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Abstract

Elucidating the mechanisms that underlie clustering and
switching behavior is essential to understanding semantic
memory search and retrieval. Hills, Jones, and Todd (2012)
proposed a model of semantic foraging based on the observa-
tion that statistical signatures in memory search resemble opti-
mal foraging in animal behavior. However, the original model
was postdictive in explaining when a switch would occur, as
opposed to predictive, and was agnostic as to the cues used by
humans to make a decision to switch from local to global in-
formation. In this paper, we proposed a switching mechanism,
Semantic Scent, as a predictive model underlying such behav-
ior. Semantic Scent extends optimal foraging theory, reproduc-
ing the same switch behavior observed animal foraging behav-
ior in memory search. We evaluated Semantic Scent against
competing models including Random Walk and Fixed Count
to determine its effectiveness in classifying switches made in
fluency tasks. A quantitative model comparison between the
switch models demonstrated Semantic Scent’s superior perfor-
mance in fitting human data. These results provide further evi-
dence of the importance of optimal foraging theory to semantic
memory search.

Keywords: Semantic Memory; memory search; clustering
and switching

Introduction

Understanding the mechanisms humans use to search for and
retrieve information from semantic memory has been a pri-
mary goal of cognitive science since the field’s inception.
One of the most commonly used tasks to study semantic
search is the semantic fluency task (SFT). In the SFT, the par-
ticipant is presented with a category label (e.g., “animals”)
and is asked to produce as many exemplars of the category
as possible within a fixed amount of time (e.g., dog, cat, spi-
der, ant, ...). SFT is commonly used in experimental psy-
chology (Raaijmakers & Shiffrin, 1981; Romney, Brewer, &
Batchelder, 1993), but is also widely used in neuropsycho-
logical batteries.

Responses in SFT typically occur in temporal clusters of
related items (e.g., {farm animals} {pets} {fish}). Counts
of clustering and switching within a sequence of items pro-
duced in a trial are known to be particularly sensitive to clin-
ical group diagnoses in Alzheimer’s and Parkinson’s Disease
(Troyer, Moscovitch, Winocur, Alexander, & Stuss, 1998) as
well as Schizophrenia (Lundin et al., 2020) among other clin-
ical populations. Clustering and switching is typically coded
by hand using the classification scheme proposed by Troyer et

al. (1998). While clusters in semantic memory are no doubt
more complex than the simple scheme proposed by Troyer
et al. (1998; see (Hills, Todd, & Jones, 2015) for a review),
their simple method has been very widely applied in both ex-
perimental and clinical settings and has impressive predictive
validity.

Hills, Jones, & Todd (2012) made the observation that the
temporal pattern of items produced in SFT exhibited statisti-
cal signatures that are characteristic of animals foraging for
food in physical space (optimal foraging theory: (Charnov,
1976)), suggesting that our memory search mechanisms may
have been exapted from primitive mechanisms that evolved to
search for food resources in the physical environment (Hills,
Jones, & Todd, 2012). They tested a series of search mod-
els on a semantic space generated by the BEAGLE model of
semantic memory (Jones & Mewhort, 2007). The specific
search model that best explained the human data was a dy-
namic two-cue model that used semantic similarity locally to
generate items until no other proximal item was found, and
then switched to a global frequency cue to select the next item
(and search by local similarity resumed). The fact that the
local-global switch model produced the best fit to the human
data was theoretically significant for two reasons: 1) it pro-
duced patterns of optimal foraging, and 2) the process it used
mirrors the best accounts of how animals make exploration-
exploitation decisions when foraging for food in physical en-
vironments. Just as a hummingbird must decide when to give
up on a local patch of flowers and accept the costs that accom-
pany the search for a new unknown patch, humans show the
same pattern in memory search when deciding when to give
up on the farm animals and search for a new resource-rich
semantic patch to exploit.

However, it is important to note that the optimal foraging
model presented by Hills, Jones & Todd (2012) did not pre-
dict when a switch would occur. Rather the model relied on
either Troyer hand-coded norms of when a switch occurred or
used a similarity-drop heuristic which classified a switch as
having occurred if semantic similarity dropped between suc-
cessive items. For example, if S(A, B) represents the similar-
ity between retrieved words A and B, then a switch following
B is identified in a series of retrievals A, B, C, D if S(A, B)
> S(B, C) and S(B,C) < S(C, D). The foraging model sug-

3236
In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science
Society. ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



Residual Proximity
0200 0202 0204 0206 0208 0210 0212

-2 -1 1 2 3

Order of entry relative to patch switch

Figure 1: Figure 3 reproduced from (Hills et al., 2012)
demonstrating the reduction in residual proximity before
switching and spiking of residual proximity after switching

gested that humans were abandoning local similarity cues and
switching to a global frequency cue when a switch occurred
(indicated either by the Troyer or the similarity-drop method)
and the switching between these cues best explained the se-
quence of items produced. This is analogous to an animal bal-
ancing exploration-exploitation by foraging locally on a bush
for berries based on visual cues, but then abandoning that cue
with diminishing local returns and switching to a scent based
cue to locate a new patch ripe with berries to then revert to
visual cues for local search again.

A primary shortcoming of the optimal foraging model of
Hills et al. (2012) is that it is postdictive, not predictive,
of a switch from a semantic cluster to another. It relies on
either Troyer hand coded norms or on noting that similarity
dropped and thus a switch had occurred. As a major goal of
cognitive modeling, models should seek to explain behavior
as it happens (predictive), rather than be explaining behavior
as a post-hoc judgement (postdictive). This shortcoming was
partially addressed in the original paper by noting that it ap-
peared that humans were making decisions to abandon local
semantic foraging within a cluster and switch to a global fre-
quency cue to find a new cluster when the sequence of items
had reached a point where there were few semantically proxi-
mal items to the one just produced. Parallel to the diminishing
returns from a local patch of berries, Hills et al. (2012; Fig
3) showed that the residual semantic proximity decreased as
items were produced in a cluster, but then spiked again when
a switch occurred and a new semantically rich patch of items
was located. Residual proximity was simply quantified as the
mean similarity to all yet-to-be-produced items in memory,
and indicates how semantically “urban” or “rural” the neigh-
borhood is around the item just produced. Hills et al. noted
that this pattern indicates that humans are making a decision

to switch cues from local (similarity) to global (frequency)
when there are insufficient proximal items in semantic mem-
ory to the one just produced, much like the animal that aban-
doned visual cues and switched back to scent cues to find a
new patch of berries.

Although this is indicative of a mechanism, the model
was descriptive—no predictive model was created or tested.
In this paper, we formalize a mechanism to predict when a
switch will occur in a sequence of items and test the model’s
predictions of switches against competing models. We re-
fer to the mechanism as Semantic Scent, borrowing from
scent-based models switching models in animal ecology and
from Pirolli and Card’s construct of information scent in web
search (Pirolli & Card, 1999). The semantic scent after pro-
ducing an item relates to the number and proximity of yet-
to-be produced items in mental space, and this scent is used
in a simple decision whether to continuing searching locally
based on semantic information, or to abandon local search
and switch to a frequency cue to “fly off” to another patch in
semantic memory and revert to local semantic search. We
compare the Semantic Scent model’s predictions of when
switches occurred in a large set of SFT data to the compet-
ing Random Walk model of (Abbott, Austerweil, & Griffiths,
2015) and to a simple count-based model that is insensitive to
the semantics of the items produced but is a standard baseline
heuristic model in animal foraging.
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Figure 2: Semantic Scent drops as resources become more
scarce in a patch. Scent spikes again after transitioning to a
new patch rich with resources

Memory Search Switching Models

Semantic Scent Model

The proposed Semantic Scent (SS) model is a predictive
model of clustering and switching behavior in semantic mem-
ory search. Inspired by Pirolli’s information scent model, the
semantic scent model operates as a method of quantifying the
content of proximal cues to develop a value system in seman-
tic search (Chi, Pirolli, Chen, & Pitkow, 2001). This fol-
lows similar phenomenology to information foraging in web
searching behavior. The scent of the local area drops as re-
sources become scarce in a local patch. Scent spikes again
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after transitioning to a new patch rich with resources, as seen
in Figure 2.

For the purpose of analysis, conceptual items named in the
semantic fluency task are conceived as embedded items in
a distributional semantic space. Items in the distributional
semantic space form variably dense patches of available se-
mantic resources. The semantic scent model predicts the like-
lihood of switching from patch to patch based on the item just
produced and the proximity to yet-to-be-produced items.

Semantic scent is measured as a power function, based on
the residual proximity of items to the just produced item in the
distributional semantic space, raised to a standard sensitivity
parameter based on Shepard’s Universal Law of generaliza-
tion (Shepard, 1987).

1
1+ YN, cos(X,Y;)*

P(Switch|X,N) = (1)

P(ContinueLocal|X,N) = 1 — P(Switch) )

Y corresponds to the vectors of N most similar items to
X determined by the distributional semantic space utilized in
the model. Y; corresponds to the i-th most similar item to
the current item X in the semantic space. The model is opti-
mized on two dimensions including the neighborhood param-
eter (N) and the sensitivity parameter (A). The neighborhood
parameter corresponds to the number of items included in the
residual proximity calculation, determined by the closeness
in similarity to the current item.

Random Walk Model

The Random Walk (RW) model is based on the generative
process of random traversal on a semantic network (Abbott,
Austerweil, & Griffiths, 2012). Generated fluency lists are
based on stochastic jumps from node to node in the semantic
network by following the edge connections, also known as a
random walk. Similar to the Semantic Scent model, the Ran-
dom Walk model derives its’ inspiration from information re-
trieval research, notably the PageRank algorithm (Page, Brin,
Motwani, & Winograd, 1998). The original application of
PageRank was to model the information retrieval process on
the World Wide Web, which was conceived as a network of
web pages. Each node encoded a unique webpage, and each
directed edge corresponded to hyperlinks to other webpages.
The PageRank algorithm derives the largest eigenvector of a
transition probability matrix of the network, estimating the
limiting distribution of a random walk on the web graph”
(Page et al., 1998). The resulting matrix produced by PageR-
ank reflects the probability of visiting on any unique webpage
in the network.

The Random Walk model utilized in the original Abbott,
Austerweil, and Griffiths paper develops a generative model
with two simultaneous components. The first component is

based on the transition probability of the current item to the
next item in the fluency list based on the network transition
probability. The second component is based on a jumping
cue, analogous to the stochastic restart of the random walk
from the original PageRank model. We utilize the original
jumping cue from Abbott, Austerweil, and Griffiths (2012),
where the random walk model jumps back to the item “ani-
mal” in the network, in order to subsequently transition to the
next item in the fluency list.

P(Xy+1|01,02,N) = p - P(Xy11|02)+ 3)
(1=p) P(Xn11|Q1 (X1, X0))

Q1 corresponds to the to the first component based on the
transition probability between the current item and next item
in the fluency list. Q2 corresponds to the jumping cue, cal-
culated by the transition probability between “animal” and
the next item in the fluency list. The Random Walk model
is optimized by tuning the jump parameter p to weight the
likelihood of stochastic “’restart” required to produce the next
item.

Fixed Count Model

The Fixed Count (FC) model is a patch-leaving decision rule
from foraging theory which we adopt as a baseline model.
The Fixed Count model dictates a switch after a fixed num-
ber of items have been captured in the current patch (Wilke,
Hutchinson, Todd, & Czienskowski, 2009), and is best suited
for environments in which there are constant numbers of
items in each patch.

P(Switch|k) = {1 k=K €

0 otherwise

P(ContinueLocal k) = 1 — P(Switch|k) (5)

K corresponds to the fixed count value determining how
many items are between each switch. The Fixed Count model
is optimized by identifying the optimal fixed count value as a
threshold to switch that best estimates each fluency list.

Equating Switch Models for Comparison

The Semantic Foraging model is based on a distributional
semantic spatial representation, whereas the Random Walk
model is based on a semantic network representation. As in-
dicated in (Avery & Jones, 2018), it is an error to consider the
two representations fundamentally different. Spatial and Net-
works representation are isomorphic in nature if they encode
the same similarity data (e.g. same matrix representation).
However, in the independent studies they were originally in-
troduced, the Semantic Foraging and Random Walk models
were based on different similarity data sources.

The original Semantic Foraging spatial model was built
upon the cosine similarity matrix generated from the distri-
butional semantic BEAGLE model (Jones & Mewhort, 2007).
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The original Random Walk network model was based on the
transition probability matrix estimated on a semantic network
generated from word association data. To enable equal com-
parison between the two models, we perform analysis based
on a similarity matrix generated from a pretrained Wikipedia
Word2Vec model on items in the common dataset (Mikolov,
Chen, Corrado, & Dean, 2013). Within the similarity matrix
for the models, we also include the item “animal” to enable
the jump cue of the Random Walk model. The Fixed Count
Model does not depend on the underlying similarity data, and
is directly equatable to both models for comparison.

Evaluating Model Performance

To evaluate the performance of each model for capturing
switch predictions, we utilize the study data collected from
the original Semantic Foraging paper by Hills et al (Hills et
al., 2012). A total of 141 undergraduate students at Indiana
University were recruited to participate in the study for course
credit. Participants in the study were asked to participate in
the semantic fluency task, entering as many animals as they
could via keyboard, in 3 minutes. Each animal name and re-
spective time of entry were recorded as items for downstream
analysis. Each item entry was visible until “return” was en-
tered by the participant, ensuring they could not see previous
entries. Post-hoc hand-correction of spelling was applied and
non-animal items were removed.

For each fluency list, the respective switch models were
optimized to minimize the negative log likelihood of switch-
ing characterized by the extended Troyer Norms. The Troyer
norms were used to classify transition points in the fluency
lists via categorical shift in predetermined taxonomy of flu-
ency items.

In the Semantic Scent model, A was optimized per indi-
vidual fluency list, while N was optimized globally across all
transitions in the dataset. Though N can be optimized indi-
vidually per fluency list, we opted for a global optimization
scheme across all fluency lists for simplicity of implemen-
tation. Further individual optimization of N favors Seman-
tic Scent performance in comparison to other switch models,
as it would further minimize negative log likelihood of esti-
mating each fluency list. This will be particularly important
for characterizing data from clinical populations who produce
more idiosyncratic switching behavior. In the Random Walk
model, the jump parameter p was optimized per fluency list to
estimate the jumping probability best characterizing the ob-
served fluency list. In the Fixed Count model, K was opti-
mized per individual list to best estimate the number of items
between switches that best explains the fluency list.

Performance of each model was evaluated via application
of the Bayesian Information Criterion (BIC) across each in-
dividual item transition observed in the dataset. In total, there
were 5079 transitions in the dataset. The BICs are reported in
Table 1. BIC is calculated according to:

BIC =2NLL+ p x log(N)

monkey 4 ape . randomwaik semantic scent ;

) e @ BRE @it switch
giraffe g .. | semantic scent . ;
switch : elephant .
T method

— random walk
i - semantic scent

e\ephant\‘

switch probability

giraffe

Figure 3: Monkey, Ape, and Chimpanzee consist of a retrieved
item cluster. The Semantic Scent model predicts a switch
at the beginning and after the cluster, while Random walk
predicts a switch in the middle of the cluster at ”Ape”

where NLL is the sum of the negative log likelihood across
all transitions, p is the number of parameters optimized in
each model, and N is the total number of transitions.

Qualitative Model Comparison

The key goal of each switching model is to predict accurate
switching behavior in observed fluency data. We evaluate
both the Semantic Scent and Random Walk models to com-
pare their ability to identify cluster switches. Demonstrated in
the original Semantic Foraging paper, switching behavior is
best characterized by the reduction in residual proximity prior
to switching, and spiking of residual proximity after switch-
ing (see Figure 3 from Hills et al. reproduced in Figure 1).
Utilizing this heuristic, the Semantic Scent model appear to
characterize norms-based switching behavior better the Ran-
dom Walk model.

Hand-coded norms, including the Troyer norms, can be
limited in their capacity for capturing clustering and switch-
ing behavior. However, switching models should be able to
adequately predict switches based on stable category clusters
in such hand-coded norms, given their predictive validity. We
observed the performance of both Semantic Scent and Ran-
dom Walk to perform switches in both examples seen in Fig-
ures 3 and 4. Switches are predicted when the probability of
switching spikes, corresponding to the drop in residual prox-
imity in the search space. In the example shown in Figure 3,
Monkey, Ape, and Chimpanzee form a stable categorical clus-
ter in the Troyer norms. Semantic Scent accurately predicted
a switch between Giraffe and Monkey, corresponding to the
start of the cluster, and predicts a switch between Chimpanzee
and Elephant, at the end of the cluster. The Random Walk
model also predicted a switch at Ape switch in the middle of
a cluster.

In the example shown in Figure 4, Ferret, Gopher, and
Groundhog form another stable categorical cluster in the
Troyer norms. Semantic Scent predicted a switch between
Fish and Ferret, at the start of the cluster. Random Walk pre-
dicted a switch between Ferret and Gopher, in the middle of a
cluster. Random Walk further predicted a subsequent switch
between Gopher and Groundhog, evidenced by an additional
spike in switching probability.

In both examples, Semantic Scent correctly predicted the
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Figure 4: Ferret, Gopher, and Groundhog consist of a re-
trieved item cluster. The Semantic Scent model predicts a
switch at the beginning of the cluster, while Random Walk
predicts a switch in the middle, and does not predict a switch
between Fish and Ferret
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start and end of a new norms-based cluster, whereas Random
Walk predicted switches in the middle of clusters. Given the
importance of predicting stable categorical clusters, the pre-
liminary evidence suggests Semantic Scent may better char-
acterize norms-based switching behavior than Random Walk.

Quantitative Model Comparison

In the examples of observed fluency data, Semantic Scent
demonstrated better capture of switching behavior at the be-
ginning and end of stable categorical clusters. Random Walk
in such examples appeared to demonstrate more spurious
switching behavior not aligned to the norms-based cluster cat-
egories. We further evaluate the performance of the models
via calculating the Bayesian Information Criterion over the
likelihood of all item transitions in the fluency dataset.

The Semantic Scent and Random Walk models strongly
outperform the random comparison model, Fixed Count. This
follows intuition, as cluster patches in the original dataset
are not sized evenly, a key determinant for strong perfor-
mance using the Fixed Count model. The Semantic Scent
model also better minimizes the BIC compared to the Ran-
dom Walk model, despite requiring two-fold parameter op-
timization which is penalized in calculating BIC . The BIC
for all three models are reported in Table 1. We further cal-
culated the Bayes Factor of the BIC difference between Se-
mantic Scent and Random Walk. The resulting Bayes Fac-
tor (K > 10'2) suggests very strong evidence in favor of the
Semantic Scent model, based on Jeffreys’ interpretation of
Bayes Factor (Jeffreys, 1935). This further validates our ini-
tial findings from example fluency data.

Table 1: Switching Model Results

Model # of parameters BIC
Semantic Scent 2 6903.93
Random Walk 1 7419.88
Fixed Count 1 34193.32

The strength of the Semantic Scent model in predict-
ing switch behavior is likely due to its inspiration from
scent-based models in animal ecology. The original find-
ings in (Hills et al., 2012) suggested strong similarity be-
tween semantic memory search and animal foraging behav-

ior. As a result, it was implied that memory search mecha-
nisms may have been exapted from the foraging mechanisms
that evolved for searching for food resources in a physical
space. The Semantic Scent mechanism simply extends the
exploration-exploitation mechanism animal foraging behav-
ior. Thus Semantic Scent is a natural extension of optimal
foraging theory to memory search. Just as animals rely on the
scent of food resource patches to determine when to switch to
a new patch to optimize food foraging, Semantic Scent relies
on the scent of item patches to switch between clusters in se-
mantic memory to optimize semantic foraging.

Discussion

The present study sought to identify an optimal process model
for predicting switching behavior in semantic memory search.
Hills et al. (2012) identified a decrease in residual proxim-
ity as items were produced in a cluster, followed by a spike
again when a switch occurred and a new semantically rich
patch of items was located. The similarity-drop heuristic pro-
posed in Hills et al. (2012) for classifying switch behavior
provided a vital approach to characterize switches within the
framework of the optimal foraging model. As influential as
it was, the similarity-drop heuristic falls short as it is a post-
dictive rather than predictive indicator of switch. The Seman-
tic Scent model was introduced in this paper to address this
shortcoming, providing a predictive model of switching be-
havior in memory search. The Semantic Scent model directly
addresses the observed relationship between residual proxim-
ity and cluster-and-switch behavior.

To evaluate it’s effectiveness, we compared Semantic Scent
to an analogous model, Random Walk. Random walk was
shown to create the similar statistical signatures of foraging
behavior with a simpler process model compared to optimal
foraging, demonstrating effective parameterization of mem-
ory search behavior. In comparison to Random Walk, the Se-
mantic Scent model appeared to provide a better explanation
of switching behavior. The Semantic Scent model was able to
predict cluster switches indicated by norms-based categories,
whereas the Random Walk predicted some spurious switches
within clusters. The behavior identified in these examples
are further supported by quantitative evidence suggesting the
strength of the Semantic scent model, demonstrated by the
lower BIC and significant Bayes Factor value.

Given the superiority of the Semantic Scent model as a
switching model to the comparison and baseline model, we
will further interrogate its applicability to different applica-
tions of cluster and switch. To further validate our find-
ings, we will compare the performance of Semantic Scent
to comparison models on predicting participant-identified
switches in their own fluency data. Further validation be-
yond predicting switches from the hand-coded Troyer norms
will ensure the robustness of the switching model for po-
tential downstream applications. A prime use case of the
Semantic Scent model is evaluating of semantic memory in
clinical populations. Given clustering and switching met-
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rics are particularly sensitive to clinical group diagnoses (e.g.
Alzheimer’s, Parkinson’s Disease, Schizophrenia), the Se-
mantic Scent model can be utilized to estimate the likelihood
of impairment or trajectory of disease in clinical populations.

There are also a few key assumptions of the Semantic Scent
model that must be further assessed. First, the strong perfor-
mance of the Semantic Scent model over the Random Walk
model may be explained by the structural representation used.
The current representation utilized in our work for both com-
peting models is a distributional semantic space, estimated
via cosine similarity between Word2Vec embeddings. The
underlying semantic space is a generalized representation in-
dependent from experimental behavioral data. The original
Random Walk model (Abbott et al., 2012) uses word associ-
ation data to construct the underlying network. Word asso-
ciation data comes from experimental behavioral data, which
may bias the results the Random Walk model on explaining
SFT data (e.g. estimating behavior based on behavioral data).
Thus, we seek to validate our methods on an isomorphic rep-
resentation constructed from word association data, to deter-
mine if the strength of the Semantic Scent method in predict-
ing switches generalizes to representations based on behav-
ioral data. This would clarify whether the underlying repre-
sentation affects the effectiveness of the competing models in
characterizing SFT data.

Secondarily, the Semantic Scent model assumes an ex-
plicit switching mechanism in semantic memory search. The
Random Walk model demonstrated that a simple process
model was able to capture similar statistical signatures to a
foraging-based model, without an explicit switching mecha-
nism. However, the better performance of the Semantic Scent
method in predicting norms-based switches suggests that an
explicit switching mechanism may be important for charac-
terizing semantic fluency. This necessitates further validation
of switch predictions, such as comparing their ability to pre-
dict subject-determined switches (e.g. subject reports where
they performed a switch) or switches based on the original
similarity drop heuristic.

Overall, the present findings further solidify optimal for-
aging theory as an important explanatory process model for
semantic memory search. After more rigorous evaluation of
the assumptions of Semantic Scent are conducted, we seek to
integrate the Semantic Scent switching model into the orig-
inal Semantic Foraging model (Hills et al., 2012). Integra-
tion of Semantic Scent into Semantic Foraging allows us to
produce a fully predictive model that can explain the cog-
nitive mechanisms behind semantic memory search, moving
the field beyond postdictive appraisal. This opens up opportu-
nities to evaluate foraging methods on a larger-scale to better
characterize memory search across all populations.
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