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I. INTRODUCTION 
A numerically efficient representation for short-pulse (wideband) field propagation in an 

environment as in Fig.la is presented in terms of time-domain (TD) rays. Closed form uni- 
form vavefmnt approximations of the organized multiple diffracted fields are provided, using 
simple T D  transition functions. Focus is given on an arbitrary nth diffracted mechanism, 
as shown in Fig.la, with specialization on a second order diffraction mechanism (doubly 
diffracted (DD) fields) as in Fig.lb. The uniform asymptotic solutions for singly diffracted 
(SD) and DD fields are valid for early observation times (wavefront approximations). Their 
timerange of validity may be extended to late observation times when the exciting signal 
does not contain low frequency components. Higher order diffracted fields are approximated 
using an efficient numerical convolution between TD-SD fields. For simplicity we will not 
consider here hybrid mechanisms, such as reflected-diffracted rays, etc. The response of the 
total field to an impulsive excitation (Dirac delta function) is represented in terms of ray 
fields as 

in which @o,6 includes all the T D  geometrical optics (GO) fields, &d,6 includes all the 
TD-SD fields, G d d l 6  includes all the T D  double diffracted (DD) fields, G d d d J  includes all the 
T D  triply diffracted (DD) fields, and so on. When the source radiates a waveform G(t), the 
impulsive response (1) is used to construct the total radiated field &tot,G(t) = $W6( t )@G( t ) ,  
in which @ denotes time convolution. Instead of representing the total diffracted field as 
a continuous superposition (convolution) of impulsive responses, it might be convenient to 
approximate it as a discrete superpositions of rectangular-pulse responses. Accordingly, the 
excitation waveform G(t) is expanded as a superposition of rectangular pulses of duration 
T 

(1) 4 to t .6  = ,i,GO,6 .+ 4 d . 6  + , i ,ddJ .+ G d d d J  + ,,, .+ @d,6 + ,,., 

N &t)=z g,rect(t-nT,T), 
"=l 

in which the weights gn = G(nT) sample the excitation waveform h(t) in the middle of the 
rectangular pulses. The total field is thus approximated as 

Fig. 1. (a) Multiple diffracted ray. ( b )  Double diffracted (DD) ray and notation used in [5] 
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(3) @ G ( t )  % C gn p t , r ( t  - n ~ ) ,  , p , r  = ,jGO,r + , j d ?  + , j d d , r  + ,,,, 

n=l 

in which the responses to the rectangular pulse, dd*. and Gdd,., are evaluated in 
closed form from the impulsive responses GGoz6, 4"v6 and Gdd~," in Sections I1 and IV. 
The present formulation has several advantages. First, the representation (3) of the total 
radiated field $"t,r is asymptotically uniform, as it was the total impulsive radiated response 
(1). Second, the various terms are easier to evaluate then (l), since they do not contain 
singularities due to the Dirac delta excitation. Indeed, the GO field for rectangular excitation 
GCoz'(t) =: rect(t,T)/(4nR), with R the distance between source and observer, is finite and 
band limited, imposing the same properties when it is multiply diffracted. 

11. TIME DOMAIN SINGLE DIFFRACTION (TD-SD) 

The impulsive TD-SD field has been presented in 111, [Z], [3], while the response to the 
unit step function U ( t )  has been presented in [4]. After expressing the rectangular pulse 
as rect(t,T) = U ( t  + T / 2 )  - U ( t  - T/2) ,  the TD-SD field response to rectangular pulse is 
obtained as the difference 

7pyt - T )  = 7p"( t  + T/Z) - 7 p U ( t  - T/2), @ U ( t )  = d L D , " : , " ( t  TT'(T + T') - t d )  (4) 

in which ddzv(t) is the response to the unit step function V ( t )  from [4], or obtained by 
integrating the results in (1],(2],(3]. td = (T + T')/c is the turn-on time (wavefront arrival 
time) of the diffracted field, and 

is the TD-SD diffraction coefficient. The TD transition function 

is evaluated from theconvolution fu(zm,t) = f(z,, t )@U(t )  where f(zm,t) = z m / [ m ( t +  
zm/c)], in which f(zm, t )  is the transition function for impulsive excitation (we have used the 
notation in [3]). The parameters in (5) are dZh = cot(n- (-l)"'(@-@'))/(Zn), for m = 1,2, 
dkh = Fcot(7r - ( - I ) ~ ( @  + @'))/(Zn), for m = 3,4, z1 = 2Lcos2(2n?rN+ - (4 - $'))/z, 
z2 = 2Lcosz(2n?rN--(+-+'))/2, z3 = 2LcosZ(2nnN+-(@+@'))/2, z4 = 2Lcos2(2nnN-- 
(@+ @'))/Z, where L = TT ' / (T  +T') (for spherical wave incidence), N* are the integers that 
most nearly satisfy the equation 27rnN' - (4 f 4') = fn, 6' is the incidence angle, T' is 
the incidence distance, 4 is the observation angle, r is the observation distance and n is the 
wedge aperture angle factor. 

111. T D  MULTIPLE DIFFRACTIONS 

Multiple diffractions may be computed by cascading TD-SD fields derived in the previous 
section. Let PO be the source, pN+1 the observation, and pl,...,pN the locations of N 
diffraction points (see Fig.la), a pulsed field emitted at  Po produces a transient field a t  
P N + ~  computed repeating N times the following steps: 
1. Evaluate the field 4f-l(P,,t) incident on P,,  due to the source R-1. 
2. Approximate the incident field &-l(P,,t) as 
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and note that the field 4t-l(Pz,t) is sampled at  the center of the rectangles ($;-l(P;,njT)). 
3. Using the previous incident fiel% evaluate a t  P,+l the field diffracted at  P, 

4W,+1,t) = 4:-l(Pi+l,n,T) 4Y(P;+lrt) (8) 
n,=1 

in which the diffracted field @'(Pi+~,t)  is the response to the rectangular pulse excitation 

In evaluating the field multiply diffracted by wedges, two peculiar situations may occur: a) 
two consecutive edges have a common face and the electric field is tangent to the common 
face (soft polarization); b) two consecutive edges are experiencing a double transition, i.e., 
two consecutive diffraction points Pi and Pi+1 are almost aligned with source Pi-1 and 
observer Pi+,. In such cases, more accurate results are accomplished by introducing a TD 
version of the double diffraction mechanism that is discussed in the next section. 

IV. TIME DOMAIN DOUBLE DIFFRACTION (TD-DD) 
The TD response of a double wedge to a rectangular pulse is derived from the uniform 

wavefront approximation for the impulsive TD-DD field presented in [ 5 ] ,  [SI. Similarly to 
the SD case (4), the TD-DD field response is obtained as the difference 

(4). 

p+( t  - T) = 4 d d J J ( t  + T / 2 )  - I j d d , U ( t  - T / 2 )  (9) 
where ddd*u is the response to a unit step function. Referring to Fig. lb,  the TD-DD field 
is given by - Ai(r;)  A(r i , l , r z )  @!,(t - t d d ) ,  where A' is the incident spreading factor 
[for a spherical source, A'(ri) = 1/(4m;)] at  4, A(r;,  e, TZ) = &/dt'r2(r; + I + r z )  is the 
DD field spreading factor. @,(t - t dd )  is the 'ID-DD coeficient, evaluated at the retarded 
time t - tdd ,  where tdd = ( r ;  + I  + T Z ) / C  is the turn-on time of the ,DD field. Similarly to the 
frequency domain case (5],[7],  the double diffraction coefficient is D$ = a:bu with 

and 

where upper/lower sign applies to the soft/hard case, respectively. The TD-DD transition 
functions 

(12) 
are obtained by the convolution ?{;z}*u(t)  = ?{;zI( t )  8 V ( t ) ,  ? { : I } ( t )  being the transi- 
tion functions for TD-DD field with impulsive excitation [5],[6],  that is calculated in closed 
form as of G(s, y, t) = {arctan (z/y) 1 +t/x2 - arctan(s/y)} V ( t ) .  The various pa- 

rameters are defined as in [5],[6], iipq = fld-sinP;sin[(QP - 2 ~ n l N : ~ ) / 2 ] ,  
6,, = J s d m s i n P z s i n [ ( @ y  - 27rnlNy)/2],  in which N p  and NP are the 
integers that most nearly satisfy @;" = 2 ~ n ~ N ; ~  and @r = 27rnzN7, respectively; b e  
ing @yq = 7r + ( -1)Pb; + (-l)q$m and @? = 7r ,+ (-l)rq52 t (-1!aq512. Furthermore 
w = &rZ/[(ri + ! ) ( T z  + e ) ]  and E I Z  = sign(&, . P ~ z )  = sign(& . &2). The second or- 
der contribution 6:;'" becomes particularly important in two possible cases: when two 
edges have a common face, and when source and observation are almost aligned with two 
consecutive edges. 

[ 7 1  
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Fig. 2. TD-DD field diffracted at the two edges shown in Fig. lb.  
Three different c-: a) out of transitions; b) single transition 
and c) double transition aspects 

Fig. 3. Diffraction of a modulated 
rectangular pulse by the four con- 
secutive edges shown in Fig. la. 

v. NUMERICAL EXAMPLES AND CONCLUSIONS 

Numerical results for the diffraction of a rectangular pulse by the double wedge of Fig.lb 
are shown in Fig. 2. The different ray segments are assumed to be r; = 42cm, e = 45cm 
and r~ = 33cm long; while the involved angles are p: = p1 = looo, = f l ~  = 50", 
412 = q5i2 = 110". Three cases are considered. In the first case both incidence on the first 
edge and observation w.r.t. the second edge are out of transition 4; = 42 = 320". In the 
second case observation is taken a t  its transition aspect, that is a t  grazing $2 = 290°, while 
the incidence is still out of transition 4; = 320". The last case considers both incidence 
and observation a t  grazing $; = $2 = 290", thereby DD experiences a double transition. 
The response to a T = 50ps rectangular pulse was computed in two different ways: 1) 
by cascading the single diffraction mechanism as explained in Sections I1 and I11 (dashed 
black line); and 2) by using the double diffraction mechanism of Section IV (continuous gray 
line). These results show that there is strong agreement between the responses obtained 
with the two methods outside the transition zone; the agreement is still very good when only 
one aspect is in transition, but greater differences are observed when a double transition 
occurs. The diffraction of the pulse cos(2xft)rect(t), which contains mostly high frequency 
components, by the four consecutive edges of Fig. la is reported in Fig. 3. The duration of 
the pulse is T=2Ons, the carrier frequency f=lGHz, the sampling interval At = 0.25ns and 
the polarization is soft. The geometrical parameters for this example are r-i = lm,  r-; = 2m, 
r2 = 3m, rh = 4m, r4 = 51x1, 4; = 81", = 260", flz = looo, q5z = 281°, f13 = 80", 
@3 = 260°, f14 = 95", $4 = 75". The results shown in Fig. 3 were obtained in a fraction of 
a second for 300 sample points. 

In conclusion, numerically efficient results for short pulse propagation in a complex envi- 
ronment have been presented in terms of multiple diffraction. Our T D  diffraction propaga- 
tors are based on discretization of a generic short-pulse in terms of narrow rectangles, and on 
closed form representations of diffracted fields when the excitation is a narrow rectangular 
pulse. 
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