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Abstract

The energy landscape is analysed for off-lattice bead models of protein L and protein G as

a function of a static pulling force. Two different pairs of attachment points (pulling direc-

tions) are compared in each case, namely residues 1/56 and 10/32. For the terminal residue

pulling direction 1/56 the distinct global minimum structures are all extended, aside from the

compact geometry that correlates with zero force. The helical turns finally disappear at the

highest pulling forces considered. For the 10/32 pulling direction the changes are more compli-

cated, with a variety of competing arrangements for beads outside the region where the force

is directly applied. These alternatives produce frustrated energy landscapes, with low-lying

minima separated by high barriers.The calculated folding pathways in the absence of force are

in good agreement with previous work. The N-terminal hairpin folds first for protein L and the

C-terminal hairpin for protein G, which exhibits an intermediate. However, for a relatively low

static force, where the global minimum retains its structure, the folding mechanisms change,

sometimes dramatically, depending on the protein and the attachment points. The scaling

relations predicted by catastrophe theory are found to hold in the limit of short path lengths.
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1 Introduction

Minimalist models of proteins based on off-lattice bead models provide important physical insight into

protein self-organisation.1,2 Formulations based on three different sorts of bead, namely hydrophobic

(B), hydrophilic (L), and neutral (N), have been used in a wide variety of studies3–17 since they

were first introduced.18–21 Some of these studies have considered the effect of a pulling force22–26 to

model experiments that employ atomic force microscopy27–31 (AFM) or optical32,33 and magnetic34,35

tweezers. These single molecule experiments can probe mechanical force as a denaturant to compare

with studies that characterise folding/unfolding under chemical or thermal denaturing conditions.

In the present contribution we consider the potential energy landscapes of coarse-grained models

of two small proteins, protein L and protein G, as a function of pulling force. These two IgG-binding

proteins adopt the same topological fold with a central α-helix packed against a mixed four-strand

β-sheet containing two hairpins,36 although they have low sequence identity (16%). They suggest

an interesting application for energy landscape analysis because experiments reveal differences in

the folding pathways with no force applied.37–44 In particular, while protein L appears to fold via

two-state kinetics, protein G may exhibit an early intermediate. For protein L, hairpin 1 (nearest

the N-terminus) probably forms first,45 while for protein G the early intermediate is followed by

a rate-limiting step involving formation of hairpin 2.46 In both cases the mechanism has been

described as a nucleation-condensation or nucleation-collapse process,20,47,48 involving helix-assisted

hairpin formation.49 Previous simulations of protein L and G employing coarse-grained models have

investigated the differences in folding mechanism, and suggest that protein G may fold through

multiple pathways.49–51 Furthermore, although neither protein performs a mechanical function in

vivo, they both exhibit significant mechanical stability27,52–57 with associated unfolding forces of

order 100 pN in AFM experiments involving pulling speeds of order 100 nm/s.

In the present work we investigate protein L and G using the BLN potential of Brown and Head-

Gordon13,49 and consider the effect of a static pulling force on the energy landscape. We employ

techniques based on the construction of a kinetic transition network from geometry optimisation,

3



avoiding the need for low-dimensional projections58 or a reaction coordinate.49,50,59 Our results

therefore provide insight into the potential energy landscape that underlies experiments conducted

on proteins under tension. For simplicity we focus on the favoured structures and pathways for the

quasistatic case at a series of fixed forces in this initial analysis. Experiments conducted at constant

force under nonequilibrium conditions sample the same landscape, but the results will depend on

how the initial state is prepared. Understanding the organisation of the energy landscape for fixed

force can provide insight into both equilibrium and non-equilibrium experiments given appropriate

initial conditions in the latter case.

The calculated folding pathways in the absence of force are in good agreement with previous

theoretical studies. However, for a relatively low static force where the global minimum retains its

structure, the folding mechanisms change so that the C-terminal hairpin folds first for protein L while

the folding intermediate for protein G disappears altogether. For the 10/32 pulling direction the early

part of the folding pathway is more dependent on the particular extended state and therefore distance

to the transition state, especially for protein G.

2 Methods

2.1 Potentials

The potentials employed in the present work employ the force field and parameterisation described in

previous work,13,49,60 which involves bond angle, dihedral angle, and non-bonded terms. Here these

contributions were augmented by stiff springs to represent the covalent bonds.4 The additional bond

length term is

1
2
Kr

N−1∑

i=1

(Ri,i+1 −Re)
2, (1)

where Rij is the distance between beads i and j, Kr = 231.2 ǫR−2
e to maintain consistency with

previous work.4,7, 12,15 Since this force constant simply constrains the separation of consecutive beads

it has no significant effect on the results within a wide range of values. ǫ and Re are parameters of

the potential,13,49 which provide natural reduced units of energy and distance, respectively. All the
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results that follow will be reported in reduced units. The sequence dependence of the parameters was

also taken from previous work,13,49 where it was found that appropriate changes in folding pathway

could be modelled by changing only three beads. These models have also been used to investigate

folding kinetics via distributed computing61 and protein aggregation.62 The coarse-graining provides

a representation that is computationally tractable, but includes potentially favourable non-native

interactions, which would be absent for a Gō model.

The sequence-dependent BLN potential was coded in our GMIN
63 and OPTIM

64 programs along

with a general static pulling potential, Vpull, defined as

Vpull = −f(zα − zβ), (2)

where zα and zβ are the z coordinates of beads α and β, and f is the force. The additional gradient

terms are then

∂V

∂zα
= −f and

∂V

∂zβ
= f. (3)

The second derivative matrix (Hessian) is unchanged by addition of the pulling potential, but for

non-zero force the stationary points of the potential are different.

2.2 Exploring the Landscape

For both protein L and protein G we have examined the potential energy landscape as a function

of the static force, f , for attachment points (pulling directions65) at beads 1 and 56 and 10 and 32.

We will identify these systems concisely as L/1/56/f , L/10/32/f , G/1/56/f and G/10/32/f for any

given force, f . In each case we first identified the global minimum as a function of f using basin-

hopping global optimisation,66–68 which has previously been employed for related BLN models.15,69

The range of f values considered was chosen to extend up to the point where no further change in

the structure of the global minimum occurred. The number of different f values considered was 25

and 45 for the 1/56 and 10/32 attachment points, respectively. More values were needed for 10/32

because more distinct global minima were identified as a function of f for these systems, and larger

values of f were investigated. In each case we started with two initial basin-hopping runs of 106 steps
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each, seeded from different random geometries. Additional runs of up to 5×106 steps were performed

with alternative parameter choices until most runs produced the same lowest-energy candidate. We

did not attempt to optimise the parameters for these runs systematically, since this is only possible

once the global minima are known. A fixed temperature of kBT/ǫ = 0.75 was employed throughout

in the accept/reject tests, and the steps were proposed by perturbing all the Cartesian coordinates

by random changes in the interval [−∆,∆]. The maximum step size, ∆, was increased or decreased

by 10% every 50 basin-hopping steps, to maintain a local acceptance ratio of 0.5. In most runs ∆

fluctuated in the range 0.4 to 0.5 in units of Re.

Depending on the complexity of the landscape, some global minima were identified rapidly, while

others took longer to locate. To improve the efficiency in the more difficult cases we employed two of

the GMIN options that accelerate searches on multi-funnel70,71 landscapes. The first of these keywords,

NEWRESTART x , reseeds the run if the energy of the lowest minimum has not improved in the

last x steps. The configuration of the lowest minimum is added to a cyclic taboo list,72 which can

be used to avoid revisiting areas of configuration space that have already been searched. Here the

AVOID keyword was used with a distance threshold of 1.0 reduced units. Runs were then reseeded

if the minimum Euclidean distance of the current configuration came within a distance of 1.0 to any

members of the saved list. These reseeding procedures seemed to work effectively with a reseeding

criterion of x = 1000 steps and a taboo list of ten configurations.

We scanned f in increments of 0.1 over the range where the global minimum structure was

observed to change most rapidly. To establish the range for each structure we also relaxed the lowest

minimum obtained for each value of f progressively at intervals of 0.1 down to zero force and up

to the highest value considered. This relaxation is very fast compared to the basin-hopping runs

themselves, and serves as a check on the global optimisation results as well as identifying common

structures. In total, we identified 6, 10, 6, and 8 distinct global minima for L/1/56, L/10/32, G/1/56,

and G/10/32, respectively. These values should be considered lower bounds, since it is possible that

a change of structure occurring within an interval of 0.1 in f could have been missed. However,

within the f range where the structures change rapidly the global minima are usually similar, so
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missing one particular global minimum here would not affect our general conclusions.

To explore the potential energy landscape and the connectivity as a function of the static force

and the two attachment patterns we constructed kinetic transition networks73–77 using geometry

optimisation techniques. These networks consist of local minima and transition states on the poten-

tial energy surface, where we employ the geometrical definition of a transition state as a stationary

point with precisely one negative eigenvalue.78 Each transition state links two local minima via

steepest-descent paths defined by the Hessian eigenvector corresponding to the unique negative Hes-

sian eigenvalue, thus establishing the connectivity of the network. In the present work we employed

energy minimisation to define approximations to the steepest-descent paths using a slightly modified

version of the limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm.79,80 Transi-

tion states were calculated using initial double-ended searches between pairs of local minima with the

(doubly-nudged81 elastic band82–87) approach. The band was optimised until distinct local maxima

were obtained, which were then taken as candidates for refinement by hybrid eigenvector-following

(EF).84,88,89 Complete paths between distant minima may involve many transition states, and pairs

of minima were chosen to identify such paths using our missing connection algorithm.90 The con-

vergence condition for all stationary points was a root-mean-square gradient of less than 10−6 ǫ/Re,

and all geometry optimisations were performed with the OPTIM code.64 To avoid chain crossings

in the pathway calculations we used a new initial interpolation procedure, which will be described

elsewhere.

Systems with non-vanishing values of f have only four zero Hessian eigenvalues at a stationary

point, instead of the usual six for a molecule in field-free space. Since the force is applied along

the z direction rotations around the x and y axes no longer conserve the total energy. Hybrid EF

calculations involving the full Hessian therefore employed eigenvalue shifting only for the modes

corresponding to translation and to rotation about the z axis. In fact, the gradient-only formulation

of hybrid EF was found to be more efficient for these BLN systems, and this was the method used in

all the production runs. In this approach the eigenvectors corresponding to zero Hessian eigenvalues

are simply projected out of the search direction using the known analytical components.
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Expanding a kinetic transition network through successive pathway calculations obtained via

geometry optimisation corresponds to the discrete path sampling (DPS) approach.74,91,92 Similar

networks can also be obtained using molecular dynamics if the states of interest interconvert suffi-

ciently fast.93–95 Various strategies to refine DPS databases have been employed in previous work,

depending on whether the objective is to improve the current fastest path (SHORTCUT 96,97) or re-

move artificial frustration (FREEPAIRS 98). In the present work we seeded each database from paths

between each pair of distinct global minimum structures for each system, as calculated by OPTIM.

These databases were then refined using the PATHSAMPLE program99 to choose new pairs of minima

for connection attempts and run the corresponding OPTIM jobs. Refinement was continued until

the low-lying portion of the landscape converged, as judged from the corresponding disconnectivity

graphs.100,101 The last stages of refinement employed the UNTRAP keyword. Here we modified our

previous scheme,97 which considered only potential energy barriers, and selected pairs of minima

according to the ratio of the barrier between them to the potential energy difference. This scheme

helps to remove artificial frustration from a potential energy disconnectivity graph in much the same

way as the FREEPAIRS strategy98 for free energy disconnectivity graphs.12,102

Details of the DPS databases constructed in the present work are given in Tables 1-4. These tables

include the number of minima and transition states in each database, and provide the energies of

the distinct global minima at each selected f value for reference. The corresponding disconnectivity

graphs are discussed in §3.2.

3 Results

3.1 Evolution of the Global Minimum with Static Force

Figure 1 summarises the global optimisation results. The values of f where systematic global optimi-

sation was performed are indicated by squares, with the interpolated energies of the distinct global

minimum structures represented as lines. The latter plots are almost linear functions of f , aside from

panel (d) for L/10/32 in which two of the lines exhibit steps, indicating a stability limit for the cor-
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responding structures, as discussed in §4. Changes in structure for the global minimum occur where

the lines corresponding to different structures cross. A similar situation occurs when we consider the

global minima of clusters or bulk systems bound by the Morse potential as a function of the range

of the pair interaction.103–105 It is noteworthy that most of the global minima for these BLN models

of protein L and protein G are also local minima over the full range of f values considered.

For each system we will label the distinct global minima as GM1, GM2, etc., as they appear for

increasing force. Since GM1 corresponds to zero force it is the same for L/1/56 and L/10/32 and

for G/1/56 and G/10/32. The other structures are all different, and each one is illustrated in Figure

2. The minima obtained by progressive relaxation of a given GMn geometry at different values of

f are all associated with the original GMn structure. For both proteins the evolution of the global

minimum with f is similar for the 1/56 attachment. As shown in Figures 2a and 2b, there is only

one compact global minimum morphology, while the other structures are all extended. In each case

four distinct global minima were identified that retain helical turns, before all secondary structure is

lost in the limit of high force. The threshold at which the global minimum switches to an extended

conformation is f = 1.2 for protein L and f = 1.3 for protein G. This difference is consistent with

somewhat greater mechanical stability for protein G, which exhibits an average unfolding force of

around 180 pN experimentally for a pulling velocity of 400 nm/s,53 while the value for protein L is

around 150 pN for a faster pulling velocity of 700 nm/s.52 The gradient of the potential energy of

GM1 with respect to f , ∂VGM1/∂f , is −7.23, −7.29, −3.69 and −4.56 for L/1/56, G/1/56, L/10/32,

and G/10/32, respectively. The stored potential energy is therefore greater for the 1/56 attachment

pattern, and the gradients are higher in magnitude for protein G. These results are consistent with

the mechanical stabilities observed experimentally, and with the identification of 1/56 and 10/32 as

‘strong’ and ‘weak’ coordinates.106 Since the terminal β strands are parallel, the 1/56 attachment

pattern corresponds to a longitudinal shearing force.

To provide a more quantitative connection with previous work we consider the Gō model employed

by Graham and Best.106 The mean mass per residue in this study is 109.4 amu and the mean well

depth for pair contacts is −0.88 kcal/mol, corresponding to a distance of 3.8Å. For these parameters

9



the reduced units of force employed in the present work are ǫ/Re ∼ 1.6× 10−11 N or 16 pN. Graham

and Best report a switch between unfolding mechanisms around 100 pN and 50 pN for the 1/56 and

10/48 attachment points in protein G, which correspond to f ∼ 6 and f ∼ 3 in reduced units for the

present model. Precise agreement is not expected, but the correct order of magnitude is reassuring.

For 10/32 attachment the evolution of the global minimum is more complicated, and there are

some interesting differences between the two models. For low forces both systems exhibit a change

in structure, but while protein L retains an α helix packed against two hairpins, protein G adopts

a β sheet structure with a separate α turn (GM2 in Figure 2d). The 10/32 attachment means that

the applied force is stretching the helix and the β2 strand, which are contiguous. As the static force

increases the global minima for both protein G and protein L correspond to structures with the helix

and β2 strand extended, the β3 strand packed against the helix, and the β1 and β4 strands forming

a β sheet with β2 (Figure 2c and 2d). The threshold at which the global minimum changes to these

partly extended structures is f = 1.4 for protein L and f = 2.3 for protein G, again consistent

with somewhat greater mechanical stability for protein G. The formation of the α turn structure

(GM2) for G/10/32 probably extends the stability range significantly in this case. For still larger

forces the α helix turns are eventually lost, and the beads corresponding to residues 10 to 32 are

extended in a zig-zag pattern, which is determined by the bond length and bond angle restraints

in the potential. In contrast, the beads corresponding to the β1 strand and the second hairpin are

not subject to the pulling force directly, and can adopt a variety of different arrangements with

comparable potential energies. This additional complexity for the 10/32 attachment is clearly visible

in the energy landscape and in the folding/unfolding pathways discussed below. Such variations

in mechanical resistance with the pulling direction are in line with previous studies.57,60,65,106–108

The predicted structural diversity might perhaps be verified in future experiments using additional

structural probes, such as Förster resonance energy transfer (FRET). Modification of side chains

through mutations might perhaps stabilise different subpopulations of structures that are revealed

in the disconnectivity graphs discussed in the following section.
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3.2 Visualising the Potential Energy Landscape

Disconnectivity graphs100,101 for selected DPS databases are illustrated in Figures 4-9. Since the

main purpose of these graphs is to visualise the changes in frustration as a function of the protein,

the attachment points, and the applied force, we have chosen a common energy range of 14 ǫ for each

graph. We also include only the lowest 1,000 local minima, along with any of the global minimum

structures that appear in the chosen energy range. Selected structures are superimposed on the

graphs using an alternative colouring scheme from Figure 2 to highlight the secondary structure

rather than the bead sequence.

The disconnectivity graph for protein L in the absence of an applied force is coloured according

to the classification scheme for ‘native’ and ‘unfolded’ structures described by Marianayagam et al.61

This scheme employs two order parameters for the classification, namely the radius of gyration, Rg,

and a structural similarity parameter, χ, defined with respect to the global minimum. The separation

into distinct sets is quite good, but a few local minima find themselves as minority components of the

different regions. For example, minimum 33 in order of increasing energy is classified as ‘unfolded’,

but its structure appears very similar to GM1. This problem may arise because the structural criteria

in question were developed for instantaneous geometries, and different cutoffs might be required

for the local minima considered here. Applying this classification scheme to calculate folding and

unfolding rates leads to artificially high rate constants, because there are ‘native’ and ‘unfolded’

minima connected by low barriers. Hence we prefer to use a recursive regrouping scheme based on a

threshold for the free energy barrier between states.96,98,109

The remaining disconnectivity graphs are coloured according to the distance between the at-

tachment points. The hue ranges from red to blue, scaled according to the smallest and largest

separations present in the lowest 1000 minima. Table 5 collects some further structural information

corresponding to the disconnectivity graphs illustrated. Here we report the mean, µ, and standard

deviation, σ, of the distance between the attachment points, D, and of the minimised distance110 to

the global minimum, G. These averages include a weighting corresponding to the estimated equilib-
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rium occupation probability for each minimum at the folding temperatures in the absence of force.

The approximate weights were calculated using harmonic vibrational densities of states obtained

from normal mode analysis. Although much of the interesting structure is averaged out in these

statistics there are still some clear trends. As expected, µ(D) increases systematically with f for

both proteins and both attachment points. µ(G) ranges between about 2 and 4 reduced units for

the 1/56 pulling direction, but exhibits much larger values for 10/32. This result reflects the greater

structural diversity and frustration observed for the 10/32 attachment, which are discussed below.

The disconnectivity graphs for L/1/56 with non-zero force are all relatively unfrustrated. The

extended minima that correlate with GM2, GM3, GM4 and GM5, where the helix turns are still

present, can generally interconvert via relatively low barriers (Figure 5a). The fully extended mini-

mum, where the helix has also been disrupted, is separated from these structures by a higher overall

barrier for intermediate forces, and is not very different in energy from the extended minima with

helical turns in the graph for f = 5.0 (Figure 5b). The reversal in energetics between fully extended

and structures that still retain turns is clear from the colouring scheme. For f = 5.0 most of the

branches in the graph are blue, corresponding to the longest end-to-end distances observed, while

for f = 2.5 most branches are green, corresponding to distances below the maximum. In both cases

the end-to-end distances in the lowest 1000 minima span a relatively narrow range. In the graphs

for f = 3.0 and f = 3.5 GM3 and GM4 exchange places as the global minimum (Supplementary

Information). The corresponding graphs for G/1/56 in Figures 6 and 7 are similar to those for

L/1/56. The organisation of the low-lying minima is therefore not very different, and the reordering

of the energetics for the fully and mostly extended structures from f = 2.0 to f = 5.0 is again clear

from the colouring. Nevertheless, the folding and unfolding mechanisms differ in terms of the order

of events, and protein G exhibits an intermediate in the absence of force, as discussed in §3.3.

Disconnectivity graphs for L/10/32 at low and high static forces are shown in Figures 8a and

8b. Both graphs exhibit significant frustration, with relatively low-lying minima separated by high

barriers. At f = 1.5 structure GM3 lies lowest with residues 10 to 32 extended and distinct helix/β3

and β1/β2/β4 sections. However, alternative conformations based on the native structure at zero force
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are also relatively low in energy. The β sheet plus helical turn motif, which corresponds to GM2 for

G/10/32, also appears as a favourable geometry for L/10/32/1.5 in Figure 8a, but does not appear

to be the global minimum for L/10/32 in any force range. The diversity of the low-lying minima is

evident from the geometrical parameters collected in Table 5, and from the colouring scheme based

on the separation of the attachment points. This order parameter highlights the fact that the regions

of configuration space corresponding to different morphologies are quite clearly separated by high

barriers, but have overlapping energetics. The lowest-lying structures for L/10/32/7.5 all have fully

extended chains for residues 10 to 32, with no remaining helical turns (Figure 8b). Hence most of

the branches correspond to the largest distance between attachment points. However, the minimum

that correlates with GM5 is not much higher in energy, but separated by a fairly large barrier, and

the mean distance from the global minimum structure is larger than for f = 1.5. The structural

diversity apparent in the L/10/32 disconnectivity graphs reflects the fact that the helix and β2 part

of the chain are constrained and extended by the static force, while the other parts of the protein

are only affected indirectly. Hence the latter parts of the chain are relatively free to move, but are

unable to achieve native-like conformations. Instead, a range of alternative possibilities exists with

quite similar energies.

The disconnectivity graphs for G/10/32 are highly frustrated, with a variety of low-lying struc-

tures separated by high barriers. For example, with f = 2.2 structure GM2 is the global minimum,

with a β sheet and a helical loop (Figure 9a). However, there are competitive structures lying almost

as low in energy with alternative arrangements of the β strands, and the pathways between them

involve quite lengthy rearrangements. There are also low-lying conformations corresponding to GM3

and GM4 with more extended structures consisting of helix/β3 plus a β1/β2/β4 arrangement. Some

of these subpopulations correspond to well defined distances between attachment points, as is evi-

dent from the colouring scheme. However, low-lying minima with similar 10/32 distances can also be

separated by high barriers. For the landscape corresponding to f = 6.5 the lowest minima populate

a relatively narrow range of 10/32 separations, but the average distance to the global minimum is

still relatively large (Table 5).
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When the static force increases to f = 3.3 GM3 is the global minimum structure, with GM4 very

close in energy, along with GM5 and GM6, separated by high barriers. All the low-lying minima

correspond to more extended structures in this regime, with all the helical turns intact (Figure

9b). When the force increases to the relatively high value of 6.5 structure GM8 becomes the global

minimum, and the helix is disrupted in all the low-lying structures. There are significant barriers

between some of these arrangements, even though they only appear to differ in the precise contacts

made by strands β3 and β4 (Figure 9c).

From previous work13,62 we know that the unfolding temperatures for zero applied force occur for

temperatures of 0.41 and 0.42 for protein G and L, respectively. Detailed analysis of the transition

state ensembles and folding pathways in the absence of force can be found in these references, where

a variety of structural order parameters were considered. For protein G various projections of the free

energy surface indicate that the second β-hairpin forms first and then the second.13 The kinetics are

best fitted by a double exponential, consistent with the formation of an intermediate, as discussed

in §3.3. In contrast, the folding kinetics of protein L are well fitted by a single exponential.

The potential energy difference between compact and extended structures decreases roughly lin-

early with f (Figure 1 and Tables 1-4). Hence, for nonzero pulling forces the unfolding transition

shifts to lower temperatures. Once a database of minima and transition states has been constructed

the equilibrium occupation probabilities of all the minima can be calculated very rapidly as a func-

tion of temperature within the harmonic approximation. There probabilities can then we used to

construct approximate probability distributions for any given structural order parameter. Examples

are illustrated in Figure 3 for the G/10/32/2.2 database and an additional L/1/56/0.5 database con-

taining 843246 minima. The equilibrium shifts from compact to extended over a temperature range

of roughly 0.04 for L/1/56/0.5. In contrast, the distribution for G/10/32/2.2 is trimodal, resolving

the more extended structures with and without the helical turns. In this case the population change

occurs over a much wider temperature range, despite the higher applied force.

The frustration that appears as multiple funnels in the disconnectivity graphs for the 10/32 attach-

ment pattern would probably be difficult to represent in projected free energy surfaces.75,77,95,111–114
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However, the corresponding barriers are evident in the pathways described below, where we focus on

the order of events in the folding and unfolding pathways.

3.3 Folding and Unfolding Mechanisms

To examine the folding and unfolding mechanism as a function of static force we extracted the

pathways corresponding to the largest contribution to the rate constant when intervening minima are

placed in steady state74,91 using Dijkstra’s algorithm115 as implemented in the PATHSAMPLE program.99

This approach accounts for all possible paths though the kinetic transition network, and does not

require a reaction coordinate. For each kinetic transition network (DPS database) we compared the

pathways to GM1 from the minima correlating with each of the other structures that are the global

minimum for some force range. For brevity we will focus on the results in the absence of force, and

for the lowest force value considered for each attachment pattern, where GM1 is still reasonably low

in energy, but the applied force has a significant effect.

In the absence of force detailed comparisons are possible with previous simulations that employed

the same potential with fixed bond lengths. The folding temperatures, Tf , were determined as 0.42

and 0.41 for protein L and G respectively,49 with associated folding times of 1.57× 104 for protein L

and 1.37× 104 and 4.64× 104 from a double exponential fit for protein G (all in reduced units). The

pathways discussed below correspond to rate constants calculated using transition state theory with

harmonic vibrational densities of states at the corresponding folding temperatures.

For protein L in the absence of a static force the four pathways extracted for connections between

GM1 and GM2 to GM5 correspond to very similar energy profiles and mechanisms (Figure 10; there

is no connection to the even higher minimum that correlates with GM6 in this database). In the

unfolding direction the β4 strand separates first, followed by β3, and then the helix detaches from the

β1/β2 hairpin. This hairpin then opens up, at first retaining some contacts in the loop region, but then

all interstrand contacts are lost. The remaining snapshots in Figure 10 correspond to adjustments in

the relative orientations of the β strands. The folding mechanism can be described as helix-assisted

formation of hairpin one, in agreement with previous work.49 The calculated folding rate constant
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varies between 0.1×10−4 and 0.6×10−4 when states are regrouped recursively96,98,109 for a free energy

barrier threshold of between 1.25 and 1.5. These calculations employed the lowest minimum GM1

as the product before regrouping, and a low-lying minimum from the region identified as non-native

by the Rg and χ order parameters as the reactant. Smaller thresholds give rate constants about

an order of magnitude lower, because some native-like states are not counted as product. Larger

thresholds give values that are much too high, because folded and unfolded states become mixed.

In contrast to protein L, the pathways for protein G with f = 0 all involve a clear intermediate

(Figure 10), which appears at a path length between 1500 and 2000 reduced units. The intermediate

involves the helix and strands β2 and β3, with β3 associating first in the unfolding direction, in

agreement with previous simulations for this model with fixed bond lengths.49 This result also appears

to be consistent with experimental results that indicate an early intermediate.38 Alternative folding

pathways have also been observed for a Gō model representation of protein G.50 The folding pathway

illustrated in Figure 10 involves helix-assisted formation of the second hairpin after restructuring

of the intermediate. Brown and Head-Gordon previously identified this as the fastest pathway,

corresponding to some 80% of their folding population. The appearance of the intermediate in

folding pathways will depend upon the precise geometry of the initial unfolded structure, especially

the relative orientation of the β strands. The present results indicate that the intermediate provides a

favourable three-state path for the most extended structures, which are expected to lie in the highest

energy part of the population.

For L/1/56/1.0 the pathways are essentially the same from the relaxed GM1 structure at f = 1

to the structures that correlate with all the other global minima. Snapshots at intervals along

the longest pathway to the GM6 minimum are shown in Figure 11a. The unfolding mechanism is

qualitatively different from the f = 0 limit, and begins with the separation of the helix and β2 strand

from β1, which remains bound to the second hairpin. The next significant event is the dissociation

of the contacts between β1 and this C-terminal hairpin, followed by the separation of the helix from

β2. The remainder of the path consists of reorientations of the β strands and loop regions, followed

by sequential loss of the helix turns at the end. It is the loss of the helix that makes the pathway to
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the GM6 structure longer than the paths to the other extended minima, which all retain the helix.

The rather different order of events for f = 0 and f = 1 in L/1/56 shows that the application of

a static force can shift the balance between competing pathways. This observation is consistent with

previous reports that unfolding paths may be different for chemical denaturation and mechanical

disruption.107,114,116–120 In particular, previous simulations using a different potential found that

unfolding of protein L proceeded via separate changes involving both hairpins, rather than just the

C-terminal hairpin.52 In the case of the paths examined for G/1/56/1.5 the order of unfolding events

is similar to the force-free scenario (Figure 11b). However, the overall path length is significantly

shorter, and the intermediate described for f = 0 no longer appears, again illustrating the sensitivity

of the landscape to perturbation.121 In the unfolding direction the β1 strand first detaches, then β4,

then β2, and eventually the remaining helix/β3 contacts are lost. The remainder of the path consists

of reorientations of the β strands and sequential loss of the helix turns for the longest path that leads

to the minimum correlating with GM6.

For L/10/32/1.5 the eight paths connecting the minimum correlating with GM1 to the other

GM structures are very similar, except for the path to the minimum that correlates with GM5.

This structure has an alternative arrangement of the three β strands, and the unfolding events are

therefore different. For the majority pathways to the other GM structures the first major event in

unfolding is the separation of the helix bound to β3 from the N-terminal hairpin bound to β4 (Figure

12a). The sequence containing residues 10 to 32 then straightens out further, before the helix turns

are lost, the β4 strand separates from the N-terminal hairpin, and β3 dissociates from the helix. In

the remainder of the path the C-terminal hairpin partly reforms and the β1 strand forms contacts

with β2. The rearrangements that occur beyond a path length of about 250 reduced units in Figure

12a may be driven by stretching of the helix/β2 residues, which makes this region incommensurate

with favourable contacts from the other β strands.

The seven pathways connecting GM1 to the minima that correlate with GM2 to GM8 for

G/10/32/2.2 are more diverse in character, reflecting the diversity of structures. Figure 12b shows

the shorter paths that link GM1 to the GM2, GM3 and GM4 structures, which coincide closely with
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the first section of the unfolding path to GM8. The helix and strand β3 dissociate from the other

three β strands, and then β4 detaches from the N-terminal hairpin. β4 then binds to β3, which

detaches from the helix, to give a structure composed of a β sheet and a helical loop, similar to

GM2. This arrangement then reorganises to give a structure with residues 10 to 32 extended and

two β hairpins. In the path that continues to the minimum correlating with GM8 the β1 strand next

detaches, followed by the C-terminal hairpin, which then separates into β3 and β4 strands. Strand

β3 next reassociates with the helix, and some contacts form with β4. Further details are omitted for

brevity. The unfolding paths to the minima correlating with GM5 and GM6 (not illustrated) also

begin with the helix and β3 strand dissociating from the other strands. The extended structures con-

sisting of helix plus β3 and β1/β2/β4 are reached without passing through conformations involving a

helical loop. The path to the minimum that correlates with GM7 (not illustrated) begins with strand

β1 and the helix/β3 moiety separating from strands β2 and β4, with β1 then rebinding to β2 and β4

in a different arrangement. The β1 strand then unbinds as residues 10 to 32 become extended, and

the helix/β3 plus /β1/β2/β4 structure corresponding to GM7 is finally obtained by rearrangements

of the various strands.

The greater complexity of the pathways obtained for the 10/32 attachment pattern for static force

accords with the frustration that is clearly visible in the corresponding disconnectivity graphs. With

residues 10 to 32 forced into a non-native extended state the remaining unconstrained residues have

considerable freedom, but no native-like arrangements are available. A simple connection between the

energy landscape and the pulling force122 is unlikely to hold in this situation. This conclusion agrees

with previous simulations where cut-based free energy profiles113 were considered for a simplified

equilibrium kinetic transition network. A pulling force was found to stabilise states that are not

significantly populated for the unperturbed protein,114 as for the potential energy landscape in the

present work. Experimental verification of the predicted complexity for 10/32 attachment would

require structural probes that report on geometrical characteristics beyond the distance between

attachment points. Mutations that would be expected to stabilise alternative populations could be

designed based on the reported structures and pathways. FRET spectroscopy might be another
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possibility.

4 Properties of Individual Pathways as a Function of Applied Force

The potential energy landscape is expected to exhibit fewer local minima and transition states at

higher values of f . As f increases pairs of transition states and connected local minima become

progressively closer together, until they merge at non-Morse points, which are stationary points that

have an additional zero Hessian eigenvalue. The geometry in the neighbourhood of such points obeys

certain universal geometrical properties corresponding to fold catastrophes.123,124

The behaviour of potential energy landscapes as a function of a single control parameter has been

investigated extensively for atomic and mesoscopic clusters bound by the Morse potential.103,104,125–129

A quantitative prediction of the theory is that the fold ratio, rf , should tend to unity in the limit of

short path lengths, where

rf =
6∆V

λ(∆x)2
, (4)

where ∆V is the barrier height, λ is the modulus of the curvature corresponding to the unique

vibrational normal mode with imaginary frequency for the transition state, and ∆x is the Euclidean

distance in 3N -dimensional space between the transition state and the minimum. This prediction

has been verified for Morse clusters128,129 and for thermodynamic potentials corresponding to finite

system analogues of first order phase transitions.71,130 It can be used to justify Hammond’s postulate,

that a transition state more closely resemble the higher energy minimum connected to it by steepest-

descent pathways.128

If the system approaches a fold catastrophe at applied force f0 then the barrier height, path

length, and curvature vanish as (f0 − f)3/2, (f0 − f)1/2 and (f0 − f)1/2, respectively,123,124 as f

approaches f0 from below. This behaviour has been investigated for model proteins in several previous

studies,23,131,132 and the same scaling relations may apply for a projected free energy profile as a

function of f .133–136 Since the predictions of catastrophe theory refer to the limit f → f0 it is

particularly interesting to determine how well the relations hold away from f0.
128,131,136

19



To investigate the behaviour of the fold ratio for the model proteins considered in the present work

we calculated rf for all the transition states in the protein L database with f = 0 and the behaviour

of one particular path as a function of f . Here ∆x was obtained as the distance between connected

minima and transition states, minimised with respect to overall translation and rotation.110 Figure

13 shows a plot of rf values against ∆x, which confirms that the fold ratio does indeed tend to unity

as the path length decreases. This result should hold for any applied force.

Having examined the variation of rf for a database of pathways at a fixed value of f we then

considered one particular pathway as a function of f . The chosen pathway corresponds to the step

in Figure 1(d) for the global minimum of protein L pulled between beads 10 and 32. This minimum

merges with a transition state at f ≈ 9.621925, and for smaller forces the corresponding pathway

links GM1 with a minimum that exhibits a β-sheet formed from strands β1/β2/β4 and β3 packed

against the α helix (Figure 14b). The convergence of rf to unity for this pathway is illustrated in

Figure 14a, while Figure 14b shows how the corresponding minimum and transition state merge as

f increases.

The shortest pathways in any database for a given value of f are therefore expected to exhibit

a direct correlation between the the barrier height, which influences kinetics, and the smallest non-

zero vibrational frequency of the minimum, which appears in the vibrational partition function. In

previous work we have found that an approximate linear free energy relation can hold between the

barrier height and the square of the displacement.130 It remains to be seen whether this relation

might be useful for analysing mechanical unfolding experiments, perhaps in comparing barriers for

different mutants at constant force.

5 Conclusions

The potential energy landscape has been investigated for coarse-grained models of protein L and

protein G using two distinct pulling directions, namely 1/56 and 10/32 attachments. The lowest-

energy structure was first identified as a function of the pulling force f using basin-hopping global

optimisation. When the pulling force is applied to the terminal residues in the 1/56 pattern the global
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minimum changes abruptly from a compact structure, which correlates with the global minimum at

zero force, to extended minima. This crossover occurs at a slightly larger force for protein G, in

agreement with its greater mechanical stability in experiments. For the 10/32 attachment pattern

the evolution of the landscape is more complicated, and significant differences arise between the

two proteins. In particular, although both systems exhibit two compact global minima, the two

structures for protein L are very similar, while the structure that appears at non-zero force for

protein G has a helical turn. For intermediate forces the helix and β2 strand regions are extended,

with β3 packed against the helix, and β1 and β4 forming a β sheet with β2. A number of different

arrangements generally exist for the protein outside the region of applied force, leading to frustrated

energy landscapes with high barriers between alternative low-lying minima. These results clearly

show that pulling can simplify or cause significant frustration in the underlying landscape, depending

on the pulling direction.

The folding pathways and rate constants in the absence of force are in good agreement with

previous work. For protein L the N-terminal hairpin folds first, while for protein G it is the C-

terminal hairpin, with a well-defined early intermediate involving the helix, β3 and β2. However, for

f = 1, where the global minimum still correlates with GM1, the C-terminal hairpin forms first on

the folding path, followed by association of β2 and the helix. In the last stages of the folding pathway

β1 associates with the C-terminal hairpin and the helix/β2 arrangement.

For protein G the intermediate disappears on the application of static force in the regime where

the original global minimum is still relatively low in energy. The folding mechanism still involves

the association of helix with β3 and β2, with β4 joining to make the C-terminal hairpin. Finally, the

β1 strand associates with the rest of the secondary structure elements, as in the limit of zero static

force.

The pathways between the GM1 structure and higher-lying extended minima are qualitatively

different for the 10/32 pulling direction, and are particularly diverse for protein G. For protein L

the steps in folding for L/10/32/1.5 correspond to the dissociation of the β4/β3 arrangement in the

extended structure and subsequent formation of contacts between β4 and the N-terminal hairpin.
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The extended structure corresponding to helix/β3 at one end and β1/β2/β4 at the other then folds

along the boundary between these elements to give GM1. For G/10/32/2.2 the N-terminal hairpin

dissociates from the helix in GM3 and forms contacts with the C-terminal hairpin to give a β sheet

structure and helical turn. The two hairpins then realign via structures with separate β4 and β3

strands to give GM1. Various other pathways arise depending on which extended minimum is chosen

as the other endpoint. These results highlight the complexity that may arise for different pulling

patterns, and show how the balance between different pathways may be shifted significantly by

pulling.
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f 0.0 1.0 1.5 2.5 3.0 3.5 5.0
min 190714 1007353 74013 181140 92085 81512 104568
ts 206163 772810 80985 185530 91226 71072 95662

GM1 −13.774117 −20.924895 −24.522881 −31.763396 −35.405778 −39.062872 −50.122897
GM2 23.590422 −14.822502 −34.908882 −75.746112 −96.448782 −117.324116 −180.917609
GM3 24.844548 −13.900260 −34.245806 −75.554097 −96.464264 −117.530951 −181.621425
GM4 27.311100 −12.47503 −33.172210 −75.092067 −96.282195 −117.616193 −182.446267
GM5 29.76259 −11.397321 −32.297439 −74.582686 −95.950267 −117.460543 −182.812571
GM6 39.629570 −4.174596 −26.243915 −70.692796 −93.070535 −115.549688 −183.591190

Table 1: Number of minima and transition states in the DPS databases constructed for L/1/56 as a function of the static force, f . The
energies of the six distinct global minimum structures that arise for different values of f are reported for the relaxed structures. The f
values at which the global minimum changes from GM1 to GM2, etc. are approximately 1.2, 3.0, 3.4, 4.0, and 4.6.
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f 0.0 1.5 7.5
min 190714 892228 248988
ts 206163 673501 218983

GM1 −13.774116 −19.310864
GM2 −13.732850 −20.300141 −50.263786
GM3 −3.498625 −21.663330 −101.889300
GM4 −3.365967 −21.630401 −102.280377
GM5 2.355742 −18.930808 −110.949664
GM6 6.909812 −15.822193 −112.745199
GM7 17.939084 −7.817254 −113.967281
GM8 21.267683 −5.005314 −113.357006
GM9 21.677542 −4.532854 −113.056340
GM10 25.685065 −0.817348 −110.698589

Table 2: Number of minima and transition states in the DPS databases constructed for L/10/32 as a
function of the static force, f . The energies of the ten distinct global minimum structures that arise
for different values of f are reported for the relaxed structures. The GM1 structure does not exist as
a minimum on the PES at f = 7.5. The f values at which the global minimum changes from GM1
to GM2, etc. are approximately 0.1, 1.4, 2.0, 2.9, 5.2, 6.7, 9.1, 11.8, and 16.4.

f 0.0 1.5 2.0 2.5 5.0
min 182544 33872 30307 35681 28350
ts 175290 45244 44355 53417 32657

GM1 −16.164846 −26.898684 −30.516517 −34.153568 −52.626753
GM2 23.758413 −34.828123 −55.148704 −75.670588 −180.857162
GM3 24.968053 −34.160495 −54.730050 −75.479607 −181.563282
GM4 27.425023 −33.125844 −54.012679 −75.058767 −182.432800
GM5 29.878532 −32.231099 −53.305153 −74.532622 −182.789185
GM6 39.580602 −26.296445 −48.468047 −70.742259 −183.633277

Table 3: Number of minima and transition states in the DPS databases constructed for G/1/56 as a
function of the static force, f . The energies of the six distinct global minimum structures that arise
for different values of f are reported for the relaxed structures. The f values at which the global
minimum changes from GM1 to GM2, etc. are approximately 1.3, 3.0, 3.3, 4.0, and 4.6.
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f 0.0 2.2 3.3 3.4 4.0 5.5 6.5
min 182544 608892 669423 599638 587728 568181 533009
ts 175290 482011 540711 482977 511702 461731 476345

GM1 −16.164846 −25.899406 −30.912781 −31.373383 −34.154071 −41.235973 −46.065480
GM2 −7.489007 −27.119149 −37.192639 −38.116132 −43.683099 −57.788356 −67.334678
GM3 −1.283862 −26.985670 −40.286835 −41.508045 −48.874683 −67.579700 −80.684017
GM4 4.216722 −25.220851 −40.243663 −41.618038 −49.893374 −70.793443 −84.891806
GM5 7.755061 −23.870611 −40.099398 −41.586597 −50.549003 −73.233475 −88.566137
GM6 9.501782 −23.256687 −40.007664 −41.541234 −50.778825 −74.135310 −89.909222
GM7 12.238124 −21.667282 −39.157868 −40.760495 −50.417694 −74.855058 −91.367248
GM8 23.298156 −15.601070 −35.362937 −37.169469 −48.043306 −75.485236 −93.981685

Table 4: Number of minima and transition states in the DPS databases constructed for G/10/32 as a function of the static force, f . The
energies of the eight distinct global minimum structures that arise for different values of f are reported for the relaxed structures. The
f values at which the global minimum changes from GM1 to GM2, etc. are approximately 2.0, 2.3, 3.4, 3.5, 3.6, 4.6, and 5.2.
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separation of attachment points distance to global minimum
system µ(D) σ(D) µ(G) σ(G)
L 7.21 0.22 3.33 1.80
L/1/56/2.5 41.42 0.42 4.25 1.47
L/1/56/5.0 44.64 0.65 4.32 2.28
L/10/32/1.5 13.16 0.92 9.15 7.81
L/10/32/7.5 18.58 0.13 26.10 6.55
G 7.14 0.26 2.39 1.82
G/1/56/2.0 40.81 0.40 4.30 1.64
G/1/56/5.0 44.72 0.64 4.00 2.31
G/10/32/2.2 15.32 0.71 45.88 6.15
G/10/32/3.3 16.15 0.44 39.77 2.98
G/10/32/6.5 18.56 0.06 15.82 4.29

Table 5: The mean, µ, and standard deviation, σ, of the distance between the attachment points, D,
and the minimised distance to the global minimum, G, for selected databases. G corresponds to the
shortest distance in the 168-dimensional configuration space, minimised with respect to overall trans-
lation and rotation.110 The averages include a weight corresponding to the equilibrium occupation
probability of each minimum calculated using harmonic vibrational densities of states.
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Figure 1: Global minimum potential energy, V/ǫ, as a function of pulling force, f , for (a) G/1/56,
(b) G/10/32, (c) L/1/56, and (d) L/10/32. The black squares indicate the f values for which basin-
hopping runs were conducted. The lines connect the relaxed potential energy values for each distinct
global minimum structure, relaxed progressively over the full range of f considered.
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Figure 2: Structures of (a) the six distinct global minima identified for L/1/56, (b) the six distinct
global minima identified for G/1/56, (c) the ten distinct global minima identified for L/10/32, (d)
the eight distinct global minima identified for G/10/32, visualised using the VMD program.137 Hy-
drophobic beads are coloured red, hydrophilic beads blue, and neutral beads green. The alternative
views of GM1 [and GM2 in (c) and (d)] have the beads coloured from red to blue (N-terminus, β1

to C-terminus, β4) according to the position in the chain.
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Figure 3: Probability distributions for the distance between attachment points. Top: for L/1/56/0.5
the distribution shifts from compact to extended over the temperature range 0.33 to 0.37. Bottom:
for G/10/32/2.2 a trimodal distribution appears. The probability shifts from compact at the lowest
temperatures to extended at the highest temperatures, with significant population of intermediate
values, where the helical turns are retained, in between. Some of the corresponding structures are
illustrated for the disconnectivity graphs shown in Figure 9.
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ǫ

GM1

min33

Figure 4: Disconnectivity graph for protein L in the absence of a static force including only the
lowest 1000 minima with an energy range of 14 ǫ. Selected minima are illustrated using using the VMD
program137 to generate representations coloured from red to blue (N-terminus, β1 to C-terminus, β4)
according to the position in the chain. Of the six distinct global minima characterised for L/1/56
only GM1 appears in this energy range. The red and blue branches correspond to ‘native’ and
‘unfolded’ structures when classified according to the order parameter description discussed in the
text.61 min33 is the lowest minimum classified as unfolded by this scheme.
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Figure 5: Disconnectivity graphs for (a) L/1/56/2.5 and (b) L/1/56/5.0 including only the lowest
1000 minima with an energy range of 14 ǫ. The graphs are coloured according to the distance between
residues 1 and 56 in the corresponding minimum, as indicated by the scale bar. Selected minima
are illustrated using using the VMD program137 to generate representations coloured from red to blue
(N-terminus, β1 to C-terminus, β4) according to the position in the chain. All of the six distinct
global minima characterised for L/1/56 appear in this energy range aside from GM1.

40



ǫ

GM1

9.20
8.15
7.10
6.05
5.00

Figure 6: Disconnectivity graph for protein G in the absence of a static force including only the
lowest 1000 minima with an energy range of 14 ǫ. The graph is coloured according to the distance
between residues 1 and 56 in the corresponding minimum, as indicated by the scale bar. Selected
minima are illustrated using using the VMD program137 to generate representations coloured from red
to blue (N-terminus, β1 to C-terminus, β4) according to the position in the chain. Only one of the
six distinct global minima characterised for G/1/56 appears in this energy range.
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Figure 7: Disconnectivity graphs for a(a) G/1/56/2.0 and (b) G/1/56/5.0 including only the lowest
1000 minima with an energy range of 14 ǫ. The graphs are coloured according to the distance between
residues 1 and 56 in the corresponding minimum, as indicated by the scale bar. The red and blue
colouring is reversed in the two panels because global minimum changes from an extended structure
containing remnants of the α helix to a fully extended structure. Selected minima are illustrated
using using the VMD program137 to generate representations coloured from red to blue (N-terminus,
β1 to C-terminus, β4) according to the position in the chain. All six of the distinct global minima
characterised for G/1/56 appear in this energy range aside from GM1.
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Figure 8: Disconnectivity graphs for (a) L/10/32/1.5 and (b) L/10/32/7.5 including only the lowest
1000 minima with an energy range of 14 ǫ. The graphs are coloured according to the distance between
residues 10 and 32 in the corresponding minimum, as indicated by the scale bar. Selected minima
are illustrated using using the VMD program137 to generate representations coloured from red to blue
(N-terminus, β1 to C-terminus, β4) according to the position in the chain. Five of the ten distinct
global minima characterised for L/10/32 appear in this energy range for (a) and all ten for part (b)
except for GM1 and GM2.
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Figure 9: Disconnectivity graphs for (a) G/10/32/2.2, (b) G/10/32/3.3, (c) G/10/32/6.5 including
only the lowest 1000 minima with an energy range of 14 ǫ. The graphs are coloured according to the
distance between residues 10 and 32 in the corresponding minimum, as indicated by the scale bar.
Selected minima are illustrated using the VMD program137 to generate representations coloured from
red to blue (N-terminus, β1 to C-terminus, β4) according to the position in the chain. Three of the
eight distinct global minima characterised for G/10/32 appear in this energy range for (a), four for
(b) and only GM8 for (c).
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Figure 10: Potential energy, V , as a function of integrated path length, s, for paths connecting GM1
to the other structures that are global minima for f 6= 0 for (left) protein L and (right) protein G
in the absence of a static pulling force. The overall mechanism is very similar within each set of
paths, and the structures illustrated are taken from the longest path (purple for L and light blue for
G), which connects GM1 to the minimum obtained by successively relaxing GM5 to f = 0. These
paths involve 32 local minima linked by 31 transition states for L and 92 local minima linked by 91
transition states for G. Structures a–i and a–j correspond to the indicated positions along this energy
profiles; for protein G the intermediate appears at a path length around 1500.
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Figure 11: Potential energy, V , as a function of integrated path length, s, for paths connecting GM1
to the other structures that are global minima for f 6= 0 in (left) L/1/56/1.0 and (right) G/1/56/1.5.
The overall mechanism is essentially the same within each set of paths, and the structures illustrated
are taken from the longest path (light blue for L and red for G), which connects GM1 to the minimum
obtained by successively relaxing GM6 to f = 0. These paths involves 43 local minima linked by
42 transition states for L and 39 local minima linked by 38 transition states for G. Structures a–h
correspond to the indicated positions along these potential energy profiles.
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Figure 12: Potential energy, V , as a function of integrated path length, s, for (left) paths connecting
GM1 to the other structures that are global minima for f 6= 0 in L/10/32/1.5 and (right) for paths
connecting GM1 to the minima that correlate with GM2, GM3, GM4 and GM8 in G/10/32/2.2.
For protein L the overall mechanism is similar in each case except for the short path that leads
to the minimum correlating with GM5. The structures illustrated are taken from the longest path
(blue), which connects GM1 to the minimum obtained by successively relaxing GM10 to f = 1.5 and
involves 40 local minima linked by 39 transition states. For protein G the structures correspond to
the path connecting GM1 to the minimum obtained by successively relaxing GM3 to f = 2.2 (green),
which involves 43 local minima linked by 42 transition states. Structures a–i and a–h correspond to
the indicated positions along the corresponding potential energy profiles.
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Figure 13: Fold ratio for protein L pathways obtained in the absence of an applied force. rf is
plotted as a function of ∆x on log scales. The unit of length for the path length ∆x is Re; rf is
dimensionless.
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Figure 14: (a) Convergence of the fold ratio to unity for one particular transition state and pathway
of L/10/32. (b) Potential energy, V , as a function of integrated path length, s, for one particular
transition state at f values of 9.621925, 9.62192, 9.6219, 9.621, 9.62, 9.61, 9.6, 9.5 9.4 9.3 9.2 and
9.1. The stationary point structures illustrated are for f = 9.1.
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Figure 15: TOC graphic. Structures of the eight distinct global minima identified for G/10/32,
visualised using the VMD program.137 Hydrophobic beads are coloured red, hydrophilic beads blue,
and neutral beads green. The alternative views of GM1 [and GM2 in (c) and (d)] have the beads
coloured from red to blue (N-terminus, β1 to C-terminus, β4) according to the position in the chain.

51




