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Abstract of the Dissertation

Conventional and Machine Learning Assisted

High Sigma Analysis

by

Wei Wu

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2016

Professor Lei He, Chair

Statistical circuit simulation exhibits increasing importance for circuit designs un-

der process variations. In particular, high sigma analysis is needed to optimize

highly-duplicated standard cells, where an extremely rare circuit failure event

could lead to catastrophe of the entire chip. Conventional importance sampling

(IS) approaches perform high sigma analysis efficiently at low dimensionality, but

perform poorly either when there are a larger number of process variation vari-

ables, or when the failing samples are distributed in multiple regions.

In this dissertation, a series of high sigma analysis approaches have been pro-

posed. First, a high dimensional importance sampling (HDIS) is presented to

mitigate the dimensionality problem in traditional IS. A maximum entropy (MAX-

ENT) based approaches is proposed to model the distribution of circuit perfor-

mance under process variation. MAXENT models the distribution in overall, but

does not specifically model the tail. To fix this issue, a piecewise distribution

model (PDM) is proposed to consider the distribution as multiple segments and

model each segment using MAXENT, hence improve high accuracy in the high

sigma tail.

Moreover, two machine learning assisted approaches are proposed for high

ii



sigma analysis. The rare-event microscope (REscope) trains classifier(s) to filter

out the majority of the unlikely-to-fail samples and surgically look into those

likely-to-fail ones, whose distribution is analytically modeled as a generalized

pareto distribution to estimate failure probability. Finally, hyperspherical clus-

tering and sampling (HSCS) algorithm is proposed to cluster failing samples and

to perform importance sampling around those clusters to cover all failure regions.

Experiment results demonstrate that the proposed approaches are 2-3 orders faster

than Monte Carlo, and more accurate than both academia solutions such as IS,

Markov Chain Monte Carlo, and industrial solutions such as mixture IS used by

ProPlus Design Automation, Inc.
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CHAPTER 1

Introduction

1.1 Background

The integrated circuit (IC) technology has been scaled from the micrometer to

nanometer level in the past decade. The lead foundries TSMC and Global-

Foundries have announced their state-of-art CMOS process technology featuring

FinFET transistors with 16nm and 14nm, respectively [Cou13]. Indeed, industry

favors the newer and smaller technology because they are usually associated with

higher integration density, lower power, and smaller gate capacitor (shorter de-

lay) and etc [KAC12]. It has become, however, extremely challenging to guarantee

high-precision and high-reliability in modern IC manufacturing due to inevitable

uncertainties and variations.

Figure 1.1: Process, supply voltage, and temperature (PVT) variations in circuit

designs
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Uncertainty in Manufacturing process, supply voltage, and temperature (PVT)

variations are three major types of variations in circuit design, as illustrated in

Figure 1.1. While the voltage and temperature variations are “dynamic” as they

depend on operating environment, the process variations are “static” once the

circuit is fabricated. The “static” process variations have been identified as the

leading source introducing unavoidable uncertainties in circuit behavior and in-

duce significant yield loss [EBS97, CCS04, BDM02].

Figure 1.2: Variability induced by insufficient lithography resolution

Process variations are induced by the uncertainties during chemical mechanical

polishing (CMP), etching, lithography and other manufacturing process. In par-

ticular, the resolution of the lithography was found to be at least 5-10nm, due to

the limitation of secondary electron generation in electron-beam-irradiated solids

[LYL09]. It is, obviously, not fine enough to fabricate the latest FinFET devices,

whose channel length is only 10 to 16nm or even less [Cou13]. The gap between

the design and manufacturing leads to the difference between a ideal design and

actual fabricated circuit, which are illustrated in Figure 1.2 [CDH06]. It is difficult

to guarantee the correctness of their physical design parameters, such as channel

width, length and oxide thickness. The variations of these physical parameters

could be translated into the threshold voltage, which induces large amount of

variations in circuit behavior, such as leakage power, timing delay, output swing,

etc.
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Figure 1.3: Simulation results of threshold voltage at different technology nodes

In Figure, 1.3, the simulation results of threshold voltage at different technol-

ogy nodes under is plotted while considers the process variation. It is obvious

that process variation continues increasing when the transistor size scales down.

The variations on all the transistors in a circuit add up and impact the circuit

performance, or even lead to significant yield loss.

1.2 Motivation of Stochastic Circuit Analysis

To compensate for the effects of process variations during the design phase,

stochastic analysis tools are urgently sought to accurately characterize the random

process variations and efficiently predict their effects on circuit behavior.

First, it is important to understand the stochastic behavior of circuit perfor-

mance during the pre-silicon phase, rather than after the fabrication. A typical

example is the flexible electronics, such as rollable displays, disposable RFID,

etc, which suffer from the aging effects [HHC11]. To ensure the quality and

durableness, circuit designers need to evaluate the stochastic behavior of circuit

performance at each time step, and to find the optimal circuit parameters during

the design time. To reliably estimate the probabilistic circuit performance, Monte
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Carlo (MC) method [JL89] is the “gold standard”, but at the cost of simulation

runtime. It needs to run computational expensive transistor-level SPICE simula-

tion on a huge number of samples so as to describe the probabilistic distribution

(e.g., PDF and CDF) of circuit performance.

Several other statistical methodologies [Nas01, VWG06] are proposed to esti-

mate the probabilistic performance. However, they either assume the linearity of

the circuit, or assume that the unknown performance follows Gaussian distribu-

tion, which are not valid in practice.

Recently, asymptotic probability extraction (APEX) [LLG04] and Point Esti-

mation based Method (PEM) [GYH11] take advantage of padé approximation by

matching the probabilistic moments to time moments and calculate the distribu-

tion as the impulse response corresponding to the time moments [PR90]. However,

both of these two approaches becomes numerically instable when high order mo-

ments is used [FF95]. A fast yet stable algorithm to analyze the stochastic circuit

behavior is highly desired.

Second, standard circuit cell, which is duplicated for millions of times, and

for critical circuits, such as phase locked loop (PLL), which stabilize clock for the

entire chip, a extremely small failure probability may cause the catastrophe of the

entire chip. In particular, SRAM cell design tends to adopt the most advanced

process technology to achieve the minimum-sized cells and thus becomes more

vulnerable to process variations. The failure probability of a SRAM cell should

be kept extremely small (e.g., 10−4-10−7), making the failure event become a “rare

event” [AN06]. For such a small failure probability, MC method becomes infeasi-

ble in practice. Fast statistical approaches for rare event modeling are proposed

in the passed decade, which can be categorized in the following groups: 1) im-

portance sampling based approaches [KJN06, DQS08, QTD10, KHT10, WGC14]

2) classification based approaches [SR09, SR08]. The former constructs a new

“proposed” sampling distribution under which a “rare event” becomes “less rare”
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so that more failures can be easily captured, while the latter uses a classifier to

block the majority of the samples and only simulates the samples that are likely

to fail.

Most of the existing approaches can be successfully applied to low-dimensional

problems with small number of variables but, in general, perform poorly in high

dimension. Moreover, none of these approaches considers the possibility that the

fail samples fall in multiple failure regions. Therefore, an approach that could

accurately analyze the rare failure probability with high-dimensional process vari-

ations and multiple separate failure regions is needed.

1.3 Organization of the Dissertation

The research presented in this dissertation mainly focuses on process variation

modeling and analysis using numerical and statistical techniques, which studies

two important issues mentioned in Chapter 1.2: stochastic behavioral modeling

and analysis, rare failure probability analysis in high dimension, and realistic

scenario where circuits failure are caused by disjoint parameter clusters.

The remaining parts of this dissertation are organized as follows:

• Chapter 2: Stochastic Behavioral Modeling and Analysis [KWG13]

We first review the point estimation method (PEM) [GYH11] and discuss

its limitation. In addition, a more stable maximum entropy based approach

(MaxEnt) [KWG13] is proposed to accurately model the circuit performance

distribution.

• Chapter 3: High Dimensional Importance Sampling for Fast Yield

Analysis [WGC14]

An improved high dimensional importance sampling (HDIS) [WGC14] is

proposed in this chapter. Unlike conventional importance sample, which
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might get unbounded estimation, the HDIS estimates the actual failure prob-

ability (yield rate) with a proven bounded result.

• Chapter 4: Piecewise Distribution Model [KWB16]

Piecewise Distribution Model (PDM) tackles the yield analysis from a differ-

ent avenue, it is based on the performance distribution modeling approach

proposed in Chapter 2. Instead of modeling the performance distribution

in one piece, it considers the distribution as multiple segments, and ap-

proximates each segment using MaxEnt. Hence the PDM can capture more

details on the distribution tail, which represents the rare failure events.

• Chapter 5: Rare-event Microscope: Aiding Yield Analysis with

Classification Algorithms [WXK14]

• Chapter 6: Hyperspherical Clustering and Sampling: Aiding Yield

Analysis with Hyperspherical Clustering [WBH16]

Chapter 5 and Chapter 6 propose two approaches that perform yield analy-

sis with the aid of machine learning techniques. Moreover, these approaches

consider the condition that failure samples might be distributed in multiple

failure regions. In particular, Rare-event Microscope (REscope) presented

in Chapter 5 use a nonlinear classifier to separate unlikely-to-fail samples

and likely-to-fail ones. Experiment results indicate that the nonlinear clas-

sifier is able to figure out the boundary between unlikely-to-fail samples and

multiple regions of likely-to-fail samples. While REscope relies on the non-

linear classifier, Hyperspherical Clustering and Sampling (HSCS) approach

explicitly uses spherical clustering algorithm to locate the clusters of failure

samples and considers those clusters as failure regions. Moreover, it also

modifies mixture importance sampling to apply the mean-shift technique to

multiple failure regions.

• Chapter 7: Summary
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A summary of the highlight contributions is presented in the end of this

dissertation.

• Appendix

I also append two chapters about my recent work related to deep learning

to this dissertation as an extension to my machine learning related research.

The work in Appendix A discusses the approaches that compress a well-

trained, but cumbersome network to a smaller one without sacrificing accu-

racy. The other work in Appendix B takes one step further, and proposes

an FPGA based deep convolutional neural network, which is much faster

than the conventional CPU based implementation, and it much more power

efficient.
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CHAPTER 2

Stochastic Behavior Modeling and Analysis

2.1 Overview of Stochastic Behavior Modeling

2.1.1 General Stochastic Modeling Method using SPICE Simulation

Figure 2.1: General Stochastic Modeling Method utilizing SPICE Simulation

The stochastic behavior modeling is desired because the Monte Carlo simula-

tion is usually too time consuming to yield an accurate distribution of the circuit

performance. The flow of a moment matching based stochastic behavior modeling

is illustrated in Figure 2.1. First, in the parameter domain, it takes in the process

variation parameters (such as channel length, channel width, oxide thickness),

which are modeled as random variables. In the performance domain, the distribu-

tion of circuit performance is estimated as the output of the system. Clearly, the
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transistor level SPICE simulation is the link/mapping between these two domains.

The motivation of this work is to explore an efficient approach so as to accurately

estimate the performance distribution with as few number of samples as possible,

which means less simulation cost.

A well-formulated solution of this problem is moment matching. Several mo-

ment matching based approaches have been proposed in the past decade, such as

APEX [LLG04], PEM [GYH11], and the most recent MaxEnt [KWG13].

2.1.2 Preliminary knowledge

In this section, we briefly introduce two different types of moments defined in the

statistics community [CB01] and signal processing field [OWH96] as the prelimi-

nary knowledge for the discussions on moment matching based approaches.

2.1.2.1 Probabilistic Moments

In statistics, the k-th moment of variable x is defined as:

mk
x = E(xk) =

∫ +∞

−∞
xk · pdf(x)dx (2.1)

where E(·) is the expectation operator and pdf(x) is the probability density

function (PDF) of variable x. In particular, the first four probabilistic moments

are the mean, variance, skewness and kurtosis, respectively.

2.1.2.2 Time Moments

The “time moment” has been introduced in the signal processing field [OWH96]

for a long time and has been successfully applied to circuit analysis in the past

a few years [PR90, Elm48, VS83]. In fact, the time moment is the coefficient of

a Taylor expansion of the homogeneous response in the Laplace domain and the
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k-th time moment can be expressed as:

mk
t =

(−1)k

k!

∫ +∞

−∞
tk · h(t)dt (2.2)

where t is the time and h(t) is the impulse response of a linear time invariant

(LTI) system H. Moreover, the time moment can be further expanded using the

residues and poles of this LTI system as [OWH96, PR90]:

mk
t = −

M∑
r=1

ar
bk+1
r

(2.3)

where ar and br are residues and poles of this LTI system, respectively. As such,

the transfer function H(s) of this LTI system can be represented as an M -order

rational function (pole-residue format) as:

H(s) =
M∑
r=1

ar
s− br

(2.4)

In addition, its impulse response h(t) in the time domain can also be expressed

with ar and br as:

h(t) =


M∑
r=1

are
br·t (t ≥ 0)

0 (t < 0)

(2.5)

The time moments have found extensive applications in circuit analysis in the

past few years. For example, the work in [AOC99] makes use of the first two time

moments to estimate the delay of simple RC networks; AWE [PR90] needs higher

order of time moments to approximate the probabilistic distribution of circuit

performance.

2.2 Existing Approach: Point Estimation Method

The point estimation method calculate the moment by matching the probabilistic

moment to time Moments, and use the padé approximation to calculate the pa-

rameters in equation (2.5) to form closed-from probability density function (PDF).
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2.2.1 Moment Matching via Padé Approximation

An interesting observation can be found by comparing the probabilistic moments

in (2.1) with the time moments in (2.2): mk
x is different from mk

t due to a scaling

factor (−1)k
/
k!.

More importantly, if we treat the variable x in (2.1) as the time t in (2.2), the

impulse response h(t) can closely approximate pdf(x). As such, we can multiply

the probabilistic moments with a scaling factor:

m̂k
x =

(−1)k

k!
·mk

x =
(−1)k

k!
·
∫ +∞

−∞
xk · pdf(x)dx (2.6)

With this slight modification, we are able to extract the impulse response h(t)

of a LTI system with time moments m̂k
x to approximate the pdf(x) by the moment

matching method.

With the first 2 ∗M time moments m̂k
x in (2.6), the residues ar and poles br

can be formed by expanding all time moments m̂k
x with equation (2.3) as:

a1 + a2 + · · · aM = −m̂−1
x

a1
b1

+ a2
b2

+ · · · aM
bM

= −m̂0
x

a1
b21

+ a2
b22

+ · · · aM
b2M

= −m̂1
x

...

a1
b2M−1
1

+ a2
b2M−1
2

+ · · · aM
b2M−1
M

= −m̂2M−2
x

(2.7)

where the poles, bi (i = 1, 2, ...,M), and residues, ai (i = 1, 2, ...,M), are the 2∗M

unknowns in above nonlinear system.

This nonlinear system can be solved as a linear system, which have been thor-

oughly discussed in [PR90]. Here, we briefly review the analytic solution of (2.7).

First, all the poles bi (i = 1, 2, ...,M) can be solved as the eigenvalues of the
matrix

M =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

−c0 −c1 −c2 · · · −cM−1


(2.8)
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where ci (i = 0, 1, ...,M − 1) are solved from the linear equations as:



m̂−1
x m̂0

x · · · m̂M−2
x

m̂0
x m̂1

x · · · m̂M−1
x

...
...

. . .
...

m̂M−2
x m̂M−1

x · · · m̂2M−3
x





−c0
−c1

...

−cM−1


=



m̂M−1
x

m̂Mx
...

m̂2M−2
x


(2.9)

When the poles bi are available, the residues ai can be solved from (2.7) with

simple arithmetic operations. Therefore, the impulse response h(t) can be cal-

culated, with the obtained ai and bi in equation (2.5), which can be used as an

approximation of pdf(x), which is:

pdf(x) =


M∑
r=1

are
br·t (x ≥ 0)

0 (x < 0)

(2.10)

2.2.2 Numerical Stability Issue and Scaling

As discussed in Chapter 2.2.1, the parameter of the Once the moments are avail-

able, it is possible to extract the desired probabilistic distribution using the mo-

ment matching method as described in Section 2.2. Theoretically, more moments

provide higher accuracy. However, as investigated in [FF95], the conventional

moment matching method with high order moments suffers from severe numerical

instability issue in solving the linear system (2.9). In particular, the moments

typically increase or decrease exponentially towards infinity or zero, which results

in significant ill-condition of the moment matrix in (2.9).

For example, the 0-th moment m0
f (i.e., the entry in the left-top corner of

moment matrix in (2.9)) equals 1 while the 15-th moment m15
f (i.e., the entry in

the right-bottom corner of moment matrix in (2.9)) could be as small as 5.3e-147.

As such, the moment matrix is severely ill-conditioned and the solution of the

related linear system in (2.9) is unreliable and inaccurate.

To improve the stability, several approach has been proposed, such as scale
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Figure 2.2: Performance and PDF scaling for stability

the performance value. In detail, a linear scaling in Figure 2.2(a) scales the per-

formance f into a small interval f̂ ∈ [1, 2] using a scaling function f̂ = g(f).

Afterwards, the high order moments can be calculated using f̂ and the perfor-

mance distribution (e.g., pdf(f̂) and cdf(f̂)) can be recovered with the moment

matching method as described in Chapter 2.2.1. In addition, the probabilistic

distributions should be converted back into the original range of the performance

f which is shown in Figure 2.2(b). This approach reduces the condition number.

However, when the order of moments grows to 20, the conditional number will still

be ˜1018 level [FF95], which indicate an unstable system. To solve this problem,

an new algorithm without involving equation (2.9) in padé is desired.

2.3 Maximum Entropy

2.3.1 Finding a Distribution through Maximizing Entropy

Entropy is a measure of uncertainty. When choosing a distribution for a ran-

dom variable (i.e. the circuit performance), one should choose a distribution that

maximizes the entropy [Jay57]. By doing this, we can ensure that the distri-

bution is uniquely determined to be maximally unbiased with regard to missing

information, while still agreeing with what is known [Jay57].
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W =

∫
−p(x) log p(x)dx (2.11)

Where W is the entropy and p(x) is the distribution of random variable x.

Maximizing this entropy is subject to moment constraints. In this approach, we

consider the probabilistic moments with moment order k

∫
xip(x)dx = µi, i = 0, 1, ..., k. (2.12)

The analytical solution to this convex optimization problem involves the use

of Lagrangian Multipliers as stated in [KLI93] and takes the form

p(x) = exp

(
−

k∑
i=0

λix
i

)
(2.13)

However, the solution to the above problem does not exist for values of k >= 2

[Wu03]. To remedy this issue, [GJM96] suggests transforming this constrained

problem into an unconstrained problem by utilizing duality. Using this method

results in the dual objective function below

Γ = lnZ +
k∑
i=1

λiµi (2.14)

Z = exp(λ0) =

∫
exp

(
−

k∑
i=1

λiµi

)
dx (2.15)

This problem can now be solved for any value of k. Most MAXENT approaches

solve this problem using an iterative method such as Newton’s method [Wu03,

CHZ10]. Here, Newton’s method is used to solve for the Lagrangian multipliers

λ = [λ1, λ2, ..., λk]
′ for moments i, j = 1, 2, ..., k at iteration m

λ(m) = λ(m) −H−1 δΓ

δλ
(2.16)
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Where the gradient (2.17) and Hessian (2.18) are defined as

δΓ

δµi
= µi −

∫
xi exp

(
−

k∑
i=1

λiµi

)
dx

∫
exp

(
−

k∑
i=1

λiµi

)
dx

= µi − µi(λ) (2.17)

Hij =
δ2Γ

δµiδµj
= µi+j(λ)− µi(λ)µj(λ) (2.18)

µi+j(λ) =

∫
xi+j exp

(
−

k∑
i=1

λiµi

)
dx

∫
exp

(
−

k∑
i=1

λiµi

)
dx

(2.19)

Since the Hessian is positive definite, there exists a unique solution to the

above problem [MP84]. Moreover, [MP84] also states that for a non-negative

distribution P (x) integrable in [0,1] with moments µ0, µ1, ..., µk, then if PN(x) is

the MAXENT density, we have the following result:

lim
N→∞

1∫
0

F (x)PN(x)dx =

1∫
0

F (x)P (x)dx (2.20)

This is known as the Maximum Entropy Principle (MEP) [MP84]. As [CHZ10]

explains, MEP indicates that the MAXENT density can be used to approximate

the distribution arbitrarily well if the sample size is large enough to allow calcu-

lation of enough moments.

2.3.2 Algorithm Stability

To show that the distribution in (2.13) is stable for all cases we are concerned

with, it is sufficient to show that it is non-negative and absolutely continuous in

the interval [0,1] of the random variable x. Although our random variable x may

fall outside of this range, it is easy to normalize it such that it falls in this interval.

Moreover, we are only concerned with the interval [0,1], and not any subintervals
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inside of it our outside of it. Showing that (2.13) is non-negative and absolutely

continuous is rigorously explained in [MP84] and an overview of the fundamentals

is as follows.

The dual problem shown in (2.14) is everywhere convex and has an absolute

minimum [MP84]. First, the function is everywhere convex because the Hessian,

the second derivative of (2.14), is positive definite. Second, the dual problem

has an absolute minimum if the moments in (2.12) are monotonically increasing

which holds true in the case of probabilistic moments. The proofs for both of

these conditions can be found in [MP84].

It suffices to say that according to [MP84], if the dual problem in (2.14) is

everywhere convex and has an absolute minimum, then the distribution that min-

imizes it, in this case (2.13) is non-negative and absolutely continuous in the

interval. Since the distribution p(x) is non-negative and absolutely continuous,

it will not have a negative probability and it will not vanish over the interval.

Therefore, p(x) can be considered stable.

2.3.3 Experiment Results

We have implemented the proposed algorithm on MATLAB. The use two circuits

to evaluate the performance of MAXENT, a 6-T SRAM bit-cell with 54 variables

and a delay chain with 108 variables. HSPICE is used to evaluate these 2 circuits.

PEM [GYH11] and MC [JL89] were also implemented using the code obtained

from original authors.

2.3.3.1 Experimental Setup

First, here is a brief review of the algorithms evaluated in the experiments:

• MC (Monte Carlo) [JL89]: Use quasi-random sampling to gather a huge

data set of ”MC samples”. Calculate the performance distribution from
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these MC samples. Use a Figure of Merit to decide when we have enough

MC samples for our ground truth. Figure of Merit: If the standard deviation

of error between distribution n and distribution n− 1 is less than 0.01, we

determine the nth distribution to be the ground truth.

• PEM (Point Estimation Method) [GYH11]: Use quasi-random sam-

pling to gather a small data set in order to calculate the probabilistic mo-

ments of the random variables. Convert these probabilistic moments to time

moments of the corresponding LTI system. Use AWE to perform moment-

matching in order to calculate the performance distribution.

• MAXENT (Maximum Entropy): Use quasi-random sampling to gather

a small data set in order to calculate the probabilistic moments of the ran-

dom variables. Use the Maximum Entropy [Jay57] formulation to perform

moment-matching in order to calculate the performance distribution.

Process variations and circuits: The statistical data for the process vari-

ations are shown in Table 2.1. There are a total of 9 process variations in each

transistor, meaning that there are 54 variables for the 6 transistor SRAM circuit,

and 108 variables for the 12 transistor delay chain. Similar to other methods

[GYH11, LLG04], we model the process variations as Gaussian distributions with

various mean and sigma values as listed in Table 2.1.

6T SRAM bit-cell: Figure 2.3 depicts the 6T SRAM bit cell circuit overview.

The reading operation of this cell is viewed as the circuit performance. The reading

operation of the cell is determined by the voltage ∆V between BL and BL. If

this voltage is large enough to be sensed, it is deemed to be a successful read. The

discharge behavior at BL plays a crucial role in the value of ∆V . Due to process

variations in all transistors, the discharge behavior of BL may not be predicted

and therefore the voltage ∆V may not be large enough.
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Table 2.1: Variation Sources Modeled in CMOS Transistors
Variable Name σ/µ unit

Flat-band Voltage (Vfb) 0.1 V

Gate Oxide Thickness (tox) 0.05 m

Mobility (µ0) 0.1 m2/V s

Doping concentration at depletion (Ndep) 0.1 cm−3

Channel-length offset (∆L) 0.05 m

Channel-width offset (∆W ) 0.05 m

Source/drain sheet resistance (Rsh) 0.1 Ohm/mm2

Source-gate overlap unit capacitance (Cgso) 0.1 F/m

Drain-gate overlap unit capacitance (Cgdo) 0.1 F/m

Figure 2.3: Schematics of 6T SRAM Cell Circuit

Delay Chain: Figure 2.4 depicts the delay chain circuit overview. The delay

of this inverter chain is viewed as the circuit performance.

2.3.3.2 Stability

Figure 2.5 shows the performance distributions generated by MAXENT, PEM,

and MC for the first 16 moments and first 18 moments using the 6T SRAM

cell circuit using 200 samples. As we can see, MAXENT is stable under both

conditions. The curves representing MAXENT for the first 16 moments and first

18 moments show very good overlap with the ground truth (MC) distribution.

On the other hand, only the PEM curve corresponding to 16 moments is stable

and overlaps with the ground truth distribution. The PEM curve corresponding

to 18 moments is unstable, with a value of 0 through most of the distribution
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Figure 2.4: Schematics of Delay Chain Circuit
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Figure 2.5: PEM lack of stability on SRAM circuit (200 samples)

until it blows up to infinity. The only value that changed between these curves

are the order of moments that were used. The sample number, circuit topology,

process variations, and all other inputs were held constant. These results imply

that PEM is very sensitive to the moments that are used.

Figure 2.6 shows the performance distributions generated by MAXENT, PEM,

and MC for the first 16 moments and first 18 moments using the 6T SRAM circuit

using 250 samples. As we can see, MAXENT is stable under both 16 moments

and 18 moments and overlap well with the ground truth distribution. Moreover,

we see that PEM is now stable under both 16 moments and 18 moments and also

overlap well with the ground truth distribution. previously, PEM was unstable

for the SRAM circuit using 200 samples and 18 moments, whereas now it is stable

for the SRAM circuit using 250 samples and 18 moments.

Figure 2.7 shows the performance distributions generated by MAXENT, PEM,
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Figure 2.6: PEM stability on SRAM circuit (250 samples)
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Figure 2.7: PEM lack of stability on SRAM circuit (300 samples)

and MC for the first 16 moments and first 18 moments using the 6T SRAM circuit

using 300 samples. In this case, we have returned to the instability of PEM. We

see that MAXENT is still stable as always, but PEM is now unstable with 18

moments.

The above results are due to two reasons: the inaccuracies of the Padé ap-

proximation and the generation of moments from samples. PEM uses the Padé

approximation to approximate the performance distribution as a transfer function

of an LTI system. In short, this transfer function is a ratio of polynomial func-

tions as shown in (2.5). The poles of this transfer function are estimated using

the eigenvalues of a system matrix that is solved by AWE. When solving for the

eigenvalues, AWE leverages the Padé approximation. However, the Padé approx-

imation does not give all of the true eigenvalues of the system. Instead, it will
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generate poles (eigenvalues) that correspond to the dominant poles of the original

system, and a few poles that do not correspond to the poles in the original sys-

tem but account for the effects of the remaining poles [FF95]. Consequently, the

Padé approximation may generate some positive eigenvalues. In the experiments

above, the Padé approximation always generated 1 positive pole for the unstable

cases, and 0 positive poles for the stable cases. Since the eigenvalues correspond

to the poles of the transfer function, they will take the form of a sum of weighted

exponential functions. It is clear that since the Padé approximation may generate

positive poles, they will correspond to unbounded exponential terms that continue

to grow and lead to instability.

The number of samples also plays a key role in the stability of PEM. Since

PEM uses AWE and the Padé approximation to solve the set of nonlinear functions

in (2.9), changing the values on the RHS of (2.9) will change the values of br

which are the poles of the transfer function. Using 200 samples will generate a

set of moments M1 while using 250 samples will generate a set of moments M2.

These moments will have completely different values and will lead to a new set of

solutions to (2.9). This new set of solutions (the poles of the transfer function)

may be stable or unstable.

The key drawback of PEM is that it is unpredictable. The experimental re-

sults reinforce the idea that the instabilities in PEM are unpredictable and can

occur with any number of samples that we use depending on the calculation per-

formed by the Pade approximation. On the other hand, MAXENT is predictable.

MAXENT does not use an LTI system model and does not use the Pade approx-

imation, so it will not be subjected to this type of instability. More specifically,

as was mentioned in the previous section, the distribution generated by MAX-

ENT will always be non-negative and will always be absolutely continuous on the

interval [0,1]. Clearly, the MAXENT distribution is more robust than the PEM

distribution.
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2.3.3.3 Accuracy

We also evaluated the accuracy of the MAXENT algorithm compared to PEM.

Throughout our experiments, MAXENT consistently offers lower error relative to

the ground truth than PEM does for any order of moments. We determine the

error using the following equation:

error =

∫
(f1(x)− f2(x)) dx (2.21)

where f1(x) is our distribution from MAXENT or PEM and f2(x) is the ground

truth distribution from MC. Table 2.2 displays the relative error for both MAX-

ENT and PEM in the SRAM and Inverter Chain circuits. We note that moment

orders 2 and 4 were excluded due to the high error in both algorithms.

Table 2.2: Accuracy Comparison with 200 sample for SRAM and 400 samples for

delay chain
Circuit # Samples Moment Order PEM MAXENT

Error(%) Error(%)

6 46.349 11.85

8 30.656 3.988

SRAM 200 10 15.577 3.281

12 9.4457 3.394

14 6.6038 3.181

18 198.97 5.470

6 54.761 10.173

8 38.021 7.830

Inv. Chain 400 10 22.382 7.907

12 15.052 7.679

14 13.631 7.482

18 199.62 7.383

Table 2.3 displays the relative error for both MAXENT and PEM in the SRAM

and Inverter Chain circuits. The most noticeable trend is that MAXENT offers a

lower relative error than PEM across all orders of moments. Both MAXENT and

PEM utilized the same sampled values, and thus used the same moment values.
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The only difference is the way they performed their moment matching. In fact,

we can see that MAXENT seems to perform its moment matching very effectively

and efficiently. MAXENT seems to converge to a steady-state value of error by the

time it hits 8 moments, whereas PEM continues to decrease in error (still always

having a higher value than MAXENT) until it becomes unstable. Moreover, we

see in Table 2.3 that changing the number of samples does not affect the result of

MAXENT having a smaller relative error. In fact, in one case PEM fails altogether

and cannot create a distribution.

Table 2.3: Accuracy Comparison with 300 sample for SRAM and 600 samples for

delay chain
Circuit # Samples Moment Order PEM MAXENT

Error(%) Error(%)

6 46.117 11.043

8 30.251 5.331

SRAM 300 10 15.097 6.046

12 11.341 5.818

14 10.74 6.516

18 200 6.222

6 55.037 9.653

8 38.728 4.295

Inv. Chain 600 10 22.46 4.306

12 13.859 4.801

14 10.695 5.846

18 NaN 5.315

2.3.3.4 Speedup

To observe the efficiency of MAXENT, we compare the speedup with respect to

Monte Carlo while regarding the loss of accuracy. Table 2.4 shows the speedup in

comparison to Monte Carlo with the corresponding loss in accuracy. As explained

above, we use a Figure of Merit to decide when we have enough MC samples for

our ground truth. Figure of Merit: If the standard deviation of error between

distribution n and distribution n − 1 is less than 0.01, we determine the nth
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distribution to be the ground truth. This corresponded to 39000 samples with a

FoM of 0.0094817 for the 6T-SRAM circuit, and 54000 samples with a FoM of

0.0094902 for the delay chain. For the 6T-SRAM circuit, we have a speedup of

195x while still maintaining a very small error of about 3%. For the delay chain,

we have a speedup of 135x while still maintaining an error of about 7.3%.

Table 2.4: Speedup Comparison of MAXENT, PEM, and MC
Circuit Method Samples Speedup Error %

SRAM Monte Carlo (39 x 103 1x 0%

MAXENT 200 195x 3.09%

Delay Chain Monte Carlo (54 x 103 1x 0%

MAXENT 400 135 7.28%

2.4 Conclusion

In this Chapter, we discussed the approaches for stochastic behavior modeling,

the PEM and MAXENT algorithm.

The PEM algorithm take advantage of Padé approximation to estimate the

PDF of the circuit performance as the impulse result of a LTI system. However,

due to the instability of the moment matrix involved in Padé approximation, it

suffers from the numerical stability problem.

MAXENT approximates the exact behavioral distribution with a product of

exponential distributions and finds the closest approximation by choosing the

Lagrange Multipliers for these exponential distributions. To do so, the Shan-

nons information entropy between them has been maximized so as to reduce the

distance between these two distributions. With the extensive experiments, the

proposed approach has shown significant improvement in stability and accuracy

(up to 35% lower error) when compared to AWE based method [JL89] and up to

195x speedup when compared with MC method [GYH11].
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CHAPTER 3

High Dimensional Importance Sampling for Fast

Yield Analysis

3.1 Introduction of High Sigma Yield Analysis

Behavior model presented in Section 2 is sufficient to describe the overall behavior

of a circuit with process variations. However, for critical circuits, such as PLL,

which stabilizes clock for the entire chip, and standard circuit cells, which are du-

plicated for millions of times, an extremely rare failure event (10−4-10−7) could be

transferred to large failure probability of the entire system, leading to catastrophe

of the chip design.

The analysis of such small failure is also known as high sigma analysis, because

sigma is the conventional notation of probability of Gaussian distribution. For

single-tailed case, nσ probability is calculated as

Probnσ = 1− CDF(0,1)(n) (3.1)

where CDF(0,1)() is cumulative distribution function (CDF) of Gaussian distribu-

tion with zero mean and unit standard deviation.

As illustrated in Figure 3.1 (a), 2σ probability is about 97.7% for single-tailed

case, corresponding to 2.23% in the tail. In typical high sigma analysis for memory

circuit, the failure probability can scale up to 4-6 sigma, corresponding to failure

probability from 3.17e-5 to 9.87e-10, which are indeed rare failure events.

Traditional circuit simulation performs worse case analysis (WCA) to deter-
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Figure 3.1: Basic idea in proposed algorithm. (Noted that T = {Y |Y ≥ t} contains

S = {Y |Y ≥ tc}).

mine a safety margin during the design. However, only checking a few corners

is insufficient to analyze extreme small failure probability [SR09]. Modern sta-

tistical circuit simulation approaches consider process variations and statistically

simulate the circuit to estimate the probability that a circuit does not meet the

performance metric. Among those approaches, Monte Carlo (MC) analysis re-

mains the gold standard [JL89]. It repeatedly draws samples and evaluates circuit

performance via transistor-level simulation. Even though the circuit simulation

has been considerably accelerated [CWW11, WSC11, WGK13], it is, however,

extremely time-consuming because millions of samples need to be simulated to

capture one single failure when the failure is a rare event.

Instead of sampling randomly with standard MC, more efficient approaches

only sample the statistically likely-to-fail case [LLG07, GYH11, KWG13, SR08,

KJN06, DQS08, QTD10, KHT10, SR08, SR09, SWC08, DL11]. The aforemen-

tioned approaches can be categorized in the following groups:

1. Moment Matching [LLG07, GYH11, KWG13]: The approaches in this

category only evaluate a small number of samples with SPICE simulation,

and approximate the PDF of the circuit performance to an analytical ex-

pression by means of moment matching. However, some approaches in

this category are known as numerically instable because the moment ma-

trix solved during the moment matching process is usually ill-conditioned
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[FF95, CN94]. Moreover, existing moment matching based approaches only

match the overall shape of the PDF without surgically look into its tail,

which contains information particularly for rare events. Therefore, these

algorithms are usually applied to stochastic behavior modeling rather than

rare event (high sigma) analysis.

2. Importance Sampling: To specifically look into the samples that cause a

rare event, importance sampling based approaches [KJN06, DQS08, QTD10,

KHT10] had been developed to construct a new “proposed” sampling distri-

bution under which a “rare event” becomes “less rare” so that more failures

can be easily captured. The critical issue is how to build an optimal proposed

sampling distribution. Previous work investigated different approaches. For

example, [KJN06] mixes a uniform distribution, the original sampling distri-

bution and a “shifted” distribution centering around the failure region. The

approaches in [DQS08, QTD10] shift the sampling distribution towards the

point of failure region with a minimum L2-norm. The work in [KHT10] uses

“particle filtering” to tilt more samples towards the failure region. These

importance sampling based methods are plagued by the curse of high di-

mensionality [AB03, BB05, RG09]. In general, they can only be used in

low-dimensional problems (e.g., those with a scope of 6-12 variables) but

become very untrustworthy for high-dimensional problems.

3. Classification: the approach in statistical blockcade (SB) [SR08, SR09]

makes use of a classifier to block those Monte Carlo samples that are unlikely

to cause failures and simulates the remaining samples. However, the SB ap-

proach uses the linear support vector machine (SVM), which can be easily

fooled by high dimensionality [WGC14]. An improvement of SB [WXK14]

along with more details about classification based approaches will be dis-

cussed in detail in the Chapter 5.
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Clearly, most of the existing approaches can be successfully applied to low-

dimensional problems with small number of variables but, in general, perform

poorly in high dimension.

Among others, the Scaled Sigma Sampling (SSS) [SLL13] and subset simu-

lation (SUS) [SL14] approach the rare failure probability via different avenues.

SSS draws samples by scaling up the standard deviation (sigma) of the original

distribution, while using the same mean. Failure probabilities are calculated at

different scaling factors to extrapolate the failure probability under the original

distribution, i.e. scaling factor equal to 1 [SLL13]. However, SSS is suscepti-

ble to accuracy loss due to the extrapolation requirement. Alternatively, SUS

approaches the rare failure probability as the production of several, large condi-

tional probabilities estimated in multiple phases [SL14]. Samples in each phase

are generated with the aid of the Markov Chain Monte Carlo (MCMC) method.

In this Chapter, we propose a novel statistical algorithm to efficiently estimate

the failure probability of memory circuits in high dimension, where tens or hun-

dreds of random variables are present. In details, the proposed methodology first

constructs a new subset of the sampling space that dominates the failure region

for memory circuits and can be efficiently estimated with a few samples. Then,

the failure probability of memory circuits can be evaluated by the product rule

of conditional probability within this sampling subset space. More importantly,

the estimation from the proposed method is proved to be always bounded in high

dimensions. Experiments on a 54-dimensional SRAM cell circuit show that the

proposed approach achieves 1150X speedup over Monte Carlo without compromis-

ing any accuracy. It is also 204X faster than the classification based method (e.g.,

Statistical Blockade [SR09]) by and 5X faster than existing importance sampling

method (e.g., Spherical Sampling [DQS08, QTD10]). On another 117-dimension

circuit, the classification based method fails to improve the performance by block-

ing “unlikely to fail” samples, and Spherical Sampling [DQS08, QTD10] method
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completely fails to provide reasonable accuracy. Contrastingly, the proposed ap-

proach yields accurate result with 364X speedup over Monte Carlo.

3.2 Preliminary Knowledge of Importance Sampling

3.2.1 Formulation of Probability Estimation

Let f(X) be a probability density function (PDF) for a random variable X (e.g.,

any process or electronic variable parameters) which is the input of a measurement

process as shown in (3.2); the output Y is an observation (e.g., voltage, amplitude,

period, etc.) with input X:

X︸︷︷︸
variable

⇒ Measurement, SPICE, etc. ⇒ Y︸︷︷︸
observation

(3.2)

Usually, it is of great interest to estimate the probability of Y from a small

subset S of the entire sampling space. For example, a small subset is the “failure

region” for SRAM design and includes all failed samples where performance con-

straints cannot be satisfied. Therefore, the probability p(Y ∈ S) can be estimated

as:

p(Y ∈ S) =

∫
I(X) · f(X)dX. (3.3)

I(X) =

 0 if Y /∈ S

1 if Y ∈ S

where Y is the observation/performance with the input variable X and the in-

dicator function I(·) identifies whether Y ∈ S or not. Note that the integral in

equation (3.4) is intractable because the analytical formula of I(X) is unavailable.

Therefore, sampling based method must be used. For example, the MC method

enumerates as many samples of X as possible (e.g., x1, · · · , xn) according to f(X)

and evaluates their indicator function values to estimate p(Y ∈ S) as:
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p̃(Y ∈ S) =
1

n

n∑
i=1

I(xi)
a.s.
n→+∞−−−−→ p(Y ∈ S). (3.4)

Here p̃(X ∈ S) is an unbiased estimate from sampling method and can be very

close to p(X ∈ S) with a large number of samples.

3.2.2 Importance Sampling (IS)

When Y ∈ S is a rare event, the MC method becomes extremely inefficient because

most I(xi) are zeros. Millions or billions of samples of X are needed to capture

only one failed sample from the failure region S.

To deal with this issue, the importance sampling (IS) has been introduced to

sample from a “proposed” sampling distribution g(X) that tilts towards S where

a rare-event becomes more likely to happen:

pIS(Y ∈ S) =

∫
I(X) · f(X)

g(X)
· g(X)dX

=

∫
I(X) · w(X) · g(X)dX. (3.5)

Here, w(X) is the “likelihood ratio” or the weight for each sample of X. w(X)

compensates for the discrepancy between f(X) and g(X) and unbiases the prob-

ability estimation under g(X). Sampling based methods can be used to evaluate

above integral as:

p̃IS(Y ∈ S) =
1

n

n∑
j=1

w(x̃j) · I(x̃j)
a.s.
n→+∞−−−−→ p(Y ∈ S). (3.6)

x̃j (j = 1, · · · , n) follows the “proposed” sampling distribution g(X) rather than

the original distribution f(X), because more rare event samples in the subset S

can be easily chosen under the distribution g(X).

Theoretically, p̃IS(Y ∈ S) is consistent with p(Y ∈ S) in (3.4) if supp(g(X)) ⊃

supp(I(X) · f(X)), where supp(·) denotes the support of a probabilistic distribu-

tion.
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3.2.3 Failure Analysis of Importance Sampling

While importance sampling is, in principle, mathematically correct, the degenera-

tion or collapse of the likelihood ratios leads to the failure of importance sampling

in high dimensions as discussed in [BB05, RG09].

Let us consider a classical case, as shown in Figure 3.2, where f(X) is the

“original” sampling distribution and g(X) is the “proposed” sampling distribu-

tion. The small circles with the same size within g(X) are samples drawn from

g(X). In the bottom of Figure 3.2, a few circles with different sizes represent

the illustrative scales of the likelihood ratios corresponding to the samples on

top of them. Clearly, if g(X) has thinner tails than f(X), the likelihood ratios

w(X) = f(X)/g(X) approach infinity in the tails of g(X). Hence, the likelihood

ratios vary dramatically and have extremely large variance that leads to unstable

probability estimate.

 
f(X) g(X) 

Scale Illustration of Likelihood Ratios 

Figure 3.2: The scale illustration of likelihood ratios in importance sampling.

Moreover, the reason for the collapse of likelihood ratio can be explained from

another perspective: when importance sampling shifts g(X) towards the rare-

event region that is typically in the tails of f(X), f(X) and g(X) become mutually

singular and have “disjoint” support [BB05]. Therefore, IS fails to retain its

accuracy.

This collapse issue of likelihood ratios becomes much worse in high dimensions
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because w(X) is a product of probabilities for multiple parameters and conse-

quently approaches infinity more quickly.

3.3 High-Dimensional Importance Sampling Algorithm

3.3.1 Algorithm Overview

We consider a small subset S as the failure region in SRAM design under the

given performance constraint (e.g., the performance of SRAM circuit Y should be

greater than certain performance threshold tc). Hence the subset S = {Y |Y ≥ tc}

in Figure 3.3 contains all failed samples that are “rare events”.

The basic idea of the proposed algorithm is to construct a new subset T

with a new threshold t (e.g., t = 0.99-quantile point). This new subset T =

{Y |Y ≥ t} includes “non-rare” events and dominates the “rare event” subset S

(e.g., supp(T ) ⊃ supp(S)).
 

tct

Y

Figure 3.3: Basic idea in proposed algorithm. (Noted that T = {Y |Y ≥ t} contains

S = {Y |Y ≥ tc}).

In this way, the failure probability of SRAM design can be estimated by a

product rule from the probability theory [PP01]:

P (Y ≥ tc) = P (Y ≥ t) · P (Y ≥ tc|Y ≥ t). (3.7)

The proposed algorithm has two stages and can be illustrated with Figure 3.4:

1) Initial Sampling with MC: This step aims to evaluate the probability P (Y ∈
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Figure 3.4: Overall flow in proposed algorithm. (Noted that T = {Y |Y ≥ t} contains

S = {Y |Y ≥ tc}).

T ) = P (Y ≥ t) where t is the threshold, such as t = 0.99-quantile point shown in

the left of Figure 3.4. Since the samples in T are “non-rare” events, this evaluation

needs only a few samples using standard MC method.

2) Conditional Probability Estimation: The most challenging task is to effi-

ciently evaluate the conditional probability P (Y ≥ tc|Y ≥ t) where sampling

method must be used. To expedite the convergence rate of estimation, a “pro-

posed” sampling distribution g(X) that is close to the failure region shall be con-

structed by shifting and reshaping the “original” sampling distribution (shown in

the right of Figure 3.4). More details will be discussed in the following section.

The overall algorithm flow is described in Algorithm(1). There are several

issues that need to be resolved: 1) It is, at the moment, unclear how to shift

and reshape the original sampling distribution f(X) in order to build g(X); 2)

With the proposed sampling distribution g(X), how to calculate the conditional

probability; 3) It is of great interest to study whether the estimations of proposed

algorithm is always bounded or not.

The following sections discuss how we solve these issues.
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Algorithm 1 Overall Algorithm
Input: random variables X with sampling distributions f(X) and performance con-

straints Y ≥ tc.

Output: the estimation of failure probability pIS(Y ≥ tc).

1: /* 1: Initial Sampling with MC */

2: Use few MC samples to find the threshold value t of performance (e.g., t = 0.99-

quantile point).

3: Run standard Monte Carlo method to calculate PMC(Y ≥ t) with certain accuracy

level.

4: /* 2: Conditional Probability Calculation */

5: Shift the original sampling distribution f(X) towards the failure region.

6: Reshape the shifted f(X) by changing its standard deviation to construct g(X).

7: Generate samples from g(X) and evaluate conditional probability P (Y ≥ tc|Y ≥ t).

8: /* 3: Failure Probability Estimation */

9: Solve for the failure probability pIS(Y ≥ t) as

PIS(Y ≥ tc) = PMC(Y ≥ t) · P (Y ≥ tc|Y ≥ t).

3.3.2 Shift and Reshape Sampling Distribution

Mean-Shift Vector Selection Mean-shift is a typical way to move the sampling

distribution towards the failure region where the failed samples are most likely to

happen in previous works [KJN06, DQS08, QTD10, KHT10, GBD12]. The key is

to find the mean-shift vector for the original sampling distributions f(X).

To this end, we propose to shift f(X) towards a “non-rare” subset T = {Y |Y ≥

t}, because our target is to evaluate the conditional probability P (Y ≥ tc|Y ≥ t)

around the subset T . More importantly, as T is usually not far away from the

mean of f(X), the shifted distribution shares almost the same support with f(X)

so as to avoid the “disjoint support” issue.
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In addition, we adopt the insights from [GBD12] to find a close-to-optimal

mean-shift vector in this work. Let us consider a 1-D problem as an example. The

algorithm in [GBD12] starts with an initial parameterized distribution f̂(X, µ̂) and

tries to update the mean value iteratively to achieve a close-to-optimal sampling

distribution f ∗(X,µ∗) by an analytic formula:

µ∗ =

∑N
i=1 I(xi) · w(xi) · xi∑N
i=1 I(xi) · w(xi)

. (3.8)

Here xi (i = 1, · · · , N) are samples drawn from f̂(X, µ̂) and w(xi) are their

likelihood ratios as w(xi) = f(xi)/f̂(xi, µ̂).

Intuitively, the updated mean value µ∗ can be viewed as the coordinates of

the centroid point in the failure region where the failed samples are most likely

to happen. This interesting finding becomes more obvious if f̂(X, µ̂) equals f(X)

and all likelihood ratios take on value 1. Hence, µ∗ is:

µ∗ =

∑N
i=1 I(xi) · xi∑N
i=1 I(xi)

. (3.9)

Therefore, our mean-shift method tries to shift the sampling distribution to-

wards the “centroid point” of the subset T = {Y |Y ≥ t}, which can be evaluated

with available MC samples from the first step in Algorithm (1) and requires no

extra sampling/simulation cost.

Standard Deviation Selection// Next, it is desired to reshape the shifted

sampling distribution around the centroid of subset T . In particular, the standard

deviation for the proposed sampling distribution g(X) must be properly chosen

to reach the failure region S = {Y |Y ≥ tc}, because the shifted and reshaped

sampling distribution should dominate or completely cover the “rare-event” region

S.

As an illustration, let us consider a 2-D problem in Figure 3.5. The problem

now becomes how to choose the standard deviation of the proposed sampling
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Figure 3.5: The distance between centroid points of two subsets along each pa-

rameter axis.

distribution g(X) to obtain the samples in the “rare-event” region S = {Y |Y ≥

tc}.

The proposed algorithm first approximates the centroid point of S = {Y |Y ≥

tc} using uniformly-distributed samples and then calculates the distance between

these two centroid points along each parameter axis (e.g., dX1 and dX2 shown in

Figure 3.5). Then, we choose max(dXi , σ(0,Xi)) as the standard deviation of g(Xi)

for the variable Xi, where σ(0,Xi) is the original standard deviation of f(Xi). This

choice can be intuitively explained as follows:

• dXi > σ(0,Xi): the failure region S is very far away from the subset T ,

therefore, the larger value dXi is used to extend the range of g(Xi) and

obtain the rare-event samples in the failure region. In the meantime, g(Xi)

has almost the same supports with f(Xi) because its mean position locates

at the centroid point of T and is not far away from f(Xi).

• dXi < σ(0,Xi): Suppose the smaller one, dXi , is chosen as the standard de-

viation of g(Xi), the proposed sampling distribution g(X) will have much

smaller sampling space, thereby, making it fail to keep the same supports

with f(Xi) and suffer from “disjoint supports” issue. The proposed algo-

rithm chooses σ(0,Xi) as the standard deviation of g(Xi) in this case.
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3.3.3 Conditional Probability Calculation

With the proposed sampling distribution g(X), it is desired to efficiently estimate

the conditional probability in Algorithm(1). We can start with the product rule

in the probability theory [PP01]:

P (Y ≥ tc|Y ≥ t) =
P (Y > tc, Y > t)

P (Y > t)
. (3.10)

In addition, when samples xi (i = 1, · · · , N) are generated from g(X), both

P (Y > tc) and P (Y > t) can be estimated mathematically with the indictor

function and likelihood ratios. Thus, the equation (3.10) becomes:

PMIS(Y ≥ tc|Y ≥ t) =
P (Y > tc)

P (Y > t)

=
�
�1
N

N∑
i=1

w(xi) · I{Y >tc}(xi)

�
�1
N

N∑
i=1

w(xi) · I{Y >t}(xi)

. (3.11)

where I{Y >tc}(·) and I{Y >t}(·) are indicator functions for subsets Y ≥ tc and Y ≥ t,

respectively. w(xi) are likelihood ratios for these samples. In this way, the condi-

tional probability can be efficiently evaluated under proposed sampling distribu-

tion g(X).

3.3.4 Boundedness Analysis

Importance Sampling

Let us first investigate the existing importance sampling and assume samples

xj (j = 1, · · · ,M) are generated from the proposed sampling distribution g(X).

We find the upper bound of probability estimate from the conventional impor-

tance sampling according to Boole’s inequality (also known as the union bound

from probability theory [PP01]) as:
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P (Y > tc) = Pf (
M∑
j=1

I{Y >tc}(xj)) 6
M∑
j=1

Pf (xj) · I{Y >tc}(xj)

=
M∑
j=1

w(xj) · I{Y >tc}(xj). (3.12)

In 3.12 Pf stands for the probability estimation under sampling distribution

f(X). As discussed in [BB05, RG09], the likelihood ratios w(xj) can vary dra-

matically in high dimension and be any random quantities. Therefore, the union

bound of the estimation P (Y > tc) in (3.12) approaches infinity and importance

sampling becomes unreliable and untrustworthy.

Proposed Algorithm

The proposed algorithm constructs a subset T = {Y |Y ≥ t} that dominates the

failure region S = {Y |Y ≥ tc} (i.e., T ⊃ S). Therefore, the upper bound of

conditional probability can be derived as:

P (Y > tc|Y > t) =
P (Y > tc)

P (Y > t)

=

N∑
j=1

w(xj) · I{Y >tc}(xj)

N∑
j=1

w(xj) · I{Y >t}(xj)

6 1. (3.13)

Note that no matter how likelihood ratios w(xj) vary, the same likelihood ratios

for samples in the failure region S = {Y |Y ≥ tc} would appear in both numerator

and denominator in (3.13) if and only if the calculations of both P (Y > tc) and

P (Y > t) utilize the same set of samples xj (j = 1, · · · ,M) drawn from g(X).

Clearly, the conditional probability estimation of proposed algorithm is always

bounded by the upper bound 1. Thereby, the propose algorithm can reliably

provide bounded estimation results.
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Table 3.1: Process Parameters of MOSFETs.

Variable Name σ/µ unit

Flat-band Voltage (Vfb) 0.1 V

Gate Oxide Thickness (tox) 0.05 m

Mobility (µ0) 0.1 m2/V s

Doping concentration at depletion (Ndep) 0.1 cm−3

Channel-length offset (∆L) 0.05 m

Channel-width offset (∆W ) 0.05 m

Source/drain sheet resistance (Rsh) 0.1 Ohm/mm2

Source-gate overlap unit capacitance (Cgso) 0.1 F/m

Drain-gate overlap unit capacitance (Cgdo) 0.1 F/m

3.4 Experiment Results

We investigate its performance of the proposed algorithm for failure analysis of

memory circuits (e.g., SRAM bit-cell and sense amplifier) in this section. All

experiments are performed using MATLAB and Hspice with BSIM4 transistor

model. The proposed algorithm is named as HDIS (high-dimensional importance

sampling) in this section. In addition, Monte Carlo (MC), statistical blockade

(SB)[SR09], and spherical sampling (SS) [DQS08, QTD10] have been implemented

for comparison purpose.

3.4.1 SRAM Circuit and Variation Modeling

A functional diagram of SRAM circuit with one bit-cell column is shown in Figure

3.6, which consists of a decoder, bit-cells, a sense amplifier and a delay chain

[PS08]. During the reading operation: the bit-cells store the data in forms of ‘0’

or ‘1’; the decoder generates an address of a specific bit-cell and releases a read

enable signal. Therefore, the chosen bit-cell starts to discharge the bit-lines (i.e.,

the lines that connect to all bit-cells) to produce a voltage difference between

two bit-lines. the sense amplifier reads out the stored data by capturing and

magnifying the voltage difference on bit-lines.
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Figure 3.6: Functional diagram of an SRAM circuit.

Table 3.2: Comparison for SRAM bit-cell analysis with 90% target accuracy and

confidence level.

Monte Carlo Spherical Sampling Statistical Blockade Proposed method

(MC) (SS)[QTD10] (SB)[SR09] (HDIS)

failure probability 2.413E-05 (0%) 2.8415E-05 (+17.7%) 2.7248e-05 (+12.9%) 2.4949E-05 (+3.39%)

#sim. runs 4.6e+6 (1150X) 2e+4 (5X) 8.16e+5 (204X) 4e+3 (1X)

The process variations are introduced into each transistor of SRAM circuit,

which are same to those 9 process parameters used in Table (2.1).

3.4.2 SRAM Cell with Reading Failure

Here, the same 6-T SRAM cell circuit is used as what we discussed in Chapter

2.3.3.1. We also evaluate the reading error with the same scenario. We perform

different methods (MC, SS[QTD10], SB[SR09], proposed) on this SRAM bit-cell

example to predict the reading failure probability under process variations and

the comparison results are shown in Table 3.2.

3.4.2.1 Accuracy Comparison

At a first glance, we would be very surprised to find that SS[QTD10] method based

on conventional importance sampling framework can provide accurate failure rate

predictions in this 54-dim problem!

However, this comparison cannot allow us to reach that conclusion, because
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this SRAM bit-cell example is a “pseudo” high-dimensional problem for two-fold

reasons: (1) during the reading operation, not all transistors are active. In fact,

both Mp5 and Mn3 are shut off, therefore, the process variations on these two

transistors have no effect on discharge behavior of bit-lines at all; (2) without loss

of generality, assuming B̄L = ‘0’ and BL=‘1’, the discharge current flows from

B̄L to the ground through Mn2 and Mn1 so that to pull down the voltage of B̄L.

As such, the process variations in Mn2 and Mn1 have more significant effects on

the discharge behavior of bit-lines and can potentially mask the variation effects

in Mp6 and Mn4. In this way, there are only 18 “effective” variable parameters,

which suggests that this example is a problem with modest dimension.

When compared with MC results, the proposed method provides the most

accurate failure probability estimation with only 3.39% relative error, while the

estimations from SS[QTD10] and SB[SR09] have more than 10% relative error.

3.4.2.2 Efficiency Comparison

From Table 3.2 we also compare the efficiency of these methods: MC is very time-

consuming and requires nearly 4.6 millions transistor-level SPICE simulations;

SB[SR09] can provide 6X complexity reduction by screening out and simulat-

ing those “most-likely-to-fail”samples; SS[QTD10] method is made more efficient

(230X speedup over MC) by better choosing failed samples using importance sam-

pling algorithm; the proposed algorithm achieves the best convergence rate (1150X

faster than MC) by efficiently spreading more samples into the failure region using

a sampling distribution with a large-standard-deviation in high dimensions.

3.4.3 Sense Amplifier for Target Gain

Next, we consider a sense amplifier example which includes 13 transistors as shown

in Figure 3.7.

41



Figure 3.7: The schematic of a sense amplifier circuit.

In a SRAM circuit, the sense amplifier is designed to magnify the voltage dif-

ference between B̄L and BL. If the gain is too small, the output of this amplifier

might be too weak to be read by the decoder circuit. Therefore, a reading failure

happens. With the variation modeling summarized in Table 3.1, the sense am-

plifier example has 117 random variables in total. More importantly, all of these

variable parameters are “effective” because the transistors are active and process

variations on each transistor can significantly change the gain, which is a truly

high-dimensional problem.

3.4.3.1 Accuracy Comparison

To validate the accuracy of the proposed algorithm, we apply different methods

(MC, SS[QTD10], SB[SR09] and proposed) on this 117-dim problem to predict

the timing failure probability. Here, MC serves as the “gold standard”. SB[SR09],

is not included in the further comparison, because the classifier used in SB[SR09]

fail to block any Monte Carlo sample. Therefore, Considering the complexity of

running the classifier, the SB [SR09] involves even higher computation complexity

than MC method.

The evolution of the probability estimation in different methods are plotted in

Figure 3.8(a). Several observations can be made:
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Figure 3.8: Comparison between different methods in terms of the failure proba-

bility estimation and figure of merit

First, this figure shows the failure of conventional importance sampling (i.e.,

SS[QTD10]). In fact, due to the degeneration or collapse of likelihood ratios,

SS[DQS08, QTD10] method converges to a random quantity which is obviously

wrong and far away from the MC result. Moreover, SS[QTD10] does not have a

mechanism for improving accuracy even though more samples are added.

The proposed method builds an effective proposed sampling distribution to

choose more failed samples easily and its estimation is theoretically bounded due

to the proposed evaluation of conditional probability. Therefore, the proposed

algorithm can reliably estimate the failure probability that matches with MC

results.

3.4.3.2 Efficiency Comparison

Even though the Figure 3.8(a) provides a rough comparison of efficiency, the de-

tailed comparison can be shown in Figure 3.8(b), where different methods try
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Table 3.3: Comparison for sense amplifier analysis with 90% target accuracy and

confidence level

Monte Carlo Spherical Sampling Proposed Method

Target Failure Probability (MC) (SS) [QTD10] (HDIS)

8e-3
prob:(failure) 8.136e-4 0.2603 7.861e-3 (3.4%)

#sim. runs 4.800e+4 (24X) 16000 (8X) 2000

8e-4
prob:(failure) 8.044e-4 0.2541 8.787e-4 (9.2%)

#sim. runs 4.750e+5 (36X) 8.330e4 (6.4X) 1.300e4

8e-5
prob:(failure) 8.089e-5 0.3103 8.186e-5 (1.2%)

#sim. runs 5.156e+6 (346X) 1.430e+5 (10X) 1.500e+4

to achieve the “comparable” accuracy. Note that circuit simulation is the most

time-consuming part and the runtime cost of the remaining computation becomes

negligible. As such, the required number of circuit simulations for the same accu-

racy and confidence level serves as a measurement of the efficiency.

First, the Figure-Of-Merit (FOM) is used to quantify the accuracy of proba-

bility estimation as [DQS08, QTD10]:

ρ =

√
σ2
p(fail)

p(fail)
. (3.14)

where p(fail) is the failure probability and σp(fail) is the standard deviation

of p(fail). In fact, the FOM can be viewed as a relative error so that lower FOM

means higher accuracy of probability estimation.

We compare the evolutions of FOM for different methods in Figure 3.8(b) and

draw a dash line to indicate the 90% accuracy with 90% confidence (ρ = 0.1).

And we can have following observations:

First, SS[QTD10] has reached ρ = 0.1 but its estimation is completely wrong.

Clearly, it cannot detect the failure at all. The same observation is applied to

other existing importance sampling methods due to the boundedness analysis in

Section 3.3.1.
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Second, The proposed algorithm can provide the accurate estimation of fail-

ure probability with only a few thousands samples, which dramatically relieves

the requirements of computing and storage efforts. As shown in this figure, the

proposed method can achieve 708X speedup over Monte Carlo and be 17X faster

than statistical blockade method [SR09].

3.4.3.3 Comparison for Different Failure Probabilities

We study various methods on the sense amplifier example with three different fail-

ure probabilities summarized in Table 3.3. It is obvious that SS[QTD10] method

fails to achieve any reasonable accuracy in all these cases. This demonstrates

the failure of conventional importance sampling method. On the contrary, the

estimates from the proposed method match the MC result.

In addition, the table reveals that the proposed method provides the fastest

convergence speed in all these cases and, more importantly, offers substantial

complexity reduction as the failure probability becomes smaller. This property

makes our proposed algorithm suitable for industrial problems where exist “rare

events” with extremely small probability.

3.5 Conclusion

The HDIS [WGC14] is designed to handle higher dimensional problem by intro-

ducing a a different way to reweight the “important” samples, but it still cannot

handle the problem with multiple failure regions. It has been successfully ap-

plied to the failure probability prediction of memory circuits (e.g., SRAM bit-cell,

sense amplifier) and demonstrates significant complexity reduction without com-

promising the accuracy. Experiments on a 54-dimensional SRAM cell circuit show

that the proposed approach achieves 1150X speedup over Monte Carlo without

compromising any accuracy. It is also 204X faster than the classification based
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method (e.g., Statistical Blockade [SR09, SR08]) by and 5X faster than existing

importance sampling method (e.g., Spherical Sampling [DQS08, QTD10]). On

another 117-dimension circuit, the statistical blockade [SR08] fails to improve

the performance by blocking “unlikely to fail” samples, and Spherical Sampling

[DQS08, QTD10] method completely fails to provide reasonable accuracy. Con-

trastingly, the proposed approach yields accurate result with 364X speedup over

Monte Carlo.
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CHAPTER 4

Piecewise Distribution Model

4.1 Motivation

As industry moves towards more energy efficient chips, minimizing power con-

sumption becomes increasingly important. In such designs, low supply voltages

(VDD) are often used to reduce power. However, while VDD is explicitly reduced

the overdrive voltage (Vgs − Vth) is implicitly reduced [KAH12]. In the presence

of Vth variations from the manufacturing process, transistors may enter the sub-

threshold operation region causing a strongly non-linear circuit behavior. This

non-linear behavior translates to circuit behavior distributions becoming strongly

non-Gaussian (see Figure 4.8). Consequently, when modeling this behavior for

yield analysis, it is necessary to consider the inherent non-linearity that arises due

to the aforementioned reasons.

The moment matching based performance models, e.g. MAXENT [KWG13],

do capture the overall shape of the PDF, but they are often inaccurate in the tail

region where rare events are modeled. This limitation is because MAXENT uses

only one set of moments that are accurate in the low sigma region but inaccurate

in the tail. Obtaining moments that are accurate in the tail of the distribution

(also known as the high sigma region) requires both a large number of samples to

obtain accurate moments and knowledge of which exact moments reflect behavior

in the tail of the distribution, which is often unknown [Dur10]. Consequently, the

distribution that MAXENT uses is formulated on a global optimization framework
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that attempts to minimize overall error, making it difficult to capture the high

sigma behavior in non-Gaussian distributions.

To address both the issue of high-dimensionality and non-Gaussian distri-

butions while maintaining high accuracy and efficiency, we propose a piecewise

distribution model (PDM) that uses moment matching via maximum entropy to

build multiple separate, region-based distributions of circuit behavior [KWB16].

Without loss of generality, we consider a distribution as two segments in the

rest of this paper. The first distribution, Segment1, matches moments that are

accurate only in the body/bulk of the distribution. The second distribution, Seg-

ment2, matches moments that are accurate only in the high sigma/tail region of

the distribution and models the tail of circuit behavior. Both distributions are

constructed using the maximum entropy moment matching technique but differ

by using two different sets of moments. The moments in Segment1 are obtained

by using circuit behavior sample moments calculated directly from the original

input (process variation) distributions. The moments in Segment2 are obtained

using sample moments calculated from input distributions that are shifted towards

regions that are more likely to fail.

The optimal Segment1 distribution is selected using Spearman’s rank corre-

lation coefficient to analyze the monotonic behavior of the CDF. The Segment2

distribution is assumed to be an exponential distribution. Because this distri-

bution is constructed from shifted moments, its probability must be re-weighed

and is done so using conditional probability and a scaling factor that corrects

for continuity between the Segment2 distribution and the true model of the tail

distribution.

PDM has a constant complexity in terms of input dimensions as it works solely

in the output (circuit behavior) domain. Experiments on both a mathematically

known distribution and circuits demonstrate the method is accurate up to 4.8

sigma for non-Gaussian distributions with more than 2 orders of speedup relative
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Phase 1: Build and Choose 
Optimal Segment 1 Distribution

Phase 2: Shift Inputs, Build 
Segment 2 and Estimate 𝑷𝒇𝒂𝒊𝒍

𝑷𝒇𝒂𝒊𝒍 = 𝑷(𝑯 ≥ 𝒕𝒄𝒓𝒊𝒕)

Figure 4.1: PDM contains 2 Phases: building the Segment1 distribution and

selecting the optimal Segment1 distribution; shifting input parameters to build

the Segment2 distribution, and estimating the final probability

to Monte Carlo, which is typically sufficient for analog circuits that are reused,

such as differential amplifiers, bias circuit, or even PLLs, level shifters, etc.

More details about the proposed Piecewise Distribution Model (PDM) are

elaborated in Section 4.2.

4.2 Piecewise Distribution Model

As presented in Chapter 2, we observe that MAXENT is a robust method for

statistical circuit performance modeling. It guarantees stability for monotonic

moments and offers high accuracy compared to other statistical modeling algo-

rithms [LLG07, GYH11]. However, we note that MAXENT is a global moment

matching approach which offers high accuracy in the bulk of the distribution, but

is unlikely to capture the accuracy in the tail (high sigma) region of the distribu-

tion. To this end, MAXENT is an insufficient approach when modeling the high

sigma behavior of circuit performance distributions.

In the following discussion, we propose piecewise distribution model (PDM) to

accurately and effectively model the high sigma portion of non-linear distributions

from circuits in high dimensionality. The motivation behind PDM is to accurately
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model the tail distribution of circuit behavior by using region specific moments.

In general, moment matching techniques such as [LLG07, GYH11, KWG13] use

moments that may accurately reflect the bulk or body of the distribution. How-

ever, these global approximation methods use general probabilistic moments which

give very little information about the high sigma areas and thus fail to accurately

model the tail distribution. To this end, PDM utilizes moment matching to ap-

proximate the high sigma distribution by using region specific moments which

capture highly accurate information in regions of interest. In general, an arbitrary

number of segments can be used to model the overall distribution. Without losing

generality, we break the total distribution into two segments - the first distribution

(Segment1) matches the low sigma region and is accurate in the body (typically

≤ 4σ) while the second distribution (Segment2) matches the high sigma region

and is accurate in the tail (typically ≥ 4σ). The flow of the method is shown in

Figure 4.1 while details are given below.

4.2.1 Building the Segment1 Distribution

To build the Segment1 distribution, we first draw samples qi; i = {1, ..., N1} from

input parameter distributions f(xj); j = {1, ..., p} where p is the number of vari-

ables. Next, we simulate these samples using a circuit simulator to obtain circuit

behavior outputs yi; i = {1, ..., N1}. Finally, sample probabilistic moments µk are

calculated and matched using MAXENT as outlined in [KWG13, MP84]. De-

pending on the number of moments that are matched, we will obtain different

Segment1 distributions. However, the exact number of moments to be matched

is unknown because we do not know which set of moments map to different ar-

eas of the distribution [Dur10]. Consequently, we sweep across a range of values

k = 5, 7, 9, ..., K to build multiple Segment1 distributions and select a single,

“optimal” Segment1 distribution as explained below.
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4.2.2 Selecting the Optimal Segment1 Distribution

One of the key characteristics of non-Gaussian distributions is that the gradient

of their CDFs are monotonically increasing, i.e. the change in circuit behavior for

a fixed change in probability continuously increases as the sigma value increases.

Here, the sigma value is simply the standard Z-score of a Standard Normal dis-

tribution, P (Z ≥ σ). On the other hand, the gradient is constant for a Gaussian

distribution. This is illustrated in Figure 4.2 which shows the gradient of the CDF

for a LogNormal (non-Gaussian) distribution vs a Gaussian distribution. Here,

although the LogNormal distribution is a mathematical distribution, we label the

y − axis of the figure as Circuit Behavior to emphasize that this type of circuit

behavior is of interest. Consequently, we select the optimal Segment1 distribution

by choosing the one with a monotonically increasing gradient.
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Figure 4.2: Slope of Gaussian vs Non-Gaussian Distribution

In order to gauge the monotonicity of the gradient, we turn to Spearman’s rank

correlation coefficient [Ken48]. Unlike the conventional Pearon correlation coef-

ficient, which directly measures the correlation between two sets of variables, we

utilize Spearman’s rank correlation coefficient because it measures the monotonic

relationship between two sets of variables. Specifically, the correlation coefficient

ρ is a measure of how well a set of data can be described using a monotonic func-

tion. A coefficient of +1 indicates strong correlation to a monotonically increasing

function while a coefficient of -1 indicates strong correlation to a monotonically

decreasing function. To this end, we measure the gradient of the CDF for various
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body distributions and compare the data set to a monotonically increasing set us-

ing Spearman’s Coefficient ρ and select the distribution with the largest, positive

coefficient. Figure 4.3 compares various Segment1 distributions, each built with

a different number of moments, that are used for approximating a non-Gaussian

distribution. We see that the coefficient for 5 of 6 distributions indicates that the

gradient data set is monotonically decreasing or uncorrelated. However, there is

a single distribution using 14 moments with a coefficient of ρ = 0.98, indicating

it is a monotonically increasing set and should be used as the optimal Segment

1 distribution. In general, the optimal Segment 1 distribution may not have 14

moments.

Figure 4.3: Spearman’s Correlation of Distributions with Different Moments

To confirm that this is the optimal choice of the above example, we compare

the estimated data from the selected Segment1 distribution (strong Spearman’s

correlation), one non-selected distribution (poor Spearman’s correlation), and the

ground truth values as shown in Figure 4.4. We see that the selected distribution

matches very well with the ground truth because both distributions are non-

Gaussian and exhibit monotonically increasing gradients. On the other hand, the

distribution with poor correlation is very inaccurate. We utilize this combination

of gradient and Spearman’s correlation to select the optimal Segment1 distribution

used in PDM.
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Figure 4.4: Segment1 Comparison using Spearman’s Correlation Results

4.2.3 Shifting Input Distributions and Building the Segment2 Distri-

bution

The motivation behind shifting the input distributions is to draw more samples

that yield an output in the tail of the original circuit behavior distribution. By

generating more samples in this region, we can generate region specific moments

that are highly accurate in the tail. To obtain moments νl that are specific to the

tail of the distribution, we must shift the mean of the input parameter distributions

from m to m̂ for each input parameter individually. To shift the mean, we first find

the largest circuit behavior ymax from the set yi used when building the Segment1

distribution. The value of ymax is directly impacted by the sampling algorithm

and number of samples in N1. Finding the optimal ymax is out of the scope of this

paper, and the ymax used in the proposed application attempts a shift towards

the general vicinity of parameter samples that produce tail-like circuit behaviors.

Each circuit behavior yi has a corresponding set of input samples qj for each input

parameter j = 1, ..., p. The largest circuit behavior ymax will have a sample value

q∗j for each input parameter j = 1, ..., p. To obtain the shifted distributions, we

simply shift the mean mj of parameter j to the sample q∗j .

Once the input parameters are shifted, an additionalN2 samples q̂i; i = 1, ..., N2

are drawn and simulated yielding an output ŷi; i = 1, ..., N2. To ensure that the
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moments νl are comprised of information only in the tail distribution, we must

first screen the simulated data ŷi such that only samples that lay in the tail are

used. To do this, we simply pick a circuit behavior t∗ that separates the Seg-

ment1 distribution and the next distribution, in this case Segment2. The value

of t∗ is obtained by selecting a sigma point s in the Segment1 distribution and

extracting the corresponding circuit behavior. Typically, s is chosen to be a sigma

value between 3 and 4 as this is where the long, flat region of the tail begins as

shown in Figure 4.2. Next, the circuit behavior values are screened to obtain

wk = ŷi ≥ t∗; k = 1, ..., N3 where N3 is the number of points beyond t∗. Because

the output was screened, we ensure that the moments νl shall only be reflective

of the tail distribution’s domain and not be polluted by information outside of it.

Finally, to build the Segment2 distribution, we calculate l = 4 moments using

µi =
∫
xip(x)dx and match them using maximum entropy as in [KWG13, Wu03,

CHZ10, MP84]. The motivation behind using only 4 moments is that this forces

the maximum entropy method to yield an exponential distribution as shown in

[Con13]. The exponential distribution is a good approximation of the tail as it is

monotonically decreasing and can easily be obtained using the maximum entropy

method.

4.2.4 Reweighing Segment2 via Conditional Probability

Once the Segment2 distribution is obtained, the probability for a specified circuit

behavior tspec can be obtained; however, it will be inherently biased because the

input parameters were shifted to draw more important samples. To resolve this

issue, we use conditional probability to “re-weigh” probabilities as follows

P (H ≥ tspec) = P (H ≥ tspec|B ≥ t∗) ∗ P (B ≥ t∗) (4.1)

Where H is the random variable associated with the Segment2 distribution, B is

the random variable associated with the Segment1 distribution, tspec is the circuit
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behavior whose probability is of interest, and t∗ is the circuit behavior for sigma

point s. The conditional probability relationship in (4.1) works well when the

two distributions H and B are identical, i.e. if we are calculating conditional

probability under one distribution, or if they share the same mean. However, this

equation does not hold true in the proposed algorithm. This is demonstrated by

rearranging (4.1) as shown in (4.2).

P (B ≥ t∗) =
P (H ≥ tspec)

P (H ≥ tspec|B ≥ t∗)
(4.2)

For a new point t
′
spec, the relationship is

P (H ≥ t
′

spec) = P (H ≥ t
′

spec|B ≥ t∗)P (B ≥ t∗) (4.3)

P (B ≥ t) =
P (H ≥ t

′
spec)

P (H ≥ t′spec|B ≥ t∗)
(4.4)

Rearranging (4.2) and (4.4) and equating the common term yields

P (B ≥ t) =
P (H ≥ tspec)

P (H ≥ tspec|B ≥ t∗)
=

P (H ≥ t
′
spec)

P (H ≥ t′spec|B ≥ t∗)
(4.5)

Clearly this relationship holds perfectly when the distributions from the nu-

merator and denominator (joint and conditional, respectively) are identical as in

importance sampling algorithms such as [WGC14]. However, because PDM per-

forms the re-weighing process in the output domain, the modeled tail and the true

distribution may be shaped extremely differently. In other words, because the B

and H distributions are necessarily two different random variables, the relation-

ship in (4.1) must be modified to account for the shape mismatch that inherently

arises due to the unknown shape of the distributions. Consequently, we propose

a dynamic scaling technique that additionally reweighs the probability under the

Segment2 distribution by a scaling factor β. The scaling factor acts as a heuristic

correction factor that is calculated based on the indicator function of the subset

wk of the entire circuit behavior space, and the total number of outputs N3 as

shown in (4.7). Each approximation of different tspec values has a different value
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of beta due to different values of the indicator function (4.6).

I(wk) =


0 if wk < tspec

1 if wk ≥ tspec

(4.6)

β =

N3∑
k=1

I(wk)

N3

(4.7)

Using this scaling factor yields the final probability of a specified circuit be-

havior tspec as (4.8)

P (H ≥ tspec) = P (H ≥ tspec|B ≥ t∗) ∗ P (B ≥ t∗) ∗ β (4.8)

Before Scaling

After Scaling

True Distribution

Figure 4.5: Shape Issue in Conditional Probability

Figure 4.5 shows an example of the difference in shape between the true tail

distribution, the unscaled Segment2 distribution and the scaled Segment2 distri-

bution. Additionally, we note that both Segment1 and Segment2 distributions are

guaranteed to be stable, i.e. they will have a non-negative probability and there-

fore the CDF is guaranteed to be monotonic. This naturally arises because both

distributions are calculated using the maximum entropy method and all moments

in both segments are monotonically increasing.

4.3 Experiment Results

4.3.1 Experiment Settings

We implemented PDM in MATLAB using simulation outputs from HSPICE. PDM

is compared with Monte Carlo, moment matching algorithm MAXENT [KWG13],
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High Dimensional Importance Sampling (HDIS) [WGC14], and subset simulation

(SUS) [SL14] to demonstrate that it offers significant speedup while maintaining

higher accuracy than other methodologies that are targeted towards modeling the

high sigma behavior of circuits.

The algorithm was tested against the mathematically known LogNormal dis-

tribution, along with the high sigma delay of a six stage clock path circuit and

gain of an Operational Amplifier. The results show the estimated sigma for mul-

tiple tspec values and are compared to Monte Carlo as ground truth. The Monte

Carlo results were generated with roughly 8E6 samples for the Time Critical Path

and 2.5E6 samples for the Operational Amplifier. Additionally, we compare the

results to the MAXENT algorithm to show the improvements using a piecewise

distribution model rather than a global approach. We also compare the results

to HDIS to show that the re-weighing portion of PDM is accurate and robust for

high dimensional circuits because it is independent of dimensionality. The inde-

pendence is due to the re-weighing process occurring in the output domain where

there is only a single variable. The source code of SUS is also obtained from its

original authors for cross evaluation. Table 4.1 gives an overview of the variables

used in each circuit.

Table 4.1: Parameters of MOSFETs
Variable Name Time Critical Path OpAmp

Flat-band Voltage †

Threshold Voltage †

Gate Oxide Thickness † †

Mobility † †

Doping concentration at depletion †

Channel-length offset † †

Channel-width offset †

Source/drain sheet resistance † †

Source-gate overlap unit capacitance † †

Drain-gate overlap unit capacitance † †

The time critical path circuit has six stages and nine process parameters per
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transistor for a total of 54 variables, while the circuit behavior of interest is the

delay from input to output. Figure 3.7 displays a schematic of the two-stage

differential cascode operational amplifier, and is the same circuit as in [KWG13].

The circuit has a total of thirteen transistors and four gain boosting amplifiers.

In total, only ten transistors are considered to be independently varied. However,

transistors in the gain boosting amplifiers are also varied, though due to the

mirrored properties of the circuit they are varied simultaneously and are counted

as one variation. As such, although each transistor has seven process parameters

resulting in a total of 70 variables, the true number of variables is much higher.

In the proposed algorithm, the circuit behavior of interest is the gain Vout1
Vin1

.

4.3.2 Experiment on Mathematically Known Distribution
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Figure 4.6: LogNormal PDF

To illustrate the capability of modeling strongly non-Gaussian distributions,

we use PDM to model a LogNormal distribution. The LogNormal distribution

with mean and sigma parameters µ = 0, σ = 0.35 was selected because of its

strongly non-Gaussian behavior. A plot of the PDF of this distribution is pre-

sented in Figure 4.6. The distribution appears to be Gaussian for a small portion

due to the bell shaped curve, but it has a very long tail, giving it the non-Gaussian

properties that are of interest.

Figure 4.7 shows the high sigma modeling results for Monte Carlo, PDM,
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Figure 4.7: LogNormal Sigma Behavior

HDIS, MAXENT, and SUS at multiple tspec points. The figure is the CDF zoomed

into the tail area with the x-axis as sigma and y-axis as the value of the random

variable, precisely circuit behavior. Here sigma is used to represent probability,

i.e. 4σ ≈ 0.000064 in the tail. The motivation for this type of plot is to best

represent the non-linear behavior of a non-Gaussian PDF. Additionally, it shows

only the high sigma behavior rather than the overall distribution because that is

the motivation and focus behind this algorithm.

While the number of samples required for SUS ranges from 5800 to 7400 in the

experiment setup, HDIS, MAXENT and PDM each used a total of 4000 samples,

with PDM using 3000 samples to calculate the Segment1 distribution and 1000

samples to calculate the Segment2 distribution. In this case, the point s that

separates Segment1 and Segment2 is selected to be the 4 sigma point, i.e. whatever

circuit behavior that corresponds to a tail probability of 6.4E−5 in the Segment1

distribution. By introducing the Segment2 distribution at the point s, PDM is

able to avoid any errors that MAXENT suffers from, allowing PDM to match

almost identically with the Monte Carlo results up to 4.8 sigma. By utilizing

region specific moments and doing a piecewise approximation of the distribution,

PDM keeps consistently small errors. On the other hand, the MAXENT algorithm

begins to lose accuracy and fails to capture the tail of the distribution because it

only uses one distribution to model the overall behavior.
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Furthermore, we see that HDIS and SUS has accuracy comparable to both

PDM and Monte Carlo. At the 4 sigma point, we see that HDIS is slightly more

accurate. However, between 4 and 4.8 sigma we see that PDM is more accurate,

with both algorithms exhibiting the same, good accuracy at the 4.8 sigma point.

These results intuitively make sense as the LogNormal distribution has only 1

variable so HDIS does not suffer from the curse of dimensionality. Moreover,

because it has only 1 variable, it is able to find a good shift. Similarly, PDM is

able to maintain very high accuracy because it matches region specific moments.

Table 4.2 shows the error in estimated sigma for PDM. The error is between

-0.25% and 2% all the way to the 4.8 sigma point.

We also note that MAXENT and PDM do not assume the distributions to be

matched are Gaussian distributions because they do not match only 3 moments.

[Con13] outlines that the maximum entropy moment matching method can be

forced to assume a Gaussian distribution if we match exactly 3 moments. However,

because we sweep through a wide range of moments for both MAXENT and

PDM, we, in general, will never pick a Gaussian distribution because it does not

agree with the gradient criteria selected by Spearman’s correlation coefficient.

Consequently, the high error that MAXENT suffers from is due to its limitation

of using one set of moments, not from any assumptions about its model.

Table 4.2: Sigma Error for LogNormal
True Sigma Estimated Sigma % Error

4.0 4.0786 1.9650%

4.2 4.2224 0.5333%

4.4 4.3886 -0.2591%

4.6 4.5888 -0.2435%

4.8 4.8569 1.1854%
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Figure 4.8: Clock Path PDF

4.3.3 Experiment on Circuits

The Monte Carlo distribution of the time critical path circuit delay is presented

in Figure 4.8. Because the circuit operates at a very low VDD level, it behaves

in a slightly non-linear way. The distribution, while not as long tailed as the

LogNormal, has a more elongated tail than a Gaussian distribution.
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Figure 4.9: Clock Path Sigma Behavior

SUS uses between 5803 and 9010 samples for different sigma points. With a

slightly larger number of samples, the probability estimated by SUS is accurate

in overalthe bulk of the tail, but is optimistic with respect to Monte Carlo and

PDM. At the same thresholds, the sigma calculated by SUS is between 0.04 and

0.2 larger than the MC results.
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Furthermore, we see that the results from HDIS are completely inaccurate

compared to both Monte Carlo and PDM. HDIS is unable to come anywhere

near the proper sigma value for any of the points that it estimates. This is

likely inaccurate from a combination of high dimensionality and an inaccurate

shift in the mean and sigma of the new sampling distribution that causes the re-

weighing process to again become inaccurate. Simply put, if the shifting method is

inaccurate the results from HDIS will be inaccurate. If a larger number of samples

is used, then the shift and corresponding samples drawn from the new distribution

will be more accurate; however, due to the run time prohibitive nature of high

dimensional circuits, it is imperative to minimize the number of samples. On the

other hand, the shifting method in PDM is more robust because the re-weighing

process is performed in the output domain and is performed using conditional

probability rather than as a ratio of two distributions. Table 4.3 shows the error

in sigma between PDM and the ground truth from Monte Carlo. We see a worst

case error of 2.7% at 4 sigma but significantly less errors at higher sigma values.

0 500 1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Gain

P
ro

b
ab

ili
ty

Figure 4.10: Op. Amp PDF

The Monte Carlo distribution of the Operational Amplifier circuit gain is

shown in Figure 4.10. The distribution is heavily skewed and has a very sharp

peak near the beginning and proceeds to drop very quickly, However, it also has a

slightly flatter portion that eventually decreases to a long, flat region of the tail.

It clearly has a long tail and behaves in a strongly non-Gaussian way.
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Figure 4.11: Op Amp Sigma Behavior

Figure 4.11 shows the high sigma modeling results for Monte Carlo, MAXENT,

and PDM at multiple tspec points. The figure shows only the high sigma behav-

ior rather than the overall distribution because that is the motivation and focus

behind this algorithm. Both MAXENT and PDM used a total of 3000 samples,

with PDM using 2000 samples to calculate the Segment1 distribution and 1000

samples to calculate the Segment2 distribution. In the case of the OpAmp, the

point s was determined to be the 3.6 sigma point rather than the 4 sigma point as

in the previous cases due to the extremely long-tailed nature of the distribution.

Before the point s, it’s clear that PDM has a larger error (roughly 5%) than in

previous cases. However, when we introduce the Segment2 distribution, PDM is

able to immediately recover and match the 3.8 sigma point closely and continues

to match larger sigma points and the overall shape of the Monte Carlo curve very

well. By introducing this second “piece” to model the distribution, we are able to

get a significant increase in accuracy. On the other hand, the MAXENT method

has a large error, blows up and returns noise values because it is unable to cap-

ture the tail of the distribution as it does not use moments that are specific to

that region. We again note that MAXENT does not assume the distribution is a

Gaussian model because it matches more than 3 moments. Hence, its error is due

to limitations of using one set of moments to model the total distribution.

The SUS algorithm used between 5004 and 8216 samples at different sigma
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points. The sigma estimated by SUS is pessimistic with respect to Monte Carlo

and tends to slightly overestimate the true sigma value, with small pessimism

at lower sigmas (3.7 vs 3.6) and higher pessimism at larger sigmas (5.1 vs 4.8).

However, like PDM, SUS is able to capture the overall trend and shape of the

Monte Carlo results.

Table 4.3: Sigma Error for Circuits
Time Critical Path Op Amp

True Estimated % Error True Estimated % Error

Sigma Sigma Sigma Sigma

4.0 4.1077 2.693% 4.0 4.0015 0.0375%

4.2 4.2571 1.360% 4.2 4.1547 -1.0786%

4.4 4.4080 0.182% 4.4 4.4386 0.8773%

4.6 4.5793 -0.450% 4.6 4.6329 0.7152%

4.8 4.8517 1.077% 4.8 4.7662 -0.7042%

Moreover, we observe that the results from HDIS are inaccurate and at one

point has a huge jump in its results and is simply noisy throughout. Although the

Operational Amplifier circuit is not as high dimensional as the Clock Path, HDIS

is still unable to properly model the high sigma region. Again, the inaccuracy is

most likely from an inaccurate shift in the mean and sigma of the new sampling

distribution that causes the re-weighing process to again become inaccurate. Table

4.3 shows the error in estimated sigma between PDM and the ground truth from

Monte Carlo. We see very accurate results with a worst case error of about -1%

at 4.2 sigma.

4.3.4 Speedup Comparison

To analyze the efficiency of the proposed method, we compare the number of sam-

ples required by PDM to the number of samples used for Monte Carlo. Since the

LogNormal distribution is a mathematically known circuit and requires no Monte

Carlo simulations, we exclude that speedup comparison. In the clock path circuit,

PDM requires a total of 4000 samples - 3000 samples for the body distribution
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and 1000 for the hybrid distribution. In the Operational Amplifier, PDM requires

a total of 3000 samples - 2000 samples for the Segment1 distribution and 1000

for the Segment2 distribution. Table 4.4 compares the Monte Carlo and PDM

runtime requirements and the speedup for all circuit examples. We note that the

speedup of the algorithm compared to Monte Carlo will vary based on the number

of samples that are used; however, it is clear that PDM offers a significant speedup

at very little loss in accuracy.

Table 4.4: Speedup Comparison
Circuit Monte Carlo PDM Speedup

Runtime Runtime

Clock Path 8,000,000 4000 2000x

Op. Amp. 2,500,000 3000 833x

4.4 Conclusion

In this Section, we proposed PDM - a piecewise distribution model that performs

region based moment matching to extract the PDF of circuit performance. PDM is

able to model the high sigma regions of the circuit performance PDF. In particular,

we introduced a second distribution based on a set of moments that are accurate

in the tail of the PDF leads to significantly improved accuracy over the basic

MAXENT [KWG13] with little error compared to Monte Carlo.
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CHAPTER 5

Rare-event Microscope: Aiding Yield Analysis

with Classification Algorithms

5.1 Multiple Failure Regions

5.1.1 Limitation of Existing Works

The aforementioned HDIS (in Chapter 3) and PDM 4 tackle the high sigma yield

analysis problem via different way. While HDIS finds an “important” region and

shifts the sample mean to capture more samples in that region and to calculate the

reweighed failure probability, the PDM breaks the performance distribution into

multiple segments and calculates failure probability via conditional probabilities.

To collect enough sample for the next segment, PDM also shifts the sample mean

to cover the “important” region.

Note that one common steps involved in HDIS and PDM is shifting the sam-

ple mean to collect more important samples. The same mean-shifting technique

has also been applied in several other approaches, including mixture importance

sampling [KJN06], spherical sampling [DQS08, QTD10], while the sample mean

of the “important” region is located in different ways.

The mean-shifting based approaches are able to produce accurate estimation

when failed samples are located in a single connected region. However, they

do not consider the condition that the failure samples fall in multiple failure

regions. As illustrated in Figure 5.1, mean-shifting based approaches fail to cover
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Figure 5.1: Mean-shifting based methods on a yield analysis problem with two

disconnected failure regions

the failed samples distributed in two disconnected failure regions. For example,

spherical sampling methods [DQS08, QTD10] search the fail sample with minimal

Euclidean distance to the nominal value. Hence it locates the sample mean on

the boundary of the failure region on the top right corner, while totally ignore the

failed samples in the other failure region. As illustrated in Figure 5.1(b), other

importance sampling approaches take the centroid of the failed samples in the

presampling phase, leading to a shifted sample mean even not within any failure

region.

Beside the mean-shifting based approaches, the basic classification based ap-

proach, statistical blockade (SB) [SR08], utilizes a classifier to block samples that

are unlikely to fail, leaving only likely-to-fail samples to simulate. More recently,

recursive SB [SWC08] and REscope [WXK14] are proposed to tackle problem

with multiple failure regions. However, recursive SB assumes that each failure

region is associate with different label, which does not hold for several circuits

[MAL14, ML14].

In this Chapter, we proposed a new classification based approach, rare event

microscope (REscope). REscope zooms into the failure regions and models the
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circuit performance distribution of likely-to-fail samples into a generalized pareto

distribution (GPD), which is known as a good model of the tail of the PDF

[SR08, HW87]. It prunes the less useful process variation parameters in a high-

dimensional problem by considering the contribution of each parameter to the

performance metrics. Furthermore, we applied a nonlinear SVM classifier which

is capable of identifying multiple disjoint failure regions. On a 108-dimension

charge pump circuit in the phase lock loop (PLL) design, the proposed method

outperforms the importance sampling approach and is 389x faster than the Monte

Carlo approach. Moreover, it estimates the failure rate accurately, while impor-

tance sampling totally fails because the failure regions are not correctly captured.

The highlights of the proposed REscope are summarized as follows:

• Fix the high dimension problem by performing feature ranking according to

their contribution to the circuit performance, and only select the important

features.

• Enable the classifier to handle multiple regions efficiently by using a nonlin-

ear mapping function as the SVM kernel. Therefore the boundary between

pass region and failure region do not have to be a linear hyperplane as in

SB [SR09, SR08].

• More robust way to matching the tail to a GPD distribution. (Use probability-

weighted moment matching results as initial value and iteratively refine the

result via maximum likelihood optimization)

5.2 Preliminary Knowledge

5.2.1 Modeling Rare Events using GPD

In statistical circuit simulation, it is called circuit failure event when a circuit

performance metric does not meet the requirement. Mathematically, given a cir-
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cuit with several process variations S = {X1, X2, ..., XN}, the statistical circuit

simulation analyze the failure probability, i.e., a performance metric Y exceeds

certain failure threshold yf . The failure probability Pf can be represented as

Pf = P (Y > yf ) = 1− F (yf ) (5.1)

where F (y) is the cumulative distribution function (CDF) of performance metric

Y .

A typical way to efficiently statistically model Y is simulate a small size of

Monte Carlo samples and apply moment matching to fit the simulation result

into certain analytical form Fmm(y) [LLG07, GYH11, KWG13]. These approaches

may correctly capture the body shape of the distribution, it is, however, difficult

to exactly fit the tail. The failure probability estimated by moment matching,

1−Fmm(yf), could be very inaccurate. Hence, we need to particularly model the

tail of the distribution.

To simplify the discussion, let’s assume that the performance metricY belongs

to a “lognormal” distribution, which is usually used to model circuit performance,

i.e., memory read/write time. The PDF of a lognormal distribution is defined as

fµ,σ(y) =
1

yσ
√

2π
exp(−(ln y − µ)2

2σ2
) (5.2)

where µ and σ are the mean and standard deviation, respectively. A lognormal

distribution with µ = ln 2 and σ = 1 is presented in Figure 5.2(a). Suppose yt

is a threshold that separates a tail from the body of the PDF function f(y), the

conditional CDF on the tail can be expressed as

Ft(y) = P (Y > y|Y > yt) =
F (y)− F (yt)

1− F (yt)
(5.3)

If we know the F (yt), the failure probability of the given threshold yf can be

calculated as:

Pf = (1− F (yt))(1− Ft(yf )) (5.4)
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Figure 5.2: Model the tail of lognormal using GPD

Fortunately, F (yt) can be accurately estimated by a few thousand samples

because the event of Y > yt is not that rare. Therefore, the remaining problem is

to correctly model the conditional CDF Ft(y).

For several decades, the generalized pareto distribution (GPD) has been known

as a good model for the distribution of the exceedence to a certain threshold in

another distribution, i.e., the tail of F (y) [HW87]. The CDF function of the GPD

is defined as

F(ξ,µ,σ)(y) =

 1− (1− ξ(y−µ)
σ

)
1
ξ for ξ 6= 0

1− exp(− (y−µ)
σ

) for ξ = 0
(5.5)

where ξ is the shape parameter, σ is the scale parameter, and µ is the starting

point of the tail, which is yt in this example. In particular, the tail of the a

lognormal random variable Y , can be accurately modeled by a GPD distribution

with ξ = 0.27 and σ = 3.5, which is shown in Figure 5.2(b).
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Given that the GPD can be used to model rare event, the remaining problems

turn out to be 1) how to effectively draw samples in the tail to model the GPD

under high dimension, 2) how to deal with the the problem of multiple failure

regions, and 3) how to accurate fit the tail distribution into GPD distribution.

5.3 Rare-event Microscope Algorithm

Distribution of 
process variation 

parameters

Failure 
probability 

Pre-sampling
Parameter 

Pruning
Classification

Tail Distribution 
Estimation

y

Fail: y>yfyt

x1

x2
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yt Fail: y>yf
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Figure 5.3: The REscrope framework consists of four components: presampling,

parameter pruning, classification, tail distribution estimation.

5.3.1 Algorithm overview

In this section, we propose, REscope, to identify multiple separate failure regions

in the high dimensional circuit simulation. It falls in the category of classifica-

tion based methods. The REscope framework consists of four components, (1)

presampling, (2) parameter pruning, (3)classification, and (4) tail distribution es-

timation, as shown in Figure 5.3. REscope takes in the distribution of the process

variation parameters, S = {X1, X2, ..., XN}, of a test circuit, and outputs the

estimated failure probability of a given requirement on performance metric, i.e.

Pf = P (Y > yf ), where yf is the threshold that determines whether to accept or

fail this circuit. In the remaining part of this section, we will elaborate the design

of each component in detail.
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5.3.2 Presampling

The purpose of the presampling is to approximately sketch the circuit behavior.

Without loss of generality, we use M (typically a few thousand) Monte Carlo

samples, S = {s1, s2, ..., sM}, subject to the original distribution of S. Next,

transistor level SPICE simulation is performed to evaluate the performance metric

Y of the test circuit using these samples S. A relaxed threshold yt is chosen to

determine the tail from the main PDF, and probability that a sample falls in the

tail F (yt) = P (Y > yt) is calculated.

5.3.3 Parameter pruning

With the design complexity up-scaling and advanced process technology, there

are a sea of parameters in the circuit simulation. Parameter pruning, which is a

way to map the high-dimensional circuit description to a low-dimension space, can

effectively improve the accuracy and efficiency of circuit simulation and analysis.

Existing approach, such as principle component analysis, reduces the dimension

by examining the correlation among input parameters, and project them to a

smaller, orthogonal base. It cannot help if each dimension of the process variation

parameter, Xi and Xj, are mutually independent.

We leverage the ReliefF algorithm [KSR97] to prune parameters in REscope.

More specifically, each parameter are analyzed in terms of how sensitive it is to

cause a circuit failure. The sensitivity is quantified as a weight parameter. In

particular, for a data set S = {s1, s2, ..., sM} with M samples, where each sample

si = {x1, x2, ..., xN} consists of N variation parameters. It starts with a N -long

weight vector ,W , of zeros, and iteratively updates W . At each iteration, it take a

random sample si, and find the closest samples (in terms of Euclidean distance) in

two decision regions respectively. The closest sample in the same region is called

“near-hit”, and the other one is called “near-miss”. The weight vector is then
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updated as

Wi = Wi + (xi − nearMissi)
2 − (xi − nearHiti)2 (5.6)

The weight vector makes sense because it increases if a feature differs from the

nearby sample in the different region more than the sample in the same region,

and decreases in the reverse case. It only requires a linear time in the number of

given features and training instances, and is noise-tolerant and robust to feature

interactions.

Different from the general sensitively analysis that only looks at the overall

sensitively of the performance metric to a parameter, the ReliefF specifically looks

at the sensitivity around the decision boundary of circuit pass and failure, which

yields more important information than general sensitivity analysis.

5.3.4 Nonlinear SVM classifier

In the third step, a nonlinear classifier is adopted to identify whether a sample si

falls in the failure region or accept region. Therefore, we can skip the unlikely-to-

fail samples and focus on the samples in the tail.

As mentioned in Chapter 5.1, most of mean-shifting based methods assumes

only one failure regions in the sample space. For instance, [DQS08] draws sam-

ples around the boundary of the failure region. While others, sush as the HDIS

[WGC14], performs the importance sampling by shift the sample mean to the cen-

troid of the failure regions. The “importance samples” may easily cover all failure

samples if there is only one failure region. In reality, there might be multiple

separate failure regions, the centroid of all fail samples might fall in somewhere

outside the real failure regions, as shown in Figure 5.1.

A previous work based on the classification considering the existence of mul-

tiple failure regions [SWC08]. In [SWC08], the authors assume that the samples

in different failure regions yield different type of failures. Therefore, they applied
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the linear classifier to identify different failure types in a binary decision fashion.

However, the assumption in [SWC08] loses the generality because it limits that

the samples in different failure regions always yield different type of failures.

In REscope, we also consider a classification method to co-recognize the mul-

tiple failure regions. Different from [SWC08], our method is not constrained to

one failure type in one region, and is also applicable to the case with various fail-

ure types. Considering the intrinsic non-linearity of circuit behavior, we employ a

non-linear classifier to tackle the multiple-region multiple-type failure sample clas-

sification challenges. More specifically, we use a Gaussian radial basis function

kernel (RBF) base support vector machine (SVM) to train and classify samples.

The reason to choose RBF kernel rather than linear or other polynomial kernel is

that in high-dimensional circuits, the decision boundary between good and failure

samples is usually non-linear. RBF with radial arc boundary is more capable to

adapt and discover the decision boundary.

5.3.5 Fitting the tail distribution to GPD

By performing classification, we can efficiently collect the likely-to-fail samples.

Assuming Yp = {yp1, yp2, ..., ypn} are the simulation outputs form the samples

in the previous step that satisfy ypi > yt, step4 models the distribution of Yp

into a GPD. As given in 5.5, there are only three parameters, ξ, µ, and σ, to

determine the CDF of GPD. While in this example, the parameter µ is known

as the start point of tail, yt. There are three approaches to approximate ξ and

σ in the CDF, moment matching [HW87], probability-weighted moment (PWM)

matching [HWW85], and maximum likelihood estimation (MLE) [Hos85].

The moment matching and PWM matching only use the first two order of

moments to estimate these two parameters, which may lead to a mismatch in

high order statistics. On the other hand, the MLE iteratively approaches the ξ̂
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and σ̂ using Newton’s method towards a maximum log likelihood function [Hos85]:

logL(Yp; ξ, σ) = −n log(σ)− (1− ξ)
n∑
i=1

zi (5.7)

where zi = −ξ−1 log(1− ξypi/σ).

The drawback of MLE is that it may take a lot a iterations before the results

finally converged to ξ̂ and σ̂.

In REscope, we use PWM matching results, ξ0 and σ0, as the initial solution

of the Newton’s method. Next, MLE is applied to iteratively approach the ξ̂ and

σ̂ which maximize the log likelihood function [Hos85]. The number of iteration is

reduced due the configuration of the initial value.

5.4 Experiment Results

5.4.1 Charge pump circuit and experiment setting

The performance of the REscope is evaluated using a charge pump (CP) circuit,

which is a critical sub-circuit of the the phase-locked loop (PLL). The block dia-

gram of a PLL is presented in Figure 5.4.

PFD CP VCO

FD

Up

LPF

CLKfb

CLKref
CLKout

Digital

Digital

Analog Analog

Down

VctrlIout

Figure 5.4: A block diagram of PLL

In this PLL, a phase frequency detector (PFD) is used to detect the phase

difference between reference clocks (CLKref ) and feedback clocks (CLKfb). The
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CP takes in the PFD output (up/down) and generate a charge or discharge current

to the loop filter (LPF), which will affect the node voltage (Vctrl) on LPF. This

Vctrl is controls the frequency of the output clock (CLKout) through a voltage

controlled oscillator (VCO). The output of the VCO is sent back to the PFD

through a frequency divider (FD), which divide the CLKout into a lower frequency

CLKfb, to complete the feedback loop.

SW1

SW2

VDD

GND

MN1

MN2

MN3 MN4

MP1 MP2

MN5

Up

Dn

Out

Figure 5.5: Simplified schematic of the charge pump circuit

As a sub-circuit of the PLL, CP adjusts the frequency of the output clock sig-

nal, CLKout, via a charge/discharge capacitance and VCO. A simplified schematic

of the charge pump consisting of two switched current sources is presented in Fig-

ure 5.5. Ideally, MN3, MN4, and MN5 on the bottom of Figure 5.5 are designed

with the same dimension. The drain current flowing through these three NMOS

transistors should be identical because they are imposed the same gate voltage.

The same current also flows through MP1 since it shares the same branch with

MN4. Similarly, on the top of Figure 5.5, two PMOS transistors form another

current mirror, so that the current can be copied from MP1 to MP2. In this

scenario, the charge current flowing through MP2 should be identical to the dis-

charge current through MN5 when both switches are turned on, leading to zero

net current.

In reality, it is, however, difficult to guarantee those transistors exactly the
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same dimension because of the process variation effects during chip fabrication.

Mismatches on these transistors, especially on MP2 or MN5, could result in a

nonzero net current at the output node. It could cause large fluctuation at the

control voltage, also known as “jitter”, which severely affect the PLL system

stability. In the following experiments, we consider a failure if there is a big

enough mismatch between the charge and discharge current, mathematically

max(
ICharge
IDischarge

,
ICharge
IDischarge

) > γ (5.8)

where γ is a threshold of this performance matric.

The CP circuit is designed using TSMC 45nm technology and simulated with

HSPICE with BSIM4 transistor model. In each transistor, we consider 4 param-

eters, channel-length offset (δL), channel-wight offset (δW ), gate oxide thickness

(tox), and flat-band voltage (Vfb), as the source of process variation as suggested

by the foundry.

REscope are used to evaluate the mismatch current of the CP circuit in Figue

5.5. In addition, Monte Carlo (MC) method, statistical blockade (SB) [SR09] has

been implemented, and the the source code of HDIS [WGC14] from its authors

for accuracy and efficiency comparison. To evaluate the efficieny by counting

the total number of simulations that are required to yield a stable (or confident)

failure rate. In REscope, we generate a large number of MC samples and filter

them by the classifier to make sure we can get enough samples on the tail. In

our implementation, REscope stops when there are 1000 samples fall on the tail.

The MC converges when the relative standard deviation of the failure probability,

σr =
std(pf )

pf
, is smaller than 0.1.

5.4.2 Handling multiple separate failure regions

The CP is a typical circuit with multiple failure regions. To illustrate the capa-

bility of REscope on handling multiple failure regions, we use a simplified process
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variation model, which only consider the threshold voltage (Vth) of MP2 and MN5

in Figure 5.5 as the source of process variations. When the Vth of MN5 is lower

than the nominal value and Vth of MP2 is higher than the nominal, there will be

a mismatch as IDischarge can be larger than ICharge, and vice verse.

In this experiment, the threshold γ is configured to ensure a 5% failure rate.

Under these configurations, the failure regions can be clearly visualized on a 2-D

space, as shown in Figure 5.6(a).
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Figure 5.6: How multiple failure regions are handled in HDIS [WGC14], SB [SR08],

and REscope

The importance sampling region of HDIS, along with the classification results

of SB and REscope are illustrated in Figure 5.6(b), (c), and (d), respectively.

It is easy to notice that the HDIS failed to effectively capture the “importance”

samples, because it attempts to draw “important” samples around the centroid of
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the failure region. When there are 2 failure regions as illustrated in Figure 5.6(a),

however, the centroid falls almost in the middle of a success region, which need a

very large sample space to cover sufficient “important” samples.

The SB adopted a linear classifier, which is essentially find a linear hyperplane

separating the successful region and fail region. However, in this example, it

is impossible to separate all failure samples from the successful ones using just a

linear hyperplane. In Figure 5.6(c), SB draws a boundary in the successful region,

which only covers the failure region on the top-left corner and misclassifies the

true samples on the bottom-right corner of the sample space. In the meantime, it

also introduce a lot of over-classifications on the top-left sample space.

Taking advantage of the nonlinear classifier, REscope is able to classify all real

fail samples in the sample space, which is illustrated in Figure 5.6(d).

5.4.3 Parameter weighing and pruning

In the following discussion, we model the δL, δW , tox, and Vfb in all 27 transistors

of the charge pump circuit as process variation source, and evaluate the current

mismatch. On this 108-dim problem, the REscope is compared with MC since

HDIS does not succeed in capturing the failure region, nor does SB correctly

classify the fail samples.

ReliefF is performance to to reduce the dimension before constructing the

classifier. The weights of the ranked process variables are illustrated in Figure 5.7.

It is easy to notice that the maximal weights can be more than 10x greater than

the minimum. Using a higher number of input variables may fool the classifier.

In practice, we normalize the weights and setup a threshold to prune the

parameters with smaller weights than the threshold. In this example, we kept the

first 27 parameters and used them to build the classifier.
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Figure 5.7: Weight of all 108 process variations in charge pump circuit

Table 5.1: Comparison of the accuracy and efficiency on charge pump circuit

Monte Carlo Importance sampling Proposed approach

(MC) (HDIS)[WGC14] (REscope)

failure probability 2.279e-5 (0%) 1.136e-3 2.256e-5 (+1.05%)

#sim. runs 1.4e+6 (389x) 2e+4 (5.6x) 3.6e+3 (1x)

5.4.4 Accuracy and Efficiency

On this 108-dim problem, the REscope is compared with MC and HDIS on effi-

ciency and accuracy, while the results are listed in Table 5.1. SB is excluded from

the comparison the linear classifier generated by SB accepts all the MC samples,

which makes no difference between a MC simulation. Since the HDIS didn’t find

the shift the mean at a desired place, it outputs a nearly random failure probabil-

ity with 20 thousand simulations. The REscope accurately calculates the failure

probability as 2.256e-5, with only 1.05% relative error compared with MC.

On the efficiency side, the MC needs 1.4 million to reach a confident estimation

of the failure probability 2.279e-5, which is around 4.07 sigma. Beyond, 4.07

sigma, the MC result may be unreliable. On the other hand, the REscope only

run 2000 samples to construct the nonlinear classifier. Next, 100,000 MC samples

are generated for evaluation, but only 1621 are actually simulated, including 630

over-classified samples to avoid misclassification. Therefore, the REscope achieves
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389x speedup compared with MC almost without sacrificing the accuracy.
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Figure 5.8: Modeling the tail of the mismatch current distribution

To examine the approximation accuracy scales when the failure probability

becomes rarer, we plot the tail of mismatch current CDF function estimated by

REscope in Figure 5.8(a), which perfectly fit to the MC result. In Figure 5.8(b),

the fitting results are illustrated more clearly after represent the CDF in terms

of sigma. The REscope estimate the probability of rare event accurately for upto

4.2 simga, which is about 1.22e-5 in terms of probability. Beyond 4.2 sigma, the

accuracy of Monte Carlo cannot be guarantee as only 1.4 million MC samples are

available so far.

5.5 Conclusion

In this chapter, REscope is proposed for statistical circuit simulation with rare

failure event. Given a circuit with a large number of process variation parameters,
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REscope first leverages the ReliefF algorithm to evaluate each parameter, and

prune those that have little contribution to the circuit failure. Furthermore, we

applied a nonlinear classifier which is capable of identifying disjoint multiple failure

regions. Because of the classification, the computation complexity is reduced

by only simulating samples that are classified as likely-to-fail samples. When

sufficient samples are simulated, the simulation results are approximated to a

GPD, which is usually used model the rare event.

On a 108-dimension charge pump circuit, the proposed method outperforms

the importance sampling approach and is more than 2 orders faster than the

Monte Carlo approach. Moreover, it estimates the failure rate accurately, while

importance sampling totally fails because the failure regions are not correctly

captured.
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CHAPTER 6

Hyperspherical Clustering and Sampling: Aiding

Yield Analysis with Hyperspherical Clustering

REscope presented in Chapter 5 solves the multiple failure region problem. Its

performance is, however, heavily rely on the classifier, which works as a block

box and out of user’s control. In this chapter, a hyperspherical clustering and

sampling approach [WBH16], HSCS in short, is proposed to effectively handle

the challenges of both multiple failure regions and high dimensionality. As the

first step, HSCS identifies multiple failure regions by grouping the failure samples

into multiple clusters. Instead of clustering in a high dimensional open space,

we sample spherically and develop a weighted spherical k-means algorithm to

identify clusters only on a set of hyperspheres. Searching for min-norm points

in these clusters is much easier than conventional spherical IS. Next, a modified

mixture importance sampling shifts the sample mean to the min-norm points of

multiple clusters so as to cover multiple failure regions.

HSCS is evaluated and compared with MC and other IS based implementa-

tions in terms of accuracy, efficiency, and robustness. On a small 2-dimensional

problem with mathematically known distribution, HSCS yields very accurate re-

sults compared with mathematically calculated groundtruth. On a 70-dimensional

charge pump circuit, HSCS is about 3 orders faster than MC and provides the

same level of accuracy, while other IS based approaches either fail to converge or

converge to wrong results. Furthermore, on both examples, HSCS demonstrates

excellent robustness by generating consistent results in multiple replications.
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6.1 Existing Works that Handle Multiple Failure Regions

The REscope presented in Chapter 5 is an improvement over statistical blockade

(SB) [SR09] and recursive SB [SR08]. Using a nonlinear classifier with param-

eter pruning techniques and better tail modeling algorithm, the REscope can

identify multiple failure regions at high dimensionality. However, on the other

hand, REscope [WXK14] relies on support vector machine (SVM) with radial ba-

sis function (RBF) kernel to identify failure regions, but SVM works as a black

box model and is out of user’s control. Excessively training the SVM to identify

multiple regions could easily lead to overfit.

Among others, [DL11, SL14] uses a set of sample “chains” to explore the fail-

ure region with the aid of the Markov Chain Monte Carlo (MCMC) method.

However, it is difficult to cover the entire failure region with several chains of

MCMC samples, particularly when tens or hundreds random variables are consid-

ered. Multi-cone approach [KJL12] deterministically breaks the original sample

space into multiple non-overlapping cones, and sums up the analytically calcu-

lated failure probability in each cone. It does consider multiple failure regions,

but the number of cones grows exponentially to the dimensionality, limiting it

only effective for low dimensional problems.

Those drawbacks motivate the HSCS, which explicitly handles multiple failure

regions.

6.2 Locating Min-Norm Point for Importance Sampling

As presented in Chapter 3.2, the essence of importance sampling is to find a

proposed distribution g(X) that tile towards S where a rare-event becomes less

rare to happen. As samples are generated according to g(X) rather than the

original distributionf(X), we need to use a weight parameter w(X) to compensate
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the discrepancy between f(X) and g(X) and unbiases the probability estimation

under g(X), where w(X) = f(X)/g(X).

It is obvious that the samples closer to the nominal value are more desirable

[DQS08] because they are associated with greater probability f(X) and likeli-

hood ratio w(X), hence have more significant impact on the estimated failure

probability P̃IS. In practice, most of the existing approaches shift the sample

mean to the point that is closest to the origin on the accept/fail boundary, which

is also known as the minimum-norm (min-norm) point [DQS08]. However, the

mean-shift IS implementations suffer from the following two drawbacks:

First, they search the min-norm points by constructing an accept/fail bound-

ary in the open space, which may take prohibitively long runtime, especially at

high dimensionality.

Moreover, while existing approaches [KJN06, DQS08, KHT10, WGC14] shift

the sample mean to a more important point, they totally neglect that failed sam-

ples might be distributed in multiple disjoint regions. As illustrated in Figure

5.1, one shifted distribution might be insufficient to cover all the failures, hence

leading to a biased estimation of P̃IS(Y ∈ S) in (3.6).

To improve the mean-shift IS, the remaining challenges turn out to be 1)

identifying failure regions in high dimensional sample space, 2) effectively sampling

to cover multiple failure regions.

6.3 Hyperspherical Clustering and Sampling

6.3.1 Algorithm Overview

In this section, we present the proposed hyperspherical clustering and sampling

approach (HSCS). It consists of two major phases, (1) hyperspherical clustering,

(2) importance sampling around multiple min-norm points, as illustrated in Figure
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Figure 6.1: The HyperSpherical Clustering and Sampling (HSCS) algorithm con-

sists of two phases: 1) hyperspherical clustering, 2) multiple mean-shift impor-

tance sampling.

6.1. HSCS takes in the process variation parameters, and outputs the estimated

failure probability P̃IS based on given requirements on performance metric Y .

To accurately estimate P̃IS, we attempt to cover more samples that are closer

to the nominal value. During the clustering phase, a weighted clustering algo-

rithm is designed to bias the cluster centers towards those samples. In the second

phase, sample means are shifted to the min-norm points of multiple clusters for

two purposes: 1) capture more samples with greater weights, 2) cover the failed

samples in multiple failure regions.

In the remaining part of this section, we will elaborate each phase of the

algorithm.

6.3.2 Hyperspherical Clustering

The hyperspherical clustering phase includes a spherical presampling step and a

weighted hyperspherical k-means step to cluster the failed samples. Algorithms in

this phase are targeted to find the direction of failure regions, so that statistical

approaches can be applied afterwards to estimate the failure probability with a

better failure region coverage.

86



6.3.2.1 Spherical Presampling

In order to identify multiple failure regions, it is intuitive to collect a number of

likely-to-fail samples (typically samples in the quantile of the performance distri-

bution), and to cluster them into several aggregations according to their locations

in the sample space. However, clustering samples that are randomly generated

in high dimensional open space is challenging. Even in the same cluster, samples

may still be far apart from each other. In this scenario, a cluster centroid does

not necessarily mean more failed samples, leading to meaningless clusters.

Alternatively, we restrict the samples to a few hyperspherical surfaces by sam-

pling spherically. In this scenario, clustering algorithms can be performed on a

more restricted area rather than the high dimensional open space.

As illustrated in the left part of Figure 6.1, samples are randomly generated on

hyperspheres with gradually increasing radius to capture samples in the quantile.

During the implementation, we generate 1000 samples on each hypersphere surface

and stop expanding the hypersphere until 5% or more samples on the current

hypersphere surface fall in the 1% quantile.

6.3.2.2 Weighted Hyperspherical K-means

Conventional clustering algorithms (e.g. k-means) group samples to optimal clus-

ters by minimizing the sum of Euclidean distance [HW79] between samples and

their corresponding cluster centers, as defined in (6.1).

EuclideanDistance(X(1), X(2)) =
∥∥X(1) −X(2)

∥∥ (6.1)

CosineDistance(X(1), X(2)) = 1− X(1)TX(2)

‖X(1)‖ ‖X(2)‖
(6.2)

As we generate samples on hyperspheres, Euclidean distance makes less sense

because the distance between samples and the origin is the same. It is more

desirable to cluster samples based on the directions those samples pointing to
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rather than Euclidean distance. Therefore we use cosine distance, defined in (6.2),

as the distance metric, leading to a hyperspherical version of k-means algorithm.

Furthermore, a naive hyperspherical k-means algorithm only makes use of the

samples on the outermost hypersphere, without incorporating the failed samples

captured on the inner hyperspherical surfaces, which are usually associated with

greater likelihood ratio according to (3.5), i.e. higher importance. To take full

advantage of all the failed samples, we propose a weighted hyperspherical k-means

algorithm. Each failed sample is normalized to unit length and associated with

a weight calculated based on its probability density. With a targeted number of

clusters k, the proposed algorithm returns the cluster assignment for each input

failed sample.

As the first step of Algorithm 2, a set of initial cluster centroids are randomly

generated. Next the algorithm iteratively updates the cluster label assigned for

all samples, cleans up empty cluster, and recalculates the centroids, until the label

assignment remains unchanged after one iteration. During the cluster assignment

step, the algorithm checks the cosine distance between a sample and all cluster

centroids. The cluster j that maximizes X(i)Tµ(j), which is equivalent to mini-

mizing the cosine distance, will be selected. Moreover, we assign samples different

weights in the centroid update process in step 5, therefore the centroids are biased

to samples with higher importance.

One caveat is that k-means searches for the cluster assignment Y in a greedy

fashion, resulting in convergence to the local optimal instead of guaranteeing

global optimum. The proposed weighted hyperspherical k-means is not an ex-

ception. In practice, we start from multiple set of randomly initialized cluster

centroids U , and choose the one leading to minimal sum of cosine distance as

the solution. Hence, the final solution could be more prone to take the global

optimum.

Also, the number of clusters, k, is unknown before the clustering. In practice,
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Algorithm 2 Weighted Spherical K-Means Algorithm

Input: A set of M failed samples: X = {X(1), X(2), ..., X(M)}

Sample weights: w(1), w(2), ..., w(M)

Number of initial clusters: k

Output: Cluster label for samples: Y = {y(1), y(2), ..., y(M)}

Updated number of clusters: k

1: Randomly initialize the unit length cluster centroids U = {µ(1), µ(2), ..., µ(k)};

2: repeat

3: Cluster Assignment (update Y):

For each sample X(i), set y(i) = argmax
j

X(i)Tµ(j);

4: Remove Empty Clusters (update k)

Remove Xj if Xj = {X(i)|y(i) = j} = ∅;

Update number of cluster k;

5: Weighted Centroid Update (update U):

For cluster k, let Xj = {X(i)|y(i) = j}, update centroid as µ(j) =∑
X(i)∈Xj w

(i)X(i);

µ(j) = µ(j)/
∥∥µ(j)

∥∥;

6: until ¡Y remains unchanged¿

7: Return Y and k;

we try a number of different k and choose the one with a trade off between the

model complexity and goodness of fit. In the machine learning community, k is

empirically chosen to be
√
M [MKB79], where M is the total number of samples to

be clustered. More discussion on choosing k is included in the experiment section

with concrete example.

6.3.3 Multiple Mean-Shift Importance Sampling

The previous phase generates normalized cluster centers, i.e. the direction of

failure regions. In this phase, we locate the min-norm points of multiple failure
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regions and apply a modified mixture importance sampling (MixIS) approach to

sample in all the failure regions and to estimate the overall failure probability.

6.3.3.1 Locating the Min-norm Points using Bisection

To locate the min-norm points more accurately and efficiently, we only search

towards the direction of the clusters given that they have been identified.

Mathematically, all the samples in the same cluster can be covered by a cone

defined in (6.3).

C = {X|CosiceDistance(X,µ) ≤ dmax} (6.3)

As illustrated in the right part of Figure 5.3, the opening angle of cone C is

constrained by dmax, the largest cosine distance between failed samples in this

cluster and the cluster centroid µ.

Algorithm 3 Locate min-norm points for each cluster with bisection
Input: Minimal radius of existing failure samples, R

Output: Radius of min-norm point: Rmin

1: Rmax = R;

2: Rmin = 0;

3: repeat

4: R = (Rmax +Rmin)/2;

5: simulate a small set of samples at Radius = R in current cluster;

6: if any failed sample captured then

7: Rmax = R;

8: else

9: Rmin = R;

10: end if

11: until Rmax −Rmin < Rthreshold

12: Return R;

Next, we apply bisection to search the minimal radius that leads to a failure
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in each cone, as presented in Algorithm 3. Starting with a lower bound of 0, and

upper bound at the minimal radius of the existing failure samples, the algorithm

bisects the radius and only simulates a small number of samples at this radius.

It will reduce the upper bound to search the lower half region if any failure is

captured during the simulation, otherwise, it will go to the upper half.

After locating the minimal radius Ri of a cone, the min-norm point of the

corresponding cluster is calculated as Cmi = µi ∗ Ri, where µi is the normalized

cluster center that indicates the direction of this cluster.

6.3.3.2 Modified Mixture Importance Sampling

Next, we modifie the MixIS and shift the sample mean to all these min-norm

points found in the previous step. The proposed distribution g(x) is defined as

g(X) = αf(X) + (1− α)
∑k

i=1
βif(X − Cmi) (6.4)

where

βi =

∑
X(i)∈Xk w

(i)∑
∀X w

(i)
(6.5)

is the weight for each failure region (cluster), which is calculated based on the

sum of sample weights in the cluster.

Note that we also keep a small ratio (α) of f(x) in the proposed distribution

g(x), so that IS likelihood ratio

f(X)

g(X)
=

f(X)

αf(X) + (1− α)
∑k

i=1 βif(X − Cmi)
<

1

α
(6.6)

is bounded by 1/α. It prevents the likelihood ratio from going to infinity at certain

X, and preserves the numerical stability of the modified MixIS.
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6.4 Experiment Results

The proposed HSCS is first evaluated using a mathematically known 2-dimensional

normal distribution with 2 disjoint failure regions. Next, we verify HSCS using

a more realistic high-dimensional charge pump circuit, which is known to have

multiple failure regions.

6.4.1 Evaluation on Mathematically Known Distribution

On a sample space with 2-dimensional normal distribution, two disjoint failure

regions, S1 and S2, are defined as follows:

• S1 = {X| ‖X‖ > 3.8 and φ(X) ∈ [2
3
π, 3

4
π]}

• S2 = {X| ‖X‖ > 3.9 and φ(X) ∈ [4
3
π, 3

2
π]}

where ‖X‖ is the 2-norm of the sample, i.e. the Euclidean distance between the

sample and the origin, and φ(X) is the phase of the 2-D sample. These two failure

regions are illustrated in Figure 6.21.
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Figure 6.2: 2-dimensional sample space with two disjoint failure regions S1 and

S2

1Figure 4 is plotted using uniformly distributed samples for better illustration.
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Since the PDF and the failure regions are mathematically known, the failure

probability can be calculated by integrating PDF function in (6.7),

PF =

∫
X∈{S1,S2}

f(X)dX ≈ 7.199e− 5 (6.7)

leading a failure probability of 7.199e-5, which is close to 4 sigma.

As the first step, HSCS gradually increases the radius of the sphere to search

for failed samples and stops expanding until enough failed samples are collected.

As illustrated in Figure 6.3, the presampling step converges at 4-sigma sphere in

this particular example.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x1

x2

 

 
Accept
Fail

Figure 6.3: Spherical presampling to collect failed samples

Obviously, those failed samples are aggregated in two separate regions in Figure

6.4(a). The weighted hyperspherical k-means updates the cluster assignments in

a greedy fashion by always assigning a sample to its closest centroid. Hence, if

the initial centroids are improperly selected, it is possible that the iterative cluster

assignments end up with assigning all samples in one cluster as illustrated in Figure

6.4(b), while leaving the other cluster empty (the empty cluster is removed in step

3 of Algorithm 2).

This problem has been well addressed in the machine learning community by

randomly creating multiple set of initial centroids and applying the same cluster
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Figure 6.4: Spherical k-means might converge to local optimal with “improper”

initial centroids

algorithm to all these set of samples. Only the cluster assignment with best

optimization target, i.e. the smallest sum of cosine distance, will be chosen.

Next, bisection is applied to locate the min-norm points. In this example, we

generate 20 samples only at each Radius. In each cluster, the algorithm ends up

with 5 iterations and converges to radius at 3.9375 and 3.8125, which are very

close to the groundtruth.
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Figure 6.5: Sample coverage of the modified mixture importance sampling

The modified mixture importance sampling shifts the sample means to the

min-norm points of both failure regions. Samples drew by importance sampling

in Figure 6.5 indicate that both failure regions are accurately and fully covered.
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The failure rate is estimated at 7.109e-5 using HSCS, which is quite close to

the mathematically calculated ground truth, 7,199e-5. As a stochastic algorithm,

we also run the HSCS with 100 replications to verify the stability. The estimated

failure probability ranges from 5.54e-5 to 9.05e-5, with an average of 7.21e-5.

6.4.2 Experiments on Charge Pump Circuit

6.4.2.1 Charge Pump Circuit and Experiment Setting

The same charge pump circuit used in Chapter 5 is redesigned using using PTM

22nm high performance technology model [SYC12] and simulated in HSPICE.

The CP circuit is a typical circuit known to have multiple failure regions [MAL14,

ML14, WXK14]. We analyze this circuit with two different process variation

setups.

• In the first setup, we map the variations to threshold voltage (Vth), and

only model the Vth of MP2 and MN5 as variation source. Hence, the failure

regions can be visualized in a 2-dimensional space.

• A more comprehensive model with 10 parameters, as listed in Table 6.1, are

considered as variation source for each of those 7 transistors in Figure 5.5.

Variations in those two digital switches are not accounted. In the second

setup, there are a total of 70 variation parameters in the circuit, which is a

relatively high dimensional problem.

In addition to the HSCS, Monte Carlo (MC) is included as the gold reference

of the experiment. We also implement the high-dimensional importance sampling

(HDIS) [WGC14] and spherical importance sampling (SpIS) [DQS08] for accuracy

and efficiency comparison. The HDIS and Spherical IS are two typical mean

shifting approaches that shift the sample mean to the centroid and min-norm

point of the failure region respectively.
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Table 6.1: Process variation parameters for each transistor

Variable Name σ/µ Unit

Flat-band Voltage (Vfb) 0.05 V

Threshold Voltage (Vth0) 0.05 V

Gate Oxide Thickness (tox) 0.03 m

Mobility (µ0) 0.05 m2/V s

Doping concentration at depletion (Ndep) 0.05 cm−3

Channel-length offset (∆L) 0.03 m

Channel-width offset (∆W ) 0.03 m

Source/drain sheet resistance (Rsh) 0.05 Ohm/mm2

Source-gate overlap unit capacitance (Cgso) 0.05 F/m

Drain-gate overlap unit capacitance (Cgdo) 0.05 F/m

The efficiency is evaluated by counting the total number of simulations required

to yield a stable failure rate. All the aforementioned approaches converge at

the same criterion, i.e. the relative standard deviation of the estimated failure

probability,

σr =
std(pf )

pf
, (6.8)

gets smaller than 0.1.

6.4.2.2 2-D Setup with Visualized Failure Regions

In this setup, instead of investigating very rare failure event, we configure the

threshold γ to target a 5% failure probability. Under this configuration, two

failure regions can be easily visualized when we plot the accepted MC samples

against failed ones in 2-dimensional sample space, as shown in Figure 6.6(a).

With only 1000 samples, the coverage of HDIS, Spherical IS, and the pro-

posed HSCS are illustrated in Figure 6.6(b), (c), and (d), respectively. Sample

means of these 3 importance sampling approaches are marked as upward-pointing

triangulars in the Figures.

It is easy to notice that HDIS fails to shift the sample mean to any of the
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Figure 6.6: Multiple failure region coverage test MC, HDIS [WGC14], Spherical

IS [DQS08], and HSCS

failure regions. As illustrated in 6.6(b), it attempts to draw samples around the

centroid of the failed samples. The centroid of those failed samples, however, falls

almost close to the origin, which is obviously not in the failure region, leading to

a poor coverage on those truly “important” samples.

Spherical IS shifts the sample mean to the existing sample with minimal norm.

It correctly locate the min-norm point, as shown in Figure 6.6(c), but Spherical

IS only samples one failure region while leaving the other one totally untouched.

The samples drew by the proposed HSCS are plotted in Figure 6.6(d). Samples

generated during presampling and min-norm points searching are not included in

this Figure. While the majority of samples are centered at the min-norm points

of those two failure regions, HSCS still preserves a few samples around the origin
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Table 6.2: Accuracy and efficiency evalution on 70-dimensional charge pump cir-

cuit

Monte Carlo HDIS [WGC14] SpIS [DQS08] Proposed HSCS with 10 replications

failure probability 4.904e-5 3.9e-3 8.788e-7 3.89e-5 ∼ 5.88e-5 (mean 4.82e-5)

Total #sim. runs 1.584e7 3.8e4 >7.4e5 4.6e3 ∼ 5.5e4 (mean 2.3e4)

#sim. for presampling
-

1.1e4 4e3 4.2e3

#sim. for IS 3.8e4 >7e5 410 ∼ 5.1e4 (mean 1.9e4)

to keep a small ratio of the original distribution according to equation (6.4) and

avoids numerical instability in likelihood ratio calculation.

6.4.2.3 Hyperspherical Clustering with 70 Process Variation Parame-

ters

In the following discussion, we model 10 process variation parameters on 7 tran-

sistors shown in Figure 5.5 in the CP circuit, leading to a 70-dimension problem.

Transistors in two digital switches are not considered.

To collect enough samples for clustering, we generate 1000 samples at each

hypersphere surface and gradually increase its radius and search for the samples

on the 1% quantile. Until 6 sigma hypersphere, a total of M = 144 samples are

collected, including 41 failed samples captured on 5 sigma hypersphere, and 103

failed samples on 6 sigma hypersphere. The weighted spherical k-means algorithm

is applied on these 144 samples to group them into clusters. Note that the ac-

tual number of clusters (kactual) generated by the algorithm could be small than

ktarget, as some clusters may become empty during the cluster assignment and are

removed.

To determine the optimal number of clusters, we start with different ktarget and

evaluate the value of the maximization objective (also referred as profit) under

those ktarget. As shown in Figure 6.7, there is a big jump when ktarget increases

from 1 to 2. Afterwards, the slope becomes gentler and almost flat when ktarget
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Figure 6.7: Clustering maximization objective while changing the targeted number
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Figure 6.8: Number of actually clusters may be small than the targeted number

of clusters

reaches 30.

A lot of information can be interpret from this Figure. First, the big jump

indicates that the failed samples are located in two major clusters. When we use

two centroids instead of one, the samples becomes much closer to the centroids,

leading to a remarkable increase in the profit. Of course, these two big clusters can

be further decomposed into smaller ones, but the profit generated by increasing

ktarget is smaller. When ktarget is beyond 30, we do not benefit from increasing the

cluster numbers.

The number of actually generated clusters kactual is plotted against ktarget in
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Figure 6.8, which helping us understand Figure 6.7 better. When ktarget is small,

the algorithm generates whatever number of clusters we ask for. Therefore, kactual

is overlapped with ktarget. However, excessively increasing ktarget results in a lot

of redundant clusters, which are not assigned any samples and removed from the

targeted clusters. These redundant clusters account for the gap between kactual

and ktarget. In this particular problem, any ktarget between 2 and 30 could be

reasonable. As expected, the empirical guess, k =
√
M = 12 falls in this range.

6.4.2.4 Accuracy, Efficiency, and Robustness

The HSCS is also compared with MC, HDIS [WGC14], and SpIS [DQS08] in terms

of both efficiency and accuracy. Their convergence curves are plotted in Figure

6.92, including one figure for the estimated failure probability (Pfail) and the other

one for deviation of the estimation.

To generate the groundtruth, MC takes nearly 16 million simulations to get

confident estimation of Pfail at 4.904e-5. The HDIS converges with only 4.9e4

samples (11k samples for pre-sampling and 38k for IS), but unfortunately, to a

wrong estimation as shown in Figure 6.9(a). The Spherical IS is terminated since

it does not show any sign of convergence after 7.4e5 samples being simulated. The

poor performance of HDIS and SpIS is not a surprise because they fail to draw

samples to comprehensively cover the failure regions, hence leading to fluctuant or

event deviated estimations. More quantitative results of these approaches are pre-

sented in Table 6.2. Contrasting to HDIS and SpIS, the proposed HSCS achieves

very promising estimation about 2.3e4 samples. In short, it estimates Pfail at MC

accuracy with ∼3 order speedup.

To ensure that HSCS can consistently generate accurate estimation, we ex-

ecuted the same program with 10 replications and presented their convergence

2Note that the convergence curves of HDIS, SpIS, and HSCS start from different points because they need
different # of samples in the presampling step.
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Figure 6.9: Convergence curve of Monte Carlo, HDIS, Spherical IS, and the pro-

posed HSCS

curves in Figure 6.10. We notice that the failure probabilities estimated by these

replications converge to the ground truth, the dashline in Figure 6.10(a). As de-

tailed in Table 6.2, the estimated failure probability ranges from 3.89e-5 to 5.88e-8,

with an average of 4.82e-5. This is very close to the MC result. Also, it only takes

an average of 2.3e4 samples to converge the simulation, which is about 3 orders

faster than MC.

6.5 Conclusion

In this chapter, HSCS is presented to tackle the challenging statistical circuit

simulation problems with multiple failure regions and high dimensionality, which

are the shortcomings of the existing importance sampling and classification based

approaches. HSCS first applies spherical presampling and clustering to identify

multiple failure regions. Next, it locates the min-norm points of each failure
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Figure 6.10: Robustness test of HSCS with 10 replications

region and leverage a modified MixIS that shifts the sample mean to those min-

norm points. Therefore, the importance samples cover multiple failure regions.

In the experiments on a 70-dimensional charge pump circuit, HSCS achieves ∼3

orders speedup over MC providing the same level of accuracy, while other IS

based approaches either fail to converge or converge to wrong results. Further-

more, HSCS demonstrates excellent robustness by generating consistent results in

multiple replications.
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CHAPTER 7

Summary

As the process technology scales down to nanometer, analog circuits are more

prone to process, voltage and temperature (PVT) variations. Stochastic circuit

analysis simulates circuits while considering PVT variations. It helps circuit de-

signers to shift the post-silicon verification to pre-silicon phase debug, which is

more cost friendly and also significantly shortens the time to market. This dis-

sertation presented the following several pieces of research related to stochastic

circuit analysis.

The dissertation starts from understanding the performance of a circuit under

PVT variation. We develop a maximum entropy (MaxEnt) algorithm that models

the distribution of circuit performances in a very efficient way. MaxEnt builds up

the circuit performance distribution by matching the probabilistic moments of

only a small number of samples, and achieves 102 to 103 times speedup compared

with the Monte-Carlo (MC) simulation and better accuracy than the existing

moment matching approaches.

Take one step further, if the circuit under analysis uses a large number of

duplicated cells or is critical to the entire system, a rare failure event needs to be

considered. The rare event modeling (or yield analysis) is extremely challenging

when the number of variation sources is large, i.e. the dimension is high. Several

algorithms are proposed to tackle the high dimensional yield analysis problem.

First, a high-dimensional importance sampling (HDIS) approach is developed

to estimate the probability of rare failure events. Compared with the conventional
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important sampling (IS) approaches, the failure probability estimated by HDIS

is provably bounded but the estimation from conventional IS methods are not

necessarily bounded.

Second, we proposes a piecewise distribution model (PDM) that tackle this

problem from a different angle. Based on MaxEnt, PDM models performance

distribution as multiple segments so that it can also capture enough details on

the tail of the distribution, which contains the information we need for yield

analysis.

Both HDIS and PDM apply collect “important” samples via mean-shift and

assume failure samples are distributed in one single failure region, which is not true

in real circuits. We address this issue by two machine learning aided approaches,

rare-event microscope (REscope) and Hyperspherical Clustering and Sampling

(HSCS).

REscope uses a nonlinear classifier to identify multiple failure regions. To make

sure the classifier works properly, we adopted the RELIEF-F algorithm to rank

process variation variables as of their “importance” with respect to the perfor-

mance metric under study, and to separate the failure samples from the accepted

samples only according to those important variables. The REscope exhibits good

accuracy on a charge pump circuit while other non-Monte-Carlo approaches fail

to make the correct estimation.

REscope achieves good performance on both accuracy and efficiency, but it

relies on a nonlinear classifier, which works as a black box model and is out of

user’s control. Excessively training the SVM to identify multiple regions could

easily lead to overfit. To overcome this issue, the HSCS identifies multiple fail-

ure regions explicitly through a reweighted spherical k-means algorithm, which

clusters failed samples on a set of hyperspheres, rather than the high dimensional

open space. Next, a modified mixture importance sampling is designed to draw

samples at those clusters to achieve multiple failure region coverage. The pro-
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posed HSCS is evaluated using both mathematical and circuit-based examples. It

achieves about 3-order speedup over Monte Carlo with the same level of accuracy,

while other importance sampling based approaches either fail to converge or con-

verge to wrong results. Furthermore, HSCS demonstrates excellent robustness by

generating consistent results in multiple replications.

The algorithms included in this dissertation present comprehensive solutions

for yield analysis, and tackle the real-life challenge such as high dimensional-

ity and multiple failure regions. Those algorithms can be integrated in existing

memory/standard cell design tools, and exhibit promising potentials in the deisgn

considering pervasive PVT variations.
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APPENDIX A

Network Compression for Deep Learning

Inference on Mobile Platforms

The Appendix (This chapter and the next one) presents two approaches that

help deploy the deep neural network on resource constraint mobile and embedded

platforms, by compressing the network size and by developing specific hardware

to accelerate the inference, respectively.

In the past decade, deep learning has attracted increasing interests and favored

to a variety of applications due to its improved accuracy and flexibility. Deep

learning, however, requires high computational cost not only in training, but also

in inference because of the complex and deep pipelines. This makes its deployment

to resource constraint mobile platforms a challenge. In this Appendix, we propose

two network compression techniques to reduce the deep learning model complexity

without losing much accuracy so that it can be easily deployed to those resource

constrained environment. First, we transfer the knowledge from a well-trained

complex model to a thinner and shallower model. Second, the network is further

compressed by removing the inactive neurons and the redundancy in the weight

parameters. On MNIST and CIFAR-10 datasets, we demonstrate 30x reduction

in computational cost with negligible accuracy loss.
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A.1 Introduction

Deep neural networks have set up new performance standard in a variety of appli-

cations, including visual object recognition [CMS12, KH09, SLJ15], speech recog-

nition [MDH12], artificial intelligence games [CS14], etc. In the meantime, those

areas are undergoing a transition from using small, low-quality, compressed data

set to large, high resolution, high fidelity ones. To keep pace with the ever in-

creasing data set, the deep neural networks scale up (with respect to the number

of model parameters) to represent more features hidden between the data. Such

large deep neural networks require high computational cost not only during the

training phase, but also in the inference phase. For instance, GoogleNet [SLJ15]

need about 2 GFLOPs to infer one single 227x227 image, while a high definition

image might need to be inferred multiple times at different position and scale of

the image. Industry’s answer to such networks is computing clusters consisting of

a vast amount of CPUs and high-performance GPUs [CWV14].

It can also be observed that machine learning applications are migrating to-

wards mobile devices and embedded platforms. As examples, smart phones are

increasingly operated via speech recognition, autonomous driving vehicles per-

form visual object recognition and react in real-time [GLU12]. In contrast to

the industrial-size cluster, mobile and embedded devices are design with limited

computational capacity and memory size to feature long battery life. While it

is possible to train deep and sophisticated neural networks off-line on industrial-

size clusters, it is difficult to deploy them on mobile device for inference [LG15].

For certain applications, acquired data can be transmitted back to the cloud

and inferred by powerful clusters. However, there are also a variety of applica-

tion scenarios, where internet connection is unavailable, inconvenient (the online

transmission cause unpredictable delay), or insecure to transmit the data to the

cloud. Under such circumstance, we need to perform inference in realtime on
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resource-constraint mobile devices.

Model compression techniques are targeted to solve this problem. [BC14]

demonstrates that deep neural networks can be compressed into “shallow” single-

layer networks by training the shallow networks on the logistic output of the

deep network using a large amount of data [BCN06]. This idea is proven and

enhanced recently in [HVD15, RBK14] by adjusting the temperature parameter

of the softmax layer during the training process.

Among others, [CBD14, GAG15] train neural networks with reduced bit preci-

sion, hence optimize memory usage and open the potential of design very efficient

hardware dedicated for deep learning. HashedNets [CWT15] group network con-

nections via a hash function and reduce the model size by applying the same

weight value for all connections grouped in the same hash bucket. All these ex-

isting works suggest that there are plenty of redundancy within network weight

parameters.

In this chapter, we present two approaches that compress the network without

sacrificing much accuracy. Starting from the original sophisticated, but cum-

bersome, neural network (teacher network), we first use a knowledge transfer

approach to convert the teacher network to a relatively shallower and thinner stu-

dent network. While training the student network, we mixed the original labeled

data with a large number of unlabeled ones to ensure more generality.

Without a deep pipeline of sub-sampling layers, the shallower student network

has a large number of neurons on the fully-connected layer, resulting very large

weight matrices at the very end of the network. To tackle this problem, we

proposed two approaches to compress them. First, we analyze the activity of each

neuron on that layer, and remove the less active ones. Second, we approximate the

original weight matrix by an approximated one, which can be decomposed to two

smaller matrices by applying singular value decomposition (SVD) and remove the

dimensions with smaller singular values. Surprisingly, removing the redundancy
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from neurons and weight matrices almost do not sacrifice any accuracy, but get

even better generality. The compressed network still maintains very high accuracy.

We implement the proposed approaches based on Caffe [JSD14] platform and

evaluate the proposed knowledge transfer and network compression approach on

MNIST [LBB98a] and CIFAR-10 [KH09] datasets. On MNIST, we reduce the

total computational cost to 4.4% with almost no loss in accuracy. On CIFAR-10,

the knowledge transfer step introduces about 6% accuracy loss with 4x reduction

(reduce to 25%) in computational cost. The following network compression step

introduce another 4.2x reduction with only 0.05% loss in accuracy, which is almost

negligible.

The remaining part of this chapter is organized as follows. We present the de-

tail of knowledge transfer and network parameter reduction approaches in Section

A.2. Experiment results is presented in Section A.3. And the chapter is concluded

in Section A.4.

A.2 Network Compression

A.2.1 Knowledge Transfer

We use knowledge transfer as the first step of our network compression approach.

It transfer the knowledge from an accurate, but cumbersome, neural network

(teacher network) to a thinner and shallower student network, as illustrated in

Figure A.1. The essential of knowledge transfer is that instead of directly training

the student network from label, it trains the student network using the soft targets

(e.g. logits, class probabilities) generated by the accurate teacher network. In this

case, the student network is trained to minimize the “difference” compared with

the teacher network, rather than directly minimize classification error.

During the knowledge transfer we pay close attention to the following two
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Teacher Network: a previously 

trained deep learning pipeline

Student Networks: the to-be-

studied learning pipelines

Figure A.1: Transferring the knowledge from the original cumbersome teacher

neural network to thinner, shallower student networks

aspects. First, we care about the soft targets that are used to train the student

network. Second, we also discussed about how to organize the training data to

achieve a better student network.

A.2.1.1 Learning Target in Knowledge Transfer

Neural networks typically process the input data through a pipeline of layers and

end up with a vector of logits, zi. These logits can be converted to the class
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probability pi through a “softmax” layer as follows:

pi =
exp(zi/T )∑
j exp(zj/T )

(A.1)

where temperature parameter T is set to 1 in most cases.

Instead of direct training the student network by minimizing the classification

error, the knowledge transfer approach in [BC14] minimizes the euclidean distance

between the logits of the original network and the student network. This approach

is generalized to minimizing the cross entropy between the class probabilities of

the original and the student network [HVD15], while minimizing the Euclidean

distance between logits can be considered as a special case of minimizing the

cross entropy between class probabilities. By setting the temperature at a high

value, the gradient of cross-entropy between class probabilities approximates to the

gradient of Euclidean distance between logits, which matches every logits of the

student network to the original network. On the other hand, at low temperature,

the knowledge transfer pays less attention to matching logits that are much smaller

than the average. This could be helpful because logits are almost completely

unconstrained by the cost function used for training the original network so they

could be very noisy.

A.2.1.2 Organizing Training Data for Knowledge Transfer

In addition to the learning target, we also pay close attention to the data that are

used to train the student network. As mentioned in [BCN06] and [BC14], using

a large amount of unlabeled data (artificial data or authentic data without label)

can be helpful for knowledge transfer because more data bring in better generality,

and avoid over-fitting.

However, we discover that inserting original labeled data in between the un-

labeled data could improve the test accuracy of the student network. That is

because the teacher network is trained to minimize the classification error using
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the original training data. Thus, the soft targets are closer to the ideal condi-

tioning, i.e. the true class has higher logit and probability, while the false classes

are associated with smaller logits and class probabilities. Compared with those

unlabeled data, which have not gone through the training process, the class prob-

abilities are softer, i.e. is less similar to the ideal binary class probability. While

the softer learning target is better for generality, the sharper learning target in the

original training data could enforce more similarity between the class probability

of student network and ideal class probability.

In practice, we acquire a large amount of unlabeled data, and insert the original

training data in the unlabeled data set. With a hybrid data set, the student

network is alternatively trained by original training data and unlabeled data.

And a higher test accuracy can be achieved.

A.2.2 Network Parameter Reduction

The student network trained from the original teacher network usually features

a shallower pipeline of sub-sampling layers, i.e. convolutional or pooling layer

with stride larger than 1. Without enough subsampling, there are usually a large

number of neurons on the fully-connected layers, leading to a huge matrices at

the very end of the network.

The network parameter reduction techniques are presented to reduce the num-

ber of parameters and computational cost in those fully-connected layers. We

perform network parameter reduction from two aspects, by removing the inactive

nodes on those layers and compressing the weight matrices respectively.

A.2.2.1 Remove Inactive Neurons

A typical fully-connected layer performs the following two steps as illustrated

in Figure A.2. It first project the input neurons to a vector of output through
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linear projection, which is calculated through matrix vector production (MVP).

Second, each value of in the vector is passed to an activation function to model

non-linearity. Typical activation functions include rectified linear unit (ReLU)

[NH10], sigmoid or tanh [LBO12]. Take ReLU in equation (A.2) as example:

f(x) = max(x, 0) (A.2)

It activates a neuron only if its value is larger than 0. For a trained deep neural

network, a neuron on a fully connected layer can be activated at certain input and

inactive at others.

ReLUx1(M) x2(N)

Figure A.2: A fully-connected layer followed by ReLU activation functions

In practice, we found that some neurons have very small activation rate, or

even never activate for all the training data. Removing a neuron that never

activates has no impact to the neural network output. Moreover, it reduces the

noise while classifying unknown data, because the meaningless neurons might be

activated by unknown data and introduce noise to the network.

In our implementation, we reduces neurons with small activation rate until it

has notable impact on training error. Take the fulling connected layer in Figure

A.2 for example, by reducing the number of neurons on x2 from N to NR, forming

x2R, it compresses the number of parameters in the weight matrix from MN to

MNR, and reduce the computation cost at the current layer from 2MNto 2MNR.
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A.2.2.2 Compress Weight Matrices

Beside checking the activation rate of a neuron on the feature map vector xi, we

also study the parameter value in the weight matrix W, and we found that a

large number of parameters are zero or has a very small value. In other words,

the weight matrix W is a relatively sparse matrix. Of course we can compute the

MVP between feature map vector and weight matrix as sparse MVP, theoretically

it does reduce the total number of floating point operations (FLOPS). However,

it is typically slower because of the irregular data accessing pattern in matrix

operation.

In this work, instead of calculating the MVP based on its sparse pattern, we

approximate the original weight matrix W by W̃ which has a lower rank and the

MVP better xi and W̃ can be calculated in an easier way.

We start from taking a singular value decomposition (SVD) over the original

weight matrix W:

W = USVT (A.3)

where S is a diagonal matrix consists of singular values, each column of U is

an eigen vector of WWT , and each row of V is an eigen vector of WTW, as

illustrated in Figure A.3.

N

M =

N

M

N

N

N

N

Eigen Vector of WWT

W U
VTS

Singular Value

vi

Eigen Vector of WTW

Figure A.3: Singular value decomposition (SVD)

To compress the matrix based on the SVD results, we only keep those NR large

singular values in matrix S, only keep those eigen vectors in U and V respectively.
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Therefore matrix U and S is reduced to UR and SR as follows:

UR = U(:, 1 : NR) (A.4)

VR = V(:, 1 : NR) (A.5)

SR = S(1 : NR, 1 : NR) (A.6)

After absorb SR into VT
R as

V’TR = SRVT
R (A.7)

The original weight matrix W can be approximated by W̃, which is calculated as

W ≈ W̃ = URV’TR (A.8)

where UR is an M -by-NR matrix and V’TR is an NR-by-N matrix, as illustrated

in Figure A.4.

N

WM UR V RT

x1

=

x2

x1

x2=x1W
x2

=

x2=x1URV RT

× 

Figure A.4: Decompose the weight matrix into two smaller matrices

Another interpretation of (A.8) is to insert a linear layer before the nonlinear

fully-connected layer (inner-product+ReLU). The linear layer projects the original

feature map xi to a smaller x′i using matrix SR:

x′i = xiUR (A.9)

The second matrix VT
R and the ReLU work as the nonlinear layer afterwards. Even

though the linear layer can be absorbed to the nonlinear layer by multiplying UR
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and V’TR, calculating them separately actually results in smaller computational

cost and less weight parameters.

After decomposing W, the number of weight parameter has been updated

from NM to NR(M +N), and the number of computational operation is updated

from 2NM to 2NR(M + N). When NR � min(M,N), both computational cost

and parameter size are reduced.

A.2.3 Algorithm Flow

After the network is compressed by those aforementioned approaches, we finally

go through a refinement process to improve the accuracy of the student network.

Here refinement is defined as using the compressed network parameters as initial

values, and training the compressed network using very small learning rate.

As the compressed network is reduced based on a trained network, the param-

eters should be somewhere close to the optimal. Fine tuning the parameter using

a small learning rate could lead the network to optimal parameters.

Given the discussion in this section, the proposed algorithm can be summarized

as the following steps:

1. Transfer the knowledge from a pre-trained network to a shallower and thin-

ner network

2. Apply network compression methods to further reduce network parameters

and computational cost

3. Refine the compressed network to improve accuracy
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A.3 Experiments

In this section, we evaluate the network compression approaches on two visual

object recognition datasets, MNIST [LBB98a] and CIFAR-10 [KH09]. The knowl-

edge transfer and network parameter reduction approaches are implemented based

on Caffe [JSD14] with a MATLAB interface.

A.3.1 MNIST

For MNIST dataset, we used all the 60,000 examples in the training set for training

and 10,000 test examples for testing.

We use the well-known LeNet [LBB98b] as teacher network. LeNet has two

convolutional with 20 and 50 kernels respectively. Each convolution layer is fol-

lowed by a subsampling (pooling) layer. After convolution and subsampling, the

feature map is processed by a fully-connected inner-product layer to 500 neurons,

and then reduced to 10 logits (Conv20+Conv50+FC500+FC10). With a total of

431,080 weight parameters, it takes about 4.6 MFLOPS to infer one 28x28 gray-

scale image. The test accuracy 0f LeNet is 99.10% over those 10000 test samples

included in MNIST dateset.

A.3.1.1 Knowledge Transfer

To compress the network, we first apply knowledge transfer to train student net-

works, which are shallower and associated with less computational cost.

Experiment results on a shallow network with one fully-connected layer are

illustrated in Figure A.5. First, the student network converges faster and ends up

with a high test accuracy at 98.81% if we apply knowledge transfer. Contrastingly,

directly training the same student network only achieves 98.0% test accuracy.

Second, we notice that slightly high accuracy can be achieved by removing the
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Figure A.5: Transferring the knowledge from LeNet to a shallow neural network

with only one fully-connected layer

training data that the teacher network mis-classifies. That is reasonable because

those mis-classified examples might confuse the student network. A teacher using

only positive training examples trains a better student networks.

We also compare the accuracy of applying knowledge transfer to different stu-

dent networks. Here we use shallow networks with only 1 hidden layer (fully-

connected), but different number of neurons as student networks. Comparisons

between student networks directly trained from labels and those trained from the

soft targets (logits of teacher network) are presented in Table A.1.

We can notice that, for the same student network, higher accuracy can be

achieved if it is trained towards the soft targets generated by teacher network,

rather than directly trained by the labels. Even for the student network with

only one hidden layer of 200 neurons, 98.67% accuracy is achieved by training via

knowledge transfer. That is very close to the teacher network.

In terms of the network size and computational cost, the student network
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Table A.1: Comparison between the teacher network (LeNet) and student net-

works in terms of accuracy, # of weight parameters, and computational cost

Network Parameters
Computational cost # of weight params Test Accuracy Activation

kFLOPS % x103 % By label By soft target Compression Refine rate2

Teacher Lenet 4,631.7 100.00% 431.1 100.00% 99.10% -%

FC500 795.5 17.18% 397.5 92.21% 98.01% 98.81% 0.00%

FC400 636.4 13.74% 318.0 73.77% 97.92% 98.86% 98.81% 98.76% 0.01%

FC300 477.3 10.31% 238.5 55.33% 98.01% 98.69% 98.30% 98.76% 11.34%

Student FC200 318.2 6.87% 159.0 36.89% 98.01% 98.67% 90.86% 98.64% 19.46%

Network1 FC150 238.7 5.15% 119.3 27.67% 97.85% 98.48% 79.17% 98.49% 22.76%

FC100 159.1 3.44% 79.5 18.44% 97.82% 98.27% 67.35% 98.37% 27.96%

FC80 127.3 2.75% 63.6 14.76% 97.54% 97.89% 61.15% 98.24% 30.56%

FC50 79.6 1.72% 39.8 9.22% 97.62% 97.23% 49.02% 97.43% 35.68%

1: Student networks (FCxxx) are shallow networks with only one hidden-fully-connected

layer, where “xxx” is the number of neurons on the fully-connected layer.

2: For all neurons on the fully-connected layer, only keep those whose activation frequency

is higher than the number in this column.

Table A.2: Compressed the weight matrix by decompose it to the multiplication

of two smaller matrices

Network Parameters
Computational cost # of weight params Test Accuracy

kFLOPS % x103 % By label By soft target Compression Refine

Teacher Lenet 4,631.7 100.00% 431.1 100.00% 99.10%

Student FC500 795.5 17.18% 397.5 92.21% 98.01% 98.81% -% -%

L400 FC500 1,039.5 22.44% 519.5 120.51% 98.03% 98.80% 98.81% 98.81%

L300 FC500 782.5 16.90% 391.0 90.70% 97.92% 98.78% 98.80% 98.83%

L250 FC500 654.0 14.12% 326.8 75.80% 97.98% 98.79% 98.80% 98.81%

Student L200 FC500 525.5 11.35% 262.5 60.90% 97.97% 98.81% 98.77% 98.82%

Network1 L150 FC500 397.0 8.57% 198.3 45.99% 97.86% 98.79% 98.78% 98.83%

L100 FC500 268.5 5.80% 134.0 31.09% 97.89% 98.80% 98.80% 98.86%

L80 FC500 217.1 4.69% 108.3 25.13% 97.88% 98.79% 98.79% 98.88%

L50 FC500 140.0 3.02% 69.8 16.18% 97.90% 98.72% 98.59% 98.83%

1: Student networks (Lxxx-FC500) consist of two linear fully-connected layer, and a ReLU

layer after the second fully-connected layer. “xxx” stands for the number of neurons on the

linear layer.

“FC200” reduces the computational cost to only 6.87% and # of weight parame-

ters to only 36.89% while still providing an acceptable accuracy at 98.49%.
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A.3.1.2 Network Compression by Removing Inactive Neurons

Instead of knowledge transfer, we can also get small shallow networks by compress-

ing the FC500 network, which has a relatively larger fully-connected layer. We

approach the network compression by two methods mentioned in Section A.2.2.

To quantitatively analyze how often a neuron is activated on the hidden layer

of FC500 network, we include the activation rate at the last column of Table

A.1. The activation rate here is defined as how often a neuron is activated given

all 60,000 training samples. And the proposed network reduction approach only

keeps the neurons whose activation rate is higher than the value in the table. For

instance, FC400 keeps the neurons with activation rate higher than 0.01%. In

other words, it removes all neurons that activate at less than 0.01% of inputs.

An interesting observation on this column is that there are a large portion of

neurons that are very inactive. For instance, those 100 neurons in the compressed

FC400 network are almost always inactive, which explains that by the accuracy

almost remains the sames after removing those 100 neurons. In fact, after looking

at the data, we found that 71 neurons on the fully connected layer of FC500 are

always inactive (activation rate = 0). In other words, removing those neurons has

no impact on the test accuracy, moreover, it improves the generality of the neural

network. If we go ahead and remove the inactive nodes aggressively, the accuracy

starts to drop.

Another work we did is to refine the compressed network by setting the com-

pressed weight parameters as initial state and training the network with small

learning rate. The test accuracy after refine step is also included in Table A.1.

For each network, we compare the test accuracy achieved by different training

approaches on the same network and highlight the one with highest accuracy. We

can notice that refining the compressed network can achieve the highest accuracy

at most time.
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A.3.1.3 Weight Matrix Compression

Analysis on the activation rate indicates that there are a large portion of redun-

dancy residing in the network.

Another ways to removing the redundancy is through the SVD decomposition.

Instead of reducing the weight matrix to a smaller one, the SVD converts the

original matrix to the multiplication between two smaller matrices. The results

of weight matrix compression via SVD are presented in Table A.2.

We can observe that when a linear layer with 400 nodes is added before the

FC500 layer, the number of weight parameters actually increases. And it starts to

decrease when we continue reduce the number of nodes on the linear layer. Even

when we keep only 50 nodes on the linear layer, it still maintains a very high

accuracy at 98.59%. With this accuracy, it has compress the original LeNet to

only 3.02% of its original computational cost, and 16.18% of its original number

of parameters.

We also compare the accuracy of training the network directly verse compres-

sion and a refining step. As presented in Table A.2, the entire column of the refine

option are highlighted, indicating that it always leads to the highest accuracy by

compressing the weight matrix and followed by refining the compressed network

with small learning rate.

On the MNIST dataset, the combination of knowledge transfer, network com-

pression, refinement can 33.2x reduction (reduce to 3.02%) on computation cost

almost without loss in accuracy.

A.3.2 CIFAR-10

We also test the same approach on a relatively larger data set, the CIFAR-10,

with 50,000 training images, and 10,000 test images. Each image is 32x32 with 3

color channels (RGB). Besides the original CIFAR-10 dataset, we also use a large
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number of unlabeled data from the Tiny Images Dataset [TFF08] to enhance the

knowledge transfer. In particular, we uses the first 1.5 million unlabeled examples

from the Tiny Images Dataset.

We build a network similar to Network In Network (NIN) [LCY13] as the

teacher network. The teacher network has 3 convolutional layers with 128 kernels

at each layer, followed by a dropout layer and a fully-connected layer reducing

the feature map to 10 logits. The teacher network is trained to reach 84.97% test

accuracy.

A.3.2.1 Knowledge Transfer

The samples from the Tiny Images Dataset is similar to CIFAR-10, but it is

still not following the exactly same style. The student network can be biased if

the training data set is dominated by the unlabeled data from the Tiny Images

Dataset. In our implementation, we reorganize the training data by inserting

original training data in between each bunch of unlabeled data from the Tiny

Images Dataset. In this case, after the student network is trained by unlabeled

data for a while to improve the generality, it will be retrained by the original data

to enforce the student network to learn the knowledge from CIFAR-10 dataset.

In short, the training data structure ensures good accuracy on CIFAR-10 without

losing generality.

The comparisons between the same student network trained directly using

labels and using the probability generated by teacher networks are illustrated in

Figure A.6.

Unlike MNIST, it is difficult to train a decent shallow network for CIFAR-

10 directly using the labels. [BC14, DB13, ERF13] add a base convolution and

pooling layer to study different deep architectures. Especially in [BC14], it use a

convolutional and a pooling layer followed by fully-connected layer with a large
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Figure A.6: Transferring the knowledge from deep convolutional neural network

to a shallow neural network

number of non-linear units (ReLU layer), so as to benefit from the feature ex-

tracted from convolution, but also keeping the network simple and shallow. In

our implementation, we follow the idea in [BC14] and build shallow networks with

one convolutional and pooling layers as student network. Particularly, we config-

ure 32 kernels in the convolutional layer, e.g. student network Conv32 FC4000

in Figure A.6 has a convolutional and pooling layer in the front, followed by a

fully-connected layers with 4000 nodes.

As shown in Figure A.6, We can only reach about 63.76% accuracy by training

Conv32 FC4000 using the original label. However, if we train the same student

using soft targets (class probabilities), the accuracy can be improved to 78.54%.

A quantitative analysis with more student networks at different sizes is pre-

sented in Table A.3. Similar to MNIST results, knowledge transfer (column “by

soft target” in the table) results in decent accuracy on the student networks. One

thing to notice is that the student network are somehow “larger” than the teacher
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Table A.3: Knowledge transfer to compression by removing inactive nodes for

CIFAR-10 dataset

Network Parameters
Computational cost # of weight params Test Accuracy Activation

MFLOPS % x106 % By label By soft target Compression Refine rate2

Teacher Network 282.44 100.00% 0.85 100.00% 84.97% -%

Conv32 FC4000 70.66 25.02% 32.81 3862.00% 63.76% 78.54% 0.00%

Conv32 FC3600 64.10 22.69% 29.53 3475.83% 62.38% 78.05% 78.50% 79.11% 14.39%

Conv32 FC3200 57.54 20.37% 26.25 3089.66% 59.40% 78.27% 78.32% 78.87% 21.51%

Student Conv32 FC2800 50.97 18.05% 22.97 2703.49% 63.38% 78.44% 77.62% 79.02% 25.91%

Network1 Conv32 FC2400 44.41 15.72% 19.69 2317.32% 62.90% 78.62% 75.29% 78.95% 29.16%

Conv32 FC2000 37.85 13.40% 16.41 1931.15% 67.28% 78.47% 72.00% 78.79% 31.88%

Conv32 FC1600 31.28 11.08% 13.13 1544.97% 61.88% 78.21% 67.29% 78.48% 34.39%

Conv32 FC1200 24.72 8.75% 9.85 1158.80% 54.89% 78.09% 60.29% 78.38% 37.16%

Conv32 FC800 18.16 6.43% 6.56 772.63% 63.44% 78.02% 50.50% 77.72% 40.21%

1: Student networks (Conv32 FCxxx) denotes shallow networks with one convolutional layer

(32 kernels) followed by one fully-connected layer, where “xxx” is the number of neurons on

the fully-connected layer.

2: For all neurons on the fully-connected layer, only keep those whose activation frequency

is higher than the number in this column.

Table A.4: Compressed the weight matrix by SVD decomposition for CIFAR-10

dataset

Network Parameters
Computational cost # of weight params Test Accuracy

MFLOPS % x106 % By soft target Compression Refine

Teacher Network 282.44 100.00% 0.85 100.00% 84.97%

Student Conv32 FC4000 70.66 25.02% 32.81 3862.00% 78.54% -% -%

Conv32 L3000 FC4000 78.28 27.72% 36.63 4310.53% 77.74% 78.56% 78.98%

Conv32 L2000 FC4000 53.89 19.08% 24.43 2875.51% 77.81% 78.54% 78.84%

Conv32 L1000 FC4000 29.50 10.45% 12.24 1440.49% 77.27% 78.60% 78.92%

Student Conv32 L800 FC4000 24.63 8.72% 9.80 1153.48% 77.03% 78.52% 79.03%

Network1 Conv32 L400 FC4000 14.87 5.27% 4.92 579.47% 76.23% 78.42% 79.05%

Conv32 L200 FC4000 10.00 3.54% 2.49 292.47% 75.56% 78.31% 78.82%

Conv32 L150 FC4000 8.78 3.11% 1.88 220.72% 73.89% 78.13% 78.78%

Conv32 L100 FC4000 7.56 2.68% 1.27 148.97% 74.08% 77.39% 78.55%

Conv32 L80 FC4000 7.07 2.50% 1.02 120.27% 73.45% 74.11% 78.06%

1: Student networks (Conv32 Lxxxx FC4000) denotes a network with 3 layers, a convolutiona

layer with 32 kernels, a linear layer with xxxx nodes and a fully-connected nonlinear layer

with 4000 nodes. (pooling, normalization layers is not considered)

network in terms of the number of weight parameters, but if the computational

cost has been reduced considerably, e.g. inferring the Conv32 FC1600 takes only
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11.08% of the computational cost compared with the original teacher network.

A.3.2.2 Network Compression

The results of compressing the network by removing inactive nodes and decompose

the weight matrix are presented in Table A.3 and Table A.4 respectively.

For each student network, the training approach resulting the highest accuracy

is highlighted in these tables. We can notice that refining the network after

network compression leads to the highest accuracy for almost all the student

networks.

Another thing is that the compressed network are actually larger than the

original teacher network in terms of the parameter size. The parameters in the

student network Conv32 FC4000 is actually 38.6x larger than the convolutional

teacher network. That is because the convolutional neural network features pa-

rameter sharing and local connectivity. And the pooling layer sub-samples the

feature map, and further reduces the data size. Those characteristics reduce the

number of parameters in the convolutional neural network. Instead, the student

network puts a fully connected layer right after only one convolutional layer, which

has a relatively large feature map, resulting a large weight matrix represent the

full connection between the feature map and the neurons on the hidden layer.

Even though the weight parameter size is not reduced, the computational cost

is compressed drastically. For instance, through weight matrix decomposition,

we can reduce the network to Conv32 L80 FC4000, which has only 2.5% com-

putational cost compared with the original network, but still maintains 78.06%

accuracy.

125



A.3.3 Discussions

A.3.3.1 Why Refinement Helps?

In the experiments, we notice that the most accuracy student networks are almost

always generated by refining the compressed network model. Especially for Table

A.3 and Table A.4, the refined networks dominate the student networks in terms

of accuracy.

It is not surprising that the refined student network can be more accurate than

the same compressed network without refinement. As we removed the redundancy

in by reducing the network parameters, the compressed parameters in the resulting

network could be close to the optimal, but are not necessary at the optimal. A

refinement with a very small learning rate gradually tiles the weight parameters

towards the optimal. It is important to use a small learning rate for refinement,

otherwise, the network parameters may jump around the optimal but can hardly

approach it.

It is also reasonable that refinement can be more accurate compared with

training the student network directly, no matter using the original label or the soft

targets of the teacher network. Directly training the network is an optimization

problem starting from randomly initialized parameters. However, refinement is

an optimization process starting from a good initial guess that is close to the

optimal, (even without refinement, the compressed networks already have a high

accuracy). Of course, the refinement can generate a better accuracy than directly

training.

A.3.3.2 Which Compression Approach is More Effective?

It is also interesting to study which compression approach is more effective, re-

moving inactive nodes, or compressing the weight matrix.
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By comparing the experiment data in Table A.3 and Table A.4, we can con-

clude that compressing the weight matrix via SVD is better than removing the

inactive nodes. For instance, at the same accuracy level of 78.5%, Table A.3

only compress the network to Conv32 FC1600, which still takes 11.08% of com-

putational cost and 15.45x weight parameters of the original teacher network.

Contrastingly, the student network Conv32 L100 FC4000 in Table A.4 has only

2.68% FLOPS and 1.49x weight parameters compared with the teacher network,

but also achieves 78.55% accuracy.

Similar empirical conclusion can be made on MNIST by comparing the results

in Table A.1 and Table A.2.

A.4 Conclusion

Deep neural network achieves very good accuracy at the cost of high computational

complexity and larger parameter size. However, it is difficult to deploy an accurate

but cumbersome network model on resource-constrained mobile devices. Such

dilemma motivates network compression.

In this Chapter, we present a flow of multiple approaches that compress the

deep neural networks in terms of both computational cost and parameter size.

We first transfer the knowledge from a well-trained complex model to a thinner

and shallower model. Second, the network is further compressed by removing the

inactive neurons and the redundancy in the weight parameters. Third, the com-

pressed network is then refined to achieve an accuracy that is closed to the original

teacher network. Experiments on MNIST and CIFAR-10 datasets demonstrate

more than 30x reduction in computational cost with negligible accuracy loss.
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APPENDIX B

FPGA Based for Deep Convolutional Neural

Network

In the past decade, deep convolutional neural networks (CNN) have set new per-

formance standards in several high-impact applications. On the other hand, deep

CNNs gain breakthrough in accuracy at the price of high computational cost,

which motivates FPGA based acceleration. However, most existing FPGA ac-

celerated CNNs use external DRAM heavily due to the limited on-chip memory

size, which suppresses performance. Moreover, accelerators are usually designed

exclusively for certain network layers, preventing the computing resource from

being shared between layers. In this chapter, we reformulate the convolution

computation by flattening it to large-scale matrix multiplication between feature

maps and convolution kernels, which can be computed as inner product (IP).

With this formulation, the accelerators cross all layers can be unified to enhance

resource sharing. The proposed design benefits from the uniform accelerators in

two folds. First, it maximizes utilization of computing resources because acceler-

ators are fully used at every layer. Second, the proposed design process one layer

at a time, requiring only data in current layer. Thus, it minimizes the access to

off-chip DRAM by buffering the required data on-chip. As a result, the perfor-

mance of the proposed design only depends on the computational resources and

is almost not constrained by DRAM bandwidth. Experimental results indicate

that the proposed design not only outperforms existing designs in terms of perfor-

mance (119.32 GFLOPS), it also achieves very high performance density (66.29
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MFLOPS/DSP Slice).

B.1 Introduction

Deep convolutional neural networks (CNNs) have exhibited promising accuracy

in a variety of applications, such as visual object recognition [SLJ15], speech

recognition [MDH12], etc. However, it gains breakthrough in accuracy at the

price of high computational cost, which motivates accelerations by computing

clusters [DCM12], GPUs [CWV14], and FPGAs [ORK15].

It has also been observed that applications of deep CNN have shifted towards

mobile and embedded devices. As examples, smart phones are increasingly oper-

ated by speech recognition [Sch10], autonomous driving cars perform visual object

recognition in real-time [GLU12]. In contrast to GPUs or CPU clusters, such de-

vices are designed for lower power and long battery life. Under these scenarios,

FPGA accelerated CNNs stand out due to the low power consumption, high flex-

ibility and computational capability of FPGA.

The key to a high performance FPGA design is to make full use of on-chip

resources, including both computing resources, i.e. DSP slides, and enormous on-

chip memory bandwidth. Several FPGA based deep CNNs are proposed in the

past few years [FPH09, CMB10, CSJ10, PSM13, ZLS15]. Among these designs,

[FPH09] uses FPGA as a vectorial arithmetic unit, and implements CNN mainly

on a 32bit soft processor for flexibility. Works in [ORK15, CMB10, CSJ10] design

specific accelerator for each layer, while accelerators cannot be shared between

layers1.

Using specific accelerators for each layer actually creates a dilemma between

maximizing computational capability and memory bandwidth. To keep all the

1Work in [ZLS15] designs uniform accelerator for convolutional layers, but the accelerator
cannot be used for the fully-connected layer.
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accelerators busy (optimize computational capability), accelerators have to be

designed as a pipeline, which requires intermediate data for each accelerator. Due

to the data size, they are typically stored in off-chip memory, whose bandwidth

will become the bottleneck when multiple accelerators access them simultaneously.

This dilemma motivates the proposed FPGA architecture which speeds up

CNN using uniform accelerators. Benefiting from uniform accelerators, we can

process one layer at a time, but using all the computing resource. Moreover, the

data required for one layer can be easily buffered in on-chip memory with massive

bandwidth, which optimizes the memory access.

Naturally, convolutions with different kernel size or stride cannot be imple-

mented by the same accelerator. To tackle this problem, we reformulate the

convolution to two separate steps, 1) convolution flattening (CF) to flatten the

feature map and kernel from high-dimensional matrices to big 2-D matrices, 2)

inner product (IP) between each rows and columns of the flattened feature map

and kernel matrices. In our design, we use separate CF accelerators at each layer

as they only involve light-weight memory manipulation, while uniform IP accel-

erators are shared cross all layers, even including the fully connected (FC) layers

(matrix-vector production operations). Experimental results indicate that the

proposed design achieves 119.32 GFLOPS, which is 1.84x over the state-of-the-

art work. Meanwhile, our implementation achieves a high performance density of

66.29 MFLOPS/DSP.

Moreover, our design flow is semi-automated. The CF and IP accelerators

with given parameters can be automatically synthesized, which make it easier to

adopt the proposed architecture to new CNNs and new FPGA devices.

The remaining part of this chapter is organized as follows: Section II introduces

the background of CNN. Section III presents the reformulation of convolution and

the design of uniform accelerators. Section IV describes the proposed architecture

and implementation details. Section V presents the experimental results and
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comparison with related works. Section VI concludes this chapter.

B.2 Basic CNN Architecture

B.2.1 Preliminary of Convolutional Neural Network

The area of Artificial Neural Networks (ANN) was originally inspired by the goal of

modeling biological neural systems and has achieved good results in classification

[RDS15]. Regular ANN has an input vector and several hidden layers, where

each layer has a set of neurons fully connected to the neurons in previous layer,

resulting a large parameters matrix.
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Figure B.1: Convolutional Layer

Convolutional neural network (CNN) is proposed to reduce the number of

parameters in regular ANN by featuring local connectivity and parameter shar-

ing. As illustrated in Fig. B.1, first, each neuron at convolutional layer is only

connected to a local region of the input instead of the entire input feature map.

Second, all neurons in a single depth slice are using the same weight vector. Those

two features are reasonable for high dimensional data, such as images, where one

pixel is only relevant to the pixels nearby.
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B.2.2 Network Architecture of a Real-Life CNN

A typical CNN mainly consist of 3 types of layers: convolutional layer, pooling

layer and fully-connected (FC) layer. The architecture of a real-life CNN, AlexNet

[KSH12], is illustrated in Fig. B.2. It is a winning top-5 classifier in ILSVRC

2012 [RDS15], which categorizes the objects from high-resolution images into 1000

different classes.

Layer 1 Layer 2 Layer 6-8Layer 3 Layer 4 Layer 5

Figure B.2: An illustration of the architecture of AlexNet [KSH12]

As shown in Fig. B.2, AlexNet consists of 5 convolutional layers and 3 FC

layers. Other layers, such as rectifier and normalization layers, are not included.

Using 227x227x3 image as input, the first convolutional layer produces 55x55x96

output feature map, which is then compressed to 27x27x96 by a max pooling

layer. After going through 5 convolutional layers and 3 pooling layers, the feature

map at pool5 is reduced to 6x6x256. This feature map is then processed by 3 FC

layers to generate an 1x1x1000 output, which can be used to infer the object class

in the original image.

A detailed breakdown of the CNN parameters at each layer is presented in Ta-

ble B.1. It is obvious that convolutional layers and fully-connected layers account

for the majority (99%) of computational load.

Using specific accelerators for each layer actually creates a dilemma between
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Table B.1: A detail breakdown of the network parameter and computational load

in each layer of AlexNet [KSH12]

Layer Name
Ker. size Output

FI FO

# of P. Mega
Percentage

/ Stride Size (x106) FLOPS

L1
conv1 11x11/4 55x55x 96 3 96 0.03 210.83 14.54%

pool1 3x3/2 27x27x 96 96 96 0.63 0.04%

L2
conv2 5x5/1 27x27x256 48 256 0.31 447.90 30.89%

pool2 3x3/2 13x13x256 256 256 0.39 0.03%

L3 conv3 3x3/1 13x13x384 256 384 0.88 299.04 20.62%

L4 conv4 3x3/1 13x13x384 192 384 0.66 224.28 15.47%

L5
conv5 3x3/1 13x13x256 192 256 0.44 149.52 10.31%

pool5 3x3/2 6x 6x256 256 256 0.08 0.01%

L6 fc6 1x1x4096 37.75 75.50 5.21%

L7 fc7 1x1x4096 16.78 33.55 2.31%

L8 fc8 1x1x1000 4.10 8.19 0.57%

Total 60.95 1449.92 100.00%

FI/FO: Number of input/output feature maps

# of P.: Number of parameters
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maximizing computational capability and memory bandwidth, which motivates

the design of uniform accelerators.

B.3 Uniform Accelerator for Convolutional and Fully-Connected

Layer

Naturally, convolutions with different kernel sizes or strides cannot be accelerated

by the same accelerators. In this section, we reformulate the convolution operation

and design uniform accelerators to speed up convolution at different layers.

B.3.1 Reformulation of the Convolution Operation

As shown in Fig. B.3, the convolution between a local region of feature map

(x) and a kernel (wi) is essentially inner-product (IP) when they are flattened to

vectors xf and wf i.
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Figure B.3: Convolution Flattening

Note that wf i can be pre-calculated since the kernels remain unchanged for

different inputs, but xf needs to be generated in real-time when input changes.

It is acceptable to flatten feature maps at different layer by different accelerators

because it only involves memory manipulations, which can be handled in FPGA

at low cost.

On the other hand, the acceleration of IP is very expensive as it involves all

the floating-point operations. At different layers, the lengths of flattened vectors

xf and wf i are typically different. However, the flattened vectors xf and wf i
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are typically very long, e.g. for layer 2, the length is 2400 (5x5x96). Given this

characteristic, we can break the long vectors into shorter uniform segments, and

design uniform accelerators to calculate inner product for each segment.

B.3.2 Design of Convolution-Flattening and Inner-Product Accelera-

tors

According to the reformulation of convolution operation, each convolutional layer

has its own light-weight CF accelerators, while all layers share the same uniform

IP accelerators, which take care of all the floating-point operations.

IN

FIFO Pixel Buffer

Output Vector

x1,11 x1,12 x1,13 x1,21 x1,22 x1,23 x1,31 x1,32 x1,33

Figure B.4: Convolution-Flattening (CF) Accelerator

B.3.2.1 Convolution-Flattening Accelerator

Even though the CF operation only accounts for memory manipulation, it is non-

trivial to design a CF accelerator. The key of designing an efficient CF accelerator

is to reuse the data when the convolutional filter (kernel) slides on the feature map.

As shown in Fig. B.4, the CF accelerator is designed mainly using a set of

shift registers. At each clock cycle, the shift register takes in 1 pixel in the 7x7

feature map, and output a 1x9 vector on the left hand side (flattened from the

data in the 3x3 window). To generate a vector that is long enough for the inner

product, a convolutional layer may consist of multiple CF accelerators.
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Figure B.5: Inner-Product (IP) Accelerator

B.3.2.2 Inner-Product Accelerator

The design of IP accelerator is relatively straightforward. As shown in Fig. B.5, it

uses a set of multipliers to calculate the production between each element of two

input vectors. The multiplier outputs are summed up to a single result using an

adder tree. This IP accelerator is fully streamable, which can process two input

vectors at each clock cycle.

The key of achieving a high computational capability is to keep the computing

resource (DSPs) always busy. In this design, all convolutional layers shares the

same IP accelerators. At each layer, the CF accelerators continuously stream data

to the IP accelerator, resulting a high computational capability.

Moreover, we developed tools to automatically generate the CF and IP accel-

erators with given parameters such as kernel size, stride, IP vector length. Such

tools facilitate the adoption of this architecture to other CNNs or FPGA devices.

B.4 FPGA based CNN with Uniform Accelerator

B.4.1 Overall Architecture

The overall architecture of the proposed FPGA based CNN is illustrated in Fig.

B.6. Clearly, the architecture can be partitioned into 3 parts mainly consists of
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logic, DSPs and on-chip memory blocks, respectively.
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Figure B.6: Overall architecture

In this architecture, we use two page-flip buffers to store the feature map.

While one FM buffer stores the input of the CF accelerators, the other one accepts

the output from IP accelerators. Those buffers are implemented as distributed

BRAMs on FPGA, allowing multiple 32-bit numbers to be loaded in one cycle.

Moreover, once the original image is loaded from off-chip DRAM, the feature map

data always stay in the on-chip memory, which saves off-chip memory bandwidth

drastically.

We also use two buffers to load kernel data from off-chip memory. While using

the kernel data in one buffer, the controller loads the kernel data of the next layer

to the other buffer. We can achieve very high off-chip memory bandwidth because

only blockwise reading operation is involved for kernel loading.
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Table B.2: Resource consumption of convolution-flattening accelerators at each

layer

Convolution Flatten Accelerator Layer Latency

Size LUT FF N Len # FI FO latency

11x11 5.63% 2.75% 3 363 1 3 96 145,307

5x5 0.034% 0.044% 16 400 2 96 256 559,979

3x3 0.016% 0.017% 48 432

3 256 384 194,795

4 192 384 129,899

5 192 256 86,635

N: Number of CF accelerator instances

Len: Length of the output vector at this layer

The logic part consists of CF accelerators that flattens the input feature maps.

Note that we use only three types of CF accelerators since layer 3-5 actually share

the same type of CF accelerators. Those CF accelerators are packed into layer

blocks, which shares the same IP accelerators on the right hand side.

This design minimizes the off-chip memory access by keeping feature map data

always on chip, and only load kernel data. It also shares uniform IP accelerators

across layers, which keeps the DSP always busy and maximizes the performance.

B.4.2 Accelerator allocation

For a given FPGA device, it is straightforward to determine the number and size

of the IP accelerators based on available DSPs. The CF accelerator consumes very

little resource, thus allocation of accelerators is actually a matter of optimizing

the usage of IP accelerator, rather than minimizing the resource consumption of

CF accelerators.

As a concrete example, the allocation of CF accelerators for each layer in

AlexNet is presented in table B.2. In this particular example, the kernel vector at

the first layer is at most 363 (11x11x3), thus using any IP accelerator longer than
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363 is a waste of resource. In this example, we instantiate two IP accelerators,

while each of them calculates the IP between two 432x1 vectors. The IP size is

chosen as 432 to best fit the kernel size at Layer 3-5, i.e. using 48 CF accelerators,

432 (3x3x48) 32-bit number can be generated and streamed to each of the IP

accelerator at every clock cycle.

B.4.3 Automation and Scalability

The proposed architecture involves a semi-automation flow of synthesizing an

FPGA design once CNN parameters are given. By far, we have developed the

tools that automatically generate the CF and IP accelerators, and pack the CF

accelerators to a layer. The ongoing work is to synthesize the controllers which

interface between the layers, memory and IP blocks.

It is also convenient to applied the proposed architecture to larger network,

or implemented on more advanced FPGA. Since we only store the kernel of the

current and the next layer on chip, larger CNN can be easily fit in this architecture,

let alone one important trend of FPGA is 3D stacking large amount of memory

to FPGA logic [LM13]. When more advanced FPGAs are available, we can just

use more CF accelerators and larger IP accelerators, which are automatically

generated by tools.

B.5 Experiments

B.5.1 Experiment Setup

The proposed design is synthesized and implemented with Vivado (v2015.4) while

targeting to a Xilinx Ultrascale XCVU190 FPGA. The kernel data are extracted

from Caffe [JSD14] and stored in off-chip DRAM. We also use Caffe to validate

intermediate results and final results calculated from FPGA.
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B.5.2 Experimental Results

B.5.2.1 Resource Utilization

The proposed design is implemented with timing constraint configured at 100MHz.

The resource utilization after implementation is presented in Table B.3. DSP

resources are very heavily used, i.e. 96.33% of the DSP resource are used in this

design.

Table B.3: Overall Resource Utilization
CLB LUTs CLB FFs BRAMs DSPs

used 839576 1093926 3003 1734

available 1074240 2148480 3780 1800

Percentage 78.16% 50.92% 79.44% 96.33%

B.5.2.2 Performance

We also calculated the throughput of the design. At the current stage, only the

layers before pool5 in Table B.1 are implemented, which accounts for a total of

1.333 GFLOP.

The proposed design takes a total of 1,116,896 clock cycles to finish one round

of process. Therefore the throughput can be calculated as

Throughput =
Fclk
Ncycle

×NFLOP = 119.32 GFLOPS, (B.1)

which is substantially higher than the state-of-the-art [CSJ10, ZLS15] as presented

in Table B.4.

B.5.2.3 Performance Density

An design can achieve different performances given different FPGA devices. To

account in the impact of devices, we evaluate both performance and performance
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density, i.e. the performance at unit computing resource (FLOPS/DSP).

Given sufficient logic resources, our design can make efficient use of DSPs by

enlarging the inner product accelerator. Thus, throughput is mainly bounded

by available DSPs. Comparison between our design and various existing designs

of FPGA based CNN accelerator is shown in Table B.4. High level synthesis is

used in [ZLS15] to unroll loops and results in 22.01 MFLOPS/DSP density. Our

inner product accelerators make use of more than 96% of available DSPs and all

dedicated DSPs are kept busy running in 99% of clock cycles when processing

images. This high utilization of DSPs significantly improves performance density

to 66.29 MFLOPS/DSP.

Table B.4: Performance Comparison

ISCA2010[CSJ10] FPGA2015[ZLS15] Our Design

Precision 48bit fixed 32bit float 32bit float

FPGA
Virtex5 Virtex7 Virtex Ultrascale

SX240T VX485T XCVU190

Throughput (GOPS) 16 61.62 119.32

Available DSPs 1056 2800 1800

Utilized DSPs N/A 2240 1734

Density1 (MOPS/DSP) 15.15 22.01 66.29

B.6 Conclusion

CNN achieves very good accuracy at the cost of high computational complex-

ity, which motivates FPGA based acceleration. This chapter proposed an FPGA

based CNN using uniform Inner-Product (IP) accelerators shared across multiple

convolutional layers. The uniform IP accelerator creates two benefits. First, the

throughput is maximized because the uniform IP accelerators (DSPs) can be fully

utilized while processing each layer. Second, it minimizes the off-chip memory

access. Instead of accessing the kernel data from all the layers, we only need to
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process one layer at a time to make use of all the DSP. This make us easier to

buffer the data on chip since we only use the data from only layer. We also devel-

oped a semi-automation flow that enable automatic synthesis of the accelerators

and layer blocks. Experimental results shown that the proposed design achieves

119.32 GFLOPS throughput which is 1.94x over the state-of-the-art implementa-

tion [ZLS15]. Meanwhile, our implementation achieves a high performance density

of 66.29 MFLOPS/DSP.
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