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Abstract—We consider the problem of planning path and
speed of a “data mule” in a sensor network. This problem is
encountered in various situations, such as modeling the motion
of a data-collecting UAV in a field of sensors for structural health
monitoring. Our specific context here is use of a data mule as
an alternative or supplement to multihop forwarding in a sensor
network. While a data mule can reduce the energy consumption
at each sensor node, it increases the latency from the time the
data is generated at a node to the time the base station receives it.
In this paper, we introduce the “data mule scheduling” or DMS
framework that enables data mule motion planning to minimize
the data delivery latency. The DMS framework is general; it
can express many previously proposed problem formulations and
problem settings related to data mules. We design algorithms for
DMS and extend to the more general case of combined data mule
and multihop forwarding to enable a flexible trade-off between
energy consumption and data delivery latency. Using DMS, we
can calculate the optimal way for node-to-node forwarding and
data mule motion plan. Our implementation and simulation
results using ns2 show nearly monotonic decrease of data delivery
latency for greater limits on the energy consumption, thus vastly
increasing the flexibility in the energy-latency trade-off for sensor
network communications.

I. INTRODUCTION

Controlled mobility presents an attractive alternative to

multihop forwarding for efficient data collection in a sensor

field. In particular, we consider collecting data from stationary

sensor nodes using a “data mule” via wireless communication.

A data mule is a mobile node with radio and sufficient amount

of storage to store the data from the sensors in the field. Data

mules have been used in recent sensor network applications,

e.g., a robot in underwater environmental monitoring [1] and a

UAV (unmanned aerial vehicle) in structural health monitoring

[2]. A data mule travels across the sensor field and collects

data from each sensor node when the distance is short, and

later deposits all the data to the base station. In this way, each

sensor node can conserve energy, since it only needs to send

the data over a short distance and has no need to forward other

sensors’ data all the way to the base station. Note that energy

issue is critical for sensor nodes as opposed to the data mule

that returns to the base station after the travel. However, one

disadvantage of this approach is that it generally takes more

time to collect data, which in turn incurs larger data delivery

latency. Thus optimizing the data delivery latency is vital for

the data mule approach to be useful in practice.

In this paper, we study the problem of optimizing the

energy-latency trade-off when using a data mule. We design a

problem framework for optimizing the data mule’s movement,

which we call the data mule scheduling (DMS) problem, and

extend it to a general problem that combines data mule and

multihop forwarding. Compared to previous studies, the DMS

framework is comprehensive and general in the sense that it

is capable of expressing many other formulations. It is also

flexible enough to adapt to different problem settings.

In the DMS problem setting, we can control the movement

of the data mule (path, speed) as well as its communication

(i.e., from which node it collects data at certain time duration).

There is some similarity to classical scheduling problems. For

instance, the communication between the data mule and each

node can be represented as a job that has both time and

location constraints. We analyze and design algorithms for

the case that each sensor node generates data periodically.

This applies to many sensor network application scenarios

that monitors the field in the long term and thus enlarges the

applicability of the DMS framework.

Then we consider the combined approach of data mule

and multihop forwarding. In the pure data mule approach,

the energy consumption at each node is minimum and the

data delivery latency is relatively large. On the other hand,

multihop forwarding requires greater energy due to increased

data transfer at each node but the latency is expected to

be much shorter. Our work combines these two approaches

in such a way that the designers of sensor networks can

balance the energy consumption and the data delivery latency

according to application needs. We formulate the problem

by extending the DMS problem and design centralized and

distributed algorithms. Then we implement the combined

approach on the ns2 network simulator [3] to experimentally

evaluate the effectiveness of the formulation and algorithms.

Our contributions are:

• Formulate the DMS problem, a problem framework for

optimal control of data mule for minimizing the data

delivery latency;

• Analyze the DMS problem for the periodic data genera-

tion case;

• Extend the DMS problem for the combined approach of

data mule and multihop forwarding for a flexible control

of the energy-latency trade-off, and design centralized and
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distributed algorithms for the extended DMS problem;

• Demonstrate the effectiveness of formulation and algo-

rithms by experiments on ns2 network simulator.

The rest of this paper is organized as follows. In Section

II we introduce related work. Section III gives an overview

of the DMS problem. In Section IV we design algorithms for

periodic data generation case in the DMS problem. Section V

discusses the combined approach of data mule and multihop

forwarding for the extended DMS problem. The centralized

algorithm based on linear program formulation is also pre-

sented. Section VI describes the distributed algorithm for the

forwarding problem. Section VII shows the results of the

simulation experiments on ns2 network simulator and Section

VIII concludes the paper.

II. RELATED WORK

Use of mobile nodes for data collection have been explored

in sensor networks. Somasundara et al. [4], [5] studied the

problem of choosing the path of a data mule that traverses at

a constant speed through a sensor field with sensors generating

data at a given rate. Their formulation also requires the data

mule to visit the exact location of each sensor to collect data.

They designed heuristic algorithms (based on EDF scheduling)

to find a path that minimizes the buffer overflow at each sensor

node. In the Message Ferrying project, Zhao and Ammar [6]

examined the problem of path and speed optimization of a data

mule in a field of stationary nodes. The project has extended

the work on controllably mobile nodes case [7], multiple

data mules case [8], and arbitrarily mobile nodes case [9].

While these formulations are similar in spirit to ours, we also

generalize the problem to include a precise mobility model

with acceleration constraints and stronger guarantees on the

optimality, as demonstrated in our previous study [10].

There are also studies on combined data mule and multi-

hop forwarding approach. Ho and Fall [11] discussed such

approach in the context of Delay Tolerant Networking (DTN)

architecture. Burns et al. [12] experimentally showed that

controlled mobility can improve performance of routing in a

network of randomly mobile nodes.

Also relevant to this paper is work by Kansal et al. [13],

who studied the case in which a data mule periodically travels

across the sensor field along a fixed path. In their model, they

can only change the speed of data mule. They used directed

diffusion [14] for collecting data from the nodes outside of the

direct communication range of the data mule. Their focus is

on designing a robust communication infrastructure that works

even in uncertain environments. Our work builds upon this

work and seeks to build a formal understanding of the problem

with stronger guarantees on the results.

Ma and Yang [15], [16] designed a heuristic algorithm for

path selection of a data mule. They formulate the multihop

forwarding problem as a max-flow problem, assuming there is

a limit on energy consumption at each node. Their formulation

is similar to ours in some ways, but one of the limitations is

that their path selection algorithm can be applied only for

certain types of configurations. Specifically, they assume that

a data mule starts from the left edge of the deployment area,

moves toward the right edge, and comes back to the left edge

again. The algorithm also works only for connected networks.

Xing et al. [17] also designed path selection algorithms

when each node can forward data toward the base station

along a routing tree constructed in advance. Their formulation

is similar to the traveling salesman problem (TSP). They also

assume the existence of a different type of nodes that do not

generate data by themselves, in order to make the network

connected and enable the construction of routing tree rooted

at the base station. Although these assumptions allow the fail-

over mechanism that improves the data delivery rate, they

also limit the applicability of the technique. Our problem

framework can express not only their settings, but also more

general settings including disconnected networks.

III. PROBLEM FRAMEWORK FOR OPTIMAL CONTROL OF

DATA MULE

To control a data mule for data collection, one needs

to determine the path and speed of the data mule and the

schedule (i.e., when to collect data from a node). However,

simultaneously optimizing them is an NP-hard problem, which

is implied by the NP-hardness of the simplified path selection

problem [10]. Consequently, in previous studies, the problem

has been simplified in various ways by employing assumptions

that restrict the capabilities of sensor nodes and data mule.

Some examples are: data collection is only possible at the

exact location of each node, and the data mule can move

only at a constant speed. These assumptions are sometimes

appropriate, but often make the formulation only applicable

to a specific application and setting.

Our goal for designing the DMS problem is to provide a

comprehensive and flexible problem framework in which we

can fully exploit the networking and mobility capabilities. For

this purpose, we first decompose the problem into following

three subproblems (see Figure 1(b)(c)(d)):

1) Path selection: determines the trajectory of the data mule

so that it travels within each sensor node’s communica-

tion range at least once.

2) Speed control: determines how the data mule changes

the speed along the path, so that it spends enough time

within each node’s communication range to collect all

the data from it.

3) Job scheduling: determines the schedule of data collec-

tion from each node.

The last two subproblems are solved jointly as a scheduling

problem with both location and time constraints, which we call

the 1-D DMS problem. As for the path selection subproblem,

we have formulated it as an independent problem in [10],

which we briefly describe later.

The DMS problem stated above is general and can be used

to express several earlier problems in the area. For instance,

the assumption of no wireless communication (as in [4] [5]) is

easily expressed by setting the communication range to zero in

the path selection subproblem. The constant speed assumption
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Fig. 1. Subproblems of the DMS problem: Forwarding problem (discussed in Section V) formulates the combined approach of data mule and multihop
forwarding.

(as in [15]–[17]) and variable speed assumption (as in [6],

[13]) are handled in the speed control subproblem.

In the following three sections, we discuss details of the

DMS problem and how we extend it to broaden the coverage

for more general cases. First, in Section IV, we analyze

the general case of the 1-D DMS problem in which each

sensor node generates data periodically. Then, in Section V,

we consider the hybrid case that combines data mule with

multihop forwarding. We realize this by adding the “forward-

ing” subproblem in front of the path selection subproblem,

as shown in Figure 1(a). Finally in Section VI, we design a

distributed algorithm for the forwarding subproblem.

IV. PERIODIC 1-D DMS PROBLEM

Once we choose a path of the data mule, or the data mule

moves along a predetermined path, by considering the path as

a location axis, we obtain the 1-D DMS problem. The problem

consists of two subproblems: speed control and job scheduling.

The input to the speed control subproblem is a set of

location jobs representing data collection tasks. A location

job has an execution time and is associated with (possibly

multiple) location intervals that correspond to the intersections

of the node’s communication range and the data mule’s path.

A solution for the 1-D DMS problem is twofold. One is

“time-speed profile,” which determines the speed changes of

the data mule. With a time-speed profile, each point on the

location axis can be mapped onto a point on the time axis.

Then we obtain a scheduling problem having a set of jobs,

each of which has an execution time and feasible intervals.

For this problem, we need to determine “job schedule” that

defines when the data mule communicates with each node.

The objective of the 1-D DMS problem is to find a speed

control plan and a feasible job schedule so that the total travel

time of the data mule is minimized.

In the periodic case of the 1-D DMS problem, each sensor

node generates data at a given rate and a data mule travels

across the sensor field periodically. This models a common

type of sensor network applications that continuously monitors

the field in the long term, and has a larger coverage than non-

periodic case, which has been analyzed in our previous work

[18]. The objective is to minimize the period, i.e., the time

the data mule takes for each travel, since it largely affects the

data delivery latency.

In the speed control subproblem, we consider three different

constraints on the dynamics of the data mule. The first is

“constant speed,” where the data mule cannot change the

speed after it starts to move. The second is “variable speed,”

where the data mule can instantaneously change the speed

within a speed range [vmin, vmax]. The third is “variable speed

with acceleration constraint,” which we call the “generalized”

model, since it includes previous two models as special cases.

In the generalized model, the data mule can change the

speed, but the rate of change is within the maximum absolute

acceleration amax. This model is most appropriate when we

cannot ignore the inertia, for example in case that a helicopter

is used as a data mule as in [2].

We now present the algorithms for the 1-D DMS problem

under different dynamics constraints.

A. Terminology, definitions, and assumptions

For the job scheduling subproblem, a job τi has an execution

time ei and a set Ii of feasible intervals. A feasible interval

I ∈ Ii is a time interval [r(I), d(I)], where r(I) is a release

time and d(I) is a deadline. A job can be executed only within

its feasible intervals. A simple job is a job with one feasible

interval, whereas a general job can have multiple feasible

intervals. For instance, in Figure 1(d), job B’ and C’ are simple

jobs and job A’ is a general job.

Similarly for the speed control subproblem, a location job

τi has an execution time ei and a set Ii of feasible location

intervals. A feasible location interval I ∈ Ii is a location

interval [r(I), d(I)], where r(I) is a release location and d(I)
is a deadline location. A location job can be executed only

within its feasible location intervals. A simple location job

is a location job with one feasible location interval, whereas

a general location job can have multiple feasible location

intervals. In Figure 1(c), location job B and C are simple

location jobs and location job A is a general location job.

For an interval I = [r, d] (also for a location interval),

|I| denotes the length d − r. We also define containment as
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follows: I ⊆ I ′ if and only if r′ ≤ r and d ≤ d′ where

I ′ = [r′, d′].
Let Tt denote the travel time of one period. The data mule

needs to stay at the base station for constant time Tb to deposit

the data to the base station and refuel etc. Thus the length

of one period is Tt + Tb. For the system to be stable, in

each period of travel, the data mule needs to collect the data

generated in one period.

Each sensor node is stationary. Communication range and

data generation rate are known. Communication is always suc-

cessful in the communication range and bandwidth is a known

constant. All location jobs are preemptible without any cost

incurred and can be executed over multiple feasible location

intervals. There is no dependency among the location jobs.

There is only one data mule. Data mule can communicate with

one node at a time. Depending on the dynamics constraint,

data mule may have constraints on the maximum speed and

maximum acceleration.

B. Algorithms

1) Processor demand analysis: First we present an algo-

rithm based on processor demand analysis. This algorithm

applies to the constant speed model with simple location jobs,

i.e., each location job has only one feasible location interval.

Let ei denote the execution time of i-th location job for one

period. It is defined as follows:

ei ≡
λi

R
(Tt + Tb), (1)

where λi is the data generation rate of i-th node and R is the

bandwidth, both of which are known constants.

Processor demand g(I) for location interval I for one period

is g(I) ≡
∑

Ii⊆I ei, where Ii is the feasible location interval

of the i-th location job. Let g′(I) denote the processor demand

for I for unit time, which is defined as follows:

g′(I) ≡
g(I)

Tt + Tb

=
∑

Ii⊆I

λi

R
. (2)

The set of location jobs is feasible if and only if the speed

v of data mule satisfies

v ≤ min
I⊆I0

|I|

g(I)
=

1

Tt + Tb

min
I⊆I0

|I|

g′(I)
, (3)

where I0 is the total travel interval.

When Tb > 0, we obtain the following constraint using

Tt = |I0|/v:

v ≤

(

min
I⊆I0

|I|

g′(I)
− |I0|

)

1

Tb

. (4)

For a feasible solution to exist, the following must be satisfied:

|I0| < min
I⊆I0

|I|

g′(I)
. (5)

When this is satisfied, the maximum speed is the right hand

side of (4). When this is not satisfied, it is not possible to

collect data without loss.

When Tb = 0, we obtain the following from (3):

|I0| ≤ min
I⊆I0

|I|

g′(I)
. (6)

Note that (6) contains neither v nor Tt. What it implies is,

when this is satisfied, the speed of data mule can be arbitrary.

This validates the experimental observation in [13] that the

speed of data mule does not matter if the data mule travels

the sensor field periodically.

To determine the job schedule, we map each location job

to a job using the obtained maximum speed, and use the EDF

algorithm. It is always possible because we determine the

speed such that the feasibility is preserved and also because

the EDF algorithm is optimal.

2) LP formulation: For the constant speed model with

general location jobs, and also for the variable speed model,

we can use a linear program formulation.

We split the total travel interval I0 into (2m + 2) location

intervals [l0, l1], [l1, l2], ..., [l2m+1, l2m+2], where m is the

number of feasible location intervals of all location jobs,

li ∈ Pr ∪ Pd, li ≤ li+1, and Pr, Pd are the list of release

location and deadline locations, respectively1. Then we have

the following linear program:

Variables For each location interval [li, li+1],

• zi: Time that the data mule stays in this interval

• pij : Time allocated to location job j in this interval

Objective Minimize the total travel time
∑2m+1

i=0 zi.
Constraints

• (Speed) For the variable speed model,

li+1 − li
vmax

≤ zi. (7)

For the constant speed model, we require the speed for

all the location intervals to be identical. Instead of (7),

for the location intervals satisfying li+1−li > 0, we have

zi

li+1 − li
=

zk

lk+1 − lk
, (8)

where k is any value satisfying lk+1 − lk > 0.

• (Feasible interval) pij ≥ 0 if ∃I ∈ Ij , [li, li+1] ⊆ I ,

where Ij is the set of feasible location intervals of

location job j. Otherwise pij = 0.

• (Job completion) For location job j,

2m+1
∑

i=0

pij =
λj

R

(

2m+1
∑

i=0

zi + Tb

)

, (9)

where R is the bandwidth of communication from each

node to the data mule. The right hand side is the amount

of time to transmit the data generated in one period.

• (Processor demand)
∑

j pij ≤ zi.

The LP problem may be either infeasible or unbounded2.

When it is infeasible, it is impossible to collect all data. When

it is unbounded, the speed is arbitrary.

1A location interval degenerates to a point when li = li+1, but it does not
affect the validity of the formulation.

2It may be unbounded only in the constant speed model.
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For the obtained solution, we can make a job schedule in

the following way. Location interval [li, li+1] is mapped to the

time interval [
∑i−1

k=0 zk,
∑i

k=0 zk]. For each time interval, we

allocate pi1 for job 1 from the start of the interval, pi2 for job

2 after that, and continue this for all jobs.

3) Iterative method: For the generalized model, we have

designed a heuristic algorithm for the non-periodic case in

[18]. The algorithm assumes a speed control in which the

data mule first accelerates at amax, then keeps the top speed,

and decelerates at amax, and finds the maximum top speed

that preserves the feasibility. Then it applies recursively to the

location intervals that admit further increase of the speed. We

can use this algorithm for periodic case as well. Specifically,

we can estimate Tt iteratively in the following manner:

• Run the LP-based algorithm assuming no acceleration

constraint (i.e., the variable speed model). Set the result

to the initial value of T̂t, the estimate of Tt.

• Repeat

– Run the heuristic algorithm with the execution time

ei = λi(T̂t + Tb)/R. Denote the travel time as T̃t.

– If |T̃t − T̂t| < ǫ, break the loop. Otherwise, update

T̂t by T̃t and repeat.

V. COMBINING DMS WITH MULTIHOP FORWARDING

Using the DMS problem, we are able to determine data

mule’s speed and schedule for sensor data collection so that

the travel time is minimized.

We now consider a combined approach of data mule and

multihop forwarding. In our framework, we realize this by

defining a new “forwarding” problem that is placed in front

of the DMS problem as shown in Figure 1. The forwarding

problem is to determine how much data each node forwards

to other nodes and to the data mule while satisfying a

predetermined energy consumption constraint.

First we consider the path selection problem. Then we

discuss the forwarding problem and present a centralized

algorithm based on linear program formulation.

A. Overview of path selection problem

For the nodes to send their data to the data mule, a path

needs to intersect with their communication ranges, as shown

in Figure 2(a). The objective is to find a path such that

the shortest travel time of the data mule in the 1-D DMS

problem induced by that path is minimized. However, finding

a “smooth” path as shown in the figure is computationally

expensive. In addition, maneuvering the data mule along such

a smooth path is often difficult in practice. From these reasons,

we have designed and analyzed a simplified problem in [10].

As shown in Figure 2(b), we consider a complete graph

having vertices at sensor nodes’ locations and assume the

data mule moves between vertices along a straight line. Each

edge is associated with a cost and a set of labels, where the

latter represents the set of nodes whose communication ranges

intersect with this edge. In this way, while traveling along an

edge, the data mule can collect data from the nodes in the
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Fig. 2. Path selection problem: (a) Original problem with an example path.
(b) Simplified problem, in which the objective is to find the shortest label-
covering tour in the graph.

labels associated with it. The objective is to find a “label-

covering tour” that minimizes the total cost of the edges in

the tour, where “label-covering” means that, for any label,

there exists at least one edge in the tour that contains the

label. We use Euclidean distance as the cost metric, since we

have observed in the experiments that it has a strong positive

correlation with the shortest travel time in the induced 1-D

DMS problem.

The simplified problem is still NP-hard and we have de-

signed an approximation algorithm. The algorithm first finds a

TSP tour by using any TSP solver as an external module. Then,

using dynamic programming, it finds a short label-covering

tour that can be constructed by shortcutting the TSP tour,

which is also a label-covering tour by itself. The algorithm

runs in CTSP + O(n3) time, where CTSP is the computation

time of the TSP solver. An approximate label-covering tour

TAPP found by this algorithm satisfies |TAPP | ≤ α(|TOPT |+
2nr), where α is the approximation ratio of the TSP solver,

TOPT is the shortest label-covering tour, n is the number of

nodes, and r is the radius of communication range. Simulation

experiments have demonstrated that our formulation and al-

gorithm effectively exploit broader communication range and

yield shorter travel time than previous studies such as [6],

[15]–[17].

B. Forwarding problem

The objective of the forwarding problem is to find a

forwarding plan such that the induced DMS problem has the

shortest total travel time. Different from the “pure” data mule

approach, in which each node sends its data only to the data

mule, it can now forward its data to other neighboring nodes

as well. More importantly, if a node decides to forward all

data to other nodes, the data mule does not need to collect

data directly from this node. Then the data mule can possibly

take a shorter path to reduce the travel time.

We present a centralized algorithm based on linear program

formulation. Since finding the optimal forwarding plan that

minimizes the travel time in the induced DMS problem is at

least as hard as the DMS problem, we make it an independent

problem by changing the objective function.

We minimize the average distance of nodes from the base

station weighted by the amount of data at each node after
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forwarding. There are three reasons why this is a reasonable

choice as the objective function. First, this function is likely to

shorten the path of the data mule by forcing the nodes at the

edge of network to primarily use forwarding. Secondly, this

function allows a smooth transition between the data mule ap-

proach and multihop forwarding. As the energy consumption

limit grows, more data is forwarded closer to the base station.

In a connected network, all the data is eventually forwarded to

the base station without using a data mule, which is equivalent

to “pure” multihop forwarding. Finally, since the function is

linear, we can formulate the problem as a linear program as

described below.

We assume the location of sensor nodes and the connectivity

between them are known. We also assume the following

parameters are given:

• λi: Data generation rate of node i
• Elimit: Energy consumption limit at each node per unit

time

• Er, Es: Energy consumption for receiving and sending

unit data

• R: Bandwidth, i.e., maximum data rate that each node

can communicate with other nodes and the data mule

Then we have the following linear program:

Variables

• xij : Amount of data sent from node i to j per unit time

Objective Minimize
∑

i diλ
′
i, where di is the distance

between node i and the base station, and λ′
i is the data rate

that node i sends directly to the data mule. λ′
i is defined by

the difference of incoming data rate and outgoing data rate as

follows:

λ′
i =

∑

j

xji + λi −
∑

j

xij . (10)

Constraints

• xii = 0.

• (Connectivity) For i 6= j, xij ≥ 0 if node j is in the

communication range of node i. Otherwise xij = 0.

• (Flow conservation) λ′
i ≥ 0.

• (Energy consumption) For each node i,

Er

∑

j

xji + Es





∑

j

xji + λi



 ≤ Elimit, (11)

where the first term in the left hand side is the amount of

energy consumed by receiving data and the second term

is that for sending data. About the latter, node i sends
∑

j xij to other nodes and λ′
i to the data mule per unit

time, when averaged over time. Using Equation (10), the

sum of these two equals
∑

j xji + λi.

• (Bandwidth) Per unit time, the amount of incoming data

is
∑

j xji and outgoing data is
∑

j xij + λ′
i. After some

manipulations, we obtain

2
∑

j

xji + λi ≤ R. (12)

The formulation above is also capable of expressing the case

in which each node communicates along the preconstructed

routing tree as in [17]. This is possible by replacing the

connectivity constraint with the following one:

• (Routing tree) For i 6= j, xij ≥ 0, if node j is node i’s
parent in the routing tree. Otherwise xij = 0.

VI. DISTRIBUTED ALGORITHM FOR FORWARDING

The LP formulation above yields the optimal forwarding

plan in the sense that it minimizes the weighted distance

of data from the base station. However in practice, it may

be difficult to tell each node about the list of forwarding

destination and the data rate for each. To cope with this issue,

we present a distributed algorithm where each node determines

the forwarding destination and the data rate in a distributed

manner.

In the algorithm, we consider the case that each node

forwards the data along a routing tree. For connected networks,

there is only one routing tree rooted at the base station. For

disconnected networks, there are multiple routing trees, one

for each connected cluster. In each cluster, the node closest

to the base station is chosen as the root. We describe how

to identify connected clusters, construct intra-cluster routing

trees, and plan the forwarding rate.

A. Clustering and constructing routing trees

We can simultaneously find connected clusters and construct

intra-cluster routing trees by extending DSDV [19], which is

a routing scheme based on the distance vector algorithm. We

extend DSDV so that each node exchanges ID and position of

the interim root node. An interim root node is the node that is

reachable and closest to the base station as far as the current

node knows. The information on root node is updated when

the current node knows the one closer to the base station,

and is propagated to neighbors when it is updated. These

communications can be piggybacked on the update packets

of normal DSDV. When it reaches a convergence, each node

has the correct information on the root node and the next hop

for reaching the root.

To plan the forwarding rate, each node needs to learn the

set of immediate child nodes as well as the parent. This is

realized by each node sending a message to the parent node

along the established routing tree.

B. Planning the forwarding rate

Forwarding rate is calculated in the following three phases.

1) Request: The request phase is initiated from the leaf

nodes and proceeds toward the root. Each node tells the parent

the cumulative data rate, which is the total data rate generated

at the node and its descendants. Let Λi denote cumulative data

rate of node i, which is defined as follows:

Λi ≡ λi +
∑

j∈Ci

Λj , (13)

where Ci is the set of immediate children of node i.
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2) Allocate: The allocate phase proceeds downwards from

the root. Parent node tells each immediate child the allocated

data rate, which is the maximum data rate that the parent can

receive from this child.

Let y
(in)
i denote the total data rate that node i receives from

its children. Then y
(in)
i needs to satisfy

Ery
(in)
i + (λi + y

(in)
i )Es ≤ Elimit, (14)

and thus

y
(in)
i ≤

Elimit − λiEs

Er + Es

. (15)

For each child node, we distribute the maximum data rate

proportionally by the cumulative data rate. Thus the maximum

data rate Xj that child node j can send to the parent i is

Xj =
Λj

∑

k∈Ci
Λk

Elimit − λiEs

Er + Es

. (16)

3) Plan: The plan phase proceeds upwards from the leaf

nodes. Node determines the forwarding rate and tell it to the

parent. For node i, the total data rate y
(out)
i to be sent to either

the parent or the data mule is

y
(out)
i = λi + y

(in)
i , (17)

where y
(in)
i =

∑

j∈Ci
xji.

We try to forward the data to parent node as much as pos-

sible and send the remaining data to the data mule. Therefore,

if we let node j be the parent of i, data rate xij is

xij = min
{

y
(out)
i ,Xi

}

. (18)

By setting xij in this way, inequality (15) is satisfied. Data

rate λ′
i to the data mule is

λ′
i = y

(out)
i − xij . (19)

VII. SIMULATION EXPERIMENTS

We experimentally evaluate the combined approach of data

mule and multihop forwarding in the periodic data generation

case, specifically on the effectiveness of formulation and

algorithms in optimizing the energy-latency trade-off.

A. Methods

We have implemented the centralized and distributed algo-

rithms for the forwarding problem and the algorithms for the

DMS problem in MATLAB with YALMIP interface [20] and

SeDuMi [21] for LP solver. The MATLAB program generates

a Tcl script for ns2 [3], which simulates the movement of the

data mule and the communication among the data mule and

the nodes.

To assess performance, we measure the delivery latency for

each data packet from the time it is generated to the time

the base station receives it either from neighboring nodes or

via the data mule. For each test case, the simulation on ns2 is

repeated multiple periods until it reaches stability. We consider

it stable when the average delivery latency of the data received

in the current period is within ±1% of that of the previous

1.5g

1.5g 1.5g

gg

gg

(a) (b)

gg

gg

1.5g

Fig. 3. Network topology: (a) Connected network; (b) Disconnected network.
White circle is the base station. Line between two circles represents that they
are within the communication range. Grid size g is set to 0.8r, where r is
the radius of communication range, and a uniformly random disturbance of
[−0.025r, 0.025r] is added to the position of each node.

period. If it is stable, we use the data for the next period as

the final results.

Figure 3 shows two network topologies we use for the

experiments. Both of them have 100 sensor nodes, one base

station and one data mule, but one is a connected network and

the other is a disconnected network. The disconnected network

consists of four connected networks of 25 nodes and the base

station is not directly reachable from any nodes.

For the data mule’s movement, we use the variable speed

model. The range of speed is 0 ≤ v ≤ 10m/s, which roughly

simulates the movement of a UAV used in [2].

For ns2 simulator, we use FreeSpace propagation model

with 100m communication range. We use 802.11 MAC (with

RTS/CTS) with 2 Mbps raw bandwidth, which is the default

value for ns2. Packet size is 400 Bytes.

Other parameters are set as follows. Energy consumption

for sending/receiving unit data is assumed to be equal, i.e.,

Er = Es. The rate of data generation at each node λi is

100 Byte/sec. Let E denote the energy consumption at each

node for “pure data mule” case without any node-to-node

forwarding. Then E is expressed as λiEs, and this is the

minimum possible value of Elimit. We measured the latency

for Elimit = E, ..., 50E. Effective bandwidth R is set to

400 Kbps, considering the overhead of RTS/CTS and packet

header.

B. Results

Figure 4 is an example of forwarding plan and calculated

path. The small circles represent the nodes and large circles

are their communication ranges. Color of each circle represents

how much data the node sends directly to the data mule. White

circles mean zero and colored circles mean nonzero. As the

forwarding algorithms try to gather data close to the base

station, which is located in the center in this example, the

nodes at the edge of the network forward all data to the ones

closer to the center. Nodes that have the base station within

their communication range forward all the data directly to the

base station.

In ns2 simulation, the delivery latency reached stability in

all tested cases. Average number of periods until reaching

stability was 5.2 (centralized) and 5.6 (distributed) in the
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Fig. 4. Example of forwarding plan and calculated path: Connected network,
Elimit = 10E, centralized forwarding algorithm. Nodes in white forward all
data and the data mule does not collect data directly from them. Path is shown
in bold line.

connected network, and 4.0 (centralized) and 4.1 (distributed)

in the disconnected network.

Figure 5 shows the simulation results for the connected

network and disconnected network when the centralized algo-

rithm is used for the forwarding problem. For both networks,

Elimit = E corresponds to the “pure data mule” case. The

average latency in this case was 432.81 secs for the connected

network and 513.07 secs for the disconnected network. These

are quite similar to the total travel time (440.73 secs and

511.68 secs, respectively). For the connected network, it

became “pure multihop forwarding” when Elimit = 49E,

where all the data are sent to the base station by multihop

forwarding and the data mule is not used. The average latency

in this case was 4.17 secs.

Figure 6 shows the comparison of average data delivery

latency between the two forwarding algorithms. In both of the

connected and disconnected networks, the centralized scheme

based on LP formulation achieved shorter average latency than

the distributed algorithm in most of the cases. On average, the

ratio of average latency was 1.53 (min:0.93, max:2.05) for

the connected network and 1.31 (min:0.95, max:1.80) for the

disconnected network.

C. Discussions

For both of the connected and the disconnected networks,

the simulation results showed the decrease of data delivery la-

tency as the energy consumption limit increases. The decrease

was almost monotonic, demonstrating fine-grained control of

the trade-off between energy and latency. It was also shown

that formulation of the forwarding problem, especially the

choice of objective function is appropriate, due to the fact

that the centralized algorithm achieved a better trade-off than

the distributed one, which yields suboptimal forwarding plans.

We can also observe that the travel time of the data mule is

nearly equal to the average latency for the data delivered by

the data mule. It demonstrates that minimizing the travel time

for the purpose of minimizing the data delivery latency is a

valid approach. In addition, this implies that we can estimate

the average delay solely by solving the DMS problem.

Figure 7 shows the histograms of data delivery latency

for two different energy consumption limits for each of the

connected and disconnected networks. As these figures show,
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Fig. 5. Data delivery latency for varying energy consumption limit:
(top) connected network, (bottom) disconnected network. The centralized
forwarding algorithm is used.

regardless of the different network topology and the different

total travel time, more than 98% of the data has delivery

latency within double of the travel time. This means we can

estimate the maximum delivery latency as well as the average.

In practice, our problem formulation and algorithms provide

sensor network designers a good estimate of the data delivery

latency when there is an energy consumption limit, which is

imposed by their application scenarios. Conversely, since the

energy-latency curve is nearly monotonic and the problem is

solved in relatively short time3, by using binary search, we can

also estimate the maximum energy consumption at each node

when there is a constraint on the average or the maximum of

data delivery latency, as assumed in [17].

VIII. CONCLUSIONS AND FUTURE WORK

Controlled mobility, as represented by the motion of a data

mule, provides an alternative approach to multihop forwarding

for collecting data from sensor networks. While it allows a

significant reduction in energy consumption, increased data

delivery latency is a big issue. In this paper, we have pre-

sented the data mule scheduling (DMS) problem as a problem

framework for optimally controlling a data mule and have

extended it to enable flexible energy-latency trade-off. We have

presented a framework to capture and analyze communication

3For 100 nodes case, solving the forwarding problem and the DMS problem
takes around 10 secs on MATLAB running on a PC.
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ent forwarding algorithms: (top) connected network,
(bottom) disconnected network
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Fig. 7. Histogram of data delivery latency: For the connected network, gray bars are for the data
delivered to the base station from neighboring nodes, and black bars are for the data delivered via
the data mule. The centralized forwarding algorithm is used.

strategies that use combinations of data mule and multihop

forwarding. To validate our results, we have implemented our

algorithms and simulated them on ns2 network simulator. The

results showed nearly monotonic decrease of the data delivery

latency for larger energy consumption limit, demonstrating

the effectiveness of the formulation and the algorithms in

optimizing the energy-latency trade-off.

Our future work includes making the problem formulation

and the algorithms valid also in environments with increased

uncertainty. For example, we are currently working on relaxing

the assumption on communication region. One idea is to

employ a “semi-online” algorithm that initially plans the

motion offline solely based on the knowledge about small re-

gions around each node. Then, at runtime, it opportunistically

exploits the additional communication region that is not known

beforehand to optimize the motion.
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