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Abstract: The dysfunction of α and β cells in pancreatic islets can lead to diabetes. Many questions
remain on the subcellular organization of islet cells during the progression of disease. Existing three-
dimensional cellular mapping approaches face challenges such as time-intensive sample sectioning
and subjective cellular identification. To address these challenges, we have developed a subcellular
feature-based classification approach, which allows us to identify α and β cells and quantify their
subcellular structural characteristics using soft X-ray tomography (SXT). We observed significant
differences in whole-cell morphological and organelle statistics between the two cell types. Addi-
tionally, we characterize subtle biophysical differences between individual insulin and glucagon
vesicles by analyzing vesicle size and molecular density distributions, which were not previously
possible using other methods. These sub-vesicular parameters enable us to predict cell types system-
atically using supervised machine learning. We also visualize distinct vesicle and cell subtypes using
Uniform Manifold Approximation and Projection (UMAP) embeddings, which provides us with an
innovative approach to explore structural heterogeneity in islet cells. This methodology presents an
innovative approach for tracking biologically meaningful heterogeneity in cells that can be applied to
any cellular system.

Keywords: soft X-ray tomography; cryogenic fluorescence microscopy; pancreatic islets; α cells; β
cells; 3D cell mapping; machine learning; Uniform Manifold Approximation and Projection (UMAP)

1. Introduction

The islets of Langerhans are regulatory systems in the pancreas responsible for main-
taining glucose homeostasis. Islets are primarily composed of four endocrine cell types: α,
β, δ, ε, and pancreatic polypeptide (PP) cells, which secrete glucagon, insulin, somatostatin,
ghrelin, and PP, respectively. β cells are the most abundant cell type and account for >70%
of the cells in mouse islets. In comparison, α cells account for 10–20% of the total islet cell
count, while δ, ε, and PP cells comprise less than 5% of islet cells [1,2]. Multiple fluorescence
imaging modalities have described islet activity and crosstalk between cell types [3–5],
which is important for glucose homeostasis [6,7].

Significant progress has been made in mapping primary murine α and β cells in large-
scale 2D and 3D datasets using electron microscopy (EM), which provides high-resolution
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details of single cells and remarkable insights into subcellular structural organization [8–11].
However, EM techniques require fixation, staining, dehydration, and sectioning of the
cell, which makes the technique labor-intensive. Additionally, previous studies have been
limited to qualitative morphological features to differentiate cell types [11–13]. While
cell and vesicle appearance are useful cues, their qualitative description lacks rigor and
reproducibility. Thus, we require a more robust method to classify cell types that is also
compatible with 3D cell mapping techniques. This would allow us to quantitatively capture
the structural heterogeneity of cells while also retaining information about their identity.
Ultimately, such a method would enable us to explore complex cellular rearrangements
and dysfunction in α and β cells in disease.

Here, we use soft X-ray tomography (SXT) to enable high-resolution imaging of whole
and fully hydrated cells (1–20 µm) [14,15] without the need for fixing and staining. SXT
captures cellular substructures in their native state, with rapid data collection (<10 min
per cell), allowing analysis of relatively large cell populations [16]. This imaging modality
operates within the “water window” energy range [17,18], where carbon-rich materials
such as membranes and organelles exhibit higher contrast due to stronger X-ray attenuation
compared with the cytosol. This quantitative absorption measure, known as linear absorp-
tion coefficient (LAC), facilitates the identification of organelles based on their molecular
density and composition [19,20]. This unique aspect of SXT allows for the mapping of
subcellular organization, as well as subtle fluctuations in the biochemical composition of
organelles during different cellular states without the need for labeling [21,22].

Advances in SXT methodology allow us to distinguish α and β cells from each other
by quantifying differences in cellular features. Correlated cryogenic fluorescence mi-
croscopy and SXT is a powerful approach to confirm the identity of a cell by incorporating
a cell-specific fluorescent probe [16]. Furthermore, by analyzing LAC distributions within
individual vesicles, we can extract vesicular features that distinguish glucagon and insulin
vesicles. These sub-vesicular LAC-based parameters can quantify subtle shifts in biochemi-
cal density and the physical organization of secretory vesicle cores. Thus, these parameters
can be leveraged to classify islet cells based on the identity of the vesicles within each cell
using supervised machine learning classification. Using a predictive model can enable
us to systematically quantify cellular classification while avoiding excluding what might
otherwise appear to be outlier cells. A similar machine learning approach to identify α

and β cells based on their metabolic state has recently been reported [23]; however, this
study will be the first cell-type classifier based on 3D ultrastructural information. The
most important features distinguishing insulin and glucagon vesicles in these predictive
models can be identified and visualized using dimensional reduction techniques such as
Uniform Manifold Approximation and Projection (UMAP) [24]. These results will not only
clarify key parameters informing our models but also advance our understanding of the
biophysical makeup of insulin and glucagon vesicles.

To test our approach, we focused on imaging α and β cells, which are the most
abundant cells in mouse islets and challenging to distinguish without careful analysis.
We imaged eight α and seven β cells and quantified cell volumes, nuclear occupancy,
number of vesicles, and organelle LAC values. Using these subcellular and sub-vesicular
features, our machine learning-based approach allows us to differentiate α and β cells with
a relatively high accuracy of 77%. Whole-cell metrics can also be embedded in UMAP
to distinguish α and β cells from each other. Furthermore, UMAP embeddings allow us
to visualize two separate pools of glucagon vesicles and insulin vesicles. This approach
enables the determination of systematic and microscopic features of two types of mouse
endocrine cells, facilitating future label-free identification of cell types in various species,
including humans.
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2. Materials and Methods
2.1. Animal Model

All animal experiments were approved by the Institutional Animal Care and Use
Committee at the University of Southern California (Animal Use Protocol #21120). All ex-
periments were performed in accordance with relevant guidelines and regulations. Human
proinsulin with C-peptide-bearing Super folder Green Fluorescent Protein (CpepSfGFP)
has been expressed in transgenic mice as described previously [25] and maintained within a
C57BL6/J strain. This mouse model was provided to our lab by Peter Arvan (University of
Michigan). Experiments were performed on adult mice of approximately 2 months of age.

2.2. Islet Isolation and Dissociation

Islets were isolated using a 3.5 mg/mL liberase and 1.5 mg/mL DNAse enzyme blend
(Roche Diagnostics, Indianapolis, IN, USA) as previously described [26]. Briefly, the enzyme
solution was perfused into the pancreas via the bile duct, and the inflated pancreas was
removed for further digestion at 37 ◦C for 12 min. Extracted islets were hand-picked under
a fluorescence light microscope to isolate C-peptide-bearing Superfolder Green Fluorescent
Protein (CpepSfGFP)-labeled β cell containing islets and incubated with Roswell Park
Memorial Institute (RPMI) 1640 (Gibco, New York, NY, USA) at 37 ◦C overnight before
being used for experiments. After overnight incubation, the islets were transported on ice
(Integrated Islet Distribution Program, 2020) to the National Center for X-ray Tomography
at the Advanced Light Source (Lawrence Berkeley National Laboratory, Berkeley, CA,
USA) where the islet dissociation was performed. The CpepSfGFP fluorescence signal was
monitored after both the transport and overnight incubation steps to ensure that the signal
remained robust. Approximately 300 islets were collected into a microtube, centrifuged
at 200 g for 5 min, washed with 1× phosphate buffered solution (PBS) without Ca2+ and
Mg2+ (Gibco) (referred to as 1× PBS in subsequent sections), pelleted again at 200 g for
5 min and then incubated with 700 µL of Accumax Cell Dissociation Solution (Innovative
Cell Technologies Inc., San Diego, CA, USA) for 7 min at 37 ◦C. The dissociated islets were
then pelleted at 300 g for 5 min and resuspended in 10 µL of 1× PBS for loading into the
microcapillaries. Cell viability was measured to ensure that the dissociated cells were not
damaged. The cells were manually counted using trypan blue, yielding a cell viability of
~85%. The process is depicted in Steps 1 and 2 in Figure S1.

2.3. Specimen Cryopreservation

The capillaries were pulled in-house with a diameter of ~10 µm to accommodate
single cells [27]. The tips of the capillaries have a diameter of 10 µm, which can easily
accommodate intact cells and is the ideal size for imaging. Dissociated islets were harvested
by centrifugation at 300× g for 5 min and subsequently resuspended in 10 µL of 1× PBS
and kept on ice to maintain a stable environment before and during the loading. Cells
were loaded into thin-wall glass capillaries using a micro-loading tip (1.3 µL per loading)
(Step 3, Figure S1). Each capillary was then rapidly plunged into liquid nitrogen-cooled
liquid propane and stored in liquid nitrogen until image acquisition [27] (Figure S2).

2.4. Fluorescence Microscopy

Prior to dissociation and capillary loading, islets were evaluated for a strong GFP
signal. The islets were transferred into an 8-well imaging dish with a #1.5 polymer coverslip
(ibidi) containing 1× PBS. A Leica MICA microscope was used to collect fluorescent and
transmitted light images of whole islets using the high contrast plan apochromatic (HC
PL APO) CS2 63×/1.20 water immersion lens. Auto-illumination was set at 2.105% for
the 488 nm laser to capture the GFP signal across the four internal detectors. The pixel
density was set at 2432 × 2032 with a 600 Hz bidirectional scan speed and line averaging at
4 repetitions. The pinhole was set to 1 airy unit (AU). A total Z-stack averaged to ~20 µm
was collected in ~400 s. The fluorescence image was then processed on the LASX software
(Leica Application Suite X, version 6.2.1.27469) using the Lightning and Thunder setting
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to deconvolve the image with the settings set for adaptive strategy, a refractive index of
1.33, and water as the mounting media. A brightfield image of the same islet was taken at
108 intensity, 40.0 ms exposure, and 1.0 gain.

To confirm that β cells were present in the imageable region of the capillary after
loading, the SfGFP signal in the capillary was measured. The capillaries were secured onto
a 1× GS-Holder (Okolab, Pozzuoli, Italy). Fluorescence and transmitted light images of
SfGFP-tagged β cells inside the capillary were taken with a HC PL FLUOTAR 10×/0.32 dry
objective lens using similar settings as the whole islet imaging. ImageJ was used to create
maximum projections of the fluorescence images and overlaid them onto the transmitted
light image (Figure S2A,B). Owing to strong intercellular interactions between the different
cell types, clusters of 2-3 cells could still be observed after loading them into thin-walled
glass capillaries. Larger clusters of cells were retained in the base and middle part of the
capillary outside of the imageable region (Figure S2B—top and middle panel), whereas
smaller clusters (2–3 cells) and fully dissociated cells were identified in the imageable
region of the capillary (Figure S2B—bottom panel). We observed more α cells than β cells
in the tip of the capillary, likely due to α cells being smaller than β cells [12] (Figure S2B).

2.5. Cryogenic Confocal Fluorescence Microscopy

To definitively distinguish between α and β cells, we traced the CpepSfGFP fluores-
cence signal along the capillary tip by using a cryogenic confocal fluorescence microscope
(Figure S2C). Cryogenic fluorescence data of the cells and their corresponding bright field
images were collected using a home-built cryogenic fluorescence microscope [28–31], using
a commercial dual spinning disk head (CSU-X1, Yokogawa, Tokyo, Japan) for confocal
scanning and detection. A laser at 491 nm was used for the detection of the C-peptide-
SfGFP fluorescent signal, which was controlled with an acousto–optical tunable filter using
an integrated system (Andor Laser Combiner, model LC-501A). Datasets were collected
acquiring a Z-stack of 30–40 µm, with ∆Z = 0.3 µm (Figure S2C). Data analysis was per-
formed in Fiji (Version 1.54) [32], and the maximum intensity projections were determined.
Lastly, we correlated the fluorescence signal with the X-ray absorption signal collected from
the same specimen, allowing us to identify β cells.

2.6. Transmission Electron Microscopy

Pancreatic cell ultrastructure was imaged using a FEI Talos F200C G1 microscope
(Thermo Scientific™, Waltham, MA, USA) to perform transmission electron microscopy
(TEM). Briefly, pancreatic tissue samples were fixed in 4% paraformaldehyde in 1× PBS
(Gibco), followed by 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1 M N-2-
Hydroxyethylpiperazine-N′-2-Ethanesulfonic Acid (HEPES) (Sigma Aldrich, St. Louis, MA,
USA) and postfixed in 1% osmium tetroxide overnight. The fixed samples were stained
with 1% uranyl acetate (Ted Pella, Redding, CA, USA) for an hour and dehydrated with
an increasing percentage of ethanol solutions. Propylene oxide (PO) was used as a transi-
tion fluid and embedded with a medium resin hardness using the Embed 812 kit, which
polymerized at 60 ◦C for a minimum of 18 h. Ultrathin sections (80 nm) were obtained
using a Leica UC6 ultramicrotome. Once mounted on grids, sections were treated with 3%
H2O2, then stained with lead citrate followed by uranyl acetate. The stained sections were
examined using Talos F200C TEM operated at 80 kV. Images were taken with a mounted
Ceta Camera (Figure S3). Materials used were obtained from Electron Microscopy Sciences
unless otherwise stated.

2.7. Soft X-ray Tomography Data Collection and Reconstruction

Projection images were collected at 517 eV using the soft X-ray microscope XM-2 [27,33]
at the National Center for X-ray Tomography (Advanced Light Source synchrotron, at
Lawrence Berkeley National Laboratory). The microscope was equipped with a 50 nm
resolution objective lens. During data collection, cells were maintained in a stream of
helium gas cooled to liquid nitrogen temperatures [34], which allows the collection of
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projection images while reducing the effects of exposure to radiation. Projection images
were collected sequentially around a rotation axis of 180◦, with 2◦ increments. Sudden drifts
of the capillary are corrected automatically by the data acquisition software (as detailed in
Chen et al. 2022 [27]). An exposure time of 350 ms was used for each acquired projection.
The 3D image reconstruction was achieved using an iterative reconstruction method in
the software package AREC3D. This method uses a 3D model-based approach to align the
projection images before reconstruction, as reported by Parkinson et al. 2012 [35]. The LAC
value for each tomogram was calculated by normalizing the intensity value of each pixel
by the pixel area. The detailed method is described by Chen et al. 2022 [27]. The operation
defines the LAC value of each voxel in the tomogram and is a direct measurement of the
carbon-atom concentration in each voxel (Figure S3).

For correlating SXT data with the correspondent fluorescent signal, the position of
each cell was marked for each capillary and manually retrieved a posteriori during the
image post-processing.

2.8. SXT Data Segmentation LAC Quantification

Dissociated single cells were manually segmented using Amira 2021.2 (Thermo Scien-
tific™, Waltham, MA, USA). Organelle identification and segmentation were performed as
previously described [29,36]. The ACSeg 3D U-net model in the Biomedisa platform was
used to generate an initial membrane mask [37,38]. The segmentation of the cell membrane
was refined using the “Paintbrush” tool every 5–10 slices and interpolated to generate a
3D mask. The “Paintbrush” tool was also used to segment the nucleus. The LAC value
threshold for the cellular components was based on previously published data [29]. Each
value of the LAC is defined as the X-ray absorption per µm. Insulin vesicles were identified
by their characteristic morphology and high LAC value (0.21 µm−1–0.46 µm−1) compared
with other organelles [36,39]. Due to the similar morphology and a denser packaging of
glucagon in α cell vesicles [40], segmentation of glucagon vesicles used a similar strategy,
albeit at a varied threshold range (0.24 µm−1–0.50 µm−1). Based on the morphology and
size of both types of vesicles, vesicle clusters bigger than 500 nm were excluded. Simi-
larly, vesicles smaller than 100 nm were excluded to avoid smaller synaptic-like GABA
vesicles [41,42]. Mitochondria were segmented based on morphology.

2.9. Quantification of Cellular and Subcellular Features and Statistical Analysis
2.9.1. Cellular and Organelle Volume Analysis

The percentage of cell volume occupied by the nucleus and vesicles was calculated
by dividing the nuclear and total vesicle volume by the cellular volume, respectively. We
defined this parameter as nuclear and vesicle occupancy, respectively. The volume of the
cytosol was defined as the difference between the cellular volume and the nuclear volume.

2.9.2. LAC Value Comparison

The mean LAC value for the nucleus, mitochondria, cytosol, and vesicles was plotted
for each cell type with the minimum and the maximum value for each column plot repre-
senting the standard deviation (Figure S4). The mean value was generated by calculating
the mean value of the LAC for all the voxels within a specific semantic label. The mean
LAC-based values for secretory vesicles (Figure S5) were plotted by pooling together the
LAC values from all vesicles belonging to a cell type.

2.10. Statistical Analysis

Statistical analysis was performed using Prism (Version 10.1.2, GraphPad Software,
La Jolla, CA, USA). The statistical significance between various parameters was calculated
using the unpaired t-test with Welch’s correction and the one-way ANOVA test with
Bonferroni’s correction. Error bars in column plots are representative of the standard
deviation. η2 values (effect sizes) were calculated using a custom function in Python
(version 3.10.9) that would square the correlation ratio of a given vesicle parameter.
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2.11. UMAP Projection of Multidimensional Structural Data

UMAP (Uniform Manifold Approximation and Projection) plots were created in
Python on Jupyter Notebooks using the package umap-learn-0.5.5. Parameters except
for skew and kurtosis values were standardized before creating UMAP embeddings.
For the UMAP displaying pooled vesicle parameters, the embedding was created us-
ing n_neighbors = 50, min_dist = 0.5, and metric = ‘canberra’. For the UMAP of whole cell
metrics, the hyperparameters were n_neighbors = 4, min_dist = 0.2, and metric = ‘canberra’.
The canberra distance metric has an extra scaling factor compared with default distance
metrics, which makes it useful for clustering data points consisting of features from dif-
ferent numerical scales [43,44]. The color scheme used for displaying individual vesicle
parameters was inverted ‘cmocean thermal’ from matplotlib.

2.12. Machine Learning Modeling and Validation Strategy

Machine learning was performed using a Python (version 3.10.9) environment. Pack-
ages were obtained from scikit-learn version 1.4 [45] unless otherwise stated. The machine
learning models used were LogisticRegression, RandomForestClassifier, and XGBoost
(xgboost v2.0.3) [46]. These were chosen due to their relative ease of training and interpre-
tation, as well as to facilitate a comparative analysis of model performance. Leave One
Group Out cross-validation was utilized to ensure the generalizability of these models
when predicting vesicle identities in an unseen cell. In this use case, each group refers to
all of the vesicles from an individual cell. Machine learning models were evaluated using
Accuracy, Precision, Recall, F1 Score, and ROC AOC metrics.

Out of the 7 β cells and 8 α cells used in this study, the vesicles from 6 β cells and
7 α cells were used as the training and validation dataset, while the remaining vesicles
from 1 β cell and 1 α cell were used as the test dataset. To reduce the variability in the
machine learning modeling, all 56 possible combinations of 1 β cell and 1 α cell left out of
7 β cells and 8 α cells were used to create 56 different models. The average and standard
deviation of the evaluation scores, such as the F1 Score and ROC AOC across the 56 models,
were then reported. This process was performed each time for Logistic Regression, Ran-
dom Forest, and XGBoost (Total of 168 models trained). Hyperparameter tuning was
performed using Grid Search for Logistic Regression and Random Forest by optimizing the
accuracy metric [47]. Values were also standardized prior to machine learning for logistic
regression. To train XGBoost models with many hyperparameters, Bayesian Optimization
(BayesianOptimization v1.4.3) [48] was used. The Bayesian Optimization search parameters
were init_points = 10, n_iter = 15. Specific hyperparameters tuned are listed in Figure S7B.
All other parameters not listed use the default package implementation.

2.13. Interpretation of Feature Importances from Machine Learning

Permutation feature importances were used to rank the relative importance of vesicle
parameters. Each column of features was randomly permuted, and then the difference in ac-
curacy score between the original and permuted datasets was used to rank the importance
of each feature. To avoid the dilution of the feature importances from multicollinear fea-
tures, the Pearson correlation coefficient between vesicle parameters was calculated. Then,
features were grouped using hierarchical clustering (scipy.cluster.hierarchy v1.13.0) [49]
on correlation coefficients. A representative variable from each cluster was then used to
display the final feature importances. Final reported feature importances were averaged
over the 56 combinations where accuracy was above 75%.

3. Results
3.1. α and β Cell Morphology Visualized by SXT

We use SXT to generate 3D datasets of single cells, which allows for the direct quantifi-
cation of the volume of cells and subcellular structures, including the nucleus, mitochondria,
vesicles, and the plasma membrane (Figure 1A,B). We collected and analyzed 15 cells in
total (7 β cells and 8 α cells). The voxel size of the tomograms ranged from 30 to 45 nm. Af-
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ter the acquisition, reconstruction, and segmentation of the different subcellular structures
in each dataset (Figure 1B), we observed a broad range of cell sizes for both α and β cells,
with the average cell volume for α cells being 579 ± 247 µm3. In contrast, β cells exhibited
a significantly larger volume of about 1191 ± 277 µm3 (Figure 1C).
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Figure 1. 3D reconstruction and quantitative analysis of α and β cell morphology. (A) Orthoslice
showing the XY plane through the soft X-ray tomogram of representative α and β cells (α_3 and β_6,
respectively). Cell constituents and organelles are distinguished from one another based on their
LAC values and are identified as follows: nucleus–blue arrowhead, mitochondria–pink arrowhead,
glucagon vesicles–red arrowhead, and insulin vesicles–green arrowhead. The overall LAC value
range of the orthoslice is between 0.15 and 0.4 µm−1 to optimize contrast. Scale bar: 2 µm. (B) 3D
reconstruction of the representative α and β cells (α_3 and β_6, respectively). In detail, the recon-
struction shows the nucleus (blue), mitochondria (pink), glucagon vesicles ((left), in red), insulin
vesicles ((right), in green), and plasma membrane (gray). (C) Cellular volume of both cell types,
showing a significantly higher volume (*** p < 0.001) for β cells (1191 ± 277 µm3) compared with
α cells (579 ± 247 µm3). (D) Nuclear volume of both cell types showed no significant difference
(p = 0.76). (E) Comparison between mean nuclear occupancy for each cell type, with a significant
increase (*** p < 0.001) in percentage occupancy of the nucleus for α cells (21 ± 5%) compared with β

cells (10 ± 3%). (F) Number of insulin vesicles normalized by cytosolic volume indicating a signif-
icantly higher number of vesicles (* p = 0.03) per cytosolic µm3 for α cells (3.3 ± 1.4 vesicles/µm3)
compared with β cells (2 ± 0.6 vesicles/µm3). (G) Plot of mean vesicle diameters of α and β cell
vesicles demonstrating a higher vesicle diameter (*** p < 0.001) for α cell vesicles (212 ± 21 nm)
compared with β cell vesicles (163 ± 13 nm). (H) Mean Vesicle LAC for secretory vesicles of α and
β cells showing a significantly higher mean LAC (** p = 0.003) for α cell vesicles (0.37 ± 0.03 µm−1)
compared with β cell vesicles (0.33 ± 0.02 µm−1). Error bars in each plot are representative of the
standard deviation. Welch’s t-test was used as a statistical test. n = 8 for α cells (red) and n = 7 for β
cells (green).

We did not observe significant differences in the nuclear volume among different cells
(118 ± 42 µm3 for β cells versus 112 ± 32 µm3 for α cells) (Figure 1D); however, the percent-
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age of cell volume occupied by nuclear volume (nuclear occupancy, see Methods) for β cells
(10 ± 3%) was significantly lower compared with α cells (21 ± 5%) (Figure 1E). As for the se-
cretory vesicles of both cell types, we observed a higher number of α cell vesicles per cytoso-
lic volume (3.3 vesicles/µm3) compared with β cell vesicles (2 vesicles/µm3) (Figure 1F).
On measuring secretory vesicle diameter, we observed a significantly higher mean vesicle
diameter for α cells (213 ± 21 nm) compared with β cells (163 ± 13 nm, see Figure 1G and
Table 1). Comparing the two cell types, we observed a significantly increased LAC value
in the α-cell cytosol (0.26 ± 0.02 µm−1) compared with β cell cytosol (0.24 ± 0.02 µm−1)
(Figure S4A). In addition, we found a non-significant increase in the LAC value of mi-
tochondria and nuclei in α-cells (0.357 ± 0.03 µm−1 and 0.24 ± 0.02 µm−1, respectively)
compared with β-cell mitochondria (0.335 ± 0.03 µm−1) and nuclei (0.21 ± 0.02 µm−1)
(Figure S4B,C). A major differentiating factor between the two cell types was a significant
difference in the LAC values of the vesicles. We observed a significantly higher mean
vesicle LAC for α cells (0.375 ± 0.03 µm−1) compared with β cells (0.334 ± 0.02 µm−1)
(Figure 1H).

Table 1. Cumulative analysis of the segmented organelles in α and β cells. List of the overall volume,
occupancy (%), and LAC values for the cell, nucleus, mitochondria, and vesicles in each cell type,
along with the number of vesicles and vesicle diameter (nm). Each value is reported with its standard
deviation. Overall, we observe that β cells have a higher cell volume, similar nuclear volume, lower
nuclear occupancy, mean vesicle diameter, and mean vesicle LAC compared with α cells.

Cell Type α-Cell β-Cell

Number of Cells 8 7
Cell Volume (µm3) 579 ± 247 1191 ± 277 ***

Nucleus Volume (µm3) 112 ± 32 118 ± 42
Nucleus Volume (%) 21 ± 5 10 ± 3 ***
Vesicle Volume (µm3) 6 ± 2 5 ± 2

Vesicle Volume (%) 1.1 ± 0.4 0.4 ± 0.1
Vesicle Number 1337 ± 480 2099 ± 710 *

Vesicle Diameter (nm) 213 ± 21 163 ± 13 ***
Vesicle LAC (µm−1) 0.375 ± 0.03 0.334 ± 0.02 **

Nucleus LAC (µm−1) 0.24 ± 0.02 0.21 ± 0.02
Mitochondria LAC (µm−1) 0.357 ± 0.03 0.335 ± 0.03

Cytosol LAC (µm−1) 0.263 ± 0.02 0.237 ± 0.02 *
Data were analyzed using Welch’s t-test: * p < 0.05, ** p < 0.01, *** p < 0.001.

3.2. Analysis of Vesicle Properties in α and β Cells

We performed an in-depth analysis of the dense-core insulin and glucagon vesicle
features. To better understand their morphological differences, we pooled the vesicles ac-
cording to cell type and analyzed differences between the total pooled glucagon (n = 10,964)
and insulin (n = 14,960) vesicles. Analyzing pooled vesicles is particularly useful for com-
paring heterogeneity in vesicle characteristics. This approach involves the scrutiny of
tens of thousands of vesicles, offering a more comprehensive description of the vesicular
features compared with relying on values derived from averaged cell data (n = 15).

By comparing cumulative pools of insulin and glucagon vesicles, we observed that
the average diameters were significantly different (194 nm for glucagon vesicles; 157 nm
for insulin vesicles) between the two groups, which reflected the whole cell values reported
in Table 1. Pooling vesicles by cell types enables us to not only examine a larger sample
size but also allows us to observe the distribution of vesicle sizes. For insulin vesicles, we
see around 4.5% of the vesicles under 120 nm, 80% between 120 nm and 180 nm, and 15.5%
of the vesicles above 180 nm (Figure 2B, green). Conversely, for glucagon vesicles, we see
around 1% of the vesicles under 120 nm, 50% between 120 nm and 180 nm, and 49% of the
vesicles above 180 nm (Figure 2B, red).
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Figure 2. 3D reconstruction and quantitative analysis of pooled insulin and glucagon vesicles.
(A) (left) XY Orthoslice through the SXT of representative α and β cells. Glucagon vesicles (red
arrowheads) and insulin vesicles (green arrowheads) can be identified based on their high LAC
values. The overall LAC value in the orthoslice is thresholded between 0.15 and 0.40 µm−1 (scale
bar: 0.5 µm). (right) 3D reconstruction of a section of representative α and β cells (α_3 and β_6,
respectively). In detail, the reconstruction shows glucagon vesicles ((top), in red) and insulin vesicles
((bottom), in green), and plasma membrane (gray). (B) Histogram showing the size distribution
of glucagon and insulin vesicles. The vesicles for each cell type are pooled together and show a
significantly higher diameter (**** p < 0.0001) for insulin vesicles (194.2 ± 49 nm, green dotted line),
compared with glucagon vesicles (157 ± 35 nm, red dotted line). (C) Histogram showing LAC
distribution of glucagon and insulin vesicles demonstrating a significantly higher mean vesicle
LAC values (**** p < 0.0001) for insulin vesicles (0.37 ± 0.04 µm−1, red dotted line), compared with
glucagon vesicles (0.33 ± 0.03 µm−1, green dotted line). (B,C) n = 10,694 for glucagon vesicles (red)
and n = 14,690 for insulin vesicles (green). Welch’s t-test was used as a statistical test.

Along with structural differences, we observed a significant difference in the mean LAC
values for both vesicle types. A significantly higher mean LAC value of 0.365 ± 0.04 µm−1

was observed for glucagon vesicles compared with 0.328 ± 0.03 µm−1 for insulin vesicles
(Figure 2C), indicating a significantly higher molecular density for glucagon vesicles. This
is in line with EM observations on glucagon granules appearing consistently denser than
insulin granules [11,12,40] (Figure S3).

In addition to providing the mean LAC of a vesicle, SXT is also capable of giving us
sub-vesicular physical details. Vesicles consist of multiple voxels with unique LAC values,
which allow for the mapping of a LAC value distribution for each vesicle. These LAC value
histograms can provide in-depth information on how the molecular density is distributed
within a vesicle (Figure 3A,B). The LAC value curve for a vesicle can be uniquely described
as a combination of the minimum LAC, 25th quantile LAC, mean LAC, 75th quantile
LAC, maximum LAC, mode LAC, median LAC, skew, kurtosis, standard deviation, and
interquartile distance. When comparing the sub-vesicular parameters between the two
vesicle types, we observed that insulin vesicles had significantly different values for all
the LAC-based parameters compared with glucagon vesicles (Figures 3C,D and S5A,B,
and Table 2). Although the sub-vesicular parameters differed significantly between both
types of vesicles, our comparison of effect sizes between the various parameters revealed
that maximum vesicle LAC exhibited the highest score when analyzed using a η2-test.
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Conversely, minimum vesicle LAC had the lowest effect size (Figure S5C). This could
indicate that the maximum vesicle LAC is a more effective parameter differentiating the
two vesicle types compared with other LAC-based parameters.
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Figure 3. Description and comparison of LAC-based parameters between insulin and glucagon
vesicles (A) (top) XY Orthoslice through SXT of representative α cell (α_3). Scale bar: 0.5 µm.
(middle) 3D reconstruction of a representative glucagon vesicle (red). (bottom) Histogram displaying
the LAC distribution of the glucagon vesicle picture in the top and middle panels showing a mean
LAC value of 0.34 µm−1 for the vesicle. (B) (top) XY Orthoslice through SXT of representative β-cell
(β_6). Scale bar: 500 nm. (middle) 3D reconstruction of a representative insulin vesicle (green).
(bottom) Histogram displaying the LAC distribution of the insulin vesicle picture in the (top) and
(middle) panels, showing a mean LAC value of 0.318 µm−1 for the vesicle. (C) (top) A comparison
of vesicle LAC parameters (minimum LAC, 25th quantile LAC, mean LAC, 75th quantile LAC,
maximum LAC) between glucagon vesicles (red) and insulin vesicles (green) showing significantly
higher values (**** p < 0.0001; one-way ANOVA with Bonferroni’s correction) for glucagon vesicles
for all displayed parameters compared with insulin vesicles. (bottom) LAC histogram curve for a
sample vesicle, with arrows indicating the value being compared in the (top) panel. (D) Plot showing
a significantly higher (**** p < 0.0001; Welch’s t-test) standard deviation for glucagon vesicles (red)
compared with insulin vesicles (green). Error bars in all plots are representative of the standard
deviation. n = 10,694 for glucagon vesicles (red) and n = 14,690 for insulin vesicles (green).

Table 2. Cumulative analysis of the pooled insulin and glucagon vesicles. List of the average mean,
median, mode, maximum, minimum, 25th quantile, and 75th quantile LAC along with average
number of vesicles, standard deviation, skewness, kurtosis, and diameter in both vesicle types. Each
value is reported with its standard deviation.

Vesicle Type Glucagon Vesicle Insulin Vesicle

Number of Vesicles 10,964 14,960
Mean LAC (µm−1) 0.365 ± 0.04 0.328 ± 0.03 †

Median LAC (µm−1) 0.364 ± 0.04 0.327 ± 0.03 †

Mode LAC (µm−1) 0.365 ± 0.04 0.328 ± 0.03 †

Maximum LAC (µm−1) 0.391 ± 0.04 0.342 ± 0.03 †

Minimum LAC (µm−1) 0.341 ± 0.04 0.317 ± 0.03 †

Standard Deviation (µm−1) 0.012 ± 0.005 0.007 ± 0.003 †
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Table 2. Cont.

Vesicle Type Glucagon Vesicle Insulin Vesicle

25th Quantile LAC (µm−1) 0.356 ± 0.04 0.322 ± 0.03 †

75th Quantile LAC (µm−1) 0.374 ± 0.04 0.332 ± 0.03 †

Skewness 0.085 ± 0.37 0.288 ± 0.44 †

Kurtosis −0.506 ± 0.49 −0.617 ± 0.55 †

Diameter (nm) 194 ± 49 157 ± 35 †

Data were analyzed using Welch’s t-test; † p < 0.0001.

3.3. Differentiating α and β Cells Using Machine Learning Models Based on Extracted
Vesicle Characteristics

After establishing significant differences between insulin and glucagon vesicles, we
created machine learning models that classify the majority vesicle type from a given islet
cell and can deduce cellular identity based on this prediction. This machine learning
strategy represents an advancement over existing qualitative identification methods by
enabling more precise and consistent quantification of cellular classification. Predictive
models were trained using individual vesicle features and identity labels as inputs in
logistic regression, random forest, and XGBoost-supervised machine learning algorithms.
To minimize variability, models were trained for all fifty-six unique combinations of one left
out α and one left out β cell from a total of eight α and seven β cells (Figure 4A,B). While
overall morphological characteristics such as cell volume differ between α and β cells,
incorporating these features into this vesicle-based ML pipeline could bias the model’s
predictive performance and complicate the interpretation of its results.

After the machine learning classifiers were trained, the final average accuracies across
the three models were higher than or equal to 75% (Table 3). This accuracy will allow us to
predict the predominant vesicle type from an islet cell, enabling us to distinguish whether
the cell is an α or β cell. The >0.82 receiving operating characteristic area under the curve
(ROC AUC) metric across the models confirms that this machine learning strategy results
in a high-performance classifier. The average F1 Score, which reflects the rate of incorrectly
classified vesicles, was about 0.70 (Table 3). While the F1 Score was relatively lower than
other evaluation metrics, this could be due to the partial overlap in the distribution of SXT
characteristics between insulin and glucagon vesicles (Figure 2B,C). Therefore, the model
performance of machine learning approaches utilizing SXT data could be influenced by the
existence of parameter gradients rather than distinct parameter thresholds between two
biological categories.

Table 3. Final evaluation metrics from supervised machine learning strategy for classifying cells
based on vesicle predictions. Accuracy and other evaluation metrics for the three models are reported
as a mean and standard deviation across the 56 model combinations. Based on accuracy and AUC
metrics, the machine learning model predicts the majority of vesicles in cells with significant statistical
power. F1 scores indicate that a portion of the vesicles are misclassified.

Model Accuracy F1 Score ROC AUC

Logistic Regression 0.75 ± 0.11 0.68 ± 0.12 0.82 ± 0.13
Random Forest 0.77 ± 0.11 0.71 ± 0.09 0.85 ± 0.10

XGBoost 0.75 ± 0.12 0.70 ± 0.11 0.83 ± 0.11

In our machine learning approach, we averaged the performance of 56 fully tuned
models with each other. Across these models, even the worst-performing random forest
and XGBoost classifiers achieved over 50% accuracy (Figure S6D), thereby providing insight
into cellular identity. However, a small portion of logistic regression classifiers resulted in
accuracies below 50% despite logistic regression having a similar average performance to
the other two models. Therefore, future implementations of machine learning to predict
cell and vesicle identity would use random forest or XGBoost algorithmic approaches.
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Figure 4. Overview of machine learning strategy. (A) Data pre-processing for insulin and glucagon
vesicles from β and α cells is conducted. A final vesicle feature matrix, including group labels
(denoting which cell a vesicle is from) for vesicles, is used as input for machine learning. (B) Train/test
split for grouping vesicles from α and β cells. The process of model building is described, with Leave
One Group Out cross-validation used to estimate the performance of predicting vesicle identity from
unseen cells. Model building and testing are repeated over 56 combinations to understand variability
in performance.

3.4. Displaying Distinguishing Features of Insulin and Glucagon Vesicles Using Structure-Based
UMAP Visualizations

To understand which vesicle features drive the prediction ability of our model, we
calculated machine learning feature importance. Permutation feature importances were
used as a standardized way to compare importances between models. Additionally, multi-
collinear features were addressed by performing hierarchical clustering on highly correlated
features and picking one representative feature from each cluster to use as a proxy for
a group of features (Figure S7A,B). Similar to trends from statistical significance and ef-
fect size tests, vesicle LAC mean, LAC standard deviation, and diameter permutation
importances were the most predictive of insulin or glucagon vesicle identity (Figure 5A).
Although the overall trends in feature importance were similar between all three machine
learning models, the relative importance of each parameter was generally lower in logistic
regression compared with Random Forest and XGBoost. This discrepancy may be related
to an inherent bias of the logistic regression models since some model combinations were
underfitting the data. Interestingly, vesicle LAC Skew was also relatively important, par-
ticularly in the XGBoost model. This example illustrates how predictive importance and
statistical significance from effect size do not always coincide with each other.
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Figure 5. Representing vesicle feature importances in UMAP embeddings. (A) Representative feature
importances from each ML model listed in order of accuracy. The radius of circles is scaled to
the magnitude of the permutation feature importances. Since the LAC standard deviation in the
XGBoost model had the highest overall importance magnitude, the other parameters are scaled to
it. In general, LAC mean, LAC standard deviation, and diameter seem to be the most important
representative parameters. (B) UMAP embedding of vesicles colored by vesicle identity. Semi-distinct
clusters of insulin and glucagon vesicles can be observed. (C) Vesicles colored by cellular origin. The
overall trends in the pooled vesicle UMAP space do not seem to be driven by cell-dependent effects.
(D) Embeddings colored by vesicle feature values. Gradients of LAC mean, standard deviation, and
diameter correspond to regions of insulin and glucagon vesicles. The grouping of heterogeneous
vesicle subpopulations can also be visualized.

While important distinguishing features have been established between insulin and
glucagon vesicles, direct visualization and interpretation of pooled vesicles is difficult.
Therefore, we performed dimensional reduction using uniform manifold approximation
and projection (UMAP) on characteristics from individual vesicles. UMAP has traditionally
been used for omics analysis, but recent papers use this algorithm to analyze diverse bio-
logical data types [50,51]. In the UMAP plot, high-dimensional vesicle data are represented
in 2D space, where each point in the plot represents 1 of 25,384 vesicles. Upon initial inspec-
tion of the UMAP embedding, insulin and glucagon vesicles form semi-distinct regions
(Figure 5B). These lobular regions illustrate how insulin and glucagon vesicles originate
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from different distributions, as demonstrated with our SXT data. The overlap between
lobes of vesicle populations further clarifies the performance of machine learning models.
While the majority of vesicles are accurately classified, some vesicles in this overlap region
are not accurately classified. When vesicles are colored based on cellular origin, insulin
vesicles seem to be well distributed throughout the high dimensional space (Figure 5C).
This suggests that trends in vesicle metrics are cell-independent. A similar pattern is also
observed for glucagon vesicles, with the exception of vesicles from α_3, which tend to
have a lower LAC mean. While α_3 has similar whole cell metrics to other α cells, such as
overall average vesicle diameter and cell volume (Table S1), it has a lower average vesicle
LAC. As shown by a UMAP plot based on whole cell metrics of α and β cells instead of
individual vesicles (Figure S7C), it is likely that this finding is reflective of structural cellu-
lar heterogeneity within α cells. α cell transcriptional heterogeneity has been previously
reported [52], but our results provide evidence of structural diversity as well.

Differentiating characteristics can be interpreted on the UMAP plot by coloring each
vesicle according to its vesicle feature values. When vesicles are colored by LAC mean, a
gradual and global transition from high to low LAC mean values can be observed in the
UMAP plot (Figure 5D). The top left lobe is composed of glucagon vesicles with high LAC,
while the top right lobe has primarily insulin vesicles with low LAC, which is consistent
with our previous findings. However, there is significant heterogeneity in the bottom
lobes, suggesting that subpopulations of vesicles are present within SXT images of α and β

cells. In contrast, the LAC standard deviation and diameter plots primarily reflect overall
differences between insulin and glucagon vesicles. Higher LAC standard deviation and
diameter values correspond to the regions dominated by glucagon vesicles (Figure 5D).
Interestingly, there is also a middle-right cluster composed of higher-diameter insulin
vesicles in the UMAP space. These vesicles have low LAC mean and LAC maximum
(Figure S7D), which indicates the presence of a subpopulation composed of immature
vesicles despite their relatively larger size. While LAC standard deviation and diameter
mainly discriminate vesicle types, the trends in the skew and kurtosis plots do not seem
to reflect different insulin or glucagon vesicle UMAP clusters. However, a subgroup of
glucagon vesicles seems to be characterized by a relatively lower LAC skew, which could
explain this parameter’s significance in the feature importance calculations.

4. Discussion

This study establishes the feasibility of leveraging subcellular features to distinguish
between two similar secretory islet cells, α and β cells, using SXT and supervised machine
learning-based classification algorithms. Our mapping approach provided quantitative
differences in the cellular and vesicular structure, providing new insights into the unique
biophysical characteristics of the two systems. Given a similar nuclear volume and a signif-
icantly larger cellular volume of β cells compared with α cells, we observe a significantly
higher nuclear occupancy and a higher number of vesicles per cytosolic volume for α cells.
These structural trends for both cell types are in line with previous work performed on
visualizing α and β cells quantitatively using serial block face scanning electron microscopy
(SBF-SEM) and focused ion beam scanning electron microscopy (FIB-SEM) [8–11].

The unique ability of SXT to quantify differences in the molecular density of the
vesicles in both cell types revealed that glucagon vesicles have a significantly higher average
molecular density compared with insulin vesicles. These observations corroborate previous
electron microscopy data, reporting glucagon vesicles being more electron-dense [11,12,40].
While EM studies reported insulin vesicles in the range of ~10,000 per cell [8–10], SXT
captured fewer vesicles (~2000). This is expected, as it was recently shown that SXT does
not allow us to visualize immature vesicles without well-defined dense cores [10,36,53].

In contrast to EM studies, we observed a larger vesicle diameter for glucagon vesicles
(194 nm) in α cells compared with insulin vesicles (157 nm) in β cells [8,10]. Our results
of vesicle diameters we obtained are more in line with the core diameters of insulin and
glucagon vesicles (~200 nm). Previous work on measuring core diameters has been per-
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formed on small datasets (~400 vesicles) using chemically fixed islets [8]. Our method
employs cryo-fixation as opposed to chemical fixation, preserving the subcellular envi-
ronment and cell morphology in its native state. Thus, the slight differences we observe
between SXT and EM measurements of dense cores could be due to differences in the
sample preparation.

In addition, due to the relatively large number of vesicles we quantify with SXT
(~25,000) compared with EM (~400), we expect that our data can provide a complete
description of the dense core size distributions, incorporating cell-to-cell heterogeneity.
Moreover, analyzing the entire volume of the cell provides an accurate description of the
vesicle-to-vesicle variability within a single cell.

The use of volumetric and biochemical information from the two cell types also helps
to rule out the presence of additional islet cell types, such as δ and pancreatic polypeptide
(PP) cells. Based on previous studies [11,12], δ cells present a dendrite-like shape and
contain lozenge-shaped granule cores with diameters spanning from 200 to 350 nm. These
granules have been reported to be less dense compared with glucagon granules [11,12,40].
ε and PP cell secretory vesicles have a much smaller vesicle diameter, which spans from
100 to 150 nm [11,54–57], which we do not observe in our cells. Moreover, the percentage
of δ cells, PP cells, and ε cells in rodent islets is 1–5%, ~1%, and <1% of the whole cellular
population, respectively. This is a very low proportion of cells compared with α and β cells
(20% and 70%, respectively) [2,58,59]. Therefore, there is a low chance that δ cells, PP cells,
and ε cells will be found in the microcapillary tip. Nonetheless, further development of
the method could provide the possibility to map volumetric 3D features of additional islet
cell types.

SXT also allows us to rigorously quantify the biochemical and biophysical organization
of vesicles by defining a LAC value histogram for each vesicle. To perform this analysis, we
pooled vesicles from each cell type. We report significant differences in all the LAC-based
parameters between insulin and glucagon vesicles (Figure 3). Out of all the differences in
these parameters, we observed the maximum LAC and minimum LAC to have the highest
and lowest effect sizes, respectively, indicating that the maximum LAC is a more effective
differentiating factor between vesicle types compared with minimum LAC. Previous work
performed on modeling insulin vesicles using SXT data has shown that the LAC value
reduces radially from the center of the vesicles [53]. In line with this, we qualitatively
observed maximum LAC voxels residing on the inside of both types of vesicles and the
minimum LAC voxels being on the periphery. Future work could focus on differences
in the radial distribution of LAC values between vesicle types to better understand how
glucagon and insulin are stored in dense cores.

By leveraging the high number of vesicles and vesicle parameters in our pooled vesicle
analysis, we were able to differentiate the two cell types based on vesicle identity prediction.
Machine learning classifiers were trained on insulin and glucagon vesicles extracted from
thirteen cells and tested on two random cells. Out of the three algorithms trained, we
obtained the best accuracy (77%) in identifying the vesicles from an unseen cell using a
random forest model. While XGBoost is often perceived as the best predictive algorithm
for tabular data, other work describes similar performance between random forest and XG-
Boost in biological binary classification [60,61]. Additionally, machine learning approaches
using cellular data recently reported similar accuracy to our own results [23,61,62], demon-
strating that meaningful classifications can still be made in the diverse cellular milieu.
Similar to hypothesis testing results, the most important differentiating vesicle features
were mean LAC, LAC standard deviation, and diameter. While LAC skew and kurtosis
were less important, including them in our ML analysis did not seem to affect performance
significantly (Figure S6E) and allowed us to quantify their overall differentiating power.
Our approach demonstrates the capability of SXT to extract generalizable features that
can be used to discriminate between different types of secretory vesicles and successively
differentiate cells.
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Furthermore, SXT presents an innovative method to track biologically meaningful
structural heterogeneity in the cell. Both α cells and β cells have been reported to be
phenotypically heterogeneous with distinct subtypes that are important for islet func-
tion [10,52,63,64]. However, most of these studies investigate transcriptional and functional
differences with little quantification of structural features. By embedding cellular param-
eters in UMAP, we were able to visualize α and β cells in higher dimensional structural
space (Figure S7C). Although we have not fully sampled all possible structural subtypes
of islet cells, we can still report two distinct clusters of cells based on cellular identity.
Future studies with a larger number of cells would allow for the identification of distinct
subpopulations of islet cells with varied structural features.

We also observe a heterogeneous mixture of vesicles within single cells. Using UMAP
embeddings to visualize insulin and glucagon vesicles presents a novel method to not
only distinguish two types of vesicles but also categorize and identify subpopulations
within larger vesicle pools (Figure 5B). In the future, unbiased graph-based clustering
methods could be used to detect vesicle communities and their shifts under the effect of
different pharmacological stimulations. Collectively, our findings demonstrate the utility
of SXT in investigating heterogeneity in a variety of cell and vesicle types. Overall, 3D
studies will help to understand and correlate cellular structural features (i.e., phenotypes)
to their physiological role in maintaining cell-cell communication and inform about islet
function [65].

Future use of this approach will enable the analysis of pancreatic islets from multi-
ple species, which often cannot be easily genetically manipulated to perform correlated
imaging studies. Mapping ultrastructural rearrangements in the 3D structure of the cell
is a necessary step in understanding the evolution and progression of disease. SXT can
reveal the spatiotemporal evolution of subcellular architecture by informing relationships
between organelle spatial distribution and pathological alterations of cellular function.
These whole-cell datasets will provide unique input data for integrative whole-cell mod-
els [66–69]. Future studies that quantify mitochondrial networks in β cells may provide
new insights into metabolic processes in health and disease in different model organisms.

5. Conclusions

In conclusion, we present a soft X-ray tomography and machine learning-based
pipeline to classify primary mouse α and β cells and quantify their subcellular struc-
tural characteristics. We report significant differences in the ultrastructure of both cell types
and their secretory vesicles. Using these subcellular features, we present a generalizable
method to robustly quantify differences among and within cell types and vesicles. This
approach enables us to investigate biological heterogeneity at a subcellular level and can
be extended to other cellular systems.
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