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Abstract: Electric potential distribution in nanoscale electroosmosis has been investigated using the 

nonequilibrium molecular dynamics (NEMD), whose results are compared with the continuum based 

Poisson-Boltzmann (PB) theory. If the bin size of the MD simulation is no smaller than a molecular 

diameter and the focusing region is limited to the diffusion layer, the ionic density profiles on the bins of 

the MD results agree well with the predictions based on the Poisson-Boltzmann theory for low and 

moderate bulk ionic concentrations. The PB equation breaks down at high bulk ionic concentrations, 

which is also consistent with the macroscopic description. 
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1. Introduction 

Electroosmotic transport (EOT) plays a fundamental role in many biochemical & biophysical 

processes [1,2], such as transports in ion channels in cells [3-5]. Similar applications can also be found in 

NEMS/MEMS devices [6,7]. A complete understanding of these physical and chemical processes need 

correct mathematical descriptions and accurate solutions of the electrostatic potential distributions. One of 

the most widespread models for the electrostatic interactions is the Poisson-Boltzmann equation (PBE) [2]. 

The linearized PBE (LPBE) and non-linearized PBE (NLPBE) have been used successfully in predictions 

and modeling of the EOT at microscales [8-10]. However, there are three main defects in the pure 

continuum approach [11]: (i) the finite sizes of the ions are neglected; (ii) the non-Coulombic interaction 

between counter- and co-ions and surface is disregarded; (iii) the image forces between ions and the 

surface are neglected. Although the image charges have been introduced in extensions of Poisson-

Boltzmann theory and more sophistical statistical mechanical treatments of the double layer [12-14], it 

was generally thought that the Poisson-Boltzmann equation broke down in nanoscale EOT. 

Much work has been done using the molecular-based simulations with comparisons with the 

continuum-based Poisson-Boltzmann theory in the last decade [15-23]. Especially, most of the recent 

papers based on the first principle have reported the Poisson-Boltzmann theory deviates from the MD 

results in nanoscale electroosmosis [18-23]. Much higher ionic concentration distributions near wall 

surfaces predicted by MD were reported than those predicted by the Poisson-Boltzmann theory [18,19]. 

Qiao & Aluru [19] modified the Poisson-Boltzmann equation by introducing an electrochemical potential 

correction extracted from the ion distribution in a smaller channel using MD simulations. The modified 

Poisson-Boltzmann equation predicted the ion distribution in larger channel widths with good accuracies 

[20,21]. Cui & Cochran [22] found that the Poisson-Boltzmann equation agreed quantitatively well with 

the MD results at moderate ionic concentrations around 20 mM and failed at low ionic concentration and 

higher zeta potential over 50 mV. Dufreche et al. [23] simulated the electroosmosis in clays, which was 

simplified as Na+ ions in water, and declared that the Poisson-Boltzmann theory and MD simulation only 
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agreed only when the interlayer spacing was large enough, and that a slipping modification must be 

considered for the hydrodynamics. Such phenomena can not be explained by the classical electrokinetic 

transport theories and were ascribed to the water transport properties change near the charged surfaces. 

In this paper, we simulate the electroosmosis in nanochannels using the nonequilibrium molecular 

dynamics (NEMD). The atomic-based results are compared with the continuum based Poisson-Boltzmann 

equation so that the applicability of the continuum assumption is therefore discussed. 

2. Numerical Details 

2.1 Continuum models 

Consider an electroosmosis process in a straight channel, as shown in Fig. 1. The walls are fixed and 

homogeneously charged. If the z-directional flow is negligible and the transports are periodic in y 

direction, the steady electrostatic interaction can therefore be described by a one-dimensional Poisson 

equation [24,25],  

[ ]
2

0

( ) ( )r ed z d z
dz

ε ψ ρ
ε

⋅
= − ,         (1) 

where ψ  is the electrical potential, rε  the relative dielectric constant of the solution, 0ε  the permittivity 

of a vacuum, and eρ  the net charge density. According to classical EDL theory, the equilibrium 

Boltzmann distribution function can be used to describe the distributions of small ions in the dilute 

solution. Therefore, the net charge density distribution can be expressed as the sum of all the ions in the 

solution 
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e i i
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where the subscript i  represents the i th species, n∞  is the bulk ionic number concentration, z  the 

valence of the ions (including the sign), e  the absolute value of one proton charge, bk  the Boltzmann 
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constant, and T  the absolute temperature. For 1:1 electrolyte solutions, such NaF or NaCl solution in the 

present work, Eqs (1) and (2) can be simplified as 

[ ]
2

0

( ) ( ) 2 sinhr

b

d z d z zen ze
dz k T

ε ψ ψ
ε

∞⋅ ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
.       (3) 

There are two ways to present the boundary conditions for the Poisson equation (1), Dirichlet and 

Neumann boundaries. In some atomistic methods for electroosmosis [18,19], the Neumann boundary 

condition is mostly used because the electric potential gradient is relative to the wall surface charge 

density. Electric charge conversation can be considered as an additional restrict for certain solution under 

the Neumann boundary condition, which brings a big additional computational cost as well. Recent 

investigations show a lattice evolution method can deal with this problem easily [26]. In this contribution 

we still use the Dirichlet boundary condition to solve the Poisson equation. To compare with the MD 

simulation results, we obtain the zeta potentials ζ  from MD, and then use the values as the Dirichlet 

boundaries to solve the Eq. (3). 

[Insert Figure 1 here] 

2.2 NEMD method 

Nonequilibrium molecular dynamics (NEMD) method [27] was used to simulate the electroosmosis in 

a small channel directly. The accuracy of this type of model is limited only by the force fields used to 

describe interactions between solvent molecules, ions, and the channel walls, and the simulation size and 

duration, which are determined by computer resources and the computational efficiency of the simulation 

code. In order to provide a clear picture of how the various conditions affect the applicability of 

continuum theory, a simplified model was used to capture the essential physics [17,21]. Both solvent and 

ions are simplified as spherical, nonpolar particles interacting with a shifted Lennard-Jones potential, 

12 6 12 6
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ij ij

ij ij c c
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r r r r
σ σ σ σ
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where ijr , ijε , and ijσ  are the separation, Lennard-Jones well depth and Lennard-Jones diameter, 

respectively, for the pair of atoms i  and j . With this simplification, the simulations become more 

tractable while still retaining a model with discrete solvent particles. In deed, replacing such a model for 

solvent with a more realistic model, such as SPC/E [19,20] will improve the accuracy of the simulations; 

however the simplified model can still provide qualitative conclusions applicable to real systems, which 

has been proved in many previous researches for various areas [21]. The L-J interaction is set to zero 

when molecules are separated by farther than the cut-off length 2.5cr σ= . The molecular parameters are 

chosen to match those in a NaF electrolyte solution in a silicon channel which are listed in Table 1 [28,29]. 

The Lorentz-Berthelot combination rules were used for the interaction parameters that are not specified 

explicitly [29]. 

[Insert Table 1 here] 

Each ion was assigned a charge of e±  ( e  is the electronic charge, 1.6×10-19 C), while the solvent 

particles were neutral. The ion-ion electrostatic interactions were calculated using a screened Coulomb 

interaction, 

0

( )
4

i jC
ij

r ij

q q
V r

rπε ε
= ,         (5) 

where the relative dielectric constant of fluid is approximately set to 78 in our simulations. The electro-

static interactions were computed using the direct summation over the whole domain with no truncation 

for the Coulomb interactions [30,31]. 

The equations of motion are integrated using the Verlet scheme [32] with time step 0.005t τ∆ = , 

where 2 1/ 2( / )mτ σ ε≡  is the characteristic time of the Lennard-Jones potential. A Langevin thermostat 

[33] with damping rate 1τ −  is used to maintain a constant temperature of 1.1 / bkε . The thermostat is only 

applied in the y-direction, since it is periodic and normal to the main flow direction. 

NEMD simulations were performed for systems consisting of a slab of electrolyte solution 

sandwiched by two plane walls as shown in Fig. 1. The two walls are symmetrical with respect to the 
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channel center line. Each wall is made up of five layers of atoms oriented in the <111> direction. The 

channel is L  in length and W  in width. The wall atoms are fixed to their original positions, all of which 

have van der Waals interactions with the fluid molecules. Only the outermost wall layers are charged, 

uniformly among the wall atoms. In cases of this contribution, we use a channel with L =3.3 nm, W =4.98 

nm and 1500 molecules flowing in it. 

At the beginning of the simulation, the molecules were randomly positioned and assigned Maxwellian 

distributed velocities at the temperature of 1.1 / bkε . Periodic boundary was performed in the x and y 

directions. Before the macroscopic characteristics were sampled, the NEMD simulations were run for 

5×105 time steps to reach steady state flow. After that, the densities and velocities were computed time-

averaged, over 3×106 times, by using the binning method [32]. The various simulated cases performed in 

this work are summarized in Table 2. 

[Insert Table 2 here] 

3. Results and discussion 

3.1 Bin size effect 

The electric potential or ion distributions in electroosmosis have been modeled much using atomistic 

simulations [17-23]. A peak-like and fluctuating ion distribution profile is usually obtained near wall 

surfaces. The peak values may be two or more times than that predicted by the continuum theory. This 

was always treated as a proof for breakdown of the Poisson-Boltzmann theory in nanofluidics [18-21]. It 

was noticed that such a profile always came with a smaller bin size than the fluid molecular diameter. We 

also got a similar ion distribution profile in a NaF solution by our NEMD when we set the bin size ( binδ ) 

as 1/10 of water molecular diameter ( waterσ ), shown as the dotted line in Fig. 2. However when we re-

calculated the same results into bigger bin-size systems, the fluctuation became smaller. Once the bin size 

is no smaller than the fluid molecular diameter, a smooth decaying ion density profile is obtained. Such a 

profile appears a comparable shape with the Poisson-Boltzmann predictions. It indicates that the base of 
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view must be same when the atomistic simulations are compared with the continuum theory, i.e. the bin 

size of the MD results of electric distribution should not be smaller than the solvent molecular diameter in 

comparison with the Poisson-Boltzmann predictions. 

[Insert Figure 2 here] 

3.2 Stern layer effect 

A second gap which departs the MD results from the PB predictions is the effect of the Stern layer. As 

well known, the PB equation describes only the ion distribution in diffusion (outer) layer of the electric 

double layer (EDL) [1,2,24]. In the continuum theory, the compact (inner) layer of EDL is too thin 

(molecular scale) to be considered and therefore the PB equation almost governs the ion distribution in the 

whole domain. However, in nanofluidics the inner layer which is also termed as Stern layer is comparable 

to the channel in size. The PB equation is not able to govern the ion behavior in the Stern layer in theory. 

Therefore if one compares the MD results with the PB predictions, the Stern layer need to be cut off. 

Though the Stern layer is not well defined in theory [34], here we determine its thickness by 

comparing the co- and counter-ions distribution profiles. The Stern layer is commonly described as the 

absorbed counter-ions layer close to the charged surface without any co-ions [35,36]. Fig. 3 shows the 

counter-ion and co-ion distribution profiles in the same figure for the NaF solution (case 2 in Table 2). 

The Stern layer is then determined from the starting point of the counter-ions to that of the co-ions which 

is almost the first counter-ion layer next to the wall surface. Thus we compared the MD results ( binδ σ= ) 

with the PB predictions in the whole channel or in the diffusion layers only. Fig. 4 shows that the MD 

results deviates far from the PB prediction in the whole channel, however agree pretty well with those in 

the diffusion layers only for this case. This indicates that when the Stern layer is not negligible compared 

with the channel width, the Poisson-Boltzmann theory can not predict the ion distribution correctly across 

the whole channel but it is still available to describe the electric potential distribution in the diffusion 

layers. Once the channel is so narrow that the Stern layers near both wall surfaces have interactions with 
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each other, such as W<5σ , the Poisson-Boltzmann theory will totally break down across the channel. 

Such a deduction is consistent with the previous MD simulations [19]. 

[Insert Figure 3 here] 

[Insert Figure 4 here] 

3.3 Concentration effect 

In theory, the Poisson-Boltzmann equation is based on the Boltzmann distribution of ions for dilute 

solutions. The assumption of dilute solution is almost satisfied in most macroscopic cases; however it 

becomes somewhat critical for nanoscale electroosmosis. In this contribution, we change the numbers of 

ions in the solution so as to see how far the Poisson-Boltzmann equation holds on by comparing the MD 

results with the PB predictions. The bulk ionic concentration is determined by the averaged ion 

concentration in equilibrium far from the wall surfaces (i.e. near the middle across the channel) of the MD 

results. Thus the cases listed in Table 2 have a wide bulk ionic concentration range from 0.1 M to 5.25 M. 

Fig. 5 shows the Poisson-Boltzmann equation holds on for low and moderate ionic concentrations. When 

the bulk ionic concentration is lower than 0.88 M (case 5), the PB predictions agree well with the MD 

results, see Fig. 5(a). As the ionic concentration increasing, the deviations become larger and larger, which 

indicates the Boltzmann distribution breaks down and the Poisson-Boltzmann theory can not describe such 

electrokinetic transport behavior any more. 

[Insert Figure 5 here] 

4. Conclusions 

Electric potential distribution in nanoscale electroosmosis have been numerically investigated using 

both the atomistic method (NEMD) and the continuum theory (PBE). The applicability of the continuum-

based Poisson-Boltzmann theory in nanoscale is therefore discussed by comparing the results from the 

two different methods. The results show that: if the bin size of the MD simulation is no smaller than a 

molecular diameter of solvent and the focusing region is limited to the diffusion layer, the ion distribution 

profiles calculated by MD simulations agree well with PB predictions at low and moderate bulk ionic 
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concentrations. The Poisson-Boltzmann theory totally breaks down for high bulk ionic concentrations, 

which is also consistent with the macroscopic description. 
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Tables 
 

Table 1  Parameters for Lennard-Jones interactions between same species particles 

Species m   (g/mol) σ  (Ǻ) ε  (kJ/mol) 
O (Water) 18.00 3.165 0.6503 

Si 28.08 3.386 2.4470 
Na+ 22.99 2.350 0.0618 
F- 19.00 3.121 0.6080 

 
 
 

Table 2  Summary of the simulated cases 

Case # 
sσ   (C/m2) Counter-ion #

(Na+) 
Co-ion #

(F-) 
1 0.191 30 0 
2 0.191 35 5  
3 0.191 40 10 
4 0.191 45 15 
5 0.191 55 25 
6 0.191 80 50 
7 0.191 100 70 
8 0.191 200 170 
9 0.064 10 0 

10 0.032 5 0 
11 0.019 3 0 
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Figure Captions 
 

Fig. 1  A schematic of the electro-osmotic flow in nanochannel. The two channel walls are 
symmetrical with respect to the channel center line. Each wall is made up of five layers of 
still solid atoms. The channel width W is defined as the distance between centers in the two 
innermost wall layers.  

Fig. 2  Ion density profiles for different bin sizes binδ  (case 1 in Table 2). binδ =1/10 waterσ  for 

the dotted line, binδ =1/2 waterσ  for the solid triangles, binδ = waterσ  for the solid circles, and 

binδ =1.5 waterσ  for the solid squares. The ion density is normalized by 3| |e σ , i.e. 
*

3| | /
e

e e
ρρ
σ

= , and the z-position is normalized by the channel width, e. g. * zz
W

= . 

Fig. 3  Stern layer determination from MD results (case 2 in Table 2) 

Fig. 4  Comparisons between MD and Poisson-Boltzmann theory: the dotted line is the MD 
results in finest bin size, the circles and triangles are sampled in one molecular diameter bin 
size. The triangles are sampled in the whole channel width W , and the circles are sampled 
only in the diffusion layer. The dot-dash lines are the interfaces between stern layer and 
diffusion layer. The dashed line and solid line are calculated based on PB equation for 
different channel widths and different zeta potentials. (case 2 in Table 2) 

Fig. 5  Ionic density profiles from MD simulations and PB predictions for different ionic 
concentration cases.  (a) cases at moderate and low ionic concentrations. The cases from 
bottom to top are: cases # 11, 10, 9, 1, 2, 3, 4, 5. The bulk ionic concentration of case 5 is 
0.88 M;  (b) cases at high ionic concentrations. The cases from bottom to top are: cases # 5, 
6, 7, 8. 
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Figure 1, Wang et al., Molecular Simulation 
 

 

 

 

 

 
Fig. 1  A schematic of the electro-osmotic flow in nanochannel. The two channel walls are 
symmetrical with respect to the channel center line. Each wall is made up of five layers of 
still solid atoms. The channel width W is defined as the distance between centers in the two 
innermost wall layers.  
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Figure 2, Wang et al., Molecular Simulation 
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Figure 2.  Ion density profiles for different bin sizes binδ  (case 1 in Table 2). binδ =1/10 waterσ  for the 

dotted line, binδ =1/2 waterσ  for the solid triangles, binδ = waterσ  for the solid circles, and binδ =1.5 waterσ  
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Figure 3, Wang et al., Molecular Simulation 
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Fig. 3  Stern layer determination from MD results (case # 2 in Table 2). The axes are same 
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Figure 4, Wang et al., Molecular Simulation 
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Fig. 4  Comparisons between MD and Poisson-Boltzmann theory: the dotted line is the MD 
results in finest bin size, the circles and triangles are sampled in one molecular diameter bin 
size. The triangles are sampled in the whole channel width W , and the circles are sampled 
only in the diffusion layer. The dot-dash lines are the interfaces between stern layer and 
diffusion layer. The dashed line and solid line are calculated based on PB equation for 
different channel widths and different zeta potentials. (case # 2 in Table 2). The axes are 
same defined as Fig. 2. 
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Figure 5, Wang et al., Molecular Simulation 
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(a) ionic density profiles for moderate and low ionic concentrations 
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(b) ionic density profiles for high ionic concentrations 
 

Fig. 5  Ionic density profiles from MD simulations and PB predictions for different ionic 
concentration cases.  (a) cases at moderate and low ionic concentrations. The cases from 
bottom to top are: cases # 11, 10, 9, 1, 2, 3, 4, 5;  (b) cases at high ionic concentrations. The 
cases from bottom to top are: cases # 5, 6, 7, 8. The axes are same defined as Fig. 2. 
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