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Abstract
Measurement reliability is a fundamental concept in psychology. It is traditionally considered a stable property of a questionnaire,
measurement device, or experimental task. Although intraclass correlation coefficients (ICC) are often used to assess
reliability in repeated measure designs, their descriptive nature depends upon the assumption of a common within-person
variance. This work focuses on the presumption that each individual is adequately described by the average within-person
variance in hierarchical models. And thus whether reliability generalizes to the individual level, which leads directly into
the notion of individually varying ICCs. In particular, we introduce a novel approach, using the Bayes factor, wherein a
researcher can directly test for homogeneous within-person variance in hierarchical models. Additionally, we introduce a
membership model that allows for classifying which (and howmany) individuals belong to the common variance model. The
utility of our methodology is demonstrated on cognitive inhibition tasks. We find that heterogeneous within-person variance
is a defining feature of these tasks, and in one case, the ratio between the largest to smallest within-person variance exceeded
20. This translates into a tenfold difference in person-specific reliability! We also find that few individuals belong to the
common variance model, and thus traditional reliability indices are potentially masking important individual variation. We
discuss the implications of our findings and possible future directions. The methods are implemented in the R package vICC

Keywords Bayesian · Varying reliability · Within-person variance · Bayes factor
The particular problem studied here is the familiar analysis
between and within groups....The assumption of a common
[within-group] variance is usually made for convenience,
rather than because it necessarily occurs in practice.

— (pp. 1-11, Lindley, 1970)

Introduction

Measurement reliability is an important aspect of repeated
measurement designs, which are used extensively in the
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social-behavioral sciences. Their use spans from longitu-
dinal studies that track individuals over their life span, to
laboratory settings that can include hundreds of experimen-
tal trials for each person. Given that data are repeatedly
obtained from the same individuals, they tend to result
in non-independent structures, as measurements from the
same individual are assumed to be more similar to one
another than measurements from different individuals. This
is commonly referred to as clustered data, in that units
of observations are typically related to one another. These
hierarchically structured data naturally lend themselves to
assessing reliability by examining the degree of cluster
cohesion.

Intraclass correlation coefficients (ICC) are commonly
used to assess the level of agreement, or internal
consistency, of observations organized into the same
cluster (Bartko, 1966; McGraw & Wong, 1996). In
repeated measurement designs, individuals are consid-
ered to be the cluster and the repeated measurements
are nested within that cluster or person. In clustered
data, the ICC serves as a reliability index as it quan-
tifies the similarity of the data points within, rela-
tive to the difference between clusters (Bliese, 2000).
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As such, an ICC can characterize test-retest and inter-rater
reliability (Shrout & Fleiss, 1979; Weir, 2005). It also corre-
sponds to the proportion of total variance accounted for by
the clustering (Musca et al., 2011). Another classical exam-
ple comes from educational settings, where hierarchical data
are often gathered from students that are nested within dif-
ferent schools (Morris, 2008; Theobald, 2018). In this case,
the ICC would index the degree of similarity among stu-
dents that attend the same school. This logic also extends to
experimental designs, such as classic laboratory settings (Li,
Zeng, Lin, Cazzell, & Liu, 2015; Pleil, Wallace, Stiegel, &
Funk, 2018). A reliable experimental manipulation should
induce similar responses from the same individual (Rouder,
Kumar, & Haaf, 2019).

In order to compute the ICC, the different sources of
variability need to be decomposed into within- and between-
cluster variability (Hedges, Hedberg, & Kuyper, 2012). This
can be accomplished either within an ANOVA framework
(Shieh, 2012), or relatedly, within an unconditional hier-
archical mixed-effects model with only random intercepts
(i.e., “multilevel” models; Snijders & Bosker, 1993). In
this current work we focus on the latter, because we will
extend the classic mixed-effect model to allow the error
terms to vary across and within clusters. This marks a dras-
tic departure from the classical ICC literature that considers
reliability to be fixed and non-varying. We present novel
Bayesian methodology that allows for testing of varying
intraclass correlation coefficients at the individual level. The
foundation for this methodology is based upon the central
idea of capturing individual differences with mixed-effects
models.

Consider the case of a random intercepts only model.
There are two sources of variation, that is,

ρ = σ 2
0

σ 2
0 + σ 2

ε

. (1)

This is commonly referred to as ICC(1), and it can also be
viewed as a reliability index for single scores that ranges
from 0 − 1 (Shieh, 2016). Note that there are several
ICC indices (Bartko, 1976) and each allows for asking
specific questions about reliability. In this case, because
the focus is on individual variation, we only consider
ICC(1). We describe straightforward extensions in the
discussion section (e.g., average score reliability). In Eq. 1,
σ 2
0 is the between-person variance and σ 2

ε is the within-
person variance, respectively. The latter is often referred
to as measurement error. In cognitive inhibition tasks,
for example, it captures trial-to-trial “noise” in reaction
times. Thus, assuming that σ 2

0 is held constant, increasing
σ 2

ε will necessarily decrease reliability (Hedge, Powell,
& Sumner, 2018). This definition of ICC does not allow
for the possibility of individual differences in reliability.
However, if σ 2

ε is allowed to vary between individuals,

this immediately leads to Eq. 1 representing the average
reliability. Said another way, σ 2

ε can be viewed as the
average within-person variance which suggests that it might
not generalize to each person.

In the tradition of individual differences research it seems
reasonable that the reliability of, say, an educational test or
experimental manipulation, would not be the same for all
people or all situations. This notion of varying reliability
is not new and can be traced back nearly 50 years to a
(working) paper entitled, “A Note on Testing for Constant
Reliability in Repeated Measurement Studies”:

This paper discusses the potential usefulness of apply-
ing tests for the equality of variances (and covari-
ances) to data from repeated measurement studies
prior to estimating reliability components and coeffi-
cients ... Prior to actually applying some method of
reliability estimation to a body of data from a repeated
measurement study, consideration needs to be given to
what assumptions are tenable concerning the stability
of true and error variances (p.1; Silk, 1978).

To the best of our knowledge, this perspective has largely
gone unnoticed in the literature. For example, an excellent
paper by Koo and Li (2016) provides guidelines for
selecting and reporting ICCs but it did not mention the
implication of “Mean Squared Within” in an ANOVA
framework, which is equivalent to σ 2

1 in Eq. 1. Of
course, the ICC is often used descriptively (e.g., Noonan,
Fairclough, Knowles, & Boddy, 2017) and assumptions
are more important for significance tests (Bartlett & Frost,
2008). However, if there are notable deviations from
the average, we argue that the estimate of reliability
should account for this variation. This notion has serious
implications for social-behavioral scientists: it provides
the opportunity for researchers to fully characterize their
measures with a fine-tooth comb.

For example, a researcher could use the presented
methodology to extract certain people or simply quan-
tify how many individuals the traditional ICC is repre-
sentative of. Additionally, this could show that sometimes
heterogeneity in within-person variance is so large, that
a researcher may want to explore why that is the case.
This work provides a tool—and the insight that in com-
mon situations there could be large individual differences
in reliability. And now research psychologists can test this
possibility.

To illustrate the importance of accounting for individual
differences in ICCs, we will focus on cognitive inhibition
tasks, where they are routinely computed to characterize
reliability (Soveri et al., 2018; Strauss, Allen, Jorgensen,
& Cramer, 2005; Wöstmann et al., 2013) and to justify
subsequent statistical analysis steps (Hedge et al., 2018;
Rouder et al., 2019). This literature serves as an excellent
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testing ground, although the presented methodology can
be used for all hierarchically structured or clustered
data. A recent debate surrounding the study of individual
differences (Gärtner & Strobel, 2019; Hedge et al., 2018;
Rouder et al., 2019), and in particular its relation to
reliability formed the impetus for this current work. The
emerging consensus is that reliability is too low (i.e.,
“noisy” measures) to adequately study individual variation
in executive functioning.

However, the discussion has revolved almost exclusively
around the mean structure and avoided the within-person
variance structure altogether (i.e., σ 2

ε ). While the former
reflects average reaction times, the latter refers to reaction
time (in)stability—that is, consistency of executive func-
tions. Indeed, Williams, Rouder, and Rast (2019) recently
demonstrated that there were large individual differences in
consistently inhibiting irrelevant information (Figure 3 in
Williams, Rouder, & Rast, 2019). Although reliability was
not considered in that work, those findings imply that there
could be individual differences in reliability. This would
present a quagmire. On the one hand, low reliability is
thought to hinder our ability to study individual differences.
But on the other hand, individual differences in reliability
at the level of within-person variance may be a target for an
explanatory model itself.

There is an interesting and storied literature on mod-
eling within-person variance in hierarchical models (see
references in: Cleveland, Denby, & Liu, 2003). The central
idea goes back almost a century—that is, “[The quotid-
ian variation] index may be of significance...since under
the same test conditions individuals differ greatly in the
degree of instability of behavior...” (p. 246; Woodrow,
1932). In other words, there are likely individual differ-
ences in within-person variability—which implies there is
individual variation in reliability. These ideas are promi-
nent in research areas that gather intensive longitudinal
data (Hamaker, Asparouhov, Brose, Schmiedek, & Muthén,
2018; Hedeker, Mermelstein, & Demirtas, 2012; Rast &
Ferrer, 2018; Watts, Walters, Hoffman, & Templin, 2016;
Williams, Liu, Martin, & Rast, 2019). Indeed, to our knowl-
edge, the notion of varying ICCs was first described in
the context of ecological momentary assessment. In par-
ticular, Hedeker, Mermelstein, and Demirtas (2008) briefly
described how the variances (e.g., σ 2

0 and σ 2
1 ) could be

a function of covariates. This provided the foundation for
Brunton-Smith, Sturgis, and Leckie (2017). That work in
particular estimated group specific ICCs for interviewers
using a hierarchical model (see Figures 2 and 3 in: Brunton-
Smith et al., 2017).

There are several novel aspects of the present work.
We propose a novel testing strategy that is based upon
Bayesian model selection. This extends the approach of
Brunton-Smith et al. (2017), where it was not possible to

gain evidence for the null hypothesis. In our formulation,
the null hypothesis can be understood as the common
ICC model given in Eq. 1, but tested at the level of the
within-person variance. In practical applications, this would
allow a researcher to determine whether their estimate
of reliability generalizes to each person. Further, another
major contribution of this work is providing methodology
to classify individuals into a common variance model.
The importance of this cannot be understated. That is, we
not only introduce methods for characterizing individual
differences in reliability and rigorously testing for invariant
reliability, but we also provide a model comparison strategy
for assessing which (and how many) individuals belong
to the ICC in Eq. 1. These are novel contributions. These
methods also have serious implications for how we view
past estimates of reliability. Namely, if a small proportion
of individuals belong to the common ICC model, this would
suggest that we have been masking important individual
differences in reliability. We have also implemented the
methods in the R package vICC.1

This work is organized as follows. In the first section
we provide a motivating example. Our intention here is
to demonstrate the need for varying ICCs, in addition to
describing key aspects of the proposed model. This serves
as the foundation for the remainder of the paper. We then
introduce two models. The first tests for invariant within-
person variance, whereas the second tests which (and how
many) individuals belong to the common variance model.
We then employ the proposed methodology in a series of
illustrative examples. We conclude by discussing future
directions for psychological applications.

Motivating example

The presented methodology is based upon a straightforward
extension to the traditional mixed-effects approach, which
allows for partitioning the unexplained variance, or within-
person variance, and allowing for the possibility of
individual variation. The technique to do so is termed
mixed-effects location scale model (MELSM, pronounced
mel·zem; Hedeker et al., 2008, 2012). The location refers
to the mean structure (e.g., response time) and the
scale refers to the (within-person) variance. The MELSM
simultaneously estimates sub-models to both structures
(Rast & Ferrer, 2018; Williams & Rast, 2018). In this work,
we build upon this foundation and introduce a spike and
slab approach for both the random effects variance and the
individual random effects for the within-person variance. To
our knowledge, the spike and slab formulation has never
been used for the variance structure. As we show below,

1varying Intraclass Correlation Coefficients
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this opens the door for answering novel research questions
about the interplay between reliability and within-person
variability in psychology.

First we present a relatively simple example with the
goal of clarifying the central idea behind this work. We
start with the customary ICC(1) model for single scores (1),
and then proceed to extend the formulation to accommodate
individual differences in within-person variability.

Illustrative data

For the following we use data from a classical inhibition
task that investigates the so-called “Stroop effect”. These
data were first reported in von Bastian, Souza, and Gade
(2016). They consist of 121 participants, each of which
completed approximately 90 trials in total. About half of the
trials were in the congruent condition, wherein the number
of characters matched the displayed numbers–e.g., 22. The
remaining trials were in the incongruent condition–e.g.,
222. The outcome is reaction time for correctly identifying
the number of characters.

Mixed-effects model

For the ith person and j th trial, the one-way random effects
model is defined as

yij = β0 + u0i + εij , (2)

where β0 is the fixed effect and u0i the individual deviation.
More specifically, β0 is the average of the individual means
and for, say, the first subject (i = 1), their respective mean
response time is β0+u01. The variance components are then
assumed to follow

u0i ∼ N (0, σ 2
0 ) (3)

εij ∼ N (0, σ 2
ε ).

Here the between-person variance σ 2
0 captures the vari-

ability in the random effects var(u0i ), and the individual
deviations from the grand mean are assumed to be normally
distributed with a mean of zero. Further, the residuals are
also assumed to be normally distributed with a mean of zero
and variance σ 2

ε . This readily allows for computing the ICC
defined in Eq. 1 as σ 2

0/(σ 2
0 +σ 2

ε ).

Mixed-effects location scale model

An implicit assumption of the standard mixed-effects model
(e.g., Eq. 2) is that the residual variance is equal for each
individual or group. Conceptually, this can be thought of as
fitting i separate intercept only models, where each provides
the respective reaction time mean, but then constraining the
residual variance to be the same for each model.

The MELSM relaxes this assumption, in that each person
is permitted to have their own mean and variance, that is,

yij = β0 + u0i + εij (4)

σ 2
εij

= exp[η0 + u1i]
u1i ∼ N (0, σ 2

1 )

As indicated by the subscripts i and j , the error variance
σ 2

εij
is now allowed to vary across i individuals and j trials

given a log-linear model. The parameters in the scale model
(the model for the error variance) are analogous to those in
Eq. 2. η0 represents the intercept and defines the average of
the individual variances (i.e., σ 2

ε in Eq. 3) and u1i represent
the random effect, that is, the individual departures from
the fixed group effect. Again for the first subject (i =
1), η0 + u11 is the variability of their respective response
time distribution. Note the exponent is used to ensure that
the variance is restricted to positive values, and thus, is
lognormally distributed (Hedeker et al., 2008).

It is also customary to assume that the random effects are
drawn from the same multivariate normal distribution such
that[

u0i
u1i

]
∼ N

([
0
0

]
,

[
σ 2
0 ρσ0σ1

ρσ0σ1 σ 2
1

])
. (5)

Here σ 2
0 is the random effects variance of location intercepts

and σ 2
1 is the random effects variance of the scale intercepts.

Further, location and scale random effects are allowed to
correlate (i.e., ρσ0σ1), thereby providing the mean–variance
relation (Rouder, Tuerlinckx, Speckman, Lu, & Gomez,
2008; Wagenmakers & Brown, 2007; Williams, Rouder, &
Rast, 2019).

Individually varying reliability

Modeling the variance structure leads to individually
varying ICCs. This is accomplished with a straightforward
extension to Eq. 1, that is,

ρi = σ 2
0

σ 2
0 + exp[η0 + u1i]

(6)

Note that the subscript i denotes the ith individual. For
example, with i = 1, this formulation would provide
the person-specific estimate of reliability for the first
subject. Further, in Eq. 6, the covariance between two
observations from the same individual remains unchanged
from the customary definition of ICC(1). In other words, the
only modification is that the correlation is now expressed
as a function of the individual, within-person variance,
estimates. Of course, if there is not much individual
variability in the variance structure (i.e., σ 2

1 is small), this
would result in Eqs. 1 and 6 producing similar estimates.
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This is because a mixed-effects model is a special case of
the MELSM, but with an implicit fixed intercept only model
fitted to the variance structure.

Additionally, due to the hierarchical formulation, these
reliability estimates will not be equivalent to solving
Eq. 6 with the empirical variances. Indeed, in this model,
the parameters share information (i.e., partial pooling
of information) which can lead to improved parameter
estimates due to shrinkage towards the fixed effect average
(Efron & Morris, 1977; Stein, 1956). This is a defining
feature of hierarchical estimation, and also applies to
location-scale models.

Application

We fitted the MELSM and estimated varying ICCs with the
R package vICC.2 The parameter estimates are displayed in
Fig. 1. Panel A includes the individual means. The between-
person variance (σ 2

0 ) captures the variability in these
estimates. Note that the slowest mean reaction time was 977
(ms) and the fastest was 519 (ms). As a point of reference,
this is an 1.88-fold increase from the fastest to slowest
individuals. These estimates can also be obtained from a
standard mixed-effects model (2). Panel B includes the
estimates of within-person variability. They are expressed
on the standard deviation (SD) scale. In this case, the least
consistent person had a SD of 321 (ms), whereas the most
consistent had a SD of 94 (ms). This is a 3.41-fold increase
from the least to most consistent individuals. Expressed
as variance this is a 11-fold difference, which may be
problematic, when considering the average (the dotted line)
is used to compute reliability (1).

Panel C includes the varying intraclass correlation coef-
ficients (defined in Eq. 6). Before describing these results,
it is important to note that ICC(1) provides the lowest score
among the different ICC definitions. We refer to Shieh
(2016), where it was described how an ICC(1) = 0.20 could
exceed 0.80 for average score reliability.3 The dotted line
corresponds to the customary reliability estimate computed
with the average within-person variance (ICC = 0.21, 90%
CrI = [0.17, 0.25]). However, there were substantial indi-
vidual differences in reliability. The smallest ICC was 0.08
and the largest was 0.51. In other words, for the classical
Stroop task, there was a 6.10-fold increase from the least to

2Note that we excluded the prior specification from this section for
simplicity. The posterior distributions are summarized with means and
90% credible intervals. The prior distributions are described in the next
section.
3We investigated this with data provided in Hedge et al. (2018). They
used average scores for each person across two sessions to compute
retest reliability. Here we noted their reported estimates of around 0.70
translated to (roughly) 0.20 for the single scores.

most reliable individuals. This corresponds to over a 500%
difference in reliability!

Summary

This motivating example provides the foundation for the
proceeding methodology. The central idea behind modeling
individual varying variances was described, and in particu-
lar, how this relates to computing reliability from a one-way
random effects model. The results demonstrated there were
substantial individual differences in the within-person vari-
ance structure (panel B), which then necessarily results in
individual differences in intraclass correlation coefficients
or reliability. The degree of variation was not small, in that
the 90% credible intervals excluded the average ICC for
over half of the individuals (≈ 52%) in the sample. We
argue this sufficiently motivates the need for investigating
varying ICCs in psychological applications.

Importantly, the extent of this illustrative example paral-
lels the work of Brunton-Smith et al. (2017). In particular,
varying ICCs were computed for interviewers and then visu-
alized in a similar manner as Fig. 1 (panel C). The rest of
the paper includes our major and novel contributions. That
is, we first describe methodology that tests for invariant
within-person variance. This was not possible in Brunton-
Smith et al. (2017), where the deviance information criteria
(DIC) was used for model comparison (Spiegelhalter, Best,
& Carlin, 2014). Our method allows for gaining (relative)
evidence for the null hypothesis of invariant within-person
variance with the Bayes factor. Further, for the goal of deter-
mining which (and how many) individuals belong to the
common ICC model, we again focus on the within-person
variance which directly targets the implicit assumption in
Eq. 1. This is also based upon Bayesian hypothesis testing
with the Bayes factor.

At this point, it is important to note that the decision
on whether we have a common ICC model, as described
in Eq. 1, or a varying ICC model, as described in Eq. 6,
is obtained via the random effect u1i in the within-subject
variance model of Eq. 4. Another, seemingly intuitive
approach, would be to use credible intervals computed
from the person-specific ICCs (Fig. 1; panel C). However,
this approach could only be used for detecting differences
from the average ICC with an implicit null hypothesis sig-
nificance test. Further, given that the varying ICC is a
ratio of between-person and total variance, the posterior
distribution also includes the uncertainty in the between-
person variance. This can result in wider credible inter-
vals. However, in our formulation, because the between-
person variance is held constant, it follows that a differ-
ence in within-person variance results in a difference in
reliability. The question at hand is therefore determined at
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Fig. 1 This plot motivates the need for individually varying ICCs. Pan-
els A and B highlight individual variation in the reaction time means
and standard deviations. The estimates are random intercepts for the
location (mean) and scale (variance) sub-models, respectively. While
the former are provided by a customary mixed-effects model (A), the
variance structure is also assumed to be fixed and non-varying. In other
words, that each person has the same reaction time standard devia-
tion which corresponds to the dotted line in B. However, there are

substantial individual differences in the scale model (B). This neces-
sarily results in there being individual differences in reliability. This
can be seen in panel C. The dotted line denotes the traditional ICC
that assumes a common variance for each person. This masks impor-
tant individual differences. In fact, there is a sixfold difference from
the largest to the smallest ICC! The bars represent 90% CrIs for
the hierarchical estimates. Those in either blue or green excluded the
average

the level of within-person variance and before reliability is
computed.

Bayesian hypothesis testing

Bayesian hypothesis testing is synonymous with model com-
parison. In contrast to classical testing (i.e., using p-values),

the Bayesian approach provides a measure of relative evi-
dence for which model is most supported by the data
at hand. Thus, there must be at least two models under
consideration–that is,

Pr(Ma|Y)

P r(Mb|Y)︸ ︷︷ ︸
posterior odds

= Pr(Y|Ma)

P r(Y|Mb)︸ ︷︷ ︸
Bayes factor

× Pr(Ma)

P r(Mb)︸ ︷︷ ︸
prior odds

. (7)

1277Behav Res  (2022) 54:1272–1290

1 3



In this formulation there are two models,Ma andMb, that
can be thought of as competing predictions. Note that the
prediction task is not for unseen data, as in commonly used
information criteria (Vehtari, Gelman, & Gabry, 2017), but
instead for the observed data Y (Kass & Raftery, 1995).
The Bayes factor is commonly referred to as an updating
factor (Rouder, Haaf, & Vandekerckhove, 2018), because
it is multiplied by our prior beliefs about the models (i.e.,
the ratio prior model probabilities). It is common practice
to assume equal prior odds, Pr(Ma)/P r(Ma) = 1, which
results in the Bayes factor and the posterior odds being equal
to one another.

Although this intuitive framework appears to provide a
simple approach for comparing models, it turns out that
computing the Bayes factor can be quite challenging. It
requires computing the marginal likelihood or the normal-
izing constant. Numerous methods have been proposed to
compute this integral, for example Laplace’s approxima-
tion (Ruli et al., 2016), bridge sampling (Gronau et al.,
2017), and Chib’s MCMC approximation (Siddhartha,
1995). Further, it is common to use conjugate prior distri-
butions that provide an analytic expression for Eq. 7. This
approach is limited to particular classes of models (Rouder
& Morey, 2012), which limits its usefulness for location
scale models.

Spike and slab prior distribution

We employ the spike and slab approach for model compar-
ison (George & McCulloch, 1993; Mitchell & Beauchamp,
1988; O’Hara & Sillanpää, 2009). This approach formulates
model comparison in terms of a two-component mixture: 1)
a “spike” that is concentrated narrowly around zero and 2) a
diffuse “slab” component surrounding zero. The former can
be understood as the null model, M0, whereas the latter is
the unrestricted model,Mu. Note that we prefer thinking of
an unrestricted model and not necessarily a hypothesis (e.g.,
H1). Thus, in our formulation, the unconstrained model can
be thought of as “notM0”.

A central aspect of this approach is the addition of a
binary indicator, which in essence allows for switching
between the two mixture components (i.e., transdimensional
MCMC; Heck, Overstall, Gronau, & Wagenmakers, 2018).
The proportion of MCMC samples spent in each component
can then be used to approximate the respective posterior
model probabilities. We refer interested readers to Rouder
et al. (2018), that includes an excellent introduction to the
spike and slab methodology. Further, O’Hara and Sillanpää
(2009) presents an in-depth overview of the various
specifications. Our specific application is clarified below.

Model formulation

These model formulations were inspired by Haaf and
Rouder (2018) and, in particular, Wagner and Duller (2012).
The former used a spike and slab approach to investigate
cognitive inhibition in, for example, the “Stroop effect”. In
this case, they asked “...the posterior probability that all
individuals are in the spike relative to the prior probability
that all individuals are in the spike”. This was specifically
for the priming effect, and they did not consider the variance
structure (the focus of this work). On the other hand,Wagner
and Duller (2012) considered a spike and slab approach for
logistic regression models with a random intercept. This
work also focused on the mean structure, and we extend
their formulation to model within-person variability.

Testing the common variancemodel

The common variance model refers to the implicit
assumption of Eq. 1. Namely, that each person has the
same (or similar) within-person variance. However, if there
are individual differences in within-person variability, then
the estimate of reliability should accommodate individual
variation (6). The adequacy of a common ICC model can
be inferred by testing the random effects variance in Eq. 5
(i.e., σ 2

1 ). That is, if there is evidence for zero variance in
the scale intercepts (the spike component), this implies that
Eq. 1 adequately describes each individual.

The presented applications use reaction time data that
includes several repeated measures for each person. Thus,
for the ith person and j th trial, the likelihood for each data
set is defined as

yij ∼ N (β0i , exp[η0i]). (8)

This includes a location β0i and scale η0i intercept for each
person. We employ the non-centered parameterization for
hierarchical models–i.e.,

β0i = β0 + τμ · z
μ
i (9)

z
μ
i ∼ N (0, 1)

β0 ∼ N (0, 1)

τμ ∼ St+(ν = 10, 0, 1).

Here we are not modeling the intercepts directly, but instead
inferring them from a latent variable z

μ
i . In Eq. 9, β0 is

the fixed effect or average reaction time across individuals
and τμ is the random effects standard deviation. They are
each assigned a weakly informative prior distribution, with
St+ denoting a half Student-t distribution. We then model
the scale random effects similarly, but with the addition of
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τσ∗ and the Cholesky decomposition in order to include the
correlation among the location and scale random effects,

η0i = η0 + τσ∗
(
z
μ
i ρ + zσ

i

√
1 − ρ2

)
(10)

zσ
i ∼ N (0, 1)

zf ∼ N (0, 1)

ρ = F−1(zf )

Here η0 is the fixed effect or average within-person
variability. This value is used to compute fixed and non-
varying reliability (1). ρ captures correlation between the
random effects, which is the mean–variance relation. We
then place a standard normal prior distribution on ρ. This
is accomplished by taking the inverse of the Fisher Z
transformation (i.e., F−1). The key difference from Eq. 9 is
the introduction of τσ∗ , which is the random effects standard
deviation of the scale intercepts. This is where the spike and
slab prior distribution is introduced–i.e.,

τσ∗ = δ · τσ (11)

δ ∼ Bernoulli(π)

τσ ∼ St+(ν = 10, 0, 1).

In this case, τσ ∼ St+(ν = 10, 0, 1) is the slab component
that can be understood as the unrestricted model (Mu). This
formulation defines a Dirac spike at zero (i.e., a point mass).
It was first introduced in Kuo and Mallick (1998). The key
insight is that, for each MCMC iteration, a 0 or 1 is drawn
from the Bernoulli distribution with the prior probability of
sampling a 1 denoted π . To keep the prior odds at 1, π can
be set to 0.5. Hence, this effectively allows for switching
between a fixed effect τσ = 0 (M0, i.e., common variance)
and the random-effects model τσ > 0 (Mu)–i.e.,

τσ∗ =
{
0, if δ = 0,

τ σ , if δ = 1
. (12)

The posterior model probabilities can then be computed as

Pr(Mu|Y) = 1

S

S∑
s=1

δs, (13)

where S = {1, ..., s} denotes the posterior samples.
Consequently, this formulation provides the necessary
information for computing the Bayes factor defined in Eq. 7.
For example, in the case of equal prior odds,

BF0u = 1 − Pr(Mu|Y)

P r(Mu|Y)
, (14)

results in the Bayes factor in favor of the spike component or
the null hypothesis. We emphasize that this provides relative
evidence compared the chosen unrestricted model (the slab),
and it will also be influenced by the prior inclusion proba-
bility. Importantly, this is essentially variance selection for
the within-person variance. As discussed before, zero vari-
ance (τ 2(σ ) = 0) is implied by the customary ICC given in

Eq. 1. Thus, if there is evidence for Mu, then varying ICCs
should be computed with Eq. 6.

Themembershipmodel

The above approach focuses exclusively on the random
effects variance and asks whether there is evidence
for a common within-person variance. This question
necessarily implies, “is there evidence for a common ICC
or reliability?” that can be computed with the traditional
ICC formulation (1). If there is evidence for varying ICCs,
an additional question we can ask, relates to classification
problems, such as, “which (or how many) individuals
belong to the common variance model?” We term this the
membership model.

The spike and slab approach has been used for computing
posterior probabilities of individual random effects. In
particular, Frühwirth-Schnatter, Wagner, and Brown (see
Table 7; 2012) employed the technique for random
intercepts in logistic regression. This work exclusively
focused on the mean structure. We extend the general idea
and model specification to the variance structure. This is a
novel contribution.

The model formulation is almost identical to that
described above (“Testing the common variance model”).
The one change is that the indicator is removed from τσ and
applied to the random effects–i.e.,

η∗
0i = z

μ
i ρ + zσ

i

√
1 − ρ2 (15)

η0i = η0 + τσ
(
η∗
0i · δi

)
zσ
i ∼ N (0, 1)

δi ∼ Bernoulli(π).

That slab component, or Mu, is now comprised of various
aspects of this model. For example, the prior distributions
for ρ, τσ , and the latent variable zσ

i . Importantly, in
reference to Eq. 10, the key difference is that the random
effects standard deviation, τσ , is always included in the
model and the target for selection is the random scale effects
(i.e., η∗

0i in Eq. 15). In this way, the inclusion probability for
each individual can be computed, in that, when not included
in the model, their estimate is equal to the grand mean.

To understand the implied prior distribution, and thus the
unrestricted model, we sampled from the prior distributions.
This is visualized in Fig. 2, where it was revealed that the
slab component resembles a mixture between a normal and
Student-t distribution. This results in a heavy-tailedness,
which is often recommend for the slab component (e.g.,
Frühwirth-Schnatter et al., 2012; Wagner & Duller, 2012).
The key aspects to focus on are the subscript to the indicator
(δi), which assigns each person a prior inclusion probability,
and also the second line of Eq. 15. Recall that δi will either
be 0 or 1. Thus, when a 0 is sampled, the portion after
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Fig. 2 This plot clarifies the spike and slab approach for model com-
parison. Panels A and D include the prior distributions or competing
models. The question at hand is then which most accurately pre-
dicts the observed data Y. The former (panel A) is for the random
effects standard deviation τσ . This provides a test for invariant within-
person variance or non-varying random intercepts. The latter (panel
D) is for the individual random effects u1i . This allows for testing
whether each individual is equal to the average within-person vari-
ance, which is implied by traditional ICC formulations (1). In both
panels, the black line represents the common variance modelM0 (the
spike component), whereas the unrestricted model Mu (“not M0”)

is captured by the distributions. The spike and slab approach allows
for “jumping” between the competing models. The number of pos-
terior samples spent at each model can be used to approximate the
respective model probabilities in Eq. 7. The remaining panels are
hypothetical posterior distributions. For example, in panels B and
E, 75% of the posterior samples were drawn from M0. This corre-
sponds to Pr(M0|Y) = 0.75. On the other hand, in panels C and
F, 90% of the samples were drawn from Mu. This corresponds to
Pr(Mu|Y) = 0.90. These model probabilities can then be used to
compute the Bayes factor with Eq. 7

the fixed effect, or the average within-person variance (η0),
drops out of the equation. In other words, for that particular
MCMC sample, their estimate will then be equivalent to the
average (η0i = η0)–i.e.,

η0i =
{

η0, if δi = 0,

η0 + τσ
(
z
μ
i ρ + zσ

i

√
1 − ρ2

)
, if δi = 1

. (16)

Importantly, since the average within-person variance is
used to compute traditional ICCs, it follows that individual
i is a member of the common ICC model (1) when δi =
0. Thus, for each iteration, this specification allows each
individual to have their own person-specific estimate or the
fixed effect average. Hence, each individual has a posterior
probability of membership for belonging to the common
variance model. Assuming equal prior odds, for example,
this can then be used to compute the corresponding Bayes
factor–i.e.,

BF0ui = Pr(η0i = η0|Y)

1 − Pr(η0i = η0|Y)
. (17)

We again emphasize that η0 corresponds to σ 2
1 in Eq. 1–i.e.,

σ 2
0/(σ 2

0 +σ 2
1 ). Consequently, as we have argued, this implies

membership to the common ICC model.

Hypothetical example

This section clarifies our spike and slab implementation.
First, it is important to note that there are a variety of
possible specifications (O’Hara & Sillanpää, 2009). To
our knowledge, only a point mass at zero has been used
in psychological applications (Haaf & Rouder, 2018; Lu,
Chow, & Loken, 2016, Rouder et al., 2018). However, it is
possible to consider a mixture of continuous distributions
(Carlin & Chib, 1995; Dellaportas et al., 2000), or
described more recently, a hyperparameter formulation for
the variances (Ishwaran & Rao, 2005, 2003). A simulation
study comparing the alternative approaches can be found
in Malsiner-Walli and Wagner (2011). For our purposes,
we chose the Dirac spike approach for theoretical reasons
(exactly zero) and also in reference to the summary provided
in O’Hara & Sillanpää (see Table 1: 2009). Namely, the
Dirac spike was comparable in terms of computational
feasibility and performance, while also providing estimates
of exactly zero.

For illustrative purposes, we plotted competing models
in Fig. 2. Panel A includes M0 and Mu that were
described above (“Testing the common variance model”).
In particular, these competing models test whether there is
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a common within-person variance. This is implied when
computing ICC(1) (i.e., Eq. 1). The black line represents
the spike component (M0), whereas the blue distribution is
the slab component (Mu). Panel B includes a hypothetical
posterior distribution. In this case, after conditioning on
the observed data Y, there would be evidence for the
spike Pr(M0|Y) = 0.75. Assuming equal prior odds, this
corresponds to evidence in favor of the null hypothesis
of a common within-person variance (BF0u = 3), which
implies that there is (relative) evidence for a common ICC
that is captured by the average within-person variance.
This inference follows the customary guidelines provided in
Kass and Raftery (1995) and Jeffreys (1961). On the other
hand, panel C includes an example posterior that would
provide evidence for vary within-person variance. Namely,
the posterior model probability for the slab component is
Pr(Mu|Y) = 0.90, which corresponds to BFu0 = 9.0
(assuming equal prior odds).4 Thus, in this hypothetical
example, there is evidence for individual differences in
within-person variance, and as a result, there is also
evidence in favor of computing varying ICCs.

This notion also applies to the individual random effects,
or the membership model, but in this case the spike
component corresponds to the fixed effect average. This is
plotted in Fig. 2 (panels C, D). To avoid redundancy it is
further summarized in the caption.

Illustrative examples

We now apply the proposed methodology to two classi-
cal inhibitions tasks. The data are different from above
(“Motivating example”). In particular, there are fewer peo-
ple (n = 47) but (substantially) more repeated measure-
ments from the same individual. They were originally col-
lected and used in Hedge et al. (2018), and they were also
analyzed in Rouder et al. (2019). Both of these papers raised
concerns about the study of individual differences in rela-
tion to measurement reliability. They also focused on the
mean structure. We use the same data to characterize indi-
vidual variability in the within-person variance structure,
and thus, measurement reliability.

Data set 1: flanker task

Rather than reword the study description, we instead
directly quote the original study authors. The task protocol
was succinctly described in Hedge et al. (2018):

Participants responded to the direction of a centrally
presented arrow (left or right) using the \and /

4BFu0 = Pr(Mu|Y)
P r(M0|Y)

= Pr(Mu|Y)
1−Pr(Mu|Y)

keys. On each trial, the central arrow (1 cm × 1
cm) was flanked above and below by two other
symbols separated by 0.75 cm...Flanking stimuli were
arrows pointing in the same direction as the central
arrow (congruent condition), straight lines (neutral
condition), or arrows pointing in the opposite direction
to the central arrow (congruent condition). Stimuli
were presented until a response was given (p. 1196).

We computed the reliability of correct responses for the
congruent, incongruent, and neutral responses in separate
models. We followed the protocol described in Haaf and
Rouder (2017): reaction times less than 0.2 and greater than
2 s were removed from the data.

Data set 2: Stroop task

Hedge et al. (2018) included several cognitive tasks that are
thought to measure the same thing. We chose this task in
particular because it most closely paralleled the flanker task.
Thus we could fit models to the same types of responses. We
again directly quote the experimental protocol from Hedge
et al. (2018):

Participants responded to the color of a centrally
presented word (Arial, font size 70), which could be
red (z key), blue (x key), green (n key), or yellow
(m key). The word could be the same as the font
color (congruent condition), one of four non-color
words (lot, ship, cross, advice) taken from Friedman
and Miyake (2004) matched for length and frequency
(neutral condition), or a color word corresponding
to one of the other response options (incongruent).
Stimuli were presented until a response was given.
Participants completed 240 trials in each condition
(720 in total) (p. 1196).

This task included the same number of trials for each
condition as the flanker task (i.e., 240). We again analyzed
only the correct responses for congruent, incongruent, and
neutral responses. These data were also cleaned following
Haaf and Rouder (2017).

Software and estimation

The models were fitted with the R package vICC, which
uses the Bayesian software JAGS (Plummer, 2016). Note
that an advantage of JAGS is the ability to fit spike and
slab models in particular (see the appendices in: Ntzoufras,
2002; O’Hara & Sillanpää, 2009). For each model, we
obtained 20,000 samples from the posterior distribution,
from which we discarded the initial burn-in period of 5000
samples. This number of samples provided a good quality
of the parameter estimates and stable posterior model
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probabilities. We restrict our focus to the scale model and
also the varying ICCs.

The common variancemodel

Before describing these results, first recall that the central
focus of this work is the within-person structure. The idea
is that, because reliability in repeated measurement studies
is computed with the average within-person variance (e.g.,
mean squared within), it is a natural target for “putting
the individual into reliability”. That is, if there are large
deviations from the average “error”, then person-specific,
varying ICCs, can be employed to gain further insights into
measurement reliability.

Figure 3 includes the individual, random effects, for the
variance structure. Note that the estimates are reported
as reaction time standard deviations, which eases inter-
pretation. Importantly, the dotted line corresponds to the
fixed-effect, or the average within-person variability. This
estimate would traditionally be used to compute the ICC
given in Eq. 1. This implicitly assumes that each person (or
group) can be adequately described by the average. How-
ever, as revealed in Fig. 3, there are considerable individ-
ual differences in within-person variance. As an example,
panel A includes the individual estimates for the congru-
ent responses in the flanker task, where there is a fivefold
difference from the least (0.05) to most variable individu-
als (0.25). There are recommendations pertaining to when
unequal variances become problematic; for example, a com-
mon “rule of thumb” is when the ratio between the largest
to smallest variance exceeds 3 or 4. In this case, when
expressed on the variance scale, the maximum-minimum
ratio exceeded 20!

Moreover, the individual, within-person variability esti-
mates, revealed a similar pattern between all three outcomes
and both tasks. Namely, there were notable individual dif-
ferences in the variance structure. This suggests that the
inherent variation is not a peculiarity of one data source,
task, or response type. This insight was made possible with
the presented methodology.

The histograms correspond to the random effects stan-
dard deviation for the scale intercepts (τσ ). This captures
the spread of the within-person variances, that are assumed
to be sampled from the same normal distribution. Further,
τσ was subject to spike and slab model comparison. Here
the spike component, or M0, corresponds to a fixed effect
model (τσ = 0). This corresponds to the assumption of
homogeneous within-person variance. On the other hand,
the slab component, Mu, corresponds to the unrestricted
model that permits heterogeneity in the variance structure.
Our intention was originally to compute the Bayes factor,
given in Eq. 7, for the competing models. However, for each
outcome and task, the probability of the slab component

was 1.0. Thus the Bayes factors were all infinite! This can
be seen in Fig. 3. The posterior distributions are well sep-
arated from zero, which indicates overwhelming (relative)
evidence for heterogeneous within-person variances.

Themembershipmodel

The membership model builds upon the common variance
model. Namely, it allows for determining which (and
how many) individuals are adequately described by the
average within-person variance or mean squared within in
an ANOVA framework. This is the implicit assumption of
computing Eq. 1, in that this measure of reliability utilizes a
common variance.

Figure 4 includes these results. We focus on row 1. The
varying ICCs can be seen on the x-axis, where the average
ICC is denoted with a triangle. This shows the spread of
measurement reliability in these data. For example, panel
A includes congruent responses for the flanker task. Here
the lowest ICC was 0.05 and the highest was 0.55. This
corresponds to over a tenfold increase from the least to
most reliable measurements for this outcome and task. Note
that the other panels had less variability, but the maximum-
minimum ratio always exceeded 3.

The y-axis includes the posterior probabilities in favor
of belonging to the common variance model. That is,
the evidence in the data for each person being accurately
described by the average within-person variance. The
shaded grey region corresponds to a Bayes factor of 3,
which is a point of reference that indicates “positive”
evidence for M0 (Kass & Raftery, 1995). It was revealed
that very few people across all outcomes and both tasks
belong to the common variance model, whereas roughly half
were determined to belong to the slab component. Indeed,
for many individuals, the posterior probability of the spike
was zero. Said another way, the probability of belonging to
the slab component was 1 (an infinite Bayes factor).

Figure 4 was conceptualized with a secondary goal
of illustrating the central idea behind this model (again
row 1). This can be seen by noting both axes in relation
to the average ICCs that are denoted with triangles. For
example, the highest posterior probabilities are centered
directly above the average reliability. This is expected, in
that, as we have highlighted throughout this work, the ICC
is computed from the average within-person variance. Thus,
for those that belong to the common variance model, their
respective reliability will be very similar to the fixed and
non-varying ICC given in Eq. 1. Further, the posterior
probabilities in favor of M0 gradually became smaller for
larger deviations from the average ICC. Said another way,
for increasingly larger differences from the average ICC,
the posterior probabilities also became larger for the slab
component or the unrestricted model Mu (Fig. 2; panel D).
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Fig. 3 The points correspond to person-specific within-person vari-
ability that is expressed on the standard deviation scale. The dotted
lines denote the average within-person SD and the bars are 90% CrIs.
This reveals substantial individual differences in the scale model for
both tasks and all three outcomes. This necessarily results in there
being individual differences in reliability. Importantly, the traditional
ICC assumes a common variance for each person that corresponds
to the dotted lines. This masks important individual differences. The

histograms are the posterior distributions of τσ , which is the random
effects SD for the scale model. It captures the spread in individual vari-
ability, in that, if τσ = 0, this suggests there is invariant within-person
variance. For both tasks and all three outcomes, the posterior proba-
bility for the common variance model was zero, which results in an
infinite Bayes factor in favor of varying within-person variance. This
can be inferred from the histograms: The posterior distributions are
well separated from zero

Robustness check

Thus far, we have not discussed a decision rule for the spike
and slab approach for model comparison. This is intentional,
in that Bayesian inference is focused on the weight of
evidence and is thus decoupled from making decisions
(Morey, Romeijn, & Rouder, 2016). Further, the most
common decision rule does not entail computing a Bayes
factor, but instead the median probability model is perhaps
the most popular choice (Lu et al., 2016; Mohammadi &
Wit, 2015). Here, variables are selected with Pr(Ma|Y) >

0.50, although this was originally proposed for the goal

of future prediction and it assumed an orthogonal design
matrix (Barbieri & Berger, 2004). We refer to Piironen
and Vehtari (2017), where violations of this assumption
were investigated and compared to the most probable model
(among other methods).

Regardless of the evidentiary threshold or decision rule,
however, it will be influenced by the prior distribution to
some degree. This is not a limitation, but instead, in our view,
this can strengthen claims with counter-factual reasoning. In
what follows, we adopt the perspective of trying to persuade
a skeptic to the central implication of the results–i.e.,
relatively few people belong to the common variance model,
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Fig. 4 Results from the membership model. In row 1, the posterior
probabilities in favor of the common variance model are on the y-axis
and the varying ICCs are on the x-axis. The shaded region corresponds
to a Bayes factor greater than three and the triangle denotes the average
ICC. The accuracy of the model can be inferred from this plot. Namely,
the posterior probabilities in favor of M0 gradually became smaller
for larger deviations from the average ICC. Indeed, Pr(M0|Y) = 0

corresponds to Pr(Mu|Y) = 1. In row 2, the points are person-
specific ICCs, the dotted lines denote the average ICC, and the bars
are 90% CrIs. The blue bars and points are individuals that belong
to the common variance model. For demonstrative purposes, this was
determined with a Bayes factor greater than three. This reveals that
few people belong to the common variance model, which is used to
compute Eq. 1, and that there are individual differences in reliability

which (perhaps) calls into question traditional reliability
indices.

To convince her, we performed a sensitivity analysis to
check the robustness of the results. In this work, she was
primarily concerned with two sources that could influence
the resulting inference. The first is the unconstrained model,
Mu, or the slab component. And the second is the prior

inclusion probability π . To address these concerns, we
varied the assumed prior distributions for the flanker task
congruent responses. Recall that the prior distribution for
the individual random effects is a scale mixture (Fig. 2;
panel D). We thus increased the scale for the prior on τσ ,
ν ∈ {1, 2 and 3}, which increasingly results in more diffuse
priors. This could hinder “jumps” to the slab component
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(O’Hara & Sillanpää, 2009), and when assuming a ground
truth, this is known to favor the null hypothesis of a common
variance (Gu, Hoijtink, & Mulder, 2016). Furthermore, she
had a strong belief in the adequacy of the common variance
model. This was expressed as Pr(M0) = 0.80, although
we assumed a range of prior model probabilities. We used a
decision based on the posterior odds exceeding 3.

Figure 5 includes the results. Note that the random
effects standard deviation, τσ , was robust to all prior
specifications we considered, with each resulting in a
posterior probability of 1 in favor of varying intercepts,
or individual differences in the variance structure, for the
scale model. Consequently, we restrict our focus to the
membership model. Further, because there was essentially
no difference between the various scale parameters we only
discuss ν = 1. This was used in the primary analysis. Panel
A shows the proportion of individuals that belong to each
mixture component, as function of the prior probability for
the common variance model. This reveals the classification
results were consistent, for example even with Pr(M0) =
0.80, the proportion of individuals belonging toM0 did not
exceed 25%. And the majority of individuals belonged to
Mu, or the slab component, regardless of the prior odds.
Panel B shows the posterior probabilities as a function
of the prior probabilities. The shaded area corresponds to
the critical region. In this case, the probabilities in favor

of M0 gradually decreased to eventually there being zero
individuals belonging to the spike component. Further note
that, with Pr(M0) = 0.80, that corresponds to a strong
belief, only one person changed from undecided to the
common variance model.

Together, this points towards robustness of the results
that ultimately satisfied the skeptic. And this also highlights
that our membership model works nicely for the goal at
hand, in that the various models produced the expected
results. For example, in panel A, the largest proportion
of individuals belonging to M0 was observed with the
highest prior probability. And the proportion gradually
diminished with decreasing prior probabilities. A similar
pattern was revealed in panel B. In practical applications,
we recommend that in lieu of strong prior beliefs, or
a prior distribution that adequately reflects a hypothesis,
similar robustness checks can be performed. These are
implemented in the R package vICC.

Discussion

In this work, we proposed a novel testing strategy for homo-
geneous within-person variance in hierarchical models. The
primary motivation for developing this methodology was
for applications in measurement reliability. We argued that
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Fig. 5 Results from the robustness check. In panel A, the prior model
probabilities for the common variance model are on the x-axis and
the membership proportion is on the y-axis. The latter refers to the
proportion of individuals that belong to the competing models (i.e.,
M0 vs. Mu). Recall that M0 is the common variance model (the
spike) and Mu is the varying variance model (the slab). For demon-
strative purposes, membership was determined with a posterior odds
greater than three. This reveals that classifying individuals was robust
to the prior distribution. Moreover, the key implication of this work
was strengthened (i.e., that few people are adequately described by the
average within-person variance), in that, even with Pr(M0) = 0.80,

the majority of individuals still belonged toMu. In panel B, the prior
model probabilities for the common variance model are on the x-axis
and the posterior model probabilities are on the y-axis. Each line is
an individual (n = 47) and the shaded region corresponds to a poste-
rior odds greater than three. Note that the majority of individuals are
overlapping each other at a posterior probability of zero, which indi-
cates essentially no support for the null model. For others, however,
the posterior probabilities were sensitive to the prior probabilities. The
former gradually decreased with smaller prior probabilities for M0.
Importantly, only one person switched from being undecided and to
the common variance modelM0
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reliability in repeated measurements is often computed
without considering the implicit assumption of a common
within-person variance, which is typically assumed to be
the case in ANOVA and hierarchical models, and thus also
assumed in traditional formulations for computing intra-
class correlation coefficients. Our method, for characteriz-
ing individual differences, specifically targeted reliability at
the level of the within-person variance structure. This was
accomplished by extending the traditional mixed-effects
approach to include a sub-model that permits individual
differences in within-person variance.

Moreover, Bayesian hypothesis testing, and in particu-
lar the spike and slab approach, was used for comparing
competing models. On the one hand, our model compari-
son formulation posited a common (within-person) variance
that is represented by a spike component. On the other
hand, the unrestricted, or the varying within-person vari-
ance model, was represented by a slab component. This
approach allows researchers to assess (relative) evidence for
the null hypothesis of a common variance, which is assumed
to be representative of each individual when computing tra-
ditional measures of reliability. Further, we also introduced
the membership model. Here the goal was to explicitly
determine which (and how many) individuals belong to
the common variance model. The importance of these con-
tributions cannot be understated. First, a researcher can
determine the generalizability of measurement reliability
in their repeated measurement studies. Second, individual
differences in within-person variance provides a natural tar-
get for improving reliability. For example, by developing
methodology to hone in the final sample to either exclude
individuals determined to be unreliable or considering sub-
groups that have a common variance.

What is sufficient evidence?

The presented approach did not employ a hard and fast
threshold for determining whether the null hypothesis
should be “rejected”. For example, although we used the
Bayes factor threshold of three as a reference point in Fig. 4,
the overall message was that reliability varies which could
be surmised from the posterior probabilities in relation to
the individual level ICCs. In practice, however, it may
be desirable to directly make a decision regarding which
individuals share a common variance. To this end, there
are two strategies. The first is to follow the guidelines
provided in Kass and Raftery (p. 777, 1995), which are
commonly used in psychology. Here a Bayes factor of three
is considered “positive evidence” that will typically be more
conservative than a significance level of 0.05. The second
approach is to use a posterior probability greater than 0.50
(or a Bayes factor of one) that results in the “median
probable model” (Barbieri & Berger, 2004). This approach

can be used if a decision is necessary, given that using
a Bayes factor of three can result in ambiguous evidence
(neither hypothesis was supported).

Furthermore, in the membership model, there is the issue
of multiple comparisons, given that potentially hundreds of
tests are being conducted. In a Bayesian framework, this
can be remedied by adjusting the prior probabilities which
is straightforward in the spike and slab formulation (e.g., by
making π in Eq. 11 smaller). We refer interested readers to
Scott and Berger (2010), that provides a full treatment of
multiplicity control, and note that our package vICC allows
for seamlessly changing the prior inclusion probabilities.

A note on sample size

Due to providing two models, it is worth discussing how
the sample size would affect the posterior of each. For the
test of a common variance, the random effects variance is
the target, and thus it is ideal to have many individuals
(or units). Intuitively, this is because the variance is being
estimated from the random effects, which will be less
accurate with few subjects. As a result, it will be harder
to gather evidence for varying within-person variance, even
when the null hypothesis is false. On the other hand, for
the membership model, it is advantageous to have many
observations from each person. This is because the target
is the individual effects, such that more data from each
subject will reduce uncertainty that then translates into more
decisive evidence. Together, the target of selection should
be considered when deciding how to gather observations.
Our illustrative examples indicated that as few as 50 subjects
can provide a clear picture of varying reliability, so long
as there are many repeated measurements. Going forward,
it would be informative to determine how few repeated
measurements can be used to fit the proposed models. In
our experience, data common to cognitive tasks in particular
will be more than sufficient.

Implications

The utility of our method was demonstrated on cognitive
inhibition tasks. As we mentioned in the Introduction,
this literature is an excellent testing ground for assessing
individual differences in within-person variance. Namely, in
Rouder et al. (2018) and Hedge et al. (2018), it was argued
that reliability was not high enough to adequately study
individual differences. However, reliability was considered
a fixed and non-varying property of these same tasks.
This work demonstrated that there are substantial individual
differences in the variance structure, and that reliability can
be the target of an explanatory model.

Further, we argue our findings present a challenge
to the notion that individual differences studies in these
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tasks are necessarily “bound to fail” (Rouder et al.,
2018). First, there are large individual differences in
the variance structure. This has not been considered in
this debate, which is unfortunate, because within-person
variance could be a key aspect of executive functions such
as inhibition. In certain tasks the “stability of instability”
has been shown to have adequate, and in some cases,
excellent retest reliability (Fleming, Steiborn, Langner,
Scholz, & Westhoff, 2007; Saville et al., 2011). This points
towards a possible disconnect between methodological and
substantive inquires, in that, for the latter, intraindividual
variation (IIV) is often studied in these same tasks (Duchek,
Balota, Tse, Holtzman, Fagan, & Goate, 2009; Fehr,
Wiechert, & Erhard, 2014; Kane et al., 2016). Second, and
more generally, if a researcher is interested in individual
differences, they have to at least approach the individual
level. This is not easily accomplished with a traditional
mixed-effects model (p. 17 in: Hamaker, 2012). This
has been an ongoing debate in longitudinal modeling in
particular, but to our knowledge, it has not been considered
in these recent debates in cognitive psychology. We refer
interested readers to Molenaar (2004) and Hamaker (2012).
Third, from our perspective, a satisfactory answer to the
question of individual differences in, say, the “Stroop
effect,” would require addressing the extreme heterogeneity
in within-person variance (and thus reliability) that is
apparently a defining feature of these tasks. 5 This work not
only raised this question, but the presented methodology and
the conceptual framework of varying reliability can serve as
a guiding light for answering this important question.

An alternative perspective

It would be remiss of us to not offer an alternative
perspective. It is customary to view the residuals as mere
“noise” and perhaps measurement “error”. For example, that
trial-to-trial fluctuations are a nuisance to understanding
the latent process. On the other hand, there is a large
literature that views these same fluctuations as a key
aspect of the construct. A good example is personality
traits, that were customarily considered fixed, but now
an active area of research revolves around within-person
variability of these traits (i.e., the fluctuations; Fleeson,
2001; Hutteman, Back, Geukes, Küfner, & Nestler, 2016;
Williams, Liu, Martin, & Rast, 2019). So rather than there
being individual differences in reliability, the alternative
perspective is to view these as individual differences in

5Note that Hedge et al. (2018) considered retest reliability of mean
scores at two different occasions. We investigated the within-person
variance structure, using the same analysis of Hedge et al. (2018),
where we found a 74-fold difference from the smallest to largest
within-person variance for the individual mean scores.

stability. That is, individuals with larger residual variance
are relatively more volatile or inconsistent, which in of
itself, is inferential. In fact, reaction time variability is
often studied in substantive applications, for example, it
is thought to be a core feature of the ADHD cognitive
profile (Borella, De Ribaupierre, Cornoldi, & Chicherio,
2013; Tamm et al., 2012). This is diametrically opposed to
classical test theory (CTT), and thus the reliability literature,
where measurements are construed as a “true” score plus
error. And note that “individual differences in IIV inherently
violate core assumptions of CTT” (p. 3; Estabrook, Grimm,
& Bowles, 2012). We think this offers a plausible alternative
worth considering:

It is quite possible that we insist on unduly expensive
measurement accuracy in some situations where we
do not need it, because of limitations imposed by
the intra-individual variation. At the same time, we
may be blissfully unaware of the need for more
refined measurement in certain other situations. (p.
159, Henry, 1959a)

Limitations

The idea behind this work was to put the “individual into
reliability”. This addresses recent calls in the social-behavioral
sciences to place more emphasis at the individual level
(Molenaar, 2004). In doing so, we assumed the same func-
tional form for each person. However, completely separat-
ing group and individual dynamics is not easily achieved. In
our experiences, we have found that the MELSM provides
an adequate compromise between aggregation approaches
and person-specific models. Further, our approach does
not separate within-person variability from measurement
error. This is not only an “issue” of this work, but it
also applies to computing intraclass correlation coefficients
more generally–i.e., “...variations between and within indi-
viduals characterize behavior, which may or may not be
reliable regardless of measurement error” (Henry, 1959b).
This hints at the notion of random vs. systematic error,
which are not easily teased apart in mixed-effects mod-
els. One thought, assuming that a necessary ingredient of
the latter is reproducibility (at minimum), is to compute a
naive correlation between response types. We investigated
this possibility in the flanker task, and found large correla-
tions between not only the within-person variance but also
the person-specific reliabilities. At the individual level, this
suggest that there is some degree of systematicity.

Future directions

The proposed methodology provides a foundation for
further quantitative advances. First, it is important to note
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that we did not directly target reliability, but instead an
aspect of reliability. This is by design. There is some
literature on testing for differences in ICCs. One strategy
is to simply compare Fisher z-transformed correlations
(Konishi & Gupta, 1989). These approaches are typically
for comparing groups such as countries (Mulder & Fox,
2019) or schools located in different areas (e.g., rural vs.
urban; Hedges & Hedberg, 2007). On the other hand,
we view our methodology as more foundational. Rather
than take reliability as a fixed property, that is, our
approach allows for an uncanny attention to detail by
explicitly modeling the variance components. The MELSM
allows for predicting both the between and within-person
variance structures. Thus the present framework allows for
probing reliability at the level of both the numerator and
denominator of Eq. 1—i.e.,σ 2

0/(σ 2
0 +σ 2

1 ). Second, the testing
strategy for within-person variance can seamlessly be
extended to all forms of intraclass correlation coefficients.
Thus our work provides the necessary ingredients for
considering individual differences in reliability more
generally. These ideas point towards our future work.

Conclusions

Measurement reliability has traditionally been considered
a stable property of a measurement device or task. This
framework does not allow for the possibility of individual
variation, because it assumes the residual variance is fixed
and non-varying. We demonstrated that there can be large
individual differences in within-person variance, which
necessarily implies the same for reliability. Before com-
puting reliability in hierarchical models, we recommend
that researchers first assess whether a common variance is
tenable. And if not, varying intraclass correlation coeffi-
cients should be computed to fully capture individual level
variation in reliability.

Open Practices Statements All data and materials are publicly avail-
able (data and materials). The methods are implemented in the R
package vICC.
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Wöstmann, N. M., Aichert, D. S., Costa, A., Rubia, K., Möller, H.-
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