of the SIFW and HMSIW. It can

be seen that both techniques can reduce the lateral dimension by 50%. Nevertheless, the

reduction in longitudinal dimension was not investigated.

To reduce the lateral and longitudinal dimensions of SIW simultaneously, slow-wave

effect can be employed. Slowwave structures are waveguides or transmission lines in which

the wave travels with a phase velocity equal to or less than a certain predesignated velocity

of wave propagation [66].The concept of slow-wave effect has been extensively studied in
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Figure 3.1: Geometry of substrate integrated waveguide.

the conventional transmission line structures to improve the compactness and performances

[67–69]. However, it was not until very recently did people start to investigate the slow-

wave effect on SIW. To author’s best recollection, the first SW-SIW is proposed in [70]. An

array of blind vias are loaded into a SIW so that the shunt capacitance is enhanced without

significantly disturbing the inductance. As a result, it increases the effective permittivity.

However, the blind vias require a multilayer SIW structure. In [71, 72], the SW-SIW are

implemented by replacing the top metal layer with a net of microstrip polyline and lumped

inductor respectively. The series inductance is enhanced without significantly disturbing the

capacitance therefore increases the effective permeability. These structures are presented in

Fig. 3.3. These SW-SIW can achieve 40% size reduction in both lateral and longitudinal

dimensions.

In this project, a new SW-SIW design based on enhanced capacitance is proposed using

single-layer instead of multilayer. The slow-wave effect is achieved by grounded periodic

square patches acting as the elevated ground plane. The slow-wave effect provides substantial

size reduction in both lateral and longitudinal dimensions. As a demonstration of application,

a BPF at 5.6 GHz with a FBW of 7.8% are designed and measured in both conventional

and proposed SW-SIW for comparison.
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Figure 3.2: (a) Substrate integrated folded waveguides (SIFW). (b) Half-mode substrate

integrated waveguide (HMSIW).
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Figure 3.3: SW-SIW implemented with (a) blind vias, (b) microstrip polyline, (c) lump

indutors.
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Figure 3.4: Schematic view of proposed SW-SIW : (a) 3-D view. (b) Super-cell of the

proposed SW-SIW. (c) Unit cell of the SW-SIW.
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3.2 SW-SIW Operation Principle

3.2.1 SW-SIW Topology

Fig. 3.4 presents the topology of the proposed SW-SIW. As shown in Fig. 3.4(a), the

proposed circuit is a SIW which consists of periodically cascaded super-cells presented in

Fig. 3.4(b). Each of the super-cell is a single-layer structure composed of 6 unit cells shown

in Fig. 3.4(c). There is a square patch on the top side in each unit cell, which is connected to

the ground by THV. The patch is enclosed by a square slot, whereas the slot is surrounded

by a metal grid. The metal grid is corresponding to the top surface of a conventional SIW,

and the grounded patches enclosed by the grid are effectively the elevated ground plane.

The slow-wave effect of the proposed structure is investigated with full wave simulations.

The substrate is Rogers RO6002 with relative dielectric constant εr = 2.94, and tangent loss

tan δ = 0.0012. The thickness of the substrate h = 1.27 mm and the copper thickness is 35

um. The diameter of THVs for both side wall and unit cell is d = 0.8 mm. The length of

the unit cell is a = 2 mm. The trace width of the grid wg = 0.2mm and the width of the

slot in unit cell is s = 0.2 mm.

3.2.2 Electromagnetic Fields

The EM simulation of the proposed SW-SIW is performed form DC to 10 GHz. Fig. 3.5

shows the distribution of electric field and magnetic field in the cross section at 6 GHz.

It can be seen that the electric field is concentrated on top surface within the slots. Such

concentration indicates a substantial enhancement of the shunt capacitance. On the other

hand, the magnetic field exists in the whole volume around the vias and the field distribution

is similar to the H-field distribution of TE10 mode in a conventional SIW. The separation of

E-field and H-field is a typical feature in slow-wave structures.
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Figure 3.5: Cross section of the proposed SW-SIW : (a) E-field. (b) H-field.

3.2.3 Equivalent Circuit Model

To better understand the properties of the proposed SW-SIW structure, it is important

to obtain its equivalent circuit model. The equivalent circuit model in Fig. 3.6b can be

extracted intuitively from the side view of the unit-cell shown in Fig. 3.6a. Capacitor C1,

C3 represent the capacitance between the ground plane, and the grid and patch respectively.

Capacitor C2 represents the enhanced capacitance between the grid and the patch. Inductor

L2 is the inductance due to the THV, while the series inductor L1 is the inductance caused

by signal current flowing through the grid.

To verify the equivalent circuit model, a full wave eigenmode simulation is performed on

the unit-cell of the proposed SW-SIW, to investigate its dispersion diagram (Fig. 3.7). The

x-axis of the figure shows the phase delay when the EM wave travel across the unit-cell, and
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Figure 3.6: (a) Side view of the unit-cell. (b) Equivalent circuit model of the unit-cell.
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the y-axis shows the corresponding frequency.

One immediate observation from Fig. 3.7 is that the dispersion curve of the unit-cell is

far below the air line, which indicates a strong slow wave effect. On the other hand, it can be

seen that the dispersion curve of the unit-cell is quite linear when the phase delay across the

unit-cell βd ≤ 90◦, i.e. the unit-cell size is smaller than quarter guided wavelength. However,

the equivalent circuit model in Fig. 3.6b is not supposed to provide such linear dispersion

curve, unless L2 is close to 0. Nevertheless, from full wave DC simulation, the value of L2 is

not negligible.

The key to the discrepancy between the circuit model and the linearity of the dispersion

curve at low frequency is L2. Since L2 is induced by the current flow through the THV,

full wave simulations are performed to investigate the current on the THV. The simula-

tions are performed at a low frequency (corresponding to βd = 25o) and a high frequency

(corresponding to βd = 135o).

The surface current on the via is presented in Fig. 3.8. At the low frequency, it can be

seen that the currents on the two sides of the via are anti-parallel and therefore canceling

out. In other words, there is no net current on the via at the low frequency. Hence L2

effectively does not exist, which explains why the dispersion curve is linear. At the high

frequency, however, it can be seen that the currents on the two sides of the via are parallel

and therefore adding up. In other words, there is net current, hence L2 come into the picture.

That explains the non-linearity of the dispersion curve at higher frequencies. However, what

is the reason behind the different current distributions between low frequencies and high

frequencies?

To answer the question, we need to look into the current distribution on the top surface

as well. It can be seen from Fig. 3.9a that the current on the grid points towards the same

direction along the propagation axis. That is because when the frequency is low, the phase

delay across the unit-cell is so small that we can treat it as a DC current. Such treatment is

termed as quasi-static approximation and can be employed when the phase delay across the

unit-cell βd ≤ π/2. To accommodate with the current on the grid, the current on the patch
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Figure 3.7: Dispersion diagram of the unit-cell of the proposed SW-SIW.
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Figure 3.8: Surface current on the THV (a) When phase delay βd = 25◦. (b) When phase

delay βd = 135◦.
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Figure 3.9: Surface current on the top surface (a) When phase delay βd = 25◦. (b) When

phase delay βd = 135◦.
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forms a loop. The patch current coming out from one side of the via and loop back into the

other side of the via, thus causing the canceling currents on the via. On the other hand, at

high frequencies, the phase delay across the unit-cell cannot be neglected. It can be seen

from Fig. 3.9b that the current on the grid has different orientations along the propagation

axis. To accommodate such current on the grid, the current on the patch forms radial path,

which will draw or push current through the THV, thus inducting the inductance.

Since we are using the structure as transmission line, the linear region is of interest.

From the previous discussion, we know that there is not net current on the via in the linear

region. In another word, the top patch has equal potential as the ground plane and therefore

is effectively shorted to the ground. Fig. 3.10 shows the equivalent circuit model of the

unit-cell in linear region, where Ctot = C1 + C2 ‖ C3.

3.2.4 Electrical Parameters

In this section, electrical parameters of the proposed SW-SIW are studied by EM simulations

to demonstrate the decrease of the normalized cutoff frequency, and the increase in slow wave

factor (SWF). Meanwhile, design parameter study is performed. We investigate the impact

of s on the slow wave effect, since the enhanced capacitance is mainly dictated by the slot

width s,

The normalized cutoff frequency is defined as the ratio between the cutoff frequency of

SW-SIW and the cutoff frequency of the SIW with the same width. The normalized cutoff

frequencies for different slot width s is shown in Fig. 3.11. It can be seen that as s decreases,

the normalized cutoff frequency also decreases because of the increased capacitance between

the patch and the grid. When s = 0.1 mm, the normalized cutoff frequency is 0.577, which

implies a 42.3% lateral dimension reduction with a given cut off frequency.

The SWF versus frequency for different slot width s is shown in Fig. 3.12. Here, the

SWF is defined by c0
vp

, where vp and co are phase velocity of the guided wave and the speed

of light in free space respectively. It can be observed that the SWF increases as s decreases.

It is because of the enhanced capacitance as previously discussed. For comparison, the
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Figure 3.10: The equivalent circuit model of the unit-cell in linear region.
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Figure 3.11: Normalized cutoff frequency for different slot width s

SWF of SIW with the same literal dimension is also shown in the figure. Apparently the

proposed SW-SIW generally has much larger SWF compared with conventional SIW. Hence,

a significant size reduction in longitudinal dimensions can be obtained for a given electrical

length.

To be used as transmission line, the efficiency of the proposed SW-SIW is crucial. Hence

the attenuation versus frequency is studied for both s = 0.15 mm and s = 0.3 mm (Fig.

3.13). It can be seen that the attenuation for the SW-SIW is generally less than 0.01

dB/mm, which is similar compared with the aforementioned SW-SIW structures in [70–72].

Such attenuation level is satisfactory, especially when compared with some flexible circuit

technology [73–78]. When slot width s is smaller, the attenuation is larger due to the higher

E-field concentration in the slot. The dielectric loss is increased in this scenario. Thus a trade

off between efficiency and slow-wave effect has to be made when designing such structure.
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Figure 3.12: SWF versus frequency for different slot width s

3.3 Demonstration of Applications

To demonstrate the application of the proposed SW-SIW, two BPF are designed and mea-

sured using both conventional SIW and the new SW-SIW. Both BPF have a center frequency

at 5.6 GHz and a FBW 7.8%. The same substrate is used and the slot width is chosen to

be s = 0.2 mm.

As shown in Fig.3.14a, the filter with SW-SIW consists of 2 cavities. Each cavity has 7

by 5 unit-cells. The two cavities are then cascaded together through a window for controlling

coupling by removing certain number of the vias in between. An additional unit-cell is put

within the window as a supplementary bridge. For impedance matching, a special matching

line is designed. It is a conventional 50Ω microstrip loaded with 1 column of the unit cell

in Fig.3.4(c). The microstrip line width is 3.2 mm, and the slot width s for unit cell in feed

line is 0.3 mm. Loading similar unit-cell into feeding microstrip line as transition was used

in [70] as well. The dimension of SW-SIW BPF is 16 mm × 24 mm.

The SIW BPF follows the same principle. Each of the resonator has a similar width to
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Figure 3.13: Attenuation versus frequency for different slot width s

length ratio with its slow-wave counterpart (Fig. 3.14(b)). For convenience of fabrication,

a larger via with a diameter of 1.6 mm is used in this case. The dimension for this filter is

24.2mm × 38.5 mm.

Table 3.1: Simulated and Measured IL, FBW, and Qu

SIW BPF SW-SIW BPF

Sim. FBW 7.8% 7.8%

Mea. FBW 7.8% 8.2%

Sim. IL (dB) 0.50 0.92

Mea. IL (dB) 0.88 1.97

Sim. Qu 458.4 255.1

Mea. Qu 266.1 120.2

The simulation and measurement S-Parameter for both filters are shown in Fig. 3.15.

The simulated and measured IL, FBW, and Qu are summarized in table 3.1. The response

for both BPFs are very similar according to Fig.3.15. From table 3.1, the measured IL of

SW-SIW BPF is 1.05 dB higher than simulated results. The additional losses may result
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Figure 3.14: Fabricated bandpass filter using conventional SIW and proposed SW-SIW

62



Figure 3.15: Simulation and measurement results for bandpass filters. (a) Conventional SIW

bandpass filter. (b) SW-SIW bandpass filter.
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from fabrication errors.

Compared with the conventional SIW BPF, BPF using the proposed SW-SIW achieves

58.8 % of size reduction with reasonable performance. The size reduction can get further

improvement by using a smaller slot width s. It also has to be noted that the measured

unloaded quality factor Qu = 120.2 for our SW-SIW, which is way higher than typical

HMSIW technique. HMSIW is the most commonly used technique for SIW resonator size

reduction. Due to its radiation loss at the open edge, the unloaded quality Qu is typically

less than 100. Therefore, the proposed SW-SIW achieves both greater size reduction and

efficiency compared with HMSIW.

3.4 Conclusion

A novel single layer SW-SIW is proposed and demonstrated more than 40% size reduction in

both lateral and longitudinal dimensions. The two effects together lead to a greater size re-

duction. The equivalent circuit model for the unit-cell is given and justified. Several electrical

parameters, such as normalized cutoff frequency, SWF, attenuation is investigated through

parametric sweep on the slot width s. As a demonstration, two BPFs are designed and mea-

sured using the proposed SW-SIW and SIW. With a reasonable performance, SW-SIW BPF

achieves a 58.8% size reduction and an unloaded quality factor of 120.2. This technology

has potential applications in microwave, millimeter wave, and CMOS based circuits.
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