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Gene expression changes implicate specific peripheral immune 
responses to Deep and Lobar Intracerebral Hemorrhages in 
humans

Bodie Kneppa, Bradley P. Andera, Glen C. Jicklingb, Heather Hulla, Alan H. Yeea, Kwan 
Nga, Fernando Rodrigueza, Paulina Carmona-Moraa, Hajar Aminia, Xinhua Zhana, Marisa 
Hakoupiana, Noor Alomara, Frank R. Sharpa, Boryana Stamovaa,*

aDepartment of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, 
USA

bDepartment of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada

Abstract

The peripheral immune system response to Intracerebral Hemorrhage (ICH) may differ with ICH 

in different brain locations. Thus, we investigated peripheral blood mRNA expression of Deep 

ICH, Lobar ICH, and vascular risk factor-matched control subjects (n = 59). Deep ICH subjects 

usually had hypertension. Some Lobar ICH subjects had cerebral amyloid angiopathy (CAA). 

Genes and gene networks in Deep ICH and Lobar ICH were compared to controls. We found 

774 differentially expressed genes (DEGs) and 2 co-expressed gene modules associated with Deep 

ICH, and 441 DEGs and 5 modules associated with Lobar ICH. Pathway enrichment showed 

some common immune/inflammatory responses between locations including Autophagy, T Cell 

Receptor, Inflammasome, and Neuroinflammation Signaling. Th2, Interferon, GP6, and BEX2 

Signaling were unique to Deep ICH. Necroptosis Signaling, Protein Ubiquitination, Amyloid 
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Processing, and various RNA Processing terms were unique to Lobar ICH. Finding amyloid 

processing pathways in blood of Lobar ICH patients suggests peripheral immune cells may 

participate in processes leading to perivascular/vascular amyloid in CAA vessels and/or are 

involved in its removal. This study identifies distinct peripheral blood transcriptome architectures 

in Deep and Lobar ICH, emphasizes the need for considering location in ICH studies/clinical 

trials, and presents potential location-specific treatment targets.

Keywords

RNA expression; Blood; Intracerebral hemorrhage; Deep hemorrhage; Lobar hemorrhage; 
Amyloid; T Cells; Neutrophils

1. Introduction

Intracerebral hemorrhage (ICH) makes up 10–15% of all strokes.1-6 ICH can occur in Lobar 

(cortical) or Deep intraparenchymal brain regions7 with one year mortality rates of 57% 

and 51% for those locations, respectively.6,8 Lobar ICH tends to have higher hemorrhage 

volumes than Deep ICH.9 Deep ICH tends to be associated with hypertension, while Lobar 

ICH tends to be associated with cerebral amyloid angiopathy (CAA), though other factors 

can contribute in both locations.3,4,6 High blood pressure affects arterial blood vessel walls 

in the brain, increasing the potential for a rupture leading to Deep ICH.10 CAA is the 

result of Amyloid Beta (Aβ) deposition in and around blood vessels in the brain, leading 

to decreased vascular integrity and propensity for Lobar microbleeds and Lobar ICH.11 

Because of the different risk factors, it has been suggested that the different hemorrhage 

locations have different pathophysiologies.12,13 However, relatively little is known about 

the molecular underpinnings of any such differences. Since the peripheral immune system 

responds to ICH,14-16 we examined the human peripheral whole blood transcriptome to 

find similarities and differences between Deep and Lobar ICH responses at gene-level 

and gene co-expression network level. We found common enrichment in many immune, 

inflammatory, and cell death pathways between locations, as well as some responses unique 

to Deep ICH and Lobar ICH. These unique responses may help elucidate different molecular 

mechanisms of damage and repair in the two ICH locations, and the associated genes and 

pathways may guide the search for novel location-specific therapeutic targets.

2. Methods

Detailed methods can be found in the Supplemental Manuscript.

2.1. Subjects, arrays, and data processing

We analyzed 59 subjects: 9 with Lobar ICH, 19 with Deep ICH, and 31 vascular risk 

factor matched controls (VRFC, C) (Table 1). Subjects with Deep ICH had hemorrhages 

in the basal ganglia, thalamus, cerebellum, and pons/brainstem detected by CT or MRI 

scans. Subjects with Lobar ICH had hemorrhages anywhere in the cortex and could extend 

into adjacent white matter detected by CT or MRI scans. Cerebral Amyloid Angiopathy 

(CAA) was diagnosed as probable or possible with appropriate MRI sequences according 
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to modified Boston Criteria.17 Peripheral whole blood was collected from each subject via 

venipuncture in PAXgene tubes at a single time-point (within 4.2 and 101.3 hours, average 

50.2 hours, post ictus in Deep ICH subjects; and within 37.7 and 124.3 hours, average 

71.5 hours, post ictus in Lobar ICH subjects) (Table 1). Isolated RNA was processed 

and hybridized on Gene-Chip® Human Transcriptome Arrays (HTA) 2.0 (Affymetrix, 

Santa Clara, CA) to examine the coding (mRNA) and some of the noncoding human 

transcriptome.

2.2. Differential expression analysis

Differential expression (DE) analysis was conducted at the gene level. The ANCOVA 

(Analysis of Covariance) model included Age, Group (Deep ICH, Lobar ICH, or VRFC), 

Sex, and Group*Sex interaction. Significant DE for each ICH Location comparison was 

defined as the overlap of Group-significant genes (Benjamini Hochberg False Discovery 

Rate (BH) multiple test corrected p < 0.05) and contrast-significant genes (p < 0.005; 

Fold-Change > ∣1.2∣) for the contrasts Deep ICH vs. VRFC, Lobar ICH vs. VRFC, and Deep 

ICH vs. Lobar ICH.

We also investigated sex differences. Due to a limited number of female subjects, the 

sex-specific results are pilot in nature and need to be reproduced in larger sample sizes. 

Sex-specific gene lists were selected using modified criteria due to the smaller sample size: 

genes passing p < 0.005 and Fold-Change > ∣1.2∣ for a contrast were considered significant 

(contrasts: Deep ICH Males vs. VRFC Males; Deep ICH Females vs. VRFC Females; Lobar 

ICH Males vs. VRFC Males; Lobar ICH Females vs. VRFC Females). Identification of sex-

specific genes associated with ICH in each location was done by overlapping corresponding 

male- and female- lists.

2.3. Weighted gene co-expression network construction and analysis

Two co-expression networks were generated: Deep ICH + VRFC subjects 

(DeepICHandVRFC) and Lobar ICH + VRFC subjects (LobarICHandVRFC). Weighted 

Gene Co-Expression Network Analysis (WGCNA) was run in R to generate networks 

of modules (groups of co-expressed genes).18,19 Hub genes were defined as the most 

interconnected genes in each module and represent potential master regulators.20,21 Module 

significance for Group and other technical and clinical variables (including age, sex, 

and vascular risk factors) was assessed using a t-test or a Pearson correlation to the 

module’s eigengene (first principal component of expression) for categorical and continuous 

clinical parameters, respectively (p < 0.05).18 Cytoscape was used to visualize significant 

networks.22,23

2.4. Biological enrichment

Enrichment in blood cell type-specific genes was identified using hypergeometric 

probability in R (phyper) by overlapping our per-gene lists and location-associated modules 

with lists of blood cell type-specific genes (p < 0.05).24,25 Ingenuity Pathway Analysis 

(IPA®, QIAGEN) was performed on all gene lists as previously described26 to identify 

significant Canonical Pathways, Disease and Function terms, and Upstream Regulators (BH 

p < 0.05). IPA predicts activation (Z ≥ 2) or inhibition (Z ≤ − 2) states of its results 
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based on up- or down-regulation in our gene lists and IPA’s knowledge-base from the 

literature.27,28 DAVID Functional Annotation Bioinformatics Resources Database was used 

for Gene Ontology (GO) term enrichment (BH p < 0.05).29,30

3. Results

3.1. Subject demographics

Subjects’ demographic and clinical characteristics are presented in Table 1. No statistically 

significant difference was found between Deep ICH, Lobar ICH, and VRFC groups for age, 

race, sex, diabetes, hypertension, smoking status, or hyperlipidemia. A total of 14/19 Deep 

ICH had hypertension, and a total of 4/9 Lobar ICH had possible or probable CAA. Deep 

ICH patients presented earlier following symptom onset (mean 50.2 hours) compared to 

those with Lobar ICH (mean 71.5 hours; p = 0.041). We examined the effect of time on 

the hierarchical clustering distribution of the differentially expressed genes between subjects 

with Deep and Lobar ICH and found they did not cluster by time and the main clustering 

was driven by the ICH location (SFigure 1). Additionally, Deep ICH subjects were younger 

(mean age 56.3 years) than Lobar ICH subjects (mean age 68.2 years; p = 0.026). Age was 

included in the ANCOVA.

3.2. Gene-level differential expression based on ICH location reveals common and 
specific transcriptional response

Expression of 995 genes were significant for Group (BH p < 0.05). One thousand three 

hundred and fifty-five genes were DE in Deep ICH vs. VRFC; 629 were DE in Lobar ICH 

vs. VRFC; 94 were DE in Deep ICH vs. Lobar ICH (p < 0.005, FC > ∣1.2∣) (SFigure 2).

3.2.1. Genes differentially expressed in Deep ICH vs. VRFC – DeepPerGene 
list—The intersection between the 995 Group-significant and the 1,355 Deep ICH vs. 

VRFC-significant genes was 774 genes (Deep ICH DEGs; hereafter called DeepPerGene) 

(Fig. 1A; SFigure 2A; STable 1A). The top 100 genes (ranked by BH) of DeepPerGene list 

differentiated most of the Deep ICH from VRFC subjects in Principal Component Analysis 

(PCA) (Fig. 1B) and unsupervised hierarchical clustering (HC) (SFigure 3). Functional 

annotation of the DeepPerGene list is presented in STables 2A, 3A, and 4A. It was enriched 

in 156 pathways (STable 2A), of which 9 were activated (including iNOS, Toll-Like 

Receptor (TLR), and Neuroinflammation Signaling) and 9 were suppressed in Deep ICH 

compared to controls (including several T-cell pathways). The top 20 relevant significant 

canonical pathways are presented in Fig. 2A. Significant cytokine and T cell canonical 

pathways are presented in Fig. 3A and 3B, and significant Monocyte and Neutrophil 

biofunctions in Fig. 3C and 3D. The DeepPerGene list was also enriched in Monocyte, 

Granulocyte (mainly Neutrophil), T Cell, T Cell Receptor and T Cell Receptor Signaling-

specific gene lists (Fig. 4A, STable 5A).

3.2.2. Genes differentially expressed in Lobar ICH vs. VRFC – LobarPerGene 
list—The intersection between the 995 Group-significant and the 629 Lobar ICH vs. VRFC-

significant genes was 441 (Lobar ICH DEGs; hereafter called LobarPerGene) (Fig. 1A; 

SFigure 2B; STable 1B). The top 100 genes (ranked by BH) of LobarPerGene differentiated 
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most of the Lobar ICH from VRFC subjects in PCA (Fig. 1C) and HC (SFigure 4). 

The LobarPerGene list was enriched in 59 pathways (STables 2B,3B,4B), of which 11 

were activated (including iNOS, TLR, T Cell Exhaustion, and IL-1 Signaling) and 3 were 

suppressed (including T Cell Receptor Signaling and Antioxidant Action of Vitamin C) 

in Lobar ICH compared to controls (SFigure 5). The top 20 relevant significant canonical 

pathways are presented in Fig. 2B. Significant cytokine and T cell canonical pathways are 

presented in Fig. 3A and 3B. Like DeepPerGene, LobarPerGene was enriched in Monocyte, 

Neutrophil, T Cell, and T Cell Receptor Signaling specific gene lists (Fig. 4A, STable 5B) 

and Monocyte and Neutrophil biofunctions (Fig. 3C,3D; STable 3B).

3.2.3. Genes differentially expressed in Deep ICH vs. Lobar ICH – 
DeepVsLobar list—The intersection between the Group significant and Deep ICH vs. 

Lobar ICH significant genes was 36 (hereafter called DeepVsLobar) (SFigure 2C; STable 

1C). These 36 genes differentiated Deep ICH from Lobar ICH patients on PCA and HC 

(Fig. 5), providing additional evidence for transcriptome differences between Deep and 

Lobar ICH. The DeepVsLobar gene list was also able to separate most subjects in the 3 

Groups (Deep ICH, Lobar ICH, and VRFC) on HC (SFigure 6). It was not significantly 

enriched in any biological pathways, GO terms, or cell type specific lists (STable 5C). 

However, it contained genes involved in immune, inflammatory, and other relevant processes 

(like Autophagy, IL-1, -6, -10, and -15 Signaling, and iNOS, TLR, NF-κB, TGF-β, WNT/β-

catenin, and Neuroinflammation Signaling) (SFigure 7; STables 6ABC).

3.3. Weighted gene co-expression networks uncover specific transcriptome architecture 
in Deep and Lobar ICH

Modules of co-expressed genes significantly associated with ICH and the top 20 relevant 

canonical pathways significantly enriched in each module are presented in Fig. 6 for Deep 

ICH and Fig. 7 for Lobar ICH.

3.3.1. Gene co-expression modules associated with Deep ICH—WGCNA 

identified 30 co-expressed gene modules plus one module of non-co-expressed genes in the 

DeepICHandVRFC network (SFigure 8). Hereafter we refer to modules from this network 

with the prefix DC- for Deep ICH and Control. DC-Grey60 and DC-LightGreen modules 

were uniquely significant for Group (Deep ICH vs. VRFC) and both were upregulated in 

Deep ICH (Fig. 4B – positive contrast regression beta; STables 7A,8A). DC-Grey60 was 

enriched in 185 pathways, with 102 activated (including Autophagy, TLR, iNOS, IL-6, 

and NF-κB Signaling) and 3 suppressed (including PPAR and PPARα/RXRα Activation) 

(Figs. 3A,6B; STables 2C,3C,4C). It was also enriched in BEX2 (brain expressed X-linked 

2) Signaling, a pathway involved in neuroprotective autophagy, and showed a trend 

toward suppression in Deep ICH (Z = −1.3) (SFigure 9). DC-LightGreen was enriched 

in 4 pathways (including IL-10 Signaling and Fcγ Receptor-mediated Phagocytosis in 

Macrophages and Monocytes) (Figs. 3A,6D; STables 2D,3D,4D). DC-Grey60 and DC-

LightGreen were enriched in Neutrophil specific genes; DC-LightGreen was enriched in 

Monocyte specific genes (Fig. 4B; STables 5DE).
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3.3.2. Gene co-expression modules associated with Lobar ICH—WGCNA 

identified 32 modules of co-expressed genes plus one module of non-co-expressed genes 

in the LobarICHandVRFC network (SFigure 10). Hereafter we refer to modules from this 

network with the prefix LC- for Lobar ICH and Control. LC-Black, LC-DarkGreen, LC-

Grey60, LC-Pink, and LC-RoyalBlue modules were significant for Group (Lobar ICH vs. 

VRFC) (Fig. 4B; Stables 7B,8B). Of these, LC-Black and LC-Grey60 were also significant 

for Age. The remainder were unique to Group (Fig. 4B; STable 7B). LC-DarkGreen, 

LC-Grey60, and LC-Pink were upregulated in Lobar ICH (Fig. 4B – positive contrast 

regression beta), whereas LC-Black and LC-RoyalBlue were downregulated (Fig. 4B – 

negative contrast regression beta). LC-DarkGreen was enriched in 149 pathways, with 

97 activated (including Autophagy, NGF, B Cell Receptor, and IL-6 Signaling) and 3 

suppressed (PPAR, PPARα/RXRα Activation, and Antioxidant Action of Vitamin C) (Figs. 

3A,7B; STables 2E,3E,4E). LC-Pink was enriched in 159 pathways, with 84 activated 

(including Amyloid Processing (SFigure 11), TLR, IL-1, IL-6, and IL-8 Signaling) and 3 

suppressed (PPAR, PPARα/RXRα Activation, LXR/RXR Activation) (Figs. 3A,7D; STable 

2F,3F,4F). LC-Grey60 had no canonical pathways passing BH-corrected p < 0.05 (STables 

3G,4G). LC-Black was enriched in 74 pathways, of which 20 were suppressed (including 

Autophagy and NRF2-mediated Oxidative Stress Response) (Fig. 7G; STables 2G,3H,4H). 

LC-RoyalBlue was enriched in 34 pathways, 8 of which were suppressed (including several 

T-cell pathways) (Figs. 3B,7I; STables 2H,3I,4I). LC-DarkGreen and LC-Pink were enriched 

in Neutrophil specific genes; LC-Grey60 in Monocytes; LC-Black in Erythroblasts; and 

LC-RoyalBlue in T Cell and T Cell Receptor Signaling (Fig. 4B; STables 5F-J).

3.3.3. Module Hubs—DC-Grey60 Hubs, LC-DarkGreen Hubs, and LC-Pink Hubs were 

enriched in Neutrophil specific genes, and LC-Black Hubs in Erythroblast specific genes 

(Fig. 4B; STables 5K-Q). DC-Grey60 Hubs were enriched in one pathway (Glycogen 

Degradation III), and LC-Pink Hubs in 68 (including iNOS Signaling, NRF2-Mediated 

Oxidative Stress Response, and PPARα/RXRα Activation) (STables 2IJ). LC-Black Hubs 

were enriched in GO term Cortical Cytoskeleton and LC-RoyalBlue Hubs in Protein 

Binding and Nucleotide Binding (STables 4JK). Hub genes by module are presented in 

Table 2, and complete hub biological findings are listed in STables 2IJ,3J-O,4JK,5K-Q.

3.4. Deep and Lobar ICH significant canonical pathways across Per-Gene and network 
analyses

Deep ICH gene lists and modules were significantly enriched in 235 canonical pathways, 

while Lobar ICH lists were enriched in 301. Of these, 209 pathways were common to 

both locations, leaving 26 unique to Deep ICH and 92 unique to Lobar ICH (SFigure 12). 

The Lobar ICH-unique pathways included Apoptosis Signaling, BMP Signaling (activated 

in two Lobar ICH modules), Neurotrophin/TRK Signaling (activated in one Lobar ICH 

module), VEGF Signaling, Necroptosis Signaling, and Amyloid Processing, as well as 

NRF2-mediated Oxidative Stress Response and Heme Biosynthesis II – both suppressed 

in LC-Black, a module with no significant overlap with any DC modules. The Deep ICH-

unique pathways included activation of the Th2 Pathway, Interferon Signaling, and CREB 

Signaling in Neurons in the DC-Grey60 module; and BEX2 Signaling with a trend towards 

suppression in DC-Grey60.
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3.5. Gene-level sex differences in Deep and Lobar ICH provide evidence for sex- and 
location-specific peripheral immune response to ICH

Expression of 30 genes was significant for the Deep ICH Males vs. VRFC Males; 1,531 for 

Deep ICH Females vs. VRFC Females; 252 for Lobar ICH Males vs. VRFC Males; and 584 

for Lobar ICH Females vs. VRFC Females (Fig. 8AB; STable 9).

3.5.1. Sex-specific genes in Deep ICH—Twenty-seven genes were unique to Deep 

ICH Males vs. VRFC Males (hereafter called Male-DvC for Male Deep ICH vs. Male 

Control) when compared to Deep ICH Females vs. VRFC Females (Fig. 8A; STable 

9A). The 27 genes were significantly enriched in 2 pathways: DNA Methylation and 

Transcriptional Repression Signaling, and Apelin Liver Signaling Pathway (Fig. 9; STable 

2K,3P). The Male-DvC genes had no significant enrichment in cell type-specific lists 

(SFigure 13; STable 5R). One thousand five hundred twenty-eight genes were unique to 

Deep ICH Females vs. VRFC Females (hereafter called Female-DvC for Female Deep 

ICH vs. Female Control) when compared to Deep ICH Males vs. VRFC Males (Fig. 8A; 

STable 9B). The 1,528 genes were enriched in 148 pathways, with 7 activated (including 

Antiproliferative Role of TOB in T Cell Signaling and Fcγ Receptor-mediated Phagocytosis 

in Macrophages and Monocytes) and 6 suppressed (including several T-cell pathways) (Fig. 

9; STables 2L,3Q,4L). The Female-DvC genes were also enriched in Neutrophil, T Cell, and 

T Cell Receptor and Signaling specific gene lists (SFigure 13; STable 5S).

3.5.2. Sex-specific genes in Lobar ICH—Two hundred thirty-eight genes were 

unique to Lobar ICH Males vs. VRFC Males (hereafter called Male-LvC for Male Lobar 

ICH vs. Male Control) when compared to Lobar ICH Females vs. VRFC Females (Fig. 8B; 

STable 9C). The 238 genes were not enriched in biological pathways or cell type specific 

lists, though it was enriched in GO term Protein Binding (Fig. 9; SFigure 13; STables 

4M,5T). Five hundred seventy genes were unique to Lobar ICH Females vs. VRFC Females 

(hereafter called Female-LvC for Female Lobar ICH vs. Female Control) when compared 

to Lobar ICH Males vs. VRFC Males (Fig. 8B; STable 9D). The 570 genes were enriched 

in 65 pathways, with 6 activated (including Antiproliferative Role of TOB in T Cell, TLR, 

and iNOS Signaling) and 6 suppressed (including several T-cell pathways) (Fig. 9; STables 

2M,3R,4N). Female-LvC was also enriched in Neutrophil, T Cell, and T Cell Receptor and 

Signaling specific gene lists (SFigure 13; STable 5U).

3.5.3. Comparing sex-specific genes in Deep and Lobar ICH—There was no 

overlap between the Male-specific genes in the Deep and Lobar locations (Fig. 8C). Two 

hundred ninety-seven genes overlapped between the Female-specific genes from the two 

ICH locations, leaving 1,249 unique for Deep ICH and 291 unique for Lobar ICH (Fig. 8D).

4. Discussion

Differences in the peripheral blood transcriptome architecture were identified for Deep and 

Lobar ICH that differentiated the groups. These include differentially expressed genes and 

location-specific gene co-expression modules; two modules were associated with Deep ICH 

and five with Lobar ICH. They were enriched in many immune cell specific gene lists, 
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pathways, functions, and GO terms common to Deep and Lobar ICH as well as responses 

unique to each location (Fig. 10). Common responses included immune, inflammatory, 

oxidative stress, growth factor (GF), and angiogenesis related processes. Deep ICH-unique 

responses included CREB Signaling, dopaminergic neuronal cell death, and Th2 responses; 

while Lobar ICH-unique included RNA processing, various protein processing, and amyloid 

related responses. These data provide evidence for molecular differences between Deep and 

Lobar ICH which reinforce the need for location-stratified analyses and clinical trials to 

identify potential location-specific treatments.

4.1. Blood cell response to ICH

4.1.1. Myeloid cell response—Neutrophils respond to human ICH and infiltrate 

hematoma and perihematomal brain regions, potentially contributing to damage through pro-

inflammatory signaling, Reactive Oxygen Species (ROS), and Blood-Brain Barrier (BBB) 

breakdown.31-33 Later, polarized neutrophils become neuroprotective, partially through 

enhanced iron scavenging.34 Through the enrichment of granulocyte (mainly neutrophil) 

specific genes, we show evidence for a robust neutrophil response to ICH common to both 

Deep and Lobar ICH. (Fig. 4). Co-expression modules were significant for the Granulocyte 

Adhesion and Diapedesis pathway, which regulates neutrophil movement from blood vessels 

to target tissue. The fMLP Signaling in Neutrophils pathway was common to Deep and 

Lobar ICH. fMLP activates neutrophils, which induces ROS generation, cell migration, and 

enzyme secretion.35 FPR1 and FPR2 initiate fMLP signaling in neutrophils36 and were 

up-regulated in both ICH locations. Neutrophil-related functions such as degranulation, 

activation, migration, and recruitment were also common to both Deep and Lobar ICH.

Monocytes also infiltrate the brain after ICH,14,37 likely contributing to post-stroke damage 

early37-39 and recovery via hematoma clearance later.2,40,41 Both Deep and Lobar ICH gene 

lists were enriched in Monocyte specific genes (Fig. 4) as well as functions like Activation 

of Monocytes, Cell Movement of Macrophages, and Differentiation of Macrophages. 

Accumulation of Alternatively Activated Macrophages was unique to Deep ICH, while 

Accumulation of Inflammatory Monocytes was unique to Lobar ICH. Both Deep and 

Lobar ICH lists were enriched for Fcγ Receptor-mediated Phagocytosis in Macrophages 

and Monocytes, which contributes to hemoglobin clearance in Subarachnoid Hemorrhage 

(SAH)42 and may also occur in ICH. We have previously shown DE genes were associated 

with inflammatory pathways in blood monocytes from ICH patients43 and showed some 

monocyte-specific genes correlated with ICH and edema volumes.44 Future temporal studies 

of gene expression are needed to elucidate the peripheral monocytes’ contribution to early 

injury and later recovery following ICH.

4.1.2. Lymphocyte response—CD4+ Helper T (Th) and CD8+ Cytotoxic T cells 

are associated with ICH, with Th cells migrating to perihematomal brain regions.14,45 

After ICH, Th1 cells contribute to inflammation, BBB breakdown, and neuronal apoptosis, 

while Th2 cells suppress the inflammatory response.45 Cytotoxic T cells also contribute 

to brain injury after ICH46 and initiate BBB breakdown.47 Regulatory T Cells, however, 

are associated with neuroprotection after ICH, potentially by protecting the BBB.48,49 Our 

data support a T Cell response to Deep and Lobar ICH. The DE genes in Deep ICH and 
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Lobar ICH, as well as a Lobar ICH module were significantly enriched in T Cell and 

T Cell Receptor Signaling specific genes (Fig. 4). We have previously shown suppressed 

T Cell Receptor Signaling with increasing ICH and Edema volume in peripheral whole 

blood following human ICH.44 However, in this study we found lists associated with both 

suppression and activation of the T Cell Receptor Signaling pathway in both Deep and 

Lobar ICH (Fig. 3B). Our data also showed T Cell surface receptors (TCR), including 

CD28 and CD3E, and various TCR subunits were down-regulated in both ICH locations 

compared to controls. TCR and CD3 proteins form a complex on T Cells50 beginning 

a signaling cascade through MAP Kinases for initial naive T cell activation.51 Complete 

activation can occur through co-stimulation of the CD28 receptor.51 Src-family kinase (SFK) 

LCK functions downstream of many T Cell surface receptors and SFKs are involved in 

T cell development, proliferation, survival, and function.52 LCK, and downstream targets 

ZAP70 and the PI3K complex (via PIK3R1), were down-regulated in Deep ICH vs. Control. 

Though both Deep and Lobar ICH per-gene lists showed suppression of the overall T Cell 

Receptor Signaling pathway, some inflammatory outputs were upregulated in Lobar ICH via 

CHUK, which activates NF-κB (SFigure 5).53,54 NFAT was downregulated in Deep ICH 

via decreased levels of NFATC2 and NFATC3, and is involved in T Cell Activation.55 This 

implies that, despite a common decrease in overall T Cell Receptor Signaling, there may be 

differences in T Cell effects on the inflammatory responses between ICH locations.

The Th1 and Th2 Activation, Th1 (activated in both locations), and Th17 Activation 

Pathways were also common to Deep and Lobar ICH, as were IFNGR1 and IFNGR2 (IFNγ 
Receptors). Though the role of IFNγ signaling in Th1 differentiation is debated,56 it may 

be important in autocrine Th1 differentiation and function.57-59 The Th2 Pathway itself was 

unique to and activated in Deep ICH. GO term Positive Regulation of IL-4 Production was 

significant in Deep ICH. IL4R, JAK2, and JAK3 (upregulated in Deep ICH) could lead to 

IL-4 Receptor activation of JAK signaling cascades for transcriptional regulation in T cells. 

Notably, IL-4 helps initiate Th2 differentiation and development.60,61 Differing responses of 

T-helper subtypes may also contribute to differences in the inflammatory response between 

ICH locations.

4.1.3. Erythroblast response—Erythroblasts are immature nucleated red blood cells 

(NRBC) found in peripheral blood after ICH.62,63 A Lobar ICH module downregulated 

in ICH was enriched in erythroblast specific genes and biofunctions while Deep ICH was 

not. Erythropoietin signaling, which regulates RBC generation,63 was common between 

locations. A detailed discussion of the erythroblast response is in the Supplemental 

Manuscript.

4.2. Inflammatory signaling

4.2.1. Neuroinflammation after ICH—After ICH, extravascular blood initiates 

inflammation, affecting ionic membrane pumps and contributing to cerebral edema 

formation and secondary injury1,14,45 which is exacerbated by BBB breakdown.45 Indeed, 

Neuroinflammation Pathways were activated in both Lobar and Deep ICH. Inflammasomes, 

including NLRC464,65 and NLRP3,66 contribute to neuroinflammation by activating pro-

inflammatory enzymes and cytokines following stroke.67 The Inflammasome pathway was 
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predicted activated in both Deep and Lobar ICH. NLRC4 was present in Lobar (as a hub) 

and Deep modules, and NLRP3 was present in Deep and Lobar ICH modules. P2X7R, 

an activator of the NLRP3 inflammasome, is a potential target for ICH treatments,68 

and P2X7R-siRNA (small interfering RNA) decreased NLRP3 Inflammasome activity and 

improved outcomes in a rat ICH model.69 NLRC3, decreased in Lobar ICH, inhibits NLRP3 

Inflammasome activity, and as such may be a potential treatment target.70 NLRP12 is an 

NLR protein which has been reported as both pro- and anti-inflammatory in various in vitro 
and animal models.71 NLRP12 was present in both Deep and Lobar modules.

Lipopolysaccharide (LPS) is a Pathogen-Associated Molecular Pattern (PAMP) molecule 

found in the cell wall of Gram-negative bacteria.72 It induces pro-inflammatory 

signaling72-74 and is elevated in serum after human ICH.75 In this study, LPS was identified 

as an upstream regulator for several Deep and Lobar ICH modules and was generally 

predicted to be activated. This implicates LPS as a potential pro-neuroinflammatory 

molecule after ICH. Additionally, the Complement System pathway and Activation of 

Complement Factor function were common to both ICH locations. The complement cascade 

could play a role in post-ICH damage through pro-inflammatory edema exacerbation, 

cytokine release, and induction of iron toxicity. However, it also could play a healing role by 

clearing apoptotic cells, facilitating hematoma clearance, and promoting neurogenesis.1,76,77 

As such, complement’s involvement in ICH damage and repair needs more study.

4.2.2. Cytokine signaling—After ICH, a large number of cytokines are released that 

contribute to secondary injury by compromising the BBB, exacerbating edema formation 

and immune cell invasion.14,76,78 In this study, many cytokine signaling pathways were 

overrepresented in both Deep and Lobar ICH such as pro-inflammatory IL-17, IL-23, 

TNFR1, TNFR2, and IL-1 Signaling76 and anti-inflammatory IL-4, IL-10, and TGF-β 
Signaling (Fig. 3A).76 The balance between these pro- and anti-inflammatory cytokines 

likely contributes to the damage-repair balance after ICH regardless of location. Modulation 

of this system to treat ICH could be complex. More details are presented in the 

Supplemental Manuscript.

4.2.3. Oxidative stress—After ICH, neutrophil degranulation, mitochondrial 

dysfunction, and iron from hematoma breakdown can contribute to oxidative stress, which 

can exacerbate BBB breakdown.79 The Production of Nitric Oxide (NO) and ROS in 

Macrophages pathway was common and predicted activated in both ICH locations. The 

Deep ICH hub gene SPI1 (encoding PU.1) regulates NADPH oxidase genes80 which 

contribute to ROS generation.81 iNOS Signaling was predicted to be activated in Deep and 

Lobar ICH. iNOS generates reactive nitrogen species (RNS)/ROS after ICH. Its knockout 

reduced edema volumes.82 Common functions between the two ICH locations also included 

Biosynthesis of ROS, Generation and Synthesis of ROS, and Metabolism of ROS. Targeting 

oxidative stress after ICH might reduce injury and improve outcomes in both locations.

Though NRF2-Mediated Oxidative Stress Response was a Lobar-unique pathway, NRF2 
(aka NFE2L2) itself was a member of a significant Deep ICH module. In animal models of 

Deep striatal ICH, NRF2 was neuroprotective and involved in hematoma clearance.83-85 

NRF2 promotes expression of neuroprotective genes and could increase antioxidant 
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activity after ICH.79 NRF2 also upregulates expression of HMOX1 (encoding HO-1, 

heme oxygenase 1), associated with Deep ICH. HO-1 promotes antioxidant generation 

and degrades heme.86 HO-1 reduces oxidative stress by generating CO (which inhibits 

NADPH ROS generation) and biliverdin (which scavenges ROS and RNS).87 Additionally, 

the Antioxidant Action of Vitamin C pathway was suppressed in both locations. Ischemic 

stroke patients with lower Vitamin C levels had worse outcomes.88 Since Vitamin C levels 

decrease after cerebral hemorrhages89 this may contribute to worse outcomes and represent 

an ICH treatment target. Additionally, Lobar ICH was associated with downregulation of 7 

Metallothionein-encoding genes, 8 Metallothionein pseudogenes, and one Metallothionein-

like gene. Metallothionein is involved in wound healing in the CNS90 and is upregulated 

in brain after experimental ICH.91,92 Metallothionein is an antioxidant after ICH-related 

iron release and may be neuroprotective.91,93 Downregulation of antioxidant molecules and 

pathways after ICH may contribute to oxidative stress induced damage, and as such pose 

promising potential treatment targets.

4.2.4. Growth factor (GF) signaling—Higher serum levels of various GFs are 

associated with better Modified Rankin Scale (mRS; a severity scale) outcomes in human 

ICH patients at 3 months.94,95 In this study, many GF signaling pathways were common 

to Deep and Lobar ICH as discussed in the Supplemental Manuscript. Additionally, there 

were three GF pathways unique to Lobar ICH: Angiopoietin Signaling, Neurotrophin/TRK 

Signaling, and VEGF Signaling. High Angiopoietin-1 and VEGF serum levels have been 

associated with good outcomes after ICH,95 though other studies show a deleterious effect of 

high VEGF levels.96 In animal ICH models, Neurotrophin treatment improved recovery and 

neurogenesis97 and reduced neuronal apoptosis.98.

4.2.5. Autophagy—Autophagy regulates the degradation of unneeded or malformed 

proteins and organelles via lysosomes to maintain normal cell function.99 Oxidative stress 

can induce autophagy.100 After ICH, iron-oxidized species may contribute to brain injury 

by activating autophagy.99 In this study, the Autophagy pathway was common between 

locations. Additionally, biofunction Autophagy of Neurons was significant in Lobar ICH. 

TLR4 was common and TLR Signaling was significant and usually activated in Deep 

and Lobar ICH. LPS induces autophagy via activation of TLR4.101 Resatorvid treatment 

inhibited autophagy and neuron loss in rat TBI possibly via TLR4 signaling.102 Some 

autophagy-related genes (ATG) aid in the formation of autophagosomes.103 Several were 

decreased in Lobal ICH vs. VRFC including MAP1LC3B (aka LC3B and ATGF8), 

GABARAP, GABARAPL2 (human Atg8 orthologs), and ATG9A. ATG12 was increased 

Lobar ICH vs. VRFC. ATG12 initiates the ATG12 conjugation system,103 which is involved 

in autophagosome maturation.104 ATG9A is required for autophagosome formation103 and 

may help transfer materials to the developing autophagosome.105 Autophagy was predicted 

significantly suppressed in one module in Lobar ICH, and included downregulated SQSTM1 
(an autophagy receptor connecting autophagosomes to their cargo),106 MAP1LC3B 
(involved in phagophore membrane elongation),103,107,108 GABARAP, and GABARAPL2 
(both involved in late stage autophagosome formation).108 This suggests that regulation of 

autophagy may be particularly important in Lobar ICH.
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4.3. Cell death

4.3.1. Cell death pathways—Various cell death mechanisms can be induced after 

ICH including mechanical stress, inflammatory pathways, and toxic molecules like iron 

and ROS, among other factors.2,109,110 Thus, apoptosis, pyroptosis, necroptosis, ferroptosis, 

autophagy and necrosis can contribute to cell loss after ICH.109-111 Genes from each of 

these pathways were associated with Deep and/or Lobar ICH. The function “Apoptosis” was 

common between locations but was activated in some modules and suppressed in others, 

indicating complex regulation of cell death in ICH. Detailed discussion of our Apoptosis 

findings can be found in the Supplemental Manuscript.

Ferroptosis Signaling Pathways trended towards activation in Deep ICH (Z = 1.89) and 

trended towards suppression in Lobar ICH (Z = −0.91). Ferroptosis occurs after hemorrhagic 

strokes and is induced by lipid ROS via intracellular iron.109,112 ALOX5 (aka 5-LOX 

and Arachidonate 5-Lipoxygenase), up-regulated in Deep ICH, is a major contributor to 

buildup of oxidized lipids.109,112,113 N-acetylcysteine, which inhibits ALOX5 oxidation 

of lipids, improved outcomes in experimental ICH.109,112 Intracellular iron can also be 

sequestered into the iron storage protein complex ferritin.109 FTL, a part of the ferritin 

complex, was down-regulated in Lobar ICH. Promoting ferritin gene expression may 

produce more storage for free intracellular iron, reducing the oxidation of lipids and limiting 

ferroptosis.114 Ferroptosis inhibitor ferrostatin-1 reduced ferroptosis and improved outcomes 

in experimental ICH.109,115,116 Additionally, HSF1 and HSPB1, downregulated in Lobar 

ICH, normally aid in the removal of iron and lipid ROS from cells and inhibit ferroptosis.109 

Modulating ferroptosis particularly in Lobar ICH could improve outcomes.

Necroptosis was uniquely enriched in Lobar ICH with the Necroptosis Signaling Pathway 

and biofunction Necroptosis of Oligodendrocytes being significant. Necroptosis can 

be induced following ICH through TNF signaling, TLR signaling, and interferons.109 

TNFRSF10B (TNF Receptor Superfamily 10b), IFNAR1 (Interferon Alpha And Beta 

Receptor Subunit 1), and TLR4 were increased in Lobar ICH. TAB1, which was higher 

in Lobar ICH than Deep ICH, forms part of the TNFR1 signaling complex in Necroptosis 

Signaling. TAB1, in addition to TAB2 and TAB3 (regulated in Deep and Lobar ICH in 

this study), form a complex with TAK1 in response to TNFR1 and TLR signaling.117 

CFLAR (coding cFLIP), also associated with Lobar ICH, regulates necroptosis.118 Higher 

proportions of the cFLIPS isoform promotes necroptotic pathways over cell survival or 

apoptosis.118 PELI1 was a Lobar ICH gene that is an E3 ubiquitin ligase which promotes 

necroptotic cell death pathways and modulates cFLIP expression to inhibit apoptosis.119 The 

data suggest that potential Necroptosis treatments should target Lobar ICH.

Autophagy dysregulation can result in autophagic cell death.120 The Autophagic Cell Death 

function was regulated in Lobar ICH and included TP53INP1. TP53INP1 is present in 

the autophagosome when autophagy is induced and can promote autophagic cell death 

pathways.121

Overall, these results show common cell death signaling responses to both Lobar and 

Deep ICH through apoptosis and ferroptosis, while also providing evidence for potential 
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differences in apoptosis, ferroptosis, necroptosis and autophagic cell death between ICH 

locations.

4.3.2. Dopaminergic pathways implicated in Deep ICH—The BEX2 Signaling 

Pathway was associated with Deep ICH. Cell Death of Dopaminergic Neurons, a functional 

output of this pathway, showed potential upregulation via downregulated BEX2 (SFigure 9). 

BEX2 is a transcription factor involved in isoflavone induced autophagy, clearing toxins and 

preventing dopaminergic cell death in neuroblastoma cell lines.122 Isoflavone treatment may 

increase BEX2 induced autophagy which may prevent dopaminergic neuron apoptosis.122 

Since the striatum is densely innervated by dopaminergic fibers, this might account for the 

association of dopamine pathways with Deep ICH.123 PLXNC1, also associated with Deep 

ICH, plays a role in dopaminergic circuit formation.124 EGLN1/PHD2 was a Deep ICH 

hub gene in our study and is involved in Loss of Induced Pluripotent Stem Cell Derived 

Dopaminergic Neurons. PHD2 is known to play a role in iron homeostasis in dopaminergic 

neurons.125

4.4. Protein processing including amyloid processing pathways are unique to Lobar ICH

4.4.1. Protein ubiquitination—Ubiquitin was associated with Lobar ICH. It is a 

small protein that covalently links to target proteins, marking them for degradation.126 

Ubiquitination regulates neuroinflammation and autophagy, and is required for normal 

neuronal development and function.126-129 Ubiquitin proteases, ligases, and deubiquitination 

proteins regulate injury in experimental ICH, potentially via oxidative stress and neuronal 

apoptosis.130-132 We have previously shown ICH and ICH relative perihematomal edema 

volume were significantly enriched in protein ubiquitination pathways.44,133 In this study 

a number of down-regulated genes in Lobar ICH were strongly enriched in ubiquitination 

terms, whereas Deep ICH was not. The Lobar-associated pathways and functions included 

Protein Ubiquitination Pathway, Ubiquitination, Ubiquitination of Protein, Deubiquitination 

of Protein, Polyubiquitination, Ubiquitin-Dependent Protein Catabolic Process, Ubiquitin-

Protein Transferase Activity, and Ubiquitin Protein Ligase Binding. Moreover, LC-Black 

genes had no significant overlap with the genes in any of the two Deep ICH modules (data 

not shown), signifying it is a highly Lobar-specific module. BAG6, a Lobar ICH hub gene, is 

associated with ubiquitination of mislocalized proteins134 and newly synthesized, defective 

protein products.135 SIAH2, another Lobar ICH hub gene and E3 ubiquitin ligase, is induced 

by hypoxia and impairs HIF-1α degradation, and thus changes HIF-1α target expression.136 

SPOPL, another Lobar ICH hub gene, associates with SPOP to downregulate E3 ubiquitin 

ligase activity.137,138 The heavy involvement of protein ubiquitination processes in genes 

that were down-regulated in Lobar ICH and upregulation of ubiquitin inhibitors suggests 

wide-spread down-regulation of protein ubiquitination following Lobar ICH.

Ischemia-linked oxidative stress results in mass-misfolding of proteins, with ubiquitination 

working to clear these misfolded proteins.139 One Lobar ICH module was significant for 

the Unfolded Protein Response. Ubiquitination E2, E3, and deubiquitinating enzymes play 

a role in degradation of Aβ,140 and Aβ also regulates the ubiquitin system. It competitively 

binds to ubiquitin,141 inhibits ubiquitin-mediated proteolysis,142 and impairs proteasome 

function.140,143 When Aβ is bound to Ubiquitin, it is broken down more slowly (through 
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the Insulin Degrading Enzyme), but it is also less likely to form protein deposits.141 Since 

Ubiquitin helps clear Aβ, it may be a location-specific treatment target for Lobar ICH 

caused by CAA in order to prevent future hemorrhages. Apomorphine treatment decreases 

intraneuronal Aβ and increases proteasome activity.140,144 It is possible that it has similar 

effects on vascular Aβ deposits. In animal models and in vitro, Sulforaphane reduced 

Aβ levels,140,145,146 potentially through upregulation of proteasomal subunits,140,145 which 

could reduce Aβ levels in CAA.

4.4.2. Ubiquitin-like modifications—Various ubiquitin-like post-translational 

modifications can also be added to proteins. Lobar ICH was associated with two forms 

of ubiquitin-like post-translational modifiers (SUMOylation and NEDDylation) while Deep 

ICH was not. One ubiquitin-like modifier gene, UBA3 (ubiquitin-like modifier activating 

enzyme 3), was a Lobar ICH hub gene. This specific E1 enzyme associates with AppBp1 

(amyloid beta precursor binding protein) to activate NEDD8, another ubiquitin-like post-

translational modifying protein.147,148 Additional discussion of the Lobar ICH specific 

Ubiquitin-Like modifications can be found in the Supplemental Manuscript.

4.4.3. Amyloid proteins and protein processing—CAA is caused by the deposition 

of amyloid in the meningeal and intracerebral vasculature. At least 6 proteins (encoded by 

genes APP, CST3, TTR, GSN, PRNP, and ITM2B) have been shown to form amyloid fibrils 

and contribute to CAA in humans.149,150 Amyloid Precursor Protein (APP) was associated 

with a Lobar ICH module in this study. Though it was not significant in the per gene 

analysis, it was a member of a negative beta coefficient module (APP FC = −1.02). GSN, 

the causative protein in Finnish amyloidosis,149 was associated with Lobar ICH. PSEN1 was 

associated with both Lobar and Deep ICH. It acts as the catalytic component of γ-secretase, 

which cleaves precursors into Aβ.151 None of the 6 causative CAA genes were associated 

with Deep ICH.

Lobar ICH was also associated with pathways, functions, and GO terms relating to Amyloid 

processing. As CAA is caused by vascular amyloid deposition, amyloid processing likely 

plays a role in Lobar ICH. Indeed, one Lobar ICH module was enriched for genes in 

the Amyloid Processing pathway, which encompasses molecular signaling in response 

to Amyloid buildup with suggested activation of Microtubule Instability and suggested 

suppression of Axonal Transport (SFigure 11). Biofunction Amyloidosis was enriched 

in Deep and Lobar ICH. No other amyloid terms were enriched in Deep ICH. One 

Lobar ICH module was significant for Transport of Protein function, and another trended 

towards significance for the RAGE Receptor Binding GO term, which is involved in Aβ 
clearance.149,152,153 Another Lobar ICH module was nearly significant for the function 

Degradation of Protein Fragment with hub gene BAG6, which is involved in ubiquitin-

mediated protein degradation.154

One Deep ICH module was enriched in Phagocytosis by Microglia and Phagocytosis by 

Neuroglia, neither being present in Lobar ICH. Microglial phagocytosis is an Aβ clearance 

mechanism155 which could differ between Lobar and Deep locations. LRP1, also associated 

with Deep ICH, is a clearance receptor that aids transport of Aβ out of the brain and into 

blood vessels.155 CTSB and CTSS, both associated with Lobar ICH, are cysteine proteases 
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involved in the degradation of Aβ.155 Neither associated with Deep ICH. Reelin Signaling in 

Neurons pathway (suppressed in Lobar ICH) inhibits Aβ’s ability to form amyloid fibrils.156 

MMP9 and MBP genes, which are involved in Aβ degradation, were associated with Lobar 

and Deep ICH. These differentially expressed pathways may help explain why CAA affects 

cortex and not deep structures and may play a role in the progression of CAA and the 

pathogenesis of Lobar ICH.

4.5. Enrichment in RNA processing, trafficking, splicing, and degradation is Lobar ICH-
specific

Splicing dysfunction is associated with many diseases, and the minor spliceosome is 

implicated in stress-induced gene expression regulation.157 We have previously shown 

differential alternative splicing in ICH158,159 and have found enrichment in alternative 

splicing processes at the gene and network level in ICH.44,133 Here, we find enrichment 

in various RNA processing, splicing, and degradation processes in Lobar (mainly LC-

RoyalBlue) but not Deep ICH, with genes being down regulated in Lobar ICH vs. Control. 

Moreover, LC-RoyalBlue (like LC-Black) had no significant overlap with any of the two 

Deep ICH modules, signifying it too is a highly Lobar-specific module. Though it is likely 

splicing plays a role in Deep ICH, these results point to potential differential alternative 

splicing between ICH locations. Alternative splicing level analyses could unveil additional 

differences between Deep and Lobar ICH responses. Additional discussion of these findings 

is in the Supplemental Manuscript.

4.6. Platelets and blood coagulation

Blood coagulation and platelets play a key role in ICH onset and progression. Platelets 

form the initial vessel plug and seal, and the coagulation cascade forms a reinforcing fibrin 

clot.160 Coagulopathies and platelet dysfunction are potential causes of hemorrhagic stroke 

and can lead to hematoma expansion.160-162 In this study, both Deep and Lobar ICH were 

enriched in platelet functions including Aggregation of Blood Platelets, Degranulation of 

Blood Platelets, and Function of Blood Platelets. Platelets bind to the injured vessel surface 

and are activated, degranulating and aggregating other circulating platelets.163 Both Deep 

and Lobar ICH lists were also enriched in Thrombopoietin Signaling. Thrombopoietin plays 

a major role in platelet production, and is regulated (cleared) by existing platelets and 

megakaryocytes.164 Deep ICH was also uniquely enriched in the GP6 Signaling Pathway. 

GP6 is a collagen receptor only found on platelets that is involved in platelet activation, 

dense granule secretion, and thrombus formation.165

After plug formation, coagulation forms a fibrin clot to reinforce the plug.163 Deep 

and Lobar ICH were enriched in the function Coagulation of Blood; one Deep ICH 

module’s hubs were enriched in Anticoagulation of Blood with gene ORM1. ORM1 

decreases the body’s ability to make thrombin, therefore inhibiting clot formation.166 

Polymorphisms in ORM1 have an impact on warfarin anticoagulant activity, making it 

a potential marker for determining an individual’s dosage.167 F5 (Factor 5; associated 

with both locations) increases clotting by promoting thrombin formation in the common 

coagulation pathway.160,168 Thrombin Signaling was significant in both locations and 

usually activated. One Lobar module had predicted suppression of the pathway. This tight 
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regulation of thrombin is important in the ICH response as over-coagulation could lead 

to thromboembolism and undercoagulation could cause hematoma expansion.160 F13A1 
(associated with Lobar ICH; FC = 1.06 in Lobar ICH vs. VRFC) codes for Coagulation 

Factor XIII A Chain. FXIII aids in crosslinking fibrin and stabilizing the clot.160,169 

ICH therapeutics targeting platelets and clotting could improve outcomes by preventing 

hematoma expansion. Vitamin K, recombinant activated Factor 7, and prothrombin complex 

concentrate are common treatments for ICH caused by coagulopathies. Platelet transfusions 

have also limited hemorrhage enlargement. However, a balance between pro- and anti-

coagulation mechanisms must be sought to help ensure safe treatments.160

4.7. Direct comparison of Deep and Lobar ICH implicates different molecular responses 
to each

Though the direct comparison of Deep and Lobar ICH was not enriched in any pathways, 

a number of the differentially expressed genes (including the following) are involved in 

immune and inflammatory pathways (SFigure 7). TRAF3 (aka TNF Receptor Associated 

Factor 3) is involved in Neuroinflammation Signaling, Autophagy, NF-κB Signaling, 

Protein Ubiquitination, Regulation of Cytokine Production, Generation of Th1 Cells, and 

B Cell Activating Factor Signaling. TAB1 (aka TGF-Beta Activated Kinase 1 (MAP3K7) 

Binding Protein 1) is involved in IL-(1,6,10), iNOS, TLR, PPAR, TGF-β, NF-κB and p38 

MAPK Signaling pathways, and Dendritic Cell Maturation. CD226 is involved in Crosstalk 

Between Dendritic Cells and NK Cells, NK Cell Signaling, Frequency of iNKT1 and 

iNKT2 Cells, Regulation of Immune Response, and Cytokine Production. ABL2 (aka ABL 

Proto-Oncogene 2, Non-Receptor Tyrosine Kinase) is involved in PDGF Signaling, RhoA 

Signaling, IL-15 Production, Maturation of Dendritic Spines, and Maturation of Synapse. 

MRPL2 (aka Mitochondrial Ribosomal Protein L2) is involved in Mitochondrial Translation, 

RNA Binding, and poly(a) RNA Binding. RSBN1 is a T Cell specific gene, and EXOC3L4 
is a Megakaryocyte specific gene. Overall, 21/36 of the differentially expressed genes in 

Deep vs. Lobar ICH were higher in Lobar ICH (including TRAF3, TAB1, CD226, MRPL2) 

and 15 were higher in Deep ICH (including ABL2, RSBN1, EXOC3L4). Details are in 

STables 5C,6ABC.

4.8. Sex differences in immune response to Deep and Lobar hemorrhages

A pilot analysis of sex differences in Deep and Lobar ICH was performed. We have 

previously shown Females tend to have more differentially expressed mRNA-coding genes 

than Males,170,171 though this was reversed when examining lncRNA (long noncoding 

RNA).172 Here we found Females had more differentially expressed genes in both ICH 

locations than their male counterparts. Many T Cell related pathways, T Cell and T 

Cell Receptor and Signaling-specific genes were significant and predicted suppressed in 

Female but not Male ICH. Sex differences have also been described in T Cells in healthy 

subjects.173 NRF2, which is neuroprotective after ICH, was associated and increased 

in Male Lobar but not Female ICH. Proteases involved in Aβ processing were found 

upregulated in Male Lobar ICH along with suppression of transcription via DNA epigenetic 

modifications. DNA methylation is implicated in both the risk and pathophysiology of 

stroke.174 These ICH sex differences highlight the importance of including sex when 
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assessing ICH injury mechanisms and outcomes. Additional discussion of these findings 

can be found in the Supplemental Manuscript.

5. Conclusions

We show transcriptome differences in peripheral blood of Deep and Lobar ICH patients. 

These differences point to both common and different immune and inflammatory responses 

in the two locations. Our findings emphasize the importance of including ICH location as a 

factor in future studies and clinical trials as well as the potential importance of considering 

patient sex. Additionally, these results give evidence that location-specific treatments may be 

appropriate to target the specific pathophysiology associated with Deep and Lobar ICH.

6. Limitations

The subject numbers are small, indicating the findings will need to be validated in much 

larger, independent cohorts. The results are based on the whole blood transcriptome, which 

includes transcriptomes of all peripheral blood cell types. We report some genes as being 

cell-type-specific. This was done based on comparing our gene lists to cell-type specific 

gene lists from the literature, which have been derived from isolated blood cell types in 

healthy individuals. It is possible that in disease, some cell-type specific genes are expressed 

in other cell types. Thus, single cell transcriptomic studies in ICH are needed to address the 

cell-specificity of expression in ICH and how it compares to controls. Additionally, some of 

the observed differences may be due to changes in cell numbers of specific cell subtypes15 

though our recent study43 showed differential expression of genes after stroke in isolated 

Monocytes and Neutrophils. Additionally, the sex-specific analysis in this study provide 

pilot results for potential sex differences in Deep and Lobar ICH as sex is an important 

factor in ICH pathology and pathophysiology.5,175-177 Due to this limited sample size, 

all CAA cases in Lobar ICH were in Male subjects. These discoveries must be validated 

in a cohort containing more female subjects. Since clinical severity, hematoma volumes 

and edema volumes were not controlled for in this study, and since they can affect gene 

expression,44 they need to be considered in future studies. Future studies will need to 

compare Deep ICH only associated with hypertension to Lobar ICH only associated with 

CAA to better clarify the differences due to these different ICH causes, rather than just 

considering location as in this study.
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FC Fold Change
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ICH Intracerebral Hemorrhage
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LvC Lobar ICH vs. Control

NK Natural Killer

NKT Natural Killer T

PCA Principal Component Analysis
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SAH Subarachnoid Hemorrhage

SD Standard Deviation

TBI Traumatic Brain Injury

Th T Helper

VRFC Vascular Risk Factor-matched Control

WGCNA Weighted Gene Co-expression Network Analysis

Complete abbreviations list (including gene symbols) can be found in the Supplemental 

Abbreviations.
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Fig. 1. 
Venn Diagrams of differentially expressed gene lists from the per-gene analyses of Deep 

ICH vs. VRCF and Lobar ICH vs. VRFC (A). The genes from these lists pass p < 0.005 and 

FC > ∣1.2∣ for the specific contrast, as well as BH < 0.05 for Group. Deep ICH vs. VRFC is 

hereafter referred to in the text as DeepPerGene; Lobar ICH vs. VRFC is hereafter referred 

to in the text as LobarPerGene. Principal Component Analyses (PCA) of the top 100 most 

differentially expressed genes in DeepPerGene (B) and LobarPerGene (C). Ellipsoids in (B) 

and (C) represent 2 standard deviations from the centroid of each group. ICH – intracerebral 

hemorrhage; VRFC – vascular risk factor control.

Knepp et al. Page 29

Brain Hemorrhages. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Pathway enrichment presented for DeepPerGene (Deep ICH vs. VRFC) (A) and 

LobarPerGene (Lobar ICH vs. VRFC) (B) gene lists. The top 20 relevant significant 

pathways are displayed. Bar shading represents activity pattern prediction (blue for 

suppression/negative Z-score and orange for activation/positive Z-score) where darker color 

represents larger absolute Z-score; * represents statistically significant activity pattern 

prediction (Z ≥ 2, significant activation in the ICH subgroup compared to VRFC; Z ≤ 

−2, significant suppression in the ICH subgroup compared to VRFC). X-axis: −log10 (BH 

p-value). Any pathway having −log10 (BH p value) > 1.3 (corresponding to BH p < 0.05; 

depicted by vertical black line) is significant. Lymph. – Lymphocyte; Reg. – Regulation; 

Comm. – Communication.
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Fig. 3. 
Heatmaps depicting relevant Cytokine Signaling (A) and T Cell (B) pathways and heatmaps 

depicting relevant Monocyte and Macrophage (C) and Neutrophil (D) biofunctions. Data 

presented for pathways/functions where at least one location-associated list was significant. 

Purple shading represents −log10(BH p value) where 1.3 corresponds to a BH p value 

of 0.05; higher −log10(BH p value) corresponds to lower (more significant) BH p value. 

Non-significant pathways/functions are displayed as white cells. * Function/pathway has a 

significant activity pattern prediction. If asterisk is orange, the pathway is activated in the 

ICH subgroup vs. VRFC; if asterisk is blue, the pathway is suppressed in the ICH subgroup 

vs. VRFC.
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Fig. 4. 
Enrichment in cell-type specific gene lists for the per-gene lists (A) and WGCNA modules 

(B). Purple shading represents −log10(p value) where 1.3 corresponds to a p value of 0.05; 

higher −log10(p value) corresponds to lower (more significant) p value. Non-significant 

hypergeometric probabilities are displayed as white cells. In panel (A), Deep ICH results 

are based on genes differentially expressed in Deep ICH vs. VRFC, and Lobar ICH – 

genes differentially expressed in Lobar ICH vs. VRFC. In panel (B), blue and red shading 

represents the beta coefficient for Group in a linear regression on the module eigengene (red 

represents genes upregulated in ICH; blue - downregulated in ICH). Significance for clinical 

parameters is presented in rows under Contrast Regression Beta; enrichment of hub gene 

lists in cell-type specific lists presented at the bottom. *Cell-type specific list from Watkins 

et al.24; **Cell-type specific list from Chtanova et al.25 For more comprehensive coverage 

of T cell-specific genes, ST1 and ST2 from Chtanova et al. were used; no overlaps with 

Watkins et al. Th and Tc lists were found.
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Fig. 5. 
PCA (A) and Hierarchical Clustering (B) on the Deep ICH vs. Lobar ICH gene list 

(hereafter referred to as DeepVsLobar). These 36 genes differentiated Deep and Lobar ICH 

subjects. Ellipsoids in (A) represent 2 standard deviations from the centroid of each group.
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Fig. 6. 
Network diagrams for the Deep ICH modules DC-Grey60 (A) and DC-LightGreen (C) show 

connectivity of hubs and genes within modules. Nodes represent genes within the module; 

edges represent connections based on co-expression between genes. Weaker connections 

and nodes with fewer connections have been filtered out to increase legibility. Larger 

nodes with large labels are hub genes, representing potential master regulators. Genes are 

grey by default and colored if they are cell type specific. Hubs, cell type specific genes, 

and other selected genes labeled. In panel (A), the genes SOS2, SLA, APBB1IP, and 

STAT3 were members of both the Neutrophil specific and T Cell Receptors and Signaling 

specific gene lists and were colored as Neutrophil-specific. Pathway enrichment presented 

for DC-Grey60 (B) and DC-LightGreen (D). The top 20 relevant significant pathways 

are displayed. Significance threshold −log10(BH p value) of 1.3 (corresponds to BH p 

value of 0.05) depicted by a vertical black line. Higher −log10(BH p value) corresponds 

to lower (more significant) BH p value. Bar shading represents activity pattern prediction 

(blue for suppression/negative Z-score and orange for activation/positive Z-score) where 

darker color represents larger absolute Z-score; * represents statistically significant activity 

pattern prediction (Z ≥ 2, significant activation in Deep ICH compared to Controls; Z ≤ 

−2, significant suppression in Deep ICH compared to Controls). NO – Nitric Oxide; ROS – 

Reactive Oxygen Species; Rec. – Receptor; Mac. – Macrophages; Mon. – Monocytes.
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Fig. 7. 
Network diagrams for the Lobar ICH modules LC-DarkGreen (A), LC-Pink (C), LC-Grey60 

(E), LC-Black (F), and LC-RoyalBlue (H) show connectivity of hubs and genes within 

modules. Nodes represent genes within the module; edges represent connections based 

on co-expression between genes. Weaker connections and nodes with fewer connections 

have been filtered out to increase legibility. Larger nodes with large labels are hub genes, 

representing potential master regulators. Genes are grey by default and colored if they are 

cell type specific. Hubs, cell type specific genes, and other selected genes are labeled. In 

panel (A), the genes SOS2 and OSBPL8 were members of both the Neutrophil specific and 

T Cell Receptors and Signaling specific gene lists and were colored as Neutrophil-specific. 

In panel (C), the genes SLA and APBB1IP were members of both the Neutrophil specific 

and T Cell Receptors and Signaling specific gene lists and were colored as Neutrophil-

specific. In panel (H), the gene CASK was a member of both the T Cell specific and 

the T Cell Receptors and Signaling specific gene lists and was colored as T Cell-specific. 

Pathway enrichment presented for LC-DarkGreen (B), LC-Pink (D), LC-Black (G), and 

LC-RoyalBlue (I); LC-Grey60 had no significant pathway enrichment. The top 20 relevant 

significant pathways are displayed. Significance threshold −log10(BH p value) of 1.3 

(corresponds to BH p value of 0.05) depicted by a vertical black line. Higher −log10(BH 

p value) corresponds to lower (more significant) BH p value. Bar shading represents activity 
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pattern prediction (blue for suppression/negative Z-score and orange for activation/positive 

Z-score) where darker color represents larger absolute Z-score; * represents statistically 

significant activity pattern prediction (Z ≥ 2, significant activation in Lobar ICH compared 

to Controls; Z ≤ −2, significant suppression in Lobar ICH compared to Controls). Reg. – 

Regulation; Lymph. – Lymphocytes; Expr. – Expression; Act. – Activated; NO – Nitric 

Oxide; ROS – Reactive Oxygen Species; Junct. – Junction; Comm. – Communication.
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Fig. 8. 
Comparison of Male and Female differentially expressed genes in Deep ICH vs. VRFC (A) 

and Lobar ICH vs. VRFC (B). Lists are genes passing p < 0.005 and FC > ∣1.2∣ for the 

specific contrast. Comparison of the Male unique gene lists in Deep ICH and Lobar ICH 

(C) and the Female unique gene lists in Deep ICH and Lobar ICH (D). *These genes are 

the Male-specific Deep ICH genes hereafter referred to as Male-DvC and analyzed in IPA 

and DAVID. **These genes are the Female-specific Deep ICH genes hereafter referred to 

as Female-DvC and analyzed in IPA and DAVID. †These genes are the Male-specific Lobar 

ICH genes hereafter referred to as Male-LvC and analyzed in IPA and DAVID. ††These 

genes are the Female-specific Lobar ICH genes hereafter referred to as Female-LvC and 

analyzed in IPA and DAVID.
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Fig. 9. 
Pathway enrichment presented for sex-specific per gene lists in each location. The Y axis 

indicates Female lists (top) and the Male lists (bottom). The X-axis indicates Deep ICH 

(left) and Lobar ICH (right). The top 20 relevant significant pathways are displayed. No 

pathways were significant in Male-LvC. Bar shading represents activity pattern prediction 

(blue for suppression/negative Z-score and orange for activation/positive Z-score) where 

darker color represents larger absolute Z-score; * represents statistically significant activity 

pattern prediction (Z ≥ ∣2∣). Color legend as in Fig. 2.
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Fig. 10. 
Top pathways in each analysis showcase common and different responses in Deep ICH 

and Lobar ICH. Listed pathways represent the top 5 most significant in each gene list and 

module, the top 5 most significant unique to each location not already listed, and other 

selected pathways. Circles represent modules/per-gene lists associated with each location; 

squares represent canonical pathways. Pathways with yellow outline have DeepVsLobar 

(Deep ICH vs. Lobar ICH) gene involvement. This involvement indicates that even in 

common pathways, there may be differences between locations. LC-Grey60 was omitted 

from the figure since it did not have BH p < 0.05-passing pathways.
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Table 1

Subject Demographics.

Demographics Vascular Risk
Factor

Controls

Deep
Intracerebral

Hemorrhage
a

Lobar
Intracerebral

Hemorrhage
b

Subjects (#) 31 19 9

Sex (M, F), # (%) 22 (71%), 9 (29%) 15 (79%), 4 (21%) 6 (67%), 3 (33%)

Diabetes, # (%) 5 (16%) 2 (11%) 1 (11%)

Hypertension, # (%) 21 (68%) 14 (74%) 5 (56%)

Hypercholesterolemia, # (%) 11 (35%) 2 (11%) 3 (33%)

Race, # (%)

 Asian 6 (19%) 0 (0%) 2 (22%)

 Black/African American 1 (3%) 3 (16%) 2 (22%)

 White 18 (58%) 9 (47%) 2 (22%)

 Other/Unknown 6 (19%) 7 (37%) 3 (33%)

Age (years, Mean ± SD) 62.2 ± 12.2 56.3 ± 12.8 68.2 ± 11.8

 Min, Max 34, 85.3 37, 91.6 50.2, 83.8

 Q1, Q2/Median, Q3 54.9, 63.3, 68.9 49.1, 55.4, 59.6 59.7, 67.6, 79.9

Time Since Event (hours, Mean ± SD) – 50.2 ± 31.3 71.5 ± 20.8

 Min, Max – 4.2, 101.3 37.7, 98.2

 Q1, Q2/Median, Q3 – 22.7, 39.6, 80.7 54.4, 73.7, 89.2

Smoking, # (%)

 Yes – Present 6 (19%) 6 (32%) 1 (11%)

 Yes – Past 12 (39%) 3 (16%) 3 (33%)

 Never 13 (42%) 10 (53%) 2 (22%)

 Unknown 0 (0%) 0 (0%) 3 (33%)

a
Hemorrhages in in the basal ganglia, thalamus, cerebellum, and pons/brainstem.

b
Hemorrhages in the cortex that could extend into adjacent white matter.
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