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Increasing the efficiency and flexibility of electricity demand is necessary for ensuring a cost-effective and reliable 
transition to zero-carbon electricity systems. Such demand-side management (DSM) resources have been procured 
by utilities for decades via energy efficiency and demand response programs; however, the key drivers of program 
enrollment and customer participation levels remain poorly understood — even as governments and grid planners 
seek to scale up the deployment of DSM assets to meet climate targets. Here we systematically review the evidence 
on multiple factors that may influence customer enrollment and participation in building DSM programs, focusing 
primarily on residential and commercial buildings. We examine the contexts in which relationships between DSM 
factors and outcomes are most often explored and with which methods; we also score the strength, direction, and 
internal consistency of each factor’s reported impact on the enrollment and participation outcomes. We find that 
studies most commonly assess the effects of economic incentives for load flexibility on program participation 
levels, often using simulation-based methods in lieu of measured data. Few studies focus on program enrollment 
outcomes or regulatory drivers of either enrollment or participation, and gaps are also evident in the coverage 
of emerging DSM opportunities like load electrification. Removal of structural barriers (e.g., the lack of controls 
infrastructure) and the use of third party services (e.g., load aggregators) are the factors with the largest positive 
impacts on DSM outcomes, but no single factor emerges as clearly most impactful. For a given factor, the range 
of reported impacts typically varies widely across the relevant studies reviewed. Our findings provide a snapshot 
of the state of knowledge about building DSM and customer decision-making, and they expose key gaps in 
understanding that must be filled if building DSM is to expand as a critical resource for operating clean power 
grids.
1. Introduction

Governments around the world have committed to ambitious climate 
mitigation goals that center on reaching net-zero greenhouse gas (GHG) 
emissions economy-wide by mid-century. GHG reduction plans call for 
a rapid transition to a low-carbon energy system, and the integration 
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of variable renewable energy (VRE) sources to decarbonize the elec-
tricity supply is the lynch pin of this transition. However, the weather 
dependence of VRE generation resources creates new operational chal-
lenges for electric utilities. Such challenges have renewed interest in 
complementary “demand-side solutions” [19]. These solutions modify 
the consumption of energy at its end use points — such as in buildings 
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(e.g., [52]) — to balance energy supply and demand while minimizing 
the scale of additional generation, transmission, and distribution infras-
tructure investments that are needed to decarbonize the power system.

Demand-side solutions encompass multiple energy end-use sectors, 
diverse technologies, and a wide range of actors. In the context of elec-
tricity decarbonization and utility planning, such solutions fall under 
the traditional umbrella term “demand side management” (DSM). DSM 
denotes electric utility programs that are intended to affect the amount 
and timing of customer electricity usage [35], including programs for 
peak and annual demand reductions, load shifting and load building, 
and strategic load growth [30]. DSM strategies are broadly categorized 
as: energy efficiency improvements, including persistent reductions in 
energy demand through measures such as improving building envelopes 
or energy conversion systems, enhanced control algorithms, or system 
optimization; energy flexibility, including the shifting of energy demand 
profiles to satisfy grid and local objectives, for example through the 
re-scheduling of end use loads, the use of energy storage, and the in-
corporation of on-site renewable energy; and demand response (DR), 
which is considered a specific energy flexibility strategy that curtails end 
use electricity demand during times of grid stress [54]. Load electrifica-
tion measures that convert fossil-fired heating, water heating, cooking, 
or drying equipment in buildings to run on electricity (preferably clean 
electricity) may also be considered DSM measures to the extent that the 
new electric load operates more efficiently and/or flexibly in coordina-
tion with power system needs.

For decades, utilities have procured DSM via energy efficiency and 
demand response programs, and the majority of program impacts have 
come from the buildings sector, which encompasses residential and com-
mercial buildings. Buildings are the top source of global electricity de-
mand among end-use sectors [38], and thus residential and commercial 
customers have historically been a primary target of DSM program ad-
ministration [24]. Building DSM programs target the largest end use 
sources of residential and commercial building electricity demand — 
heating, cooling, and ventilation (HVAC), water heating, and commer-
cial lighting and refrigeration. The potential flexibility from managing 
building loads is considerable but depends strongly on customer behav-
ior [55], which enables or constrains program impacts in two ways: 1) 
customers decide to enroll in (or, in cases where they are auto-enrolled, 
to opt out of) the DSM program in the first place — e.g., by installing 
a certain type of enabling equipment, choosing a certain rate structure, 
or agreeing to respond to utility signals for load adjustment; and 2) cus-
tomers’ operational patterns and preferences determine the degree to 
which they are able to participate in the program once enrolled — e.g., 
the realized magnitude of changes in their load patterns.

Past studies of building DSM programs often assume that economic 
incentives — e.g., lump-sum payments, time-of-use tariffs or real-time 
pricing — act as the main driver for customers’ program enrollment 
and participation (e.g., [13,29,36,77,84]). This assumption has been 
challenged by social science researchers (e.g., in Strengers [91], Shove 
et al. [86]), who point out that consumption patterns depend on the 
daily practices of households and businesses and that energy cost is 
therefore just one among many other elements influencing the magni-
tude and timing of energy demand [87,92]. This criticism is bolstered 
by recent evidence, for example, from a study that compares DR pro-
grams in Norway, Denmark and Austria. This study concludes that there 
is no simple causality between price schemes and DR actions and that 
price-sensitive DR depends on complex and interrelated elements such 
as consumer knowledge, the design of devices and the meanings associ-
ated with the schemes [16].

Other studies further highlight the non-economic factors that may 
be most important for customer DSM enrollment and participation. 
These include: structural barriers, including lack of availability of 
programs and enabling smart technology (e.g., grid-connected appli-
ances or thermostats) [66,102,25,74,75,27]; utility partnerships with
third-party service providers — including load aggregators, energy ser-
2

vice companies (ESCOs), and software-as-a-service platforms — which 
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may, for example, bundle incremental changes in load across many 
customers as an alternative to conventional generation resources, lever-
age social norms to increase participation, and/or enable peer-to-peer 
trading; customer engagement — including education and provid-
ing detailed feedback about energy consumption patterns — that in-
creases environmental awareness and/or awareness of personal energy 
demand [53,62,98,106,42,108,13,57,12,60,77,99,29]; customer seg-

mentation, which aligns DSM programs to customer characteristics 
— e.g., low-income customers [102,73] — to ensure sustained par-
ticipation and avoid distributional consequences, such as higher bills 
or unhealthy conditions for low-income households [54,43,65,96]; and
regulatory instruments, including mandatory rate structures, default 
rates, building and equipment codes and standards, and other rules and 
policy initiatives that support DSM measures [40,26,28,89].

A wide range of factors may therefore impact customer DSM enroll-
ment and participation outcomes. However, a systematic understanding 
on the scope of evidence behind each factor and its potential impacts 
on DSM outcomes is lacking. Multiple recent reviews of DSM have been 
conducted, for example (e.g., [9,67,105,97,56] but these reviews place 
limited focus on the role of customer decision-making and behavior. 
The few studies that synthesize knowledge on DSM enrollment and par-
ticipation factors are limited in scope and offer primarily qualitative 
assessments (e.g., [68,88]). More structured assessments of these factors 
across a wider range of contexts are needed to determine the feasibil-
ity of increasing DSM program deployment levels and load impacts to 
support a low-carbon power system.

Here we address this knowledge gap by systematically reviewing the 
available literature on factors that could increase customer enrollment 
and/or participation in utility DSM programs. Using a structured, multi-
stage framework for retrieving, screening, and scoring relevant studies, 
we aggregate evidence about the impacts of several potential DSM fac-
tors on enrollment and participation outcomes. We also highlight the 
contexts in which relationships between the DSM factors and outcomes 
are most studied and uncover gaps in understanding that could hin-
der the broader adoption and use of DSM by utilities to meet power 
system decarbonization targets. Insights from the review, which is part 
of the authors’ contributions to International Energy Agency Energy in 
Buildings and Communities Programme (IEA EBC) Annex 82: Energy 
Flexibile Buildings [39], can inform key considerations and areas for 
further investigation related to customer decision-making in the design 
and implementation of utility DSM programs.

2. Methods

2.1. Systematic review framework

The structure behind our systematic literature review is adapted 
from the Context-Intervention-Mechanism-Outcome (CIMO) framework 
[14]. This framework, which was originally developed for organization 
and management studies, has recently been translated to the context of 
energy policy by Peñasco et al. [71]. The study’s research question is 
framed in terms of CIMO as follows:

• What is known in the scientific and industry literature about the changes 
in DSM customer enrollment and/or level of participation (O) that arise 
from various market, policy, or other contextual factors (I) that may 
activate demand-side management resources (M) to facilitate electric 
grid decarbonization (C))?

Table 1 further defines each of the CIMO elements in the DSM re-
view context. Here, we define six categories of DSM factors that are 
consistent with those identified in the Introduction. These factors could 
potentially be leveraged by electric utilities and/or policy makers to 
increase the scale and impacts of deployed DSM in buildings, by in-
creasing the number of customers enrolled in DSM programs (“DSM 

enrollment,” outcome 1) and/or by increasing the potential response of 
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Table 1

Structure of systematic review of DSM factors, in terms of the four elements of the Context-Intervention-Mechanism-Outcome (CIMO) review framework.

CIMO Element Definition in Review Context

Context (C) Need for greater demand-side management (DSM) to support the transition of the electric grid to low-carbon generation resources.

Intervention (I) Market, policy, and other contextual factors that could be leveraged by utilities and other relevant stakeholders to increase enrollment and/or participation in 
DSM programs:

• Incentives: provide economic rewards for adjusting consumption (temporarily or permanently), for example, through lump-sum payments, customer 
equipment rebates or financing, time-varying electricity rates, etc.).

• Structural barriers: remove barriers to enrolling and/or participating in DSM programs by expanding program availability, increasing capabilities and the 
installed base of controls infrastructure and equipment that facilitates customer response.

• Third-party services: partner with aggregators, curtailment service providers, ESCOs, and other entities other than the utility to enroll customers and/or 
guide participation in DSM programs.

• Customer engagement: educate customers about DSM programs and provide feedback about their consumption or the consumption of peers.
• Customer segmentation: bin customers by common characteristics (e.g., socio-demographic factors, load adjustment preferences, etc.) to tailor engagement 

in DSM programs — for example, programs targeted at low-income customers.
• Regulatory: enact rules to compel customer enrollment and participation in DSM programs — e.g., mandated electricity rate structures, default time-of-use 

rates, other policy initiatives.

Mechanism (M) Isolate the effect of an individual factor on DSM program enrollment and/or the potential level of load adjustments realized by program participants.

Outcome (O) Change in DSM program enrollment (e.g., in total number of customers enrolled, rate of enrollment in eligible buildings, or other); change in DSM program 
participation (e.g., levels of load flexibility and/or energy efficiency impacts) achieved by participating customers.
each customer that participates in these programs (“DSM participation,” 
outcome 2). We quantify the reported direction, strength, and consis-
tency of the reported relationship between these factors and outcomes 
via a paper scoring template that is further detailed in Section 2.4.

2.2. Review stages

We developed our final literature database through a five-stage re-
view, screening, and scoring process:

1. Initial search of academic databases. Using the conceptual framing 
described in the previous section, we develop lists of key words to 
use in retrieving relevant papers from the Scopus and ScienceDirect 
academic literature databases. Key words exclude acronyms and 
focus on the assessment of outcomes, for example:
• (buildings AND grid) AND ([instrument/factor] AND (“respon-

se” OR “outcome” OR “impact” OR “level” OR “incidence” OR 
“effect”) AND (“evaluation” OR “appraisal” OR “assessment” OR 
“ex-post” OR “analysis”).

Paper metadata retrieved in this step were stored in a BibTex file 
for further processing.

2. Title and abstract screening and category tagging. Papers from the 
previous step were divided randomly across 6 reviewers for an ini-
tial screening. This screening followed two steps:

i. A title screen removed duplicate papers in the database.
ii. Paper abstracts were reviewed against a common set of inclu-

sion and exclusion criteria (see Section 2.3). To facilitate this 
step, the BibTex database was uploaded to a Mendeley Research 
Group, where abstract data are translated to a graphical user 
interface for easier review. As each abstract was reviewed, the 
reviewer also made an initial assessment of which DSM factor(s) 
the paper focused on, and tagged the paper accordingly.

Once the title and abstract screening were complete, a second, 
screened and tagged iteration of the BibTex database from step 1 
was produced for further processing and review.

3. Parallel search for reports and key authors. Significant research on 
DSM programs is conducted outside the academic context — e.g., 
by utilities, regional grid planners and operators, governments, and 
companies. To ensure that our search did not exclude these valuable 
sources, we put out a parallel call across the full IEA EBC Annex 
82 group for key non-academic studies and/or authors that should 
be included in our review. Once identified and abstract-screened, 
metadata from these studies were added to the BibTex database 
3

from step 2.
4. Detailed review and scoring of screened papers. Each paper and re-
port in the database resulting from steps 2 and 3 was reviewed in 
depth by 7 reviewers, including all 6 who screened paper abstracts 
in step 2. As in that step, papers were randomly assigned to the re-
viewers. As part of this in-depth review, each paper was subjected 
to the inclusion and exclusion criteria a second time. Provided the 
paper passed the second screening, reviewers used a common tem-
plate and instructions to enter detailed paper metadata across sev-
eral categories of interest and to score the paper’s reported effects of 
DSM factor(s) on DSM outcomes. Metadata and scores were entered 
into a shared spreadsheet for further data cleaning and processing 
(see Section 2.4).

5. Supplemental scoring. A final stage of review added information 
about the nature of customer control over participation in DSM pro-
grams (see Section 2.4), a topic which was apparent in many of the 
scored papers, where applicable. These scores were assigned by a 
single reviewer who was not involved in the preceding screening 
and scoring steps.

2.3. Screening criteria

Paper abstracts and full texts were screened according to a common 
set of conditions for inclusion or exclusion, enumerated below. These 
screening criteria were defined in advance of the review process de-
scribed in the previous section.

• Inclusion criteria:
– Published after the year 2000.
– Scientific articles, reviews, and technical reports.
– English texts only.
– Must include focus on building electric loads (including residen-

tial, commercial, and/or industrial buildings), ideally in the con-
text of power system needs.

– Studies in which the relative impact of an individual DSM factor 
of interest on an individual DSM outcome or outcomes of interest 
was assessed.

• Exclusion criteria:
– Studies that do not include a focus on building electric loads or 

which clearly do not relate to the context of power system needs.
– Studies that do not report on at least one of the distinct DSM 

factor(s) AND at least one of the distinct outcome(s) of interest.
– Studies in which the relative impacts of individual DSM factors 

on a DSM outcome/outcomes of interest cannot be isolated or are 

mixed with the effects of other types of factors.
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Table 2

Paper metadata collected during detailed review and scoring stage. See supporting 
text in Section 2.4 for definitions of each row.

Scoring Category Scoring Options

Building Type Residential; Commercial; Industrial; Other

Building Scale Multiple Buildings; Single Building; Single and Multiple Buildings

Loads Assessed
Whole Building; HVAC; Water Heating; Lighting; Refrigeration;
Electronics; Small Appliances; EVs; On-site PV; Battery; Other;
Non-specific

Measure Type
Efficiency-equipment; Efficiency-envelope; Efficiency-controls;
Efficiency-other; Flexibility; Electrification; Other; Non-specific

Assessment Method
Simulation/Modeling; Laboratory Testbed; Metered Customer Data;
Longitudinal Survey(s); Cross-sectional Survey(s);
Other Quantitative; Other Qualitative; Other

Participation Type Passive; Active; Combination
2.4. Scoring and post-processing

Tables 2 and 3 show, respectively: the categories used to collect 
metadata on each paper’s focus and high-level characteristics; and the 
categories for scoring the direction, strength, and consistency of each 
paper’s reported relationship between DSM input factors and outcomes 
of interest.

The following metadata categories were scored (Table 2):

• Building type. The focus of the review was on residential and com-
mercial buildings, however, larger commercial buildings are some-
times lumped together with industrial buildings in analysis and 
reporting. Therefore, all types of buildings — residential, commer-
cial, and industrial, were included in the possible scoring categories.

• Building scale. Studies may assess the impacts of DSM programs 
across a cluster of multiple buildings, at the scale of a single build-
ing, or at both scales.

• Loads assessed. We focus primarily on building end use loads, 
whether aggregated across a whole building/multiple load types 
or isolated for a single load of interest. Since DSM programs may 
engage both building loads and other onsite distributed energy 
resources (DERs) (e.g., onsite solar generation, battery storage, 
and/or EV charging/discharging), these load categories were also 
distinguished in the scoring framework.

• Measure type. DSM is defined broadly to encompass building en-
ergy efficiency, building demand flexibility and DR, and building 
load electrification measures. Efficiency measures include improve-
ments to building equipment efficiency, improvements to building 
envelope component performance (e.g., windows, walls), or con-
trols that both reduce energy waste and enable load flexibility.

• Assessment method. Studies may use simulation methods, me-
tered load measurements, self-reported survey responses, or a com-
bination of these methods to determine the impacts of various DSM 
factors on DSM outcomes.

• Participation type. For studies of DSM participation, the partici-
pation may occur actively; passively; or via a combination of both 
types of participation. The definition of active and passive partic-
ipation intersects with measure types, as further described below, 
but emphasizes the degree to which customers have operational 
control over a given measure.
– Passive energy flexibility involves the use of automated control 

algorithms to shift the energy demand of building loads (e.g., 
HVAC, water heating, lighting, etc.); to balance these loads with 
onsite generation and energy storage; and to enable smart grid 
interactions.

– Passive energy efficiency involves building renovations or the pur-
chase of more efficient appliances, including improvements that 
4

deliver energy savings at a district level. This concept excludes 
Table 3

Scoring categories for DSM input factors, outcomes of interest, to describe 
effects of input factor(s) on outcome(s). See supporting text in Section 2.4
for definitions of each row.

Scoring Category Scoring Options

DSM Factor
Regulatory; Incentives; Customer Engagement;
Customer Segmentation; Third Party Services;
Structural Barriers

DSM Outcome

Program Enrollment, % Enrolled;
Program Enrollment, Total Enrolled;
Program Enrollment, Other Metric;
Participation Level, Energy Use Impact;
Participation Level, Peak Demand Impact;
Participation Level, Other Metric; Other

Impact Direction -1 (Negative); 0 (No Impact); 1 (Positive)

Impact Strength 1 (Low); 2 (Medium); 3 (High); Unknown/Not Assessed

Impact Consistency
1 (Mixed Evidence); 2 (Mostly Consistent Evidence);
3 (Consistent Evidence)

changes in operational behavior and/or the scheduling of build-
ing energy services.

– Active energy flexibility involves customers’ conscious demand 
shifting of building loads.

– Active energy efficiency involves consciously reducing overall use 
of building energy services, e.g., via changes in operational be-
havior and/or scheduling of building energy services.

– Combined (passive plus active) energy flexibility implies that cus-
tomers influence the operation of automated control algorithms 
(e.g. by adjusting constraints of the algorithms or by overwriting 
automated control actions).

– Combined (passive plus active) energy efficiency involves the com-
bination of building renovations or more efficient equipment and 
the reduced use of this equipment.

In addition to these metadata, we score DSM factors, outcomes, and 
the relationship between the two as follows (Table 3):

• DSM factor. Scoring of DSM factors maps directly to the defini-
tion of these factors in Table 1. When a paper examined multiple 
factors and the effect of each factor on the DSM outcome(s) of in-
terest was separately reported, we included a unique score for each 
DSM factor-DSM outcome pairing. As a result, some papers gener-
ate more than one score for the DSM factor-outcome relationship.

• DSM outcome. Within the primary DSM enrollment and partici-
pation outcomes identified in Table 1, different reporting metrics 
are distinguished in the scoring: changes in DSM enrollment may 
be reported in terms of percentages or total enrolled, for example, 

while changes in DSM participation may be reported in terms of en-
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ergy use or peak demand impacts, or via non-energy metrics such 
as likelihood of enrollment or cost savings.

• Impact direction. Studies may report increases, decreases, or ef-
fectively no change in DSM enrollment or participation outcomes 
as a result of the implementation of one or more of the DSM factors 
of interest.

• Impact strength. The reported magnitude of impacts of DSM fac-
tors on DSM outcomes is binned into three categories, for studies 
that assess this: 1-Low (less than 10% change or not statistically 
significant or qualitatively described as minimal/negligible effect 
on outcome); 2-Medium (10-30% change or moderate statistical 
significance (p-value less than 0.05) or qualitatively described as 
medium/moderate effect); or 3-High (greater than 30% change OR 
high statistical significance (p-value less than 0.001) OR qualita-
tively described as large effect). These quantitative thresholds were 
determined based on the group’s collective expert judgment of what 
might constitute low, medium, or high levels of impact from a util-
ity perspective.

• Impact consistency. The impacts of DSM factors may be assessed 
for just one case, or may be compared across multiple buildings 
and/or sub-populations of interest. Strong effects that are observed 
consistently across multiple instances are more robust than those 
that are only assessed for one instance. We group the internal con-
sistency of reported effect sizes into three categories: 1-Mixed Evi-
dence (less than 70% same direction/comparable magnitude across 
multiple buildings/collections of buildings, or studies that only as-
sess effects in one building); 2-Mostly Consistent Evidence (70-90% 
same direction/comparable magnitude); or 3-High (greater than 
90% of cases in study demonstrate effect in the same direction 
and of comparable magnitude). These quantitative thresholds are 
consistent with those used in Peñasco et al. [71] to establish the 
consistency of observed energy policy interventions on promoting 
low-carbon energy transition.

For the purposes of exploring the overall impacts of a given DSM 
input factor on a given DSM outcome, we combine the scores for the 
three impact variables above — direction, strength, and consistency — 
into a composite impact score, 𝐼 :

𝐼 =𝐷 ∗ 𝑆 ∗ 𝐶 (1)

Where 𝐷, 𝑆 , and 𝐶 are the scored direction, strength, and consis-
tency of a given DSM input factor’s impact on a given DSM outcome, 
respectively. Scores of 0 indicate no impact; 1 indicates low magnitude 
with mixed evidence; 4 indicates moderate magnitude with mostly con-
sistent evidence; and 9 indicates high magnitude with robust evidence. 
Scores in between these benchmarks indicate a mix of levels of reported 
strength and consistency. Negative scores indicate that a given DSM 
input factor resulted in a DSM outcome changing in a non-beneficial 
direction (e.g., increases in demand or energy, or reductions in enroll-
ment).

2.5. Implementation

Fig. 1 diagrams the sequence and timing with which key compo-
nents of the systematic review were implemented, including the five 
review stages outlined in Section 2.2 as well as efforts to develop and 
implement a paper scoring framework, post-process scoring data, and 
compile a final database of results. The group finalized the systematic 
review approach in January 2022; conducted the initial database search 
and screening and parallel search of key authors and reports by April 
2022; further screened and scored the papers passing the initial screen 
by November of 2022; and conducted scoring data analysis and supple-
mentation in 2023. Given this timeline, the review does not include any 
papers that were published after March of 2022.

A data record is available in Langevin et al. [50] that includes the 
5

specific search strings used, bibliographic information for screened and 
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scored papers, the scoring template and categories, and final scoring 
data.

3. Results

3.1. Characteristics of reviewed papers

A total of 730 unique papers were initially retrieved from the aca-
demic database keyword search; of these, 202 papers passed the abstract 
screen, an additional 16 papers were added via the parallel search of 
key reports and authors, and 80 papers were ultimately scored and con-
tributed to the final set of findings (Fig. 2). Scored papers skew heavily 
towards recent publication dates (Fig. 3a)—more than 80% of the pa-
pers were published after 2015. This indicates growing research interest 
in studying DSM enrollment and participation, likely due to the accel-
eration of VRE deployment and other trends related to power system 
decarbonization that have increased the potential value of DSM mea-
sures for grid planners and operators. Of the papers that report a specific 
country of focus, most are from the United States (USA, Fig. 3b), which 
has a long history of DSM program administration. The European Union 
and its member states are the next most common places of focus.

3.1.1. Prevalence of DSM factors

Fig. 2 shows that economic incentives (e.g., time-varying electricity 
rates, lump sum payments, or other financial rewards for customer load 
adjustments) are commonly the primary DSM factor that studies explore 
(29 of the scored studies), followed by structural factors (e.g., availabil-
ity of required communication/control infrastructure; 19 studies) and 
involvement of third party services (e.g., aggregators; 14 studies). Reg-
ulatory approaches for increasing DSM enrollment and/or participation 
(e.g., mandated rate structures, defaulting to time-of-use rates, etc.) are 
the least commonly studied factor in the database (4 studies).

Among incentive-focused studies, many focus on time-of-use or real-
time pricing schemes (e.g. [15], [33], [62], [31], [79], [58]), sometimes 
combined with the use of controls and various technologies that enable 
DR participation — including thermostats, shading, lighting controls, 
photovoltaics, battery storage, electric vehicles, electric heat pumps, 
and/or hybrid heating systems (see subsequent discussion of loads and 
measure types of focus). Given that incentives have a long history of use 
for encouraging energy efficiency retrofits [95], [32], it is not surprising 
that these are also commonly used for DR.

After incentives, the next most commonly explored DSM factors in-
clude structural barriers, third party services, and customer engagement. 
Research efforts that focus on addressing structural barriers include in-
centivizing less profitable retrofits [32] and utilizing advanced energy 
management, control systems, and smart grid technology to reduce un-
certainties and enable improved communication between the grid and 
buildings [72], [107], [83], [84], [110]. Research on third-party en-
tities include efforts by demand response aggregators and Energy Ser-
vice Companies (ESCOs). These papers discuss control strategies and 
frameworks such as blockchain, peer-to-peer trading, and game-theory 
controls to support efficient decentralized energy management and en-
ergy exchange among users for cost and peak demand reduction [20], 
[37], [93]. They also discuss optimizing energy usage among multi-
ple buildings and/or building systems (e.g. heat pumps), with a target 
of providing the most efficient outcome for all participants and for 
the DR program [20], [37], [93], [109], [95], [45]. Finally, studies 
of customer engagement generally provide real-time feedback on en-
ergy consumption, such as through smart meters and/or home energy 
monitoring systems. These feedback devices promote increased energy 
awareness, adoption of energy-efficient technologies and optimizing en-
ergy usage to align with grid capabilities [5], [60]. Additionally, behav-
ioral interventions such as the use of competitions, social norms, and/or 
building-to-building comparisons may improve the awareness of resi-
dential customers and engage them in more sustainable behaviors [57], 

[99], [108].
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Fig. 1. Systematic literature review steps and implementation timing.

Fig. 2. Paper screening results by primary DSM factor examined after initial retrieval; title and abstract screening; and detailing scoring steps. Final number of papers 
retrieved for each factor is shown to the right of each bar, along with the ratio of final vs. initially-retrieved paper counts for the factor.
Segmentation and regulatory inputs are among the least common 
inputs considered in the research that was reviewed, together compris-

ing the focus of approximately 10% of studies. For studies focused on 
customer segmentation, segmentation dimensions include a customer’s 
building type [44], demographics and socioeconomic variables [60], 
[62] and program type [44]. The limited number of studies concerning 
regulatory levers for DSM include one that develops recommendations 
for energy efficiency and renewable integration measures on the basis 
of simulated energy savings and existing municipal regulations [32], as 
well as another that develops a decision support system for policymak-

ers to use in designing effective DR programs and informing effective 
6

regulatory constraints [98].
3.1.2. Outcomes and methods

Fig. 4a shows that most (86%) of the paper scores reflect an assess-
ment of DSM participation — typically via the metric of peak demand 
impacts, though energy use impacts are also often studied, sometimes 
alongside the peak impacts. Only 7% of paper scores (N=8) include 
assessment of a DSM enrollment outcome. Most enrollment studies ex-
plore the effects of incentives on enrollment, and via metrics other than 
direct enrollment rates or numbers such as self-reported likelihood to 
enroll from survey data. The “Other” output metrics reflected in Fig. 4a 
include cost savings, customer comfort, and greenhouse gas emissions, 
among others.

Relative peak demand and energy impacts vary widely across stud-

ies that report these outcome metrics. Specifically, relative peak impacts 
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Fig. 3. a) Distribution of publication years for scored papers. Note that the analysis does not consider papers published after March of 2022, when the initial literature 
database search and screening was conducted (see Fig. 1.) b) Distribution of scored papers by country of focus.

Fig. 4. a) DSM enrollment or participation outcome assessed by studies, by DSM input factor type. b) Primary study methodology by DSM factor type.
range from 1% in Bartusch and Alvehag [11], a long-term estimation 
of residential demand reduction from time-of-use electricity pricing, to 
80% in Rotger-Griful et al. [81], a simulation-based study in which the 
authors indicate low potential for achievement of the reduction in prac-

tice. Relative energy impacts range from 2.5% of overall consumption 
in Chrysopoulos et al. [17], a study of small commercial buildings, to 
73% of monthly costs [95], which uses model predictive control to sup-

port integration of micro-scale concentrated solar power and thermal 
energy storage with HVAC operations. A few studies report negative 
peak and energy impacts, for example in Geneidy and Howard [33], 
which explores control strategies under incentives and penalties and 
suggests the trade-off between increased cost for demand reduction and 
the penalty for no demand reduction is the reason for the negative im-

pacts. Within the smaller set of studies that report outcomes related 
7

to DSM enrollment, [63], [102] and [59] use surveys to understand 
why some customers participate in demand response and/or their pref-
erences for different electric service plans.

Additionally, Fig. 4b shows that most studies rely on simulation or 
modeling to characterize DSM impacts, though methods differ notably 
by DSM factor examined. For example: simulation is by far the most 
commonly used method to explore structural barriers and third party 
services, while most studies of customer engagement and/or segmenta-
tion rely on metered customer data, and simulation and metering are 
used about equally in studies of DSM incentives. Survey methods are 
infrequently observed overall in the scoring data, but are disproportion-
ately used to explore enrollment outcomes (e.g., self-reported likelihood 
to enroll in a program), constituting 5 of the 7 instances in which en-
rollment outcomes were explored and a primary study method could be 
discerned.

Studies that use simulation and modeling methods use both bottom-

up and top-down approaches [51]. Common tools for bottom-up ap-
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Fig. 5. a) Study building type(s) of focus by DSM input factor type. b) Scope of study focus (i.e., individual vs. multiple/clusters of buildings) by DSM factor type.
proaches, which begin at the individual building level, include Ener-
gyPlus (e.g., [47,10]), MATLAB (e.g., [1,6,4]) and other optimization 
tools (e.g., [8]). Often these studies use model prototypes to represent 
the common types of buildings across a region of interest [4]. For ex-
ample, [15] analyzed the impact of various demand response strategies 
on utility cost savings, peak demand reductions, and indoor comfort 
using several types of small commercial buildings across 14 U.S. lo-
cations, considering different climate zones and utility rate schedules. 
Other studies use top-down approaches (e.g., [72,36]). For example, 
[72] created and optimized an artificial neural network (ANN) model 
to improve forecasts of building-based PV output to reduce demand un-
certainty and decrease customer cost.

In studies that use metered customer data, utility smart meter data 
are commonly used for evaluation, though many customer engagement 
studies collect customer feedback using in-home displays (IHDs) in com-
bination with metered energy use data (e.g., [99,57,60,77]). Some such 
studies suggest that IHDs encourage residential customers to reduce 
overall electricity usage [77]. Other customer engagement research uses 
survey responses to evaluate engagement in social competition that 
rewards effective energy management [42]. Studies focused on cus-
tomer segmentation also commonly rely on measured electricity savings 
and/or load shifting capability [94]; [2]. Survey research is sometimes 
conducted directly by utilities and/or grid operators. For example, [63]
evaluated participation in price-responsive load programs, using a sur-
vey for program participants and non-participants.

3.1.3. Building type and scope

Residential contexts are a predominant focus of the studies across 
DSM input factors (Fig. 5a), particularly in studies that explore cus-
tomer engagement and segmentation approaches to increasing DSM 
enrollment and/or participation. Studies that explore the effects of struc-
tural or third party factors on DSM outcomes more commonly focus on 
commercial buildings. As mentioned, these two factors encompass avail-
ability of centralized controls infrastructure and use of load aggregator 
services, both of which are currently more prevalent in commercial than 
in residential settings.

Most residential studies focus on single family attached or detached 
homes (e.g., [64,78,58]). Some include multifamily buildings (e.g., 
[94,17]), a combination of multiple residential building types (e.g., 
[11,29]), or do not specify building characteristics beyond them being 
residential (e.g., [106,82]). Regarding commercial contexts, the large 
majority of commercial buildings considered are office buildings (e.g., 
[110,4,18,100,3]). Most of the commercial building-focused studies in 
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the structural or third-party input factor categories appear to be focused 
on optimal control strategies for building systems (e.g., [4,107,95]), in 
some cases driven by load aggregators (e.g., [93,10,100]).

Studies also explore a variety of building scopes across DSM factors 
(Fig. 5b) — both individual buildings and clusters of buildings. Overall, 
clusters of buildings are more often examined, and this is particularly 
the case for studies that examine factors related to load aggregation — 
third party services and customer segmentation (where “segments” are 
often collections of customers with similar load profile characteristics). 
Cluster sizes in studies of third party services range from as small as 3 
buildings to as large as 4000 buildings; cluster sizes in customer segmen-
tation studies are somewhat larger, ranging from 200 to 5487 buildings. 
Many studies of building clusters in the context of third party services 
investigate the behavior of a control strategy or algorithm across the 
cluster (e.g., [10,100,90]).

3.1.4. Technology and measure types

Most studies report the impacts of DSM programs at the whole build-
ing level or otherwise across multiple technology types (Fig. 6a). When 
multiple load types are studied, DSM of HVAC equipment is often one 
of them — HVAC is included in over half of all instances where multiple 
loads were investigated (33 of 61 instances). Moreover, of the studies 
that do isolate the impacts of a single load, HVAC is most commonly the 
focus, and particularly so for studies of third party aggregator involve-
ment in DSM programs. Few studies isolate the participation profiles of 
DERs that would intersect with building load operations, such as electric 
vehicles (EVs), battery storage, and onsite generation. However, DERs 
are addressed in many of the studies that focus on multiple technologies 
or the whole building.

Examples of combinations of technologies in the DSM literature in-
clude: HVAC (heat pump, electrical heaters), batteries, and hot water 
storage [110]; HVAC, lighting, on-site PV, and water heating [32]; EVs, 
appliances, and HVAC [2]; and HVAC with battery or other types of 
storage [46,72,45,79,20,78,61]. As an example study focused on HVAC 
only, [80] assessed the demand response potential of ventilation fans in 
a 12-story building.

Regarding DSM measure types, studies examine demand flexibility 
measures most frequently —— both in isolation and in conjunction 
with energy efficiency measures (Fig. 6b). When efficiency measure im-
pacts are reported alongside demand flexibility measure impacts, these 
measures typically consist of control schemes that reduce waste in the 
scheduling and use of energy services (e.g., services provided when 
occupants are not home) while also enabling targeted adjustments to 
operations at certain hours to provide flexibility to the grid. Notably, 
none of the reviewed studies addressed DSM in the context of load 

electrification measures that convert fossil-fired heating, water heating, 
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Fig. 6. a) Study technology or technologies of focus by DSM input factor type. b) Study measure type(s) of focus by DSM factor type.
cooking, or drying equipment to run on electricity. This is despite the 
central role that building electrification is expected to play in meeting 
countries’ economy-wide decarbonization goals. Efficiency-only mea-
sures were less commonly observed across all DSM factors studied.

Flexibility in the reviewed studies is achieved by either the use of 
energy storage (e.g. battery, thermal, EV) or solar panels (e.g. [49]; 
[48]), by modifying when energy-consuming devices are being used 
(e.g. [84]), or a combination of both. In other cases, a time-of-use or 
DR scheme is implemented without specifying how demand flexibility 
is met (e.g. [1]). For studies that focus on multiple DSM measures, most 
papers combine DR with energy efficiency measures. Such combinations 
include smart home energy management with TOU pricing [78]; [98], 
efficient control of appliances/HVAC with dynamic pricing [79]; [62], 
high-efficiency HVAC systems used with DR [79], decentralized control 
of HVAC with incentive-based DR [93]; [95]; [20], renewable instal-
lations with incentive-based DR [95]; [32]; [85], installation of solar 
to reduce operation costs [32], and use of artificial intelligence (AI) 
and Internet of Things (IoT) approaches to support demand flexibility 
and equipment operational efficiency [85]; [78]. The smaller number 
of papers that focus just on efficiency primarily report on retrofits of 
public [32]; [3] and multifamily [94] buildings. Such studies cover a 
range of efficiency strategies such as insulation improvements, win-
dow upgrades, LED lighting, installing high efficiency HVAC systems, 
and purchasing EnergyStar appliances, among others. Another study 
used gamified platforms to encourage energy savings engagement with 
smart devices [108], an example of a controls-focused efficiency mea-
sure.

3.1.5. Participation type

Fig. 7 shows that most studies focus on passive (e.g., automated 
and/or remotely controlled) customer participation in DSM programs 
(53 scores, or 55% of all scores for this metric). A smaller number of 
studies explore active/manual customer control and participation (18 
scores, 19%) as well as programs that combine active and passive par-
ticipation elements (11 scores, 11%). Some studies also directly compare 
active vs. passive participation (“Multiple,” 15 scores, 16%). Studies not 
addressing a participation type focus mainly on customer enrollment 
and willingness to provide demand response.

Breaking this variable down by input factor type in Fig. 7, it is no-
table that studies of third party services all explore passive participation 
in DSM programs. These studies typically concern remote aggregation 
of loads to meet grid needs — e.g., across different building types [6], 
across diverse load profiles within a single building [109], or across 
households with varying degrees of willingness to provide demand re-
9

sponse [61]. Passive participation schemes are also common in studies 
that explore the effects of incentives — several of which simulate the en-
ergy cost savings of different rate structures (e.g., [69,84,15]) — and in 
studies concerning structural barriers, which often develop smart energy 
management systems to enable balancing of energy demand, renewable 
energy sources and storage (e.g., for aggregated loads [22]; heating and 
hot water storage [22,95,110]; and electric vehicles [48]). Studies of 
smart systems rarely investigate active customer participation in isola-
tion, though they do in some cases layer active participation on top of 
passive control approaches.

Active customer participation is most frequently investigated in stud-
ies of incentives (e.g., [11,59,12,13,62,76]). These studies demonstrate 
the importance of customer awareness of variations in energy prices 
over time, as well as the increased uncertainty in level of response 
that comes with active customer participation [103]. Active customer 
participation is also relatively common in studies of customer engage-
ment (e.g., via education [62], feedback [29,57,77], or both [99] and 
in studies that seek to increase levels of customer response via segmen-
tation (e.g., by accounting for differences in customer preferences [59]
or level of interest in energy services [106]. Furthermore, regulatory in-
struments that enable competition in the electricity market may create 
lower prices and more cost savings for customers, therefore stimulating 
active participation [98].

3.2. Impacts on DSM outcomes

Fig. 8 plots the distribution of direction, strength, consistency, and 
composite impact scores across all DSM input factors and outcomes. 
Impact scores are mostly positive (Fig. 8a), tend to be of low to moder-
ate strength (Fig. 8b), and have no clear trend for internal consistency 
(Fig. 8c). Composite scores (Fig. 8d) most commonly mix the low and 
moderate or moderate and high levels of impact strength and consis-
tency (𝐼 = 2 and 𝐼 = 6, respectively in Fig. 8d). Relatively few composite 
scores indicate both a high magnitude and consistency of impact (𝐼 = 9, 
10 scores in Fig. 8d).

3.2.1. Impacts by input factor

Fig. 9 breaks out composite impact scores by each of the DSM factors 
of interest, summarizing the range of scores observed for each factor. 
Fig. 9a pools impacts across all DSM enrollment, participation, and other 
outcomes, while Figs. 9b-d show impacts for each of these outcomes in 
isolation. In Fig. 9a, the median and interquartile ranges of scores are 
relatively higher for the third party services, structural barrier, and cus-
tomer engagement factors, but not clearly so. Indeed, differences in the 
mean composite scores are generally small across factors. The distri-

bution of composite scores does vary by factor, most notably for the 
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Fig. 7. Examination of passive occupant control, active occupant control, a combination of passive and active occupant control, or both individually (“Multiple”), 
by DSM input factor type. Note that such a dimension is generally only relevant to studies of DSM participation.

Fig. 8. Histogram of impact scores, across all DSM input factors and outcomes, for: a) direction (-1=negative; 0=no impact; 1=positive), b) strength (1=low; 
2=moderate; 3=high), c) consistency (1=mixed; 2=mostly consistent; 3=high), and d) the composite of a*b*c (<0=negative impact; 0=no impact; 1=low 

gh i
impact, mixed evidence; 4=moderate impact, mostly consistent evidence; 9=hi

incentives factor, for which there is disagreement across studies about 
impacts from incentives — some studies report strongly positive and 
consistent impacts, while others show negative impacts, and the median 
impact size is relatively low for incentives compared to the aforemen-
tioned DSM factors.

Examining the other plots in Fig. 9, the wide range of reported 
impacts for the incentives factor is driven by studies of DSM partici-
pation (Fig. 9c), for which a similarly wide range of incentive impacts 
is observed, from weakly negative to strongly positive. In these studies, 
negative incentive impacts often signify time-varying rates that result in 
new, slightly larger peaks in energy demand and/or rebounds in hourly 
demand succeeding peak pricing periods that result in small increases in 
10

overall energy use. For example, [1] found that the implementation of 
mpact, robust evidence).

Real-Time Pricing - Hour Ahead (RTP-HA) and instantaneous demand 
control methodologies for industrial and commercial customers cre-
ated a new peak due to simultaneous RTP-response across all buildings. 
Geneidy and Howard [33] observed that RTP-HA may lead to demand 
spikes before the peak price periods (60% increase in peak demand), as 
homes preheat during off-peak periods.

By contrast, a small number of studies (N=8) that examine the 
impacts of incentives on enrollment tend to have larger, more consis-
tent positive impacts of incentives on enrollment outcomes (Fig. 9b)). 
These positive outcomes reflect increased participation in Time-of-
Use (TOU)/dynamic pricing and incentive-based programs [12]; [31]; 
[102], as well as increasing adoption of the energy efficient equipment 

that is incentivized by programs [63], among other trends.
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Fig. 9. Reported composite impact score of the study on DSM outcomes of interest (direction*magnitude*consistency) by DSM input factors. Shown are the impact 
scores for: a) all DSM outcomes of interest (enrollment/participation/other), b) DSM enrollment outcomes only, c) DSM participation outcomes only, and d) Other 
(non-enrollment/non-participation) DSM outcomes only. Box plots are presented in descending order from top to bottom based on the mean composite score for 
the given input factor on the y-axis. The number of scores behind each box plot is shown below the y-axis label for each factor. Composite score interpretation: 
<0=negative impact; 0=no impact; 1=low impact, mixed evidence; 4=moderate impact, mostly consistent evidence; 9=high impact, robust evidence.
3.2.2. Impacts by metadata variable

Fig. 10 further explores whether scored impacts differ by each of 
the study metadata variables summarized in Figs. 4–7. Differences in 
mean composite scores, while again muted overall, are most apparent 
between study methods (Fig. 10b), measure types (Fig. 10f), and — for 
those studies that focus primarily on DSM participation outcomes — 
whether the participation is active, passive, or a combination of those 
types (Fig. 10g).

Regarding differences across study methods, simulation studies have 
the highest mean and median composite impact scores, followed by sur-
vey studies; both of these types of studies have median scores in the 
moderate range. It is important to note that most simulation studies do 
not conduct model validation and that many of these studies focus on as-
sessing potential. This may help explain the higher impacts that tend to 
be reported in simulation-based studies. Simulation studies that report 
potential impacts include those that focus on cost savings, demand re-
duction and/or energy efficiency improvements through HVAC system 
optimization for DR [103]; [34]; [80], direct-load control [69], and/or 
thermal energy storage [18]; [8]; [107]. Other simulation studies exam-
ine the potential for RTP efficacy over TOU and fixed tariffs [7]; [78], 
and predicted behavioral responses to DR events [66], among other is-
sues related to potential impacts.

Compared with simulation studies, composite scores for metering 
studies appear lower, due to several such studies reporting low impacts 
and/or few instances where impacts are observed to be robust across 
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multiple building samples. Notably, metering studies focus more often 
than simulation studies on energy use as a DSM participation marker 
(in 43% of scores for metering studies vs. 26% of scores for simulation 
studies, respectively) and observe minimal energy conservation through 
this metric, whether for single loads like HVAC [90] or across a whole 
building [62]; [99]. Both simulation and metering studies generate wide 
ranges of reported impacts that suggest disagreement across these types 
of studies. These ranges include reports of neutral impacts, as well as 
reports of negative impacts in the case of the simulation studies.

Regarding differences across measure types, studies that examine 
flexibility measures alone or in combination with efficiency measures re-
port the highest impacts on DSM outcomes, again in the moderate range 
of the composite score. These studies often report temporary reductions 
in hourly demand during peak periods that tend to be larger than en-
ergy reductions measured across longer time periods (e.g., monthly or 
annual), though as mentioned, in a few instances peak reductions are 
outweighed by new increases in demand in pre-conditioning or recov-
ery periods outside the peak window, resulting in a negative score (e.g., 
in [1,33]). Efficiency-only measures tend to have lower scores, partic-
ularly those that implement controls (e.g., thermostat setbacks), which 
are more sensitive to occupant behavior and comfort constraints.

Finally, DSM participation schemes that combine passive occu-
pant participation with the option for active intervention (e.g., control 
schemes that allow a utility to remotely adjust smart thermostats while 
offering occupants the option of manual override) show the strongest 
positive impacts on DSM participation, in the moderate to high range of 

the composite score. Several studies find that when energy demand is 
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Fig. 10. Reported study effect sizes on DSM outcomes of interest (direction*magnitude*consistency) across all DSM input factors, broken out by a) primary outcome 
(DSM enrollment or participation); b) study method, c) building type, d) scope of analysis (single building vs. cluster of buildings), e) technologies assessed, f) 
measure type, and g) participation type. Breakout categories are generally only shown when they produce at least 10 scoring data points. Box plots are presented in 
descending order from top to bottom based on the mean composite score for the given metadata category on the y-axis. The number of scores behind each box plot is 
shown below the y-axis label for each category. Composite score interpretation: <0=negative impact; 0=no impact; 1=low impact, mixed evidence; 4=moderate 
impact, mostly consistent evidence; 9=high impact, robust evidence.
shifted, consumer acceptance is improved with controllers that enable 
both types of participation (e.g., [41,53,66,81,107,108]). The mean im-
pacts of purely passive DSM participation schemes are comparable, if 
slightly lower than the combined participation cases, but can also range 
widely and include negative impacts.

Studies that examine active DSM participation report substantially 
smaller impacts than for the combined and passive schemes — most 
scores are in the low range on the composite scale — which suggests 
that over-reliance on manual occupant scheduling and intervention in 
DSM programs could limit the impacts of customer participation in 
these programs. The handful of studies that directly compare active 
and passive participation further underscore this finding. For example, 
[77] observes that during critical peak pricing programs, event load re-
ductions ranged from 13 to 20% in case of active participation in the 
residential sector; with control technology, which could raise thermo-
stat levels or switch off equipment, the reductions increased to between 
23 and 49%. Bernard et al. [12] compare participants whose thermo-
stat is controlled remotely during peak shaving events with those that 
were able to reprogram their thermostat. They observe that the energy 
demand reductions of households that managed the thermostats them-
selves during events were considerably lower, though still statistically 
significant. Finally, [62] observes that in certain regions and under cer-
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tain rate structures, significantly higher peak energy demand reductions 
occur for households that participate passively compared to those that 
participate actively in dynamic pricing programs.

4. Discussion

Through a systematic review and scoring of existing literature con-
cerning DSM enrollment and participation factors, we reveal a number 
of common themes with broader significance to utilities, grid planners, 
and other decision-makers who would seek to increase DSM program 
deployment and efficacy to facilitate deep decarbonization of the build-
ings and power sectors:

1. A prevailing focus on economic incentives and DSM partici-

pation, often explored through simulation. While many studies 
examine DSM participation outcomes, few studies focus on DSM en-
rollment. Here, methodological constraints may come into play: it’s 
easier to measure or model changes in loads and corresponding fi-
nancial signals than it is to track enrollment outcomes across DSM 
programs that may be highly diverse in their scopes, timing, and 
potential benefits to consumers. Moreover, while countries like the 
United States have long histories with DSM program implementa-
tion, in many other regions DSM programs are not yet widespread. 

In such contexts, simulations that demonstrate DSM participation 
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potential may serve as prerequisites for eventual DSM program de-
sign and customer enrollment.

2. A muted hierarchy in DSM impacts across influencing factors 
and other relevant dimensions. While third party services and 
the removal of structural barriers score the highest overall impacts 
on DSM participation, the hierarchy is muddled by the wide ranges 
around scored impacts and the heavy reliance on simulated results, 
which add uncertainty by tending to explore theoretical potential 
and simplifying real-world dynamics. This inconclusive picture is to 
be expected in a review that spans DSM participation across a wide 
diversity of contexts and which attempts to combine qualitative and 
quantitative estimates of relative impact across studies that also use 
different types of metrics to characterize impact. Nevertheless, it 
underscores the need for further research that can directly compare 
the relative impacts of the various DSM factors under a shared set 
of conditions and evaluation metrics.

3. The clear role of automated control technologies. Increasing 
availability of controls is a key strategy for removing structural 
barriers to DSM participation — which our review found is an im-
portant factor — and is also an enabling condition for other factors, 
notably the use of remote third party load aggregation services and 
the implementation of time-varying rate signals for load flexibil-
ity. Moreover, greater automation of DSM controls — e.g., to allow 
more passive participation of customers in DSM programs — ap-
pears to have larger positive impacts on participation outcomes 
than fully active (manual) control schemes, though more research is 
needed to confirm this finding. The highest impact is observed when 
both types of participation are combined, meaning that customers 
retain the ability to override automated and/or remote control set-
tings. This finding echoes previous evidence for the importance of 
perceived risk and control, as well as level of complexity and effort 
as key enablers or barriers for DSM program participation [68].

4. Limited understanding of DSM factors with high importance 
for energy system decarbonization pathways. Very few studies 
examine potential regulatory avenues for increasing building DSM 
enrollment or participation, despite the importance of policy and 
regulatory factors in earlier reviews of DSM adoption [89] and the 
expectation that regulatory instruments will be central to acceler-
ating DSM deployment alongside low-carbon building technology 
adoption. Similarly, none of the reviewed studies specifically exam-
ined the intersection of DSM enrollment or participation and build-
ing load electrification, despite the widespread view that building 
electrification is a key pathway for energy system decarbonization 
and could cause significant changes in seasonal profiles of electric-
ity demand on the electric grid (e.g., [70,104,101]).
Such gaps may reflect the relative immaturity of both of these key 
decarbonization levers. In the case of regulatory tools, while in-
novative approaches are expanding historical support for energy 
efficiency — e.g., through new types of building codes and ap-
pliance or performance standards — the lack of common, readily 
measured DSM metrics has hindered the incorporation of specific 
provisions in such regulatory measures. In the case of load electrifi-
cation, utilities and policy makers are only just beginning to explore 
program and/or rate structures that may drive further adoption, 
and approaches for stacking and maximizing incentives for DSM 
and load electrification are currently still under debate.

Given these findings, we recommend the following points of focus 
going forward for utilities, grid planners, and other researchers to im-
prove the understanding of what drives customer enrollment and par-
ticipation in DSM programs:

• Improve tracking of DSM enrollment and link enrollment to 
participation data. Future DSM enrollment will likely look differ-
ent than in the past, for example as utilities and regulators turn 
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to “opt-out” approaches to increase enrollment and new business 
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models like virtual power plants (VPPs) are supported that simplify 
enrollment by streamlining enrollment with the purchase of en-
abling equipment [23]. Incorporating standardized data reporting 
requirements into the development of such programs and including 
both cross-sectional and longitudinal measurements can simplify 
the study of enrollment trends and allow researchers to explore the 
full sequence of customer DSM behavior, from enrollment through 
to actual adjustments in load patterns.

• Increase comparability of DSM enrollment and participation 
impacts across potential factors and reduce dependence on 
simulations. With the exception of other higher-level reviews, the 
studies we examine in this paper tend to isolate the effects of sin-
gle DSM enrollment or participation factors on these outcomes and 
to rely on different metrics for characterizing impacts. Going for-
ward, study designs should prioritize parallel assessment of multi-
ple DSM factors at once, so that the reported impacts of each factor 
are all tied to a common set of conditions and evaluation met-
rics, thus facilitating apples-to-apples comparisons. Confidence in 
such comparisons would be further improved by prioritizing mea-
sured vs. simulated data, though real-world resource and sample 
size constraints may limit the ability to study multiple types of 
DSM interventions at once, and simulations are useful in exploring 
schemes that have yet to be implemented [21]. Confidence in and 
comparability of simulation results can be improved by including 
comprehensive reporting metrics and by flagging model limitations 
to consider when relying on simulated results to inform DSM pro-
gram design.

• Further examine the effects of regulatory instruments and the 
intersection of DSM and load electrification. As mentioned, pol-
icy makers are expanding the scope of traditional regulatory in-
struments, such as codes and standards, to accelerate the adoption 
of both energy efficiency and electrification measures in buildings. 
These approaches can also accelerate the deployment of DSM as-
sets more broadly — indirectly, by encouraging the installation of 
more efficient electric equipment that is also grid-connected and 
enables participation in DSM programs; or directly, by explicitly 
requiring the installation of equipment and/or controls with smart 
features. Consideration of such interactions is discouraged by the 
traditional siloing of DSM programs — energy efficiency and DR 
programs have historically been administered separately. Going for-
ward, however, the interdependence of DSM, electrification, and 
the policy and regulatory approaches that can catalyze widespread 
deployment of both will be an important point of focus for re-
searchers.

4.1. Study limitations

While our review provides comprehensive insights into recent liter-
ature on DSM enrollment and participation factors, it is non-exhaustive 
for two reasons. First, the review only accounts for literature published 
by March of 2022, when the initial paper retrieval and screening stage 
was completed. Given the rapid growth in publications concerning DSM 
in recent years and continued improvements in available DSM program 
data, subsequent studies that we did not include may shed further light 
on our key findings. Our review and scoring framework should thus be 
leveraged to conduct periodic re-reviews that demonstrate how the DSM 
evidence base is changing over time.

Second, it’s likely that much of the evidence base for DSM enrollment 
and participation factors exists in the gray literature, which includes pol-
icy and utility studies. Given that gray literature lacks the centralized 
data repositories that facilitate systematic search and retrieval of aca-
demic studies, our retrieval of gray literature was limited to manual 
internet searches and IEA EBC 82 expert word-of-mouth about which 
additional studies to include. Improving approaches for systematically 
examining this important but opaque body of evidence on DSM would 

be a fruitful area of focus for future reviews.
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The current iteration of this review’s paper scoring framework does 
not assess the durability of DSM enrollment and/or participation out-
comes over time. Evidence on the durability of such DSM outcomes 
could become increasingly important as demand-side resources are 
called upon more frequently and for longer time periods to support 
power system operations under high variable renewable energy pene-
tration. Moreover, in seeking to isolate the effects of individual DSM 
factors on DSM outcomes, the scoring framework does not account for 
the use of multiple, mutually-reinforcing instruments to drive greater 
customer DSM enrollment and response. Interest in such multifaceted 
approaches may increase as decision-makers are tasked with broaden-
ing and scaling DSM programs to support decarbonization goals; direct 
assessment of multi-faceted approaches could therefore be included in 
future updates to this systematic review.

Finally, while both the structure and scope of our review are key 
innovations of this work, such features sacrifice some of our ability 
to take a more flexible and nuanced view of the existing literature on 
DSM enrollment and participation. For example, insights from individ-
ual studies which fall outside the metadata categorization and impact 
scoring criteria we used may be overlooked and/or discarded, though 
such studies may provide valuable context for interpreting our key find-
ings. Moreover, while impact scoring followed a common set of detailed 
instructions across reviewers, the mapping between study results and 
scoring bins was not always clear cut and sometimes required additional 
layers of interpretation; each reviewer brought their own particular per-
spective in handling such cases.

5. Conclusion

We conducted a systematic review of evidence on factors that could 
increase customer enrollment and/or participation in utility DSM pro-
grams, ultimately focusing on 80 relevant studies from an initially re-
trieved set of 730 that were published over the course of the last two 
decades.

Results show that although studies of DSM enrollment and participa-
tion have increased in recent years, the evidence base for this topic area 
remains thin — particularly for DSM enrollment, potential regulatory 
drivers for DSM, and emerging DSM measures such as load electrifi-
cation with flexibility. Even for relationships that are more commonly 
studied, such as that between economic incentives and DSM participa-
tion, impacts on DSM outcomes appear highly context-dependent and 
range widely in strength, direction, and internal consistency across stud-
ies. Moreover, reported impacts are commonly simulated, rather than 
measured or investigated through surveys, adding to uncertainty about 
real world impact potential.

Of the investigated DSM enrollment and participation factors, third 
party services (e.g., load aggregation), customer engagement, and re-
moval of structural barriers (e.g., deploying enabling controls infrastruc-
ture) have the highest scored impacts on DSM participation. However, 
impact ranges overlap across factors and no factor clearly emerges as 
being most impactful. We find some evidence for contextual differences 
in impacts — notably, DSM impacts tend to be larger in schemes that 
rely on fully- or partially- automated participation instead of customers’ 
active participation, and are larger for measures deployed to provide 
energy flexibility compared to energy efficiency measures.

While our findings lack the precision needed to guide specific utility 
strategies for increasing DSM enrollment and participation in a particu-
lar service territory, our study produced a useful snapshot of the state of 
knowledge about DSM and customer behavior, and it exposes key gaps 
in understanding that must be filled if DSM is to expand as a reliable 
resource for building and grid decarbonization in the coming years.
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