
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
More means more? Illusory causation between uncorrelated continuous events

Permalink
https://escholarship.org/uc/item/67p779b9

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 45(45)

Authors
Liang, Lexin
Chow, Julie YL
Livesey, Evan

Publication Date
2023
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/67p779b9
https://escholarship.org
http://www.cdlib.org/


More means more? Illusory causation between uncorrelated continuous events 

Lexin Liang (llia6082@uni.sydney.edu.au) 
School of Psychology, University of Sydney, Sydney 

NSW, Australia 

Julie Y.L. Chow (julie.chow@unsw.edu.au) 
University of New South Wales, Sydney, NSW, Australia 

Evan J. Livesey (evan.livesey@sydney.edu.au) 
School of Psychology, University of Sydney, Sydney 

NSW, Australia 
 

Abstract 
Illusions of causality arise when people observe statistically 
unrelated events and yet form a belief that the events are 
causally linked. When participants observe a sequence of 
discrete binary events (e.g., a patient was either administered a 
treatment or no treatment, and subsequently recovers or does 
not recover from their illness), the frequency of the putative 
cause and outcome occurring inflates the illusion of causality. 
Recently, similar effects have been observed using outcomes 
of continuous magnitude. Participants are more likely to 
endorse the causal status of a (completely ineffective) cue if the 
target outcome (e.g., high magnitude outcomes) occur 
frequently. Here, we extended these findings by investigating 
how predictions and causal judgments for a cue of continuous 
magnitude were affected by the distribution of cue values 
presented. Participants observed cue values (dose of a fictitious 
medicine) sourced from either a continuous distribution or 
from two discrete values, and were followed by outcomes that 
were either continuous (Experiment 1) or binary in nature 
(Experiment 2). Our results show that participants were more 
likely to assume a linear relationship between drug dose and 
magnitude of recovery when cue dosage were predominantly 
high than when they were predominantly low.  

Keywords: Causal learning; contingency learning; illusion of 
causality, cue density effect, illusory correlation 

The illusion of causality 
Learning the relationship between potential causes and their 
putative effects is an important part of everyday life and an 
adaptive strategy for human survival (Blanco & Matute, 
2018; Chow et al., 2021). We can use causal knowledge 
obtained from previous learning to guide our behaviors, in 
order to obtain preferred outcomes and avoid undesirable 
ones. However, a significant body of previous research has 
demonstrated that under certain conditions, we tend to 
perceive a causal relationship when none exists (Yarritu et 
al., 2014; Matute et al., 2015; Chow et al., 2019). This causal 
illusion can be innocuous or even adaptive in some situations; 
believing in one’s ability to control events could make people 
feel hopeful and motivated in the face of uncertainty (Blanco, 
2017). In many contexts, this kind of “false alarm” is much 
less costly than missing a relationship when it truly exists 
(Blanco, 2017; Blanco & Matute, 2018). However, the costs 
of believing in a non-existent relationship can be substantial, 

for instance when individuals forgo effective medical 
treatment because of their belief in an ineffective alternative, 
such as homeopathy (Blanco et al., 2014). 

Contingency learning is a key method that researchers use 
to study causal illusion. The most commonly used paradigm 
of contingency learning involves two events, a cue and an 
outcome. The two stimuli are binary in the sense that they are 
either present or absent, and different combinations of two 
stimuli can give rise to a 2×2 contingency matrix as 
summarized in Table 1. A widely-used normative index of 
contingency ΔP is calculated by the following formula: ΔP = 
P (O|C) – P (O|~C) = a/(a+b) – c/(c+d), where a-d refer to the 
frequencies with which each of the 4 cell types occur. The ΔP 
metric refers to the difference between the probability that the 
outcome occurs when the cue is present and the probability 
that the outcome occurs when the cue is absent. When the 
probability of outcome occurrence is the same regardless of 
cue occurrence (i.e., ΔP = 0), the contingency between the 
two events is null. 

 
Table 1: Contingency matrix containing four possible 

cue-outcome combinations. 
 

 Outcome present Outcome absent 
Cue present a b 
Cue absent c d 

 
Previous literature has found that two manipulations 

consistently produce causal overestimation under a zero 
contingency. First, causal illusion tends to occur when the 
probability that the outcome occurs is high regardless of the 
cue’s occurrence (i.e., increasing trial types a and c), a 
phenomenon called the outcome density (OD) effect (Matute 
et al., 2015; Chow et al., 2019). The OD effect potentially 
contributes to the popularity of pseudo-medicines which are 
usually claimed to treat mild diseases with high rates of 
spontaneous remission (Blanco et al., 2014). Second, causal 
illusion also tends to occur if the cue occurs more frequently 
regardless of outcome’s occurrence (i.e., increasing trial 
types a and b), a phenomenon referred to as the cue density 
effect (CD effect) (Yarritu et al., 2014; Matute et al., 2015). 
Since many alternative and complementary medicines are 
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advertised as natural and free from side effects, they tend to 
be frequently used without concern, further contributing to 
the formation of causal illusion (Blanco et al., 2014). 

Although these two effects have been replicated frequently 
in laboratory settings, it remains unknown to what extent they 
apply to everyday situations in which events are not neatly 
organized into binary categories. For instance, the possible 
effect of taking a different dose of a drug is difficult to capture 
by considering only the presence versus absence of treatment. 
Similarly, partial recoveries that commonly occur are not 
always well-described as either the presence or absence of the 
desired outcome. Therefore, how these ambiguous stimuli are 
perceived and used in forming beliefs is potentially 
informative for understanding real-world causal reasoning. 

The problem of how people might use ambiguous stimuli 
in causal reasoning is often overlooked; dominant statistical 
models of contingency learning like delta p, assume that cue 
and outcome events can be neatly dichotomized as present or 
absent without consideration of how this is achieved in a 
variable environment. Several studies (e.g. Chow et al., 2019; 
Double et al., 2020) have found equivalent outcome density 
effects for binary and continuous outcomes, suggesting that 
it is not necessary for the effect to be neatly categorized as 
present or absent in order for causal illusions to flourish, at 
least when the putative cause is dichotomous and thus 
obviously present or absent.  

Indeed, when only one of the events is continuous, there is 
some evidence that participants assimilate ambiguous stimuli 
in the direction of their causal hypothesis (Marsh & Ahn, 
2009; Blanco, Moreno-Fernández & Matute, 2020). For 
example, if one believed a protein (outcome) was caused by 
tall bacteria (cue), and the protein was also shown to be 
consistently caused by intermediate-length bacteria 
(ambiguous cue), the intermediate-length bacteria tend to be 
spontaneously categorized as tall (Marsh & Ahn, 2009). This 
causal assimilation process inflates the perceived 
contingency between cue and outcome by increasing the 
number of a-cell trials. These findings are important as they 
suggest some flexibility in how ambiguous stimuli are 
interpreted, relative to the learner’s causal model about the 
cue-outcome relationship. However, even in work on causal 
assimilation, the putative cause has not been completely 
continuous, but rather could be classified easily into three 
distinct categories (e.g., tall, short and intermediate bacteria). 
The question thus remains how do people learn about causal 
relationships when the cue—that is, the possible cause of the 
effect—varies in a completely continuous fashion.  

There is evidence from the function learning literature that 
people tend to assume a linear monotonic relationship 
between events when cue and outcome events are continuous 
(Summers, Summers & Karkau, 1969). That is, when 
presented with some continuous cue dimension, participants 
form a causal hypothesis that increasing the cue value will 
lead to an increase in the outcome value. Applying this logic 
to the illusion of causality, if we hold constant the frequency 
of high magnitude outcomes, increasing the frequency of 
high magnitude cues (e.g., high doses of a drug) should lead 

to greater illusions of causality, in line with the cue density 
effect. Although this would be consistent with 
demonstrations of the outcome density effect that use 
continuous outcomes (Chow et al., 2019; Double et al., 
2020), it remains to be seen whether continuous cues support 
causal illusions in the same way. The primacy of the cue 
information, typically delivered before the learner makes a 
prediction about the likely effect, and its distinct role in 
mental models of cause and effect are reason enough to 
question whether people will process ambiguous cue values 
in the same way as ambiguous outcome values. 

The current study aimed to investigate causal illusion and 
CD effect using continuous cues, presented as a possible 
cause of a continuous outcome (Experiment 1) or discrete and 
binary outcome (Experiment 2). We adopted a fictitious 
medical scenario similar to Chow et al.’s (2019) study, where 
participants were instructed to learn the efficacy of a fictitious 
(and ineffective) medicine, Calciucor, that did not correlate 
with a reported medical outcome, an increase in bone density 
in patients with Osteoporosis.  

Experiments 1 and 2 
Participants in both experiments first learned 100 trials 

where a certain dosage was prescribed to a patient, and the 
patient recovered to a certain extent. A 2 (CD: high vs. low) 
× 2 (cue variability: discrete vs. continuous) between-subject 
design was adopted. The continuous cue and outcome 
distributions are illustrated in Figure 1. For outcomes, we 
used a high OD distribution since the CD effect had been 
shown to be more robust when outcome density is high 
(Blanco et al., 2013). In Experiment 1, this entailed a 
continuous negatively-skewed distribution ranging from 0-
100, with larger values as the modal outcome. For 
Experiment 2, we used a discrete outcome that was either 
present or absent, but which was present on most trials.  

To assess the results of causal learning, participants were 
asked to give two efficacy ratings. They were asked to rate 
the effect of the medicine (treatment rating) as well as the 
effect of increasing the dose (dosage rating) on treatment 
outcome. It should be noted that since we did not present cue-
absent trials (i.e. in all instances, the patient received at least 
some medicine), answers for the treatment rating largely 
depend on participants’ assumptions about spontaneous 
recovery rate of the disease, which the participant had no way 
of verifying during the experiment. Thus, we mainly focused 
on the dosage rating to analyse causal illusions. As the OD 
effect has been shown with both discrete and continuous 
outcomes (Chow et al., 2019; Double et al., 2020), we also 
expected to see a CD effect using discrete and continuous 
cues. Similarly, as outcome ambiguity did not produce 
systematic bias on the magnitude of the OD effect in previous 
work, we predicted there to be no interaction effect between 
cue variability and CD. In addition, participants made 
prediction ratings for recovery across 11 cue values (i.e., 0, 
10, 20…100), and the linear trends of predicted outcomes as 
a function of the magnitude of the cue were used as 
complementary measurements to efficacy ratings. Consistent 
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with a CD effect, we hypothesized that the cue magnitude 
(i.e. treatment dose) would have a stronger positive effect on 
participants’ predictions when they observed predominantly 
high doses of the medicine being administered (i.e. a high cue 
density). 

Figure 1: Scatterplots showing all cue and outcome values 
presented to participants in the continuous low cue density 

condition (left panel) and continuous high cue density 
condition (right panel) of Experiment 1. Histograms display 

cumulative frequencies of cue and outcome values for all 
participants. The black line represents the best-fitting 

regression line, showing the zero correlation between cue 
and outcome values. 

Method 
Participants A total of 162 undergraduate students in 
Experiment 1 and 163 undergraduate students in Experiment 
2 completed the study online for partial course credit. In each 
experiment, participants were unsystematically allocated to 
one of four conditions. 11 participants in Experiment 1 and 
12 participants in Experiment 2 were excluded from the data 
analyses because they took more than three times to pass the 
instruction understanding test. A further participant in 
Experiment 1 was excluded as they admitted writing down 
information while completing the study. The remaining 150 
participants in Experiment 1 (110 female, Mage=20.68 years) 
and 150 participants in Experiment 2 (97 female, 
Mage=19.68 years) were distributed across the groups as 
follows. Experiment 1: 37 participants in the Low CD-
Discrete Cue group, 35 in the Low CD-Continuous Cue 
group, 36 in the High CD-Discrete Cue group, and 42 in the 
High CD-Continuous Cue group. Experiment 2: 40 
participants in the Low CD-Discrete Cue group, 37 in the 
Low CD-Continuous Cue group, 36 in the High CD-Discrete 
Cue group, and 37 in the High CD-Continuous Cue group. 
Design The study used a 2 (CD: high vs. low) × 2 (cue 
variability: discrete vs. continuous) between-subject design. 
The distributions of cue and outcome values used in the 
continuous conditions of Experiment 1 are shown in Figure 
1. In the continuous-cue conditions, participants observed 
cues sampled either from a positively skewed (low CD 
condition) or a negatively skewed (high CD condition) 
unimodal distribution. For the low CD condition, the sample 
of cues was created by an exponentially modified Gaussian 
distribution with a higher proportion of low cue values 
(distribution parameters: μ=10, σ=5, 𝜏=25, and range=1-99, 

yielding sample mean=32). For the high CD condition, a 
negatively skewed distribution was created by taking the 
complement of the low CD distribution (i.e. 100 – C), so that 
it contained a higher proportion of high cue values (sample 
mean = 68). Cue values were randomly generated from this 
distribution, with a further constraint that cue values in 80% 
of trials were below 50 in low CD condition, whereas cue 
values in 20% of trials were below 50 in high CD condition.  

In the discrete cue conditions, participants were presented 
with the exact value of a lower cue and a higher cue. The two 
cue values were generated by taking the average of cue values 
below and above 50 in their corresponding CD distribution in 
continuous cue conditions. For the low CD condition, the 
lower-value cue of 24 occurred in 80% of trials and the 
higher-value cue of 66 occurred in 20% of trials. For the high 
CD condition, the low-value cue of 34 occurred in 20% of 
trials and the higher-value cue of 76 occurred in 80% of trials. 
In Experiment 1, all four conditions used an outcome 
distribution that was the same as the cue distribution in High 
CD-Continuous Cue condition. The cues and outcomes were 
paired randomly with the constraint that the correlation 
between cue and outcome values across all 100 training trials 
was zero. In Experiment 2, 80 outcome-present trials and 20 
outcome-absent trials were shown. Again, assignment of 
outcome to cue value was randomized with the constraint that 
cue magnitude did not predict outcome occurrence. 
Stimuli and apparatus Examples of the stimuli, ratings and 
prediction screens can be seen in Figure 2. The cue value was 
presented as the dose of medicine administered to a patient. 
In each training trial, a medicine bottle appeared in the center 
of the screen with a certain volume of medicine inside, and 
the cue value was shown below the bottle in milliliters (as 
shown in figure 2). In Experiment 1, trial-by-trial predictions 
about the magnitude of the outcome were made on a sliding 
scale from 0 to 100, and outcomes were subsequently 
presented as a red bar on a continuous scale from 0 to 100. In 
Experiment 2, participants rated the likelihood of the 
outcome occurring on a scale from 0 to 100 and the outcome 
presence versus absence was presented in text as either “Full 
recovery (normal bone density)” or “No change (low bone 
density)”. In the testing stage, two efficacy ratings were made 
on a sliding scale from -100 (strong negative effect) to 100 
(strong positive effect), with the midpoint 0 representing that 
the drug is completely ineffective (see Figure 2). The 
prediction ratings were made on a sliding scale from 0 to 100 
the same as trial-by-trial predictions during training. 
Procedures At the beginning of the experiment, participants 
were asked to imagine they were a medical researcher 
studying a new treatment for Osteoporosis. The new 
treatment Calciucor was designed to increase bone density in 
patients, but its efficacy and side effects remained unknown. 
Their objective in this study was to observe 100 patients who 
received a certain dose of Calciucor and recovered (to  
varying degrees in Experiment 1), and make judgements 
about the treatment’s effectiveness. 
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Figure 2: Schematic of the events observed by, and 

responses required from, participants in the training and test 
phases of Experiments 1 and 2. 

 
In each training trial, participants were presented with a 

certain dose of medicine prescribed to a new patient. The 
dose of medicine was indicated by the volume of liquid inside 
the bottle and the number below. A sliding scale from 0 to 
100 was presented below this cue stimulus, and participants 
were asked to predict the patient’s extent of recovery by 
moving the slider to their desired location. Once a prediction 
was made, participants clicked continue and their prediction 
on the sliding scale was replaced by a horizontal bar showing 
the patient’s actual recovery. This procedure was repeated so 
that participants learned 100 cue-outcome pairs in total. 

During the testing stage, participants were first instructed 
to rate how effective Calciucor was in increasing bone 
density on a scale from -100 to 100 for the treatment rating. 
This was followed by the dosage rating asking what effect 
increasing the dose had on bone density, which was also 
answered on a scale from -100 to 100. Having made two 
efficacy ratings, participants were then presented with 11 
prediction questions, where a certain dose of Calciucor 

appeared on the screen followed by instructions to predict 
how much an average patient would recover if they were 
administered this dose. The doses in prediction questions 
range from 0 to 100 with an interval of 10 (i.e. 0, 10, 
20...100), and the sequence of their presence was randomised. 
The study procedure is depicted in figure 2. 

Results 
Predictions during training We first extracted linear 
functions of the effect of treatment dosage on prediction 
ratings made during training. A more positive slope indicates 
better predicted recovery for higher dose (i.e., stronger causal 
illusion). Figure 3 shows the slopes of training predictions as 
a function a treatment dosage in two experiments, separately 
for the discrete and continuous cue group.  

These slopes were then analysed with a 2 (CD: low vs. 
high) × 2 (cue variability: discrete vs. continuous) between-
subject ANOVA in two experiments. In Experiment 1, there 
was a significant effect of CD on slopes, with more positives 
slopes in the high-CD group (M = .22, SD = .33) than the low-
CD group (M = - .02, SD = .30, F(1,146) = 21.15, p < .001, 
𝜂2p = .13), indicating stronger causal illusion in the high-CD 
group (i.e., the presence of CD effect). This effect of CD did 
not interact with cue variability (F < 1), suggesting that CD 
effect was equivalent in discrete and continuous cue groups.  

 
Figure 3: Slope estimates derived from participant ratings as 
a linear function of treatment dose during the training stages 

of Experiments 1 and 2. 
 
Similarly, a CD effect was also found in Experiment 2, 

such that slope was significantly more positive in the high-
CD group (M = .39, SD = .37) than the low-CD group (M = 
.16, SD = .46, F(1,146) = 11.03, p = .001, 𝜂2p = .07). In 
addition, there was a significant effect of cue variability, such 
that the slopes were more positive in the continuous cue 
group (M = .42, SD = .41) than the discrete cue group (M = 
.13, SD = .40, F(1,146) = 19.53, p < .001, 𝜂2p = .11). 
However, the CD effect in Experiment 2 did not interact with 
the effect of cue variability, F < 1. Thus, in both experiments, 
training predictions showed equivalent levels of CD effect in 
the discrete cue group and the continuous cue group. 
Prediction test ratings Test predictions were analysed in 
two ways. First, predictions for 0mL dosage were separated 
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from predictions for non-zero dosages (10mL-100mL), and a 
mean prediction for non-zero dosages was calculated for each 
participant. A 2 (dosage: 0mL vs. >0mL) × 2 (CD: low vs. 
high) × 2 (cue variability: discrete vs. continuous) mixed 
measures ANOVA was conducted on test predictions.  

In Experiment 1, there was a main effect of dosage on 
predictions, where predictions were significantly higher for 
>0mL dosages (M = 58.12, SD = 10.67) than 0mL dosage (M 
= 44.13, SD = 33.10, F(1,146) = 23.95, p <  .001, 𝜂2p = .14). 
A main effect of cue variability was also found in Experiment 
1, such that predictions were significantly higher in 
continuous cue group (M = 54.27, SD = 24.51) than the 
discrete cue group (M = 47.80, SD = 26.24, F(1,146) = 5.33, 
p = .02, 𝜂2p = .04). However, no 2-way or 3-way interactions 
were significant, including dosage by CD (Fs < 2.11).  

In Experiment 2, we again found significantly higher 
predictions for >0mL dosages (M = 65.65, SD = 14.17) than 
0mL dosage (M = 15.12, SD = 24.56, F(1,146) = 491.17, p <  
.001, 𝜂2p = .77). This effect of dosage did not interact with 
CD (F(1,146) = 1.17, p = .28) or cue variability (F < 1), nor 
was there a three-way interaction between these variables, F 
< 1. Across both experiments, we found that participants gave 
higher prediction ratings when the cue value was >0ml, 
indicative of illusory causation. Thus, even without 
witnessing any patients given 0mL, participants judged the 
treatment to be effective at increasing bone density.   

 
Figure 4: Test predictions as a function of dosage. Top 

panels: predictions made to doses in increments of 10 mL 
(10-100mL) for experiment 1 (left) and experiment 2 (right). 
Bottom panel: Slope estimates derived from test predictions 

as a linear function of treatment dose. 
 

In our second analysis, predictions at 0mL were excluded 
to examine the perceived effect of increasing the dosage from 
10mL to 100mL. Consistent with predictions during training, 
we extracted linear functions of the effect of treatment dosage 
on test predictions. The linear slopes were then analysed with 
a 2 (CD: low vs. high) x 2 (cue variability: discrete vs. 
continuous) between-subject ANOVA. As presented in 
Figure 4, the slope was significantly more positive in the 
high-CD group in both Experiment 1 (Mdiff  = .35, F(1,146) = 
18.51, p < .001, 𝜂2p = .11) and Experiment 2 (Mdiff  = .25, 
F(1,146) = 12.55, p < .001, 𝜂2p = .08), indicating that CD 
effect was present in both experiments. In addition, there was 
a main effect of cue variability in Experiment 1, with 
significantly more positive slopes in the discrete cue group 
(M = .12, SD = .61) than the continuous cue group (M = - .11, 
SD = .49, F(1,146) = 8.73, p = .004, 𝜂2p = .06), but this effect 
was not significant in Experiment 2 (F < 1). Critically, the 
significant CD effect in both experiments did not interact 
with cue variability (F < 1), suggesting that CD effect was 
equivalent in the discrete and continuous cue groups. 
Efficacy test ratings Since efficacy ratings were identical in 
Experiment 1 and 2, we combined efficacy ratings in two 
experiments and analysed each of them with a 2 (Experiment 
1 vs. 2) × 2 (CD: low vs. high) × 2 (cue variability: discrete 
vs. continuous) between-subject ANOVA. Note that although 
direct comparisons across experiments bring their own 
limitations, in this instance we are only combining the two 
experiments to draw conclusions across them rather than 
interpreting differences between them.   

Treatment rating asked participants about the effect of 
Calciucor on bone density (which cannot be directly verified 
from training because treatment was always given). As 
presented in Figure 5a, we found that treatment rating was 
significantly higher in Experiment 2 (M = 56.56, SD = 28.52) 
than Experiment 1 (M = 29.21, SD = 29.08, F(1,292) = 64.64, 
p < .001, 𝜂2p = .19). There was also a main effect of cue 
variability on treatment rating, with significantly higher 
ratings in the discrete cue group (M = 47.23, SD = 31.51) than 
the continuous cue group (M = 38.60, SD = 31.71, F(1,292) 
= 5.80, p = .017, 𝜂2p = .02). No other interactions were 
significant (Fs < 1.57). 

Dosage rating asked participants about the effect of 
treatment dose on bone density (where training should reveal 
that there was no relationship between dose and recovery). 
As presented in Figure 5b, there was a significant main effect 
of CD on dosage rating, where participants in the high-CD 
group (M = 19.60, SD = 30.96) reported greater efficacy 
ratings than those in the low-CD group (M = 12.40, SD = 
34.44, F(1,292) = 3.88, p = .049, 𝜂2p = .01). Again, we found 
no significant interaction between CD and cue variability 
(F(1,292) = 3.20, p = .07), suggesting that discrete and 
continuous cues produced equivalent CD effects, though this 
marginal non-significant interaction reflects the fact that the 
CD effect was at least numerically more distinct in the 
discrete conditions than continuous.  
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Figure 5: Test efficacy ratings in Experiments 1 & 2. (A) 
Treatment rating asked participants to judge the effect of 

Calciucor on bone density. (B) Dosage rating asked 
participants to judge the effect of treatment dose on bone 

density. 

General Discussion 
The main purpose of this project was to investigate whether 

the CD effect could be replicated using continuous cue 
presentations in a medical context. In both experiments, we 
found support for the use of continuous cues in generating the 
CD effect. Particularly, we found that participants exposed to 
frequent high medicine dosages tended to predict more 
positive treatment outcomes, and gave higher causal 
judgement about the efficacy of increasing medication intake 
on increasing bone density. The evidence for this CD effect 
was consistent across predictions during training, test 
predictions, and efficacy ratings. While Chow et al. (2019) 
have demonstrated an OD effect using continuous outcomes, 
to our knowledge this is the first study to report the CD effect 
when cues were also presented in a continuous fashion. 

Notably, and different from prior studies on causal illusion, 
participants in our experiments did not receive sufficient 
information to judge the efficacy of the treatment compared 
to no treatment, as they never witnessed patients taking 0mL 
during training. To assess participants’ assumption about the 
medication efficacy, we compared participants’ test 
predictions for 0mL vs. >0mL, and directly asked them how 
effective the drug was at increasing bone density in treatment 
rating. Both analyses revealed that participants in our 
experiments believed that the medication was effective 

relative to no treatment. These results show a willingness for 
participants to infer the effect of no treatment on patient 
outcomes, despite not having direct experience with no 
treatment trials. One factor that appeared to influence 
treatment ratings was cue variability, with participants in the 
continuous-cue group giving lower treatment ratings than 
those in the discrete cue group. This suggests that witnessing 
richer events (i.e., continuous cues) could potentially act 
against participants’ preconception about treatment efficacy. 
Likewise, increasing cue variability also seemed to reduce 
causal illusion, as evidenced by the less positive slopes of test 
predictions in the continuous-cue group. Although only 
observed in Experiment 1, this suggests that participants who 
have witnessed a larger sample of different medication intake 
were more resilient to the tendency to develop causal 
illusions about the effect of the dosage of the potential cause. 
These results provide tentative evidence to suggest that 
exposure to more diverse events may help to mitigate causal 
illusions. 

Our results suggest that causal illusions are not restricted 
to scenarios where individuals overestimate the contingency 
between two discrete events. Rather, cue density also inflates 
causal illusions about the linear relationship between two 
continuous events, as in Experiment 1. This is most evident 
in participants’ dosage ratings; participants who saw many 
patients given high dosage of Calciucor gave higher causal 
ratings than those in the Low CD condition.  Our replication 
of CD effect using continuous cues signifies a need for future 
studies to further explore the boundary conditions of the CD 
effect. For example, is there a level of cue variability at which 
the CD effect no longer occurs? Exploring this question 
would help establish a causal learning theory that takes into 
account how continuous magnitude is parsed during learning 
(e.g. see Pacer & Griffiths, 2011). In addition, the extension 
of the CD effect to the use of continuous cues has important 
real-life implications. As most alternative and 
complementary medicines are advertised as harmless and 
free of side effects, people might have the tendency take 
higher dosages than recommended. Our results suggest this 
in itself may reinforce an incorrect belief that higher dosages 
result in better treatment outcomes. This belief could in turn 
increase medication intake, creating a vicious cycle in which 
patients take increasing doses over time. This behavior is 
costly at best, and could be detrimental to health if the 
medication is not as harmless as advertised.  
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