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Gene expression changes implicate specific peripheral immune
responses to Deep and Lobar Intracerebral Hemorrhages in
humans
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Ng?, Fernando Rodriguez?, Paulina Carmona-Mora?, Hajar Amini2, Xinhua Zhan?, Marisa
Hakoupian?, Noor Alomar?, Frank R. Sharp?, Boryana Stamova®"

aDepartment of Neurology, School of Medicine, University of California at Davis, Sacramento, CA,
USA

bDepartment of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada

Abstract

The peripheral immune system response to Intracerebral Hemorrhage (ICH) may differ with ICH
in different brain locations. Thus, we investigated peripheral blood mMRNA expression of Deep
ICH, Lobar ICH, and vascular risk factor-matched control subjects (n = 59). Deep ICH subjects
usually had hypertension. Some Lobar ICH subjects had cerebral amyloid angiopathy (CAA).
Genes and gene networks in Deep ICH and Lobar ICH were compared to controls. We found

774 differentially expressed genes (DEGS) and 2 co-expressed gene modules associated with Deep
ICH, and 441 DEGs and 5 modules associated with Lobar ICH. Pathway enrichment showed
some common immune/inflammatory responses between locations including Autophagy, T Cell
Receptor, Inflammasome, and Neuroinflammation Signaling. Th2, Interferon, GP6, and BEX2
Signaling were unique to Deep ICH. Necroptosis Signaling, Protein Ubiquitination, Amyloid
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Processing, and various RNA Processing terms were unique to Lobar ICH. Finding amyloid
processing pathways in blood of Lobar ICH patients suggests peripheral immune cells may
participate in processes leading to perivascular/vascular amyloid in CAA vessels and/or are
involved in its removal. This study identifies distinct peripheral blood transcriptome architectures
in Deep and Lobar ICH, emphasizes the need for considering location in ICH studies/clinical
trials, and presents potential location-specific treatment targets.

Keywords

RNA expression; Blood; Intracerebral hemorrhage; Deep hemorrhage; Lobar hemorrhage;
Amyloid; T Cells; Neutrophils

1. Introduction

Intracerebral hemorrhage (ICH) makes up 10-15% of all strokes.2"6 ICH can occur in Lobar
(cortical) or Deep intraparenchymal brain regions’ with one year mortality rates of 57%

and 519% for those locations, respectively.58 Lobar ICH tends to have higher hemorrhage
volumes than Deep ICH.® Deep ICH tends to be associated with hypertension, while Lobar
ICH tends to be associated with cerebral amyloid angiopathy (CAA), though other factors
can contribute in both locations.34:6 High blood pressure affects arterial blood vessel walls
in the brain, increasing the potential for a rupture leading to Deep ICH.10 CAA is the

result of Amyloid Beta (ApB) deposition in and around blood vessels in the brain, leading

to decreased vascular integrity and propensity for Lobar microbleeds and Lobar ICH.11
Because of the different risk factors, it has been suggested that the different hemorrhage
locations have different pathophysiologies.1213 However, relatively little is known about
the molecular underpinnings of any such differences. Since the peripheral immune system
responds to ICH,14-16 we examined the human peripheral whole blood transcriptome to
find similarities and differences between Deep and Lobar ICH responses at gene-level

and gene co-expression network level. We found common enrichment in many immune,
inflammatory, and cell death pathways between locations, as well as some responses unique
to Deep ICH and Lobar ICH. These unique responses may help elucidate different molecular
mechanisms of damage and repair in the two ICH locations, and the associated genes and
pathways may guide the search for novel location-specific therapeutic targets.

2. Methods

Detailed methods can be found in the Supplemental Manuscript.

2.1. Subjects, arrays, and data processing

We analyzed 59 subjects: 9 with Lobar ICH, 19 with Deep ICH, and 31 vascular risk
factor matched controls (VRFC, C) (Table 1). Subjects with Deep ICH had hemorrhages
in the basal ganglia, thalamus, cerebellum, and pons/brainstem detected by CT or MRI
scans. Subjects with Lobar ICH had hemorrhages anywhere in the cortex and could extend
into adjacent white matter detected by CT or MRI scans. Cerebral Amyloid Angiopathy
(CAA) was diagnosed as probable or possible with appropriate MRI sequences according

Brain Hemorrhages. Author manuscript; available in PMC 2023 March 16.
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to modified Boston Criteria.1” Peripheral whole blood was collected from each subject via
venipuncture in PAXgene tubes at a single time-point (within 4.2 and 101.3 hours, average
50.2 hours, post ictusin Deep ICH subjects; and within 37.7 and 124.3 hours, average
71.5 hours, post ictusin Lobar ICH subjects) (Table 1). Isolated RNA was processed

and hybridized on Gene-Chip® Human Transcriptome Arrays (HTA) 2.0 (Affymetrix,
Santa Clara, CA) to examine the coding (MRNA) and some of the noncoding human
transcriptome.

Differential expression analysis

Differential expression (DE) analysis was conducted at the gene level. The ANCOVA
(Analysis of Covariance) model included Age, Group (Deep ICH, Lobar ICH, or VRFC),
Sex, and Group*Sex interaction. Significant DE for each ICH Location comparison was
defined as the overlap of Group-significant genes (Benjamini Hochberg False Discovery
Rate (BH) multiple test corrected p < 0.05) and contrast-significant genes (p < 0.005;
Fold-Change > 11.2I) for the contrasts Deep ICH vs. VRFC, Lobar ICH vs. VRFC, and Deep
ICH vs. Lobar ICH.

We also investigated sex differences. Due to a limited number of female subjects, the
sex-specific results are pilot in nature and need to be reproduced in larger sample sizes.
Sex-specific gene lists were selected using modified criteria due to the smaller sample size:
genes passing p < 0.005 and Fold-Change > I1.2I for a contrast were considered significant
(contrasts: Deep ICH Males vs. VRFC Males; Deep ICH Females vs. VRFC Females; Lobar
ICH Males vs. VRFC Males; Lobar ICH Females vs. VRFC Females). Identification of sex-
specific genes associated with ICH in each location was done by overlapping corresponding
male- and female- lists.

2.3. Weighted gene co-expression network construction and analysis

Two co-expression networks were generated: Deep ICH + VRFC subjects
(DeeplCHandVRFC) and Lobar ICH + VRFC subjects (LobarlCHandVRFC). Weighted
Gene Co-Expression Network Analysis (WGCNA) was run in R to generate networks

of modules (groups of co-expressed genes).18:19 Hub genes were defined as the most
interconnected genes in each module and represent potential master regulators.2%21 Module
significance for Group and other technical and clinical variables (including age, sex,

and vascular risk factors) was assessed using a #test or a Pearson correlation to the
module’s eigengene (first principal component of expression) for categorical and continuous
clinical parameters, respectively (p < 0.05).18 Cytoscape was used to visualize significant
networks.22:23

2.4. Biological enrichment

Enrichment in blood cell type-specific genes was identified using hypergeometric
probability in R (phyper) by overlapping our per-gene lists and location-associated modules
with lists of blood cell type-specific genes (p < 0.05).2425 Ingenuity Pathway Analysis
(IPA®, QIAGEN) was performed on all gene lists as previously described?® to identify
significant Canonical Pathways, Disease and Function terms, and Upstream Regulators (BH
p < 0.05). IPA predicts activation (Z = 2) or inhibition (Z < - 2) states of its results

Brain Hemorrhages. Author manuscript; available in PMC 2023 March 16.
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based on up- or down-regulation in our gene lists and IPA’s knowledge-base from the
literature.2”-28 DAVID Functional Annotation Bioinformatics Resources Database was used
for Gene Ontology (GO) term enrichment (BH p < 0.05).29:30

3. Results
3.1. Subject demographics

Subjects’ demographic and clinical characteristics are presented in Table 1. No statistically
significant difference was found between Deep ICH, Lobar ICH, and VRFC groups for age,
race, sex, diabetes, hypertension, smoking status, or hyperlipidemia. A total of 14/19 Deep
ICH had hypertension, and a total of 4/9 Lobar ICH had possible or probable CAA. Deep
ICH patients presented earlier following symptom onset (mean 50.2 hours) compared to
those with Lobar ICH (mean 71.5 hours; p = 0.041). We examined the effect of time on

the hierarchical clustering distribution of the differentially expressed genes between subjects
with Deep and Lobar ICH and found they did not cluster by time and the main clustering
was driven by the ICH location (SFigure 1). Additionally, Deep ICH subjects were younger
(mean age 56.3 years) than Lobar ICH subjects (mean age 68.2 years; p = 0.026). Age was
included in the ANCOVA.

3.2. Gene-level differential expression based on ICH location reveals common and
specific transcriptional response

Expression of 995 genes were significant for Group (BH p < 0.05). One thousand three
hundred and fifty-five genes were DE in Deep ICH vs. VRFC; 629 were DE in Lobar ICH
vs. VRFC; 94 were DE in Deep ICH vs. Lobar ICH (p < 0.005, FC > 11.21) (SFigure 2).

3.2.1. Genes differentially expressed in Deep ICH vs. VRFC — DeepPerGene
list—The intersection between the 995 Group-significant and the 1,355 Deep ICH vs.
VRFC-significant genes was 774 genes (Deep ICH DEGs; hereafter called DeepPerGene)
(Fig. 1A; SFigure 2A; STable 1A). The top 100 genes (ranked by BH) of DeepPerGene list
differentiated most of the Deep ICH from VRFC subjects in Principal Component Analysis
(PCA) (Fig. 1B) and unsupervised hierarchical clustering (HC) (SFigure 3). Functional
annotation of the DeepPerGene list is presented in STables 2A, 3A, and 4A. It was enriched
in 156 pathways (STable 2A), of which 9 were activated (including iNOS, Toll-Like
Receptor (TLR), and Neuroinflammation Signaling) and 9 were suppressed in Deep ICH
compared to controls (including several T-cell pathways). The top 20 relevant significant
canonical pathways are presented in Fig. 2A. Significant cytokine and T cell canonical
pathways are presented in Fig. 3A and 3B, and significant Monocyte and Neutrophil
biofunctions in Fig. 3C and 3D. The DeepPerGene list was also enriched in Monocyte,
Granulocyte (mainly Neutrophil), T Cell, T Cell Receptor and T Cell Receptor Signaling-
specific gene lists (Fig. 4A, STable 5A).

3.2.2. Genes differentially expressed in Lobar ICH vs. VRFC — LobarPerGene
list—The intersection between the 995 Group-significant and the 629 Lobar ICH vs. VRFC-
significant genes was 441 (Lobar ICH DEGs; hereafter called LobarPerGene) (Fig. 1A;
SFigure 2B; STable 1B). The top 100 genes (ranked by BH) of LobarPerGene differentiated

Brain Hemorrhages. Author manuscript; available in PMC 2023 March 16.
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most of the Lobar ICH from VRFC subjects in PCA (Fig. 1C) and HC (SFigure 4).

The LobarPerGene list was enriched in 59 pathways (STables 2B,3B,4B), of which 11
were activated (including iNOS, TLR, T Cell Exhaustion, and IL-1 Signaling) and 3 were
suppressed (including T Cell Receptor Signaling and Antioxidant Action of Vitamin C)

in Lobar ICH compared to controls (SFigure 5). The top 20 relevant significant canonical
pathways are presented in Fig. 2B. Significant cytokine and T cell canonical pathways are
presented in Fig. 3A and 3B. Like DeepPerGene, LobarPerGene was enriched in Monocyte,
Neutrophil, T Cell, and T Cell Receptor Signaling specific gene lists (Fig. 4A, STable 5B)
and Monocyte and Neutrophil biofunctions (Fig. 3C,3D; STable 3B).

3.2.3. Genes differentially expressed in Deep ICH vs. Lobar ICH —
DeepVsLobar list—The intersection between the Group significant and Deep ICH vs.
Lobar ICH significant genes was 36 (hereafter called DeepVsLobar) (SFigure 2C; STable
1C). These 36 genes differentiated Deep ICH from Lobar ICH patients on PCA and HC
(Fig. 5), providing additional evidence for transcriptome differences between Deep and
Lobar ICH. The DeepVsLobar gene list was also able to separate most subjects in the 3
Groups (Deep ICH, Lobar ICH, and VRFC) on HC (SFigure 6). It was not significantly
enriched in any biological pathways, GO terms, or cell type specific lists (STable 5C).
However, it contained genes involved in immune, inflammatory, and other relevant processes
(like Autophagy, IL-1, -6, -10, and -15 Signaling, and iNOS, TLR, NF-xB, TGF-B, WNT/p-
catenin, and Neuroinflammation Signaling) (SFigure 7; STables 6ABC).

3.3.  Weighted gene co-expression networks uncover specific transcriptome architecture
in Deep and Lobar ICH

Modules of co-expressed genes significantly associated with ICH and the top 20 relevant
canonical pathways significantly enriched in each module are presented in Fig. 6 for Deep
ICH and Fig. 7 for Lobar ICH.

3.3.1. Gene co-expression modules associated with Deep ICH—WGCNA
identified 30 co-expressed gene modules plus one module of non-co-expressed genes in the
DeeplCHandVRFC network (SFigure 8). Hereafter we refer to modules from this network
with the prefix DC- for Deep ICH and Control. DC-Grey60 and DC-LightGreen modules
were uniquely significant for Group (Deep ICH vs. VRFC) and both were upregulated in
Deep ICH (Fig. 4B — positive contrast regression beta; STables 7A,8A). DC-Grey60 was
enriched in 185 pathways, with 102 activated (including Autophagy, TLR, iNOS, IL-6,
and NF-xB Signaling) and 3 suppressed (including PPAR and PPARa/RXRa Activation)
(Figs. 3A,6B; STables 2C,3C,4C). It was also enriched in BEX2 (brain expressed X-linked
2) Signaling, a pathway involved in neuroprotective autophagy, and showed a trend

toward suppression in Deep ICH (Z = —1.3) (SFigure 9). DC-LightGreen was enriched

in 4 pathways (including 1L-10 Signaling and Fcy Receptor-mediated Phagocytosis in
Macrophages and Monocytes) (Figs. 3A,6D; STables 2D,3D,4D). DC-Grey60 and DC-
LightGreen were enriched in Neutrophil specific genes; DC-LightGreen was enriched in
Monocyte specific genes (Fig. 4B; STables 5DE).

Brain Hemorrhages. Author manuscript; available in PMC 2023 March 16.
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3.3.2. Gene co-expression modules associated with Lobar ICH—WGCNA
identified 32 modules of co-expressed genes plus one module of non-co-expressed genes

in the LobarlCHandVRFC network (SFigure 10). Hereafter we refer to modules from this
network with the prefix LC- for Lobar ICH and Control. LC-Black, LC-DarkGreen, LC-
Grey60, LC-Pink, and LC-RoyalBlue modules were significant for Group (Lobar ICH vs.
VRFC) (Fig. 4B; Stables 7B,8B). Of these, LC-Black and LC-Grey60 were also significant
for Age. The remainder were unique to Group (Fig. 4B; STable 7B). LC-DarkGreen,
LC-Grey60, and LC-Pink were upregulated in Lobar ICH (Fig. 4B — positive contrast
regression beta), whereas LC-Black and LC-RoyalBlue were downregulated (Fig. 4B —
negative contrast regression beta). LC-DarkGreen was enriched in 149 pathways, with

97 activated (including Autophagy, NGF, B Cell Receptor, and IL-6 Signaling) and 3
suppressed (PPAR, PPARa/RXRa Activation, and Antioxidant Action of Vitamin C) (Figs.
3A,7B; STables 2E,3E,4E). LC-Pink was enriched in 159 pathways, with 84 activated
(including Amyloid Processing (SFigure 11), TLR, IL-1, IL-6, and IL-8 Signaling) and 3
suppressed (PPAR, PPARa/RXRa Activation, LXR/RXR Activation) (Figs. 3A,7D; STable
2F,3F,4F). LC-Grey60 had no canonical pathways passing BH-corrected p < 0.05 (STables
3G,4G). LC-Black was enriched in 74 pathways, of which 20 were suppressed (including
Autophagy and NRF2-mediated Oxidative Stress Response) (Fig. 7G; STables 2G,3H,4H).
LC-RoyalBlue was enriched in 34 pathways, 8 of which were suppressed (including several
T-cell pathways) (Figs. 3B,71; STables 2H,31,41). LC-DarkGreen and LC-Pink were enriched
in Neutrophil specific genes; LC-Grey60 in Monocytes; LC-Black in Erythroblasts; and
LC-RoyalBlue in T Cell and T Cell Receptor Signaling (Fig. 4B; STables 5F-J).

3.3.3. Module Hubs—DC-Grey60 Hubs, LC-DarkGreen Hubs, and LC-Pink Hubs were
enriched in Neutrophil specific genes, and LC-Black Hubs in Erythroblast specific genes
(Fig. 4B; STables 5K-Q). DC-Grey60 Hubs were enriched in one pathway (Glycogen
Degradation 111), and LC-Pink Hubs in 68 (including iNOS Signaling, NRF2-Mediated
Oxidative Stress Response, and PPARa/RXRa Activation) (STables 21J). LC-Black Hubs
were enriched in GO term Cortical Cytoskeleton and LC-RoyalBlue Hubs in Protein
Binding and Nucleotide Binding (STables 4JK). Hub genes by module are presented in
Table 2, and complete hub biological findings are listed in STables 21J,3J-0,4JK,5K-Q.

3.4. Deep and Lobar ICH significant canonical pathways across Per-Gene and network

analyses

Deep ICH gene lists and modules were significantly enriched in 235 canonical pathways,
while Lobar ICH lists were enriched in 301. Of these, 209 pathways were common to
both locations, leaving 26 unique to Deep ICH and 92 unique to Lobar ICH (SFigure 12).
The Lobar ICH-unique pathways included Apoptosis Signaling, BMP Signaling (activated
in two Lobar ICH modules), Neurotrophin/TRK Signaling (activated in one Lobar ICH
module), VEGF Signaling, Necroptosis Signaling, and Amyloid Processing, as well as
NRF2-mediated Oxidative Stress Response and Heme Biosynthesis 11 — both suppressed
in LC-Black, a module with no significant overlap with any DC modules. The Deep ICH-
unique pathways included activation of the Th2 Pathway, Interferon Signaling, and CREB
Signaling in Neurons in the DC-Grey60 module; and BEX2 Signaling with a trend towards
suppression in DC-Grey60.

Brain Hemorrhages. Author manuscript; available in PMC 2023 March 16.
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3.5. Gene-level sex differences in Deep and Lobar ICH provide evidence for sex- and
location-specific peripheral immune response to ICH

Expression of 30 genes was significant for the Deep ICH Males vs. VRFC Males; 1,531 for
Deep ICH Females vs. VRFC Females; 252 for Lobar ICH Males vs. VRFC Males; and 584
for Lobar ICH Females vs. VRFC Females (Fig. 8AB; STable 9).

3.5.1. Sex-specific genes in Deep ICH—Twenty-seven genes were unique to Deep
ICH Males vs. VRFC Males (hereafter called Male-DvC for Male Deep ICH vs. Male
Control) when compared to Deep ICH Females vs. VRFC Females (Fig. 8A; STable

9A). The 27 genes were significantly enriched in 2 pathways: DNA Methylation and
Transcriptional Repression Signaling, and Apelin Liver Signaling Pathway (Fig. 9; STable
2K,3P). The Male-DvC genes had no significant enrichment in cell type-specific lists
(SFigure 13; STable 5R). One thousand five hundred twenty-eight genes were unique to
Deep ICH Females vs. VRFC Females (hereafter called Female-DvC for Female Deep

ICH vs. Female Control) when compared to Deep ICH Males vs. VRFC Males (Fig. 8A;
STable 9B). The 1,528 genes were enriched in 148 pathways, with 7 activated (including
Antiproliferative Role of TOB in T Cell Signaling and Fcy Receptor-mediated Phagocytosis
in Macrophages and Monocytes) and 6 suppressed (including several T-cell pathways) (Fig.
9; STables 2L,3Q,4L). The Female-DvC genes were also enriched in Neutrophil, T Cell, and
T Cell Receptor and Signaling specific gene lists (SFigure 13; STable 5S).

3.5.2. Sex-specific genes in Lobar ICH—Two hundred thirty-eight genes were
unique to Lobar ICH Males vs. VRFC Males (hereafter called Male-LvC for Male Lobar
ICH vs. Male Control) when compared to Lobar ICH Females vs. VRFC Females (Fig. 8B;
STable 9C). The 238 genes were not enriched in biological pathways or cell type specific
lists, though it was enriched in GO term Protein Binding (Fig. 9; SFigure 13; STables
4M,5T). Five hundred seventy genes were unique to Lobar ICH Females vs. VRFC Females
(hereafter called Female-LvC for Female Lobar ICH vs. Female Control) when compared
to Lobar ICH Males vs. VRFC Males (Fig. 8B; STable 9D). The 570 genes were enriched
in 65 pathways, with 6 activated (including Antiproliferative Role of TOB in T Cell, TLR,
and iNOS Signaling) and 6 suppressed (including several T-cell pathways) (Fig. 9; STables
2M,3R,4N). Female-LvC was also enriched in Neutrophil, T Cell, and T Cell Receptor and
Signaling specific gene lists (SFigure 13; STable 5U).

3.5.3. Comparing sex-specific genes in Deep and Lobar ICH—There was no
overlap between the Male-specific genes in the Deep and Lobar locations (Fig. 8C). Two
hundred ninety-seven genes overlapped between the Female-specific genes from the two
ICH locations, leaving 1,249 unique for Deep ICH and 291 unique for Lobar ICH (Fig. 8D).

4. Discussion

Differences in the peripheral blood transcriptome architecture were identified for Deep and
Lobar ICH that differentiated the groups. These include differentially expressed genes and
location-specific gene co-expression modules; two modules were associated with Deep ICH
and five with Lobar ICH. They were enriched in many immune cell specific gene lists,

Brain Hemorrhages. Author manuscript; available in PMC 2023 March 16.
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pathways, functions, and GO terms common to Deep and Lobar ICH as well as responses
unique to each location (Fig. 10). Common responses included immune, inflammatory,
oxidative stress, growth factor (GF), and angiogenesis related processes. Deep ICH-unique
responses included CREB Signaling, dopaminergic neuronal cell death, and Th2 responses;
while Lobar ICH-unique included RNA processing, various protein processing, and amyloid
related responses. These data provide evidence for molecular differences between Deep and
Lobar ICH which reinforce the need for location-stratified analyses and clinical trials to
identify potential location-specific treatments.

Blood cell response to ICH

4.1.1. Myeloid cell response—Neutrophils respond to human ICH and infiltrate
hematoma and perihematomal brain regions, potentially contributing to damage through pro-
inflammatory signaling, Reactive Oxygen Species (ROS), and Blood-Brain Barrier (BBB)
breakdown.31-33 Later, polarized neutrophils become neuroprotective, partially through
enhanced iron scavenging.3* Through the enrichment of granulocyte (mainly neutrophil)
specific genes, we show evidence for a robust neutrophil response to ICH common to both
Deep and Lobar ICH. (Fig. 4). Co-expression modules were significant for the Granulocyte
Adhesion and Diapedesis pathway, which regulates neutrophil movement from blood vessels
to target tissue. The fMLP Signaling in Neutrophils pathway was common to Deep and
Lobar ICH. fMLP activates neutrophils, which induces ROS generation, cell migration, and
enzyme secretion.3® £PR1 and FPRZinitiate fMLP signaling in neutrophils3® and were
up-regulated in both ICH locations. Neutrophil-related functions such as degranulation,
activation, migration, and recruitment were also common to both Deep and Lobar ICH.

Monocytes also infiltrate the brain after ICH,1437 likely contributing to post-stroke damage
early37-39 and recovery via hematoma clearance later.240:41 Both Deep and Lobar ICH gene
lists were enriched in Monocyte specific genes (Fig. 4) as well as functions like Activation
of Monocytes, Cell Movement of Macrophages, and Differentiation of Macrophages.
Accumulation of Alternatively Activated Macrophages was unique to Deep ICH, while
Accumulation of Inflammatory Monocytes was unique to Lobar ICH. Both Deep and

Lobar ICH lists were enriched for Fcy Receptor-mediated Phagocytosis in Macrophages
and Monocytes, which contributes to hemoglobin clearance in Subarachnoid Hemorrhage
(SAH)*2 and may also occur in ICH. We have previously shown DE genes were associated
with inflammatory pathways in blood monocytes from ICH patients*® and showed some
monocyte-specific genes correlated with ICH and edema volumes.*# Future temporal studies
of gene expression are needed to elucidate the peripheral monocytes’ contribution to early
injury and later recovery following ICH.

4.1.2. Lymphocyte response—CD4" Helper T (Th) and CD8* Cytotoxic T cells

are associated with ICH, with Th cells migrating to perinematomal brain regions.144
After ICH, Th1 cells contribute to inflammation, BBB breakdown, and neuronal apoptosis,
while Th2 cells suppress the inflammatory response.#® Cytotoxic T cells also contribute

to brain injury after ICH46 and initiate BBB breakdown.*’ Regulatory T Cells, however,
are associated with neuroprotection after ICH, potentially by protecting the BBB.#849 Qur
data support a T Cell response to Deep and Lobar ICH. The DE genes in Deep ICH and

Brain Hemorrhages. Author manuscript; available in PMC 2023 March 16.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Knepp et al.

4.2.

Page 9

Lobar ICH, as well as a Lobar ICH module were significantly enriched in T Cell and

T Cell Receptor Signaling specific genes (Fig. 4). We have previously shown suppressed

T Cell Receptor Signaling with increasing ICH and Edema volume in peripheral whole
blood following human ICH.** However, in this study we found lists associated with both
suppression and activation of the T Cell Receptor Signaling pathway in both Deep and
Lobar ICH (Fig. 3B). Our data also showed T Cell surface receptors (TCR), including
CD28and CD3E, and various TCR subunits were down-regulated in both ICH locations
compared to controls. TCR and CD3 proteins form a complex on T Cells®? beginning

a signaling cascade through MAP Kinases for initial naive T cell activation.>> Complete
activation can occur through co-stimulation of the CD28 receptor.>! Src-family kinase (SFK)
LCK functions downstream of many T Cell surface receptors and SFKs are involved in

T cell development, proliferation, survival, and function.?? L CK; and downstream targets
ZAP70and the PI3K complex (via PIK3RI), were down-regulated in Deep ICH vs. Control.
Though both Deep and Lobar ICH per-gene lists showed suppression of the overall T Cell
Receptor Signaling pathway, some inflammatory outputs were upregulated in Lobar ICH via
CHUK;, which activates NF-xB (SFigure 5).53:54 NFAT was downregulated in Deep ICH

via decreased levels of NFATC2and NFATCS, and is involved in T Cell Activation.>® This
implies that, despite a common decrease in overall T Cell Receptor Signaling, there may be
differences in T Cell effects on the inflammatory responses between ICH locations.

The Thl and Th2 Activation, Th1 (activated in both locations), and Th17 Activation
Pathways were also common to Deep and Lobar ICH, as were /FNGR1 and /FNGRZ2 (IFNy
Receptors). Though the role of IFNy signaling in Th1 differentiation is debated,® it may

be important in autocrine Th1 differentiation and function.>”-59 The Th2 Pathway itself was
unique to and activated in Deep ICH. GO term Positive Regulation of IL-4 Production was
significant in Deep ICH. /L4R, JAKZ, and JAK3 (upregulated in Deep ICH) could lead to
IL-4 Receptor activation of JAK signaling cascades for transcriptional regulation in T cells.
Notably, IL-4 helps initiate Th2 differentiation and development.50:61 Differing responses of
T-helper subtypes may also contribute to differences in the inflammatory response between
ICH locations.

4.1.3. Erythroblast response—Erythroblasts are immature nucleated red blood cells
(NRBC) found in peripheral blood after ICH.5263 A Lobar ICH module downregulated

in ICH was enriched in erythroblast specific genes and biofunctions while Deep ICH was
not. Erythropoietin signaling, which regulates RBC generation,®3 was common between
locations. A detailed discussion of the erythroblast response is in the Supplemental
Manuscript.

Inflammatory signaling

4.2.1. Neuroinflammation after ICH—After ICH, extravascular blood initiates
inflammation, affecting ionic membrane pumps and contributing to cerebral edema
formation and secondary injuryl:144% which is exacerbated by BBB breakdown.*® Indeed,
Neuroinflammation Pathways were activated in both Lobar and Deep ICH. Inflammasomes,
including NLRC464.65 and NLRP3,%6 contribute to neuroinflammation by activating pro-
inflammatory enzymes and cytokines following stroke.8” The Inflammasome pathway was
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predicted activated in both Deep and Lobar ICH. NLRC4 was present in Lobar (as a hub)
and Deep modules, and NLRP3was present in Deep and Lobar ICH modules. P2X7R,

an activator of the NLRP3 inflammasome, is a potential target for ICH treatments,58

and P2X7R-siRNA (small interfering RNA) decreased NLRP3 Inflammasome activity and
improved outcomes in a rat ICH model.®® NLRC3, decreased in Lobar ICH, inhibits NLRP3
Inflammasome activity, and as such may be a potential treatment target.”® NLRP12 is an
NLR protein which has been reported as both pro- and anti-inflammatory in various /n vitro
and animal models.”t NLRP12was present in both Deep and Lobar modules.

Lipopolysaccharide (LPS) is a Pathogen-Associated Molecular Pattern (PAMP) molecule
found in the cell wall of Gram-negative bacteria.’? It induces pro-inflammatory
signaling”?74 and is elevated in serum after human ICH.”® In this study, LPS was identified
as an upstream regulator for several Deep and Lobar ICH modules and was generally
predicted to be activated. This implicates LPS as a potential pro-neuroinflammatory
molecule after ICH. Additionally, the Complement System pathway and Activation of
Complement Factor function were common to both ICH locations. The complement cascade
could play a role in post-ICH damage through pro-inflammatory edema exacerbation,
cytokine release, and induction of iron toxicity. However, it also could play a healing role by
clearing apoptotic cells, facilitating hematoma clearance, and promoting neurogenesis.1:76:77
As such, complement’s involvement in ICH damage and repair needs more study.

4.2.2. Cytokine signaling—After ICH, a large number of cytokines are released that
contribute to secondary injury by compromising the BBB, exacerbating edema formation
and immune cell invasion.14.76.78 |n this study, many cytokine signaling pathways were
overrepresented in both Deep and Lobar ICH such as pro-inflammatory IL-17, IL-23,
TNFR1, TNFR2, and IL-1 Signaling’® and anti-inflammatory 1L-4, IL-10, and TGF-B
Signaling (Fig. 3A).7® The balance between these pro- and anti-inflammatory cytokines
likely contributes to the damage-repair balance after ICH regardless of location. Modulation
of this system to treat ICH could be complex. More details are presented in the
Supplemental Manuscript.

4.2.3. Oxidative stress—After ICH, neutrophil degranulation, mitochondrial
dysfunction, and iron from hematoma breakdown can contribute to oxidative stress, which
can exacerbate BBB breakdown.”® The Production of Nitric Oxide (NO) and ROS in
Macrophages pathway was common and predicted activated in both ICH locations. The
Deep ICH hub gene SP/I (encoding PU.1) regulates NADPH oxidase genes® which
contribute to ROS generation.81 iNOS Signaling was predicted to be activated in Deep and
Lobar ICH. iNOS generates reactive nitrogen species (RNS)/ROS after ICH. Its knockout
reduced edema volumes.82 Common functions between the two ICH locations also included
Biosynthesis of ROS, Generation and Synthesis of ROS, and Metabolism of ROS. Targeting
oxidative stress after ICH might reduce injury and improve outcomes in both locations.

Though NRF2-Mediated Oxidative Stress Response was a Lobar-unique pathway, NRF2
(aka MFEZL2) itself was a member of a significant Deep ICH module. In animal models of
Deep striatal ICH, NRF2 was neuroprotective and involved in hematoma clearance.83-85
NRF2 promotes expression of neuroprotective genes and could increase antioxidant
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activity after ICH.”® NRF2 also upregulates expression of HMOXZ (encoding HO-1,

heme oxygenase 1), associated with Deep ICH. HO-1 promotes antioxidant generation

and degrades heme.86 HO-1 reduces oxidative stress by generating CO (which inhibits
NADPH ROS generation) and biliverdin (which scavenges ROS and RNS).87 Additionally,
the Antioxidant Action of Vitamin C pathway was suppressed in both locations. Ischemic
stroke patients with lower Vitamin C levels had worse outcomes.88 Since Vitamin C levels
decrease after cerebral hemorrhages8? this may contribute to worse outcomes and represent
an ICH treatment target. Additionally, Lobar ICH was associated with downregulation of 7
Metallothionein-encoding genes, 8 Metallothionein pseudogenes, and one Metallothionein-
like gene. Metallothionein is involved in wound healing in the CNS% and is upregulated

in brain after experimental ICH.%1.92 Metallothionein is an antioxidant after ICH-related
iron release and may be neuroprotective.91:93 Downregulation of antioxidant molecules and
pathways after ICH may contribute to oxidative stress induced damage, and as such pose
promising potential treatment targets.

4.2.4. Growth factor (GF) signaling—Higher serum levels of various GFs are
associated with better Modified Rankin Scale (mRS; a severity scale) outcomes in human
ICH patients at 3 months.94.95 In this study, many GF signaling pathways were common

to Deep and Lobar ICH as discussed in the Supplemental Manuscript. Additionally, there
were three GF pathways unique to Lobar ICH: Angiopoietin Signaling, Neurotrophin/TRK
Signaling, and VEGF Signaling. High Angiopoietin-1 and VEGF serum levels have been
associated with good outcomes after ICH, % though other studies show a deleterious effect of
high VEGF levels.% In animal ICH models, Neurotrophin treatment improved recovery and
neurogenesis®’ and reduced neuronal apoptosis. 98,

4.2.5. Autophagy—Autophagy regulates the degradation of unneeded or malformed
proteins and organelles via lysosomes to maintain normal cell function.9® Oxidative stress
can induce autophagy.19% After ICH, iron-oxidized species may contribute to brain injury
by activating autophagy. In this study, the Autophagy pathway was common between
locations. Additionally, biofunction Autophagy of Neurons was significant in Lobar ICH.
TLR4was common and TLR Signaling was significant and usually activated in Deep

and Lobar ICH. LPS induces autophagy via activation of TLR4.101 Resatorvid treatment
inhibited autophagy and neuron loss in rat TBI possibly via TLR4 signaling.102 Some
autophagy-related genes (ATG) aid in the formation of autophagosomes.103 Several were
decreased in Lobal ICH vs. VRFC including MAPILC3B (aka LC3B and ATGFS),
GABARAP, GABARAPLZ2 (human Atg8 orthologs), and ATG9A. ATG12was increased
Lobar ICH vs. VRFC. ATG12 initiates the ATG12 conjugation system, 193 which is involved
in autophagosome maturation.1%4 ATG9A is required for autophagosome formation103 and
may help transfer materials to the developing autophagosome.105 Autophagy was predicted
significantly suppressed in one module in Lobar ICH, and included downregulated SQS7M1
(an autophagy receptor connecting autophagosomes to their cargo),106 MAP1LC3B
(involved in phagophore membrane elongation),103.107.108 GABARAP, and GABARAPLZ2
(both involved in late stage autophagosome formation).198 This suggests that regulation of
autophagy may be particularly important in Lobar ICH.
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4.3. Cell death

4.3.1. Cell death pathways—Various cell death mechanisms can be induced after

ICH including mechanical stress, inflammatory pathways, and toxic molecules like iron

and ROS, among other factors.2:109.110 Thus, apoptosis, pyroptosis, necroptosis, ferroptosis,
autophagy and necrosis can contribute to cell loss after ICH.109-111 Genes from each of
these pathways were associated with Deep and/or Lobar ICH. The function “Apoptosis” was
common between locations but was activated in some modules and suppressed in others,
indicating complex regulation of cell death in ICH. Detailed discussion of our Apoptosis
findings can be found in the Supplemental Manuscript.

Ferroptosis Signaling Pathways trended towards activation in Deep ICH (Z = 1.89) and
trended towards suppression in Lobar ICH (Z = —0.91). Ferroptosis occurs after hemorrhagic
strokes and is induced by lipid ROS via intracellular iron.199.112 A7 0X5 (aka 5-LOX

and Arachidonate 5-Lipoxygenase), up-regulated in Deep ICH, is a major contributor to
buildup of oxidized lipids.109:112.113 N-acetylcysteine, which inhibits ALOX5 oxidation

of lipids, improved outcomes in experimental ICH.109112 |ntracellular iron can also be
sequestered into the iron storage protein complex ferritin.10% F7L, a part of the ferritin
complex, was down-regulated in Lobar ICH. Promoting ferritin gene expression may
produce more storage for free intracellular iron, reducing the oxidation of lipids and limiting
ferroptosis.114 Ferroptosis inhibitor ferrostatin-1 reduced ferroptosis and improved outcomes
in experimental ICH.109.115.116 Additionally, HSF1 and HSPB1, downregulated in Lobar
ICH, normally aid in the removal of iron and lipid ROS from cells and inhibit ferroptosis.109
Modulating ferroptosis particularly in Lobar ICH could improve outcomes.

Necroptosis was uniquely enriched in Lobar ICH with the Necroptosis Signaling Pathway
and biofunction Necroptosis of Oligodendrocytes being significant. Necroptosis can

be induced following ICH through TNF signaling, TLR signaling, and interferons.10°
TNFRSF10B (TNF Receptor Superfamily 10b), /FNARI (Interferon Alpha And Beta
Receptor Subunit 1), and 7LR4 were increased in Lobar ICH. 7AB1, which was higher

in Lobar ICH than Deep ICH, forms part of the TNFR1 signaling complex in Necroptosis
Signaling. TAB1, in addition to TAB2 and TAB3 (regulated in Deep and Lobar ICH in
this study), form a complex with TAK1 in response to TNFR1 and TLR signaling.117
CFLAR (coding cFLIP), also associated with Lobar ICH, regulates necroptosis.118 Higher
proportions of the cFLIPg isoform promotes necroptotic pathways over cell survival or
apoptosis.118 PEL /1 was a Lobar ICH gene that is an E3 ubiquitin ligase which promotes
necroptotic cell death pathways and modulates cFLIP expression to inhibit apoptosis.119 The
data suggest that potential Necroptosis treatments should target Lobar ICH.

Autophagy dysregulation can result in autophagic cell death.120 The Autophagic Cell Death
function was regulated in Lobar ICH and included 7P53/NP1. TP53INP1 is present in

the autophagosome when autophagy is induced and can promote autophagic cell death
pathways.121

Overall, these results show common cell death signaling responses to both Lobar and
Deep ICH through apoptosis and ferroptosis, while also providing evidence for potential
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differences in apoptosis, ferroptosis, necroptosis and autophagic cell death between ICH
locations.

4.3.2. Dopaminergic pathways implicated in Deep ICH—The BEX2 Signaling
Pathway was associated with Deep ICH. Cell Death of Dopaminergic Neurons, a functional
output of this pathway, showed potential upregulation via downregulated BEX2 (SFigure 9).
BEX2 is a transcription factor involved in isoflavone induced autophagy, clearing toxins and
preventing dopaminergic cell death in neuroblastoma cell lines.122 Isoflavone treatment may
increase BEX2 induced autophagy which may prevent dopaminergic neuron apoptosis.122
Since the striatum is densely innervated by dopaminergic fibers, this might account for the
association of dopamine pathways with Deep ICH.123 pLXNC1I, also associated with Deep
ICH, plays a role in dopaminergic circuit formation.124 £GLN1/PHD2was a Deep ICH

hub gene in our study and is involved in Loss of Induced Pluripotent Stem Cell Derived
Dopaminergic Neurons. PHD2 is known to play a role in iron homeostasis in dopaminergic
neurons.125

4.4. Protein processing including amyloid processing pathways are unique to Lobar ICH

4.4.1. Protein ubiquitination—Ubiquitin was associated with Lobar ICH. It is a

small protein that covalently links to target proteins, marking them for degradation.126
Ubiquitination regulates neuroinflammation and autophagy, and is required for normal
neuronal development and function.126-129 Ubiquitin proteases, ligases, and deubiquitination
proteins regulate injury in experimental ICH, potentially via oxidative stress and neuronal
apoptosis.130-132 We have previously shown ICH and ICH relative perihematomal edema
volume were significantly enriched in protein ubiquitination pathways.44133 In this study

a number of down-regulated genes in Lobar ICH were strongly enriched in ubiquitination
terms, whereas Deep ICH was not. The Lobar-associated pathways and functions included
Protein Ubiquitination Pathway, Ubiquitination, Ubiquitination of Protein, Deubiquitination
of Protein, Polyubiquitination, Ubiquitin-Dependent Protein Catabolic Process, Ubiquitin-
Protein Transferase Activity, and Ubiquitin Protein Ligase Binding. Moreover, LC-Black
genes had no significant overlap with the genes in any of the two Deep ICH modules (data
not shown), signifying it is a highly Lobar-specific module. BAG6, a Lobar ICH hub gene, is
associated with ubiquitination of mislocalized proteins134 and newly synthesized, defective
protein products.13> S/4H2, another Lobar ICH hub gene and E3 ubiquitin ligase, is induced
by hypoxia and impairs HIF-1a degradation, and thus changes HIF-1a target expression.136
SPOPL, another Lobar ICH hub gene, associates with SPOP to downregulate E3 ubiquitin
ligase activity.137:138 The heavy involvement of protein ubiquitination processes in genes
that were down-regulated in Lobar ICH and upregulation of ubiquitin inhibitors suggests
wide-spread down-regulation of protein ubiquitination following Lobar ICH.

Ischemia-linked oxidative stress results in mass-misfolding of proteins, with ubiquitination
working to clear these misfolded proteins.13% One Lobar ICH module was significant for
the Unfolded Protein Response. Ubiquitination E2, E3, and deubiquitinating enzymes play
arole in degradation of AB,140 and AB also regulates the ubiquitin system. It competitively
binds to ubiquitin,14! inhibits ubiquitin-mediated proteolysis,}42 and impairs proteasome
function.140:143 When AB is bound to Ubiquitin, it is broken down more slowly (through
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the Insulin Degrading Enzyme), but it is also less likely to form protein deposits.14! Since
Ubiquitin helps clear AB, it may be a location-specific treatment target for Lobar ICH
caused by CAA in order to prevent future hemorrhages. Apomorphine treatment decreases
intraneuronal AB and increases proteasome activity.140.144 |t is possible that it has similar
effects on vascular AB deposits. In animal models and /n vitro, Sulforaphane reduced

AB levels,140.145.146 potentially through upregulation of proteasomal subunits,140:145 which
could reduce AB levels in CAA.

4.4.2. Ubiquitin-like modifications—Various ubiquitin-like post-translational
modifications can also be added to proteins. Lobar ICH was associated with two forms

of ubiquitin-like post-translational modifiers (SUMOylation and NEDDylation) while Deep
ICH was not. One ubiquitin-like modifier gene, UBAS3 (ubiquitin-like modifier activating
enzyme 3), was a Lobar ICH hub gene. This specific E1 enzyme associates with AppBpl
(amyloid beta precursor binding protein) to activate NEDDS8, another ubiquitin-like post-
translational modifying protein.147:148 Additional discussion of the Lobar ICH specific
Ubiquitin-Like modifications can be found in the Supplemental Manuscript.

4.4.3. Amyloid proteins and protein processing—CAA is caused by the deposition
of amyloid in the meningeal and intracerebral vasculature. At least 6 proteins (encoded by
genes APP, CST3, TTR, GSN, PRNP, and /TMZ2B) have been shown to form amyloid fibrils
and contribute to CAA in humans.149.150 Amyloid Precursor Protein (APP) was associated
with a Lobar ICH module in this study. Though it was not significant in the per gene
analysis, it was a member of a negative beta coefficient module (APPFC = -1.02). GSN,
the causative protein in Finnish amyloidosis,14® was associated with Lobar ICH. PSENI was
associated with both Lobar and Deep ICH. It acts as the catalytic component of y-secretase,
which cleaves precursors into AB.151 None of the 6 causative CAA genes were associated
with Deep ICH.

Lobar ICH was also associated with pathways, functions, and GO terms relating to Amyloid
processing. As CAA is caused by vascular amyloid deposition, amyloid processing likely
plays a role in Lobar ICH. Indeed, one Lobar ICH module was enriched for genes in

the Amyloid Processing pathway, which encompasses molecular signaling in response

to Amyloid buildup with suggested activation of Microtubule Instability and suggested
suppression of Axonal Transport (SFigure 11). Biofunction Amyloidosis was enriched

in Deep and Lobar ICH. No other amyloid terms were enriched in Deep ICH. One

Lobar ICH module was significant for Transport of Protein function, and another trended
towards significance for the RAGE Receptor Binding GO term, which is involved in Ap
clearance.149.152.153 Another Lobar ICH module was nearly significant for the function
Degradation of Protein Fragment with hub gene BAGS6, which is involved in ubiquitin-
mediated protein degradation.154

One Deep ICH module was enriched in Phagocytosis by Microglia and Phagocytosis by
Neuroglia, neither being present in Lobar ICH. Microglial phagocytosis is an A clearance
mechanism5 which could differ between Lobar and Deep locations. LRPI, also associated
with Deep ICH, is a clearance receptor that aids transport of AP out of the brain and into
blood vessels.12> CTSBand CTSS, both associated with Lobar ICH, are cysteine proteases
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involved in the degradation of AB.15% Neither associated with Deep ICH. Reelin Signaling in
Neurons pathway (suppressed in Lobar ICH) inhibits AB’s ability to form amyloid fibrils.156
MMPI9and MBP genes, which are involved in Ap degradation, were associated with Lobar
and Deep ICH. These differentially expressed pathways may help explain why CAA affects
cortex and not deep structures and may play a role in the progression of CAA and the
pathogenesis of Lobar ICH.

4.5. Enrichment in RNA processing, trafficking, splicing, and degradation is Lobar ICH-

specific

Splicing dysfunction is associated with many diseases, and the minor spliceosome is
implicated in stress-induced gene expression regulation.1>” We have previously shown
differential alternative splicing in ICH158:159 and have found enrichment in alternative
splicing processes at the gene and network level in ICH.44133 Here, we find enrichment

in various RNA processing, splicing, and degradation processes in Lobar (mainly LC-
RoyalBlue) but not Deep ICH, with genes being down regulated in Lobar ICH vs. Control.
Moreover, LC-RoyalBlue (like LC-Black) had no significant overlap with any of the two
Deep ICH modules, signifying it too is a highly Lobar-specific module. Though it is likely
splicing plays a role in Deep ICH, these results point to potential differential alternative
splicing between ICH locations. Alternative splicing level analyses could unveil additional
differences between Deep and Lobar ICH responses. Additional discussion of these findings
is in the Supplemental Manuscript.

4.6. Platelets and blood coagulation

Blood coagulation and platelets play a key role in ICH onset and progression. Platelets
form the initial vessel plug and seal, and the coagulation cascade forms a reinforcing fibrin
clot.160 Coagulopathies and platelet dysfunction are potential causes of hemorrhagic stroke
and can lead to hematoma expansion.160-162 |n this study, both Deep and Lobar ICH were
enriched in platelet functions including Aggregation of Blood Platelets, Degranulation of
Blood Platelets, and Function of Blood Platelets. Platelets bind to the injured vessel surface
and are activated, degranulating and aggregating other circulating platelets.163 Both Deep
and Lobar ICH lists were also enriched in Thrombopoietin Signaling. Thrombopoietin plays
a major role in platelet production, and is regulated (cleared) by existing platelets and
megakaryocytes.164 Deep ICH was also uniquely enriched in the GP6 Signaling Pathway.
GP&6 is a collagen receptor only found on platelets that is involved in platelet activation,
dense granule secretion, and thrombus formation.16°

After plug formation, coagulation forms a fibrin clot to reinforce the plug.163 Deep

and Lobar ICH were enriched in the function Coagulation of Blood; one Deep ICH
module’s hubs were enriched in Anticoagulation of Blood with gene ORM1. ORM1
decreases the body’s ability to make thrombin, therefore inhibiting clot formation.166
Polymorphisms in ORMJI have an impact on warfarin anticoagulant activity, making it

a potential marker for determining an individual’s dosage.16” F5 (Factor 5; associated
with both locations) increases clotting by promoting thrombin formation in the common
coagulation pathway.160.168 Thrombin Signaling was significant in both locations and
usually activated. One Lobar module had predicted suppression of the pathway. This tight
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regulation of thrombin is important in the ICH response as over-coagulation could lead

to thromboembolism and undercoagulation could cause hematoma expansion.180 £1341
(associated with Lobar ICH; FC = 1.06 in Lobar ICH vs. VRFC) codes for Coagulation
Factor X111 A Chain. FXI11 aids in crosslinking fibrin and stabilizing the clot.160.169

ICH therapeutics targeting platelets and clotting could improve outcomes by preventing
hematoma expansion. Vitamin K, recombinant activated Factor 7, and prothrombin complex
concentrate are common treatments for ICH caused by coagulopathies. Platelet transfusions
have also limited hemorrhage enlargement. However, a balance between pro- and anti-
coagulation mechanisms must be sought to help ensure safe treatments.160

4.7. Direct comparison of Deep and Lobar ICH implicates different molecular responses

to each

Though the direct comparison of Deep and Lobar ICH was not enriched in any pathways,

a number of the differentially expressed genes (including the following) are involved in
immune and inflammatory pathways (SFigure 7). TRAF3 (aka TNF Receptor Associated
Factor 3) is involved in Neuroinflammation Signaling, Autophagy, NF-xB Signaling,
Protein Ubiquitination, Regulation of Cytokine Production, Generation of Th1 Cells, and

B Cell Activating Factor Signaling. 7AB1 (aka TGF-Beta Activated Kinase 1 (MAP3K?7)
Binding Protein 1) is involved in I1L-(1,6,10), iINOS, TLR, PPAR, TGF-B, NF-xB and p38
MAPK Signaling pathways, and Dendritic Cell Maturation. CD226is involved in Crosstalk
Between Dendritic Cells and NK Cells, NK Cell Signaling, Frequency of iNKT1 and
iNKT2 Cells, Regulation of Immune Response, and Cytokine Production. ABLZ2 (aka ABL
Proto-Oncogene 2, Non-Receptor Tyrosine Kinase) is involved in PDGF Signaling, RhoA
Signaling, IL-15 Production, Maturation of Dendritic Spines, and Maturation of Synapse.
MRPL2 (aka Mitochondrial Ribosomal Protein L2) is involved in Mitochondrial Translation,
RNA Binding, and poly(a) RNA Binding. RSBN1isa T Cell specific gene, and EXOC3L4
is a Megakaryocyte specific gene. Overall, 21/36 of the differentially expressed genes in
Deep vs. Lobar ICH were higher in Lobar ICH (including 7RAF3, TAB1, CD226, MRPL2)
and 15 were higher in Deep ICH (including ABLZ, RSBN1, EXOC3L4). Details are in
STables 5C,6ABC.

4.8. Sex differences in immune response to Deep and Lobar hemorrhages

A pilot analysis of sex differences in Deep and Lobar ICH was performed. We have
previously shown Females tend to have more differentially expressed mRNA-coding genes
than Males,17%:171 though this was reversed when examining IncRNA (long noncoding
RNA).172 Here we found Females had more differentially expressed genes in both ICH
locations than their male counterparts. Many T Cell related pathways, T Cell and T

Cell Receptor and Signaling-specific genes were significant and predicted suppressed in
Female but not Male ICH. Sex differences have also been described in T Cells in healthy
subjects.1”® NRF2, which is neuroprotective after ICH, was associated and increased

in Male Lobar but not Female ICH. Proteases involved in Ap processing were found
upregulated in Male Lobar ICH along with suppression of transcription via DNA epigenetic
modifications. DNA methylation is implicated in both the risk and pathophysiology of
stroke.17* These ICH sex differences highlight the importance of including sex when
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assessing ICH injury mechanisms and outcomes. Additional discussion of these findings
can be found in the Supplemental Manuscript.

5. Conclusions

We show transcriptome differences in peripheral blood of Deep and Lobar ICH patients.
These differences point to both common and different immune and inflammatory responses
in the two locations. Our findings emphasize the importance of including ICH location as a
factor in future studies and clinical trials as well as the potential importance of considering
patient sex. Additionally, these results give evidence that location-specific treatments may be
appropriate to target the specific pathophysiology associated with Deep and Lobar ICH.

6. Limitations

The subject numbers are small, indicating the findings will need to be validated in much
larger, independent cohorts. The results are based on the whole blood transcriptome, which
includes transcriptomes of all peripheral blood cell types. We report some genes as being
cell-type-specific. This was done based on comparing our gene lists to cell-type specific
gene lists from the literature, which have been derived from isolated blood cell types in
healthy individuals. It is possible that in disease, some cell-type specific genes are expressed
in other cell types. Thus, single cell transcriptomic studies in ICH are needed to address the
cell-specificity of expression in ICH and how it compares to controls. Additionally, some of
the observed differences may be due to changes in cell numbers of specific cell subtypes!®
though our recent study*3 showed differential expression of genes after stroke in isolated
Monocytes and Neutrophils. Additionally, the sex-specific analysis in this study provide
pilot results for potential sex differences in Deep and Lobar ICH as sex is an important
factor in ICH pathology and pathophysiology.>175-177 Due to this limited sample size,

all CAA cases in Lobar ICH were in Male subjects. These discoveries must be validated

in a cohort containing more female subjects. Since clinical severity, hematoma volumes

and edema volumes were not controlled for in this study, and since they can affect gene
expression,** they need to be considered in future studies. Future studies will need to
compare Deep ICH only associated with hypertension to Lobar ICH only associated with
CAA to better clarify the differences due to these different ICH causes, rather than just
considering location as in this study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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LC Lobar ICH and Control

LvC Lobar ICH vs. Control

NK Natural Killer

NKT Natural Killer T

PCA Principal Component Analysis
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SAH Subarachnoid Hemorrhage

SD Standard Deviation

TBI Traumatic Brain Injury

Th T Helper

VRFC Vascular Risk Factor-matched Control

WGCNA Weighted Gene Co-expression Network Analysis

Complete abbreviations list (including gene symbols) can be found in the Supplemental
Abbreviations.
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A. Number of Differentially Expressed Genes Based on ICH Location (Per-Gene Analysis)
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Fig. 1.
Venn Diagrams of differentially expressed gene lists from the per-gene analyses of Deep

ICH vs. VRCF and Lobar ICH vs. VRFC (A). The genes from these lists pass p < 0.005 and
FC > I1.2I for the specific contrast, as well as BH < 0.05 for Group. Deep ICH vs. VRFC is
hereafter referred to in the text as DeepPerGene; Lobar ICH vs. VRFC is hereafter referred
to in the text as LobarPerGene. Principal Component Analyses (PCA) of the top 100 most
differentially expressed genes in DeepPerGene (B) and LobarPerGene (C). Ellipsoids in (B)
and (C) represent 2 standard deviations from the centroid of each group. ICH — intracerebral
hemorrhage; VRFC — vascular risk factor control.
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B. Canonical Pathways Enriched in Lobar ICH
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Fig. 2.

Pathway enrichment presented for DeepPerGene (Deep ICH vs. VRFC) (A) and
LobarPerGene (Lobar ICH vs. VRFC) (B) gene lists. The top 20 relevant significant
pathways are displayed. Bar shading represents activity pattern prediction (blue for
suppression/negative Z-score and orange for activation/positive Z-score) where darker color
represents larger absolute Z-score; * represents statistically significant activity pattern
prediction (Z = 2, significant activation in the ICH subgroup compared to VRFC; Z <

-2, significant suppression in the ICH subgroup compared to VRFC). X-axis: —logyo (BH
p-value). Any pathway having —log;g (BH p value) > 1.3 (corresponding to BH p < 0.05;
depicted by vertical black line) is significant. Lymph. — Lymphocyte; Reg. — Regulation;

Comm. — Communication.
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B. T Cell Canonical Pathways in Deep and Lobar ICH
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C. Monocyte / Macrophage Function Terms in Deep and Lobar ICH
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D. Neutrophil Function Terms in Deep and Lobar ICH
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Fig. 3.

Hgatmaps depicting relevant Cytokine Signaling (A) and T Cell (B) pathways and heatmaps
depicting relevant Monocyte and Macrophage (C) and Neutrophil (D) biofunctions. Data
presented for pathways/functions where at least one location-associated list was significant.
Purple shading represents —log1g(BH p value) where 1.3 corresponds to a BH p value

of 0.05; higher —log1o(BH p value) corresponds to lower (more significant) BH p value.
Non-significant pathways/functions are displayed as white cells. * Function/pathway has a
significant activity pattern prediction. If asterisk is orange, the pathway is activated in the
ICH subgroup vs. VRFC; if asterisk is blue, the pathway is suppressed in the ICH subgroup
vs. VRFC.
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Heatmap of Significant Gene List Enrichment in Cell Type Specific Genes

A. Per Gene B. WGCNA Deep ICH
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Fig. 4.
Enrichment in cell-type specific gene lists for the per-gene lists (A) and WGCNA modules

(B). Purple shading represents —log1o(p value) where 1.3 corresponds to a p value of 0.05;
higher —logyo(p value) corresponds to lower (more significant) p value. Non-significant
hypergeometric probabilities are displayed as white cells. In panel (A), Deep ICH results
are based on genes differentially expressed in Deep ICH vs. VRFC, and Lobar ICH —

genes differentially expressed in Lobar ICH vs. VRFC. In panel (B), blue and red shading
represents the beta coefficient for Group in a linear regression on the module eigengene (red
represents genes upregulated in ICH; blue - downregulated in ICH). Significance for clinical
parameters is presented in rows under Contrast Regression Beta; enrichment of hub gene
lists in cell-type specific lists presented at the bottom. *Cell-type specific list from Watkins
et al.24; **Cell-type specific list from Chtanova et al.2> For more comprehensive coverage
of T cell-specific genes, ST1 and ST2 from Chtanova et al. were used; no overlaps with
Watkins et al. Th and Tc lists were found.

Brain Hemorrhages. Author manuscript; available in PMC 2023 March 16.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Knepp et al.

Page 35

PCA and Hierarchical Clustering on Genes Differentially Expressed Between Deep ICH and Lobar ICH

A. PCA (69.0%) B. Hierarchical Clustering
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Fig. 5.
PCA (A) and Hierarchical Clustering (B) on the Deep ICH vs. Lobar ICH gene list

(hereafter referred to as DeepVsLobar). These 36 genes differentiated Deep and Lobar ICH
subjects. Ellipsoids in (A) represent 2 standard deviations from the centroid of each group.
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A. DC-Grey60 (higher expression in Deep ICH vs. VRFC) B. Significant Pathways in DC-Grey60
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Fig. 6.
Network diagrams for the Deep ICH modules DC-Grey60 (A) and DC-LightGreen (C) show

connectivity of hubs and genes within modules. Nodes represent genes within the module;
edges represent connections based on co-expression between genes. Weaker connections
and nodes with fewer connections have been filtered out to increase legibility. Larger
nodes with large labels are hub genes, representing potential master regulators. Genes are
grey by default and colored if they are cell type specific. Hubs, cell type specific genes,
and other selected genes labeled. In panel (A), the genes SOS2, SLA, APBB1/P, and
STAT3were members of both the Neutrophil specific and T Cell Receptors and Signaling
specific gene lists and were colored as Neutrophil-specific. Pathway enrichment presented
for DC-Grey60 (B) and DC-LightGreen (D). The top 20 relevant significant pathways

are displayed. Significance threshold —-log1o(BH p value) of 1.3 (corresponds to BH p
value of 0.05) depicted by a vertical black line. Higher —log1o(BH p value) corresponds

to lower (more significant) BH p value. Bar shading represents activity pattern prediction
(blue for suppression/negative Z-score and orange for activation/positive Z-score) where
darker color represents larger absolute Z-score; * represents statistically significant activity
pattern prediction (Z = 2, significant activation in Deep ICH compared to Controls; Z <

-2, significant suppression in Deep ICH compared to Controls). NO — Nitric Oxide; ROS —
Reactive Oxygen Species; Rec. — Receptor; Mac. — Macrophages; Mon. — Monocytes.
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A. LC-DarkGreen (higher expression in Lobar ICH vs. VRFC)
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B. Significant Pathways in LC-DarkGreen
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F. LC-Black (lower expression in Lobar ICH vs. VRFC) @G. Significant Pathways in LC-Black
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Fig. 7.
Network diagrams for the Lobar ICH modules LC-DarkGreen (A), LC-Pink (C), LC-Grey60

(E), LC-Black (F), and LC-RayalBlue (H) show connectivity of hubs and genes within
modules. Nodes represent genes within the module; edges represent connections based

on co-expression between genes. Weaker connections and nodes with fewer connections
have been filtered out to increase legibility. Larger nodes with large labels are hub genes,
representing potential master regulators. Genes are grey by default and colored if they are
cell type specific. Hubs, cell type specific genes, and other selected genes are labeled. In
panel (A), the genes SOS2and OSBPLEwere members of both the Neutrophil specific and
T Cell Receptors and Signaling specific gene lists and were colored as Neutrophil-specific.
In panel (C), the genes SLA and APBB1/Pwere members of both the Neutrophil specific
and T Cell Receptors and Signaling specific gene lists and were colored as Neutrophil-
specific. In panel (H), the gene CASK was a member of both the T Cell specific and

the T Cell Receptors and Signaling specific gene lists and was colored as T Cell-specific.
Pathway enrichment presented for LC-DarkGreen (B), LC-Pink (D), LC-Black (G), and
LC-RoyalBlue (I); LC-Grey60 had no significant pathway enrichment. The top 20 relevant
significant pathways are displayed. Significance threshold -log;o(BH p value) of 1.3
(corresponds to BH p value of 0.05) depicted by a vertical black line. Higher —log;o(BH

p value) corresponds to lower (more significant) BH p value. Bar shading represents activity
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pattern prediction (blue for suppression/negative Z-score and orange for activation/positive
Z-score) where darker color represents larger absolute Z-score; * represents statistically
significant activity pattern prediction (Z = 2, significant activation in Lobar ICH compared
to Controls; Z < -2, significant suppression in Lobar ICH compared to Controls). Reg. —
Regulation; Lymph. — Lymphocytes; Expr. — Expression; Act. — Activated; NO — Nitric
Oxide; ROS - Reactive Oxygen Species; Junct. — Junction; Comm. — Communication.
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Comparison of Sex-Specific Per-Gene Lists in Deep and Lobar ICH

A. B.
Lobar ICH vs. Lobar ICH vs. VRFC
VRFC in Males in Females
30 genes 1,531 genes 252 genes 584 genes

27% 1,528**
3

C. o D.
Lobar ICH vs. VRFC Lobar ICH vs. VRFC
Unique to i Unique to
Males™ Females ™*
27 genes 238 genes 1,528 genes 570 genes

1,249
Fig. 8.

Comparison of Male and Female differentially expressed genes in Deep ICH vs. VRFC (A)
and Lobar ICH vs. VRFC (B). Lists are genes passing p < 0.005 and FC > [1.2| for the
specific contrast. Comparison of the Male unique gene lists in Deep ICH and Lobar ICH
(C) and the Female unique gene lists in Deep ICH and Lobar ICH (D). *These genes are
the Male-specific Deep ICH genes hereafter referred to as Male-DvC and analyzed in IPA
and DAVID. **These genes are the Female-specific Deep ICH genes hereafter referred to
as Female-DvC and analyzed in IPA and DAVID. TThese genes are the Male-specific Lobar
ICH genes hereafter referred to as Male-LvC and analyzed in IPA and DAVID. TTThese
genes are the Female-specific Lobar ICH genes hereafter referred to as Female-LvC and
analyzed in IPA and DAVID.
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Pathway Enrichment of Sex-Specific Lists in Each Location

Deep ICH Lobar ICH
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CD28 Signaling in T Helper Cells CD28 Signaling in T Helper Cells ]
Role of NFAT in Regulation of the Immune Response Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes mmmmm
Tec Kinase Signaling T Cell Receptor Signaling s+
Calcium-induced T Lymphocyte Apoptosis Role of NFAT in Regulation of the Immune Response s
T Cell Receptor Signaling s Calcium-induced T Lymphocyte Apoptosis s
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Nur77 Signaling in T Lymphocytes | Antiproliferative Role of TOB in T Cell Signaling pes
Communication between Innate and Adaptive Immune Cells ; T Cell Exhaustion Signaling Pathway
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Cytotoxic T Lymphocyte-mediated Apoptosis of Target Cells | SAPK/JNK Signaling
-log(B-H p-value)
000510
[}
© Apelin Liver Signaling Pathway No pathways passing BH p<0.05 significance
= DNA Methylation and Transcriptional Repression Signaling
Fig. 9.

Pathway enrichment presented for sex-specific per gene lists in each location. The Y axis
indicates Female lists (top) and the Male lists (bottom). The X-axis indicates Deep ICH
(left) and Lobar ICH (right). The top 20 relevant significant pathways are displayed. No
pathways were significant in Male-LvC. Bar shading represents activity pattern prediction
(blue for suppression/negative Z-score and orange for activation/positive Z-score) where
darker color represents larger absolute Z-score; * represents statistically significant activity
pattern prediction (Z = 121). Color legend as in Fig. 2.
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__Deep ICH-Unique
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Th2 Pathway

G Beta Gamma
Signaling

G Protein Signaling
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Estrogen Receptor|
Signaling

Glycerol
Degradation |

Top pathways in each analysis showcase common and different responses in Deep ICH
and Lobar ICH. Listed pathways represent the top 5 most significant in each gene list and
module, the top 5 most significant unique to each location not already listed, and other
selected pathways. Circles represent modules/per-gene lists associated with each location;
squares represent canonical pathways. Pathways with yellow outline have DeepVsLobar
(Deep ICH vs. Lobar ICH) gene involvement. This involvement indicates that even in
common pathways, there may be differences between locations. LC-Grey60 was omitted
from the figure since it did not have BH p < 0.05-passing pathways.
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Table 1
Subject Demographics.
Demographics Vascular Risk Deep L obar
Factor Intracerebral Intracerebral
Controls Hemorrhagea Hemorrhageb
Subjects (#) 31 19 9
Sex (M, F), # (%) 22 (71%), 9 (29%) 15 (79%), 4 (21%) 6 (67%), 3 (33%)
Diabetes, # (%) 5 (16%) 2 (11%) 1 (11%)
Hypertension, # (%) 21 (68%) 14 (74%) 5 (56%)
Hypercholesterolemia, # (%) 11 (35%) 2 (11%) 3(33%)
Race, # (%)
Asian 6 (19%) 0 (0%) 2 (22%)
Black/African American 1 (3%) 3 (16%) 2 (22%)
White 18 (58%) 9 (47%) 2 (22%)
Other/Unknown 6 (19%) 7 (37%) 3 (33%)
Age (years, Mean + SD) 62.2+12.2 56.3+12.8 68.2+11.8
Min, Max 34,853 37,91.6 50.2,83.8
Q1, Q2/Median, Q3 54.9, 63.3, 68.9 49.1, 55.4, 59.6 59.7,67.6,79.9
Time Since Event (hours, Mean + SD) - 50.2+31.3 71.5+20.8
Min, Max - 4.2,101.3 37.7,98.2
Q1, Q2/Median, Q3 - 22.7,39.6, 80.7 54.4,73.7,89.2
Smoking, # (%)
Yes — Present 6 (19%) 6 (32%) 1(11%)
Yes — Past 12 (39%) 3 (16%) 3 (33%)
Never 13 (42%) 10 (53%) 2 (22%)
Unknown 0 (0%) 0 (0%) 3 (33%)

a - . .
Hemorrhages in in the basal ganglia, thalamus, cerebellum, and pons/brainstem.

b . . . .
Hemorrhages in the cortex that could extend into adjacent white matter.
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