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FR-Match: robust matching of cell type clusters
from single cell RNA sequencing data using
the Friedman–Rafsky non-parametric test
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Abstract

Single cell/nucleus RNA sequencing (scRNAseq) is emerging as an essential tool to unravel the phenotypic heterogeneity of
cells in complex biological systems. While computational methods for scRNAseq cell type clustering have advanced, the
ability to integrate datasets to identify common and novel cell types across experiments remains a challenge. Here, we
introduce a cluster-to-cluster cell type matching method—FR-Match—that utilizes supervised feature selection for
dimensionality reduction and incorporates shared information among cells to determine whether two cell type clusters
share the same underlying multivariate gene expression distribution. FR-Match is benchmarked with existing cell-to-cell
and cell-to-cluster cell type matching methods using both simulated and real scRNAseq data. FR-Match proved to be a
stringent method that produced fewer erroneous matches of distinct cell subtypes and had the unique ability to identify
novel cell phenotypes in new datasets. In silico validation demonstrated that the proposed workflow is the only
self-contained algorithm that was robust to increasing numbers of true negatives (i.e. non-represented cell types). FR-Match
was applied to two human brain scRNAseq datasets sampled from cortical layer 1 and full thickness middle temporal gyrus.
When mapping cell types identified in specimens isolated from these overlapping human brain regions, FR-Match precisely
recapitulated the laminar characteristics of matched cell type clusters, reflecting their distinct neuroanatomical
distributions. An R package and Shiny application are provided at https://github.com/JCVenterInstitute/FRmatch for users to
interactively explore and match scRNAseq cell type clusters with complementary visualization tools.

Key words: single cell RNA sequencing; data integration; feature selection; cell types; cellular neuroscience; non-parametric
test
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Introduction
Global collaborations, including the Human Cell Atlas [1] and
the NIH BRAIN Initiative [2], are making rapid advances in the
application of single cell/nucleus RNA sequencing (scRNAseq) to
characterize the transcriptional profiles of cells in healthy and
diseased tissues as the basis for understanding fundamental
cellular processes and for diagnosing, monitoring and treating
human diseases. The standard workflow for processing and
analysis of scRNAseq data includes steps for quality control
to remove poor quality data based on quality metrics [3–5],
sequence alignment to reference genomes/transcriptomes [6–
8] and transcript assembly and quantification [8, 9] to produce
a gene expression profile (transcriptome) for each individual
cell. In most cases, these expression profiles are then clustered
[10–13] to group together cells with similar gene expression
phenotypes, representing either discrete cell types or distinct
cell states. Once these cell phenotype clusters are defined, it
is also useful to identify sensitive and specific marker genes
for each cell phenotype cluster that could be used as targets
for quantitative PCR, probes for in situ hybridization assays and
other purposes (e.g. semantic cell type representation where
biomarkers can be used for defining cell types based on their
necessary and sufficient characteristics [14, 15]).

A major challenge emerging from the broad application of
these scRNAseq technologies is the ability to compare transcrip-
tional profiles across studies. In some cases, basic normalization
[16, 17] or batch correction [18, 19] methods have been used
to combine multiple scRNAseq datasets with limited success.
Recently, several computational methods have been developed
to address this challenge more comprehensively [20–25]. General
steps in these methods include feature selection/dimensionality
reduction and quantitative learning for matching. Scmap [20] is a
method that performs cell-to-cell (scmapCell) and cell-to-cluster
(scmapCluster) matchings. The feature selection step is unsu-
pervised and based on a combination of expression levels and
dropout rates, pooling genes from all clusters in the reference
dataset. Matching is based on the agreement of nearest neighbor
searching using multiple similarity measures. Seurat (Version
3) [21, 22] provides a cell-to-cell matching method within its
suite of scRNAseq analysis tools. Feature selection is unsu-
pervised and selects highly variable features in the reference
dataset to define the high-dimensional space. Both query and
reference cells are aligned in a search space projected by PCA-
based dimensionality reduction and canonical correlation anal-
ysis, to transfer cluster labels through ‘anchors’. Among many
others [23–25], these methods have focused on individual cell
level strategies when comparing a query dataset to a reference
dataset, not relying on clustering results to guide supervised
feature selection or cluster-level matching.

Here, we present a supervised cell phenotype matching
strategy, called FR-Match, for cluster-to-cluster cell transcrip-
tome integration across scRNAseq experiments. Utilizing a priori
learned cluster labels and computationally or experimentally
derived marker genes, FR-Match uses the Friedman–Rafsky
statistical test [26,27] (FR test) to learn the multivariate
distributional concordance between query and reference data
clusters in a graphical model. In this manuscript, we first
illustrate the matching properties of FR test in this scRNAseq
adaptation using thorough simulation and validation studies in
comparison with other popular matching methods. We then
use FR-Match to match brain cell types defined in the full
thickness of human middle temporal gyrus (MTG) neocortex
with cell types defined in a Layer 1 dissection of MTG using
public datasets from the Cell Types Database of the Allen Brain

Map (www.brain-map.org). We also report the cell types that
are consistently matched between the two brain regions using
multiple matching methods. An R-based implementation, user
guide and Shiny application for FR-Match are available in the
open-source GitHub repository: https://github.com/JCVenterI
nstitute/FRmatch.

Results
FR-Match: cluster-to-cluster mapping of cell
type clusters

FR-Match, is a novel application of the FR test [26,27], a non-
parametric statistical test for multivariate data comparison,
tailored for single cell clustering results. FR-Match takes
clustered gene expression matrices from query and reference
experiments and returns the FR statistic with P-value as
evidence that the query and reference cell clusters being
compared are matched or not, i.e. they share a common gene
expression phenotype. The general steps of FR-Match (Figure 1a)
include: (i) select informative marker genes using, for example
the NS-Forest marker gene selection algorithm [14]; (ii) construct
minimum spanning trees for each pair of query and reference
clusters (different colors); (iii) remove all edges that connect a
node from the query cluster with a node from the reference
cluster and (iv) calculate FR statistics and P-values by counting
the number of subgraphs remaining in the minimum spanning
tree plots. Intuitively, the larger the FR statistic, the stronger the
evidence that the cell clusters being compared represent the
same cell transcriptional phenotype.

Supervised marker gene selection provides unique cell
type clusters ‘barcodes’

We adopted the NS-Forest algorithm [14] v2.0 (https://github.
com/JCVenterInstitute/NSForest) to select informative marker
genes for a given cell type cluster. Applying NS-Forest feature
selection to the cortical Layer 1 and full thickness MTG datasets
produced a collection of 34 and 157 marker genes that, in com-
bination, can distinguish the 16 cortical Layer 1 [28] and 75
full MTG [29] cell type clusters, respectively. These markers
include well-known neuronal marker genes such as SATB2, LHX6,
VIP, NDNF, NTNG1, etc. (Supplementary Figure S1). The selected
marker genes display on–off binary expression patterns produc-
ing, in combination, a unique gene expression ‘barcode’ for each
cell cluster (Figure 1b). In addition to producing marker genes for
each of the individual cell type clusters, this composite barcode
serves as an effective dimensionality reduction strategy that
captures gene features that are informative for every cell type
cluster. The collection of informative marker genes effectively
creates an essential subspace that reflects the composite cell
cluster phenotype structure in the single cell gene expression
data. Thus, supervised feature selection by NS-Forest was used
as the dimensionality reduction step for the FR-Match method
in this study. Although NS-Forest was used for marker gene
selection here, FR-Match is compatible with any feature selec-
tion/dimensionality reduction approach that selects informative
cluster classification features.

Matching performance in cross-validation
and simulation studies

To assess the performance of FR-Match in comparison with other
matching methods, we generated cross-validation datasets uti-
lizing the cortical Layer 1 data and its known 15 cell type clusters

www.brain-map.org
https://github.com/JCVenterInstitute/FRmatch
https://github.com/JCVenterInstitute/FRmatch
https://github.com/JCVenterInstitute/NSForest
https://github.com/JCVenterInstitute/NSForest
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Figure 1. FR-Match schematic and marker gene ‘barcodes’. (a) FR-Match cluster-to-cluster matching schematic diagram. Input data: query/new and reference datasets,

each with cell-by-gene expression matrix and cell cluster membership labels. Step I: dimensionality reduction by selecting expression data of reference cell type marker

genes from the query dataset. Here, we use the NS-Forest marker genes selected for the reference cell types. Step II: Cluster-to-cluster matching through the FR test.

From left to right: multivariate data points of cell transcriptional profiles (colored by cell cluster labels) in a reduced dimensional (reference marker gene expression)

space; construct a complete graph by connecting each pair of vertices (i.e. cells); find the minimum spanning tree that connects all vertices with minimal summed

edge lengths; remove the edges that connect vertices from different clusters; count the number of disjoint subgraphs, termed ‘multivariate runs’ and denoted as R;

calculate the FR statistic W, which has asymptotically a standard normal distribution. (b) ‘Barcodes’ of the cortical Layer 1 NS-Forest marker genes in four Layer 1

clusters. Heatmaps show marker gene expression levels of 30 randomly selected cells in each cell cluster. The ‘Marker’ column indicates if the gene is a marker gene

of the cluster or not (1 = yes, 0 = no).

for validation studies (excluding the smallest cluster in the
original studies with too few cells). Matching was performed
using six implementations of the three core methods: FR-Match
(using NS-Forest genes), FR-Match incorporating P-value adjust-
ment (FR-Match adj.), scmap (scmapCluster) with default gene
selection (500 genes based on dropout proportions), scmap with
NS-Forest marker genes (scmap+NSF), scmap with extended
NS-Forest marker genes (scmap+NSF.ext) (see Methods section)
and Seurat with default gene selection (top 2000 highly variable
genes). (Seurat with NS-Forest marker genes was not reported
since the results were similar to the results obtained using
default marker genes.)

Cross-validation assessment of 1-to-1 positive matches

In the 2-fold cross-validation study, half of the cells serve as the
query dataset and the other half as the reference dataset. Exactly
one 1-to-1 true positive match should be identified for each clus-
ter. Figure 2a displays the average matching rate over the cross-
validation iterations, where true positives are expected to lay
along the diagonal. Four implementations, FR-Match, FR-Match
adj., scmap+NSF.ext and Seurat had excellent performance
with 0.93 ∼ 1 true positive rates (TPRs) calculated as the grand
average of the diagonal entries. Scmap using its default gene
selection approach performed sub-optimally, especially for glial
cell types. This is likely due to the fact that informative marker
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Figure 2. Cross-validation results. Two-fold cross-validation was repeated 20 times on the cortical Layer 1 data with all clusters. Training (reference) and testing (query)

data were evenly split in proportion to the cluster sizes. Cluster-level matching results for the cell-level matching methods were summarized as the most mapped

cluster labels beyond a defined threshold (see Methods section). Matching output: 1 if a match; 0 otherwise. If a query cluster is not matched to any reference cluster,

then it is unassigned. (a) Heatmaps show the average matching result for each matching method. TPR is calculated as the average of the diagonal matching rates, i.e.

true positives. (b) Median, interquartile range and full range of accuracy, sensitivity and specificity of all cluster-matching results in cross-validation for each matching

method are shown.

genes for these cell types were not selected using the dropout
rate-based feature selection criterion (Supplementary Figure S2).
However, using NS-Forest marker genes (scmap+NSF) instead of
its default genes resulted in a significant improvement in scmap
performance, suggesting that supervised feature selection is
advantageous for cell type matching in general. FR-Match
implementations had median matching accuracies approaching
0.98 and above, while the next tier performers, scmap+NSF.ext
and Seurat, had median accuracies around 0.95 (Figure 2b).
Sensitivity and specificity metrics further break down the
accuracy measure and indicate the balance between the
diagonal (true positive, a.k.a. sensitivity) and off-diagonal (true
negative, a.k.a. specificity) matching performance. FR-Match
after P-value adjustment is the only algorithm that identified
all positive matches. Most methods had very high specificities,
whereas FR-Match adj. had somewhat lower specificity due to
slightly more false positives.

Cross-validation assessment of 1-to-0 negative matches

Leave-K-cluster-out cross-validation was used to test the
performance of these methods under circumstances where one
or more cell phenotypes are missing from the reference datasets,
i.e. a situation where a novel cell type has been discovered.
The left-out cluster(s) should have 1-to-0 match(s) and should
be unassigned. While FR-Match implementations clearly
identified the left-out cluster as unassigned, other methods pro-
duced inappropriate matching when query cell types were miss-
ing from the reference dataset (Figure 3). Figure 3a shows results
for when the i5 cluster was left out; Supplementary Figures S3–
S8 show results for when other cluster were left-out in turn. Both
FR-Match implementations easily identified the true negative
match and correctly labeled the query i5 cluster as unassigned.
Other methods partially or primarily mis-matched the query
cluster (i5) to a similar yet distinct cluster (i1), as seen in
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the UMAP embedding where the query i5 nuclei are nearest
neighbors to the reference i1 nuclei (Supplementary Figure S9).
The accuracy measure for leave-1-cluster-out cross-validation
again suggests that the FR-Match method is the best performer
with median accuracies approaching 0.99 (Figure 3b). Further-
more, as we removed more and more reference clusters, the
FR-Match method showed robust precision-recall curve that
consistently outperformed default implementations of scmap
and Seurat in ROC analysis (Figure 3c). Seurat’s curve deterio-
rated because its current implementation lacks an option for
unassigned matches; therefore, all cells in the query dataset
were forced to map somewhere in the reference dataset.
Interestingly, scmap implementations with NS-Forest selected
features also had robust precision-recall curves with respect to
the increasing number of true negatives.

The leave-K-cluster-out cross-validation has important
implications for the capability of each matching method to
detect novel cell types in new data sets that are not present in the
reference datasets when integrating single cell experiments. In
this important use case, the FR-Match method exhibits desirable
properties for novel cell phenotype discovery.

Simulation of under- and over-partitioning during
upstream clustering

Accurate cell type determination from scRNAseq analysis
is dependent on accurate partitioning of the cellular tran-
scriptomes into clusters based on their similarity. Existing
neuroscientific knowledge [28] suggests that the 15 cortical Layer
1 cell clusters are the current ‘optimal’ clustering of the human
brain upper cortical layer scRNAseq data. By combining and
splitting these optimal cell type clusters, we simulated under-
and over-partitioning scenarios of the upstream clustering
analysis. Figure 4a summarizes five cluster partitions ranging
from 3 to 18 clusters with F-measure scores indicating the
classification power of partition-specific marker genes. The
‘Top nodes’ under-partitioning combines clusters into the
three top-level broad cell type classes: inhibitory neurons,
excitatory neurons and non-neuronal cells, producing well-
known GABAergic, glutamatergic and neuroglia markers with
high F-measure score. The ‘Mid nodes’ under-partitioning
combines three groups of closely related GABAergic clusters—
i1 + i5, i3 + i4 and i6 + i8 + i9—resulting in 11 clusters. Over-
partitioning of either one (e1) or three (i1, i2 and i3) clusters
was performed by running k-means clustering with k = 2
independently for each cluster to simulate real over-partitioning
scenarios.

It is important to note that over- and under-partitioning
will also have an effect on the gene selection step; it would be
predicted that marker gene selection algorithms would have
difficulty finding maker genes specific for over-partitioned
clusters, which would be reflected in the drop in F-measure
scores. Indeed, particularly low F-measure scores may be a good
indication of cluster over-partitioning. Figure 4b describes the
expected effects on marker gene identification and FR-Match
performance after P-value adjustment when clusters are under-
, optimally- and over-partitioned. The types of marker genes that
would be selected with different reference cluster partitioning
scenarios would impact their ability to effectively drive cluster
matching.

Supplementary Figures S10–S15 show the matching results
of all considered matching methods in various partitioning sce-
narios. The FR-Match and Seurat methods showed good quality
and expected matching results in most partitioning scenarios;
scmap had the same problem with the unmatched glial clusters.

Seurat showed excellent performance when reference clusters
were under-partitioned, but poor performance when query clus-
ters were under-partitioned. Overall, the FR-Match method had
stable matching performance in the cluster partitioning simula-
tions. Indeed, 1-to-many and many-to-1 matching results using
FR-Match could possibly indicate under- or over-partitioning of
the upstream clustering step in scRNAseq data analysis.

Simulation of scenarios in which imperfect marker genes
are included

Though we recommend using the NS-Forest algorithm to select
the minimum set of informative marker genes, users may also
want to use their own feature list as the input to FR-Match.
There may be other cases where non-informative marker genes
have been included. In order to assess the performance of FR-
Match with respect to less than ideal marker gene lists, we
use simulation to evaluate the matching performance in two
scenarios: (i) when there are non-informative (i.e. noisy) genes
in the features selected and (ii) when some informative marker
genes are missing from the feature list with or without non-
informative genes. Throughout this simulation study, the FR-
Match adj. implementation was used.

To simulate scenario (i), we used the 32 NS-Forest marker
genes associated with the 15 cell types in the Layer 1 data,
together with randomly selected genes from the 16 497 available
genes in the dataset. In this scenario, the barcoding pattern
of the informative marker genes was preserved, whereas the
random genes showed more noisy and non-specific expression
patterns in the ‘barcode’ plots (Supplementary Figure S16a).
In the simulations, we increased the number of extra genes
added from 1 to 15; FR-Match was very robust to noisy
genes in each simulated case with TPR staying close to 1
(Supplementary Figure S16b). Other performance measures—
accuracy, sensitivity (TPR) and specificity (true negative rate)—
all stayed well-above 0.9, suggesting that the overall perfor-
mance of FR-Match was stable and robust, even when the
marker gene list contained up to 30% non-informative genes
(15 extra genes) (Supplementary Figure S16c). Increasing the
number of non-informative genes may slightly impact the
specificity due to more false positives (off-diagonal intensities
in Supplementary Figure S16b) and therefore leads to the slight
downward trend of the overall accuracy.

For simulation scenario (ii), we generated two subcases to
illustrate the impact of interfering with different combinations
of marker genes on the matching performance. In the first
subcase, we removed marker genes for three very distinct cell
types: an excitatory cell type (e1), a glial cell type (g1) and
an inhibitory cell type (i1); and used the remaining NS-Forest
marker genes to match all cell types in the Layer 1 dataset.
Surprisingly, each cell type was matched correctly most of the
time with an overall TPR of 0.98 (Supplementary Figure 1S7a).
We also replaced the removed marker genes with the same
number of random genes; the matching performance was also
very good, and the impact of the changes in the marker gene
list was insignificant (Supplementary Figure S17a). In the second
subcase, we considered removing/replacing the marker genes for
two related inhibitory cell types: i1 and i2. Without marker genes
that distinguish these similar cell types, FR-Match matched the
i1 and i2 cell types to each other (i.e. a many-to-many match)
while maintaining the distinction from other cell types with
informative classification markers (Supplementary Figure S17b).
The ‘barcode’ plots for i1 and i2 became generally non-selective
with random expression of some other inhibitory markers in the
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Figure 3. Leave-K-cluster-out cross-validation results. The same cross-validation settings as in Figure 2 were used. After data split, K ≥ 1 reference clusters were held-out

to simulate the situation in which the query dataset contains one or more novel cell type clusters. (a) Heatmaps show the average matching result for each matching

method when the i5 ‘rosehip’ cluster was left out. (b) Accuracy, sensitivity and specificity of the leave-1-cluster-out cross-validation performance for each matching

method are shown. Each cluster was left out in turn, and performance was evaluated across all turns. (c) Precision-Recall Curves of the leave-K-cluster-out cross-

validation performance for K = 1, 3, 5 and 7 are shown and Area-Under-the-Curves (AUC) statistics are calculated. Performance was evaluated across 20 iterations of

randomly selected K clusters. Curves for the FR-Match with and without P-value adjustment have the same shape since the adjustment preserves the order of P-values.

Note that the Seurat package by default does not provide for unassigned cells/clusters as a direct output.
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Figure 4. Design of the under-, optimally- and over-partitioned cluster simulations and their matching properties. (a) A schematic of simulating cluster partitions. The

optimal partitioning produced nodes where cells were consistently co-clustered across 100 bootstrap iterations for clustering and curated by domain expert knowledge

[13, 28]. Connectivity (edge width) between nodes is measured by the number of intermediate cells/nuclei shared by similar nodes. Two under-partition scenarios,

‘Mid nodes’ and ‘Top nodes’, were simulated by merging similar/hierarchically connected nodes (e.g. i1 + i5 clusters and all inhibitory clusters, respectively). Two over-

partition scenarios, split e1 and split i1, i2 and i3, were simulated by splitting those large size clusters by k-means clustering with k = 2. Median F-measure of the

NS-Forest marker genes for each partition is reported in the table. (b) FR-Match properties and expected marker gene types with respect to under-, optimally- and

over-partitioned reference and query cluster scenarios, summarized from the simulation results (Supplementary Figure S11). Green blocks in the table are cases with

high TPR; red blocks are warning cases with low TPR.

background (Supplementary Figure S17c). Such indistinct ‘bar-
code’ plots may be an effecting warning for many-to-many
matches. The absence of good classification markers is most
harmful to specificity (due to false positives), while sensitivity
(TPR) remains high (Supplementary Figure S17d).

In summary, as long as informative marker genes with good
classification power are selected, FR-Match is robust to other
non-informative genes included in the feature list. Many-to-
many matching results by FR-Match may be a good indicator
of the absence of informative marker genes between the mis-
matched cell types.

Cell type mapping between cortical Layer 1
and full MTG

We next extended the validation testing to a more realistic
real-world scenario where a new dataset has been generated
in the same tissue region using slightly different experimental
and computational platforms. We tested FR-Match with P-value
adjustment using two single nucleus RNA sequencing datasets
from overlapping human brain regions—the single apical layer
of the MTG cerebral cortex (cortical Layer 1), in which 16 discrete
cell types were identified [28], and the full laminar depth of the
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MTG cerebral cortex, in which 75 distinct cell types were iden-
tified [29]. We selected NS-Forest combinatorial marker genes
separately for each dataset. The marker gene sets may contain
overlapping genes for some cell types, e.g. CUX2 is a useful
marker gene for more than one layer 2–3 cell types in combi-
nation with other marker genes; classification power of these
combinatorial marker genes are evaluated in detail in another
study [30].

Matching results were assessed from two perspectives: (i)
agreement with prior knowledge such as layer metadata from
the design of these experiments [28, 29] and (ii) agreement with
other matching methods. Since these datasets targeted the same
cortical region with overlapping laminar sampling, we expect
that matching algorithm should find 1-to-1 matches of each
cell types in the cortical Layer 1 data to one cell type in layers
1–2 from the full MTG data. The final matching results were
concluded from two matching directions: Layer 1 query to MTG
reference with MTG markers, and MTG query to Layer 1 reference
with Layer 1 markers. The two-way matching approach was
applied to all comparable matching algorithms.

FR-Match uniquely maps cell types reflecting the overlapping
anatomic regions

Using FR-Match, we mapped each of the 13 Layer 1 cell types
uniquely to one MTG cell type (Figure 5a), i.e. 1-to-1 two-
way matches. These matches precisely reflect the overlapping
anatomic regions in these two independent experiments in that
the matched MTG cell types all have an ‘L1’ layer indicator in
their nomenclature. The one exception for the Layer 1 e1 cluster
likely reflects the incidental capture of upper cortical layer 2
excitatory neurons in the original Layer 1 experiment [28]. And
while most of the SST cell subtypes are located in deeper cortical
layers, FR-Match specifically selected the small number of L1 SST
clusters as top matches. The same was true for VIP and LAMP5
cell subtypes. The minimum spanning tree plots produced by FR-
Match provide a clear visualization of matched and unmatched
cell clusters (Figure 5b).

To validate further, we compared the matching results to the
hierarchical taxonomy of MTG cell types [29], which reflects cell
type relatedness (left side of Figure 5a). First, the block of one-
way matches in Box A precisely corresponds to a specific sub-
clade of VIP-expressing cells with close lineage relationships,
suggesting that one-way FR-Match results are evidence of closely
related cell types. Second, FR-Match correctly identified excita-
tory neurons that were incidentally captured from upper Layer 2
in the cortical Layer 1 experiment in Box B, corresponding to L2/3
excitatory neurons in the full MTG dataset. Third, Box C suggests
under-partitioning of the Layer 1 astrocyte cluster as multiple
two-way matches were found for the same cluster.

Directional one-way matching results are shown in
Supplementary Figure S18. Though different matching patterns
are observed from each direction, they reflect the fact that these
datasets are measuring different cell types. There are some cases
where the difference might be due to the cell complexity in the
datasets, e.g. the VIP or SST types, and this might be leading to
the dynamic range and skewness of P-value distributions for
each query cluster.

Cell type mapping using other existing approaches

In mapping cell types between cortical Layer 1 and the full
MTG, both FR-Match and Seurat produced similar unique two-
way matches (Figure 6). Examining all matching results and

all matching algorithms, FR-Match produced the most ‘conser-
vative’ mapping of cell types. The other matching algorithms
produced matching results that had more sparsely distributed
VIP types (Box A) and were not laminar specific (Box B). Among
all approaches, glial cell types were mapped somewhat differ-
ently (Box C), probably due to their overall lower sampling and
distinct phenotypes compared with the majority of GABAergic
and glutamatergic neurons.

FR-Match shows three advantages over the alternative meth-
ods. First, by using supervised feature selection for each cell
type, major and minor cell populations are equally represented
in the reduced-dimensional space for cell type matching. This
strategy would also benefit other matching methods with sub-
optimal feature selection/dimensionality reduction. Second, FR-
Match clearly excludes the matching of cell types that are only
present in one of the datasets. Third, FR-Match allows one-to-
multiple and unassigned matches, which allows for detecting
potential cluster partitioning issues and the discovery of novel
cell types.

The other existing cell-level matching approaches natu-
rally provide the probabilistic cluster-level matching of cell
types as the percentage of matched cells in query cluster
(Supplementary Figures S19–S22); a deterministic cluster-level
match would depend on the selection of an ad-hoc cutoff of the
probabilistic matching. Thus, deterministic cell type mapping or
discovery of novel cell types would be difficult as (i) individual
cells may be alike in the same broad cell class even if the specific
cell type may not be present in the reference dataset and (ii) the
probabilistic cutoff may be subjective. Therefore, both scmap
and Seurat identified many more non-specific one-way matches
than FR-Match, which uses an objective P-value cutoff.

Combining all results, we finally report 15 high-confidence
ensemble matches between Layer 1 and full MTG cell types in
Supplementary Table S1.

The effects of alternative gene selection and cell clustering methods
on matching performance

To further elucidate the impact of alternative gene selection or
cell clustering choices on cluster matching, we performed the
following analyses.

In the two brain datasets, cell types are defined and char-
acterized by a domain knowledge-guided iterative clustering
[13] and transcriptomically derived markers [28, 29]. The
nomenclature used to describe these cell types consists of the
broad cell class (inhibitory, excitatory and glial cells), layering
information (for the MTG dataset), and one marker gene for
the subclass node in the taxonomy tree (e.g. VIP, SST, etc.)
and one marker gene for the leaf node cluster. For example,
the ‘Inh_L1_2_PAX6_CDH12’ from the MTG dataset means
the inhibitory neurons located in layer 1–2 within the PAX6-
subclass/subbranch expressing CDH12. The leaf node marker
genes are preferentially selected by a binary scoring scheme [29]
different from the one used by NS-Forest. Thus, the ‘cell type
naming genes’ provide an alternative informative marker gene
set.

To assess matching performance using a different set of
informative marker genes, we replaced the NS-Forest marker
genes by these cell type naming genes for both datasets, followed
by the same matching approaches. Twenty-six and eighty-seven
naming genes were defined for the Layer 1 and full MTG datasets,
respectively, out of which, 9 and 18 genes are in common
between the naming genes and the NS-Forest marker genes,
respectively. Using cell type naming genes, FR-Match, scmap and
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Figure 5. FR-Match results for cell type matching between the cortical Layer 1 and full MTG datasets. (a) Two-way matching results are shown in three colors: red

indicates that a pair of clusters are matched in both directions (Layer 1 query to MTG reference with MTG markers, and MTG query to Layer 1 reference with Layer 1

markers); yellow indicates that a pair of clusters are matched in only one direction and blue indicates that a pair of clusters are not matched. The hierarchical taxonomy

of the full MTG clusters is from the original study [29]. FR-Match produced 13 unique, and two non-unique two-way matches between the two datasets. Box A shows

densely located one-way matches in the subclade of VIP-expressing clusters. Box B shows incidentally captured cells from upper cortical Layer 2 mixed in the Layer

1 e1 cluster. Box C shows the non-unique two-way matches of astrocyte clusters. (b) Examples of matched and unmatched minimum spanning tree plots from the

FR-Match graphical tool. Top row: examples of two-way matched inhibitory clusters. Middle row: examples of two-way matched non-neuronal clusters. Bottom row:

examples of unmatched excitatory clusters from different layers. Legend: cluster name (cluster size).

Seurat all performed slightly differently with less ideal matching
patterns (Supplementary Figure S23). Overall fewer matches
were identified; and the identified matches were less specific
(i.e. mapping to neighboring cell types). This is probably because
using only one leaf node marker gene may not be enough to fully
capture the differences between those closely related leaf node
cell types. From these matching results, we may conclude that
NS-Forest selects better sets of informative markers than the
other approach in this example, which has an impact on all three
matching methods; less optimal feature selection will negatively
impact matching regardless of the matching methods.

In another analysis, we compared the matching perfor-
mance of FR-Match, scmap and Seurat with respect to a
different clustering method. The community detection Louvain

method [10] is one of the most commonly used clustering
methods for scRNAseq analysis. We applied Louvain clustering
(implemented in the Seurat R package, with resolution = 1)
to the full MTG dataset, which resulted in 26 reasonably
segregated clusters in the UMAP low-dimensional embedding
space (Supplementary Figure S24a). Matching results with the
Louvain clusters are shown in Supplementary Figure S24b. FR-
Match produced similar matching results regardless of the
clustering methods: each Layer 1 cluster is strongly matched
(two-way match) to some Louvain cluster of the full MTG dataset.
Many-to-one and one-to-many matches are observed since the
generic Louvain method appears to have under-partitioned the
data in comparison with the original expert-curated iterative
clusters, which agrees with the matching patterns we observed
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Figure 6. Cell type matching results between the cortical Layer 1 and full MTG datasets using other matching methods. Two-way cluster-level matching results for

the cell-level matching methods were summarized as the most mapped cluster labels beyond a defined threshold (see Methods section). Box A shows matches in the

VIP-expressing subclade. Box B shows matches spanning multiple layers among the MTG clusters. Box C shows matches of glial clusters.

in our simulations. Matching by scmap and Seurat with the
Louvain clusters shows the same problems as with the original
clusters, i.e. excessive unassigned matches (scmap), and non-
specific matches of the Layer 1 excitatory cluster (scmap and
Seurat). Using different clustering methods will lead to different
matching results depending on the clustering quality. As long
as the clusters are reasonably good, FR-Match is able to detect
high-quality matches regardless of the clustering methods.

Cell type matching using batch integration

To date, there are more than 10 methods that have been pro-
posed to correct the batch effects of scRNAseq data; among
them, Harmony [31], LIGER [32] and Seurat 3 [21] are the rec-
ommended algorithms for batch integration [33]. Only Seurat
is an end-to-end pipeline that inputs multiple scRNAseq data
batches and outputs cell-to-cell alignment between batches. By
summarizing the cell-level batch integration with prior cluster
memberships of the cells, we compared the performance of Seu-
rat for cell type matching with FR-Match in previous subsections.

In this subsection, we implemented a workaround for Harmony
and LIGER to transfer the batch integration outputs to produce
putative cell type matches.

We applied Harmony (Supplementary Figure S25–S26) and
LIGER (Supplementary Figure S27–S28) individually to integrate
the Layer 1 and MTG datasets; both methods showed effective
‘batch-effect’ removal in the UMAP (Supplementary Figure S25b
and c) or tSNE (Supplementary Figure S27b and c) low-
dimensional embedding. For both Harmony and LIGER, the
outputs from the algorithms are the integrated cells in some
dimensionally reduced spaces; joint clustering can then be con-
ducted on the integrated data spaces (Supplementary Figures S25d
and S27d); and cell type matching can be inferred from the
‘river’ plots (Supplementary Figures S26a and S28a) between
the input batches through the common joint clusters. We
transferred the river plot to a one-to-one correspondent cell
type matching heatmap, with each match indicating there exists
a path between the two cell types in the river plot. Note that
the heatmap is non-directional for a given set of edges of the
river plot. Through such a workaround, we obtained cell type
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matching results for Harmony (Supplementary Figure S26b)
and LIGER (Supplementary Figure S28b) in a similar format
as FR-Match. It is clear that the batch integration approaches
produce matches in blocks (i.e. many-to-many matches) and do
not effectively yield the specific matches within these blocks
if multiple related cell subtypes are presented. These batch
integration methods were not originally designed for the task
of cell type integration; therefore, it is not surprising that they
produce sub-optimal results.

Discussion
FR-Match offers a cluster-level approach for mapping cell phe-
notypes identified in scRNAseq experiments. It extends the cur-
rent cell-level matching algorithms by: (i) borrowing information
from all the cells in the same cluster using a statistical test that
provides both probabilistic matching in P-values and objective
P-value thresholds for deterministic matching, and (ii) provid-
ing simple visualization of cell type data clouds in the mini-
mum spanning tree graphical representation. Matching results
of FR-Match are relatively conservative yielding highly specific
matches, which can confirm cell type equivalence, lead to novel
cell type discovery and diagnose upstream clustering problems.
Among many other scRNAseq data integration strategies, this
approach combines informative feature selection and cluster-
level integration of the NS-Forest and FR-Match software suites,
producing intuitive results with high interpretability, including
useful intermediate results such as binary marker genes and
minimum spanning tree graphs for users to monitor and gain
meaningful insights from the mapping solutions.

Based on the computational and statistical investigation of
both simulated and real datasets, we conclude that: (i) the FR-
Match and Seurat methods show excellent performance in map-
ping neuronal and glial cell types using snRNAseq data from
human brain; and (ii) supervised feature selection, such as the
NS-Forest algorithm, appears to produce excellent marker gene
combinations that can be used as an effective feature selec-
tion/dimensionality reduction technique for cell type mapping
with multiple methods, including FR-Match and scmap. Scmap
is a consensus method that requires at least two of the three
association metrics—cosine similarity, Pearson and Spearman
correlations—to be in agreement as the last step to determine
a match; thus, the comparative analysis results of the matching
methods reported here may also serve as a reference guide for
matching performance using those association metrics.

One of the biggest challenges in scRNAseq alignment at the
moment seems to be the proper assignment of cells from a cell
type found in only one dataset. These cells are often matched to
a closely related cell type in a second dataset. In this regard, FR-
Match appears to be superior in being able to determine which
cell types from two datasets are not matched, an indication of
novel cell type discovery.

For all compared methods in this study, it is interesting
to note that under-partitioning the query clusters leads to
degraded performance, unless the reference clusters are also
under-partitioned. This suggests that a useful strategy would
be to map to reference types in a hierarchical manner by first
mapping to broad classes of references types and then moving
down the tree to finer types until ambiguous matches appear.
The negative effect of under-partitioned clusters also applies to
the nested classes of heterogeneous cell types.

Currently, decisions on splitting a cell type class or joining
two subclasses are often determined by subjective exam-
ination of the expression distributions of selected gene

expression markers. In this regard, one use of FR-Match could
be to provide for an objective assessment of cell clusters
partitioning when comparing a new query dataset to a high-
quality reference dataset from a carefully curated cell atlas
knowledgebase. Assuming the reference cell types are optimally
partitioned, a 1-to-many match using FR-Match would suggest
that the query cluster is under-partitioned and should be further
split into sub-clusters; a many-to-1 match would suggest that
the query clusters are over-partitioned and should be merged. In
this use case, FR-Match can be used as a tool to guide the optimal
partitioning of scRNAseq data clustering, leveraging information
captured in well-curated cell type reference knowledge bases.

Automated cell type integration of independent scRNAseq
datasets remains challenging. Creating an unbiased, high-
resolution and comprehensive cell type reference would be
a critical task for the whole single cell research community.
Consensus mapping schemes that survey both cell-level and
cluster-level matchings will be useful for establishing such a
reference data atlas. We believe that final mapping of the brain
cell types agreed upon by the type of bi-directionally and multi-
level matchings reported here represents the best-practice for
computational cell type mapping, requiring minimal expert
intervention.

Single cell evaluation is a fast-evolving field. Although
not fully explored here, we expect FR-Match to be applicable
to cross-platform, cross-specimen, cross-anatomy and cross-
species matching of scRNAseq clustered data. The effect of
dropouts and the dynamic range of single cell sequencing
data from protocols other than the Smart-seq [34] protocol
stand out as key challenges to be overcome. To address these
challenges, we are now developing add-on features to the core
FR-Match algorithm, including imputation techniques [35] for
the relatively high dropout rates in 10X Genomics droplet-based
protocols [36], and moment-based normalization options [37] for
the discrete and dispersed values produced in single cell spatial
in-situ hybridization protocols [38–40]. Preliminary results of
mapping Smart-seq cell clusters to 10X cell clusters suggest that
FR-Match will be useful for cross-platform cell type matching
when appropriate dropout imputation and data normalization
upstream steps are included in the computational pipeline (data
not shown). While these emerging technologies will produce
more complicated data integration challenges, the adaptation
of methods such as FR-Match is poised to play an essential
role in the broad integration of scRNAseq cell phenotyping
experiments.

Methods
The cell type matching problem

Consider two single cell RNA sequencing experiments—one
query/new experiment and one reference experiment. A cell-
by-gene expression matrix for each experiment is obtained by
standard scRNAseq data processing and analysis workflows,
including quality control, reference alignment, sequence
assembly and transcript quantification. Cell cluster labels are
also obtained from clustering analysis using, for example the
community detection Louvain algorithm [10] and/or other
domain-specific knowledge. These cell clusters represent
transcriptionally distinct cellular phenotypes within each
experiment. The cell type matching problem is whether a pair
of query and reference cell clusters identified in related but
independent experiments are instances of the same or different
transcriptionally defined cell phenotypes.
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We propose a computational solution to the cell type match-
ing problem—FR-Match—an adaptation the FR statistical test
for scRNAseq data, which takes two input datasets (query and
reference) each with a gene expression matrix and cell cluster
membership labels (Figure 1a). Importantly, FR-Match uses a set
of informative marker genes that characterize the reference cell
type clusters. Dimensionality reduction is done by imposing the
same set of marker genes on the query dataset, to select the
most informative features shared with the reference dataset. For
each pair of cross-dataset clusters, we perform cluster-to-cluster
matching via the FR statistical test. As a result, FR-Match outputs
the following types of match (format: query-to-reference): 1-to-0
or unassigned (indicative of a novel cell type), 1-to-1 (indicative
of a uniquely matched cell type), 1-to-many (indicative of an
under-partitioned query cluster or over-partitioned reference
cluster) and many-to-1 (indicative of an over-partitioned query
cluster or an under-partitioned reference cluster).

Necessary and sufficient marker gene identification
by random forest

In order to perform dimensionality reduction, random forest
machine learning as implemented in the NS-Forest algorithm
[14, 15, 30] (v2.0 at https://github.com/JCVenterInstitute/NSFore
st) was used to select necessary and sufficient marker genes
for each reference cell type cluster. NS-Forest includes steps
for: (i) feature selection, (ii) feature ranking and (iii) minimum
feature determination. Let X be an n × m dimensional cell-
by-gene matrix, where n is the number of cells and m is the
number of genes. Let y be an n × 1 vector of cluster labels. In
step (i), random forest models, with 10 000 decision trees each,
are built for input data X and each cluster label in y under a
binary classification scheme. From each random forest model,
the average information gain based on the Gini index for each
gene is extracted, which is then used as a measure of feature
importance to rank the gene features. In step (ii), for the top 15
ranked genes, a binary expression score for gene g in cluster k is
calculated as

Scoreg,k =
∑K

k′=1

(
1 − medg,k′

medg,k

)+

K − 1
, (1)

where medg,k is the median expression level of gene g in cluster
k, K is the total number of clusters and (· )+ defines the non-
negative value of the equation. The binary expression score
ranges from 0 to 1, where 1 indicates absolute binaryness, i.e.
the gene exclusively expressed in the target cluster and not at
all in non-target clusters. In step (iii), the top 6 genes from step
(ii) are selected and all combinations are evaluated by the F-beta
score. F-beta is an F-measure weighted by β such that

Fβ = (
1 + β2) · precision· recall

β2· precision + recall
. (2)

β = 0.5 was set to weight precision more than recall, which
compensates the effect of false negatives dropouts due to tech-
nical artifacts in scRNAseq experiments. The output from step
(iii) is a minimum set of marker genes for each cell type cluster
(usually 1–4), whose expression in combination is sufficient to
discriminate the target cell type cluster from the rest of the cells.
In addition to the minimum set of NS-Forest marker genes, the
algorithm also provides an extended list of binary marker genes
as a supplementary output from step (ii), which may achieve

higher discriminative power under certain circumstances. The
top 15 NS-Forest genes for each cell type formed an NS-Forest
extended gene list as an alternative feature selection option
for matching algorithms. For a more detailed discussion of the
choice of the number of top genes used in NS-Forest v2.0, see
Aevermann et al. [30]

FR test

The FR test [26] is a multivariate generalization of the non-
parametric two-sample comparison problem. This classical
statistical test is distribution free. Consider two general
distributions FX and FY for samples (x1, · · · , xm) and (y1, · · · , yn) in
a k-dimensional space, respectively. (In the context of FR-Match,
the x’s and y’s denote the expression profiles of each cell in the
query and reference clusters; m and n are the number of cells
in each cluster; k is determined by the number of informative
marker genes from the reference dataset). Under the hypothesis
testing framework, the original FR test is designed for testing

H0 : FX = FY versus H1 : FX �= FY, (3)

in which the null hypothesis states that the cells from both query
and reference clusters are from the same transcriptional distri-
bution; the alternative hypothesis states that the two cell popu-
lations are from different transcriptional distributions. Thus, the
cell type matching problem becomes a statistical test to detect
comparisons for which H0 is true.

The underlying model of the FR test is a graphical model
based on the minimum spanning tree of pooled samples
(Figure 1a). In the multi-dimensional informative marker gene
space, cells from different clusters (indicated by colors) are
pooled and form a mixture of data points. A complete graph
can be constructed, which connects all cells to each other and
uses the edge length to preserve the pairwise Euclidean distance
between cells in the original space. Next, the complete graph
is trimmed to a tree graph that connects all cells with the
minimum total length of edges, i.e. the minimum spanning tree.
Edges that connect cells of different clusters are then removed
and the number of disjoint subtrees is counted. Intuitively, if
there are a large number of subtrees, it implies that the pooled
cells are closely interspersed and therefore more likely to be
from the same multivariate gene expression distribution.

Formally, let R be the total number of subtrees—‘multivariate
runs’ in the FR test framework, with mean E(R) and variance
Var(R) directly derived from graph theory. The FR statistic is
defined as

W = R − E(R)

Var(R)1/2 . (4)

Friedman and Rafsky showed that the asymptotic distribu-
tion of W follows a standard normal distribution for large sample
sizes:

W ∼ N(0, 1) as m, n → ∞ with n bounded away from 0 and ∞. (5)

For the hypothesis testing purpose, H0 is rejected for small
values of W, i.e. P-value is one-sided such that p = Pr(W ≤ w).
Note that, in the cell type matching application, we determine a
match if P > 0.05, but other P-value thresholds could also be used.

FR-Match method

Extending from the classical statistical test, FR-Match is a novel
application of FR test to approach the cell type matching prob-
lem with scRNAseq data. The full FR-Match algorithm not only

https://github.com/JCVenterInstitute/NSForest
https://github.com/JCVenterInstitute/NSForest
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implements the basic testing procedure but also adapts mod-
ifications for specific issues pertaining to the scRNAseq appli-
cation. A major issue is that two cell clusters to be compared
may have very different cluster sizes, such as a dozen cells
versus hundreds of cells (Supplementary Figure S29). The unbal-
anced cluster sizes will often cause two problems: (i) unstable
statistical power as the ratio of cluster sizes deviates from the
asymptotic condition and (ii) exponentially long computational
time needed for constructing minimum spanning tree for large
number of cells. To address these problems, an iterative sub-
sampling scheme was implemented, which repeatedly performs
sampling without replacement of S cells from each cell cluster
for B times. (For clusters with fewer than S cells, sample all
cells in the cluster.) Default values of S and B are 10 and 1000,
respectively, but are tunable. The median P-value of all iterations
is outputted. Other modifications include filtering small clusters
with less than C cells each, and P-value adjustment for multiple
hypothesis testing correction. Empirically, C = 10 was chosen
for defining a cell type cluster with high confidence since it
appeared to provide enough cell instances to be representative.
It is suggested to set S = C, but it is not a necessary condition for
the algorithm. A disproportionate ratio of S to C would adversely
affect the underlying statistical assumptions due to the unmet
asymptotic condition in Equation (5).

As an alternative to the asymptotic theory, permutation test-
ing is a widely accepted practical choice for approximating the
null distribution of the FR statistic in a hypothesis testing frame-
work [41]. We designed a simple technical simulation to compare
the statistical properties of the FR test, FR permutation test and
FR test with subsampling scheme, with respect to the major
pragmatic concern of imbalanced cluster sizes that specifically
pertain to the cell type matching problem. We generated mul-
tivariate data from a Multivariate Normal distribution (k = 40
dimensions). Random samples were drawn from (x1, · · · , xm) ∼
MVN(μ = 0, � = I) and (y1, · · · , yn) ∼ MVN(μ = 0 + δ, � = I), where
I is the identity matrix. Under the null, δ = 0, i.e. no location dif-
ference between the x- and y-samples; under the alternative, we
set δ = 0.4 for moderate location shift in their distributions. To
simulate the imbalanced cluster sizes, we fixed one cluster size
m = 10 and varied the other cluster size n = 10, 20, 100 and 200.
The ROC analysis (Supplementary Figure S30) confirms that the
permutation test is a very good approximation of the FR test
based on asymptotic theory; however, both tests show deterio-
rating ROC curves when the sample sizes were very imbalanced
(n = 200, blue curve). In contrast, FR test with subsampling
shows the most ideal property—better ROC curve and larger AUC
value—as sample size (i.e. cluster size in this context) increases.
Therefore, the iteratively subsampling scheme was adopted in
the FR-Match algorithm.

In our proposed procedure, the subsampling parameter S
was initially chosen based on practical considerations; we also
provide more simulation results for guiding the choice of S here.
Based on the same simulation design as above, we evaluated
the AUC values for FR subsampling tests with S = 10, 20 and 30
and benchmarked with the FR test (Supplementary Figure S31).
When both input cluster sizes m and n vary from 10 to 200, the FR
subsampling test with S = 10 outperforms all other choices with
the FR test showing the highest AUC values in all simulated cases
with m and n. This is potentially due to the expectation that the
choice of S should embrace the right balance between gathering
enough samples to represent the whole cluster and avoiding
local structures in the cluster (i.e. large subtrees of the same
color in an MST). We believe that this might be related to the
‘effective’ dimensionality of the data space characterized by �

and other distributional properties, which will be an interesting
topic for future statistical research. In this article, the choice of
S is supported by empirical evidence; readers should use their
own judgement on the choice of S for their own datasets. Though
fixed-size subsampling may result in increasing variability for
larger clusters [42], our adapted procedure of the FR test is a
pragmatic solution to the imbalanced cluster size issue. Develop-
ing a general solution to solve this unmet statistical assumption
problem is beyond the scope of these studies.

In the Layer 1 and full MTG matching analysis reported in
this article, tunable parameters were set at the default values
described above. When a sequence of FR-Match P-values was
computed for each pair of Layer 1 cell type and MTG cell type,
Benjamini and Yekutieli [43] P-value adjustment was applied for
multiple hypothesis testing correction before the final determi-
nation of a cell type match.

Determining cluster-level match for the cell-level
matching methods

In comparison with other popular matching methods, a voting
rule was adopted after obtaining the cell-level matching results
from algorithms scmap (cell-to-cluster) and Seurat (cell-to-cell).
Scmap provides a map: query cell → reference cluster. We cal-
culate the % of reference cluster labels grouped by the query
cell labels and thereby obtain a quantitative measure ranging
from 0 to 1 that indicates the probability of being the same cell
type between the query and reference cell clusters. Similarly, the
Seurat alignment is extended to query cell → reference cell →
reference cluster and calculate the cluster-to-cluster matching
measure in the same way. For a specific query cluster, its cluster-
level match is determined by the votes of its member cells
for their mapped reference cluster labels. An ad-hoc threshold
at 30% was used for defining a deterministic match, which
accounts for both the detection of a substantial proportion of
query cells matched to one reference cluster and the possibility
that some query clusters might be matched to multiple reference
clusters. If the 30%-criterion is not met, then the query cluster
is defined as unassigned in the matching results. The cluster-
level matching results may change depending on the ad-hoc
threshold used. For example, if changing the threshold to 40%,
Seurat would identify the same set of two-way matches, but
with three fewer one-way matches (Supplementary Figure S32).
A data-driven decision on such a threshold can be guided by the
distribution of % of matched cells in Supplementary Figures S19–
S22.

Cross-validation and simulation design

Data generation for the cross-validation and simulation stud-
ies was from the cortical Layer 1 data with 15 cell clusters
[28] (excluding one cluster, i11, with too few cells). All cross-
validation designs were 2-fold by evenly splitting data into train-
ing and testing in proportion to the original cluster sizes. All
cross-validations were repeated 20 times each design.

Real-data-guided simulations were used to mimic under/over-
partitioned scenarios (Figure 4). ‘Top nodes’ under-partitions
are cells merged into three broad classes: GABAergic inhibitory
neurons, glutamatergic excitatory neurons and neuroglial cells.
‘Mid nodes’ under-partitions are cells merged into similar
inhibitory neurons according to the constellation diagram of
cluster network from the original study [28]; for the purpose
of simulation, i1 and i5, i3 and i4, and i6, i8, and i9 were
merged. For over-partitions, large cell clusters were split by
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running k-means clustering with k = 2 independently for each
over-partitioned cluster. ‘Split e1’ divided the excitatory cluster
into two sub-clusters of sizes 180 and 119 cells, resulting in
16 (= 15 + 1) over-partitioned clusters. ‘Split i1, i2, i3’ divided
each of the inhibitory clusters into two sub-clusters of sizes 56
and 34, 39 and 38, and 32 and 24 cells, respectively, resulting
in 18 (= 15 + 3) over-partitioned clusters in total. NS-Forest
marker genes were identified for each of the simulated datasets.
Matching performances of the under/over-partitioned datasets
were evaluated through 2-fold cross-validation repeated
20 times.

Data availability
Two published single-nucleus RNA-seq datasets from the Allen
Institute of Brain Science of human brain were used: (i) cortical
Layer 1 of MTG [28] and (ii) full thickness MTG [29] (https://po
rtal.brain-map.org/atlases-and-data/rnaseq/human-mtg-sma
rt-seq). The Layer 1 dataset contains expression data from
871 intact nuclei that form 16 cell type clusters, including
four non-neuronal type clusters, one excitatory neuron type
cluster and 11 inhibitory neuron type clusters. The MTG dataset
contains filtered expression data from 15 603 nuclei that form
75 cell type clusters, subdivided into six non-neuronal type
clusters, 24 excitatory neuron type clusters and 45 inhibitory
neuron type clusters. These cell type clusters are regarded as
transcriptionally distinct cell types with nomenclature asserted
after iterative clustering analysis [13]. Gene-level read count
values were preprocessed to log-CPM (counts per million) values
for all nuclei.

The same high-level data processing steps were used for both
datasets, although the details varied slightly.

(i) Whole postmortem brain specimens or neurosurgical tissue
samples were collected from adult male and female donors
with ‘control’ condition (i.e. non-disease).

(ii) Nuclei were isolated from microdissected tissue pieces to
avoid damage to neurons [44], and single nuclei were sorted
using FACS instruments. The gating strategy included dou-
blet detection gates and gates on neuronal marker NeuN
signal.

(iii) RNA sequencing was performed using the SMART-Seq plat-
form and multiplex library preparation.

(iv) STAR alignment of raw reads to human genome sequence,
and sequence quantification using standard Bioconduc-
tor packages were performed. Gene expression levels were
reported as CPM of exon and intron reads.

(v) Nuclei passing quality control criteria were included for
clustering analysis.

(vi) Iterative clustering procedure based on community detec-
tion was performed to group nuclei into transcriptomic
cell types [13]. Dropouts were accounted for while select-
ing differentially expressed genes, and PCA was used for
dimensionality reduction.

(vii) Clusters identified as donor-specific were flagged as out-
liers, and manually inspected for cluster-level QC before
exclusion.
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Key Points
• Feature selection plays a key role in scRNAseq data

integration of cell type clusters; using supervised fea-
ture selection instead of approaches based on dropout
rates significantly improves the performance of exist-
ing cell type matching methods, e.g. ‘scmap’.

• The random forest-based ‘NS-Forest’ marker gene
selection algorithm is an effective dimensionality
reduction tool that produces an informative set of
necessary and sufficient genes for characterizing ref-
erence cell types.

• The cluster-level cell type matching method ‘FR-
Match’, which builds upon a non-parametric multi-
variate statistical test, shows robustness against miss-
ing reference cell types, i.e. novel query cell types.

• FR-Match precisely matched common cell types from
two independent scRNAseq experiments that reflect
the laminar characteristics of the two anatomically
overlapping brain regions.

• FR-Match software provides barcode plots and mini-
mum spanning tree graphs for the query and reference
cell type clusters, which are user-friendly visualization
tools for insightful data exploration of scRNAseq data
clusters.
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Supplementary data are available online at Briefings in Bioin-
formatics..
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