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Degrees of Freedom of MIMO X Networks:

Spatial Scale Invariance, One-Sided Decomposability and Linear

Feasibility∗

Hua Sun, Chunhua Geng, Tiangao Gou and Syed A. Jafar

Department of Electrical Engineering and Computer Science

University of California, Irvine, Irvine, CA 92697

E-mail : {huas2, chunhug, tgou, syed}@uci.edu

Abstract

We show that an M × N user MIMO X network with A antennas at each node has

A
(

MN
M+N−1

)
degrees of freedom (DoF), thus resolving in this case a discrepancy between the

spatial scale invariance conjecture (scaling the number of antennas at each node by a constant
factor will scale the total DoF by the same factor) and a decomposability property of over-
constrained wireless networks. While the best previously-known general DoF outer bound is
consistent with the spatial invariance conjecture, the best previously-known general DoF inner
bound, inspired by the K user MIMO interference channel, was based on the decomposition
of every transmitter and receiver into multiple single antenna nodes, transforming the network
into an AM × AN user SISO X network. While such a decomposition is DoF optimal for the
K user MIMO interference channel, a gap remained between the best inner and outer bound
for the MIMO X channel. Here we close this gap with the new insight that the MIMO X
network is only one-sided decomposable, i.e., either all the transmitters or all the receivers (but
not both) can be decomposed by splitting multiple antenna nodes into multiple single antenna
nodes without loss of DoF. The result is extended to SIMO and MISO X networks as well and
in each case the DoF results satisfy the spatial scale invariance property. In addition, the feasi-
bility of linear interference alignment is investigated based only on spatial beamforming without
symbol extensions. Similar to MIMO interference networks, we show that when the problem is
improper, it is infeasible.

∗This work was presented in part at ISIT 2012 [1]. The work was supported by ONR grant N00014-12-10067, by
NSF CCF-1161418 and by a gift from Broadcom.
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1 Introduction

The use of multiple antennas, known as multiple input multiple output (MIMO) technology, and
the consolidation of interference, known as interference alignment (IA), are two of the promis-
ing advances of the last two decades that seek to alleviate the spectrum shortage for wireless
communication networks by making available additional spatial degrees of freedom (DoF). Taken
individually, the understanding of MIMO is by now quite mature, and rapid advances have re-
cently been made in understanding the essential principles of IA through DoF studies of a variety
of network settings. Taken together, however, the understanding of MIMO in conjunction with
IA – the understanding of the spatial dimension per se – is limited by a number of unresolved
fundamental issues. In terms of systematic insights, a number of properties have been identified in
[2] that are true for all known DoF results, and conjectured to be true in general (i.e., for almost all
channel realizations), but for which a general proof (or counter-example) is not yet known. These
observations include the duality property (reciprocal networks have the same DoF), the diversity
property (time-varying channels have the same DoF as constant channels), the linearity property
(linear beamforming schemes over time-varying channels are sufficient to achieve the information
theoretic DoF), and especially relevant to this work, the properties of spatial scale invariance and
decomposability. Remarkably, these two properties, which hold for all DoF results known previ-
ously, contradict each other for MIMO X networks. Resolving this curious discrepancy is an open
problem that is highlighted in [3] (Page 81, Sec. 5.4). The main motivation of this work is to solve
this open problem.

1.1 Spatial Scale Invariance and Decomposability

1.1.1 Spatial Scale Invariance

It is well understood that the DoF of wireless networks are scale-invariant with respect to time and
frequency dimensions. Wang et al. have recently conjectured in [4] that the spatial dimension is
similarly scale invariant:

“With perfect global channel knowledge and generic channels, if the number of antennas at each
node in a wireless network is scaled by a common constant factor, then the DoF of the network (for
almost all channel realizations) scale by the same factor.”

The spatial scale invariance conjecture is consistent with all known DoF results across a wide
variety of networks, which includes interference networks, X networks, cellular networks, and even
multi-hop networks [3]. In particular, we note that for the 2 × 2 user MIMO X channel with
A antennas at each node, the DoF value is known to be 4A

3 [5, 6], which scales with A and is
therefore, consistent with the spatial scale invariance conjecture. Even for the M ×N user MIMO
X network (i.e., an X network with M transmitters and N receivers) with A antennas at each node,

if min(M,N) ≤ 2, the DoF value is easily seen to be A
(

MN
M+N−1

)
, again spatial scale invariant [7].

However, if min(M,N) > 2, the DoF remain unknown. Interestingly, the best known DoF outer
bound for this setting is consistent with the spatial invariance conjecture [7].

1.1.2 Decomposability

We use the term “decomposition” to refer to independent processing at each antenna, essentially
splitting a multiple antenna node into multiple independent single antenna nodes. It was first
used to simplify the proof of achievability in the K user symmetric (equal number of antennas
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at all nodes) MIMO interference channel [8] where the DoF result obtained for the SISO setting
was immediately extended to the symmetric MIMO setting by decomposing the K user MIMO
interference network with A antennas at each node, into an AK user SISO interference network,
where the asymptotic CJ alignment scheme [3, 8] can be applied to show that AK/2 DoF are
achievable, without joint processing among co-located antennas at any node. Since AK/2 is also
the DoF outer bound for the K user symmetric MIMO interference network, it is evident that
the network is decomposable, i.e., no loss of DoF results from decomposing all transmitters and
receivers. The decomposability property is also known to be true for K user MIMO interference
networks with At antennas at each transmitter and Ar antennas at each receiver, giving us the
optimal (information theoretic) DoF value of AtAr

At+Ar
per user, provided that K ≥ At+Ar

gcd(At,Ar)
[9, 10].

Further study of the K user MIMO interference channel by Wang et al. leads to the conjecture that
decomposability holds in all over-constrained (also known as improper [11]) settings, i.e., where the
information theoretic DoF value per user is higher than At+Ar

K+1 . Based on previously existing DoF
results, a general pattern summarized in [3] states that:

“The DoF benefits of collocated antennas disappear with increasing number of alignment con-
straints”.

Evidently, this is because for over-constrained networks the multiplicity of alignment constraints
invariably requires the use of the CJ scheme [3, 7, 8], which does not require joint processing
across multiple antennas, instead breaking them into separate nodes. The CJ scheme is inherently
a decomposition based scheme because of its reliance on commutativity of channel matrices, a
property satisfied by the diagonal channels obtained by time/frequency symbol extensions of SISO
channels, but not by time/frequency extensions of MIMO channels (which would only produce
non-commuting block-diagonal channels).

The previously best known inner bound for M × N user MIMO X network with A antennas
at each node, and min(M,N) > 2, is also based on the decomposition argument and application
of the asymptotic CJ alignment scheme [7]. By decomposing every transmitter and receiver in an
M ×N user MIMO X network with A antennas at each node, we obtain an AM ×AN user SISO

X network, and therefore the corresponding DoF value, A
(

MN
M+N− 1

A

)
is achievable [7].

1.2 Summary of Contribution

The main goal of this work is to resolve, in the context of MIMO X networks, the apparent
discrepancy between the spatial invariance conjecture, as represented by the best available DoF
outer bound, and the decomposability property, as represented by the best available DoF inner
bound. As mentioned above, for M ×N user MIMO X network with A antennas at each node, and

with min(M,N) > 2, there remains a gap between the best DoF outer bound value, A
(

MN
M+N−1

)
,

and the best DoF inner bound value, A
(

MN
M+N− 1

A

)
. This gap represents an opportunity to refine our

understanding of the spatial invariance and decomposability properties. While the gap may seem
small for large values of A, note that because DoF is a very coarse metric, even a small gap between
DoF bounds corresponds to unbounded gaps in the corresponding capacity bounds. To summarize
the motivation for this work, MIMO X networks represent an important class of wireless networks,
a precise DoF characterization is highly desirable, it would close the open problem highlighted in
[3], and improve our understanding of the fundamental structure of signal dimensions.

The main contribution of this work is the precise DoF characterization for M ×N user MIMO
X networks with A antennas at each node (and all SIMO and MISO X network settings). This
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involves both new insights as well as new technical challenges. In terms of new insights, we settle
the spatial invariance conjecture for MIMO X networks with A antennas at each node, i.e., we show
that the DoF outer bound is tight, also closing the heretofore open DoF problem for these networks.
The discrepancy with the previous inner bound is resolved by improving our understanding of the
decomposability property. We find that, unlike MIMO interference networks which demonstrate a
two-sided decomposability, i.e., both the transmitters and receivers can be decomposed into single
antenna nodes, MIMO X networks are only one-sided decomposable, i.e., either the transmitters or
the receivers (but not both simultaneously) can be decomposed into single antenna nodes without
loss of DoF. Interestingly, this is not because of the alignment constraints. Indeed the alignment
still takes place very much like a SISO setting, based entirely on the CJ scheme. Instead, this is
because of the separability of desired and interference signals. As it turns out, joint processing
at one end, e.g., at the receivers in a SIMO X network, allows a larger space within which the
desired signals can be resolved more efficiently from the interference. The use of the CJ scheme for
achievability is significant because the same scheme often translates into the rational dimensions
framework to establish corresponding DoF results in static settings (see, e.g., [3, 12, 13]). Indeed,
the DoF results of this paper have been recently extended to constant settings by Zamanighomi
and Wang in [14]. One-sided decomposability features prominently in [14] as well.

While the new insights are the key ingredient to closing this open problem, there are non-trivial
technical challenges involved as well. In particular, the mathematical proof of the resolvability of
desired signals from interference with joint processing across the non-decomposed receivers (the
reciprocal setting follows by duality), poses new challenges. This requires proving the full rank
property of a matrix (signal space matrix) whose columns represent the received signal vectors and
whose rows represent the receive antennas and channel uses. What complicates matters is that this
matrix contains dependencies across both rows and columns. The dependencies across rows arise
because of the multiple receive antennas that receive different linear combinations of the same set
of symbols over each channel use. The dependencies across columns arise due to the X setting,
because each channel coefficient is involved with both desired and interfering signals. When taken
individually, the dependencies across rows have been addressed in the MIMO interference network
setting by Gou and Jafar in [9] and the dependencies across columns have been addressed in the
X network setting by Cadambe and Jafar in [7]. However, as it turns out, dealing with both kinds
of dependencies simultaneously is especially challenging. Our proof relies on a slightly modified CJ
scheme, and uses mathematical induction to construct the overall signal space matrix in a stepwise
manner by appending blocks of rows and columns while at each stage proving that this does not
introduce rank deficiencies.

Finally, as a relatively minor addendum, we visit the issue of linear feasibility that has previously
attracted much research interest for MIMO interference networks, and study it here in the context
of MIMO X networks. Linear feasibility refers to the achievability of interference alignment in a
wireless network based only on spatial beamforming, i.e., without symbol extensions. Starting with
a general formulation of the feasibility of linear interference alignment by Gomadam et al. in the
context of interference networks [15], the feasibility question was explored by Cenk et al. in [11] in
terms of the solvability of a set of multivariate polynomial equations, leading to the categorization of
an IA problem as improper or proper based on whether or not the number of equations exceeds the
number of involved variables, and the conjecture that proper systems (combined with information
theoretic bounds) are likely to be feasible and improper systems are likely to be infeasible. This
conjecture is recently settled completely in one direction and partially in the other direction in
several recent works [4, 16, 17]. In particular, it has been shown that in interference channel setting

4



improper systems are infeasible. Here, we extend this result to the MIMO X setting. Following the
approach of [16, 17], we establish that in arbitrary (not limited to symmetric) MIMO X networks,
the improperness of the underlying polynomial system implies infeasibility of linear IA as well.

2 System Model

An M×N user MIMO X network is a single-hop communication network with M transmitters and
N receivers, where transmitter i has message W [ji] for receiver j, for each i ∈ {1, 2, . . . ,M}, j ∈
{1, 2, . . . , N}. Transmitter i has Ai antennas and receiver j has Bj antennas. The M × N user
MIMO X network is described by input-output relationship

Y[j](κ) =
∑

i∈{1,2,...,M}

H[ji](κ)X[i](κ) + Z[j](κ), j ∈ {1, 2, . . . , N}

where κ represents the channel use index, X[i](κ) is the Ai × 1 input signal vector of the ith

transmitter, Y[j](κ) is the Bj × 1 output signal vector of the jth receiver and Z[j](κ) represents the
Bj × 1 additive white Gaussian noise (AWGN) vector at the jth receiver. The average transmit
power at each transmitter is bounded by ρ (referred to as the Signal-to-Noise Ratio) and the i.i.d.
noise variance at all receivers is assumed to be equal to unity. H[ji](κ) represents the Bj × Ai
channel matrix between transmitter i and receiver j at channel index κ. We assume that all
channel coefficient values are time-varying, i.i.d., drawn from a continuous distribution and the
absolute value of all the channel coefficients is bounded between a non-zero minimum value and a
finite maximum value. Perfect knowledge of all channel coefficients is available to all transmitters

and receivers. Let Rji(ρ) = log |W [ji](ρ)|
κ0

denote the rate of the codeword encoding the message W [ji],

where |W [ji](ρ)| is the size of the message set and κ0 is the length of the codeword. The rate Rji(ρ)
is said to be achievable if for message W [ji], the probability of error can be made arbitrarily small
with appropriately large κ0. The closure of all achievable rate tuples is known as the capacity region.
The DoF for message W [ji] is defined as dji = limρ→∞Rji(ρ)/ log(ρ), which can be interpreted as
the number of independent signaling dimensions available for W [ji]. Analogous to the capacity
region, the DoF region, D, is the closure of the set of all achievable DoF tuples. The sum-DoF
value is defined as maxD

∑
1≤i≤M,1≤j≤N dji. The symmetric DoF is the highest value d, such that

the DoF allocation (d, d, · · · , d), is inside the DoF region.

3 Results

In this section we present the statements of the main results along with some expository discussion.
The proofs are relegated to the next section.

3.1 Spatial Scale Invariance and Decomposability

The main result is presented in the following theorem.

Theorem 1 The M ×N user MIMO X network with A antennas at each node has A
(

MN
M+N−1

)
total DoF almost surely.
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·
Va 0
0 Va

¸·
Vc 0
0 Vc

¸ ·
H[3i]Vb

H[4i]Vb

¸
i = 1, 2, . . . 6

·
Vb 0
0 Vb

¸·
Vc 0
0 Vc

¸ ·
H[1i]Va

H[2i]Va

¸
i = 1, 2, . . . 6

·
Va 0
0 Va

¸·
Vb 0
0 Vb

¸ ·
H[5i]Vc

H[6i]Vc

¸
i = 1, 2, . . . 6

Interference Desired Signals

Figure 1: IA after one-sided decomposition on the 3× 3 MIMO X channel

While a detailed proof appears in Section 4.2, let us convey the essence of the achievable scheme
through a simple example presented in a manner consistent with the tutorial [3]. Consider the 3×3
MIMO X network with 2 antennas at each node, i.e., M = N = 3, A = 2, as shown in Figure
1. We split all the transmit antennas and view them as 6 independent transmitters. Each virtual
transmitter selects the same beamforming matrices (thereby same signal space) Va,Vb,Vc, for
receiver a, b, c, respectively, over n symbol extensions. The signal space seen by each receiver
has 2n dimensions. Consider the symbols desired by receiver a, which constitute interference at
receivers b, c. These symbols are transmitted by each transmitter along the signal space designated
as Va. Note that because each receiver has 2 antennas while each (decomposed) transmitter has
only 1 antenna, the symbols sent from any two transmitters cannot align with each other at any
receiver. In other words, one-to-one alignments are not possible. Therefore, in order to consolidate
the interference caused by Va at receivers b, c as much as possible, we turn to a many-to-many
alignment scheme. Specifically, the Va spaces from transmitters 1, 2 occupy 2|Va| dimensional
interference space at each undesired receiver (receivers b and c) and all the remaining undesired
Va space signals sent from transmitters 3 to 6 are incorporated into these 2|Va| dimensions. As
shown in Figure 1, let us set the interference space occupied by signals sent along Va, as seen by
receivers b, c, to Va ×Va, i.e., the column span of the matrix[

Va 0
0 Va

]
(1)

in which all interference will be aligned, i.e.,

span

[
T3iVa

T4iVa

]
⊂ span

[
Va 0
0 Va

]
, ∀i = 1, 2, . . . , 6 (2)

and

span

[
T5iVa

T6iVa

]
⊂ span

[
Va 0
0 Va

]
, ∀i = 1, 2, . . . , 6 (3)
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where Tji denote the interference-carrying matrices (same as H[ji] in the figure). All of these
alignment conditions can be satisfied with the CJ alignment scheme [3]1

Va ≈ TjiVa,∀i = 1, 2, . . . , 6, j = 3, 4, 5, 6. (4)

Similarly, the three messages for receiver b are sent along the same signal space Vb by each trans-
mitter, and align into the same space Vb ×Vb at receivers a, c where they constitute interference.
Lastly, Vc×Vc spans the total interference space due to the messages intended for receiver c , as seen
by receivers a, b. The size of the signal spaces are chosen to be equal, i.e., |Va| = |Vb| = |Vc| = |V|,
and |V×V| = 2|V|. We can easily see that at each receiver, desired signals from all 6 transmitters
occupy 6|V| dimensions, and interference (namely signals intended for the other two receivers) occu-
pies 4|V| dimensions. After aligning the interference, we need to guarantee the linear independence
of desired signals from interference. This is proved in Section 4.2.

For the desired and interference spaces to be linearly independent, we need the size of the
total signal space, 2n, to be big enough to accommodate both. This is accomplished by setting

10|V| = 2n. The total accessible DoF for the network equal 3×6|V|
n = 18

5 = A
(

MN
M+N−1

)
, as desired.

The statement of Theorem 1 can be further generalized to SIMO and MISO settings, as in
Theorem 2.

Theorem 2 The M ×N user SIMO X network with a single antenna at each transmitter and R
antennas at each receiver, as well as its reciprocal channel, the N ×M MISO X network, almost
surely has a total of

DoF = min

(
M,

MNR

M +NR−R

)
.

In addition, the DoF in both cases satisfy the spatial scale invariance property.

Note that Theorem 1 is a special case of Theorem 2 when R = 1 and the scaling factor is specified
by A.

3.2 Linear Feasibility

When considering linear IA without symbol extension, we assume transmitter i intends to send dji
independent streams to receiver j using a precoding matrix V[ji] of dimension Ai × dji. Receiver j
zero-forces all the interference with a receive filter matrix U[j] of dimension Bj ×

∑
i dji. The IA

solution requires the simultaneous satisfiability of the following conditions:

U[k]†H[ki]V[ji] = 0, ∀j 6= k (5)

rank
(
U[j]†

[
H[j1]V[j1], . . . ,H[jM ]V[jM ]

])
=
∑
i

dji, ∀i, j (6)

where i ∈ {1, 2, . . . ,M}, j, k ∈ {1, 2, . . . , N}. A† denotes the conjugate transpose of the matrix A,
and [A,B] represents horizontal concatenation of matrices A and B. The IA condition (6) implies
that V[ji] and U[j] must have full column rank.

1The notation Va ≈ TjiVa means that
dim(span(Va)∩span(TjiVa))

dim(span(Va)∪span(TjiVa))
asymptotically approaches 1.
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It is well known that linear IA schemes satisfy reciprocity [15]. In the reciprocal network, the
direction of communication is switched, and transmitter j intends to send d̃ij = dji DoF to receiver

i. The precoding filter Ṽ[ij] is obtained by splitting U[j], i.e., U[j] =
[
Ṽ[1j], Ṽ[2j], . . . , Ṽ[Mj]

]
,

where Ṽ[ij] is a Bj × dji matrix. The receiving filter Ũ[i] at receiver i is
[
V[1i],V[2i], . . . ,V[Ni]

]
with dimension Ai×

∑
j dji. Then the linear IA feasibility conditions in the reciprocal network are

Ũ[l]†H̃[lj]Ṽ[ij] = 0, ∀i 6= l (7)

rank
(
Ũ[i]†

[
H̃[i1]Ṽ[i1], . . . , H̃[iN ]Ṽ[iN ]

])
=
∑
j

dji, ∀i, j (8)

where i, l ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N}, and H̃[ij] denotes the reciprocal channel from trans-
mitter j to receiver i. Also (8) requires that Ṽ[ij] and Ũ[i] are full column rank.

Remark: Note the subtle but essential difference between the MIMO interference channel and
MIMO X network, evident in the asymmetric form of the feasibility conditions (5) (6) where only
one filter matrix U[k] is associated with a receiver and accounts for all received messages, but
multiple precoding matrices V[ji] are associated with each transmitter, one corresponding to each
message originating at that transmitter. Similarly, in the reciprocal network, at receiver i multiple
precoding matrices V[ji] in the original network are combined into one receiving filter Ũ[i], and the
receiving filter U[j] in the original network are split into multiple matrices as the new precoding
matrices Ṽ[ij]. This may be also seen as an intriguing form of one-sided decomposition. Note that
a two-sided decomposition is also possible, but it would produce a less tight condition, whereas
as we will see soon with some examples, the condition obtained with this one-sided decomposition
approach will turn out to be tight in the critical test cases (settings with no redundant dimensions).

In the above context, we have the following theorem.

Theorem 3 Consider the M × N user symmetric MIMO X network where each transmitter is
equipped with A and each receiver is equipped with B antennas, every transmitter intends to send
d DoF to every receiver. If a feasible linear IA solution exists, the symmetric DoF d must satisfy

d ≤ A+B

MN + 1
. (9)

Remark: The result can be shown for arbitrary antenna configurations, without any symmetry
assumptions, but is stated here for the symmetric setting where it can be expressed in a compact
form. The result essentially states that improper systems are infeasible. The proof is virtually
identical to [16, 17].

Note that since we are only making a claim about “infeasibility” we can over-count the variables
and still have a valid, albeit less interesting, result. We will, however, check if our threshold is tight
through some examples. Note from the recently solved 3 user MIMO interference channel [4], that
the settings with no redundancy (where neither A nor B can be reduced without losing DoF) are
the ones where the feasibility condition matches the information theoretic DoF value.

Example to Check Tightness of Threshold Value: Consider a 2× 2 user X channel, where each
transmitter is equipped with 2 antennas and each receiver is equipped with 3 antennas. We already
know that d = 1 is tight here, i.e., information theoretically there is no redundancy in the number
of antennas on either side. Also the threshold value from our bound (9) is 2+3

2×2+1 = 1. This is
a good sanity check that our improper condition is not generally loose, i.e., the variables are not
being generally over-counted. Similarly, in a 2×K user MIMO X network, where each transmitter
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is equipped with K antennas and each receiver is equipped with K+1 antennas, one can also verify
that d = 1 is tight and there is no redundant antenna dimension. Again our bound (9) provides a
value K+K+1

2K+1 = 1 which is tight as well.

4 Proofs: Spatial Scale Invariance and Decomposability of MIMO
X Networks

We only need to prove Theorem 2 which includes Theorem 1 as a special case, as stated before.
The outer bound proof, presented next, is straightforward and is provided mainly for completeness.
The main challenging aspect is the achievability proof presented subsequently.

4.1 Outer Bound on the DoF of MIMO X networks

The M × N user SIMO X network with a single antenna at each transmitter and R antennas at
each receiver is considered. The proof for its reciprocal setting, the N ×M MISO X network,
follows along the same lines.

Proof: When M ≤ R, the DoF value for the X network is bounded by the total number of
transmit antennas M , which is simply the single-user DoF bound.

When M > R: If we allow full cooperation among the first R transmitters, then it is equivalent
to the X network with M − R + 1 transmitters, the first transmitter equipped with R antennas
and all the other transmitters equipped with single antenna each, and N receivers, each equipped
with R antennas. In [7], it is shown that in X network, the number of DoF achieved by all the
messages associated with transmitter m or receiver n is upper bounded by max(Atm, B

r
n), where Atm

and Br
n stand for the number of antennas at the transmitter m and receiver n, respectively. Since

allowing cooperation among transmitters does not hurt the capacity, the number of DoF achieved
by all the messages associated with the first R transmitters and the receiver n is no more than
max(R,R) = R. This gives us the outer bound

N∑
q=1

R∑
m=1

dqm +
M∑

p=R+1

dnp ≤ R. (10)

Repeating the arguments for every R transmitters and each receiver n, we arrive at the outer bound
of the SIMO X network ∑

i∈{1,2...,M},j∈{1,2...,N}

dji ≤
MNR

M +NR−R
. (11)

Furthermore, the spatial scaling property of the outer bound is obvious from the derivation pre-
sented above.

4.2 Inner Bound on the DoF of MIMO X networks

As mentioned previously, the achievability proof of Theorem 2 is the main challenging aspect. The
proof first establishes the achievable DoF for SIMO and (by reciprocity) MISO X networks, and
then uses a one-sided decomposition argument to establish spatial scale invariance for this class of
networks.

Proof: When M ≤ R, beamforming and zero forcing are sufficient to achieve the DoF.

9



When M > R, the achievable scheme is based on interference alignment. Due to the reciprocity
of linear beamforming-based alignment, which states that if interference alignment is feasible in
the original network then it is also feasible in the reciprocal network, and the achievable DoF
are the same between the dual networks [7, 15], we only consider the SIMO case. Consider an n
symbol extension of the original channel. The value of n will be specified later. The input-output
relationship of the extended channel is described by

Y[j](κ) =

M∑
i=1

H[ji](κ)X[i](κ) + Z[j](κ) =

M∑
i=1

 H
[ji]
1 (κ)

...

H
[ji]
R (κ)

X[i](κ) + Z[j](κ), j ∈ {1, 2, . . . , N}(12)

where X[i](κ) is the n × 1 transmitted signal vector sent from the ith transmitter and Y[j](κ) is

the nR × 1 received signal vector at receiver j. H
[ji]
r (κ) represents the n× n channel matrix from

Transmitter i to the rth receive antenna of Receiver j, r ∈ {1, . . . , R}, i.e.,

H[ji]
r (κ) =


H

[ji]
r (n(κ− 1) + 1) 0 . . . 0

0 H
[ji]
r (n(κ− 1) + 2) . . . 0

... · · · . . .
...

0 0 · · · H
[ji]
r (nκ)

 . (13)

The channel-use index, κ, is suppressed from now on for compactness. Each transmitter selects
the same beamforming matrix Vj for precoding its symbols intended for Receiver j. Vj is an
n × |Vj | matrix whose columns are beamforming directions. The number of columns of Vj , i.e.,
the value of |Vj | will also be specified later in this proof. The transmit signal sent by Transmitter

i is X[i] =
∑N

j=1 Vjx
[ji], where x[ji] is the |Vj | × 1 vector of |Vj | data streams from Transmitter i

to Receiver j. The received signal at Receiver l, wherein l ∈ {1, 2, . . . , N}, is expressed as

Y[l] =
M∑
i=1

 H
[li]
1
...

H
[li]
R


 N∑
j=1

Vjx
[ji]

+ Z[l] (14)

=
M∑
i=1

N∑
j=1

 H
[li]
1 Vj
...

H
[li]
R Vj

x[ji] + Z[l] (15)

=
M∑
i=1

 H
[li]
1 Vl
...

H
[li]
R Vl

x[li]

︸ ︷︷ ︸
Desired Signal

+
M∑
i=1

N∑
j=1,j 6=l

 H
[li]
1 Vj
...

H
[li]
R Vj

x[ji]

︸ ︷︷ ︸
Interference

+Z[l]. (16)

Consider the symbols desired by Receiver 1, which constitute interference at receivers l ∈
{2, . . . , N}. These symbols are sent by each transmitter along the signal space designated as
V1. Note that because each receiver has R antennas while each transmitter has only 1 antenna,
the symbols sent from any R transmitters cannot align among themselves at any receiver. This
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is because the channel matrix from any R transmitters to the R-antenna receiver is invertible
almost surely. Therefore, the V1 spaces from transmitters 1, . . . , R, occupy an R|V1| dimensional
interference space at each undesired receiver l ∈ {2, . . . , N}. All the remaining undesired V1 space
signals sent from transmitters R+1, . . . ,M , are now aligned into these R|V1| dimensions as follows.

Let us choose V1 to satisfy the following alignment conditions.

V1 ≈ H
[li]
1 V1 ≈ · · · ≈ H

[li]
R V1, l ∈ {2, . . . , N}, i ∈ {1, . . . ,M}. (17)

Then all the interference due to signals sent along V1, as seen by receivers 2 to N , will be aligned
into the vector space V1 × · · · ×V1︸ ︷︷ ︸

R times

, i.e.,

span
[
H[li]V1

]
= span

 H
[li]
1 V1
...

H
[li]
R V1

 ≈ span


V1 0 · · · 0
0 V1 · · · 0
...

...
. . .

...
0 0 · · · V1

 ,
l ∈ {2, . . . , N}, i ∈ {1, . . . ,M}

(18)

Similarly, the N messages for Receiver j are sent along the same signal space Vj by each
transmitter and aligned into the same space Vj×· · ·×Vj at receivers l ∈ {1, . . . , j−1, j+1, . . . , N},
where they constitute interference. Then we have

Vj ≈ H[li]
r Vj , l ∈ {1, . . . , j − 1, j + 1, . . . , N}, i ∈ {1, . . . ,M}, r ∈ {1, . . . , R}. (19)

Define Ij =
⋃
l,i,r H

[li]
r Vj , which is the union of all interference terms due to signals transmitted

along Vj . The conditions (17), (19) can now be expressed as Vj ≈ Ij . These conditions are
satisfied simultaneously by the CJ scheme construction:

Vj =

{(∏
l,i,r

(H[li]
r )α

[li]
r

)
1, s. t.

∑
l,i,r

α[li]
r ≤ m,α[li]

r ∈ Z+,

l ∈ {1, . . . , j − 1, j + 1, . . . , N}, i ∈ {1, . . . ,M}, r ∈ {1, . . . , R}
}
, (20)

Ij =

{(∏
l,i,r

(H[li]
r )α

[li]
r

)
1, s. t.

∑
l,i,r

α[li]
r ≤ m+ 1, α[li]

r ∈ Z+,

l ∈ {1, . . . , j − 1, j + 1, . . . , N}, i ∈ {1, . . . ,M}, r ∈ {1, . . . , R}
}

(21)

where 1 is the n × 1 all 1 column vector. Thus Vj contains product terms up to degree m and
interference Ij contains product terms up to degree m+1. The size of the signal space Vj (number
of column vectors in Vj) and interference Ij , respectively, is

|Vj | =
(
m
L

)
, |Ij | =

(
m+ 1
L

)
(22)
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where L = MR(N − 1) is the total number of interference carrying channels. We denote |Vj | as
|V| and |Ij | as |I|, because they are the same for all j. Notice

|V|
|I|

=
m+ 1− L
m+ 1

→ 1 as m→∞ (23)

which means |V| ≈ |I|. At Receiver j, desired signals occupy M |V| dimensions and aligned inter-
ference occupies (N−1)R|I| dimensions. To avoid overlaps between desired signals and interference
the size of receive signal space, nR, must be at least as big as the sum of the dimensions of desired
signals and interference, nR ≥M |V|+R(N − 1)|I|, so we set n = M |V|/R+ (N − 1)|I|.2

Next we prove the linear independence of the desired signals from interference.
Let us first simplify the notation as follows. Relabel all the L interference carrying channels

H
[li]
r in Vj as T1 to TL and their corresponding exponents as α1 to αL. Similar change of notation

is also done within all Ij . Then

Vj =

{
(T1)

α1(T2)
α2 · · · (TL)αL1 :

L∑
i=1

αi ≤ m,α1, . . . , αL ∈ Z+

}
. (24)

Note that Vj is comprised of column vectors. For ease of exposition, we will impose a lex-
icographic order on these columns in the representation of Vj , as follows. First, we arrange all
columns from left to right in increasing order of α1. Then for columns of the same α1, we will
arrange them in increasing order of α2. In general, given the same tuple (α1, α2, · · · , αk), k < L,
we will arrange these columns in increasing order of αk+1. For example, consider the setting L = 3
and m = 5. Then Vj is represented as the matrix[
T1T2T3 T1T2T

2
3 T1T2T

3
3 T1T

2
2 T3 T1T

2
2 T

2
3 T1T

3
2 T3 T 2

1 T2T3 T 2
1 T2T

2
3 T 2

1 T
2
2 T3 T 3

1 T2T3
]
(25)

Such an ordering has the property that a tuple (α1, α2, · · · , αL) appears before the tuple (β1, β2, · · · , βL)
if and only if the first αi, which is different from βi, is smaller than βi. With this arrangement, we
have the following lemma.

Lemma 1 Consider a row vector

vj:k =
[
V1 V2 · · · Vk

]
(26)

which is obtained from the first to the kth column of an arbitrary row of matrix Vj. Now consider a

product of the form
∏R
i=1 Vki, ∀ki ∈ {1, · · · , k}. Note that each product is a monomial in variables

of Tl, l ∈ {1, 2, . . . , L}. Then,
∏R
i=1 Vki = (Vk)

R if and only if ki = k, for all i ∈ {1, · · · , R}.

Proof: Suppose Vk = Tα1
1 Tα2

2 · · ·T
αL
L . Then V R

k = TRα1
1 TRα2

2 · · ·TRαL
L . Suppose ∀ki ≤ k

we have Vki = T
β
[ki]
1

1 T
β
[ki]
2

2 · · ·T β
[ki]
L

L , i ∈ {1, · · · , R} such that
∑R

i=1 β
[ki]
j = Rαj , ∀j ∈ {1, · · · , L}.

According to the ordering of the V , since ki ≤ k, we have β
[ki]
1 ≤ α1, for all ki. So in order for∑R

i=1 β
[k1]
1 = Rα1, all β

[ki]
1 have to be equal to α1. Continuing this argument, given β

[ki]
j = αj for

all j < L, we have β
[ki]
j+1 ≤ αj+1 for all ki. So in order for

∑R
i=1 β

[ki]
j+1 = Rαj+1, all β

[ki]
j+1 have to be

equal to αj+1, leading to Vki = Vk.

2One can guarantee that n is an integer by, e.g., choosing m = LRz wherein z is the sequence of integers, so that
|V| = Rz

(
LRz−1
L−1

)
is divisible by R.

12



Without loss of generality, we will prove the linear independence of desired and interfering signal
spaces for Receiver 1. Let us define

D[1]
r =

[
H

[11]
r V1 H

[12]
r V1 · · · H

[1M ]
r V1

]
, r ∈ {1, . . . , R} (27)

which corresponds to the desired signal at the rth antenna of Receiver 1. Then the desired signal
at Receiver 1 is received along the columns of the following matrix,

D[1] =


D

[1]
1

D
[1]
2
...

D
[1]
R

 . (28)

Now consider the interference. According to our alignment scheme, the interference signal intended
for receiver l ∈ {2, . . . , N}, is aligned into the span of the columns of the following matrix,

El =


Il 0 · · · 0
0 Il · · · 0
...

...
. . .

...
0 0 · · · Il

 = IR ⊗ Il, l ∈ {2, . . . , N} (29)

where IR is the R × R identity matrix and ⊗ denotes the Kronecker product. As a result, all
interference signals are aligned into the span of the columns of the following matrix,

E[1] =
[

E2 · · · EN

]
. (30)

Therefore we need to show the nR× nR matrix F[1] = [D[1] E[1]] has full rank almost surely. We
will show that the desired signals are linearly independent among themselves and the desired signal
space does not overlap with the interference space, respectively.

The difficulty lies in the second step as there is dependency across both columns and rows in
the signal space matrix. The columns are dependent because in X networks, desired channels for
Receiver 1 are interfering channels for other receivers. The rows are dependent because we are
performing joint MIMO decoding, involving signals that are received at all receive antennas. So we
need to perform an induction on both columns and rows at the same time. At each induction step,
assuming the original matrix has full rank, we prove the new matrix formed by adding R columns
and R rows also has full rank. This is done by identifying a distinct monomial in the polynomial
expansion of the determinant. Both the block diagonal structure of the interference and the former
lexicographic ordering of the precoding vectors are important in the remainder of the proof, which
is described next.

Step 1: We first prove that the desired signals are linearly independent, i.e., the nR ×M |V1|
matrix D[1] has full rank almost surely. To do this, it is sufficient to prove the following M |V1| ×
M |V1| submatrix of D[1] has full rank almost surely.

D̄[1] =


D̄

[1]
1

D̄
[1]
2
...

D̄
[1]
R

 (31)
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where

D̄[1]
r =

[
H̄

[11]
r V̄1 H̄

[12]
r V̄1 · · · H̄

[1M ]
r V̄1

]
, r ∈ {1, · · · , R} (32)

is comprised of the first M |V1|
R rows of D

[1]
r , i.e., H̄

[1i]
r is a diagonal square matrix of dimension

M |V1|
R × M |V1|

R obtained from the first M |V1|
R rows and columns from matrix H

[1i]
r and V̄1 is the

M |V1|
R × |V1| matrix obtained from the first M |V1|

R rows of matrix V1. Essentially, we only con-

sider the signals received up to channel use index M |V1|
R . Note that D̄[1] has R block rows which

correspond to R antennas and M block columns which correspond to the desired signals from M
transmitters. To prove it is a full rank matrix, we will prove det(D̄[1]) 6= 0 almost surely. The

determinant is a polynomial of all channel coefficients up to channel index M |V1|
R . To prove it is

not equal to zero almost surely, it suffices to prove it is not a zero polynomial, which can be proved
by showing at least one specific channel realization exists such that the polynomial is not equal to
zero. We will set the channel coefficients such that D̄[1] becomes a block diagonal matrix with M
blocks and each block is a full rank matrix almost surely which leads to the conclusion that D̄[1]

has full rank almost surely as well. Specifically, consider the ith block column of D̄[1], i.e.,
H̄

[1i]
1 V̄1

H̄
[1i]
2 V̄1

...

H̄
[1i]
R V̄1

 , i ∈ {1, · · · ,M} (33)

which corresponds to the desired signal from Transmitter i. We set all rows except rows (i−1)|V1|+
1, · · · , i|V1| of D̄[1] to zero by setting the corresponding channel coefficients in matrix H̄

[1i]
r to zero.

This operation involves only channels that originate at Transmitter i, so they are independent of
other block columns. Note that this can be done because V̄1 does not contain channel coefficients
associated with Receiver 1. As a result, we convert matrix D̄[1] into a block diagonal matrix where
each block is a |V1| × |V1| matrix.

What remains to be shown is that each block is a full rank matrix almost surely. We will prove
this by showing that each block matrix satisfies two properties: 1) every entry of each row is a
distinct monomial; 2) each row is completely independent of the other rows. If both properties
are satisfied, then it follows from Lemma 1 in [7] that the matrix has full rank almost surely. It
can be easily seen that the first property is satisfied for each row due to the construction of V1.
We only need to prove the second property is satisfied as well. First notice that the rows may not
be independent due to the stack of matrix V̄1 which has M |V1|

R rows, corresponding to the signals
received at different antennas. In other words, each row of V̄1 appears periodically with period
M |V1|
R . As a result, if we choose K consecutive rows from D̄[1], the rows are not independent if

and only if K > M |V1|
R . Now we choose |V1| consecutive rows each time and |V1| < M |V1|

R because
R < M . As a result, each row is independent. Therefore, each block matrix is full rank almost
surely. So we have proved the desired signals are linearly independent almost surely.

Step 2: We will prove that the interference space does not overlap with the signal space. To do
that we first reorder the rows and columns of matrix F[1]. The columns of each El are reordered
as follows:

El =
[

IR ⊗ Il1 · · · IR ⊗ Il|Il|
]
, l ∈ {2, · · · , N} (34)

14



where Ilk denotes the kth column of matrix Il. Next, we arrange rows in increasing order of the
channel indices. The desired signal received at channel index κ is given by

D[1](κ) =


H

[11]
1 (κ) H

[12]
1 (κ) · · · H

[1M ]
1 (κ)

H
[11]
2 (κ) H

[12]
2 (κ) · · · H

[1M ]
2 (κ)

...
...

. . .
...

H
[11]
R (κ) H

[12]
R (κ) · · · H

[1M ]
R (κ)

⊗V1(κ) (35)

where V1(κ) denotes the κth row of V1. The interference caused by messages intended for Receiver
l at channel index κ is given by the following matrix

El(κ) =
[
Il1(κ)IR Il2(κ)IR · · · Il|Il|(κ)IR

]
, l ∈ {2, . . . , N} (36)

where Ilk(κ) denotes the element in the κth row and kth column of matrix Il. As a result, all signals
received at channel index κ are expressed as

F[1](κ) =
[

D[1](κ) E2(κ) · · · EN (κ)
]
. (37)

After rearranging the rows and columns, the matrix becomes

F[1] =

 F[1](1)
...

F[1](n)

 . (38)

Recall that in Step 1, we already proved that the desired signals are linearly independent almost
surely, i.e., the first M |V1| columns of F[1] are linearly independent. This was done by proving the
M |V1| ×M |V1| matrix D̄[1] has full rank almost surely. Note that D̄[1] corresponds to all rows of

the desired signals up to channel index T = M |V1|
R , i.e.,

D̄[1] =

 D[1](1)
...

D[1](T )

 (39)

after row rearrangements according to channel index. Next, we will start from D̄[1], and at each
induction step, append R rows and R columns to its bottom and right in F[1], and prove that the
resulting square matrix has full rank almost surely. These R rows and R columns intersect in an
R×R matrix. The blocks are added sequentially and every time the rows in the block correspond
to the received signal at channel use index T + κ, κ ∈ {1, · · · , (N − 1)|I|}. We will arrive at F[1] in
the end. Now we add the first block, i.e.,

G(1) =

[
D̄[1] B21

D[1](T + 1) I21(T + 1)IR

]
=


D[1](1)

...

D[1](T )

D[1](T + 1)

I21(1)IR
...

I21(T )IR
I21(T + 1)IR

 . (40)

We will now prove that G(1) has full rank, i.e., det(G(1)) 6= 0 almost surely. The entries in
D[1](T+1) and I21(T+1)IR are independent of the entries in D̄[1] and B21 because they correspond
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to different channel uses. Fix D̄[1] and B21, then det(G(1)) is a polynomial in variables of the entries
in D[1](T +1) and I21(T +1)IR. Each term in polynomial det(G(1)) is a product of R entries, each
chosen from a distinct row and distinct column of

[
D[1](T + 1) I21(T + 1)IR

]
. One of these is the

term det(D̄[1])(I21(T +1))R. To prove det(G(1)) 6= 0 almost surely, it is sufficient to prove it is not
a zero polynomial, which can be proved if (I21(T + 1))R is a unique monomial. Since D[1](T + 1)
contains channel coefficients associated with Receiver 2 while (I21(T + 1))R does not contain those
coefficients, we have to choose all R entries from I21(T +1)IR to produce (I21(T +1))R. Therefore,
it is a unique monomial and G(1) has full rank.

We proceed similarly to add the κth block, κ ∈ {2, · · · , (N − 1)|I|}, i.e.,

G(κ) =

[
G(κ− 1) B(κ− 1)

C(κ) Ilk(T + κ)IR

]
. (41)

where l = (d κ|I|e+ 1), k = (κ− (l − 2)|I|) and

C(κ) =
[

D[1](T + κ) E2(T + κ) · · · El−1(T + κ) Il1(T + κ)IR · · · Il(k−1)(T + κ)IR
]
, (42)

B(κ− 1) =
[
Ilk(1) · · · Ilk(T + κ− 1)

]T
.(43)

Next, we will use induction to prove G(κ) is full rank almost surely. Assuming G(κ−1) is full rank
almost surely, we will prove det(G(κ)) 6= 0 almost surely. Notice that [C(κ) Ilk(T + κ)IR] is inde-
pendent of [G(κ−1) B(κ−1)]. Fix [G(κ−1) B(κ−1)], now the determinant becomes a polynomial
in variables of C(κ) and Ilk(T+κ)IR. It is sufficient to prove it is not a zero polynomial. Each term
in the polynomial is a product of R entries, each chosen from one different row and one different
column of [C(κ) Ilk(T+κ)IR]. And the polynomial contains the term det(G(κ−1))(Ilk(T+κ))R. If
we can prove that (Ilk(T+κ))R is a unique monomial, then the polynomial is not a zero polynomial
since det(G(κ − 1)) 6= 0, by induction assumption. We will now prove that indeed (Ilk(T + κ))R

is a unique monomial. Note that (Ilk(T + κ))R does not contain channel coefficients associated
with Receiver l while all entries in [ D[1](T + κ) E2(T + κ) · · · El−1(T + κ) ] contain those

coefficients. Therefore, in order to make the product to be the same as (Ilk(T + κ))R, columns
of [ D[1](T + κ) E2(T + κ) · · · El−1(T + κ) ] cannot be chosen. As a result, we only consider

choosing R entries from different columns and rows of
[
Il1(T + κ)IR · · · Ilk(T + κ)IR

]
. Es-

sentially, the problem becomes to pick R entries each arbitrarily from the vector [Il1(T +κ) Il2(T +
κ) · · · Ilk(T +κ)] and prove the product is equal to (Ilk(T +κ))R if and only if Ilk(T +κ) is chosen
every time. Mathematically, we want to prove that

∏R
i=1 Ilki(T + κ), ki ∈ {1, · · · , k} is equal to

(Ilk(T + κ))R if and only if ki = k, for all i ∈ {1, · · · , R}. From Lemma 1, this is indeed true.
Therefore, we arrive at the conclusion that (Ilk(T + κ))R is a unique monomial and G(κ) has full
rank almost surely. Following the induction on κ up to its final value, κ = (N − 1)|I|, we have
G(κ) = F[1]. Thus, we conclude that the interference space does not overlap with the signal space.

Therefore, the accessible DoF for each receiver equal RM |V|
nR = R M |V|

M |V|+R(N−1)|I| →
MR

M+NR−R
as m →∞, resulting in a sum DoF of MNR

M+NR−R , as desired. At this point we have completed the
proof of our DoF result for SIMO and MISO X networks.

We now prove the spatial scale invariance property for extensions of MISO or SIMO X networks.
Let us scale the number of antennas at each node by a factor of A and prove the DoF also scale by
a factor of A. When M ≤ R, the achievable scheme involves only zero forcing and it is easy to see
that the DoF scale with A. When M > R, we establish spatial scale invariance for the SIMO X
network by a decomposition argument and the MISO case follows by reciprocity. For the spatially
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scaled SIMO X network, we use transmitter side decomposition. Transmitter side decomposition
means that we view each transmitter with A antennas as A distributed transmitters with a single
antenna each, such that each of these A transmitters has an independent message for each of the
N receivers. In other words, we do not allow joint processing of signals among the A antennas at
each transmitter. Then we obtain an AM ×N user SIMO X network with a single antenna at each
transmitter and AR antennas at each receiver rather than an M ×N user MIMO X network with
A antennas at each transmitter and AR antennas at each receiver. By the result established for

SIMO X networks, AMNAR
AM+NAR−AR = A

(
MNR

M+NR−R

)
DoF are achieved almost surely. This completes

the proof.

5 Proofs: Linear Feasibility of MIMO X Networks

In Section 3.2, it is shown that to achieve linear IA in MIMO X network, (5) and (6) should be
satisfied simultaneously. In our channel model, the MIMO channels are generic and hence have no
structure. Therefore, condition (6) implies that the precoding and receiving filters must have full
column rank. Then due to the duality between the original channel and the reciprocal channel,
in the following proof of Theorem 3, we only consider condition (5), i.e., U[k]†H[ki]V[ji] = 0, ∀i ∈
{1, 2, . . . ,M}, j ∈ {1, 2, . . . , N}, k ∈ {1, . . . , j − 1, j + 1, . . . , N}.

Proof: The proof of Theorem 3 consists of two steps. First we derive the properness conditions
for the symmetric DoF d in MIMO X network, then we prove that in MIMO X network, improper
implies infeasible.

Similar to interference channel [11], we can obtain the total number of scalar equations in (5)
as

Ne =

N∑
k=1

[(

M∑
i=1

dki)(

N∑
j=1,j 6=k

M∑
i=1

dji)] (44)

In the first step, when counting the variables in (5), we need to remove the superfluous variables
that do not help with IA. At the receiver, according to [11], for the matrix U[k], we can find one
invertible matrix P[k] with dimension

∑
i dki ×

∑
i dki satisfying

U[k]P[k]−1 =

[
I

Û[k]

]
(45)

where Û[k] is a (Bk −
∑

i dki) ×
∑

i dki matrix. It is easy to argue that the linearly independent

columns of U[k] and those of U[k]P[k]−1 span the same space, and the latter is the basis with the
fewest variables for such space. Similarly, for the matrix V[ji], we can find one invertible matrix
Q[ji] of dimension dji × dji

V[ji]Q[ji]−1 =

[
I

V̂[ji]

]
(46)

where V̂[ji] is a (Ai − dji) × dji matrix. Therefore, after removing the superfluous variables, the
total number of variables is

Nv =
N∑
j=1

M∑
i=1

(Ai − dji)dji +

N∑
j=1

[(Bj −
M∑
i=1

dji)

M∑
i=1

dji]. (47)
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Then we count the number of equations in the the IA condition (5), which can be rewritten as

U[k]†H[ki]V
[i]

= 0, (48)

where V
[i]

= [V[1i],V[2i], ...,V[k−1,i],V[k+1,i], ...,V[Ni]]. For V
[i]

, we can also find one invertible

matrix Q
[i]

of dimension
∑

j 6=k dji ×
∑

j 6=k dji

V
[i]

Q
[i]−1

=

[
I

Ṽ[i]

]
(49)

where Ṽ[i] is a (Ai −
∑

j 6=k dji)×
∑

j 6=k dji matrix. Obviously, each entry in Ṽ[i] can be expressed

as a function of entries in V̂[ji]. For the channel matrix, it can be partitioned as

H[ki] =

[
H

[ki]
(1) H

[ki]
(2)

Hki
(3) H

[ki]
(4)

]
(50)

where H
[ki]
(1) is a

∑
i dki×

∑
j 6=k dji matrix. Now the linear IA condition in (48) can be expressed as

P[k]† [ I Û[k]† ] [ H
[ki]
(1) H

[ki]
(2)

H
[ki]
(3) H

[ki]
(4)

] [
I

Ṽ[i]

]
Q

[i]
= 0. (51)

Since P[k] and Q
[i]

are both invertible, we can get

H
[ki]
(1) + Û[k]†H

[ki]
(3) + H

[ki]
(2) Ṽ

[i] + Û[k]†H
[ki]
(4) Ṽ

[i] = 0. (52)

It’s easy to verify that the total number of scalar equations in (52) is

Ne =

N∑
k=1

[

M∑
i=1

dki(

N∑
j=1,j 6=k

M∑
i=1

dji)]. (53)

In the symmetric system described in Section 4, according to (47) and (53), the total number of
equations and variables are

Nv = MNd[A+B − (M + 1)d] (54)

Ne = M2Nd2(N − 1). (55)

If the system is proper, i.e., Ne ≤ Nv, (9) must be satisfied.
The final step, proving that in MIMO X network improper systems are infeasible, uses transcen-

dental field extension theory and mirrors the proof presented in [17]. Here we assume Ne > Nv and
the equivalent interference alignment condition in (52) is satisfied. If then we get a contradiction,
the proof is completed, which means that when (52) is satisfied, Ne cannot be larger than Nv.

We consider the filed F defined over complex numbers C, consisting of all the rational functions
of entries in the matrix Û[k] (k ∈ {1, 2, . . . , N}) and V̂[ji] (i ∈ {1, 2, . . . ,M}, j ∈ {1, 2, . . . , N}).
Therefore, the entries in all the matrices Û[k] and V̂[ji] form the transcendence basis of F , and the
transcendence degree of F is equal to the number of entries in all matrices Û[k] and V̂[ji], i.e., Nv.
Then we define the matrix Fk,i(Û, V̂) as follows

Fk,i(Û, V̂) = −[H
[ki]
(2) Ṽ

[i] + Û[k]†H
[ki]
(3) + Û[k]†H

[ki]
(4) Ṽ

[i]]. (56)

18



Note that in Fk,i(Û, V̂), each entry is a quadratic polynomial function of entries in the matrices
Û[k] and V̂[ji]. Therefore, the entries in Fk,i(Û, V̂) belong to the field F . We can find the number of
quadratic polynomials in Fk,i(Û, V̂) is equal to Ne. When Ne > Nv, the quadratic polynomials in
Fk,i(Û, V̂) is algebraically dependent over F . Then we can find a nonzero polynomial p satisfying

p(F1,1(Û, V̂),F1,2(Û, V̂), ...,FN,M (Û, V̂)) = 0 (57)

for all Û[k] and V̂[ji]. Here, it is worthwhile noticing that the polynomial p is only dependent

on the matrices H
[ki]
(2) , H

[ki]
(3) and H

[ki]
(4) , but independent of H

[ki]
(1) . For the polynomial p, when

viewed as a polynomial of variables (H
[11]
(1) ,H

[12]
(1) , ...,H

[NM ]
(1) ), we can do the local expansion at

(F1,1(Û, V̂),F1,2(Û, V̂), ...,FN,M (Û, V̂)),

p(H
[11]
(1) ,H

[12]
(1) , ...,H

[NM ]
(1) )

=p(F1,1(Û, V̂),F1,2(Û, V̂), ...,FN,M (Û, V̂)) +
∑

Tr(H
[ki]
(1) − Fk,i(Û, V̂))Rk,i

(58)

where Tr denotes the trace operation and Rk,i is a matrix whose entries are polynomials dependent
on the entries of Fk,i(Û, V̂) and the coefficients of p only. Due to (57), we have

p(H
[11]
(1) ,H

[12]
(1) , ...,H

[NM ]
(1) ) =

∑
Tr(H

[ki]
(1) − Fk,i(Û, V̂))Rk,i. (59)

According to (52) and (56), finally we can obtain

p(H
[11]
(1) ,H

[12]
(1) , ...,H

[NM ]
(1) ) = 0. (60)

Recall that the polynomial p is independent of the matrices H
[ki]
(1) . In our channel model, H

[ki]
(1) is

generic. It implies that the equation (60) cannot hold unless p is equal to zero identically, which
contradicts that p is a non-zero polynomial. This completes the proof.

6 Conclusion

In this work, we close the open problem of finding the DoF of MIMO X networks with A antennas
at each node. In particular we settle the spatial scale invariance conjecture for this class of networks,
as well as SIMO and MISO X networks. In terms of the achievable scheme, we reveal a one-sided
decomposability property of X networks. As a minor addendum, we explore the feasibility of linear
interference alignment based only on spatial beamforming, and prove that improper systems are
infeasible, by extending previous work on interference networks.
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