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ABSTRACT OF THE DISSERTATION 

 

5-methylcytosine: from deposition to detection 

of the 5th base in mammalian genomes 

 

by 

 

Marco Morselli 

 

Doctor of Philosophy in Molecular, Cell and Developmental Biology 

University of California, Los Angeles, 2017 

Professor Matteo Pellegrini, Chair 

 

In multicellular organisms, there are many different cell types possessing the same 

genetic information, each performing a particular role. Many players, such as transcription 

factors, nucleosome positioning, histone post-translational modifications and non-coding RNAs, 

contribute to regulate the expression of specific genes, defining the specific cell state. Once the 

expression pattern is established during development, it is faithfully maintained throughout the 

life of an organism. In many organisms, a key component of this epigenetic regulation is a 

covalent modification of cytosines (5meC) in the genome, known as DNA methylation. DNA 

methylation is associated with repression of transcription if present in gene promoters and it 

can suppress the transcription of aberrant intragenic transcripts. The focus of my doctoral 

research has been the development of methods to map the distribution of 5meC genome-wide 

and understand how DNA methyltransferases are recruited to their targets. Since mammalian 

genomes are large, current approaches to map the methylation of the entire genome are 

expensive. Several methods have been developed to assess the methylation status of part of the 
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genome. Some of them are based on enrichment probes, others on enzymatic digestion. 

Chapters 1 and 2 are based on methods that assess the methylation status of part of the genome. 

Reduced-Representation Bisulfite Sequencing (RRBS) captures the majority of CpG islands and 

promoters. Since only 1% of the genome is assessed with this technique, costs associated with 

sequencing are dramatically reduced. In chapter 1, this technique is used to discover 

methylation levels at specific CpG sites associated with complex disease traits. Most of the CpG 

sites in the genome are methylated and do not have variable methylation levels between 

different cell types, suggesting that some of the fragments isolated by RRBS do not provide 

useful information. In order to overcome this limitation, we improved an existing method, 

Methylation-sensitive Restriction Enzyme-seq (MRE-seq), which enriches for regions poorly 

methylated (approximately 20% of the genome). This method, called MRE-BS (MRE-Bisulfite 

Sequencing), is described in chapter 2. The costs are similar to RRBS, but the development of a 

multiple regression model has allowed us to estimate differential methylation between two 

samples across 60% of the genome.  

Chapter 3 focuses on how de novo DNA methyltransferases are recruited to their target 

sites. This work has shown that the murine DNMT3b is guided by histone post-translational 

modifications, both in yeast and primordial germ-cells. In general, DNMT3b is absent from 

regions marked by H3K4me3 and it is recruited in gene-bodies by H3K36me3.  

The last chapter focuses on the presence of 5meC in messenger RNA, the function of 

which is still unknown. We discovered several hundred putative methylation sites that are 

associated with predicted secondary structures in mRNAs. This finding might be explained 

either by the recruitment of RNA methyltransferases (RMTs) by structural motives or by the 

limitations of the method utilized. More experiments are needed to understand what signal is 

needed for the specific recruitment of RMTs to their target sites and what is the function of this 

mark.  
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OVERVIEW 

Multicellular organisms possess cells with functional and phenotypic differences, despite 

sharing the same genetic information. Each cell’s identity is established during development and 

faithfully maintained during mitotic cell divisions and it is determined by the specific set of 

genes expressed at a particular time. Cis-regulatory regions are sequences on the DNA that can 

be bound by sequence-specific transcription factors (TFs) influencing the activity of nearby (or 

distant, if a looping mechanism is involved) genes	 (1). In addition to a DNA-binding module, 

TFs possess one or more effector domains that can recruit other transcription factors for 

cooperative binding, the basal transcriptional machinery, general co-activators, or co-repressors	
(2). An important set of proteins recruited by TFs consists of enzymes that can modify the 

chromatin therefore influencing the binding to DNA and/or activity of other regulatory proteins. 

Example of these are chromatin remodelers, histone-modifying enzymes and DNA 

methyltransferases. In	 Eukaryotic	 cells,	 the	 fundamental	 building	 blocks	 of	 chromatin	 are	

called	 nucleosomes,	 which	 provide	 an	 efficient	 wrapping	 of	 DNA	 around	 the	 histone	

octamer.	This can influence the binding of other DNA-binding proteins. However, since there 

are no covalent bonds between histones and DNA, cells use enzymes called chromatin 

remodelers and chaperones to dynamically regulate this interaction: nucleosomes can be moved, 

inserted or removed from the DNA molecule (3). Another way of regulating the interaction 

between nucleosomes and DNA is to post-translationally modify histone tails. Acetylation and 

phosphorylation of specific residues, for example, can change the highly basic nature of 

histones, reducing their affinity to the negatively charged DNA backbone (4). Similarly to 

nucleosome positioning, also the covalent modifications introduced by histone-modifying 

enzymes, “writers”, are dynamic and can be reversed by other enzymes identified as “erasers” 

(e.g. histone acetylases and de-acetylases). Combinations of histone post-translational 
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modifications, the so called “histone code” postulated more than 15 years ago, are recognized by 

proteins called “readers” that can directly or indirectly mediate fundamental processes in gene 

activation/repression, DNA replication and repair (5-9). 

In many, but not all, eukaryotic organisms there are enzymes called DNA 

methyltransferases able to attach a methyl group on cytosine residues on the DNA (10-12). This 

modified base is called 5-methylcytosine (5meC) and is regarded as the “fifth base”. The methyl 

group is projected in the major groove of the double helix and does not interfere with the pairing 

properties of cytosines. Similarly to histone post-translational modifications, this mark can be 

recognized by readers, referred to as methyl-DNA binding proteins (MBDs), and removed by 

erasers (7). 

The term Epigenetics (the Greek prefix epi- means “above”) was coined to describe 

heritable changes in gene activity not accompanied by changes in DNA sequence (13). However, 

now the term is loosely used to describe mechanisms involved in gene regulation that do not 

involve alteration in the nucleotide sequence, regardless of its heritable nature (14). Recent 

improvements in sequencing technologies have played a pivotal role in the study of Epigenetics. 

The second generation of sequencing technologies, known as Next-Generation Sequencing 

(NGS), relies on highly multiplexed reactions, increasing the throughput and decreasing the cost 

of sequencing per base (15, 16).  Several techniques have now been adapted to NGS approaches, 

making it possible to test not just single loci, but extend the analysis to the entire genome (17).  

An example of such a technology is ChIP-seq (Chromatin Immunoprecipitation coupled to 

sequencing), which is based on the sequencing of all the DNA fragments associated with a cross-

linked protein of interest, provided that an antibody specifically recognizing the target exists 

(18). Similar affinity-based techniques can be applied to map 5meC: MeDIP-seq (Methyl DNA 

Immuno-Precipitation) or MBD-seq (Methyl DNA Binding Domain). These techniques are able 

to enrich for fragments containing 5meC, however they do not have single-nucleotide resolution. 

Although real-time sequencing can provide information on modified bases, the gold standard for 
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single-nucleotide resolution of 5meC remains the utilization of sodium bisulfite (BS) (19). 

Treatment of denatured genomic DNA with sodium bisulfite leads to deamination only of un-

methylated cytosines to deoxy-uracil, which has identical base pairing properties of thymine. By 

contrast, 5meC residues are not efficiently converted by BS. The comparison of the BS-treated 

with an untreated DNA (also called reference) can reveal what cytosines are methylated in the 

original DNA sample. Several methods developed to test single or few loci rely on PCR: 

Methylation-Specific PCR (MSP) and Bisulfite Sequencing PCR (BSP). MSP is based on the 

design of primers that can only anneal to a specific status of a target cytosine (methylated or un-

methylated) after bisulfite treatment, while BSP requires the design of primers that can amplify 

the region of interest independently of the methylation status of target cytosines. If the readout 

of the first method can be the presence of a discrete PCR band on a gel or real-time 

quantification, the second technique requires sequencing of PCR products or cloned PCR 

products. Although these two methods can produce single nucleotide information, they are not 

suitable to test the methylation status of all the cytosines in the entire genome. For this, a 

technique called whole-genome bisulfite sequencing (WGBS) is used instead. This method relies 

on the high-throughput capabilities of next generation sequencing methods, and is able to 

measure the methylation status of all the cytosines in a genome at single-nucleotide resolution. 

WGBS has been used to study the distribution of 5meC in several organisms: DNA methylation 

is present in mammals, plants, many fungi and animals, with the notable exception of important 

model organisms such as Drosophila melanogaster, Caenorhabditis elegans and 

Saccharomyces cerevisiae. 5meC is found at different contexts: symmetric (CpG and CpHpG, 

where H = A,T,C) or asymmetric (CpHpH) sequences. In plants cytosines in all three contexts 

are methylated, while the majority of mammalian 5meC is restricted to CpG dinucleotides (20). 

In mammals, CpG dinucleotides are depleted throughout the genome (less than 1%, compared 

to the expected 4.4%), due to spontaneous deamination. However, they are clustered in so-

called CpG islands, regions dense in CpGs dinucleotides. CpG islands are present in most 
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promoters (60-70%) of mammalian genes, enriched for highly expressed housekeeping genes 

and they are generally depleted in methylcytosines. The remaining promoters show a dynamic 

pattern of 5meC and are usually tissue-specific. The rest of the genome, which has low CpG 

density, is usually methylated (21). DNA methylation is regarded as a repressive mark, present 

at promoters of silenced genes and on repetitive elements. However, 5meC is also enriched in 

gene bodies of highly transcribed genes.  

Mapping the distribution of methylcytosines genome-wide remains expensive for large-

scale studies. Numerous methods have been developed to reduce the cost per sample and 

maintain single-nucleotide resolution. One of them, called Reduced-Representation Bisulfite 

Sequencing (or RRBS), utilizes a restriction enzyme (MspI) to fragment the genome. DNA 

fragments smaller than 400bp are enriched in promoters, CpG islands and nearby CpG island 

shores (22-24). The main advantage of RRBS is that it can capture an informative fraction of the 

genome for a reduced cost per sample. This approach is particularly helpful for large-scale 

genomic projects. An example of such a project is described in Chapter 1 (25). RRBS was used to 

measure 5meC levels of liver DNA of 90 inbred mouse strains and it was shown to be associated 

with complex molecular and metabolic traits (such as bone mineral density, insulin resistance 

and protein/metabolite levels) through Epigenome-Wide Association Studies (EWAS). The 

study suggests that the distribution of DNA methylation is controlled by genetic variants, but 

since it’s more dynamic than the “static” genomic sequence, it can provide additional 

information about cell type composition of the tissue tested in response to external stimuli or 

disease states. The findings that many associations were found only with EWAS and not with 

genetic variants highlight the importance of 5meC profiling in quantitative trait modeling.  

Although RRBS enriches for CpG-rich regions, it still interrogates a small fraction of 

them (6-12% of all the CpGs present in the human genome). WGBS can accurately define the 

methylation status of most of the cytosines in the genome, but is expensive for large genomes 

(e.g. mammalian genomes). Moreover, most of the CpG sites are methylated in the genome and 
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80% of them do not vary between different cell types. In order to overcome these limitations, 

other approaches have been developed. One such method, called MRE-seq (Methylation-

sensitive Restriction Enzyme), relies on the sequencing of small fragments produced by the 

digestion of the genome by three methylation-sensitive restriction enzymes (HpaII, Hin6I and 

AciI) (26). In contrast to the methylation-insensitive restriction enzyme MspI, these three 

enzymes cut the DNA only if the cytosines in their recognition site are unmethylated. The 

advantage of this technique is that it focuses sequencing on the smaller fraction of the genome 

that is unmethylated, reducing the costs. However, the resolution is only limited to the 

restriction sites, since the methylation status of cytosines within each fragment is unknown. One 

approach used MeDIP (which enriches for methylated fragments) to complement the data 

obtained from MRE-seq (27). Even if this combined approach improves the methylation 

estimates, it increases the cost per sample associated with library preparation and sequencing 

and it doesn’t have single-nucleotide resolution. We, therefore, developed a method that has 

comparable costs to RRBS, has single-nucleotide resolution (as RRBS and WGBS), but provides 

information of differential methylation over a fraction of the genome comparable to WGBS. 

Chapter 2 is a manuscript in preparation describing the approach, called MRE-BS: Methylation-

sensitive restriction Enzyme Bisulfite Sequencing. The addition of a bisulfite treatment step, not 

only allows us to use the coverage information as in MRE-seq, but also provides us single 

nucleotide methylation estimates for a small fraction of the sites. A multiple regression model 

was built to combine these two features allowing us to estimate differential methylation (only 

through read coverage) across 60% of the genome and improved estimates for a small fraction of 

the genome (1.5%) when the coverage was sufficiently high for accurate methylation calling 

(through bisulfite sequencing). This approach will be useful for projects comparing several 

samples with large genomes. 

Methylation of cytosines is a covalent modification introduced by a class of enzymes 

called DNA methyltransferases (DNMTs). DNA methyltransferases are found in both 
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Prokaryotes and Eukaryotes, even if missing in some species (11, 28-30). DNA methylation 

systems in Prokaryotes have evolved to prevent the degradation of the host DNA by restriction 

enzymes, used as a defense mechanism from invading nucleic acids. However, in Eukaryotes, 

DNA methylation plays an important role in the control of several cellular processes, such as 

imprinting and X-chromosome inactivation (in mammals), transposon repression (in fungi, 

plants and animals) and gene regulation. Even if some functions of DNA methylation are 

conserved among fungi, plants and animals, their respective DNA methyltransferases are 

different. In fungi DNA methylation targets repeated sequences in order to silence its 

expression. The two main studied organisms are Ascobolus immersus, which methylates and 

silence repetitive DNA (MIP: Methylation-Induced Pre-meiotically), and Neurospora crassa, 

which targets repeats with a DNA methylation-linked process that induces mutation at the 

nucleotide level (RIP: Repeat-Induced Point mutation) (31, 32). Likewise, both plants and 

mammals methylate repetitive sequences to repress their activity, however, there are many 

differences in the DNMTs. Eukaryotic DNMTs can be divided in two groups: de novo DNA 

methyltransferases (which act on an unmethylated DNA substrate) and maintenance DNA 

methyltransferases (that prefer a hemi-methylated DNA substrate). De novo DNMTs establish 

methylation patterns by transferring a methyl group from the donor S-Adenosyl Methionine 

(SAM) to an unmethylated cytosine. Both MET1 in Arabidopsis (model organisms for DNA 

methylation in flowering plants) and DNMT1 in mammals function as DNA maintenance 

methyltransferases on symmetric CpG sites. They function by recognizing and methylating a 

hemi-methylated CpG dinucleotide and they perpetuate the pattern during DNA replication for 

the entire life of the organism, unless an external signal interferes with it. In contrast to 

mammals, plants have evolved additional mechanisms of DNA methylation maintenance for 

non-CpG sites (through CMT3 and CMT2), which are based on a reinforcing-loop involving 

methylation of lysine 9 of histone 3 (H3K9me) (30).  De novo methylation in plants depends on 

DRM2 (Domains Rearranged Methyltransferase 2) and requires other components of RNA 
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interference, two RNA polymerases (RNA pol IV and RNA pol V), chromatin remodeling factors 

and several other proteins. This pathway is known as RNA-dependent DNA Methylation 

(RdDM) and is not present in animals. Mammals have two active de novo DNA 

methyltransferases (DNMT3a and DNMT3b) and one truncated inactive version (DNMT3L) 

(11). De novo DNMTs in mammals are expressed at higher levels in undifferentiated and germ 

cells precursors compared to somatic cells. This is in agreement with the fact that DNMT3s 

establish DNA methylation patterns during development after global DNA demethylation events 

and the signal is then faithfully maintained by DNMT1. DNMT1 is recruited to its target sites 

through interaction of its N-terminus to other proteins, such as PCNA (targeting to replication 

forks) and UHRF1 (which recognizes hemi-methylated DNA) (33). Similarly to DNMT1, active 

de novo DNMTs possess a catalytic domain at the C-terminus. A defective methyltransferase 

domain is present in the inactive DNMT3L protein. However, DNMT3L, along with the two 

active de novo DNMTs, possess an ATRX-DNMT3-DNMT3L (ADD) domain, that interacts 

specifically with unmethylated histone 3 lysine 4 residues (H3K4me0). Moreover, the binding to 

H3K4me0 has been shown to disrupt the auto-inhibitory activity of the N-terminus portion of 

DNMT3a. Di- or tri-methylation of H3K4 (H3K4me2 and H3K4me3) is sufficient to disrupt the 

interaction of the ADD domain with the H3 histone tail. A third domain is present on DNMT3a 

and DNMT3b and it consists of a proline-tryptophan motif  (PWWP) (33). Previous evidence 

showed that the PWWP domain of DNMT3a interacts with tri-methylated histone 3 lysine 36 

(H3K36me3) in vitro, but since additional interactions with DNA and other histone 

modifications have been reported, further characterization of the de novo DNMTs is needed 

(34). In order to address this question, we introduced one of the two mammalian de novo DNA 

methyltransferases (DNMT3b from mouse) in the budding yeast Saccharomyces cerevisiae, 

which doesn’t have endogenous DNA methylation. This system has several advantages: it has 

histone sequences and many modifications are conserved with higher Eukaryotes, it can be 

easily manipulated, and its genome is small, reducing the costs associated with NGS approaches. 
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Moreover, the absence of 5meC in yeast mimics the status of the mammalian genome that 

undergoes global demethylation during development (35, 36).  Chapter 3 is a published paper 

showing how DNMT3b is guided in vivo by chromatin cues. Briefly DNMT3b prefers linker to 

nucleosomal DNA, and methylation occurs at H3K4me3-negative and H3K36me3-positive 

regions (37). This pattern of unmethylated transcriptional start sites (TSSs, where H3K4me3 is 

present) and methylated gene bodies (rich in H3K36me3) is consistent with the distribution 

found in mammals. Moreover, the deletion of Set1, the enzyme responsible for the deposition of 

H3K4me3, and Set2, which tri-methylates H3K36, increases DNMT3b-dependent DNA 

methylation over TSSs and decreases 5meC levels in gene bodies, respectively. The distribution 

of H3K4me3 and H3K36me3 in embryonic germ cells predicts the regions of the genome that 

undergo de novo DNA methylation, suggesting that the same mechanism is targeting DNMT3b 

in mammals (38). 

We conclude that the chromatin marks themselves are responsible for targeting DNA 

methylation. In agreement with that, another study showed that in mouse embryonic stem cells 

gene body DNA methylation is dependent on H3K36me3 and a functional PWWP domain of 

DNMT3b (39). Although DNA methylation in promoters has been associated for a long time 

with transcriptional repression, the function of gene-body methylation remained largely 

unknown. Only recently, it has been shown that DNMT3b-mediated gene-body methylation 

prevents intragenic cryptic transcription (40). These functions are mediated by 5meC-

recognizing proteins (41). 

5meC is not only present in DNA, but also in RNA molecules. RNA modifications have 

been discovered several years ago, initially in abundant non-coding RNAs, such as ribosomal 

RNA (rRNAs), transfer RNA (tRNAs) and small nuclear RNA (snRNAs). As of today, more than 

150 modified residues have been identified in RNA molecules, such as N6-methyladenosine 

(m6A), N6,2’-O-dimethyladenosine (m6Am), 5-methylcytidine (5meC), 5-

hydroxymethilcytidine (5hmeC), inosine (I), pseudouridine (!) and N1-methyladenosine (m1A) 
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(42, 43). The first methods used to identify the modified residues were based on chemical or 

enzymatic digestions coupled with chromatography (44). However, this approach suffers from 

the inability to assign a specific modification to its sequence context. A breakthrough in this field 

has been the ability to map RNA modifications genome-wide using NGS approaches, a field 

called “Epitranscriptomics” (45, 46). The best-characterized modification in Eukaryotic coding 

transcripts is m6A, since it is the most abundant and several proteins involved in its pathway 

have been described (47, 48). Similarly to DNA, RNA modifications are introduced post-

transcriptionally by RNA methyltransferase enzymes (RMT). Mutations in the RMTs have been 

linked to complex disorders, such as developmental defects, mental retardation and cancer (49). 

Several enzymes have been shown to methylate cytosine residues on the RNA, among them 

Nsun2, Nsun7 and DNMT2 (50). Since this modification is present on tRNAs and rRNAs, 

making it difficult to work with 5meC-RMTs mutants, little is known about the function of this 

modification in coding transcripts. Several approaches have been developed to map 5meC on 

RNA. RNA ImmunoPrecipitation (5meC-RIP) is based on antibody specific to the methylated 

cytosine, but it doesn’t have single nucleotide resolution. Three additional methods have single 

nucleotide resolution: bisulfite-RNAseq (BS-RNAseq, similar to the technique used for DNA), 

aza-IP (based on the formation of a covalent intermediate between RMTs and the cytosine-

analog 5-azaC) and miCLIP (based on the expression of a mutated NSun2 RMT, followed by IP) 

(47). The only technique that doesn’t require expression of transgenes or media analog 

supplementation is the treatment of RNA with bisulfite, which causes deamination of 

unmodified cytosines to uracils. We, therefore, developed a method to detect 5meC in an 

enriched fraction of RNA, polyA-tailed or rRNA-depleted, based on the treatment with sodium 

bisulfite followed by reverse transcription and library preparation, compatible with the Illumina 

platform (Chapter 4).  

Despite the ability to map methylation of cytosines in RNA at single-base resolution, there are 

disadvantages associated with BS-RNAseq that can lead to the production of false positives. 
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First, cytosines can be resistant to the bisulfite conversion if located in double stranded RNA. 

Second, since the treatment of RNA with bisulfite is carried out in milder conditions than the 

one on DNA, it can cause incomplete conversion. Third, 5meC is not the only modification 

preventing the BS-mediated conversion (i.e. hydroxyl-methylcytosine). Different studies have 

shown that 5meC identified sites cannot be reproduced or confirmed by different methods (51-

53). In Chapter 4, a bioinformatics pipeline, adapted from the one used to detect 5meC in BS-

treated DNA	 (54), identified about 500-1000 methylated sites for each of two different mouse 

genetic background (C57 and DBA). The C57 strain shows global levels of RNA methylation 

higher than DBA, in accordance with higher expression levels of two known 5meC-RMTs: Nsun7 

and DNMT2. Interestingly, many methylated sites identified by our method are associated with 

stable secondary structures predicted with bioinformatics software (mfold) or experimentally 

measured with the Parallel Analysis of RNA Structure (PARS) in human cell lines (55, 56). Two 

different hypotheses can explain this finding. One possible explanation is that stretches of 

structured RNA are not converted efficiently, resulting in higher 5meC false positives. 

Alternatively RMTs don’t have inherent sequence specificity, but they recognize secondary 

structures instead. This also would be in agreement with the hypothesis that many of the 5meC 

sites are the result of the aspecific activity of 5meC RMTs, which usually act on non-coding 

RNAs, a class rich in secondary and tertiary structures. Different questions still remain to be 

answered. For example what fraction of the identified 5meC sites on RNA are false positives and 

what is the biological significance of RNA methylation. In order to address these questions, 

improvements of the bisulfite-treatment conditions, validation with orthogonal approaches and 

more in depth study of the targeting and activity of RNA methyltransferases are needed. 
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SUMMARY

Heritable epigenetic factors can contribute to com-
plex disease etiology. Here we examine the contribu-
tion of DNA methylation to complex traits that are
precursors to heart disease, diabetes, and osteopo-
rosis. We profiled DNA methylation in the liver using
bisulfite sequencing in 90 mouse inbred strains,
genome-wide expression levels, proteomics, metab-
olomics, and 68 clinical traits and performed epige-
nome-wide association studies (EWAS). We found
associations with numerous clinical traits including
bone density, insulin resistance, expression, and
protein and metabolite levels. A large proportion of
associations were unique to EWAS and were not
identified using GWAS.Methylation levels were regu-
lated by genetics largely in cis, but we also found
evidence of trans regulation, and we demonstrate
that genetic variation in the methionine synthase
reductase geneMtrr affects methylation of hundreds
of CpGs throughout the genome. Our results indicate
that natural variation in methylation levels contrib-
utes to the etiology of complex clinical traits.

INTRODUCTION

Methylation of DNA cytosine bases is evolutionarily conserved in
multiple species from plants to humans. In mammalian species,
DNAmethylation plays an important role in imprinting, X chromo-
some inactivation, cell differentiation, gene silencing, and regu-
lation of gene expression. Similar to genetic variation, epigenetic
modifications are variable between individuals and regulated by
genetics (Orozco et al., 2014). Methylation QTL (metQTL) studies
in human adipose tissue found that 28% of CpGs were associ-
ated with nearby SNPs (Grundberg et al., 2013). DNA methyl-

ation is variable between inbred strains in Arabidopsis, rice,
and mice and in human populations. Strain-specific methylation
patterns were maintained across generations in mouse strains,
and twin studies in humans have shown a higher concordance
of methylation patterns inmonozygotic twins relative to dizygotic
twins (Gordon et al., 2012; McRae et al., 2014), suggesting that
DNA methylation is under genetic control.
Both human populations and mouse strains show variation in

multifactorial traits like heart disease and osteoporosis. In the
past decade, genome-wide association studies (GWAS) have
identified hundreds of genetic variants influencing clinical traits
(Welter et al., 2014). DNA methylation has also been associated
with gene expression (Bell et al., 2011; Grundberg et al., 2013)
and complex traits including cancer (Shenker et al., 2013; Xu
et al., 2013), aging (Heyn et al., 2013; Horvath, 2013), multiple
sclerosis (Huynh et al., 2014), rheumatoid arthritis (Liu et al.,
2013), and obesity in humans (Dick et al., 2014). However,
althoughDNAmethylation is influencedbygeneticsandcouldac-
count for part of the heritability of clinical traits, epigenetic varia-
tionhas typically notbeenconsidered inGWASfor complex traits.
In this study, we performed epigenome-wide association

studies (EWAS) to determine the contribution of DNA methyl-
ation to complex clinical traits related to heart disease, diabetes,
obesity, and osteoporosis. Our study integrates systems ge-
netics data that includes SNP genotypes, DNA methylation
bisulfite sequencing data, genome-wide gene expression, prote-
omics, metabolomics, and clinical phenotypes. Our results
reveal a large number of associations between DNA methylation
variants and clinical or molecular traits, many of which we could
not identify using traditional GWAS. We explored the contribu-
tion of genetics to DNA methylation patterns and found that
52% of highly variable CpGs were under genetic control. The
narrow sense heritability for CpG methylation levels was on
average 27% and was 60% for highly variable CpGs. We also
present evidence of common genetic variation affecting DNA
methylation patterns in trans and experimentally validate the
role of Mtrr in regulating methylation levels of CpGs across the
genome.
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may have a few or dozens of candidate genes depending on the
level of LD at that locus. We were interested in determining the
correlation in pairwise CpG methylation levels, and hence
the level of resolution we could achieve using CpGs in our asso-
ciation studies. We determined pairwise correlations of CpGs at
different distances from each other. For example, we took CpGs
separated by 100 kb or less and estimated the correlation be-
tween the CpG methylation levels in the HMDP strains. We
then estimated the average correlation between all pairs of
CpGs in the genome at that distance from each other and
repeated this estimate at various distances. We compared this
to the level of correlation in SNPs (LD) that we had previously
calculated for the same HMDP strains (Bennett et al., 2010).
Pairwise correlations in CpG methylation levels for a locus on
chromosome 1 are shown in Figure 1A for VariableCpGs,Hyper-
variable CpGs (Figure 1B), and SNPs (Figure 1C). Methylation
levels in mouse strains for a sample locus in chromosome 1
are shown in Figure 1D, where methylation levels vary between
0% and 100%. Correlations plots for whole chromosomes can
be found on Figures S3D–S3I.
At the genome-wide level, we found that the distance-depen-

dent correlation betweenCpGswas lower than that of SNPs. The
average correlation across the genome between CpGs within
100 kb was r2 = 0.06 for Variable CpGs and r2 = 0.43 for Hyper-
variableCpGs, and at 2Mb, the average correlation was r2 = 0.03
for Variable CpGs and r2 = 0.17 for Hypervariable CpGs. In
contrast, the average correlation across the genome was r2 =
0.88 for SNPs at 100 kb, dropping to r2 = 0.49 at 2 Mb. The
genome-wide average of pairwise correlations is shown on Fig-
ure 1E, for CpGs or SNPs at various distances from each other in
increasing 100 kb bins. Since methylation levels in mammals are
bimodal for a large proportion of CpGs (Figure S1D), we exam-
ined pairwise correlations between CpGs with low or high
methylation levels. We found that Hypervariable CpGs with low
methylation levels were generally more highly correlated with
nearby CpGs than CpGs with high methylation levels. For
example, the average correlation between Hypervariable CpGs
at 100 kb was r2 = 0.68 for CpGs with 0%–20% methylation
levels, and r2 = 0.58 for CpGs with 80%–100% methylation.
The average correlation was r2 = 0.32 for CpGs with 0%–20%
methylation levels, and r2 = 0.18 for CpGs with 80%–100%
methylation, at a distance of 2 Mb. We observed no differences
in pairwise correlation levels between low and high methylated
Variable CpGs (Figure 1F).

Natural Variation in DNA Methylation Is Associated with
Complex Traits
To determine the association of epigenetic variation with com-
plex clinical and molecular traits, we performed EWAS between
CpGmethylation levels and (1) 68 clinical traits, including plasma
cholesterol, fatty acids, glucose and insulin, body weight,
adiposity, blood cell counts, and bone mineral density pheno-
types; (2) 260 plasma and liver metabolites; (3) protein levels
from 1,543 peptides corresponding to 480 genes; and (4)
genome-wide microarray expression levels corresponding to
12,980 genes (Figure 2). Similar to GWAS using SNPs, we
used a linear mixed model (Kang et al., 2008) to determine asso-
ciations between traits and CpGs and to correct for population
structure. Since we used CpG methylation as the predictors

RESULTS

Data
We constructed reduced representation bisulfite sequencing
(RRBS) libraries using liver genomic DNA from 16-week-old
male mice using a previously described protocol (Smith et al.,
2009), corresponding to 90mouse inbred strains from the Hybrid
Mouse Diversity Panel (HMDP) (Bennett et al., 2010). We
sequenced the libraries using the Illumina HiSeq platform and
obtained an average of 90 ± 11 million reads per sample, then
aligned the data to the mouse genome using BS-Seeker2 (Guo
et al., 2013) for an average of 41 ± 7 million uniquely aligned
reads per sample (Figure S1A). This corresponded to 46%
mappability and 483 coverage per sample on average (Fig-
ure S1B). We filtered the cytosines based on 103 or more
coverage for a total of 11,520,175 cytosines present in at least
90% of the samples, of which 2,047,165 were CG, 2,737,475
were CHG, and 6,735,535 were in CHH context. The mouse
genome contains 21.3 million CpGs, and we observed approxi-
mately 2 million (9.6%) of all CpGs using RRBS.

Global methylation levels in the adult mouse livers were 44%±
1% for CpG cytosines, 1.1% ± 0.4% for CHG, and 0.8% ± 0.4%
for CHH cytosines, where H is any base other than G (Fig-
ure S1C). Since non-CG methylation was too low to be studied
in these samples (Figures S1C and S1E), we focused our ana-
lyses on CG cytosines only. We defined a set of 360,324 Variable
CpGs, which showed a 50% absolute change (delta) in methyl-
ation levels in at least one sample. We further identified a set
of 22,227 Hypervariable CpGs, which showed 50% or higher
methylation delta, relative to the median methylation level of
the CpG in 5 or more samples. An example of a Variable and a
Hypervariable CpG can be found in Figures S2A and S2B. We
excluded 6,993 CpGs that were also SNPs in the mouse strains,
since the changes in methylation observed correspond to the
loss of a CpG in strains carrying the SNP.

The liver is one of the main tissues involved in energy meta-
bolism. Because of its roles in carbohydrate and fat metabolism,
the liver has a significant impact on clinical phenotypes such as
plasma glucose, cholesterol and lipid levels, body weight,
adiposity, and atherosclerosis. It would also be important to
consider methylation levels in other metabolically relevant tis-
sues such as adipose, muscle, pancreas, and intestine in future
studies. For the same mouse strains, we measured 68 clinical
traits including atherosclerosis, diabetes, obesity, osteoporosis,
and blood-cell-related traits, aswell as genome-wide expression
levels in the liver (Bennett et al., 2010) using Affymetrix arrays.
We obtained liver proteomics from 1,543 peptides measured
by liquid chromatography-mass spectrometry (Ghazalpour
et al., 2011). We also profiled 260 liver and plasma metabolites
usingmass spectrometry, comprising eight classes ofmolecules
including lipids, carbohydrates, amino acids, peptides, xenobi-
otics, vitamins, cofactors, and nucleotides (Ghazalpour et al.,

2014).

DNA Methylation Has Lower Correlation in Cis
than SNPs
Correlations between pairs of alleles that are near each other on
a chromosome, or linkage disequilibrium (LD), can result in large
genomic blocks that contain multiple genes. A given association
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instead of SNPs, we also employed a methylation-based kinship
matrix instead of a SNP kinship matrix in the model. We and
others have shown that this approach corrects for false-positive
associations due to population structure (Bennett et al., 2010)
and potential tissue heterogeneity in the methylation data (Zou
et al., 2014).
Each of the EWAS plots in Figure 2 summarizes associations

between CpGs across the mouse genome and traits. Due to
the large number of traits in the proteomics and gene expression
data sets, only associations to Hypervariable CpGs are shown
for these data sets. All associations shown are significant at
the Bonferroni threshold (Table S1). In summary, we found that
natural variation in CpG methylation was associated with
numerous complex clinical and molecular traits. A table with
the number of EWAS hits and the significance threshold used
can be found Table S1, and tables with the individual associa-
tions we identified for all clinical and molecular traits can be

downloaded from http://ewas.mcdb.ucla.edu/download.html.
We found no evidence of inflation in our EWAS results (Figures
S4A–S4D; Supplemental Information) and no evidence ofmacro-
phage contamination in our liver samples (Figures S4E and S4F).

EWAS Identifies Both Known and Novel Associations
We identified numerous associations between clinical traits and
CpG methylation near genes known to influence those traits,
including associations not identified using traditional GWAS.
We previously performed GWAS for clinical traits and expression
levels in the HMDP (Bennett et al., 2010). We also previously
examined LD for SNPs in the HMDP and estimated an average
resolution of 2 Mb (Bennett et al., 2010; Ghazalpour et al.,
2011; Orozco et al., 2012), although LD blocks could be smaller
or larger depending on the genomic region. We took the average
2 Mb resolution in the HMDP and called associations in 2 Mb
bins, such that more than one association in a bin was
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Figure 1. Methylation and SNP Correlations
(A–C) Correlations for a locus in chromosome 1 in (A) Variable CpG methylation, (B) Hypervariable CpG methylation, and (C) SNPs. The x and y axes denote the

chromosome position, and the color represents the correlation (r2) between CpGs, or SNPs.

(D) Methylation levels of Hypervariable CpGs for a representative locus, strains are on the x axes, CpGs are on the y axes, and the color represents percent

methylation levels.

(E and F) Genome-wide average correlation between CpGs, or SNPs, at various distances. SNPs are shown in black; Variable CpGs are in blue; Hypervariable

CpGs are in red. Each point is the average correlation at increasing 100 kb bins.

(E) Genome-wide average correlation between CpGs binned by their methylation level. Open circles (o) represent the average for all CpGs; asterisks (*) represent

the average for CpGs with methylation levels between 0% and 20%, and plus symbols (+) represent the average for CpGs with methylation levels between 80%

and 100%. See also Figure S3.
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considered to be the same locus. To look for the overlap be-
tween GWAS and EWAS associations, we considered associa-
tions to be overlapping if they were within 2 Mb of each other.
For clinical traits common to both studies, we identified 266
EWAS hits and 300 GWAS hits, and 41 were identified by both
EWAS and GWAS where the associated loci were within 2 Mb
of each other. We also observed that the overlap between
EWAS and GWAS hits was much higher for expression cis-
eQTL (77%) and protein (37%) cis-pQTL (Figure S5A). Clinical
traits are typically more complex than molecular traits such as
gene expression or protein levels. For increasingly complex
traits, a smaller proportion of the variance in the phenotype
can be explained by genetic or epigenetic variation. Therefore,
for a given statistical power, we are likely to detect far more
molecular QTL than clinical trait QTL. The low overlap between
EWAS and GWAS clinical trait hits may be due to a lack of
sufficient power to detect associations for complex traits, since
we also observe a higher overlap between EWAS and GWAS
associations for expression cis-eQTL (77%) than for clinical
traits (15%).
As an example, we found an EWAS hit on chromosome 13 for

adipose tissue insulin resistance (ATIRI), glucose-to-insulin ratio,
a measure of insulin sensitivity, and percent of monocytes in the
blood (Figures 3A–3C). We did not find an association using
GWAS for measures of insulin resistance or monocyte levels at
this locus. The gene Bhmt encoding betaine-homocysteine
methyltransferase located at 94.3 Mb on chromosome 13 was
a candidate gene in this locus, since we also identified a cis as-
sociation for protein levels of this gene using EWAS, or cis-pQTL,
but no expression associations (Figures 3D and 3E). Methylation
levels at this locus were correlated with glucose-to-insulin ratio
(Figure 3F) and inversely correlated with protein levels of the
gene (Figure 3G). Protein levels of Bhmt were also correlated
with the trait (Figure 3H). Previous work in Bhmt knockout mice
demonstrated that Bhmt plays a role in energy metabolism, spe-
cifically in lipid synthesis, and insulin sensitivity (Teng et al.,
2012). Additional examples for associations with plasma choles-
terol and total bone mineral density are describe in the Supple-
mental Information and Figure S6.

Conditional Association Studies
We used conditional association studies to determine whether
hits identified with both EWAS and GWAS were (1) caused by
the same signal or (2) co-localizing but independent signals. To
accomplish this, we performed EWAS for overlapping associa-
tions using the CpG as the predictor and the SNP genotype as
a covariate. In this approach, if an EWAS hit remains significant
when we use the SNP as a covariate, this would suggest that the
overlapping EWAS and GWAS association was independent but
co-localizing. In contrast, if the EWAS hit goes away when we
use the SNP as a covariate, then we can conclude that the
EWAS and GWAS overlapping association was arising from
the same signal. Out of 41 overlapping clinical trait associations,
only three (7%) remained significant when we used the SNP ge-
notype as a covariate at the Bonferroni threshold (p < 1.2 3
10!3), and none were significant at p < 1 3 10!7. Similarly, 71
(4%) of overlapping cis expression associations, corresponding
to 64 unique genes, remained significant after using the SNP ge-
notype for the locus as a covariate at the Bonferroni threshold

A

B

D

C

Figure 2. EWAS
(A–D) Association between CpGmethylation and (A) clinical traits, (B)

metabolites, (C) protein, and (D) gene expression levels. Each point is a sig-

nificant EWAS at the corresponding Bonferroni thresholds across all CpGs and

traits tested. The genomic position of CpGs is on the x axis, the y axis denote

traits, and the position in the genome of the associated proteins and genes.

Black points are EWAS hits for Hypervariable CpGs, and blue points are EWAS

hits for Variable CpGs. For simplicity, only associations to Hypervariable CpGs

are shown for the proteomics and gene expression data sets. See also Figure

S4.
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(2.7 3 10!5), and 30 of the associations (2%) were significant at
p < 1 3 10!7. These results suggest that the majority of associ-
ations we found using both EWAS and GWAS were likely arising
from the same signal at the associated locus.

Causal Inference Test
To determine whether associations identified by both EWAS and
GWAS were mediated by differential methylation levels, we per-
formed causal inference tests (CITs) using the R statistical pack-
age CIT (Millstein et al., 2009). The CIT performs a series of con-
ditional probability tests todetermine if the associationbetweena
genetic locus (L) and a trait (T) is mediated by DNA methylation
(M), in this case, by testing for the following conditions: (1) the trait
is associated with the locus, L/T; (2) the trait is associated with
themethylationmediator given the locusM/T j L; (3) themethyl-
ation mediator is associated with locus given the trait, L/M j T;
and (4) the locus is independently associated with both themedi-
ator and the trait given the mediator, L/T j M. If the first three
conditions are met, we can say that genetic variation at the locus
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Figure 3. Insulin Resistance and Bhmt
EWAS
(A–E) Manhattan plots showing association of

methylation levels to (A) ATIRI, (B) plasma glucose-

to-insulin ratio, (C) monocyte percent in the blood,

(D) liver protein levels of Bhmt, and (E) liver

expression levels of Bhmt. Chromosome location

is on the x axis, the p value for the association is on

the y axis, and each point represents a CpG. The

dotted line is drawn at p < 13 10!7, the Bonferroni

threshold for a single phenotype.

(F–H) Each point represents a mouse sample,

showing correlation between (F) methylation levels

for the peak associated CpG and glucose-to-in-

sulin ratio levels, (G) methylation levels for the peak

associated CpG and liver protein levels of Bhmt,

and (H) glucose-to-insulin ratio and Bhmt protein

levels. See also Figure S6.

is associated with the trait and that this
association is mediated entirely by DNA
methylation, L/M/T. Alternatively, if
all four conditions are met, we can say
that the association is still causal and
mediated by DNA methylation, but the
genotype at the locus also affects methyl-
ation and the trait independently. In sum-
mary, the two causal models tested by
the CIT are the causal model, where the
association is mediated entirely by DNA
methylation, and the causal independent
model, where the association is causal
but the locus is also independently associ-
ated with DNA methylation and the trait.
We performed the CIT for clinical trait

associations identified by both EWAS
and GWAS and found that ten out of the
41 (24%) overlapping associations were
causal andmediated byDNAmethylation,
and nine of the ten were causal indepen-

dent associations (Table S2). However, it is possible that there
are additional causal relationships between genetic variants,
DNA methylation, and traits, but we lack sufficient power to
detect these. Similarly, we performed the CIT for the gene
expression associations (eQTL) we identified using both EWAS
and GWAS, corresponding to 1,530 unique genes. We found
352 (22%) cis-eQTL mapping genes were mediated by variation
inDNAmethylation,where the locusgenotype influencedmethyl-
ation and DNAmethylation in turn influenced the trait, L/M/T,
and 321 of these were causal independent. Overall, results from
the CIT indicate that a proportion (22%–24%) of overlapping
EWAS and GWAS hits were causal associations mediated by
DNA methylation. These results in conjunction with the condi-
tional association studies suggest that that remaining EWAS
hits are likely to be secondary to the genetic associations.

Principal-Component Analysis
The clinical traits in our study have a complex correlation structure
(Figure S5B), since several traits such as insulin resistance,
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Figure 4. Principal Component EWAS
(A and B) Association between methylation and

principal components (A) one and (B) two. Each dot

represents a CpG, the genomic position of CpGs is

on the x axis, and the !log10 of the p value for the

association is on the y axis; chromosomes are

shown in alternating colors.

(C–F) Each dot represents amouse sample, showing

correlation between (C) liver expression levels of

Prelid1 and methylation levels of a CpG associated

with PCA1, (D) expression of Cmtm6 and methyl-

ation of a CpG associated with PCA1, (E) expression

of Lipe and methylation of a CpG associated with

PCA2, and (F) expression ofMtor and methylation of

a CpG associated with PCA2. See also Figure S5.

2014). Methylation levels at the chromo-
some 9 locus were associated with Cmtm6
(Figure 4D), a gene structurally related to
chemokines, although its exact function is
still unknown. The second component was
strongly associatedwith a locusonchromo-
some 7 spanning approximately 10 Mb that
also coincided with the Hemoglobin beta
locus (Figure 4B). Consistent with the corre-
lationbetween the secondprincipal compo-
nent and fat-related traits, we found that
CpGs at this locus were associated with
several genes including Lipe (Figure 4E), a
lipase gene involved in free fatty acid oxida-
tion (Reid et al., 2008). In addition, we iden-
tified CpGs in chromosome 8 associated
with the second principal component and
with expression levels of Mtor (Figure 4F).
Mtor plays a role in metabolic regulation,
response to nutrients, insulin, and diabetes
(Zhu et al., 2013).

DNA Methylation Can Be Used to
Infer Phenotypes
Genetics and genomics data is a highly
valuable resource that can be used to

model disease susceptibility and risk. An individual’s genome is
predominantly static, but the epigenome is variable in different
tissues and is affected by transcription patterns. To determine if
CpGs could be used to infer clinical traits in other individuals
based on their methylation status, we built linear models with
CpG sites using the generalized linear model package glmnet
(Friedman et al., 2010), and tested their power to infer clinical
traits in test individuals where the CpG status was known. For
each trait, we randomly selected a test set of ten mice that were
kept hidden from the training set and used the remaining mice
as the training set, where the methylation status was known in
both sets. We used glmnet to select CpGs from the 20,000
most variable CpGs and built a linear model for the trait based
on these CpGs using the training set. We then used the resulting
linear model to infer trait values on the test set of ten mice and
determined the accuracy of the model using Pearson’s correla-
tion between the observed and inferred trait values. We found

plasmacholesterol levels, andobesity are interrelated. Toaccount
for correlationsbetweenclinical traits, and to identify loci thatdrive
multiple correlated traits, we performed principal-component
analysis on the clinical traits (Figure S5C). The first component ex-
plained 24% of the variation in the traits and had the highest
weights for glucose-to-insulin ratio and fat-related traits. The sec-
ond component explained 12% of the variation in the traits and
had the highest weights for blood- and fat-related traits. We per-
formed EWAS between CpGs and the two first principal compo-
nents as phenotypes and found two significant associations with
the first component on chromosomes 1 and 9 at the Bonferroni
threshold (p < 6.93 10!8, Figure 4A). We searched for individual
methylation sites in this locus that were also associated with
gene expression or protein levels. Genes associated with the
chromosome 1 locus methylation levels include Prelid1 (Fig-
ure 4C), a gene involved in lipid transport, and 1110057K04Rik,
a gene recently found to be involved in lipid storage (Goo et al.,
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several clinical traits that could be accurately inferred on test in-
dividuals from a set of CpG methylation sites, where the trait
values predicted by the model were highly correlated with the
clinical trait values measured in the mice. We found eight clinical
traits with r2 > 0.5, including plasma total cholesterol levels,
plasma HDL cholesterol levels, total bone mineral density,
plasma fatty acids, and red blood cell phenotypes. Examples of
inferred and measured clinical trait values are shown for bone
mineral density (Figure 5A) and for mean cell volume of red blood
cells (Figure 5B). A list of inferredphenotypes, the correlationsbe-
tweenpredictedandobservedphenotypes, and the top tenCpGs
selected to model each phenotype can be found in Table S4.

Natural Genetic Variation InfluencesGenome-Wide DNA
Methylation Levels
To determine the extent to which genetics affects natural varia-
tion in DNA methylation, we used a linear mixed model to

perform GWAS of CpG methylation levels as traits to SNPs
across the mouse genome. We and others have shown that
this method reduces false-positive associations that are due to
population structure (Bennett et al., 2010; Kang et al., 2008).
For each CpG, we associated methylation levels to SNPs with
MAF greater than 10%. We called significant associations at
the Bonferroni threshold (p < 1.4 3 10!12) by considering each
CpG and SNP pair as an independent test (Table S5). We chose
this stringent threshold to call significant associations in order to
minimize the possibility of examining false-positive associations.
However, all association results at p < 13 10!6 can be obtained
from our website at http://ewas.mcdb.ucla.edu/download.html.
We identified 3,017,453 associations betweenmethylation levels
and genetics at the Bonferroni threshold (Figure 6A), corre-
sponding to 26,563 unique CpGs, or 7% of all methylation sites
tested, and 92,959 unique SNPs. Approximately 51% of all sig-
nificant associations were for Hypervariable CpGs, and 52% of
all Hypervariable CpGs (11,644) were under genetic regulation.
We found that 12% of the associations involved SNPs that abol-
ished a CpG in a fraction of the mouse strains (CG-SNPs), corre-
sponding to 2,533 of the CG-SNPs present in the strains. We
note that these CG-SNPs were not used in our EWAS, since dif-
ferences inmethylation between strains were the result of a cyto-
sine change to a different DNA base.
We estimated the variance explained by genetics, or the nar-

row sense heritability of DNA methylation levels for individual
CpGs using an additive model. When we examined all Variable
CpGs, which display variation in methylation levels in at least
one strain, the variance explained by genetics was on average
27% (Figure S7A). In contrast, on average 60% of the variance
was explained by genetics for Hypervariable CpGs, which
display higher variation in methylation among the strains. The
variance explained by genetics was on average 75% for CG-
SNPs. These CG-SNPs do not show 100% heritability, likely
because methylation levels can still be controlled in trans for
the strains with the C allele. A large proportion of the associa-
tions were local or cis. We previously estimated the GWASmap-
ping resolution to be 2 Mb on average (Bennett et al., 2010).
Here, 54% of the associations were local or cis, where SNP
and CpG pairs were within 2 Mb of each other. However, trans
associations where SNP and CpG pairs were more than 2 Mb
from each other were also found in the same chromosome for
approximately 79% of trans associations, suggesting that
many of these associations may be cis associations caused by
long-range LD in SNPs. The distance between SNPs and Hyper-
variable CpGs was on average 1.4 times smaller than the overall
distribution of SNP to CpG distances, and the distance between
SNPs and CG-SNPs was on average 3.6 times smaller than the
overall distribution. The distribution of the distances between
SNP and CpGs pairs is shown on Figure S7B, and results of
the DNA methylation GWAS are summarized in Table S5.

Mtrr Influences Methylation Levels of CpGs across the
Genome
Methylation levels of hundreds of CpGs across the genome
mapped to a QTL hotspot on chromosome 13, defined as a
2Mbbin at 68–70Mb, near the geneMethionine synthase reduc-
tase, Mtrr, located at 68.7 Mb (Figure 6C). This methylation hot-
spot can also be seen as a vertical band on the GWAS plot
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(A and B) Phenotype predictions for (A) bone mineral density and (B) mean cell
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See also Table S4.
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Figure 6. Natural Genetic Variation Influ-
ences Genome-Wide DNA Methylation
(A) GWAS usingVariableCpGmethylation levels as

phenotypes and SNPs as predictors. Genomic

position of SNPs is on the x axis, and the genomic

position of CpGs is on the y axis. Each point is a

significant association at the Bonferroni threshold

p < 1.4 3 10!12.

(B) Methylation levels for CpGs mapping to the

chromosome 13 GWAS hotspot. Strains are

on the x axis grouped by their genotype of

rs13481861 at theMtrr locus, and CpGs are on the

y axis. The color is the methylation level between

0% and 100%.

(C) CpG methylation GWAS hotspots. The number

of CpGsmapping in trans to each 2Mbbin is on the

y axis. The genomic position of each bin is on the

x axis. The horizontal dotted line is the Poisson

significance threshold for each hotspot bin.

(D and E) Experimental validation of the hotspot at

the Mtrr locus using RRBS in livers of wild-type

mice (+/+) and mice homozygous for the Mtrr

gene-trapped allele (gt/gt).

(D) Distribution of methylation differences. The

difference in methylation between +/+ versus gt/gt

mice is on the x axis, and the cumulative distribu-

tion function is on the y axis. The curves show the

distribution of all CpGs (black), randomly sampled

CpGs (green dotted), and CpGs predicted to be

affected by the Mtrr genotype (red).

(E) Differentially methylated CpGs betweenMtrr+/+

and gt/gt mice at FDR < 5%.Mice are on the x axis,

and CpGs are on the y axis. The color denotes

methylation levels between 0% and 100%. See

also Figure S7.

with DNMT1, DNMT3A, DNMT3B, and
MTHFR. All these suggested that Mtrr
was an ideal candidate gene for the
methylation hotspot.
Based on our GWAS results, we

observed 471CpGs from the HMDPmap-
ping to the chromosome 13 hotspot (Fig-
ure 6B). These CpGs were physically
located throughout the mouse genome,
and we hypothesized that their methyl-

ation levels were influenced by Mtrr. To experimentally validate
Mtrr as a causal gene for the chromosome 13 methylation hot-
spot, we measured DNA methylation levels in the livers of Mtrr
wild-type (+/+) and homozygous gene-trappedmice (gt/gt) using
RRBS. Mice homozygous for the gene-trapped allele display
reduced expression, protein, and activity of Mtrr (Elmore et al.,
2007). Of the 471 CpGs mapping to the hotspot, 154 CpGs
were represented in the RRBS data set of Mtrr mice, and 42 of
the 154 (27%) were differentially methylated between Mtrr
wild-type and gt/gt mice at 5% false discovery rate (FDR).
Methylation levels at these differentially methylated sites are
shown on Figure 6E for wild-type and gt/gt mice, as well as the
average methylation levels of mouse strains with the reference
allele (C) or alternate allele (T) for SNP rs13481861 located in
an exon of Mtrr. The list of 154 CpGs we tested using RRBS,
including the methylation delta; the p value for differential

(Figure 6A). Expression levels of Mtrr were variable among the
mouse strains and were regulated in cis, since we observed
both a cis-eQTL for Mtrr using GWAS (p = 1.82 3 10!14) and
an association between Mtrr expression and methylation levels
314 bp from Mtrr using EWAS (p = 4.97 3 10!14). Expression
levels of Mtrr were highly correlated with methylation levels of
CpGs mapping to the locus both in cis and in trans, with an
average absolute Pearson’s r = 0.48. The distribution of these
correlations was significantly different (KS test p = 4.98 3
10!187) from the correlation between Mtrr expression and all
CpGs, which had average absolute r = 0.09 (Figure S7C). Mtrr
is necessary for the utilization of methyl groups from the folate
cycle, which donates methyl groups to multiple cellular
pathways including DNA methylation (Crider et al., 2012).
MTRRwas recently associatedwithmethylation levels in autoim-
mune thyroid disease in humans (Arakawa et al., 2012), along
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methylation between Mtrr wild-type and gt/gt mice; and the
average methylation of allele C and allele T HMDP strains can
be found in Table S6. We were not able to observe all
471 CpGs because of the decrease in coverage, since we multi-
plexed six samples in one lane for the validation experiments and
two samples per lane for all the HMDP samples.
The difference in methylation (delta) between wild-type and

gt/gt mice was on average 6.7-fold higher in the 154 predicted
CpGs, relative to all CpGs observed in the Mtrr mice (KS test
p = 1.8 3 10!33). To test if the differences between Mtrr wild-
type and gt/gt mice at these CpGs were due to chance, we
randomly sampled sets of CpGs across the genome and calcu-
lated the delta between wild-type and gt/gt mice in 1,000 sam-
plings, but we found no significant differences between
randomly sampled CpGs and all observed CpGs. Random sets
of CpGs had an average delta of 0.99% and an average KS
test p = 0.52 forMtrr +/+ versus gt/gt mice across all 1,000 sam-
plings, with a minimum KS test p = 0.001 and maximum delta of
1.1%. In contrast, the 154 CpGs that we hypothesized were
regulated by Mtrr showed an average delta of 20% between
Mtrr+/+ and gt/gt, with KS test p = 1.8 3 10!33. The distribution
of methylation differences in Mtrr wild-type and gt/gt mice is
shown on Figure 6D for the 154 predicted CpGs, a set of
randomly sampled CpGs, and all CpGs observed in the Mtrr
mouse RRBS data set.

Online Databases for the Identification of Candidate
Genes
All of our EWAS and GWAS results are available through an on-
line database to facilitate the identification of candidate genes
for clinical traits using DNA methylation patterns, which can be
accessed at http://ewas.mcdb.ucla.edu. We also created an
different online tool that generates association graphs based

Figure 7. Bone Mineral Density Association
Graph
Association graph of EWAS andGWAS hits. Edges

are defined by EWAS, purple lines; GWAS, red

lines; Cis-associations, solid lines; and Trans-

associations, dotted lines. Node colors are trait,

yellow; CpG, purple; SNP, red; gene expression,

light blue; and protein levels, green. Genes impli-

cated in bone mineral density and/or bone biology

are shown with V shape, and genes implicated in

fat or lipid metabolism are shown as squares.

on our results at http://pathways.mcdb.
ucla.edu/network. A sample association
graph for bone mineral density is shown
in Figure 7. Further details on these online
databases can also be found in the Sup-
plemental Information.

DISCUSSION

In this study we leveraged a powerful
mouse systems genetics platform to ask
what the relationship is between DNA
variation and methylation. What are the

loci that control methylation levels? How does methylation relate
to clinical traits that are precursors to heart disease and dia-
betes? Can methylation be incorporated into a network and
causal models of complex disease? Our results demonstrate
that using DNAmethylation for GWAS (i.e., EWAS) complements
traditional GWAS.
We identified thousands of associations betweenDNAmethyl-

ation levels and clinical traits such as bone mineral density,
adiposity, plasma cholesterol, glucose, insulin, triglyceride
levels, and molecular traits such as metabolites, protein, and
gene expression levels (Figure 2). Roughly 15% of EWAS hits
for clinical traits could also be found using GWAS in the same
panel of mouse strains, but the remaining associations were
unique to the EWAS (Figure S5A). The low overlap between
methylation and genetic associations for clinical traits may be
due a lack of statistical power to detect associations with small
effects. Since molecular traits are typically less complex relative
to clinical traits, we were more likely to detect associations for
gene expression and protein levels, and indeed, we observed
a much larger overlap for cis expression (77%) and cis protein
associations (37%) identified with EWAS and GWAS. In cases
where associations are identified by both EWAS and GWAS,
we asked whether methylation was mediating the effect on
the trait. We used a CIT to address this question, and found ev-
idence that DNAmethylation wasmediating the effect on the trait
in 24% of the overlapping clinical trait associations, and 22% of
the overlapping cis expression associations. However, we note
that it is often difficult to establish causal relationships for either
genetic or epigenetic associations for a number of reasons,
including the complexity of biological pathways, LD, and statis-
tical power. In addition, although the CIT examines the model
where a locus affects methylation and methylation affects the
trait (L/M/T), there are other possible scenarios not tested
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2012), 19% in blood leukocytes (McRae et al., 2014), andmedian
heritability of 34% in adipose tissue in the MuTHER cohort
(Grundberg et al., 2013). These results support the notion that
DNA methylation levels are indeed associated with genetic vari-
ation, although the extent of the heritability and genetic effects is
variable across different tissues and population samples.
Although the majority of associations between CpG methyl-

ation levels and genetics were in cis, we found a trans associa-
tion hotspot where methylation levels of CpGs across the
genome map to a locus in chromosome 13 near Mtrr (Figures
6A and 6C), a gene necessary for the utilization of methyl groups
from the folate cycle. This suggested that natural genetic varia-
tion in a population can influence genome-wide DNAmethylation
levels. The FAST kinase gene Fast3kd was also located on chro-
mosome 13 nearMtrr, and is another candidate gene for the hot-
spot. Unfortunately, Fastkd3 was not represented in either our
gene expression or protein data sets, and we could not observe
any cis-eQTL or cis expression EWAS hits for this gene. Although
Fastkd3 may also be a candidate for the hotspot, it contains a
mitochondrial-targeting domain and functions primarily in the
mitochondria, making it a less likely candidate thanMtrr for influ-
encing CpG methylation levels in trans. We confirmed the role of
Mtrr in 27% CpGs predicted to be affected by the chromosome
13 hotspot, since these CpGs were differentially methylated be-
tween wild-type and gt/gt mice (Figure 6E). The validation results
of the chromosome 13 hotspot we present here are consistent
with our previous work on a gene expression hotspot on mouse
chromosome 8 in primary macrophages (Orozco et al., 2012),
where we experimentally validated 12% of the genes predicted
to map to the chromosome 8 hotspot.
One of the most desirable applications since the advent of the

human genome project has been to be able to determine a per-
son’s phenotype from their genome sequence. However, under-
standing how genetic variation alters cellular behavior and
organismal phenotypes, and accurately inferring phenotypes
from raw genotypes has proved to be an extremely difficult
endeavor. A recent study demonstrated that modeling of SNPs
fromwhole-genome sequencing data could be used to infer star-
vation resistance and startle response in Drosophila (Ober et al.,
2012). Here we show that DNA methylation patterns can be
used to infer complex phenotypes in a mammalian organism,
including bone mineral density, blood cell phenotypes, and
plasma cholesterol levels (Figure 5; Table S4). We built linear
models that incorporate the DNA methylation status at specific
CpGs and used these models to infer clinical traits in other indi-
viduals in the same cohort whosemethylation status was known.
We note that the statistical inference approach we used to
model, or explain, a phenotype is distinct from longitudinal pre-
diction of phenotypes for a given individual at a future time.
Association studies over the past 10 years have found that the

majority of genetic polymorphisms associated with traits are
outside protein-coding regions. The associated genetic poly-
morphisms are thought not to alter genes themselves, but rather
regulatory elements that control gene expression (Furey and Se-
thupathy, 2013). Our findings suggest that DNA variants can act
by regulating DNAmethylation, which in turn affects regulation of
gene expression or protein levels of genes that function in biolog-
ical mechanisms important for the phenotype expression. We
hypothesize that it is the plasticity in DNAmethylation thatmakes

by the CIT, such as where DNAmethylation changes are reactive
and are not mediators of the association.

DNA methylation levels are dynamic and can be modified in
response to disease, age, and environmental perturbations. In
contrast, the genome remains largely static throughout an indi-
vidual’s lifetime and is modified only in certain diseases such
as cancer. We found that correlations in CpG methylation pat-
terns were significantly smaller than correlations in SNP geno-
types (LD), leading to a dramatic increase in our association
mapping resolution (Figures 1 and S3). LD blocks are typically
much larger in laboratory mice than in human populations, due
the breeding history of existing mouse strains. Hence, we would
not expect a similar increase in mapping resolution using EWAS
in human populations. The extensive LD in mice has been a
major difficulty for candidate gene identification in mouse ge-
netics studies, and we found that this can be largely overcome
using EWAS in mice. We hypothesize that the plasticity in the
epigenome allows methylation patterns to be at least partly de-
coupled from local genetic patterns, since CpG methylation
can be modified by chromatin binding proteins in trans. In
contrast, SNP genotypes are static, and LD patterns remain
fixed in the population.

In addition, DNA methylation patterns can vary across
different tissues. One of the advantages of studies inmammalian
model organisms such as the mouse is the ability to sample tis-
sues that are not readily available in human studies. A previous
study identified methylation associations using blood for rheu-
matoid arthritis in humans (Liu et al., 2013), and in the current
study, we found associations for bone mineral density and
methylation levels in the liver (Figures 7 and S6). These findings
suggest that it is possible to uncover significant associations for
methylation patterns that are conserved between the tissue that
is sampled and the tissue relevant to the trait of interest, but as-
sociations to methylation levels that are not conserved are likely
to be missed. We believe that there is potentially a large amount
of information to be gained from studying relevant tissues when-
ever possible.

We examined the degree to which methylation is controlled by
genetics by taking methylation patterns of individual CpGs as
phenotypes and mapping them to the SNP genotypes using
GWAS. We found that 7% of all CpGs and 52% of Hypervariable
CpGs were under genetic control (Figure 6A). A large proportion
(55%) of these associations were in cis, where the CpG and SNP
were found within 2 Mb of each other. Although only 7% of all
CpGs we examined were significantly associated with SNPs, it
is possible that we did not have sufficient power to identify addi-
tional associations, particularly for genetic variants with subtle
effects on DNA methylation. In addition, we note that CpGs
with minimal or no variation in methylation levels would not be
significantly associated even if they were stably maintained
across generations. Previous human methylation studies, or
mQTL studies, found that 20%of variable CpGswere associated
with genetic variation in blood leukocytes (McRae et al., 2014)
and 28% in adipose tissue (Grundberg et al., 2013).We observed
an average heritability of 27% for all CpGs and 60% for Hyper-
variable CpGs in the liver of mouse inbred strains, excluding
CG-SNPs. In comparison, heritability in previous human twin
studies was on average 12% in cord blood mononuclear cells,
7% in human umbilical vein endothelial cells (Gordon et al.,
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it ideal for quantitative trait modeling. Since DNA methylation
patterns are specific to developmental stages and cell types
and can vary in response to the environment or disease, they
can capture the cellular status and provide a more detailed
picture of dynamic cellular behavior than our static genomes.
Ultimately, our studies suggest that CpG methylation patterns
are themselves under genetic control, but because they are
more responsive to an organism’s state, they can provide added
information that cannot be obtained from the genetic sequence
alone.

EXPERIMENTAL PROCEDURES

A more detailed version of the experimental procedures can be found in the

Supplemental Information.

Mice
All animals were handled in strict accordance with good animal practice as

defined by the relevant national and local animal welfare bodies, and all animal

experiments and work were carried out with UCLA IACUC approval.

Data Access
All RRBS sequencing and SNP data can be obtained from GEO: GSE67507.

The EWAS and GWAS results can be accessed in our online databases to

search for candidate genes at http://ewas.mcdb.ucla.edu and to generate

association graphs at http://pathways.mcdb.ucla.edu/network. Individual

tables with all methylation associations can be downloaded from http://

ewas.mcdb.ucla.edu/download.html. The GWAS results can also be ac-

cessed at http://systems.genetics.ucla.edu/data/hmdp.

RRBS Libraries
We prepared RRBS libraries as previously described (Smith et al., 2009), with

minor modifications. We sequenced the libraries by multiplexing two libraries

per lane in an Illumina HiSeq sequencer, with 100 bp reads.

Alignment
We aligned the reads with BS-Seeker2 (Guo et al., 2013) to the mm9

mouse reference genome. We used Bowtie as the base aligner, trimmed

adapters, allowed for up to five mismatches, and selected uniquely aligned

reads.

LD and CpG Correlation Studies
We computed the Pearson’s r2 between pairs of SNPs, or pairs of CpGs,

excluding missing values.

EWAS
We used the linear mixed model package pyLMM (https://github.com/

nickFurlotte/pylmm) to test for association and to account for population

structure and relatedness among the mouse strains. This method was previ-

ously described as EMMA (Kang et al., 2008), and we implemented the

model in Python to allow for continuous predictors, such as CpG methylation

levels that vary between 0 and 1. We applied the model y=m+ xb+ u+ e,

where m = mean, x = CpG, b = CpG effect, and u = random effects due to

relatedness, with Var(u) = sg
2K and Var(e) = se

2, where K = IBS (identity-

by-state) matrix across all Variable CpGs. We computed a restricted

maximum likelihood estimate for sg
2K and se

2, and we performed associa-

tion based on the estimated variance component with an F test to test

that b does not equal 0. Each phenotype was log transformed for the asso-

ciation test.

Inflation
We calculated the inflation factor lambda by taking the chi-square inverse

cumulative distribution function for the median of the association p values,

with one degree of freedom, and divided this by the chi-square probability

distribution function of 0.5 (the median expected p value by chance) with

one degree of freedom.

Overlap of EWAS and GWAS
We defined an overlap between EWAS and GWAS if the associations were

found within 2Mb (Figure S5A). To decrease the chance of not finding an over-

lap based on our stringent Bonferroni EWAS thresholds, we used the per

phenotype Bonferroni threshold of p < 1 3 10!7 for EWAS and p < 4.1 3

10!6 for the GWAS as previously described (Bennett et al., 2010).

Conditional EWAS
We performed EWAS for clinical traits or cis expression associations identified

with both EWAS and GWAS. We used the pyLMM package as described with

onemodification: for each EWAS, we used the SNP genotype for the GWAS hit

as a covariate.

CIT
We performed CITs using the R statistical package CIT developed by Millstein

and colleagues (Millstein et al., 2009), according to the user’s manual.

PCA
We performed a principal-component analysis on the clinical traits. The first

and second principal components explained 24% and 12% of the variation

in the traits, respectively. We mapped the first two principal components as

traits to CpG methylation levels across the genome using EWAS as described

above.

Methylation GWAS
We tested for association between methylation levels as phenotypes, and

SNPs as predictors using EMMA as previously described (Bennett et al.,

2010). The difference between the EWAS model described above, and the

GWAS linear mixed model is that in GWAS x = SNP, b = SNP effect, and K =

IBS (identity-by-state) matrix across all SNPs.

Methylation GWAS Hotspots
We divided the genome into 2 Mb bins and counted the number of all unique

CpGs with a significant GWAS hit in that bin and called these ‘‘cis and trans’’

associations (Figure S7E). We also defined a set of trans association hotspots

(Figure 6C), where we counted CpGs mapping to each bin in trans, such that

the CpG was physically located at least 10 Mb away from the bin. We consid-

ered CpGs to be associated at the Bonferroni threshold with p < 1.4 3 10!12.

We used the Poisson distribution to determine if individual bins had a higher

than expected number of associations.

Validation of Mtrr Hotspot
We generated RRBS libraries from Mtrr gene-trapped mice (Elmore et al.,

2007), using three wild-type and three homozygous gene trapped (gt/gt)

male mice at 3 months of age. We sequenced the libraries by multiplexing

all six libraries in one lane and aligned the data using BS-Seeker2 as described

above. We compared CpG methylation levels in +/+ and gt/gt mice using a

t test and estimated the FDR using the Storey method (Storey, 2002). We

calculated the difference in methylation levels at each CpG by taking the ab-

solute difference in methylation between the average methylation Mtrr+/+

and the average in !/! mice (i.e., delta methylation).

Phenotype Inference
We used the glmnet package in R for building linear models, which fits a gener-

alized linear model via penalized maximum likelihood (Friedman et al., 2010).

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, six tables, and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.cmet.2015.04.025.
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Figure S4, related to Figure 2
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Figure S5, related to Figure 4
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Figure S6, related to Figure 3
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Figure S7, related to Figure 6

36



SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Sample statistics. Related to Experimental Procedures. (A) Total number of 
reads and aligned reads across all RRBS mouse libraries. (B) Mappability  and Coverage in all 
RRBS libraries. (C) Global percent methylation levels per sample in CG, CHG and CHH 
cytosine contexts. Each point represents an RRBS mouse library. H=any  base other than G. (D) 
Histogram showing distribution of average methylation levels for each Variable CpG. (E) 
Distribution of the average methylation levels across samples for all cytosines. The x-axis is 
average methylation levels, and the y-axis is the cumulative distribution function F(x). (F) 
Distribution of the variance in methylation levels across samples for all cytosines. The x-axis is 
the -log10(variance), with increasing variance towards the right, and the y-axis is the cumulative 
distribution function F(x). Error bars on boxplots indicate the minimum and maximum values, 
excluding outliers.

Figure S2. Variable and Hypervariable CpGs. Related to Experimental Procedures. 
Methylation patterns in a (A) Variable CpG and (B) Hypervariable CpG. The x-axes are 
individual samples, where each dot is a sample. The y-axes are the methylation levels for the 
CpG in that sample. (C)-(D) Nested pie charts showing the percent fraction of CpGs found 
within or near (C) CpG islands, and (D) Genes. The inner plot shows all CpGs represented in 
our libraries, the second outer plot shows all Variable CpGs, the third outer plot shows 
Hypervariable CpGs. 

Figure S3. Methylation reproducibility and correlations in full chromosomes. Related to 
Figure 1. (A) Clustering of replicate samples based on methylation levels of all cytosines 
covered in all samples, and (B) Variable CpGs only. (C) Distribution of the variance in 
methylation levels across all Variable CpGs, where the variance is shown on the x-axis, and the 
cumulative distribution function is plotted on the y-axis. The distribution of the variances among 
different mouse strains is shown in the red line (inter-strain variance), for biological replicates 
using different mice of the same strain is shown in the black line (intra-strain variance), and for 
technical replicates using different libraries of the same sample in the blue line. Correlation 
between CpG methylation levels or Linkage disequilibrium for SNPs in sample chromosomes. 
(D-F) Chromosome 1 and (G-I) Chromosome 2. The x and y  axes denote the chromosome 
position, and the color represents the level of pairwise correlation (r2) between CpGs, or SNPs. 

37



Figure S4. EWAS p-value distributions and expression of tissue specific genes. Related 
to Figure 2. Histogram of the p-value distributions in the EWAS for (A) clinical traits, and (C) 
gene expression. Q-Q plots between the theoretical uniform distribution (red) and the EWAS p-
value distribution (black) for a random phenotype for each phenotype category  in (B) clinical 
traits, and (D) gene expression. Expression levels in HMDP strains for (E) liver tissue and (F) 
primary  peritoneal macrophages. The y-axis shows the expression levels as the mean of all 
strains on a log2 scale, and the error bars show the standard deviation. The x-axis are genes 
known to be expressed in liver hepatocytes or macrophages. 

Figure S5. Overlap of EWAS and GWAS associations and principal component  analysis.  
Related to Figure 4. (A) Venn diagrams showing the number of associations identified using 
EWAS, GWAS or both for clinical traits, gene expression cis-eQTL, and proteomics cis-pQTL. 
Associations were considered to overlap if the associated CpG (EWAS) or SNP (GWAS) were 
within 2Mb of each other. (B) Pairwise correlations between clinical traits in our study. Traits are 
plotted on the x and y-axes. The color represents the Pearson’s r-squared. (C) Variance in 
clinical phenotypes explained by the first 10 principal components.

Figure S6. Bone mineral density  and Plod1 EWAS. Related to Figure 3. Manhattan plots 
showing association of CpG methylation levels in mouse chromosome 4 for (A) bone mineral 
density, and (B) liver expression levels of Plod1. (C) Manhattan plot showing GWAS for bone 
mineral density. Chromosome location is shown on the x-axis, the p-value for the association is 
on the y-axis, and each dot represents a CpG. The dotted line is drawn at p<1x10-7, the 
Bonferroni threshold for a single phenotype. (D)-(F) Each dot represents a mouse sample. (D) 
Correlation between methylation levels for the peak associated CpG (x-axis) and bone mineral 
density  (y-axis). (E) Correlation between methylation levels for the peak associated CpG (x-
axis) and liver expression levels of Plod1 (y-axis). (F) Correlation between bone mineral density 
(x-axis) and Plod1 expression levels (y-axis). 

Figure S7. CpG methylation GWAS. Related to Figure 6. (A) Distribution of the narrow sense 
heritability  in CpG methylation levels. The x-axis is the variance explained by genetics and the 
y-axis is the cumulative distribution function F(x) for the distribution of the variance. (B)
Distribution of the distance between CpGs and SNPs for the CpG methylation GWAS 
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associations. The SNP-to-CpG distance is shown on the x-axis and the y-axis is the cumulative 
distribution function F(x) for the distance. (C) Distribution of the correlation between Mtrr gene 
expression and methylation levels of CpGs mapping to the Mtrr hotspot locus (blue). The 
distribution of the correlation between Mtrr expression and all CpGs is shown in black. The 
absolute Pearson’s correlation coefficient r is shown on the x-axis, and the y-axis is the 
cumulative distribution function F(x) for the distribution of r. (D) Distribution of the correlation 
between Kdm1a gene expression and methylation levels of CpGs mapping to the Kdm1a 
hotspot locus (blue). The distribution for the correlation between Kdm1a expression and all 
CpGs is shown in black. The absolute Pearson’s correlation coefficient r is shown on the x-axis, 
and the y-axis is the cumulative distribution function F(x) for the distribution of r. (E) CpG 
methylation GWAS hotspots. The y-axis denotes the total number of CpGs mapping, in cis  and 
trans, to each 2Mb bin across the mouse genome, at the Bonferroni threshold p<1.4x10-12. The 
x-axis denotes the genomic position of each bin. The horizontal dotted line is the Poisson
significance threshold for each hotspot bin. 
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SUPPLEMENTAL TABLES

Table S1. EWAS counts for individual CpG-phenotype associations, Related to Experimental 
Procedures
Table S1. EWAS counts for individual CpG-phenotype associations, Related to Experimental 
Procedures
Table S1. EWAS counts for individual CpG-phenotype associations, Related to Experimental 
Procedures
Table S1. EWAS counts for individual CpG-phenotype associations, Related to Experimental 
Procedures
Table S1. EWAS counts for individual CpG-phenotype associations, Related to Experimental 
Procedures
Table S1. EWAS counts for individual CpG-phenotype associations, Related to Experimental 
Procedures
Table S1. EWAS counts for individual CpG-phenotype associations, Related to Experimental 
Procedures

Traits Predictor
Traits x 

Predictors (# 
of tests)

Bonferroni 
alpha

#EWAS hits 
total

#EWAS hits 
cis (<=2Mb)

% EWAS 
hits cis 
(<=2Mb)

Clinical 
traits

Variable CpG 
excluding CG-

SNP

68x360324
2.04E-09 214 NA NA

Metabolites
Variable CpG 
excluding CG-

SNP

260x360324
5.34E-10 164 NA NA

Proteins
Variable CpG 
excluding CG-

SNP

1543x360324
8.99E-11 13,334 1,499 11.2%

Gene 
expression

Variable CpG 
excluding CG-

SNP

22416x360324
6.19E-12 124,522 22,741 18.3%

Clinical 
traits

Hypervariable 
CpG 

excluding CG-
SNP

68x22227
3.31E-08 468 NA NA

Metabolites
Hypervariable 

CpG 
excluding CG-

SNP

260x22227
8.65E-09 490 NA NA

Proteins
Hypervariable 

CpG 
excluding CG-

SNP

1543x22227
1.46E-09 2,300 992 43.1%

Gene 
expression

Hypervariable 
CpG 

excluding CG-
SNP

22416x22227
1.00E-10 34,198 15,742 46.0%
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Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2
Trait EWAS 

pval
EWAS 
CpG 
chr

EWAS CpG 
bp

GWAS 
pval

GWAS 
SNP 
chr

GWAS 
SNP bp

GWAS SNP CIT pval

High density 
lipoprotein 
cholesterol 
(HDL) in 
plasma

3.20E-09 1 173115750 1.12E-08 1 172213506 rs31465983 4.44E-04

Mean cell 
hemoglobin 
concentration 
(MCHC) in 
blood

3.40E-10 7 97591666 1.63E-08 7 96827691 rs6401951 0.78

Mean cell 
hemoglobin 
concentration 
(MCHC) in 
blood

9.50E-14 7 103359297 6.09E-11 7 103186910 rs31489892 0.38

Mean cell 
hemoglobin 
concentration 
(MCHC) in 
blood

7.74E-15 7 105287895 1.67E-13 7 105685575 rs31836285 0.07

Mean cell 
hemoglobin 
concentration 
(MCHC) in 
blood

3.39E-21 7 107641776 2.62E-17 7 107683538 rs3722049 0.26

Mean cell 
hemoglobin 
concentration 
(MCHC) in 
blood

2.31E-27 7 109650998 6.95E-23 7 108918190 rs3713052 0.62

Mean cell 
hemoglobin 
concentration 
(MCHC) in 
blood

3.81E-27 7 110584221 7.83E-24 7 110098213 rs31048502 0.34

Mean cell 
hemoglobin 
concentration 
(MCHC) in 
blood

1.54E-19 7 113527803 2.30E-17 7 112061872 rs31547013 0.14

Mean cell 
hemoglobin 
concentration 
(MCHC) in 
blood

4.16E-18 7 114353622 7.77E-17 7 114016970 rs13479450 0.96
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Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2
Mean cell 
hemoglobin 
concentration 
(MCHC) in 
blood

2.32E-10 7 119433112 5.71E-09 7 119020177 rs31887032 0.85

Mean cell 
volume of red 
blood cells 
(MCV) in
blood

3.63E-09 7 97591666 4.81E-07 7 96779987 rs31999165 0.58

Mean cell 
volume of red 
blood cells 
(MCV) in
blood

3.62E-12 7 103359365 3.89E-10 7 103186910 rs31489892 0.95

Mean cell 
volume of red 
blood cells 
(MCV) in
blood

5.09E-14 7 105287940 4.36E-12 7 105685575 rs31836285 0.25

Mean cell 
volume of red 
blood cells 
(MCV) in
blood

3.23E-18 7 107641776 3.81E-15 7 107683538 rs3722049 0.28

Mean cell 
volume of red 
blood cells 
(MCV) in
blood

4.57E-24 7 109650998 2.41E-21 7 109825010 rs31424200 0.12

Mean cell 
volume of red 
blood cells 
(MCV) in
blood

9.50E-24 7 110584221 4.23E-23 7 110098213 rs31048502 0.76

Mean cell 
volume of red 
blood cells 
(MCV) in
blood

6.18E-17 7 113527803 1.88E-15 7 112061872 rs31547013 0.31

Mean cell 
volume of red 
blood cells 
(MCV) in
blood

1.71E-16 7 114353621 7.51E-15 7 114016970 rs13479450 0.05

Mean cell 
volume of red 
blood cells 
(MCV) in
blood

2.97E-08 7 109650998 3.91E-07 7 109825010 rs31424200 0.04
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Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2
Mean cell 
volume of red 
blood cells 
(MCV) in
blood

7.26E-09 7 111693801 2.85E-07 7 110098213 rs31048502 8.82E-03

Mean cell 
volume of red 
blood cells 
(MCV) in
blood

1.36E-08 7 114353621 2.19E-06 7 114016970 rs13479450 9.83E-03

Red blood cell 
distribution 
width as 
percent (RDW
%) in blood

6.35E-09 7 107641776 1.55E-06 7 107884366 rs3665475 0.35

Red blood cell 
distribution 
width as 
percent (RDW
%) in blood

2.36E-14 7 109379956 2.88E-13 7 109825010 rs31424200 0.02

Red blood cell 
distribution 
width as 
percent (RDW
%) in blood

2.55E-14 7 111768244 5.75E-14 7 111015676mm37-7-1110156760.15

Red blood cell 
distribution 
width as 
percent (RDW
%) in blood

2.37E-11 7 113527803 2.71E-10 7 113954724 rs31378954 0.53

Red blood cell 
distribution 
width as 
percent (RDW
%) in blood

1.08E-11 7 114353622 8.53E-11 7 114287225 rs31411962 0.32

Red blood cell 
distribution 
width in 
absolute 
number 
(RDWa) in 
blood

6.34E-11 7 103359366 4.82E-08 7 102789599 rs31678255 0.21

Red blood cell 
distribution 
width in 
absolute 
number 
(RDWa) in 
blood

3.14E-11 7 105287940 8.66E-10 7 105639548 rs32319939 0.56
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Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2
Red blood cell 
distribution 
width in 
absolute 
number 
(RDWa) in 
blood

1.40E-13 7 107641776 6.13E-09 7 107683608 rs3722575 0.93

Red blood cell 
distribution 
width in 
absolute 
number 
(RDWa) in 
blood

3.25E-15 7 109650998 3.40E-13 7 109389815 rs6357312 0.77

Red blood cell 
distribution 
width in 
absolute 
number 
(RDWa) in 
blood

1.63E-16 7 110637216 1.12E-11 7 110098213 rs31048502 0.46

Red blood cell 
distribution 
width in 
absolute 
number 
(RDWa) in 
blood

1.41E-10 7 113527803 1.94E-08 7 112061872 rs31547013 0.71

Red blood cell 
distribution 
width in 
absolute 
number 
(RDWa) in 
blood

4.78E-11 7 114353621 3.46E-08 7 114287225 rs31411962 0.14

Total 
cholesterol in 
plasma

1.86E-08 1 173115750 1.48E-07 1 172213506 rs31465983 5.53E-04

Glucose-to-
insulin ratio in 
plasma

6.37E-09 8 62624331 5.12E-07 8 62671482 rs33530751 0.17

Glucose-to-
insulin ratio in 
plasma

3.06E-09 13 91473377 2.73E-07 13 90090833 rs29897087 0.04

Glucose-to-
insulin ratio in 
plasma

6.61E-10 13 94074003 3.31E-07 13 95677756 rs29610795 1.58E-03

Glucose-to-
insulin ratio in 
plasma

2.13E-09 13 97342942 1.40E-06 13 96030495 rs29738590 7.11E-03
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Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2Table S2. Causal inference test for clinical trait associations, Related to Figure 2
Glucose-to-
insulin ratio in 
plasma

5.73E-08 13 101382031 3.45E-06 13 101871731 rs29252234 0.36

Glucose-to-
insulin ratio in 
plasma

4.74E-08 13 104403649 2.43E-07 13 105606102 rs6306099 0.12

Glucose-to-
insulin ratio in 
plasma

3.23E-09 13 106755583 4.80E-07 13 106546115 rs29516615 0.02
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Table S3. Candidates genes in EWAS hotspots, Related to Figure 2Table S3. Candidates genes in EWAS hotspots, Related to Figure 2Table S3. Candidates genes in EWAS hotspots, Related to Figure 2Table S3. Candidates genes in EWAS hotspots, Related to Figure 2Table S3. Candidates genes in EWAS hotspots, Related to Figure 2Table S3. Candidates genes in EWAS hotspots, Related to Figure 2Table S3. Candidates genes in EWAS hotspots, Related to Figure 2
Hotspot traits Chr Start of 

hotspot 
locus (Bp)

End of 
hotspot 

locus (Bp)

Candidate 
gene(s)

Function of 
candidate(s)

cis-EWAS 
hit

HDL, Total cholesterol 1 173,000,001 174,000,000 Apoa2 Apoa2 is the 
second most 
abundant 
protein in HDL 
cholesterol

Protein cis-
EWAS hit 
for Apoa2

Proteomics, Gene 
expression

4 150,000,001 151,000,000 Mtor,Tnfrsf9, 
Camta1

Mtor is a 
regulator of 
metabolism, 
growth and 
survival in 
response to 
hormones, 
growth factors, 
nutrients, 
energy and 
stress

Expression 
cis-EWAS 
hit for Mtor

Glucose-to-insulin 
ratio, Femoral fat pad 
%weight, Metabolites, 
Proteomics, Gene 
expression

7 88,000,001 89,000,000 Cpeb1, 
Btbd1, 
Zfp592, 
Rps17

Cpeb1 is 
involved mRNA 
processing, 
regulated by 
DNA 
methylation, 
insulin signaling

Hemoglobin 
concentration (MCHC), 
Percent ed blood cell 
in blood (HCT), Red 
blood cell volume 
(MCV), Red blood cell 
average and absolute 
width (%RDW, RDWa)

7 110,000,001 111,000,000 Hemoglobin 
beta cluster

Oxygen 
transport in red 
blood cells

Free fluid, Metabolites, 
Proteomics, Gene 
expression

9 104000001 105000000 Mrpl3 Mitochondrial 
ribosomal 
protein

Expression 
cis-EWAS 
hit for 
Mrpl3

Femoral fat pad 
%weight, Metabolites, 
Proteomics, Gene 
expression

11 97,000,001 98,000,000 Mrpl45 Mitochondrial 
ribosomal 
protein

Expression 
cis-EWAS 
hit for 
Mrpl45

Glucose-to-insulin 
ratio, Femoral fat pad 
%weight, Monocyte 
percent in blood, 
Metabolites, 
Proteomics, Gene 
expression

13 81,000,001 82,000,000 Gpr98, 
Polr3g, 
Cetn3

Polr3g DNA-
directed RNA 
polymerase
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Adipose tissue insulin 
resistance (ATIRI), 
Plasma insulin, 
Glucose-to-insulin-
ratio, Monocyte 
percent in blood, 
Proteomics, Gene 
expression

13 94,000,001 95,000,000 Bhmt Involved in lipid 
accumulation, 
fat metabolism, 
insulin 
sensitivity

Protein cis-
EWAS hit 
for Bhmt

Femoral fat pad weight  
and %weight, Gonadal 
fat pad %weight, Body  
fat percent by NMR, 
Metabolites, 
Proteomics, Gene 
expression

14 14,000,001 15,000,000 Thoc7 RNA transport Expression 
cis-EWAS 
hit for 
Thoc7

Monocyte percent in 
blood, Proteomics, 
Gene expression

14 53,000,001 54,000,000 Tcra T-cell receptor
alpha locus

47



Table S4. Clinical trait inference, Related to Figure 5Table S4. Clinical trait inference, Related to Figure 5Table S4. Clinical trait inference, Related to Figure 5Table S4. Clinical trait inference, Related to Figure 5

Clinical trait
Observed and 
predicted trait 
correlation (r2)

p-value for r2 Top CpGs chosen in model

Mean cell volume of red 
blood cells (MCV) in 
blood

0.84 0.001

chr2:106433316, chr7:109650998, 
chr7:111693801, chr1:78198288, 
chr7:144808207, chr15:84673742, 
chr2:105699152, chr8:126506671, 
chr4:129427810, chr3:80307596

Mean cell hemoglobin 
concentration (MCHC) in 
blood

0.77 0.002

chr7:110637216, chr7:110584221, 
chr7:111627057, chr3:87411731, 
chr1:173211748, chr17:17823699, 
chr12:18352759, chr3:80426374, 
chr7:96907685, chr7:111693801

Red blood cell 
distribution width in 
absolute number 
(RDWa) in blood

0.71 0.004

chr2:106433316, chr7:109650998, 
chr16:85901018, chr7:104251059, 
chr7:111693801, chr6:93571975, 
chr7:38152759, chr7:110637216, 
chr3:80426374, chr5:142240807

Total cholesterol in 
plasma 0.61 0.009

chr17:93791057, chr1:173123267, 
chr15:19722260, chr5:24278274, 
chr1:158939766, chr6:3361731, 
chr4:9513779, chr1:22287020, 
chr7:107811213, chr14:121891692

High density lipoprotein 
cholesterol (HDL) in 
plasma

0.60 0.012

chr14:121689788, chr1:173123267, 
chr4:9513779, chr7:146362390, 
chr1:158939766, chr4:149571737, 
chr1:172018514, chr5:24190850, 
chr6:32784381, chr12:55828602

High density lipoprotein 
cholesterol log(HDL) in 
plasma

0.58 0.011

chr1:173123267, chr4:9513779, 
chr7:146362390, chr4:149571737, 
chr1:172018514, chr15:19722260, 
chr10:21993317, chr12:55828602, 
chr15:85863990, chr14:121689788

Total bone mineral 
density 0.57 0.013

chr7:20147544, chr6:107901150, 
chr11:28239859, chr16:51400929, 
chr3:123220640, chr1:159461569, 
chr9:41716166, chr8:86781301, 
chr4:147505750, chr7:19385586

Free fatty acids in 
plasma 0.50 0.023

chr7:78032906, chr4:59197781, 
chr16:68199356, chr3:121248386, 
chr19:6219728, chr14:16560588, 
chr14:31342640, chr16:32767085, 
chr17:44915174, chr10:89620236
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Table S4. Clinical trait inference, Related to Figure 5Table S4. Clinical trait inference, Related to Figure 5Table S4. Clinical trait inference, Related to Figure 5Table S4. Clinical trait inference, Related to Figure 5

Clinical trait
Observed and 
predicted trait 
correlation (r2)

p-value for r2 Top CpGs chosen in model

Unesterified cholesterol 
in plasma 0.48 0.028

chr17:93791057, chr1:173123267, 
chr6:3361731, chr4:9513779, 
chr1:22287020, chr16:32767055, 
chr6:32784381, chr3:106968184, 
chr5:118079923, chr1:141566515

Glucose-to-insulin ratio 
in plasma 0.46 0.052

chr8:126680394, chr13:106755624, 
chr3:124695940, chr8:62156796, 
chr1:183802024, chr11:4566339, 
chr12:30828542, chr8:62624331, 
chr13:97342942, chr3:58566785

LDL plus VLDL 
cholesterol in plasma 0.44 0.054

chr15:19722260, chr17:93791057, 
chr5:118079923, chr1:106285591, 
chr15:6041729, chr15:8947724, 
chr1:141566515, chr1:173123267, 
chr5:24278274, chr5:114012265

Free fluid by NMR 0.42 0.042

chr17:35825528, chr9:88935896, 
chr8:90589021, chr10:124287267, 
chr5:138793552, chr5:140167600, 
chr1:188792013, chr1:48912457, 
chr4:107253570, chr4:148255721

Bone mineral density in 
lumbar spine L1-L6 0.42 0.045

chr12:58756641, chr6:107901150, 
chr4:140581221, chr12:14855022, 
chr7:19385586, chr2:168854983, 
chr4:17061832, chr14:53282704, 
chr4:133742504, chr6:137021617

Mean cell hemoglobin, 
i.e. average mass of
hemoglobin per red
blood cell (MCH) in
blood

0.40 0.082

chr2:119486633, chr17:33229525, 
chr11:37795541, chr4:118063013, 
chr17:13607758, chr4:141022032, 
chr12:12687287, chr12:29483529, 
chr3:34865628, chr17:39981353

Glucose in plasma 
(colorimetric assay) 0.38 0.070

chr1:72640416, chr1:78826882, 
chr18:56877109, chr6:137638518, 
chr1:13462840, chr3:50506277, 
chr17:66672504, chr18:77085310, 
chr4:111608424, chr1:184087524

Red blood cell 
distribution width as 
percent (RDW%) in 
blood

0.37 0.094

chr11:83659976, chr7:111627057, 
chr7:111693801, chr3:129307299, 
chr15:85785313, chr2:136756323, 
chr4:136821943, chr17:43592013, 
chr4:129195413, chr4:129427810
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Clinical trait
Observed and 
predicted trait 
correlation (r2)

p-value for r2 Top CpGs chosen in model

Hematocrit, i.e. 
percentage of the 
volume in whole blood 
that consists of red blood 
cells (HCT)

0.35 0.123

chr7:110637216, chr12:12960282, 
chr7:110584221, chr1:166956547, 
chr5:92650222, chr7:107641776, 
chr3:27012064, chr17:33288773, 
chr3:80426374, chr10:89620236

Retroperitoneal fat pad 
percent weight 0.34 0.076

chr4:56230515, chr4:43435465, 
chr8:69045642, chr2:172168272, 
chr1:172974907, chr3:70482851, 
chr6:134591327, chr4:51031381, 
chr7:92130374, chr4:16362492

Retroperitoneal fat pad 
weight 0.34 0.077

chr3:31785637, chr11:36196077, 
chr5:147797209, chr2:172168272, 
chr1:172974873, chr19:6219728, 
chr4:16362492, chr9:47224582, 
chr12:50485430, chr1:158674522

Monocyte concentration 
in absolute number 
(MONO) in blood

0.33 0.155

chr13:56788932, chrX:90023204, 
chr17:45823427, chr12:29343801, 
chr12:104059623, chr3:136118906, 
chr7:39155188, chr18:69632285, 
chr1:34232571, chr15:41703296

Syndecan-1 
ectodomains (percent 
relative to C57BL/6J) in 
plasma

0.32 0.182

chr4:124528418, chr7:32998073, 
chr5:55599332, chr12:120991166, 
chr13:75993475, chr12:113414824, 
chr3:113733631, chr2:170521944, 
chr10:125446784, chr4:135935109

Fat mass weight by NMR 0.31 0.117

chr4:16362492, chr11:36196077, 
chr12:50485430, chr3:31785637, 
chr9:100195211, chr6:138521149, 
chr1:191697765, chr19:6219728, 
chr14:14117106, chr5:147797209

Monocyte concentration 
as percent (MONO%) in 
blood

0.30 0.127

chr15:52858818, chrX:73649226, 
chr10:124769898, chr18:9680388, 
chr11:90238164, chr2:26009521, 
chr3:126199837, chr2:20821494, 
chr1:130537022, chr4:149302743

Femur bone mineral 
density 0.30 0.103

chr7:20147544, chr6:107901150, 
chr4:136928341, chr14:53282704, 
chr15:57123066, chr13:96698837, 
chr4:134955904, chr4:139137044, 
chr6:32784306, chr17:39981353
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Table S5. GWAS for CpG methylation levels, Related to Figure 6Table S5. GWAS for CpG methylation levels, Related to Figure 6
Traits Methylation of Variable CpG
Predictor SNP, MAF>10%
TraitsxPredictors (# of tests) 367317x94498
Bonferroni alpha 1.44E-12
#Associations total 3,017,453
#Associations (<=1Mb) 1,088,729
%Associations <=1Mb) 36.1%
#Associations cis (<=2Mb) 1,645,835
%Associations cis (<=2Mb) 54.5%
#Associations (<=5Mb) 2,382,320
%Associations (<=5Mb) 79.0%
#Trans Associations (>2Mb) 1,371,618
#Trans Associations (>2Mb)  in same 
chromosome 1,079,442

%Trans Associations (>2Mb)  in same 
chromosome 78.7%

#SNP-CpG pairs 3,017,453
#Individual SNPs 92,959
#Individual CpGs 26,563
#CpGs that are CG-SNP 2,533
#CpGs that are Hypervariable 11,644
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Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6
CpG 
chr

CpG bp FDR p-value Methylation 
delta

Met 
mean in 

WT

Met 
mean in 

gt/gt

Met mean 
in HMDP 
allele C 
strains*

Met mean 
in HMDP 
allele A 
strains*

1 14075228 84.17% 4.30E-01 0.01 0.91 0.92 0.79 0.91
1 14075294 45.59% 3.05E-01 0.05 0.86 0.91 0.65 0.87
1 14075350 76.79% 4.07E-01 0.01 0.91 0.92 0.67 0.91
1 18068341 25.55% 2.29E-01 0.15 0.91 0.76 0.66 0.87
1 18068657 55.16% 3.40E-01 0.08 0.80 0.72 0.50 0.75
1 18068658 97.92% 4.61E-01 0.00 0.75 0.75 0.49 0.75
1 22881270 3.92% 6.38E-02 0.17 0.68 0.85 0.68 0.88
1 22881330 35.20% 2.83E-01 0.05 0.80 0.84 0.72 0.91
1 85044352 56.60% 3.46E-01 0.04 0.92 0.96 0.80 0.90
1 152185173 29.97% 2.62E-01 0.11 0.55 0.67 0.61 0.81
1 152185232 15.04% 1.66E-01 0.15 0.64 0.79 0.66 0.91
1 152185244 2.73% 4.77E-02 0.16 0.66 0.82 0.58 0.89
1 168870254 97.70% 4.63E-01 0.00 0.44 0.44 0.53 0.87
1 183712801 53.05% 3.33E-01 0.03 0.97 0.94 0.95 0.89
2 82881478 91.59% 4.49E-01 0.01 0.85 0.84 0.77 0.91
2 96875718 0.02% 9.23E-04 0.42 0.46 0.88 0.50 0.88
2 96875732 0.02% 9.92E-04 0.28 0.61 0.89 0.63 0.93
2 96875779 0.39% 9.59E-03 0.29 0.63 0.92 0.58 0.87
2 96875812 1.06% 2.17E-02 0.33 0.55 0.88 0.56 0.91
3 77509441 6.50% 8.62E-02 0.14 0.94 0.80 0.81 0.90
3 96210033 18.11% 1.85E-01 0.11 0.53 0.42 0.61 0.84
3 96210101 69.77% 3.84E-01 0.05 0.43 0.48 0.46 0.76
3 96210202 54.22% 3.38E-01 0.04 0.77 0.74 0.77 0.94
3 96210204 28.93% 2.56E-01 0.10 0.73 0.63 0.66 0.91
3 96210213 45.17% 3.05E-01 0.06 0.70 0.64 0.72 0.90
3 96210216 34.39% 2.83E-01 0.09 0.53 0.45 0.49 0.78
3 159337823 90.45% 4.53E-01 0.02 0.79 0.77 0.60 0.81
3 159337868 70.63% 3.86E-01 0.06 0.66 0.72 0.56 0.81
3 159337906 39.37% 2.82E-01 0.08 0.76 0.84 0.56 0.83
4 68825234 67.47% 3.80E-01 0.05 0.93 0.88 0.76 0.86
5 33103043 0.00% 4.69E-05 0.76 0.97 0.20 0.78 0.12
6 14496933 91.25% 4.51E-01 0.01 0.56 0.55 0.53 0.71
6 26784829 7.30% 9.33E-02 0.15 0.56 0.71 0.58 0.83
6 60645050 0.05% 1.74E-03 0.53 0.94 0.41 0.93 0.49
6 68312345 35.37% 2.78E-01 0.07 0.25 0.19 0.32 0.47
6 69443856 8.53% 1.05E-01 0.16 0.61 0.77 0.58 0.78
6 69753111 19.31% 1.89E-01 0.14 0.85 0.98 0.79 0.93
6 69753160 69.28% 3.87E-01 0.03 0.93 0.90 0.65 0.89
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6 69753161 83.97% 4.32E-01 0.01 0.94 0.94 0.66 0.90
6 69753165 15.04% 1.63E-01 0.11 0.71 0.83 0.43 0.74
6 69753166 78.18% 4.12E-01 0.01 0.81 0.79 0.43 0.73
6 69753189 18.87% 1.88E-01 0.20 0.83 0.64 0.33 0.63
6 69753209 94.27% 4.56E-01 0.01 0.75 0.76 0.55 0.78
6 69753210 78.69% 4.11E-01 0.02 0.83 0.85 0.60 0.79
6 69753226 35.35% 2.81E-01 0.04 0.97 0.93 0.67 0.91
6 69753246 37.68% 2.78E-01 0.07 0.95 0.88 0.58 0.90
6 145590674 47.59% 3.13E-01 0.03 0.86 0.89 0.78 0.93
7 13258547 25.17% 2.28E-01 0.10 0.74 0.85 0.66 0.82
7 55387401 65.07% 3.79E-01 0.01 0.01 0.02 0.01 0.24
7 55387420 59.93% 3.64E-01 0.01 0.03 0.04 0.04 0.49
7 55387445 64.76% 3.80E-01 0.01 0.03 0.04 0.05 0.42
8 4380072 74.59% 4.02E-01 0.02 0.91 0.93 0.77 0.94
8 19045211 33.88% 2.85E-01 0.13 0.85 0.72 0.60 0.85
8 36320023 13.73% 1.54E-01 0.12 0.73 0.85 0.71 0.89
8 112537572 67.03% 3.81E-01 0.03 0.90 0.87 0.86 0.54
9 17813589 64.30% 3.80E-01 0.03 0.84 0.88 0.73 0.91
9 30679901 6.47% 8.73E-02 0.12 0.82 0.94 0.62 0.87
9 89373252 1.01% 2.12E-02 0.14 0.78 0.92 0.72 0.89
9 109322097 5.52% 8.23E-02 0.05 0.82 0.87 0.83 0.59
9 109322126 21.87% 2.09E-01 0.14 0.50 0.64 0.58 0.43

10 27569592 49.89% 3.22E-01 0.05 0.75 0.80 0.78 0.31
10 29160856 21.89% 2.06E-01 0.07 0.80 0.86 0.64 0.84
10 69590376 0.04% 1.40E-03 0.46 0.25 0.71 0.23 0.74
10 69590377 0.01% 5.31E-04 0.43 0.15 0.58 0.21 0.70
10 69590413 0.00% 3.56E-04 0.48 0.14 0.62 0.19 0.65
10 69590440 5.08% 7.91E-02 0.20 0.05 0.24 0.11 0.34
10 99062510 0.77% 1.72E-02 0.32 0.43 0.11 0.43 0.87
10 99062571 5.14% 7.83E-02 0.28 0.43 0.15 0.40 0.85
10 112826327 38.63% 2.82E-01 0.08 0.76 0.84 0.64 0.85
11 3093388 0.06% 1.96E-03 0.45 0.63 0.18 0.55 0.28
11 3093439 0.02% 9.12E-04 0.46 0.83 0.37 0.72 0.32
11 3093448 0.03% 1.24E-03 0.41 0.87 0.46 0.79 0.38
12 25042018 0.02% 9.50E-04 0.47 0.43 0.90 0.59 0.95
12 25042037 0.04% 1.50E-03 0.35 0.32 0.67 0.41 0.82
13 14657134 12.40% 1.43E-01 0.16 0.56 0.72 0.48 0.70
13 14657167 40.81% 2.78E-01 0.04 0.87 0.83 0.70 0.88
13 14657168 22.56% 2.10E-01 0.07 0.82 0.89 0.68 0.89
13 14657188 34.86% 2.84E-01 0.07 0.86 0.93 0.74 0.92
13 19530472 40.14% 2.79E-01 0.07 0.84 0.90 0.53 0.86
13 19530485 69.75% 3.87E-01 0.06 0.47 0.41 0.15 0.44

53



Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6
13 19530597 45.64% 3.03E-01 0.10 0.61 0.72 0.28 0.63
13 19531062 66.62% 3.82E-01 0.04 0.91 0.87 0.67 0.87
13 19531155 7.22% 9.40E-02 0.16 0.86 0.70 0.61 0.83
13 50623749 92.13% 4.49E-01 0.01 0.58 0.57 0.52 0.67
13 59127984 13.28% 1.51E-01 0.02 0.98 1.00 0.92 0.68
13 60537835 0.65% 1.49E-02 0.76 0.92 0.16 0.87 0.58
13 60565529 0.29% 7.75E-03 0.83 0.97 0.15 0.88 0.60
13 60639030 0.87% 1.89E-02 0.81 0.99 0.18 0.91 0.52
13 60826611 39.33% 2.84E-01 0.03 0.96 0.99 0.91 0.58
13 62406458 36.52% 2.78E-01 0.01 0.92 0.91 0.93 0.84
13 62406495 18.00% 1.87E-01 0.17 1.00 0.83 0.96 0.85
13 62406504 16.77% 1.77E-01 0.04 0.96 0.91 0.89 0.77
13 62988985 60.82% 3.66E-01 0.01 0.09 0.08 0.66 0.42
13 64002236 0.01% 3.86E-04 0.83 0.83 0.00 0.74 0.02
13 64088377 0.03% 1.21E-03 0.60 0.13 0.73 0.19 0.76
13 64299068 33.11% 2.86E-01 0.03 0.95 0.97 0.96 0.69
13 64435227 36.65% 2.76E-01 0.07 0.74 0.81 0.71 0.85
13 64496672 5.81% 8.32E-02 0.29 0.36 0.07 0.41 0.17
13 65360332 0.20% 5.42E-03 0.25 0.25 0.00 0.46 0.02
13 65691239 3.65% 6.08E-02 0.22 0.19 0.40 0.23 0.46
13 66781925 8.21% 1.03E-01 0.12 0.48 0.60 0.49 0.66
13 66807216 23.41% 2.15E-01 0.19 0.15 0.34 0.46 0.61
13 67515142 6.33% 8.72E-02 0.18 0.74 0.57 0.79 0.71
13 67522055 2.79% 4.76E-02 0.20 0.32 0.12 0.31 0.21
13 67729395 0.00% 2.86E-06 0.97 0.97 0.00 0.91 0.04
13 68850423 0.00% 3.74E-04 0.91 0.91 0.00 0.89 0.03
13 69595580 0.02% 9.17E-04 0.78 0.78 0.00 0.83 0.02
13 69595591 0.19% 5.53E-03 0.63 0.63 0.00 0.62 0.02
13 69674062 61.97% 3.70E-01 0.00 0.01 0.01 0.70 0.09
13 69811585 0.00% 5.47E-06 0.82 0.84 0.02 0.87 0.02
13 69811641 0.00% 2.53E-07 0.92 0.94 0.02 0.96 0.05
13 69878173 NaN NaN 0.00 0.00 0.00 0.48 0.09
13 69878797 NaN NaN 0.00 0.00 0.00 0.02 0.24
13 69890792 0.00% 1.37E-04 0.70 0.70 0.00 0.70 0.04
13 69890887 0.00% 1.23E-05 0.91 0.92 0.01 0.93 0.07
13 69910712 0.00% 2.64E-04 0.83 0.84 0.01 0.76 0.02
13 69944654 20.55% 1.99E-01 0.09 0.66 0.75 0.65 0.08
13 78498140 1.69% 3.10E-02 0.19 0.48 0.67 0.53 0.83
13 82668080 96.92% 4.63E-01 0.00 0.94 0.93 0.86 0.79
13 96260119 5.66% 8.27E-02 0.56 0.76 0.21 0.85 0.38
14 121048631 39.44% 2.80E-01 0.09 0.68 0.76 0.63 0.81
15 49676164 51.04% 3.26E-01 0.07 0.82 0.90 0.69 0.86
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Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6Table S6. Mtrr validation results, Related to Figure 6
15 79285383 15.68% 1.68E-01 0.13 0.08 0.20 0.10 0.20
15 79285446 33.96% 2.83E-01 0.12 0.28 0.40 0.35 0.46
16 64872950 1.13% 2.25E-02 0.27 0.23 0.49 0.25 0.62
16 64872952 2.25% 4.02E-02 0.26 0.19 0.45 0.18 0.55
16 68548140 72.17% 3.91E-01 0.04 0.91 0.87 0.52 0.77
16 68548141 96.52% 4.64E-01 0.00 0.74 0.74 0.49 0.71
16 68548142 74.65% 3.99E-01 0.04 0.75 0.79 0.43 0.70
16 68548163 49.76% 3.24E-01 0.04 0.94 0.90 0.59 0.80
16 68548164 39.62% 2.78E-01 0.09 0.87 0.78 0.58 0.80
16 68548167 84.84% 4.31E-01 0.01 0.85 0.84 0.52 0.75
16 68548168 66.34% 3.83E-01 0.05 0.86 0.81 0.54 0.76
16 68548225 91.24% 4.54E-01 0.01 0.93 0.93 0.77 0.90
16 83450561 10.16% 1.23E-01 0.06 0.91 0.85 0.82 0.95
16 83450563 79.70% 4.13E-01 0.00 0.88 0.88 0.72 0.92
17 16879208 51.54% 3.27E-01 0.04 0.47 0.52 0.48 0.64
17 32280497 18.25% 1.84E-01 0.10 0.03 0.13 0.27 0.43
17 32280583 36.08% 2.78E-01 0.09 0.11 0.19 0.27 0.40
18 4228525 0.60% 1.43E-02 0.32 0.71 0.38 0.66 0.50
18 41624633 1.48% 2.87E-02 0.23 0.68 0.91 0.61 0.93
18 41624728 1.68% 3.17E-02 0.34 0.57 0.92 0.53 0.82
18 41625156 0.09% 2.77E-03 0.40 0.56 0.96 0.55 0.88
19 39323373 0.31% 8.04E-03 0.44 0.47 0.92 0.74 0.91
19 39323464 6.33% 8.89E-02 0.24 0.60 0.84 0.76 0.92
19 39323480 0.06% 2.00E-03 0.30 0.35 0.65 0.53 0.82
X 36160452 86.84% 4.38E-01 0.02 0.57 0.55 0.51 0.67
X 37992988 33.31% 2.84E-01 0.20 0.37 0.57 0.36 0.65
X 47819925 5.03% 8.01E-02 0.27 0.49 0.75 0.43 0.71
X 47819937 10.83% 1.27E-01 0.15 0.59 0.74 0.63 0.79
X 82912686 37.35% 2.79E-01 0.07 0.82 0.89 0.75 0.93
X 108294397 35.57% 2.77E-01 0.04 0.91 0.96 0.91 0.79
X 111652978 10.36% 1.24E-01 0.03 0.87 0.90 0.80 0.94
X 152164563 40.51% 2.79E-01 0.07 0.82 0.75 0.85 0.74

*Genotype corresponds to rs13481861*Genotype corresponds to rs13481861*Genotype corresponds to rs13481861*Genotype corresponds to rs13481861*Genotype corresponds to rs13481861*Genotype corresponds to rs13481861*Genotype corresponds to rs13481861*Genotype corresponds to rs13481861*Genotype corresponds to rs13481861
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SUPPLEMENTAL INFORMATION

Data
! The average CG methylation levels for all were 40 times higher than CHG methylation
(KS-test p<1x10-16), and 55 times higher than CHH methylation (p<1x10-16, Figure S1E). The 
variance in methylation levels across the samples was on average 7 and 10 times higher in CG 
cytosines than CHG (KS-test p<1x10-16) or CHH (KS-test p<1x10-16), respectively  (Figure S1F). 
To define Variable and Hypervariable CpGs, we selected a change in methylation (delta) of 50% 
or more since we observed that selecting smaller deltas lead to a high false positive discovery 
rate. Using simulation, we previously  determined that CpGs falsely identified as differentially 
methylated increases as the delta in methylation decreases (Orozco et al., 2014). In addition, 
we (Figure S1D) and others have observed that the distribution of CpG methylation levels in 
mammals is largely  bimodal (Chen et al., 2011; Meissner et al., 2008), where CpG methylation 
levels appear to be on or off for a large proportion of CpGs. Therefore, we wanted to focus on 
CpGs with a low false positive discovery rate and which were more likely  to be biologically 
relevant. We observed that Variable and Hypervariable CpGs tended to be further away  from 
genes relative to all CpGs. For example, 62% of all CpGs were intragenic while 53% of Variable 
and 46% of Hypervariable CpGs were intragenic. The location of CpGs relative to CpG islands 
and genes is shown in Figure S2C-D.

Mappability of bisulfite sequencing data
! The average mapping efficiency  of 46% we observed is reasonable for RRBS libraries.
We and others have perviously  observed that mapping efficiencies are lower for RRBS libraries 
relative to whole genome libraries (Chatterjee et al., 2012; Doherty  and Couldrey, 2014; Guo et 
al., 2013). We also aligned a sample from the current mouse RRBS dataset using different 
aligners and observed that the mapping efficiency  was comparable using BS-Seeker2 (47.29%), 
Bismark (46.96%) and BSMAP (45.64%). 

RRBS methylation data is reproducible
! We examined reproducibility  in our dataset by  comparing methylation levels in biological
replicates for a subset of the mouse strains, using RRBS libraries from different mice of the 
same strain, as well as in technical replicates, using different RRBS libraries from the same 
DNA sample. Different mice of the same strain are genetically  identical, like monozygotic (MZ) 
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twins, but unlike MZ twins they  did not share a prenatal environment. The technical replicates 
allowed us to examine experimental variation not due to true biological differences among the 
samples. We clustered samples based on their methylation levels using data from all cytosines 
(Figure S3A) and Variable CpG cytosines (Figure S3B), and found that samples from the same 
strain cluster together in both. We compared the distribution of the variance in methylation 
levels across CpG cytosines, and found that the variance in methylation between different 
mouse strains, or inter-strain variance, was on average 2 times higher than the variance in 
biological replicates, or intra-strain variance (KS-test p<1x10-16). Furthermore, the variance in 
CpGs among different strains was 3.3 times higher than the variance in technical replicates (KS-
test p<1x10-16, Figure S3C). Technical replicates measured for different RRBS libraries of the 
same DNA sample were highly  correlated with r2=0.99. We have previously  validated RRBS 
data relative to traditional bisulfite sequencing, by cloning DNA fragments into bacterial colonies 
followed by Sanger sequencing, and found a high degree of concordance between RRBS and 
traditional bisulfite sequencing results (Chen et al., 2013; Orozco et al., 2014).

EWAS inflation and purity of liver tissue samples
! To examine inflation in our EWAS results, we computed the inflation factor lambda,
where lambda values over 1 indicate inflation, lambda values under 1 indicate deflation, and 
lambda of 1 indicates neither. We observed no evidence of inflation, with lambda values of 1.06 
for clinical traits, 1.07 for metabolites, 1.06 for proteomics, and 1.05 for gene expression 
associations. The p-value distribution and qqplots for sample phenotypes are shown on Figure 
S4A-D. We confirmed that our liver samples were derived primarily  from hepatic cells by 
examining expression of hepatocyte-specific and macrophage-specific genes. Liver samples of 
HMDP strains had high expression levels for hepatocyte-specific genes such as Alpha2-HS 
glycoprotein (Ahsg), albumin (Alb), apolipoproteins (Apoa1 and Apob), fibrinogen (Fga), 
hemopexin (Hpx) and vitronectin (Vtn), and virtually  undetectable expression levels of genes 
highly  expressed in macrophages such as Abcg1, Atf3, Cd68, Msr1, Fes, Irf8 and Tlr4 (Figure 
S4E). As a control, we show that primary  peritoneal macrophages from the HMDP strains show 
high expression levels of macrophage genes, but not hepatocyte specific genes (Figure S4F).

EWAS identifies both known and novel associations
! We identified an association for plasma high-density  lipoprotein cholesterol levels (HDL)
in distal chromosome 1 at 173.1Mb (p=3.2x10-09), where methylation levels at the locus were 
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correlated with HDL (r=-0.67, p=9.6x10-15). This result was consistent with a GWAS hit for HDL 
at this locus. A candidate gene underlying this association is Apoa2, which is the second most 
abundant lipoprotein in HDL cholesterol particles. We found a cis association for protein levels 
of Apoa2 using EWAS (p=9.5x10-08), methylation was inversely  correlated with Apoa2 protein 
levels (r=-0.51, p=2.3x10-07), and Apoa2 was correlated with plasma HDL (r=0.51, p=1.9x10-07). 
We and others have previously  identified a genetic association for HDL cholesterol at the same 
locus using GWAS in the HMDP strains (Bennett et al., 2010) and linkage in a mouse cross 
(Wang et al., 2007), and shown that altered protein levels of Apoa2 influence plasma HDL 
cholesterol levels (Warden et al., 1993).
! We also found an association between methylation and total bone mineral density
(BMD) on distal chromosome 4, even though there was no significant GWAS hit for BMD on this 
chromosome. We searched for candidate genes in the locus and found a cis association for 
expression levels of procollagen-lysine, 2-oxoglutarate 5-dioxygenase, Plod1, suggesting that 
expression levels of Plod1 were variable in the population and regulated in cis (Figure S6A-C). 
Methylation levels at the locus were correlated with BMD (r=-0.67, p=2.6x10-14) and Plod1 
expression levels (r=0.68, p=4.3x10-15), and Plod1 expression was correlated with the BMD trait 
(r=-0.55, p=2.7x10-9, Figure S6D-F). These results suggest that Plod1 is an ideal candidate 
gene for the association between methylation levels and BMD, and indeed Plod1 has previously 
been shown to play a role in bone mineral density in humans (Tasker et al., 2006).
! Although we did not measure DNA methylation levels in bone, we found that total bone
mineral density  was associated with liver methylation levels in chromosome 4. A candidate gene 
for this association was Plod1, since expression of Plod1 was also associated in cis at this locus 
(Figure S6). Plod1 catalyzes the hydroxylation of lysine residues in procollagen molecules, a 
critical step in collagen synthesis. Procollagen molecules are exported from the cell at a later 
stage during collagen synthesis, but there is no evidence that collagen molecules are 
transported to bone tissue. A possible explanation for this association is that cleavage of 
secreted collagen molecules that enter the circulation may serve as signaling peptides. An 
alternative and more likely  explanation is that methylation levels at this locus are conserved 
between liver and bone tissue.

Causal inference test using CG-SNPs
! We also examined associations using SNPs that abolish a CpG site (i.e. CG-SNPs).
These CG-SNPs alter methylation levels by changing the cytosine base of a CpG to another 
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base, and hence can no longer be methylated. We can potentially  identify  associations between 
traits and the SNP genotype using GWAS and/or the methylation levels of these CG-SNPs 
using EWAS. Furthermore, we can test whether SNPs mediate their effect through altered DNA 
methylation levels using the causal inference test. We identified 79 associations between 
clinical traits and methylation levels of CG-SNPs using EWAS. However, none of these were 
associated with the SNP genotype using GWAS, and the causal inference test did not support 
association between SNP and trait mediated by  DNA methylation. It is possible that we did not 
identify  significant GWAS associations due to the very small minor allele frequency  of these CG-
SNPs, since the majority  of the CG-SNPs were present in only  one strain. Similarly, the 79 
clinical trait associations to methylation levels may in fact be spurious associations and we 
would not pursue these going forward with our studies. 

EWAS Hotspots
! Previous genetics and genomics studies have identified and validated QTL hotspots,
where a genetic polymorphism(s) at a locus affects many  traits. Hotspots can help us identify 
genes that function as global regulators of gene expression and clinical traits. They  can be seen 
as vertical bands on genome-wide association plots, and we observed several such bands in 
our EWAS results (Figure 2). To find hotspots, we divided the genome into 1Mb bins and 
counted the number of associations between methylation levels in that bin and traits. We 
identified association hotspots for clinical traits, metabolites, proteins, and gene expression 
traits, and observed that many  of the hotspots were shared among the different types of traits. 
For example, a hotspot on chromosome 7 at 88Mb was associated with metabolites, 
proteomics, gene expression, glucose-to-insulin ratio and femoral fat pad weight (Table S3). A 
candidate gene underlying this associations is the cytoplasmic polyadenylation element binding 
protein 1 (Cpeb1), which was located in the 1Mb interval of this locus. Cpeb1 is a gene involved 
in mRNA processing, insulin signaling and insulin resistance (Alexandrov  et al., 2012), and is 
itself regulated by  DNA methylation (Xiaoping et al., 2013). Another hotspot on chromosome 4 
was associated with proteomics and gene expression. The Mechanistic target of rapamycin, 
Mtor, is a candidate gene for this hotspot since its expression levels map to methylation levels in 
cis (i.e. cis-eQTL), and several genes known to interact with Mtor also mapped to the locus, 
such as Rictor. The hotspot on chromosome 7 at 110Mb coincides with the Hemoglobin beta 
locus, and was associated with multiple blood cell phenotypes such as hemoglobin 
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concentration, percent red blood cells, red blood cell volume and size. A table listing the top 
EWAS hotspots, and candidate genes for the hotspots, can be found in Table S3.

DNA methylation GWAS hotspots
! We found a QTL hotspot regulating methylation levels of ~100 CpGs across the genome
on chromosome 12 at 26Mb (Figure 6C). A plausible candidate for this association is the gene 
Klf11, found 1.3Mb from the hotspot. Klf11 is a transcription factor involved in tumor suppression 
and metabolic disease (Lomberk et al., 2012), and it is known to couple to histone 
acetyltransferase and histone methyltransferase chromatin remodeling pathways in transcription 
regulation (Seo et al., 2012).
! When we examined QTL hotspots controlling CpGs in cis and trans, we found several
loci that primarily  influence methylation levels of nearby  CpGs (Figure S7E). For example, we 
found such a “local” methylation hotspot in chromosome 4 at 136Mb, roughly  100kb from the 
lysine-specific histone demethylase 1A, Kdm1a. Expression levels of Kdm1a were correlated 
with methylation levels of CpGs mapping to the locus with an average absolute r=0.29. The 
distribution of these correlations was significantly  different (KS-test p=1.2x10-205) from the 
correlation between Kdm1a expression and all CpGs, with average absolute r=0.09 (Figure 
S7D). In summary, our results show that natural genetic variation can influence both local and 
distant CpG methylation levels across the genome.  

Note on experimental validation of candidate gene Mtrr

! We experimentally tested our hypothesis that Mtrr was influencing CpG methylation
levels across the genome, using bisulfite sequencing data of Mtrr wild-type and homozygous 
gene trapped mice (gt/gt). We confirmed the role of Mtrr in 27% CpGs predicted to be affected 
by  the chromosome 13 hotspot that were differentially  methylated between wild-type and gt/gt 
mice (Figure 6E). It is possible that we were able to validate only  27% of all CpGs predicted to 
map to the chromosome 13 hotspot due to lack of power in our validation studies, since we 
examined three Mtrr wild-type and and three gt/gt mice. Furthermore, gt/gt mice had decreased 
expression and activity  of Mtrr, but it was not completely  absent (Elmore et al., 2007). It is also 
possible that a fraction of the CpGs predicted to map to the hotspot locus are false positives. 
Alternatively, we hypothesize that the chromosome 13 hotspot is complex, like previously 
described hotspot loci, such that there may be more that one gene that is causally  related to 
CpG methylation levels.
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Comparison of mouse and human DNA methylation
! To determine how DNA methylation in mice compared to human methylation profiles, we
obtained a public dataset from normal human liver from GEO  (GSM916049). We selected this 
dataset since it was generated with the same sequencing technology  as the mouse data 
presented here, and because it corresponded to an adult liver human sample similar to our adult 
mouse liver samples, although the human dataset was a whole genome bisulfite sequencing 
library preparation and our mouse data were RRBS. We used liftover to obtain the mouse 
chromosomal locations that corresponded to the human genetic loci. There were 51,435,834 
cytosines represented in the human methylation sample on both plus and minus strands, and 
we identified 17,140,641 syntenic mouse positions using liftover. From these, 80,123 cytosines 
were also represented in our mouse data. We compared human methylation levels to the 
average mouse methylation levels across all our mouse samples and found they were 
correlated with Pearson’s r=0.62 (p<1x10-16). The mean methylation level across all sites was 
31.2% in human and 37.6% in mouse, although the median methylation level in the human 
sample was 5.6%, compared to the median mouse methylation level of 30.4%. As we might 
expect, there are both similarities and differences between human and mouse methylation 
patterns. However, it is challenging to compare DNA methylation profiles from different specifies 
for biological and technical reasons. For example, although a large proportion of the mouse 
genome is syntenic to the human genome, we cannot always find a one to one concordance 
between human and mouse genetic loci. In addition, variables such as diet, environment, age, 
library preparation, bisulfite conversion protocols, coverage, whole genome versus RRBS 
libraries and batch effects can all contribute to variability in DNA methylation levels.

Online databases for the identification of candidate genes
! Candidate gene identification. Our database incorporates: (i) EWAS and GWAS
results for clinical traits, metabolites, gene expression and proteomics data in our study, (ii) 
gene annotations for candidate gens using PubMed publications, (iii) published GWAS 
associations from the online GWAS catalog (Welter et al., 2014), and (iv) the Citeline database 
to provide information on existing drugs targeting candidate genes. This database can be 
accessed at http://ewas.mcdb.ucla.edu. Our database allows the user to query  associations for 
clinical traits, and to identify  candidate genes based on proximity to the associated CpG. The 
user has the option search for genes associated with a trait by  EWAS and/or GWAS. In addition, 
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one can narrow down candidate genes by  selecting genes with cis associations for gene 
expression (i.e. cis-eQTL), and/or protein levels (cis-pQTL). 
! Our database also incorporates gene annotations based on all PubMed publications.
This functionally  allows us to narrow down candidate genes that have been previously 
implicated with the clinical trait, or other traits related to it. For example, suppose we are 
searching for candidate genes for a clinical trait measured in the HMDP, such as “Plasma insulin 
levels”. In the online database we can select from a list of curated terms that are related to 
insulin, such as body mass index, glucose, diabetes, insulin, insulin resistance, islet cell, leptin, 
etc. Then the search for candidate genes will include publications where a given gene and the 
curated term were found together in a publication, either in the abstract or the full text, including 
publication links, and the total number of publications (PMID count) where the gene and the 
curated term were found together. Alternatively, we can enter our own term or list of terms to be 
used for the search instead of choosing from the curated terms. The online database also 
provides information for any  known GWAS association between the candidate genes and 
clinical traits, by  incorporating all published hits from the online GWAS catalog (Welter et al., 
2014). Finally, for each candidate gene we provide information on drugs known to target the 
gene, and whether they are currently in clinical trials based on the Citeline database. 
! Association graphs. Cellular and organismal phenotypes arise from the concerted
action of thousands genes, transcription factors, genetic, epigenetic and environmental 
variation. To help  us understand and visualize how different cellular markers such as gene 
expression, protein levels, metabolite levels, genetic and epigenetic associations work together 
to influence clinical phenotypes, we created a different online tool that generates association 
graphs based on our results. This website allows a user to select a clinical trait of interest and a 
p-value threshold and displays associations between the trait and CpGs at the given threshold.
Each of the clinical trait associations is further extended to the associations for gene expression, 
protein and metabolites to these CpGs using EWAS. We provide a graph to visualize 
connections between clinical traits, gene expression, proteins, metabolites, and CpGs that 
allows us to more easily  identify  how these different cellular systems are interconnected, and 
how they  interact with each other based on epigenetic associations. As an example, we 
generated a bone mineral density  graph (Figure 7) which displays associations for the trait and 
individual CpGs. These CpGs were also associated with gene with expression and protein 
levels. Genes such as Plod1, Igf1, and Mtor are known to affect bone mineral density  and/or 
bone biology, while other genes are involved in lipid or fat metabolism pathways, which are 
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often correlated with bone density. Additional genes in the association graph are not known to 
directly  impact bone mineral density, such as Cds2, a gene involved in calcium metabolism, 
Masp2 a calcium-binding gene involved in complement activation, Yy1, a transcription factor 
which inhibits bone morphogenic protein (Kurisaki et al., 2003), but their membership in this 
graph allows us to confidently  hypothesize that these genes in fact can influence bone mineral 
density  and/or bone metabolism. This tool can can accessed at  http://pathways.mcdb.ucla.edu/
network.

Novel SNPs in 90 mouse inbred strains
! Eighteen mouse inbred strains and wild-derived strains have been sequenced to date
(Keane et al., 2011). We used RRBS data with 48X average coverage to identify  SNPs on 90 
mouse classical inbred and recombinant inbred strains, 12 of which have been previously 
sequenced by  the Mouse Genome Project. We note that we included the Mus musculus 

castaneus strain CAST/EiJ in the SNP analyses but not in the EWAS or GWAS, since it is 
genetically widely  divergent from the other M. m. domesticus mouse strains and would confound 
our association studies. Overall, we identified 135,213 SNPs with 20X coverage or better on 
both strands, consisting of 42,031 known SNPs and 93,182 novel SNPs. Approximately  45%  of 
SNPs (60,943) were present in a single mouse strain, and 26% of SNPs (35,731) were present 
in more than ten percent of the samples. We used SnpEff (Cingolani et al., 2012) to annotate 
the SNPs and found 10,327 missense, 56 nonsense and 14,264 silent SNPs.
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Data access. All RRBS sequencing and SNP data can be obtained from GEO: GSE67507. The 
EWAS and GWAS results can be accessed in our online databases to search for candidate 
genes at http://ewas.mcdb.ucla.edu and to generate association graphs at http://
pathways.mcdb.ucla.edu/network. Individual tables with all methylation associations can be 
downloaded from http://ewas.mcdb.ucla.edu/download.html. The GWAS results can also be 
accessed at http://systems.genetics.ucla.edu/data/hmdp.
Mice and sample collection. Male mice were purchased from Jackson Labs (Bar Harbor, 
Maine, USA) between 6 and 10 weeks of age. To ensure adequate acclimatization to a common 
environment the mice were aged until 16 weeks of age. All mice were maintained on a chow diet 
(Ralston-Purina Co., St. Louis, MO, USA) until sacrificed at 16 weeks of age. Following an 
overnight 16-hour fast, mice were bled retro-orbitally  under isoflurane anesthesia and 
euthanized by  cervical dislocation in the morning between the hours of 8am and 12pm. Livers 
were dissected out and flash frozen in liquid nitrogen. All animals were handled in strict 
accordance with good animal practice as defined by  the relevant national and local animal 
welfare bodies, and all animal experiments and work were carried out with UCLA IACUC 
approval. 
HMDP mouse data. Clinical traits were measured in HMDP strains using 8-12 mice per strain. 
Expression array  profiling was performed on liver tissue using three mice per strain (Bennett et 
al., 2010). We measured expression in primary  peritoneal macrophages in four mice per strain 
using cells incubated overnight in 20% FBS DMEM media, followed by a 4 hour incubation in 
1% FBS DMEM (Orozco et al., 2012), as previously  described. We measured proteomics data 
using Liquid Chromatography–Mass Spectrometry  in one mouse per strain (Ghazalpour et al., 
2011). We profiled metabolite data using one or two mice per strain (Ghazalpour et al., 2014). 
Detai led protocols for al l phenotype measurements can be found at http://
systems.genetics.ucla.edu/protocols/hmdp and http://systems.genetics.ucla.edu/protocols/
hmdp_secondset.
RRBS Libraries. We prepared RRBS libraries as previously  described (Smith et al., 2009), with 
minor modifications. Briefly, we isolated genomic DNA from flash frozen livers using a phenol-
chloroform extraction, digested 1μg of DNA with MspI restriction enzyme (NEB, Ipswich, MA, 
USA), carried out end-repair/adenylation (NEB) and ligation with TruSeq barcoded adapters 
(Illumina, San Diego, CA, USA). We selected DNA fragments of size range 200-300bp with 
AMPure magnetic beads (Beckman Coulter, Brea, CA, USA), followed by bisulfite treatment on 
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the DNA (Millipore, Billerica, MA, USA), and PCR amplification (Bioline, Taunton, MA, USA ). We 
sequenced the libraries by  multiplexing two libraries per lane in an Illumina HiSeq sequencer, 
with 100bp reads. We made one RRBS library  per strain for the majority  of the strains, 2 
libraries per strain for AXB23/PgnJ, AXB8/PgnJ, BXA24/PgnJ, BXA26/PgnJ, BXH2/TyJ and 
BXD24/TyJ strains, and 9 libraries for strain AXB19b/PgnJ.
Alignment. We aligned the reads with BS-Seeker2 (Guo et al., 2013) to the mm9 mouse 
reference genome. We used Bowtie as the base aligner, trimmed adapters, allowed for up to 5 
mismatches and selected uniquely aligned reads.
Reproducibility of RRBS data. We clustered the replicates using hierarchical clustering and a 
‘correlation’ distance metric. To cluster the samples, we selected cytosines with no missing data, 
which corresponded to 5,366,593 sites for all cytosines (Figure S3A) and 150,144 sites for 
Variable CpGs (Figure S3B). To examine the distribution of the variance in methylation levels, 
we computed the variance in percent methylation levels for each cytosine across all samples, 
using either samples from all strains for the variance between-strains (inter-strain variance), or  
samples from different mice of the same strain for the within-strain variance (intra-strain 
variance), or from technical replicates using different libraries made from the same DNA sample. 
We plotted the empirical cumulative distribution of these variances and compared the 
distributions with the Kolmogorov-Smirnov  test (KS-test), and took the mean of each variance 
distribution to compare the fold difference of the distributions.
Selection of CpGs. We observed a total of 47,063,780 cytosines with RRBS coverage in at 
least one strain. From this, we selected 11,520,175 cytosines present in at least 90% of the 
samples, with coverage of 10x or more, which corresponded to 2,047,165 CG, 2,737,475 CHG, 
and 6,735,535 CHH cytosines. We identified a set of 367,317 CpGs which show a change in 
methylation level (delta) of 50% or more, in at least one strain. We excluded 6,993 sites from 
the EWAS studies, since these coincided with SNPs that abolished the CpG site in mouse 
strains carrying the SNP, resulting in 360,324 Variable CpGs. We also identified a set of 22,227 
Hypervariable CpGs which show a delta in methylation of at least 50%, between 5 or more 
samples and the median methylation level for all samples. 
Linkage disequilibrium and CpG correlation studies. We computed the Pearson’s r-squared 
between pairs of SNPs, or pairs of CpGs, excluding missing values. To determine the average r-
squared, we calculated the distance in base-pairs between pairwise CpGs or SNPs, then 
selected all pairwise r2 values between CpGs/SNPs that were found with 100kb of each other, 
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and computed the average r2 at that distance. We then repeated this process for increasing 
pairwise distance bins, such as 200kb,  300kb, etc.
EWAS. We used the linear mixed model package pyLMM (https://github.com/nickFurlotte/
pylmm) to test for association and to account for population structure and relatedness among 
the mouse strains. This method was previously described as EMMA (Kang et al., 2008), and we 
implemented the model in python to allow for continuous predictors, such as CpG methylation 
levels that vary between 0 and 1. We applied the model: y=μ+xβ+u+e, where μ=mean, x=CpG, 
β=CpG effect, and u=random effects due to relatedness, with Var(u) = σg2K and Var(e) = σe2, 
where K=IBS (identity-by-state) matrix across all Variable CpGs. We computed a restricted 
maximum likelihood estimate for σg2K and σe2, and we performed association based on the 
estimated variance component with an F-test to test that β does not equal 0. Each phenotype 
was log transformed for the association test.
Inflation. We calculated the inflation factor lambda by  taking the chi-squared inverse cumulative 
distribution function for the median of the association p-values, with one degree of freedom, and 
divided this by  the chi-squared probability distribution function of 0.5 (the median expected p-
value by  chance) with one degree of freedom. Since it was not feasible to calculate this statistic 
using all p-values for the gene expression dataset, we calculated lambda using a sample of 108 
million p-values, corresponding to p-values for 300 randomly  selected probes. For the remaining 
datasets, we used the entire p-value distribution. We plotted qqplots for representative 
phenotypes using the qqplot function in Matlab, with a theoretical uniform distribution with 
parameters 0,1. 
Overlap of EWAS and GWAS. We defined an overlap between EWAS and GWAS if the 
associations were found within 2Mb (Figure S5A). To decrease the chance of not finding an 
overlap based on our stringent Bonferroni EWAS thresholds, we used the per phenotype 
Bonferroni threshold of p<1x10-7 for EWAS, and p<4.1x10-6 for the GWAS as previously 
described (Bennett et al., 2010).
Published GWAS. We previously  performed GWAS in the HMDP for clinical traits and 
microarray expression levels (Bennett et al., 2010), proteomics (Ghazalpour et al., 2011) and 
metabolomics (Ghazalpour et al., 2014). For all these associations, we employed the EMMA 
linear mixed model, using SNPs with at least 10%  minor allele frequency  and missing data in 
less than 10%  of the samples, and selected significant associations where p<4.1x10-6 as 
previously described (Bennett et al., 2010).
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Conditional EWAS. We performed EWAS for clinical traits or cis expression associations 
identified with both EWAS and GWAS. We used the pyLMM package as described with one      
modification: for each EWAS we used the SNP genotype for the GWAS hit as a covariate.
Causal inference test. We performed causal inference tests using the R statistical package 
CIT developed by Millstein and colleagues (Millstein et al., 2009), according to the user’s 
manual.
EWAS Hotspots. We divided the genome into 1Mb bins and counted the number of unique 
traits, or metabolites, or genes, with a significant association in that bin. We only  considered 
associations from Hypervariable CpGs, at the corresponding Bonferroni significance threshold. 
We used the Poisson distribution to determine if individual bins had a higher than expected 
number of associations. A given bin was considered a significant hotspot if the number of unique 
associated traits in that bin was above 3 for clinical traits, 5 for metabolites, 6 for proteins, and 
20 for the gene expression.
PCA. We performed a principal component analysis on the clinical traits. The first and second 
principal components explained 24% and 12% of the variation in the traits, respectively. We 
mapped the first two principal components as traits to CpG methylation levels across the 
genome using EWAS as described above. 
Methylation GWAS. We tested for association between methylation levels as phenotypes, and 
SNPs as predictors using EMMA as previously  described (Bennett et al., 2010). The difference 
between the EWAS model described above, and the GWAS linear mixed model is that in GWAS 
x=SNP, β=SNP effect, and K=IBS (identity-by-state) matrix across all SNPs. Inbred strains were 
previously  genotyped by the Broad Institute (http://www.broadinstitute.org/mouse/hapmap), and 
they were combined with the genotypes from Wellcome Trust Center for Human Genetics 
(WTCHG). Genotypes of RI strains at the Broad SNPs were inferred from WTCHG genotypes 
by  interpolating alleles at polymorphic SNPs among parental strains, calling ambiguous 
genotypes missing. Of the 140,000 SNPs available, 94,498 were informative with an allele 
frequency greater than 10% and missing values in less than 10% of the strains.
Heritability. We estimated the narrow sense heritability using a linear mixed-model approach 
(Yang et al., 2010). We assume each phenotype y  follows the model y = 1nμ + u + e, where the 
random variable u follows a normal distribution centered at zero with variance σg2K, and e 
represents an independent noise component with variance σe2. The matrix K is estimated using 
Identity  by  State (IBS) across all SNPs. For each trait we estimated σg2 and σe2 using REML and 
calculated the heritability as h2 = σg2/(σg2 +σe2 ). 
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Methylation GWAS Hotspots. We divided the genome into 2Mb bins and counted the number 
of all unique CpGs with a significant GWAS hit in that bin and called these “cis and trans” 
associations (Figure S7E). We also defined a set of trans association hotspots (Figure 6C), 
where we counted CpGs mapping to each bin in trans, such that the CpG was physically 
located at least 10Mb away  from the bin. We considered CpGs to be associated at the 
Bonferroni threshold with p<1.4x10-12. We used the Poisson distribution to determine if 
individual bins had a higher than expected number of associations. A given bin was considered 
a significant hotspot if the number of unique CpGs mapping to that bin was above 142 for “cis 
and trans” GWAS, and 30 for trans GWAS. We used 2Mb bins instead of 1Mb bins because of 
the increased LD in the mouse SNPs used for GWAS.
Validation of Mtrr Hotspot. We generated RRBS libraries from Mtrr gene trapped mice 
(Elmore et al., 2007), using three wild-type and three homozygous gene trapped (gt/gt) male 
mice at three months of age. We sequenced the libraries by  multiplexing all six libraries in one 
lane. We aligned the data using BS-Seeker2 as described above, and filtered the data by 
selecting only CpGs covered by 10 or more reads. Of the 471 CpGs predicted to be affected by 
Mtrr, 154 were represented in this dataset. We were not able to observe all 471 CpGs because 
of (1) the decrease in coverage, since we multiplexed six samples in one lane for the validation  
experiments and two samples per lane for all the HMDP samples, and (2) the inherent 
randomness of sequencing data in RRBS using the Illumina sequencing technology. We 
compared CpG methylation levels in +/+ and gt/gt mice using a t-test, and estimated the FDR 
using the Storey  method (Storey, 2002). We calculated the difference in methylation levels at 
each CpG by taking the absolute difference in methylation between the average methylation 
Mtrr +/+ and the average in -/- mice, i.e. delta methylation. We examined the distribution of the  
methylation difference, or delta for (1) all CpGs, (2) the 154 CpGs predicted to be affected by 
Mtrr, and (3) random sets of CpGs. We compared one distribution to another using the 
Kolmogorov-Smirnov  test. We selected random sets of CpGs from all CpGs observed in the 
RRBS dataset 1,000 times, and compared the distribution of the delta in Mtrr +/+ and gt/gt mice 
for each random set. 
Phenotype inference. We used the glmnet package in R for building linear models, which fits a 
generalized linear model via penalized maximum likelihood (Friedman et al., 2010). For each 
trait, we randomly  selected test sets consisting of 10 mice which were hidden from the training 
dataset, and used the remaining mice for model building. We selected the 20,000 most variable 
CpGs in the training set mice as features, and built a linear model based on these features. We 
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then used the linear model to infer traits on the test set, and measured the accuracy  of the trait 
predictions relative to the measured clinical traits, by taking the Pearson’s r between predicted 
and measured clinical trait values. We repeated this process ten times with ten different test 
sets. The list of inferred phenotypes, the correlations between predicted and observed 
phenotypes, and the top ten CpGs selected most frequently  to model each phenotype can be 
found in Table S4. We used lasso regularization by  setting the elastic-net penalty  parameter 
alpha to 1, and selected the lambda value that minimized cross-validation error for each trait, 
where lambda is the tuning parameter that controls the overall strength of the penalty. We 
replaced missing data in with data from the closest mouse according to euclidean distance. 
Association graphs. We defined edges in the BMD association graph based on EWAS for 
CpGs and clinical traits, metabolites, proteins and gene expression, for Hypervariable CpGs 
where p<1x10-7. Associations were considered in cis  if the distance between a gene and the 
CpG was arbitrarily  within 5Mb. We also identified edges between CpGs and SNPs based on 
the methylation GWAS between CpG methylation traits and SNPs, at the Bonferroni significance 
threshold 2.4x10-11, using Hypervariable CpGs and 94,498 SNPs. Edges between clinical traits 
and SNPs were based on our published GWAS (Bennett et al., 2010; Ghazalpour et al., 2011), 
where p<4.1x10-6. We constructed the figures using Cytoscape (www.cytoscape.org). 
SNP calling. We developed a method to predict SNPs from the ATCGmap file generated by  BS-
Seeker2. First, we selected the sites covered by  20X reads on both strands, ensuring our 
prediction would not be affected by  poor sampling. Second, as a T in the read  can correspond 
to a T or unmethylated C in the genome in bisulfite sequencing, we re-calculated the counts 
supporting A, T, C  or G calls, such that counts supporting C = (#Ts + #Cs). Third, we tested if 
counts support each nucleotide by  chance using a Binomial test, assuming sequencing error 
rate = 0.2, and then we called nucleotides where p<0.01 for a given nucleotide at each position. 
Fourth, to avoid mapping bias between the two strands, we used the intersection of the 
predicted set of nucleotides from both strands to be the predicted polymorphism at that site. 
Fifth, we compared the polymorphisms with the reference genome to determine whether the site 
was a SNP, and whether it was a homogeneous or heterogeneous SNP. Finally, we annotated 
SNP categories and functional consequences using SnpEff (Cingolani et al., 2012).
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Abstract 

Whole-genome bisulfite sequencing (WGBS) and reduced representation bisulfite sequencing 

(RRBS) are widely used for measuring DNA methylation levels on a genome-wide scale(1). Both 

methods have limitations: WGBS is expensive and prohibitive for most large-scale projects; 

RRBS only interrogates 6-12% of the CpGs in the human genome (16,19). Here, we introduce 

methylation-sensitive restriction enzyme bisulfite sequencing (MREBS) which has the reduced 

sequencing requirements of RRBS, but significantly expands the coverage of CpG sites in the 

genome. We built a multiple regression model that combines the two features of MREBS: the 

bisulfite conversion ratios of single cytosines (as in WGBS and RRBS) as well as the number of 

reads that cover each locus (as in MRE-seq (12)). This combined approach allowed us to 

estimate differential methylation across 60% of the genome using read count data alone, and 
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where counts were sufficiently high in both samples (about 1.5% of the genome), our estimates 

were significantly improved by the single CpG conversion information. We show that 

differential DNA methylation values based on MREBS data correlate well with those based on 

WGBS and RRBS. This newly developed technique combines the sequencing cost of RRBS and 

DNA methylation estimates on a portion of the genome similar to WGBS, making it ideal for 

large-scale projects of mammalian genomes. 

Introduction 

DNA methylation plays an important role in gene regulation and the maintenance of cell 

identity, although much remains to be uncovered regarding the specific mechanisms underlying 

the targeting and reading of methylcytosines(2-4). High-throughput DNA sequencing 

technologies have enabled the measurement of cytosine methylation on a genome-wide scale, 

leading to the application of these approaches in myriad studies(5-12). Many technologies have 

been developed over the past decade to measure DNA methylation(13). Some of these provide 

qualitative information about regions enriched for DNA methylation, such as approaches that 

select DNA fragments using proteins that selectively bind methylated cytosines (e.g. 

meDIP)(13,14), or methods to digest DNA with methylation- sensitive restriction enzymes (e.g. 

MRE)(15). Other approaches are able to probe the methylation state of single cytosines, by 

chemically converting unmethylated cytosines to uracils using sodium bisulfite(16). The fraction 

of unconverted cytosines provides an estimate of the DNA methylation level at a particular 

locus. This read out can be determined from microarrays (e.g. Illumina 450K)(17) or next-

generation sequencing(13,18-20). In addition, some single molecule sequencing technologies 
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are able to directly detect methylcytosines by monitoring the incorporation rates of nucleotides 

(e.g. Pacific Biosciences)(21). 

Among these approaches, two widely used next-generation sequencing methods for 

assessing DNA methylation levels at single cytosines on a genome-wide scale are whole-genome 

bisulfite sequencing (WGBS, also known as BS-seq, methyl-seq, or methylC-seq)(18,19,22) and 

reduced representation bisulfite sequencing (RRBS)(20,23). As implied by their names, both 

protocols are based on bisulfite treatment of DNA. However, to obtain high-confidence 

methylation estimates, one requires a minimum level of read coverage per site, typically at 

least 5–10X. WGBS is far more comprehensive and can in theory assess the methylation status 

of nearly every single cytosine in the genome, but requires very deep sequencing to arrive at 

modest levels of coverage, and, hence, can be very costly, especially if one is working with large 

genomes, such as those of mammals. 

RRBS interrogates a smaller portion of the genome, significantly reducing the amount 

of sequencing required to obtain high-confidence methylation estimates at this subset of sites. 

The RRBS protocol introduces a step where genomic DNA is first digested, typically with the 

methylation-insensitive restriction endonuclease MspI, which cuts at the recognition sequence 

CˇCGG. Digested fragments are then size selected, typically in the range of 50 to 300 

nucleotides. This fraction enriches for CpG-rich regions, including many regions involved in 

transcriptional regulation such as promoters and enhancers, but typically only covers 6–12% of 

CpGs genome-wide(23,24). 

To address the respective limitations of WGBS and RRBS, we developed a new method, 

methylation-sensitive restriction enzyme bisulfite sequencing (MREBS), which adds a bisulfite 

step to an existing protocol: MRE-seq(15). Typically, MRE-seq utilizes three methylation-

sensitive restriction endonucleases in parallel to digest DNA (HpaII (CˇCGG), HinP1I (GˇCGC), 

and AciI (CˇCGC)). Similarly to RRBS, a size selection step enriches for fragments between 50 

bp and 300 bp. DNA methylation levels are inferred by the inverse relationship between MRE-
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seq read coverage and CpG methylation at the restriction enzyme target sites. Although the three 

aforementioned restriction enzymes only cut DNA at unmethylated CpG dinucleotides, the DNA 

methylation state of other CpGs within the resulting fragments could still be either methylated 

or unmethylated. We reasoned that the addition of a bisulfite conversion step to the MRE-seq 

protocol would directly measure the methylation state of cytosines within MRE fragments. 

Typically 70 – 80 % of CpG dinucleotides in the genome are methylated(2), and the rationale 

behind this approach is that we direct our sequencing resources to the regions of the genome 

that are more likely to be unmethylated by using MRE to digest the DNA. Then, rather than 

simply relying on the inverse relationship between MRE-seq read coverage and DNA 

methylation levels around cut sites, we additionally directly measure the DNA methylation 

levels of their flanking regions. In principle, the advantage afforded by MREBS over WGBS and 

RRBS, is that we focus our sequencing effort on hypomethylated loci. 

Since MREBS reads are expected to show an overall bias for lowly methylated regions 

due to the propensity of the restriction enzymes to digest demethylated regions, their 

methylation levels do not provide an unbiased measurement of absolute DNA methylation 

levels. However, the data can be readily used to determine differential methylation between two 

samples, which is often of greater interest. With this in mind, we developed a computational 

model that determines differential DNA methylation in two ways. First, based on read coverage 

alone, which is expected to anti-correlate with DNA methylation levels, we determined 

differential methylation within a region around each CpG dimer by looking at the difference in 

read counts between samples, as is done with traditional MRE-seq. Second, in those regions 

with sufficient read coverage for reliable estimates, we determined differential DNA 

methylation at single CpG resolution based on a model of bisulfite conversion ratios. 

To test our approach, we first compared MREBS conversion-based methylation 

estimates and coverage to those based on WGBS and RRBS data, using two cell types that 

represent very different developmental stages, namely mouse embryonic stem cells (ESCs) and 
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an early somatic cell reprogramming intermediate obtained by inducing the expression of Oct4, 

Sox2, Klf4, and cMyc in mouse embryonic fibroblasts (MEFs) for 48 hours, where we had 

observed substantial differential methylation by WGBS and RRBS. We found that MREBS 

bisulfite conversion-based DNA methylation estimates correlated well with WGBS and RRBS-

based values. The number of CpG dimers with sufficient read coverage to obtain MREBS 

conversion-based methylation estimates was comparable to that of RRBS. Importantly, in 

contrast to RRBS, we found that nearly 60% of all CpGs in the mouse genome had sufficient 

reads within the surrounding region in at least one of the two cell types to determine differential 

DNA methylation estimates based on MREBS read counts alone. Within lower coverage regions, 

we compute the counts in 1kb windows around CpGs to obtain approximate differential 

methylation as with traditional MRE-seq. In high coverage regions (~3% of CpGs), we use a 

multiple regression model that considers both cytosine methylation estimates from converted 

reads and read count data to predict differential DNA methylation values. The differential 

methylation estimates generated by this model compared favorably to measurements from 

RRBS data. 

We found that MREBS provides a level of sequence coverage with nucleotide resolution 

similar to that obtained with RRBS. Additionally, with MREBS one can estimate DNA 

methylation levels for broader swathes of the genome based on differential MRE read counts 

around CpGs, thereby providing a level of coverage that begins to approach that obtained by 

WGBS, but at a fraction of the cost. 
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Results 

Study design and data sets 

We chose to test our approach on two cell lines where we expected to see significant 

differential methylation as they represented distinct developmental stages and differentially 

methylated regions (DMRs) were observed using WGBS and RRBS . The two cell types were: 1) 

MEFs that were induced to ectopically express the Yamanaka reprogramming factors OCT4 

(O), SOX2 (S), KLF4 (K), and MYC (M; also known as ‘cMYC’)(25) for 48 hours, representing an 

early somatic cell reprogramming intermediate (EARLY), and 2) mouse embryonic stem cells 

(ESCs) representing the pluripotent stem cell state reached upon successful 

reprogramming (Figure 2.1A ). Both states have been recently described in detail (26).  

WGBS libraries for the two cell types were generated and reads were mapped to the 

mm9 genome using BS-Seeker2(27). The WGBS data sets for the two cell types showed 

comparable sequencing depth and CpG coverage (Figure 2.1B, Supplementary Table 2.2  ). 

RRBS and MREBS libraries for the same cell lines were also generated, with the MREBS 

libraries produced in duplicate to test reproducibility. RRBS reads were mapped to an in 

silico MspI-digested reduced reference mm9, and MREBS reads were mapped to the whole 

genome after being filtered for the expected 5’ cut sites (Figure 2.1C/D, Supplementary Table 

2.1  ). Although the sequencing depth for RRBS and MREBS was comparable, twice as many 

CpGs were covered by at least one read with MREBS  (Figure 2.1C/D, Supplementary Table 

2.2). 

MREBS read counts provide high coverage of the genome  

To determine DNA methylation estimates using bisulfite conversion rates, one typically requires 

at least 5X read coverage. As expected, the proportion of the 21.3 million CpGs in the mouse 

genome covered with a minimum of 5X coverage was substantially higher for the WGBS samples 

(~80%), than for either the RRBS (6%) or the MREBS samples (4–5%)  (Supplementary Table 
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2.3). And, as was the case for the individual samples, the pairwise 5X coverage was substantially 

higher for the WGBS samples (75.5% of all CpG dimers between the two samples) than for 

either the RRBS (5.6%) or the MREBS samples (~3%) (Supplementary Table 2.4).   

However, apart from using bisulfite conversion ratios to determine DNA methylation, we 

reasoned that for the MREBS samples we might be able to model DNA methylation based on 

differential read coverage alone as with traditional MRE since MREBS utilizes methylation 

sensitive digestion, read counts around each CpGs  should anti-correlate with their methylation 

levels (Tables 2.1  and 2.2  ).  In other words, MREBS read counts within windows around 

CpGs  could be used to determine methylation, thereby providing broader coverage than one 

would obtain by relying only on high confidence DNA methylation calls at each CpG based on 

bisulfite conversion ratios. 42–48% of CpG dimers had two or more reads falling within a 

surrounding 1kb window  (Supplementary Table 2.3 ), with nearly 60% of CpG dimers had at least 

two MREBS reads falling within the  surrounding 1kb window in at least one of the two 

cell types (Supplementary Table 2.4). This suggested that MREBS could be utilized for 

determining differentially methylated regions (DMRs) between a pair of samples using both read 

counts and bisulfite conversion ratios.  

MREBS conversion ratios correlate and MREBS read counts anti-correlate with 

WGBS and RRBS DNA methylation estimates, respectively  

To investigate the relationship between WGBS, RRBS and MREBS-based DNA methylation 

estimates, we computed global correlations between them (Table 2.1).  MREBS bisulfite 

conversion-based methylation estimates correlated more closely with the WGBS and RRBS-

based estimates in the EARLY reprogramming intermediate, than they did with the ESC 

counterparts. Moreover, MREBS conversion-based methylation estimates for ESCs correlated 

more closely with the ESC RRBS and WGBS data than they did with the methylation estimates of 

EARLY   reprogramming   intermediate   (Table   2.1).    As expected,    MREBS    read counts anti-
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correlated with the DNA methylation levels based on WGBS-, RRBS-, and MREBS data, though 

not in a particularly cell type-specific manner (Table 2.1).  

Correlations based on differential data were substantially stronger than those based on 

absolute levels.  MREBS differential data correlated with the differential WGBS and RRBS 

differential DNA methylation in the expected directions: differential read counts between the 

EARLY reprogramming intermediate and ESCs (EARLY - ESC) based on MREBS anti-

correlated strongly with the differential DNA methylation values based on WGBS and RRBS, 

while MREBS differential bisulfite conversion ratio estimates correlated positively with those of 

WGBS and RRBS (Table 2.2). This suggested that MREBS data might be best utilized to 

estimate differential DNA methylation.  Additionally, based on these observations, we 

hypothesized that by combining the MREBS differential conversion ratio estimates and 

MREBS differential read counts, we could make use of both domains of MREBS data to better 

estimate differential DNA methylation.   

Distributions of MREBS bisulfite conversion-based DNA methylation estimates 

across different chromatin states are similar to those of WGBS and RRBS-based 

estimates 

To ensure that DNA methylation estimates based on MREBS data corresponded to those 

based on WGBS and RRBS in all genomic contexts, we compared DNA methylation estimates 

across different chromatin states. To determine chromatin states, we took advantage of a hidden 

Markov model of chromatin states generated by using chromHMM(28). The model is described 

in detail in Chronis et al.(26).  Briefly, the genomes of the two cell types were tiled into 200 bp 

windows and assigned to one of 18 chromatin states based on ChIP-seq signals for nine histone 

modifications a nd one histone variant (histone H3.3), including a native input library. 

Functional annotations were determined for each of the 18 states based on the prevalence and 

combination of the histone mark peaks and the enrichment of genomic features (Figure 2.2A ).  

80



Mean DNA methylation levels were estimated for all those 200 bp windows containing 

a minimum of one CpG with 5X read coverage. Distributions of DNA methylation 

levels genome-wide and within the 200 bp windows belonging to each chromatin state 

were then plotted for each cell type (EARLY intermediates (Figure 2.2B ) and ESCs (Figure 

2.2C )) and for each bisulfite sequencing method  (WGBS (i), RRBS (ii), and MREBS (iii)). 

Different chromatin states showed characteristic DNA methylation distributions  that were 

similar in both cell types (Figure 2.2B/C). For instance, the promoter-associated 

chromatin states (1 and 2) were comparatively hypomethylated, while several of the 

enhancer-related chromatin states (3, 4, 5, and 7) showed wide spread DNA methylation 

levels and an intermediate mean DNA methylation.  Most of the other chromatin states 

were largely hypermethylated (Figure 2. 2B/C). 

Apart from differences across chromatin states, there were also some 

differences between the cell types, as well as differences between approaches.  For 

instance, the distributions of the MREBS-based DNA methylation estimates are systematically 

lower in most chromatin states as might be expected due to the use of methylation-sensitive 

endonucleases   (Figure 2.2Biii/Ciii). Most notably the genome-wide DNA methylation levels 

based on MREBS estimates are low, (dark blue violin plots) close to that of the more 

demethylated chromatin states. Indeed, the MREBS samples are particularly enriched for 

two states of regulatory importance having the lowest DNA methylation levels, namely 

promoter and specific enhancer states (chromatin states 1–5, 7, and 15, Figure 2.2B/C  ).   

Although MREBS conversion-based DNA methylation estimates are systematically lower than 

those obtained by WGBS and RRBS data, their distributions within different chromatin states 

are very similar .  Reassured that MREBS DNA methylation estimates mirrored patterns see 

by WGBS and RRBS across all chromatins states,  we hypothesize that MREBS could 

be used to determine methylation levels in and between samples, if scaled appropriately, or 

incorporated into a model to predict differential DNA methylation.   
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Differential CpG-level methylation can be modeled using MREBS data 

 We hypothesized that WGBS-based differential DNA methylation values could be modeled 

using the MREBS data. To investigate this, we built four different linear regression models, 

as follows: 

1. !! =  !! +  !!! ! = 1. . !!
2. !! =  !! +  !!!!! +  !!!!! ! = 1. . !!
3. !! =  !! +  !!!!! ! = 1. . !!
4. !! =  !! +  !!!!! ! = 1. . !!

Here, y represents the WGBS conversion-based differential DNA methylation (EARLY - 

ESC), r the RRBS conversion-based differential DNA methylation, and x1 the MREBS 

conversion-based differential DNA methylation, in each case for those CpG dimers with 5X 

coverage in both cell types. x2 represents the differential MREBS read count within a 1kb 

window around each CpG dimer for windows with at least 2 reads in at least one of the two cell 

types. n1 = 666,214; n2 = 318,400 for MREBS replicate 1 and n2 = 322,431 for MREBS replicate 

2; n3 = 319,304 for MREBS replicate 1 and n3 = 323,431 for MREBS replicate 2; n4 = 9,485,471 

for MREBS replicate 1 and n4 = 9,670,440 for MREBS replicate 2. 

In other words, in each case WGBS-based differential methylation serves as the response 

variable. In model 1, RRBS-based differential methylation is used as the explanatory variable. 

Model 2 is a multiple linear regression model that uses both MREBS conversion-based 

differential methylation and MREBS-based differential reads counts to predict WGBS-based 

differential methylation estimates, while model 3 and model 4 use each of these predictors 

independently. The lm() function from the R statistical software environment was used to 

implement these models(29). Coefficients for each model are provided in Supplementary Table 

5. Model 1 was used for comparison purposes and shows that WGBS-based differential DNA
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methylation values (EARLY - ESC) can be modeled using RRBS data for ~3% of the CpG dimers 

(666,214) in the mouse genome with sufficient coverage (5X) in both the WGBS and RRBS 

samples. The model had an R2 = 0.39, implying a correlation between the WGBS estimated 

differential DNA methylation values and the model-fitted ones of r = 0.63 (Table 2.3 ). The root-

mean-square error (RMSE) between the observed and fitted values was 20.4% and the mean 

absolute error (MAE) was 15.2%. The metrics ‘methyl15’ and ‘methyl25’ give the percentage of 

CpG dimers where the difference between the WGBS differential DNA methylation estimate and 

that of the model was at most 15% and 25 %, respectively.  Based on the methyl25 metric, the 

RRBS-based model-fitted DNA methylation values show 80% concordance with the WGBS-

based estimates  (Table 2.3). 

Model 2 is a multiple regression model using both MREBS conversion-based differential 

DNA methylation (EARLY - ESC) and MREBS differential read count data to predict WGBS-

based differential DNA methylation values.  A model was built for each replicate pair. The fits 

for both replicates were similar (R2 = 0.35 and R2 = 0.36) and similar t o those obtained using the 

RRBS data (Table 2.3). Interestingly, both RMSE (~18% for both replicates) and MAE (~12.5% for 

both replicates) values were better than those seen for the RRBS-based model. The 

concordance metrics (methyl15 = ~73% and methyl25 = ~86%, for both replicates) were also 

superior to that obtained for the RRBS-based model (Table 3). However, the differential DNA 

methylation values of only 1.5% (n = ~320 thousand) of CpG dimers genome-wide could be 

predicted, half of that predicted by the RRBS data (n = 666,214 or ~3% of CpG dimers). 

However, these percentages could be increased with greater sequencing depth. 

Models 3 and 4 are both simple linear models using each of the two independent 

variables from model 2, respectively. The fit for model 3, using only MREBS conversion-based 

differential DNA methylation (EARLY - ESC), was somewhat worse without the additional count 

data (R2 = 0.30 and R2 = 0.31 for the replicate pairs),  but, interestingly, the RMSE (~18.5% for 

both replicates) and MAE (~12.5% for both replicates) is still superior to that of the RRBS based 
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model, as are the concordance metrics (methyl15 = ~73% and methyl25 = ~85%, for 

both replicates) (Table 2.3). 

Model 4 is based only on MREBS differential read counts within 1kb window around 

each CpG (EARLY - ESC). Only those CpGs with at least two reads in the surrounding +/- 500bp 

in at least one sample were considered, amounting to 12.5 (58.8%) and 12.8 (59.7%) million CpG dimers 

for MREBS replicate 1 and 2, respectively (Table 2 . 3). This represents ~10X more CpG dimers 

than those that are available for use in the RRBS-based model 1 (1.2 million CpG dimers), and 

~20X more CpG dimers than those that are available for use in models 2 and 3 based on MREBS 

sites with 5X coverage in both samples (~648–665 thousand CpG dimers). Although the fits for 

model 4 are worse than those based on the MREBS conversion-based DNA methylation estimates (R2 

= 0.11 for both replicate pairs), the RMSE (~24–25%) and MAE (~18.5%) are not that much worse 

than the RRBS based model, nor are the concordance metrics (methyl15 = ~53% and methyl25 = ~73%) 

(Table 2.3). However, the differential DNA methylation values for 44–45% of CpGs were predicted 

using model 4, representing the overlap of those CpG dimers with 5X coverage by WGBS and those 

CpGs with at least 2 MREBS reads within the surrounding 1kb window. 

To sum the benefit of both the extended coverage of model 4 and the improved accuracy of 

model 2, we combined their results, updating the model 4 estimates with those of model 2 where 

available. This marginally improved all the applicable metrics discussed previously (Table 2.3). Figure 

2 . 4  shows how these combined differential DNA methylation predictions  (iii, green tracks, two 

replicates) compared to WGBS (i, dark blue tracks) and RBBS (ii, light blue tracks) at different 

length scales: 611kb (A), 19kb (B), and an extended locus partitioned in three 18kb panels (C ). 

Below the modeled estimates  are tracks showing the MREBS conversion-based differential 

DNA methylation (iv, orange, two replicates) and MREBS-based differential read counts (v, 

red, two replicates) – the data that was combined. While the MREBS conversion-based 

differential    DNA    methylation    coverage   is  comparable to that of   the   RRBS   data   (cf.  tracks 
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iv and ii, Table 2.3), the MREBS differential read count coverage approached that obtained using 

WGBS data (cf. tracks v and i, Table 2 .3).  In other words, the majority of the differential 

DNA estimates modeled on MREBS data are obtained by the read count data. These estimates 

track WGBS-based estimates, both for regions that are more methylated in the EARLY 

intermediates (Figures 2.4B/C and Supplementary Figure 2.1A), as well as regions that are more 

methylated in the ESCs (Figures 2.4A and Supplementary Figure 2.1B).   

Discussion 

WGBS(22) and RRBS(23) are two popular bisulfite sequencing based methods for 

assessing DNA methylation levels. WGBS can potentially determine the methylation status of 

every single cytosine, but the amount of sequencing required to obtain sufficient coverage to do so 

can be beyond the scope of most projects. Sequencing demands are significantly reduced by 

using RRBS, but one incurs an 80–90% loss in the number of cytosines that can be measured. In 

order to address these respective shortcomings, we introduce methylation-sensitive 

restriction enzyme bisulfite sequencing (MREBS), which adds a bisulfite conversion step to the 

existing MRE protocol, methylation-sensitive restriction enzyme digestion followed by high-

throughput sequencing (MRE-seq)(15). 

Due to MREs reliance on methylation sensitive endonucleases, the distributions of the 

MREBS conversion-based DNA methylation estimates were systematically lower than those 

obtained using WGBS or RRBS data. However, the MREBS conversion-based estimates followed 

similar trends across all chromatin states (Figure 2.2 ). Moreover, high-confidence MREBS 

conversion-based DNA methylation estimates (CpGs with 5X coverage) were particularly 

enriched in chromatin states with the lowest DNA methylation levels (Figure 2 .  3).  Since these 

chromatin states are known to be associated with gene regulation, their enrichment in MREBS 
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data is beneficial. For MREBS libraries, 4.3–4.6% of CpG dimers had at least 5X read coverage, 

which we set as a threshold to generate bisulfite conversion based DNA methylation level calls. 

This fraction was comparable to the coverage obtained from RRBS libraries at a similar level of 

sequencing. However, for MREBS, ~60% of CpG dimers had two or more reads falling within 

the surrounding 1kb window in at least one of the two cell types (Supplementary Table 2.4). 

These can be used for estimating differential DNA methylation of a high proportion of 

CpGs, since MREBS utilizes methylation sensitive digestion and therefore read counts 

around CpGs anti-correlate with their methylation levels (Tables 2.5 and 2.6). 

To obtain estimates of differential DNA methylation based on MREBS data, we built a 

multiple regression model that incorporates both MREBS conversion fractions and read count 

data to predict differential DNA methylation values for ~3% of CpGs. The fits for both replicates 

were similar and correspondence metrics comparing the model-fitted values to WGBS estimates 

were superior to those obtained from models built using RRBS methylation data alone (Table 

2.3). Differential DNA methylation estimates for a much greater proportion of CpGs (~60%) 

could be obtained using a model that used only MREBS differential read data within 1kb 

windows around CpG sites. The accuracy of MREBS read count-based models was lower 

than those based on conversion ratios, nonetheless, the dramatically higher coverage makes 

these data useful for low resolution differential methylation estimates (Table 2.3, Figures 2.4 

and 2.5). In this study, we utilized 1kb windows around CpG dimers for this purpose, but one 

could use different windows, as one sees fit.  

In summary, with respect to conversion-based DNA methylation estimates, MREBS 

provides a similar level of coverage to that obtained using RRBS. However, with MREBS one can 

additionally obtain DNA methylation estimates for a much larger proportion of the genome 

based on differential MREBS read counts around CpGs, providing a level of coverage that 

approaches that obtained by WGBS at a fraction of the cost.  
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Materials and methods 

Methylation-sensitive restriction enzyme bisulfite sequencing (MREBS) 

Three enzymatic digestions were performed on 1 µg of purified genomic DNA using 10 U 

of each one of the MRE restriction enzymes (HpaII, Hin6 and AciI - Fermentas) in a 50 µl final 

volume with TANGO buffer. 2.5 µl of RNase cocktail mix (Ambion) were added and the reaction 

was incubated overnight at 37°C. After the digestion, the three reactions were pooled and the 

DNA was purified using AMPure XP beads (Beckman Coulter). Subsequent reactions of DNA 

End Repair, A-tailing and Adapter Ligation were performed using Illumina TruSeq reagents, 

following manufacturer’s instructions and the DNA was size selected between 200 and 500 bp 

using AMPure XP beads. Size selected DNA was then treated with bisulfite using the EpiTect kit 

(QIAGEN) according to the protocol suggested from the manufacturer, except that the 

conversion step was performed twice, for a total time of 10 h. For each bisulfite-converted 

sample, two parallel PCR reactions were set up in a final volume of 50 µl using MyTaq HS Mix 

(Bioline) and 2.5 µl of Illumina TruSeq PCR Cocktail Primers. The amplification cycles were as 

follows: 98°C – 2 min; 12 cycles of: 98°C – 15 sec, 60°C – 30 sec, 72°C – 30 sec; 72°C – 5 min. 

The final PCR products were purified using AMPure XP beads and the final concentration of the 

libraries was measured using Qubit DNA BR Assay (Life Technologies). Single-end sequencing 

for 100bp reads was performed on an Illumina Hiseq 2000.  

Whole-genome bisulfite sequencing (WGBS) 

Genomic DNA from induced MEFs (48h OSKM) and ESCs was isolated using the Blood 

and tissue DNeasy kit (Qiagen). Isolated DNA was treated with RNAseA for 30 min at 37oC and 

cleaned up using AMPure XP beads. 5 µg of treated DNA was fragmented to 100–500 bp using a 

Bioruptor Sonicator. 5 minutes in pulses of 30 sec on, 1 minute off. DNA fragments were 

visualized on 1% agarose gel, gel extracted and purified using a QIAGEN gel extraction minelute 
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kit. End-repair reactions (50 µl) contained 1x T4 DNA ligase buffer (NEB), ATP, 0.4 mM dNTPs, 

15 units T4 DNA polymerase, 5 units Klenow DNA polymerase, 50 units T4 polynucleotide 

kinase (all NEB) and were incubated for 30 min at 20°C. DNA clean-up was performed using a 

2x volume of AMPure XP beads and eluted in 32 µl of dH2O. Adenylation was performed for 30 

minutes at 37°C in 50 µl volumes that contained 5 µl 1x Klenow buffer, 0.2 mM dATP and 15 

units Klenow exo− (NEB). Adenylated DNA fragments and methylated adapters (Illumina) were 

ligated for 15 min at 20oC in a 50 µl reaction containing 5,000 units quick ligase (NEB) and 5 µl 

of adapters. Adaptor-ligated DNA of 200-600 bp, was size-selected on a 2% agarose gel. 

Bisulfite conversion was performed with an EpiTect Bisulfite Kit (QIAGEN) following the 

manufactures conditions. Bisulfite converted DNA was amplified for 15 cycles with PfuTurboCx 

Hotstart DNA polymerase (Agilent technologies). The final library DNA was quantified using a 

Qubit fluorometer and a Quant-iT dsDNA HS Kit (Invitrogen).  Single-end sequencing for 100bp 

reads was performed on an Illumina Hiseq 2000.  

Reduced Representation Bisulfite sequencing (RRBS) 

5 µl of genomic DNA was digested with 50 units of MspI (NEB) in a 100 µl reaction for 6 

hours at 37oC. Digested DNA was run on a 3% low-melt agarose gel (Lonza) and fragments of 25 

to 300 bp were extracted and purified using a MinElute gel extraction kit (QIAGEN) according 

to the manufacturers instructions. DNA end-repair and adenylation was as described above with 

the exception of using a dNTP mix consistent of dATP, dGTP and 5medCTP. Ligation to 

methylated adapters and subsequent library construction was performed similarly to the WGBS 

protocol. Single-end sequencing for 100bp reads was performed on an Illumina Hiseq 2000. 

Bisulfite sequencing data processing 

DNA methylation calling was performed using BS-Seeker2(27) using Bowtie 0.12.9(30) 

for read alignment. WGBS and MREBS reads were mapped to the mm9 reference genome while 
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RRBS reads were mapped to a reduced reference that was in silico digested using the MspI 

recognition sequence and limited to fragments of 20–500bp in length. The 100bp reads were 

trimmed of adapter sequences and allowed 5 mismatches during mapping. MREBS reads were 

first filtered so that only the expected 5’ trimers (CGG and CGC; Supplementary Table 1) were 

retained. For conversion based DNA methylation level calling, only CpG dimers covered by at 

least 5 reads on both were used in an effort to obtain reliable methylation levels. 

ChIP-seq library preparation and chromatin states analysis 

The protocol and the model is described in detail in a separate manuscript(26), but 

briefly 18 chromatin states in the MEFs, EARLY intermediates, LATE intermediates, and ESCs 

were identified at a resolution of 200 bp using chromHMM as described by Ernst and Kellis(31) 

using ChIP-seq data sets for nine histone modification, one histone variant (H3.3), and an input, 

as listed in Figure 2. 

Differential DNA methylation modeling 

Linear regression was used to model differential CpG dimer methylation estimates based 

on WGBS (the response vectors) using differential methylation estimates based on RRBS and 

MREBS, as well as differential read counts within 1kb windows based on MREBS data around 

corresponding CpG dimers with R's lm() function(29). The coefficients in in Supplementary 

Table 5 are outputs from R's summary.lm() function(29). 

Author contributions 

G.B. participated in project planning and data interpretation, performed bioinformatics 

analysis, and wrote the manuscript. M.M. and L.R. participated in project planning and data 

interpretation, and generated experimental data. C.C. produced experimental data. K.P. 

participated in data interpretation, provided supervision, and edited the manuscript. M.P. 

89



conceived the study, supervised the project, interpreted the data, provided guidance for 

bioinformatics analysis, and edited the manuscript. 

Acknowledgements 

We thank Bernadett Papp for critical reading of this manuscript. G.B. was supported by a 

UCLA Philip Whitcome Pre-doctoral Training Fellowship, a UCLA Dissertation Year Fellowship 

and a UCLA Quantitative and Computational Biosciences Postdoctoral Fellowship; CC by a 

CIRM Training Grant and a Leukemia and Lymphoma Research Visiting Fellowship (10040); 

M.M. was supported by a UCLA Philip Whitcome Pre-doctoral Training Fellowship and a UCLA

Dissertation Year Fellowship. KP by the UCLA Eli and Edythe Broad Center of Regenerative 

Medicine and Stem Cell Research, funds from the UCLA David Geffen School of Medicine, 

CIRM, and NIH P01 GM099134; and MP from NIH P01 GM099134. The authors have no 

conflict of interest to declare.  

90



doxycycline

O, S, K, M
induction

Somatic cells
(MEFs)

1. 48h reprogramming
intermediates (EARLY)

2. Pluripotent cells
(represented by ESCs) 

~1-2 weeks

A

48 hours

0

5

10

15

20

25

30

35

# 
C

pG
 s

ite
s 

(m
ill

io
ns

)

1X
3X
5X
10X
20X

WGBSB
i iiEARLY ESCs

0.0

0.5

1.0

1.5

2.0

2.5

1X
3X
5X
10X
20X

# 
C

pG
 s

ite
s 

(m
ill

io
ns

)

RRBSC
i iiEARLY ESCs

0

1

2

3

4

# 
C

pG
 s

ite
s 

(m
ill

io
ns

)

1X
3X
5X
10X
20X

MREBSD
i iiEARLY ESCs

Rep 1 Rep 2 Rep 1 Rep 2

Figure �.1. WGBS, RRBS, and MREBS for samples representing two stages 
of somatic cell reprogramming.  
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A. Schematic representation of the two cell types used in the study. Mouse

embryonic fibroblasts (MEFs; blue), modified to harbor a ‘stem cell cassette’ allowing for the

simultaneous induction of the four pluripotency factors (OCT4 (O), SOX2 (S), KLF4 (K), and

MYC (M)) by the addition of doxycycline, were induced for 48 hours. These EARLY somatic

cell reprogramming intermediates (yellow) were the first of the two cell types sampled, with

embryonic stem cells (ESCs; green), representing the fully reprogrammed state, being the

second.

B. Bar plots showing the number of CpGs obtained at five different coverage levels (1–20

X) in each of the two whole-genome bisulfite sequencing (WGBS) samples: i) EARLY

intermediates (429 M mapped reads) and ii) ESCs (391 M mapped reads).

C. As in (B), but for reduced representation bisulfite sequencing (RRBS) samples

(12.8 M mapped reads for i and 18.1 M mapped reads for ii).

D. As in (B), but for duplicate samples produced using methylation-sensitive restriction

enzyme bisulfite sequencing (MREBS) (11.9 and 12.4 M mapped reads for i; 11.8 and12.2

M mapped reads for ii).
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State Genome % Input K27ME3 K27AC K4ME2 K4ME1 K9AC K4ME3 K36ME3 K9ME3 K79ME2 H3.3
1_PromA 0.5 3 2 87 93 32 84 95 6 4 74 46
2_PromP 0.2 2 18 47 91 32 77 87 0 4 1 4
3_EnhA 0.9 2 0 84 91 87 27 8 6 4 2 74
4_EnhA 1.4 3 1 56 96 96 7 1 1 1 1 3
5_EnhM 1.3 2 1 3 74 45 20 1 0 2 1 2
6_EnhW 2.6 3 1 20 3 54 1 0 1 1 0 1
7_EnhP 1.1 22 69 7 39 69 2 1 5 3 1 0

8_TxEnhA 1.2 3 0 49 81 86 14 6 30 4 96 28
9_TxEnhW 1.0 9 2 37 15 80 1 0 75 3 4 7

10_Tx 2.0 3 1 8 1 19 1 0 86 10 89 14
11_Tx5' 1.6 2 0 4 3 19 3 0 11 2 83 2
12_Tx3' 6.7 4 1 5 0 1 0 0 84 1 2 2

13_TxWk3' 4.5 4 0 1 0 2 4 0 13 0 1 0
14_Tx3' 0.5 5 3 19 5 16 5 2 34 38 3 75

Polycomb 15_ReprPC 8.5 7 56 0 0 1 0 0 1 3 0 0
Repeats 16_Repeats 1.3 4 8 2 0 1 0 0 15 64 0 1

17_Low 22.4 3 3 2 0 1 0 0 0 1 0 0
18_LowL 42.2 0 0 0 0 0 0 0 0 1 0 0
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Figure �.�. '1$ metK\lation estimates Eased on WGBS, RRBS and MREBS data 
in different cKromatin states.  
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A. Heat map and functional annotation for an 18-level chromatin state model at 200 bp

resolution built using peak calls made using ChIP-seq data sets for 10 histone modifications, as

well as an input library, for each of the three cell types described in Figure 1A: i) MEFs, ii)

EARLY intermediates, and iii) ESCs, as well as a late reprogramming intermediate (LATE),

partially induced pluripotent cells, or pre-iPSCs, not otherwise used in the study. Candidate

functional annotations were assigned to each of the 18 chromatins states based on the

prevalence and combination of histone mark peaks, which could in turn be classified into the

seven categories indicated in the left-hand column. The probability of a window in each state to

be contain a peak for a given histone modification is given as a percentage in each cell, and

visually indicated by the intensity of color in the heat map. The proportion of the concatenated

genome (MEFs + EARLY + LATE + ESCs) found in each of the 18 chromatin states is given in

the third column.

B. Violin plots of the distributions of the DNA methylation estimates in each of the 18

chromatin states (described in A), as well as genome-wide (blue), for EARLY intermediates

using i) whole-genome bisulfite sequencing (WGBS), reduced representation bisulfite

sequencing (RRBS), and iii) methylation-sensitive restriction enzyme bisulfite sequencing

(MREBS). The mean DNA methylation estimates within 200 bp windows corresponding to

those used for the chromatin state model were used, only considering those windows containing

at least one CpG with 5X coverage, in an effort to ensure high-confidence estimates. White

circles represent median values.

C. As in (B), but for ESCs.
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Figure �.�. &Kromatin state coYerage E\ '1$ metK\lation estimates E\ WGBS, 
RRBS, and MREBS.  
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A. Pie charts show the proportion of 200 bp windows with DNA methylation estimates found in

each of the 18 chromatin states (as described in Figure 2.2A) using i) whole-genome bisulfite

sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and iii) methylation-

sensitive restriction enzyme bisulfite sequencing (MREBS) EARLY intermediate samples, as

compared to the proportion of chromatin states in genome for all 13.3 million windows (iv). Bar

plots show the log2 fold change (observed / expected) number of windows with estimates per

method: i) WGBS), RRBS, and iii) MREBS. The mean DNA methylation estimates within 200

bp windows corresponding to those used for the chromatin state model were used, only

considering those windows containing at least one CpG with 5X coverage, in an effort to

ensure high-confidence estimates.

B. As in (A), but for ESCs.
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Figure �.�. 'ifferential '1$ metK\lation leYels modeled using MREBS data.  
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A. IGV tracks of differential DNA methylation estimates between EARLY intermediates and

ESCs (EARLY - ESC) based on WGBS data (i, dark blue), RRBS data (ii, light blue), modeled

data based on combined model 2 (iii, green, two replicates), MREBS conversion-based DNA

methylation estimates (iv, orange, two replicates), and MREBS read count-based estimates

(v, red, two replicates), within a 611 kb region of chr17. Bottom two tracks show CpG dimer

and Refseq gene locations. Gray background reflects regions (CpG dimers) where data was

not available.

B. As in (A), but for a 19kb region around the Gata2 gene.

&. As in (A), but for the extend Olig1/2 gene locus, divided into three 18 kb panels.
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Supplementar\ Figure �.1. E[amples of modeled differential '1$ metK\lation 
around gene loci.  
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A. As in Figure 4A, but for 13 genes up-regulated in EARLY intermediates relative to ESCs.

B. As in Figure 4A, but for 10 genes up-regulated in ESCs relative to EARLY intermediates.
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 EARLY  ESC  EARLY  ESC  EARLY 
Rep1 

 EARLY 
Rep2 

 ESC Rep1  ESC Rep2  EARLY 
Rep1 

 EARLY 
Rep2 

 ESC Rep1  ESC Rep2 

 EARLY 1.00 0.56 0.90 0.78 0.78 0.77 0.55 0.55 -0.14 -0.14 -0.18 -0.17

 ESC 0.56 1.00 0.77 0.90 0.53 0.53 0.70 0.71 -0.15 -0.15 -0.24 -0.22

 EARLY 0.90 0.77 1.00 0.88 0.82 0.82 0.66 0.66 -0.21 -0.21 -0.27 -0.27

 ESC 0.78 0.90 0.88 1.00 0.64 0.64 0.80 0.80 -0.21 -0.21 -0.30 -0.29

 EARLY Rep1 0.78 0.53 0.82 0.64 1.00 0.88 0.68 0.67 -0.07 -0.07 -0.09 -0.09

 EARLY Rep2 0.77 0.53 0.82 0.64 0.88 1.00 0.69 0.68 -0.07 -0.07 -0.10 -0.09

 ESC Rep1 0.55 0.70 0.66 0.80 0.68 0.69 1.00 0.83 -0.07 -0.07 -0.10 -0.10

 ESC Rep2 0.55 0.71 0.66 0.80 0.67 0.68 0.83 1.00 -0.07 -0.07 -0.10 -0.09

 EARLY Rep1 -0.14 -0.15 -0.21 -0.21 -0.07 -0.07 -0.07 -0.07 1.00 1.00 0.96 0.98

 EARLY Rep2 -0.14 -0.15 -0.21 -0.21 -0.07 -0.07 -0.07 -0.07 1.00 1.00 0.97 0.98

 ESC Rep1 -0.18 -0.24 -0.27 -0.30 -0.09 -0.10 -0.10 -0.10 0.96 0.97 1.00 0.99

 ESC Rep2 -0.17 -0.22 -0.27 -0.29 -0.09 -0.09 -0.10 -0.09 0.98 0.98 0.99 1.00

CpG dimer-level conversion-based methylation estimates *
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* For CpG dimers with 5X coverage in both cell lines
** For windows with at least two MREBS reads in at least one cell line
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WGBS RRBS MREBS

7aEle �.1. &pG dimer�leYel correlations Eetween Eisulfite seTuencing liEraries. 

Pearson correlation values between WGBS, RRBS, and MREBS CpG dimer-level 

conversion-based methylation estimates, as well as binned read counts within 1kb 

windows around CpG dimers, for those with at least two MREBS reads. Red 

intensity signifies the strength of a positive correlation, while blue intensity 

signifies the strength of the anti-correlation. 
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 Rep1  Rep2  Rep1  Rep2 

1.00 0.63 0.55 0.56 -0.34 -0.34

0.63 1.00 0.64 0.64 -0.51 -0.52

Rep1 0.55 0.64 1.00 0.64 -0.35 -0.35

Rep2 0.56 0.64 0.64 1.00 -0.34 -0.34

Rep1 -0.34 -0.51 -0.35 -0.34 1.00 0.87

Rep2 -0.34 -0.52 -0.35 -0.34 0.87 1.00

CpG dimer-level differential methylation     
using conversion-based estimates *

CpG dimer-level       
differential methylation using 
conversion-based estimates *

Differential MREBS read 
counts within 1kb 

windows around CpG 
dimers **

Differential MREBS read counts within 1kb 
windows around CpG dimers **

WGBS

RRBS

MREBS

 WGBS  RRBS 
MREBS

* For CpG dimers with 5X coverage in both cell lines

** For windows with at least two MREBS reads in at least one cell line

Table 2.�. CpG dimer-level correlations between differential values for 

all bisulfite sequencing library pairs.  Pearson correlation values between 

WGBS, RRBS, and MREBS differential CpG dimer-level methylation estimates (EARLY - 

ESC), as well as differential read counts between all CpG dimers with at least two 

MREBS reads within a surrounding 1kb window. Red intensity signifies the 

strength of a positive correlation, while blue intensity signifies the strength of the anti-

correlation. 
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Model 1

Rep1 Rep2 Rep1 Rep2 Rep1 Rep2 Rep1 Rep2

 covered 
dimers* 21,342,492 16,113,172 1,204,249 648,635 664,446 649,614 665,431 12,542,720 12,746,080 12,542,720 12,746,080

 %  100.00 75.5 5.6 3.0 3.1 3.0 3.1 58.8 59.7 58.8 59.7

 fitted dimers 21,342,492 NA 666,214 318,400 322,431 319,304 323,336 9,485,471 9,670,440 9,485,471 9,670,440

 % 100.00 NA 3.1 1.5 1.5 1.5 1.5 44.4 45.3 44.4 45.3

R-squared 1 NA 0.39 0.35 0.36 0.30 0.31 0.11 0.11 NA NA
 obs vs fitted 
correlation 1 NA 0.63 0.60 0.60 0.55 0.56 0.34 0.34 0.37 0.36

 RMSE 0 NA 20.4 17.9 17.9 18.6 18.5 24.7 24.6 24.5 24.4

 MAE 0 NA 15.2 12.5 12.4 12.7 12.5 18.5 18.4 18.3 18.2

 methyl15 100 NA 61.16 73.13 73.51 73.27 73.40 53.11 53.27 53.71 53.85

 methyl25 100 NA 80.09 86.11 86.12 85.16 85.14 73.30 73.46 73.69 73.82

 Model 4 estimates updated with 
Model 2 values where available 

Model 2 Model 3 Model 4

*In the case of methylation levels, only CpG-dimers with 5X coverage in both DOX & ES were considered.

With respect to counts, only CpGs with 2+ reads in the surrounding 1Kb bin, in at least one sample, were considered.

 RRBS 
differential DNA 

methylation 

Total /  
optimal value

WGBS 
differential DNA 

methylation

MREBS differential DNA me + counts MREBS differential DNA me only MREBS differential counts only

Table � . 3. Differential DNA methylation model metrics.  The table gives 

metrics (first column) for four different models, as well as a combined model, (top 

row and described in the text). The column labeled ‘Total / optimal value’ gives the 

maximum or best value achievable for each metric. The column labeled ‘WGBS 

differential DNA methylation’ provides coverage information for comparison purposes. 

*Note: In the case methylation levels, only CpG dimers with 5X coverage in both EARLY 

intermediates and ESCs were considered. With respect to counts, CpG dimes with 

2+ reads in the surrounding 1Kb bin, in at least one sample, were considered. Red 

intensity signifies how close the metrics are to the optimal values.   
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 Total Mapped 
Reads 

 Mean CpG 
coverage depth 

WGBS EARLY 429,374,384           7.80 

WGBS ESC 391,724,853           7.23 

RRBS EARLY 12,826,209             12.49 *

RRBS ESC 18,131,716             18.88 

MREBS EARLY Rep1 11,963,716             5.72 **

MREBS EARLY Rep2 12,400,629             5.78 

MREBS ESC Rep1 11,835,343             6.35 

MREBS ESC Rep2 12,222,192             6.28 

* RRBS reads mapped to in silico MspI-digested reduced references genome.

** MREBS reads in silico filtered and mapped to whole genome.

Supplementary Table �.1. Bisulfite sequencing library mapped reads and mean 

CpG coverage depth.  WGBS and MREBS reads were mapped the whole genome (mm9). 

Mean CpG coverage determined for CpGs on either strand. Mean CpG coverage determined for 

CpGs on either strand. RRBS reads were mapped to an in silico MspI digested reduced 

reference genome. MREBS reads were filtered in silico to have the expected 5’ start sites.  
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 Instances in 
mm9 genome

(1 strand) 
ACGT 1,756,359

HpaII* CCGG 1,594,148
CCGT 1,454,486
ACGG 1,449,336
TCGG 1,404,375
CCGA 1,401,476
TCGT 1,392,167
TCGA 1,391,828
ACGA 1,391,206
GCGT 1,258,753
ACGC 1,255,903

AciI CCGC 1,251,553
GCGG 1,250,525

Hin6I GCGC 1,102,589
TCGC 995,280
GCGA 992,773
NCGA 7
NCGC 4
ACGN 3
CCGN 3
GCGN 2
NCGG 2
NCGT 1
Total 21,342,779

4mer CpG 
context

MRE restriction 
enzyme

* This is the same recognition sequence as for MspI,

the endonuclease typically used for RRBS-eq libraries, 

albeit HpaII is methylation sensitive, as are AciI and Hin6I.

Supplementar\ 7aEle �.�. MRE endonuclease recognition seTuence 

freTuenc\ witKin tKe mm� genome. MRE endonuclease recognition sites are 

highlighted to show their position within the ranked frequencies for all the 4mer CpG, 

including chrM. *Note: HpaII has the same recognition sequence as MpsI (the endonuclease 

typically used for RRBS libraries), albeit HpaII is methylation sensitive, as are Acil and Hin6I. 
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CpG	dimers* %

WGBS EARLY DNAme 17,202,917         80.6%

WGBS ESC DNAme 17,022,903         79.8%

RRBS EARLY DNAme 1,289,663           6.0%

RRBS ESC DNAme 1,358,529           6.4%

MREBS EARLY Rep1 DNAme 962,559              4.5%

MREBS EARLY Rep2 DNAme 924,551              4.3%

MREBS ESC Rep1 DNAme 918,508              4.3%

MREBS ESC Rep2 DNAme 973,441              4.6%

MREBS EARLY Rep1 Counts>0 14,695,688         68.9%

MREBS EARLY Rep2 Counts>0 14,718,855         69.0%

MREBS ESC Rep1 Counts>0 13,602,796         63.7%

MREBS ESC Rep2 Counts>0 13,947,144         65.3%

MREBS EARLY Rep1 Counts>=2 10,250,065         48.0%

MREBS EARLY Rep2 Counts>=2 10,315,026         48.3%

MREBS ESC Rep1 Counts>=2 8,987,596           42.1%

MREBS ESC Rep2 Counts>=2 9,227,587           43.2%

MREBS EARLY Rep1 Counts>=5 5,317,311            24.9%

MREBS EARLY Rep2 Counts>=5 5,387,683           25.2%

MREBS ESC Rep1 Counts>=5 4,696,304           22.0%

MREBS ESC Rep2 Counts>=5 4,659,571           21.8%

MREBS EARLY Rep1 Counts>=10 3,557,311            16.7%

MREBS EARLY Rep2 Counts>=10 3,610,365           16.9%

MREBS ESC Rep1 Counts>=10 3,389,630           15.9%

MREBS ESC Rep2 Counts>=10 3,352,308           15.7%
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* 21,342,493 CpG-dimers in mm9 (ex. chrM)

Supplementary Table �.3. CpG dimer coverage per bisulfite sequencing library.  

The percentage of CpG dimers with at least 5X coverage for each bisulfite sequencing library, as 

well as the percentage of CpG dimers with the specified number of MREBS reads 

within a surrounding 1kb window. *Note: This is based on 21,342,493 CpG dimers in mm9, 

excluding chrM. 
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CpG dimers with 5X coverage 
in both EARLY and ESC

%

WGBS 16,113,172 75.5%

RRBS Rep1 1,204,249 5.6%

MREBS Rep1 649,614 3.0%

MREBS Rep2 665,431 3.1%

CpG dimers with at least 2 reads 
in the surrounding 1 kB region  

in at least one sample
%

MREBS Rep1 12,542,720 58.8% **

MREBS Rep2 12,746,080 59.7%

* 21,342,493 CpG-dimers in mm9 (ex. chrM)

** Based on bins with 2+ reads in at least one sample

Supplementary Table �.4. CpG dimer coverage for differential analysis 

per bisulfite sequencing library.  The percentage of CpG dimers with at least 5X 

coverage in both the EARLY intermediate and ESC samples for each bisulfite 

sequencing library, as well as the percentage of CpG dimers with at least two 

MREBS reads within a surrounding 1kb window. *Note: This is based on 21,342,493 CpG 

dimers in mm9, excluding chrM.
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Model 1

Rep1 Rep2 Rep1 Rep2 Rep1 Rep2

 B0 (intecept) 5.29 5.09 4.92 5.45 5.01 2.61 2.73

 B1 0.75 0.53 0.54 0.63 0.64 -0.38 -0.38

 B2 N/A -0.09 -0.09 N/A N/A N/A N/A

Model 2 Model 3 Model 4

 RRBS-based 
differential DNA 

methylation 

MREBS conversion-based 
differential DNA methylation + 

differential read counts

 MREBS conversion-based 
differential DNA methylation only 

 MREBS differential reads counts 
only 

Supplementar\ 7aEle�.�. 'ifferential '1$ metK\lation model coefficients.  

Coefficient values (first column) for four different models (top row and described in 

the text). 
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Abstract Methylation of cytosines (5meC) is a widespread heritable DNA modification. During mammalian

development, two global demethylation events are followed by waves of de novo DNAmethylation. In vivo
mechanisms of DNA methylation establishment are largely uncharacterized. Here, we use Saccharomyces cerevisiae
as a system lacking DNA methylation to define the chromatin features influencing the activity of the murine
DNMT3B. Our data demonstrate that DNMT3B and H3K4 methylation are mutually exclusive and that DNMT3B is
co-localized with H3K36 methylated regions. In support of this observation, DNA methylation analysis in yeast
strains without Set1 and Set2 shows an increase of relative 5meC levels at the transcription start site and a decrease
in the gene-body, respectively. We extend our observation to the murine male germline, where H3K4me3 is strongly
anti-correlated while H3K36me3 correlates with accelerated DNA methylation. These results show the importance
of H3K36 methylation for gene-body DNA methylation in vivo.
DOI: 10.7554/eLife.06205.001

Introduction
In multicellular organisms, every cell type possesses the same genetic information, but manifests a
different phenotype. Chromatin plays a fundamental role in both the establishment and
maintenance of each cell’s state. Many players contribute to chromatin states, including nucleosome
organization, histone post-translational modifications, and non-coding RNAs (Chen and Dent, 2014;
Maze et al., 2014; Quinodoz and Guttman, 2014). Another mechanism for maintaining the state of a cell
through cell division is the methylation of cytosines at position 5 (5meC), a widespread heritable DNA
modification found in prokaryotes, plants, several fungi, and animals (Iyer et al., 2011). In mammals,
DNA methylation plays a fundamental role in processes such as imprinting, X-chromosome inactivation,
transposon inactivation, and gene expression regulation (Smith and Meissner, 2013). Dysregulation of
DNA methylation is a common feature in cancer (Eden et al., 2003; You and Jones, 2012) and a variety of
human diseases are caused by defective imprinting (Peters, 2014).

Methylation is mainly found at symmetric CpG dinucleotides, where it is introduced by the de
novo DNA methyltransferases (DNMT3a and DNMT3b) and can be copied faithfully during DNA replication
by the activity of a ‘maintenance’ DNA methyltransferase, DNMT1 (Law and Jacobsen, 2010).
However, DNA methylation is not static throughout mammalian development. In fact, 5meC can either
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be lost by a passive mechanism, such as the failure to maintain DNA methylation through cell division
or by an active mechanism such as the removal of methylcytosine, typically via an oxidized
intermediate (Pastor et al., 2013).

Demethylation and de novo methylation can occur in a locus-specific manner, typically in concert
with the activation or silencing of promoters or enhancers. However, global demethylation and de
novo methylation events can also occur during development (Pastor et al., 2013; Seisenberger et al.,
2013). For example, most DNA methylation is progressively lost between fertilization and the
formation of the blastula and global de novo DNA methylation then occurs coincidently with
implantation of the embryo. This de novo methylation event largely shapes the methylation pattern of
the animal, with additional changes occurring in somatic tissues, which contribute to cellular identity.
In the germline however, a second reprogramming event occurs. After specification of the germ
cells, most DNA methylation is lost during early primordial germ cell (PGCs) development.
Unlike in early embryogenesis, imprints are erased during this period. Genome-wide de novo
methylation then occurs before birth in the male germline and upon oocyte maturation in females
(Smallwood et al., 2011). This de novo methylation event establishes the imprints that are
inherited in the next generation.

Considering the importance of local and global de novo methylation events in imprinting, gene
regulation and cellular identity, it is important to understand how the de novo DNA methyltrans-
ferases are targeted to the correct genomic regions. DNMT3 proteins do not have strong
sequence preferences beyond CpG dinucleotides (Dodge et al., 2002). We therefore sought
to determine which factors are critical for the targeting of de novo DNA methyltransferases.

Active de novo DNA methyltransferases possess three different domains: the catalytic domain,
found at the C-terminus of the protein, an ADD domain and a PWWP domain (Figure 1A) (Law and
Jacobsen, 2010). In contrast, the inactive DNMT3L possesses only a functional ADD domain.
The ADD domains of all three DNMTs have been shown to preferentially bind histone 3 tails that lack
methylation at lysine 4 (H3K4me0) (Ooi et al., 2007; Zhang et al., 2010), and this binding has been
recently shown to relieve DNMT3a auto-inhibition (Guo et al., 2015). This is consistent with the
observation that genomic regions bearing H3K4 methylation are generally depleted of 5meC
(Singh et al., 2013). The PWWP domain of several proteins has been shown to bind H3K36

eLife digest In animals and other multicellular organisms, there are many different types of cells that each

perform particular roles in the body. This is possible because the genetic information—which is the same in all
cells—is controlled so that only a subset of all the genes within an individual cell are ‘switched on’ at a particular
time.

Genetic information is contained within molecules of DNA, which are wrapped around proteins called
histones. The genes in regions of DNA where these histones are packed tightly together tend to be switched off,
while genes in regions of DNA that are loosely packed tend to be switched on. The level of packaging is
controlled by the addition of ‘methyl’ tags to the histone proteins.

These tags can also be added directly to the DNA in a process called DNA methylation. Enzymes called
methyltransferases add the tags to the DNA, which tends to switch off the gene. The locations of the methyl tags
can be copied when the DNA replicates before the cell divides so that the pattern of DNA methylation can be
passed on to its daughter cells. However, it is not clear how the methyltransferases are able to target particular
regions for methylation.

To address this question, Morselli et al. introduced a methyltransferase called DNMT3b into yeast, a single-
celled organism that does not normally add methyl tags to its DNA. The experiments show that the activity of
the enzyme is affected by the presence of methyl tags on certain histone proteins. For example, a methyl tag at
one particular site on a histone, called H3K4, prevents the DNMT3b enzyme from adding methyl tags to DNA.
However, a methyl tag at another site called H3K36 promotes DNA methylation.

Morselli et al. found that these two histone sites had similar effects on DNA methylation in mouse sperm cells.
Morselli et al.’s findings may be useful in the future development of treatments for cancer and other diseases
that are caused by defects in DNA methylation.
DOI: 10.7554/eLife.06205.002
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Figure 1. Distribution of induced DNA methylation in Saccharomyces cerevisiae. (A) Murine DNMT3 proteins with known

domains: PWWP, ADD (ATRX–DNMT3–DNMT3L), and C-5 methyltransferase domain (not functional in DNMT3L). Accession

numbers: DNMT3a = O88508; DNMT3b = O88509; DNMT3L =Q9CWR8. (B) Constructs used in this study. The empty vector (EV) is

pYES2 (Life Technologies). DNMT3b expression is controlled by the GAL1 promoter. (C) Levels of 5meC in different dinucleotide

contexts. The gray dotted line represents the unconversion rate. (D) Metagene plot of CpGmethylation in cells expressing

DNMT3b during logarithmic and stationary phase. EV (strain not expressing DNMT3b). Exponential and stationary strains 1–6 are

derived from the W303 strain, while stationary strains 7 and 8 are in a BY4741 background.

DOI: 10.7554/eLife.06205.003

The following figure supplements are available for figure 1:

Figure supplement 1. Chromosome-wide view of DNA methylation and genomic features.

DOI: 10.7554/eLife.06205.004

Figure supplement 2. Distribution of 5meC around TSS and TTS.

DOI: 10.7554/eLife.06205.005

methylation (Vermeulen et al., 2010), and indeed the DNMT3a-PWWP domain has also been shown to interact
with the tri-methylated lysine 36 of histone H3 (H3K36me3) in vitro (Dhayalan et al., 2010). The importance of
these histone-binding domains in targeting DNA methyltransferase activity in vivo is still unclear. It is also
possible that the PWWP domain’s primary function is to bind DNA and not nucleosomes (Dhayalan et al.,
2010). Recently, it has been reported that the PWWP domain is important in specifying the localization of
DNMT3b in mouse embryonic stem cells (Baubec et al., 2015).
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While there has been extensive characterization of DNMT3 in vitro, a comprehensive analysis of the mechanisms
guiding the activity of a de novo DNMT in vivo is still incomplete. To address this question, we introduced
DNMT3b into an organism that has no endogenous DNA methylation machinery, the budding yeast
Saccharomyces cerevisiae, to study the chromatin components affecting the activity of a mammalian de
novo DNA methyltransferase. This system has several advantages over the study of DNA methylation in
mammalian cells. Yeast has conserved histone sequences and many residues are modified at the same sites as
those found in higher eukaryotes. However, unlike mammalian cells, yeast cells can be easily manipulated and
the small size of their genome reduces costs associated with next-generation sequencing-based approaches.
Moreover, yeast has already been used to show the importance of the N-terminus of histone H3 in targeting the
DNA methylation complex (Hu et al., 2009).

Our data show that the chromatin template guides the activity of DNMT3b. DNMT3b preferentially deposits
methylation in linker DNA compared to nucleosomal DNA. Also, DNMT3b activity correlates positively with
H3K36me3 and negatively with H3K4me3. In fact, mutation of the H3K36 methyltransferase Set2
decreases DNA methylation over regions that would normally contain H3K36me3. Thus the marks
themselves, as opposed to genomic features that correlate with these marks, are responsible for targeting DNA
methylation. We also demonstrate that the pattern of H3K4 and H3K36 methylation in embryonic male germ cells
accurately predicts which regions undergo de novo methylation, indicating that the mechanism observed in
yeast is conserved in mammals.

Results

Ectopically expressed DNMT3b methylates yeast genomic DNA
S. cerevisiae does not have any endogenous cytosine DNA methyltransferases, and its DNA is therefore
unmethylated. To study the activity of a de novo methyltransferase in this organism, we introduced the murine
DNMT3b under the control of the inducible GAL1 promoter (Figure 1B). We measured the levels of 5-
methylcytosine (5meC) in these strains using whole genome bisulfite sequencing (WGBS) (Supplementary
file 1A). We observed significant levels of 5meC of DNA extracted from the exponentially growing and
stationary phases of the same strain culture (Figure 1C and Supplementary file 2A), with higher methylation
levels observed in stationary phase. CpG dinucleotides were preferentially methylated, as expected from the
previously characterized activity of mammalian DNMT3. The methylation levels of CpG dinucleotides range
from 3.3 to 7.7%, depending on the yeast strain analyzed. These levels are about 10–20 times higher than the
average of other dinucleotides levels (Supplementary file 2A), and well above the bisulfite non-conversion rate
of 0.27%, as estimated from an unmethylated lambda DNA spike-in.

Despite some level of variability, we observe methylation across the entire yeast genome (Figure 1—
figure supplement 1A,B). When mapping reads to the genome we only retain those that map to a single position.
As a result we do not obtain methylation estimates for regions that contain repetitive sequences, such as the rRNA
containing regions in chromosome XII.

We also observed a striking methylation distribution within genes (Figure 1D), with low levels at the
transcription start site (TSS) and increasing methylation in the gene body, reaching a maximum close to the
transcription termination site (TTS). The same pattern is found in mammals (Lister et al., 2009; Chodavarapu et al.,
2010), suggesting that equivalent mechanisms regulating DNMT3 activity in mammalian genes might also be
present in yeast.

DNMT3b preferentially methylates linker DNA
In yeast, nucleosomes are well positioned at the beginning of a gene, with nucleosome-free regions (NFRs)
immediately upstream of the TSS and downstream of the TTS (Brogaard et al., 2012). When average levels of
5meC are calculated around the TSS, we observed a periodicity of about 170 bp (Figure 1—figure
supplement 2). A similar periodicity is also observed at the TTS. This suggested that nucleosomes might
influence the activity of de novo DNMTs.

To address this question, we measured nucleosome positioning genome-wide using micrococcal nuclease-
digested chromatin and deep-sequencing (MNase-seq) (Supplementary file 1B and Supplementary file
3A,B). We profiled the distribution of methylated cytosines at the TSS (Figure 2A), TTS (Figure 2B), and
around each nucleosome center (Figure 2C).
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From these analyses, it is evident that DNMT3b preferentially methylates non-nucleosomal DNA. We
observe a 50% increase in the methylation of linker DNA compared to nucleosome bound DNA (Figure
2C). We also observe a slight 10 bp periodicity of methylated CpG (Figure 2D), another feature shown
in higher eukaryotes that reflects the periodicity of the DNA helix (Klug and Lutter, 1981).

Impact of DNA methylation on yeast nucleosome position and gene
expression
We considered the possibility that introducing 5meC would alter nucleosome distribution or gene
expression in yeast. However, a comparison of DNMT3b-expressing and non-expressing strains
showed no detectable change in nucleosome positioning by MNase treatment near the TSS, TTS
(Figure 2—figure supplement 1A,B and Supplementary file 3C), or elsewhere in the genome.

RNA-seq analysis identified some differentially expressed genes (about 5% of the total number of
genes, with an equal number of up- and down-regulated transcripts) between the strain expressing
and non-expressing DNMT3b grown to stationary phase (Figure 3 and Supplementary file 1C and
Supplementary file 4A). The down-regulated genes showed enrichment for branched-chain
aminoacid biosynthesis genes, while the up-regulated ones were enriched in ribosomal biogenesis

Figure 2. Influence of nucleosome positioning on DNA methylation. Average distribution of nucleosomes and DNA methylation

(CpG context) around (A) Transcriptional Start Site (TSS), (B) Transcriptional Termination Site (TTS), and (C) nucleosome centers. (D)

Meta-nucleosome plot of CpG methylation.

a.u. = Arbitrary units.

DOI: 10.7554/eLife.06205.006

The following figure supplement is available for figure 2:

Figure supplement 1. Differences in nucleosome occupancy between DNMT3b-expressing and non-expressing yeast strains.

DOI: 10.7554/eLife.06205.007
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genes (Supplementary file 4B–F). However, these changes are likely due to stress response pathways
that are triggered by the overexpression of MmDNMT3b, rather than by the changes in DNA
methylation itself. In support of this view, when the levels of CpG, CpHpG, and CpHpH methylation in
the up- and down-regulated genes were compared, no significant difference was evident
(Figure 3—figure supplement 1). Moreover, the methylation levels of the differentially transcribed
genes were not different from that of other members of the same Gene Ontology (GO) term
(Figure 3—figure supplement 2). Since DNA methylation machinery is not native in yeast, it is likely that
proteins able to recognize and mediate 5meC effects are also absent.

DNMT3b activity is associated with specific histone tail modifications
We next sought to test whether the observed levels of 5meC could be explained by the underlying
distribution of specific histone tail modifications. To address this, we mapped the distribution of
DNMT3b and of specific histone residue modifications via ChIP-seq in both the DNMT3b-expressing
and wild type (wt) (non-expressing) strains (Supplementary file 1D).

We found that, as expected, DNMT3b co-localizes with methylated regions (Figure 4A). The
distribution of DNMT3b is also consistent with the distribution of DNA methylation across the gene
body (Figure 4—figure supplement 1). We also observed that DNMT3b and 5meC are strongly
anti-correlated with H3K4me3 and positively correlated with H3K36me3 (Figure 4B and Figure 4—
figure supplements 2–4). By examining the distribution of histone marks across gene bodies, we found
that H3K4me3 is concentrated at the promoter while H3K36me3 levels peak near the 3′ end of the gene
(Figure 4—figure supplement 1). These observations suggest that the ADD and PWWP domains of
DNMT3B play a role in targeting the activity of the enzyme. H3K4me1 shows a weak positive

Figure 3. Differences in RNA expression between DNMT3b-expressing and non-expressing yeast strains. The

expression difference in RNA expression between DNMT3b and EV strains is plotted on the x axis, and false discovery rate

(FDR)-adjusted significance is plotted on the y-axis (–log2 scale). Upregulated and downregulated RNAs shown in red and green,

respectively. Significantly expressed RNAs have a fold change bigger than two with a FDR smaller than 0.1.

DOI: 10.7554/eLife.06205.008

The following figure supplements are available for figure 3:

Figure supplement 1. DNA Methylation in up- and down-regulated genes.

DOI: 10.7554/eLife.06205.009

Figure supplement 2. DNA Methylation in ribosomal biogenesis genes.

DOI: 10.7554/eLife.06205.010
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Figure 4. Correlation between histone marks and DNA methylation. (A) Genome-wide distribution of nucleosome, 5meC,

DNMT3b, H3K36me3, H3K4me1, H3K4me3, and RNA polymerase II. (B) Spearman correlation coefficients between 5meC,

histone marks, RNA polymerase II, DNMT3b and mRNA average levels for protein coding genes. (C) Prediction of DNMT3b

levels using DNA methylation, H3K4 and H3K36 trimethylation, RNA polymerase II and nucleosome distribution as predictors.

The y-axis shows the adjusted R2 value between the predicted linear model and observed values. DOI: 10.7554/eLife.06205.011

The following figure supplements are available for figure 4:

Figure supplement 1. Metagene plot of ChIP sequencing in a DNMT3b-expressing strain. DOI: 10.7554/eLife.06205.012

Figure supplement 2. Relationship between transcription and 5meC or histone marks levels. DOI: 10.7554/eLife.06205.013

Figure supplement 3. Relationship between DNA methylation and histone marks levels. DOI: 10.7554/eLife.06205.014

Figure 4. continued on next page
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correlation with both 5meC levels and DNMT3b. This might be due to the specific distribution of H3K4me1
within the gene body, partially overlapping to the H3K36me3 modification (Figure 4A and Figure 4—figure
supplement 1).

5meC and DNMT3b distribution are also inversely correlated with gene transcription and Pol II abundance
(Figure 4B, Figure 4—figure supplements 2E–F, 3A). Both H3K4me3 and H3K36me3 correlate positively with
transcription (Figure 4B, Figure 4—figure supplement 2C–D). Since yeast genes are very small relative to
mammalian genes, H3K4 methylation can spread well into the gene body (Figure 4—figure supplement 2B–C)
and limit the deposition of 5meC in highly transcribed genes. In support of this observation, we find that a
higher level of H3K4me3 in the last third of the gene, is associated with a lower level of DNMT3b or
5meC (Figure 4—figure supplement 4).

To determine whether the methylation of H3K4 and H3K36 is sufficient to explain the observed DNA
methylation of our DNMT3b strains, we constructed a simple linear model of DNA methylation based on our
ChIP-seq data. We used linear multivariate regression to model whether the distribution of one or a few histone
marks, nucleosome positioning or RNA polymerase II occupancy could predict the levels of DNMT3b or
5meC (Figure 4C and Figure 4—figure supplement 5). Strikingly, we found that H3K4me3 and H3K36me3 levels
are sufficient to predict the distribution of both DNMT3b and 5meC with very high accuracy. The prediction could
only be slightly improved by using additional data, suggesting that H3K4me3 and H3K36me3 are the key factors
in determining the targeting of DNAmethylation (Supplementary file 5).

Deletion of histone lysine methyltransferases affect DNA methylation
distribution
To determine whether H3K36me3 has a direct role in the recruitment/activity of DNMT3b in vivo, we measured the
DNA methylation distribution in three mutant strains: set1Δ, set2Δ, and dot1Δ (Supplementary file 1E). In yeast,
Set1 is responsible for the methylation of H3K4, Set2 is the methyltransferase for H3K36, and Dot1 catalyzes the
methylation of H3K79. We included the dot1Δ strain as a control, since we do not expect its activity to influence the
binding of DNMT3b. If the modification of H3K36 plays a role in DNMT3b activity we would expect a reduction in
DNAmethylation levels in gene bodies, which are the primary H3K36me3 positive regions.

Due to an impact of the set mutations on global transcription, the levels of the induced DNMT3b and the
resulting DNA methylation were lower in deletion strains than the wt. Nonetheless, the resulting 5meC
levels were still significantly higher than background levels found in the wt strains (Figure 5A and
Supplementary file 2B). To account for the variations in global methylation levels we adopted two types of
normalization: the first normalized by the total amount of DNA methylation in the sample and the second was
based on the expression of DNMT3b measured via RT-qPCR (Figure 5B and Figure 5—figure supplement
1). Both strategies gave similar results (data not shown).

As expected, we see no significant differences in 5meC distribution in dot1Δ strains compared to wt (Figure 5B).
In contrast, in the set1Δ strain, we found that regions close to the TSS, with high H3K4me3 and low DNA
methylation in a wt strain, contain methylation levels that are not significantly different from other regions outside
of the gene (Figure 5B,C). This suggests that H3K4 methylation plays an active role in suppressing DNA
methylation in the wt, and that this effect disappears in the set1Δ strain (Figure 5D).

In a set2Δ strain, 5meC levels are reduced over gene bodies compared to wt strains (Figure 5C). Moreover, in this
strain maximum levels of DNA methylation peak outside of the gene, where H3K36me3 is not present (Figure 5B).
Thus, in this mutant strain DNA methylation is redistributed from gene bodies (H3K36me3-rich regions) to
intergenic regions compared to the wt, suggesting that H3K36me3 is responsible for recruitment of DNMT3B
(Figure 5C,E).

Figure 4. Continued

Figure supplement 4. Relationship between H3K4me3 and 5meC or histone marks levels. DOI: 10.7554/eLife.06205.015

Figure supplement 5. 5meC levels prediction using chromatin marks.

DOI: 10.7554/eLife.06205.016
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Figure 5. Effect of histone lysine methyltransferase deletions on the distribution of DNAmethylation. (A) Metagene plot of CpG

methylation in set1Δ and set2Δ cells expressing DNMT3b. Differently from Figure 5B, 5meC levels are not normalized. Replicates of the

same strain are represented as dotted lines. Data from BY4741-derived strains. BY4741 =Wild type (wt); EV = Empty vector. (B)

Metagene plot of CpGmethylation in set1Δ, set2Δ, and dot1Δ cells expressing DNMT3b. set1Δ, set2Δ are in a BY4741 background, while

dot1Δ is in a W303 background. 5meC levels are normalized by DNMT3b Figure 5. continued on next page
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Correspondence between H3K36me3 and early DNA methylation in
mammalian cells
To extend our findings in yeast, we sought evidence to determine whether H3K36me3 also promotes de
novo DNA methylation in mammals. The mouse germline is an excellent model for such studies. The mouse
germline is specified from the epiblast at E7.25 and then progressively loses DNA methylation through
subsequent rounds of cell division. By E13.5, almost all DNA methylation has been lost (Popp et al., 2010;
Seisenberger et al., 2012). In male germ cells, cell division halts, and the de novo methyltransferases
and their co-factor DNMT3L are expressed between E13.5 and birth, when the genome
undergoes global de novo DNA methylation (Seisenberger et al., 2012; Kobayashi et al., 2013). Thus
in this setting, DNA methyltransferases are introduced into hypomethylated cells, and are therefore an ideal
model to study the targeting of de novo DNA methylation.

We mapped DNA methylation in the male germline at E16.5, P2.5, and P10.5 (Supplementary file 1F)
(Pastor et al., 2014), and obtained E13.5 DNA methylation data from published sources
(Seisenberger et al., 2012). Consistent with previous observations about the timing of de novo DNA
methylation in the developing mouse germline, global CpG methylation rises from 7% at E13.5 to 55%at
E16.5 and reaches at 75% by P2.5 (Figure 6A). Previous studies have shown that the entire male
germline genome is methylated by default, except for regions of H3K4 methylation such as TSSs which
antagonize de novo DNA methylation (Singh et al., 2013). However, charting the progression of DNA
methylation over time, it is apparent that there exist ‘early methylating’ regions that reach their final
methylation state by E16.5 and ‘late methylating’ regions that undergo substantial DNA methylation
between E16.5 and P2.5. We observed that heavily transcribed regions of chromosomes showed
much higher DNA methylation at E16.5 than less transcribed regions (Figure 6B). Furthermore, while
the TSS of active genes was unmethylated, gene bodies of actively transcribed genes were typically
early-methylators (Figure 6B,D). Thus, transcriptional initiation correlates negatively with de novo
DNAmethylation while transcriptional elongation correlates positively with de novo methylation.

In light of the data from yeast, we considered that the trends noted above could be caused by the
underlying chromatin environment, with H3K4me3 antagonizing and H3K36me3 promoting de novo DNA
methylation. Since transcriptional elongation causes H3K36me3 deposition, we asked whether the
association of transcriptional read-through with DNA methylation could explain the observed
phenomenon. To test this hypothesis, we analyzed published H3K4me3 ChIP-seq data (Lesch et al.,
2013) and performed H3K36me3 ChIP-seq on sorted germ cells of pooled E13.5 testis
(Supplementary file 1G). H3K4me3 at E13.5 correlates with low DNA methylation at all subsequent time
points (Figure 6D,E). Genes with high H3K36me3 levels at E13.5 showed significantly elevated gene-
body DNA methylation at E16.5, consistent with H3K36me3 accelerating DNA methylation (Figure
6B,C,D,F). This trend was still apparent at P2.5 (Figure 6F). Thus, H3K36me3 appears to direct
DNA methylation in mammalian cells.

Discussion
Our study aimed to identify chromatin features that affect the activity of mammalian de novo DNMTs
in the establishment of DNA methylation. The expression of the murine DNMT3b in a host with no
detectable levels of 5meC led to the methylation of CpG dinucleotides at different levels depending on the
specific chromatin context. The presence of the H3K4me3 mark inhibits the activity of DNMT3b,
while H3K36me3 promotes DNA methylation. This suggests that the activity of DNMT3B is guided by

Figure 5. Continued

expression measured by RT-qPCR. Two replicates for each strain are shown (solid and dotted line). (C) Metagene plots of CpG

methylation ratio between the mutant and its wt counterpart. Two replicates for each mutant strain are shown (solid and dotted line).

Wt ratios (=1) are represented by the horizontal dashed line (green or blue). (D) Boxplots showing levels of DNAmethylation in the

wt (left) and set1Δ strain (right) of 200-bp genome bins sorted into deciles by H3K4me3 level. (E) Boxplots showing levels of DNA

methylation in the wt (left) and set2Δ strain (right) of 200-bp genome bins sorted into deciles by H3K36me3 level. The dashed red line

represents background levels of DNAmethylation due to incomplete bisulfite conversion (>99.7%). DOI: 10.7554/eLife.06205.017

The following figure supplement is available for figure 5:

Figure supplement 1. DNMT3b transcript levels in different yeast strains.

DOI: 10.7554/eLife.06205.018
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Figure 6. H3K4me3 and H3K36me3 distribution predicts de novo DNA methylation pattern in male germline. ( ) Genome-wide

CG methylation levels during murine development as measured by bisulfite sequencing. ( ) RNA-seq, and ChIP read abundance

and relative DNA methylation levels are plotted across chromosome 14. Note the correspondence between RNA-seq and

H3K36me3 ChIP levels and rapid DNA methylation between E13.5 and E16.5.

oxplots showing the difference of DNA methylation levels between E13.5 and E16.5 of 1 Mb genome bins sorted into
deciles by H3K36me3 level. RNA-seq and ChIP read abundance and DNA methylation levels are plotted relative to
transcriptionally active genes. The gene promoters contain high H3K4me3 and are not methylated, while the gene bodies
contain high H3K36me3 and are methylated rapidly. ( ) Metaplots showing DNA methylation level ±1000 bp relative to the TSS
of genes sorted into deciles by H3K4me3 level. ( ) Metagene plots showing DNA methylation across gene bodies sorted into
deciles by H3K36me3 level.
DOI: 10.7554/eLife.06205.019
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the interactions of the ADD and PWWP domains with histone tails. It has been recently shown (Baubec et al.,
2015) that in embryonic stem cells the PWWP domain is responsible for the targeting of DNMT3b to regions
enriched for the H3K36me3. Similarly to our finding in yeast, the reintroduction of DNMT3b into methylation
deficient DNMT1/DNMT3A/DNMT3B triple KO (TKO) ES cells partially restores 5meC levels. Methylation
levels are higher at H3K36me3 sites, a trend eliminated by the ablation of the H3K36me3
methyltransferase Setd2 (Baubec et al., 2015). Our findings are in agreement with the Baubec et al.
observations, both in a system where other factors guiding DNA methylation are absent (yeast), and
during a period of biologically important de novo DNAmethylation (germ cells).

In our yeast system, we detected an anti-correlation between transcript levels and DNA
methylation, while we found a positive correlation in germ cells as was shown in ES cells (Baubec et al.,
2015). According to our findings, the levels of DNA methylation are guided by the presence of two
transcription-dependent marks: H3K4 and H3K36 methylation. The discrepancy between the findings in
yeast and germ cells can be explained by the difference in the length of their genes. Yeast genes are relatively
small compared to genes in higher eukaryotes so, H3K4 methylation can spread within the body of the
gene, thus preventing the binding of the DNMT3-ADD domain to the N-terminus of histone H3 and
reducing its activity. In contrast, in mammals, H3K4me is localized to the start of the gene, and does
not spread significantly within the gene body. Hence, highly transcribed genes in mammals show a
strong enrichment of H3K4me3 around the TSS and H3K36me3 into the gene-body, shaping their
intragenic DNA methylation distribution.

The observation that transcriptional elongation is linked to DNA methylation has been noted in many
contexts in addition to male germ cells. In mature oocytes, which have intermediate global levels of CpG
methylation (∼50%), similar to male E16.5 PGCs, actively transcribed gene bodies have far higher levels of DNA
methylation than less transcribed genes and intergenic regions (Smallwood et al., 2011; Kobayashi et al.,
2012). Also, in oocytes, intragenic CpG islands show far higher DNA methylation than other CpG islands
(Smallwood et al., 2011). Transcriptional read-through is a common feature of maternally imprinted loci
(Weaver and Bartolomei, 2014) and ablation of an upstream promoter prevents proper methylation of the
imprinted Gnas locus (Chotalia et al., 2009). In mammalian soma, inactive X-chromosome shows higher
promoter methylation, consistent with its silent state, but markedly lower intragenic methylation (Hellman and
Chess, 2007). Transcriptional elongation is also correlated with DNA methylation in tumor cells (Jin et al.,
2012). It has been suggested that transcriptional read-through could ‘open’ chromatin for DNMTs, or that
heterochromatin is physically inaccessible to DNMTs. We suggest however that direct recruitment of DNMTs by
H3K36me3 is the most likely mechanism for the correlation between transcriptional read-through and DNA

methylation.
H3K36me3 functions both to suppress intragenic transcriptional initiation through recruitment of

histone deacetylases, and to promote DNA methylation. These marks likely cooperate to induce
lasting silencing of transcriptional initiation at target loci (Figure 7, Figure 7—figure supplement 1).
Intragenic TSSs originating at transposons have the potential to generate truncated or transposon/
gene hybrid transcripts that could be deleterious to cell survival. H3K36me3 and DNA methylation could
cooperate to silence these transposons in the germline and other periods of de novo methylation,
and to maintain silencing through development. Moreover, where multiple TSSs exist for a gene, as
in many imprinted loci, H3K36me3-mediated DNA methylation may serve to ensure the dominance of
one promoter in a given cell type.

A number of H3K36 methyltransferases exist in mammals but only one, SETD2, can catalyze the conversion
of H3K36me2 to me3 (Wagner and Carpenter, 2012). Setd2−/−mice exhibit profound vascular defects and die
at E10.5–E11.5 (Hu et al., 2010), while Setd2−/−are defective for differentiation toward endoderm (Zhang et al.,
2014). Setd2 is also a tumor suppressor mutated frequently in leukemia (Zhu et al., 2014). It will be important
to determine how loss of Setd2 affects the distribution of DNA methylation in the germline and soma, and
whether loss of Setd2 contributes to aberrant methylation in cancer.

More broadly, targeting of DNMT enzymes by association with H3K36me3 could explain
methylation distribution across plants and animals. All catalytically active DNMT3-family methyl-
transferases in animals contain PWWP domains, and accordingly, gene body DNA methylation is
observed in all animals that have retained DNMT3 enzymes. Preferential methylation of gene bodies
over intergenic regions is observed for invertebrates such as honey bees (Apis mellifera), sea squirts
(Ciona intestinalis), sea anemones (Nematostella vectensis) (Zemach and Grafi, 2003; Feng et al.,
2010). While the relationship between relative gene expression and gene-body methylation varies
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across these species, there is a strong correlation between gene-body H3K36me3 in Drosophila
melanogaster genes and DNA methylation of homologous gene bodies in other invertebrates (Nanty et al., 2011).
DNA methylation is also associated with gene bodies in zebrafish (Danio rerio) (Zemach and Grafi, 2003) and in
mammalian contexts as discussed above. Finally, some chlorophyte algae have a ‘chlorophyte-type cytosine
methylase’, which evolved independently of DNMT3-family methyltransferases, which is fused to two PWWP
domains (Iyer et al., 2011). Thus, H3K36me3 could be relevant to DNA methylation targeting throughout the
plant and animal kingdoms.

Materials and methods

Experimental methods
Yeast strains, plasmids, media and culture Conditions
All the plasmids, primers, and strains used in this study are listed in Supplementary file 6A,B. Murine DNMT3b
isoform 1 was amplified from the plasmid pCR-Blunt II-TOPO and subcloned into pYES2 (Life Technologies, Carlsbad,
CA) using HindIII and BamHI. All the plasmids were introduced in yeast using the standard Lithium Acetate Procedure
(Gietz and Schiestl, 2007). Mutant yeast strains set1Δ and set2Δ were kindly donated by the Kurdistani Lab (UCLA), while
the dot1Δ strain (W303 background) was prepared via PCR-mediated gene disruption (Wach, 1996) using primers listed in
Supplementary file 6C.

All the yeast strains were grown at 30˚C in SC + Galactose 2% without uracil (Sunrise Science, San Diego, CA, cat
1652 and 1485-100) overnight. The next morning, cells were diluted to 0.3 OD600/ml and grown to mid-log phase
(0.8–1 OD600/ml) or to stationary phase (5–6 OD600/ml or for 24–30 hr).

Figure 7. Proposed model for de novo DNA methylation establishment. Model proposed for the targeting of DNMT3 during

events of de novo 5meC establishment after genome-wide erasure of DNA methylation. Our model suggests that the presence of

transcription-dependent histone modifications, such as H3K4me3 and H3K36me3, determines the activity of DNMT3b in vivo.

DOI: 10.7554/eLife.06205.020

The following figure supplement is available for figure 7:

Figure supplement 1. Factors affecting DNA methylation deposition.

DOI: 10.7554/eLife.06205.021
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Yeast WGBS libraries preparation
DNA was collected from yeast cells according to Hoffman (2001) with minor changes. Briefly, about 5 OD600 of

yeast cells were disrupted by vortexing for 6 min in a Disruptor Genie (Scientific Industries, Inc., Bohemia, NY) in the
presence of an equal volume of breaking buffer, acid-washed glass beads and phenol:chloroform (1:1). After the
addition of TE buffer, aqueous phase is transferred into a new tube and precipitated with ethanol. The nucleic acid
pellet is resuspended in TE buffer and treated for 1 hr at 37˚C with RNaseA, followed by incubation for 1 hr with 2
mg/ml proteinase K in the presence of 1% SDS at 60˚C. The resulting solution is treated twice with
phenol:chloroform (1:1), once with chloroform and ethanol precipitated. The DNA pellet is resuspended in EB
buffer (Qiagen, Valencia, CA). Between 500
and 1000 ng of extracted yeast DNA is added to 2 ng of λ unmethylated DNA (Promega, Madison, WI, D1521) and
the mixture is sonicated with a Covaris S-2 to obtain fragments in the 200–300 bp range (Total time: 6 min; Duty
cycle: 10%; Intensity: 5; Cycles/Burst: 200; Mode: Frequency sweeping). The reagents used in the library
preparation are from the Illumina TruSeq DNA Sample Prep kit v2 (Illumina, San Diego, CA). End-Repair, purification
and dA-tailing steps are performed according to
manufacturer’s instructions. Ligation is performed according to the protocol except that 1 μl of Illumina TruSeq
Adapters is used in the final reaction. The ligation reaction is purified using 1.2 vol of AMPure XP beads (Beckman
Coulter Inc. Indianapolis, IN,) and DNA fragments with a 170–350 bp range are enriched using 0.7 and 0.3 vol of
AMPure XP beads in the first and second size-selection step, respectively. Samples are treated with bisulfite
(EpiTect kit, QIAGEN) according to manufacturer’s protocol, except that two consecutive rounds of conversion are
performed, for a total of 10 hr of incubation. Half of the converted DNA is amplified using MyTaq Mix (Bioline,
Taunton, MA,) and Illumina TruSeq PCR Primer Cocktail according to the following protocol: initial denaturation at
98˚C for 30 s; 12 cycles of 98˚C for 15 s, 60˚C for 30 s, 72˚C for 30 s; final extension at 72˚C for 5 min. The final
product is purified using AMPure XP beads before being submitted for sequencing. Libraries were sequenced with
an Illumina HiSeq 2000 system using 50 bp or 100 bp single-end reads.

Yeast MNase-seq libraries preparation
Nucleosome mapping has been performed according to Rando (2010) with minor modifications. Stationary phase
yeast culture (≈6 OD/ml) is cross-linked with 1% formaldehyde for 20 min with occasional rotation at room
temperature. The reaction is quenched with glycine for 5 min at room temperature. About 60 OD of yeast cells are
washed twice with PBS buffer and then resuspended in
2 ml of Z buffer (1 M sorbitol, 50 mM Tris-HCl pH 7.4 with freshly added 10 mM β-mercaptoethanol) containing 3.6
mg of Zymolyase-20T (from Arthrobacter luteus, AMS Biotechnology, Cambridge, MA,) and incubated at 37˚C in
agitation. After 45 min the same amount of Zymolyase is added and each sample which is incubated for an
additional 45 min at 37˚C in agitation. Spheroplasts are then pelleted by centrifugation for 5 min at 4˚C at 1500 g.
The pellet is washed once with NP-buffer, then resuspended in 1.6 ml of NP-buffer and divided in three tubes. An
increasing amount of MNase (Sigma, N3755, St. Louis, MO,) is added to each tube: 0.25 U, 0.5 U, and 1 U. After
incubation for 20 min at 37˚C, each reaction is stopped by the addition of SDS and EDTA to a final concentration of
1%and 10 mM, respectively. The reaction is then treated with 0.2 mg/mg of proteinase K (NEB, Ipswich, MA) at 65˚C
overnight. The sample is then purified with two rounds of phenol:chloroform (1:1) and the aqueous solution
precipitated. The resuspended DNA pellet is treated for 1 hr with RNase A at 37˚C. For the naked DNA digestion,
200 ng of extracted DNA is incubated at 37˚C with 0.01 U of MNase. After 7 min the reaction is stopped as
described before. Both naked and RNaseA-treated nucleosomal DNAs are then purified using 1.8 vol of AMPure XP
beads and the libraries prepared using NEBNext DNA Library Prep Master Mix Set for Illumina (NEB, E6040S) with
few modifications of the manufacturer’s protocol. Only the digestion pattern obtained with 0.5 U of MNase was
used for the library preparation. The DNA is end-repaired (in half of the suggested volume), dA-tailed, and 1 μl of
Illumina TruSeq Adapters is added to a 40 μl ligation reaction. Purification after each step is performed using
AMPure XP beads according to the protocol. The size selection step is carried out with 0.8× of AMPure beads in the
first step and 0.2× of AMPure XP beads in the second step. Half of the DNA is amplified using Illumina PCR Master
Mix and Illumina TruSeq PCR Primer Cocktail (TruSeq DNA Sample Prep kit v2) with the following protocol: initial
denaturation at 98˚C for 30 s; 12 cycles of 98˚C for 15 s, 60˚C for 30 s, 72˚C for 30 s; final extension at 72˚C for 5 min.
The final product is purified using AMPure XP beads before being submitted for sequencing. Libraries were
sequenced with an Illumina HiSeq 2000 system using 50 bp single-end reads.
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Yeast RNA-seq libraries preparation
RNA was collected from 5 OD of yeast cells (Collart and Oliviero, 2001). Approximately 500–1000 ng of
extracted yeast RNA are used to prepare RNA-seq libraries using Illumina TruSeq mRNA Library Prep Kit v2
according to manufacturer’s instructions. Libraries were sequenced with an Illumina HiSeq 2000 system using 50
bp single-end reads.

RT-qPCR
Quantitative RT-PCR was used to determine the relative expression of DNMT3b in wild-type and
mutant yeast strains. Briefly, 1 μg of total RNA was subject to polyA enrichment using TruSeq oligo-dT
magnetic beads (part # 15026778, Illumina) and reverse transcribed using SuperScript III (cat # 18080-044, Life
Technologies) according to manufacturer’s instruction. An equal amount of cDNA was used for each qPCR
reaction, using primers listed in Supplementary file 6C. Murine DNMT3b expression levels were normalized to
TDH1 levels and the relative expression
between the wild-type and each mutant was calculated using the ΔΔCt method (Schmittgen and Livak, 2008).

Yeast ChIP-seq libraries preparation
Chromatin immunoprecipitation experiments were conducted according to Kitada et al. (2012), with minor
modifications. Briefly, 50 OD of yeast cells are crosslinked using 1% formaldehyde for 15 min at room temperature
and quenched with glycine 125 mM for 5 min at room temperature. After two washes with ice-cold PBS, the cells are
resuspended in yeast lysis buffer (with 140 mM NaCl for DNMT3b and RNApolII or 500 mM NaCl for histone post-
translational modifications) and the same volume of acid-washed glass beads. We disrupted the cells by vortexing
for 5 min in a Disruptor Genie at 4˚C and incubating in iced-water for 2 min. We repeated the cycle for an additional
5 times. We collected the lysate by centrifugation after creating a hole on the bottom of the tube with a 25-G
needle. We transferred a fraction of the lysate into a microTube (AFA filter—Covaris, Woburn, MA) and proceeded
with the sonication using the Covaris S2 system according to the following parameters: 14 cycles of 30 s ON, 30 s
OFF; Duty cycle = 5%; Intensity = 5%; Cycles/Burst = 200. The sonicated lysate is clarified via centrifugation and 50
μl of the supernatant is incubated overnight at 4˚C with a specific antibody (Supplementary file 6D). 10 μl of the
clarified lysate is used as input control. The next day, immunoprecipitations are incubated 2 hr at 4˚C with Protein A
Dynabeads (Life Technologies). Each wash is performed twice in the following order: low-salt buffer (50 mM HEPES
pH 7.5, SDS 0.1%, 1% Triton X-100, 0.1% Deoxycholate, 1 mM EDTA, 140 mM NaCl), high salt buffer (50 mM HEPES
pH 7.5, SDS 0.1%, 1% Triton X-100, 0.1% Deoxycholate, 1 mM EDTA, 500 mM NaCl), LiCl buffer (10 mM Tris-HCl
pH 8, 250 mM LiCl, 5 mM EDTA, 1% Triton-X, 0.5% NP-40), TE buffer (100 mM Tris-HCl pH 8, 10 mM EDTA). Elution
is performed at 65˚C with TE/SDS buffer (100 mM Tris-HCl pH 8, 10 mM EDTA, 1% SDS). Tubes containing the
eluted immunoprecipitations and input controls (additioned of TE/SDS buffer) are incubated overnight at 65˚C to
reverse the cross-links. RNase treatment is performed at 37˚C for 1 hr, followed by a proteinase K treatment for 1 hr
at 60˚C. Each reaction is then purified using 1.8 vol of AMPure XP beads according to manufacturer’s instructions.
Libraries were prepared with Ovation Ultralow DR kit (Nugen Technologies, San Carlos, CA) starting from 1 ng of
purified DNA according to the protocol. Libraries were sequenced with an Illumina HiSeq 2000 system using 50 bp
single-end reads.

Mice
Mice homozygous for a characterized Oct4-IRES-GFP allele (Wernig et al., 2007) were used for murine
H3K36me3 ChIP. Embryonic male germ cells express the GFP marker and can be sorted efficiently (Vincent
et al., 2011; Pastor et al., 2014).

Bisulfite sequencing and RNA-seq data (mouse)
Whole genome bisulfite sequencing data from sorted E16.5, P2.5, and P10.5 germ cells was generated as part of a
parallel project studying the transposon silencer Morc1 (Pastor et al., 2014), with the data from the phenotypically
normalMorc1+/− controls from that study serving as methylomes in this study. Briefly, germ cells from between three
to five male mice at each time point were harvested and libraries generated, and reads from these libraries were
pooled. E13.5 bisulfite sequencing data were taken from replicate two of (Seisenberger et al., 2012). Genome-
wide bisulfite sequencing average coverage was 5.36 (E13.5), 14.57 (E16.5), and 8.52 (P2.5) RNA-seq data from two
E16.5Morc1+/− controls from (Pastor et al., 2014) were also used in this study.
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Mouse germ cells purification for ChIP
Collection of embryonic testes was performed following institutional approval for appropriate care and use of
laboratory animals, according to published protocols (Pastor et al., 2014). Pregnant females were euthanized
using CO2 and the embryos removed from the womb and stored on a 10 cm dish filled with chilled 1× PBS. Testicles
were removed from the embryos, placed in an individual 15 ml
falcon tube with 3 ml of 0.25% Trypsin with 3 μl of DNAse I 1 U/1 μl (Life Technologies). Testes were incubated for 15
min at 37˚C. After incubation the cells were agitated into suspension gently by pipetting. The trypsin was then
quenched using 5 ml DMEM/10% FBS (Life Technologies). The cells
were centrifuged at 278 g for 5 min and resuspended in 500 μl FACS buffer (1× PBS 1% BSA). 7-AAD was added at a
1:50 dilution (BD Biosciences, San Jose, CA) and the cells strained through BD FACS tubes (Corning, Union City, CA)
before analysis. GFP positive cells were sorted for ChIP.

Mouse ChIP-seq
The ChIP-seq protocol was adapted from published sources (Ng et al., 2013; Pastor et al., 2014). FACS sorted cells
from four male, E13.5 embryos were diluted to 292 μl with room temperature 1× PBS. 8.11 μl 37% Formaldehyde
(Sigma) was added and the sample was incubated 10 min at room temperature with rocking. 48.8 μl of 1 M glycine
was then added to yield a final concentration of 0.14 M and the samples were quenched 30 min with rocking. Cells
were then spun 425 g for 10 min at RT. The cell pellet was flash frozen.

After thawing, the cells were resuspended in 300 μl Lysis buffer (50 mM Tris-Cl pH 8.0, 20 mM EDTA pH 8.0, 0.1%
SDS, 1× Complete Protease Inhibitor [Roche]) and incubated on ice 10 min. Samples were then sonicated by Covaris
S2 (Intensity 5, cycles/burst = 200, duty cycle = 5%, 10 × 30 s on 30 s off sonication). Samples were spun 14000 g 10
min to remove insoluble material. The soluble
sample was diluted to 600 μl with dilution buffer (16.7 mM Tris pH 8, 0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA,
167 mMNaCl) and 10% of material was saved as input. Sample was precleared with
30 μl Protein A Dynabeads (Life Technologies) and preincubated 1 hr. The cleared material was incubated with 1 μl L
anti-H3K36me3 antibody (Abcam Ab9050) overnight.

The samples were incubated with 30 μl Protein A Dynabeads and the precipitated material was recovered with a
magnet. The beads were washed 2 × 4 min with Buffer A (50 mM HEPES pH 7.9, 1%Triton X-100, 0.1% Deoxycholate,
1 mM EDTA, 140 mM NaCl), 2 × 4 min with Buffer B (50 mM HEPES pH 7.9, 0.1% SDS, 1% Triton X-100, 0.1%
Deoxycholate, 1 mM EDTA, 500 mM NaCl) and 2 × 4 min with 10 mM Tris/1 mM EDTA. Bound material was eluted
with 100 μl Elution buffer (50 mM Tris pH 8.0, 1 mM EDTA, 1% SDS) at 65˚C for 10 min and then eluted a second time
with 150 μl elution buffer.

The input samples were thawed and diluted with 200 μl buffer. Crosslinking of ChIP and input samples was reversed by
incubating 16 hr at 65˚C. Samples were cooled and treated with 1.5 μl of 10 mg/ml RNaseA (PureLink RNAse A, Invitrogen
#12091-021) for 30 min at 37˚C. 100 μg of Proteinase K was then added and the samples treated for 2 hr at 56˚C. The
sampleswere then purified using a Qiagen MinElute kit.

Samples were amplified by a SeqPlex DNA Amplification kit (Sigma) and then converted to libraries using an
Ovation Rapid Library kit.

Data processing and analysis

Bisulfite sequencing
Reads from bisulfite-treated yeast and mouse genomic DNA (Seisenberger et al., 2012; Pastor et al., 2014) were
aligned using BS-Seeker2 v2.0.3 (Guo et al., 2013) against the sacCer3 and mm9 genome assemblies, respectively.
Up to four mismatches were allowed and bowtie (v0.12.8) was specified as the aligner. Methylation was called
using default parameters of BS-Seeker2.

MNase-sequencing
Reads from both naked and nucleosomal DNA sequencing were aligned using bowtie v0.12.8 (Langmead et al., 2009)
against the sacCer3 genome assembly, allowing up to two mismatches. Nucleosome calling was performed using
DANPOS v2.1.3 (Chen et al., 2013) subtracting the naked DNA-derived reads from the nucleosomal reads and using
the ‘-k1 -e1’ parameters (Supplementary files 1B, 4).

RNA sequencing
RNAseq reads from mouse germ cells (Pastor et al., 2014) and yeast were aligned against the mm9 and sacCer3
genome assemblies using STAR v2.3.1 (Dobin et al., 2013) with the following parameters:

outFilterMismatchNoverLmax 0.04 outFilterMultimapNmax 1.

129



Additional information

Funding

Funder Grant reference Author

National Institutes of Health (NIH) R01 GM095656-01A1 Matteo Pellegrini

National Institutes of Health (NIH) GM60398 Steven E Jacobsen

National Institute of Child Health
and Human Development
(NICHD)

R01HD058047 Amander T Clark

Howard Hughes Medical Institute
(HHMI)

Steven E Jacobsen

Jane Coffin Childs Memorial Fund
for Medical Research

William A Pastor

Whitcome Fellowship Marco Morselli

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Differential expression was performed using the DEseq package (Anders and Huber, 2010) in R-Bioconductor.
Differentially expressed genes are defined as having more than twofold difference in the level of the corresponding
RNA and a false discovery rate (p-adj) smaller than 0.1. GO term enrichment for upregulated and
dowregulated genes in the DNMT3b-expressing compared to the EV was performed using the Gene
Ontology Term Finder tool on the Sccharomyces Genome Database website (http://
www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl). RPKM values were calculated using rpkmforgenes.py
(available at http://sandberg.cmb.ki.se/media/data/rnaseq/rpkmforgenes.py) specifying the following options:
-fulltranscript -nocollapse -rmnameoverlap –allmapnorm (Supplementary file 4).

ChIP sequencing
Reads from yeast and mouse (this study and [Lesch et al., 2013]) were first mapped against the yeast (sacCer3) and
mouse (mm9) genome, respectively, using bowtie v0.12.8 (Langmead et al., 2009), then aligned reads were
processed according to Ferrari et al. (2012).

Linear model of methylation
The yeast genome was divided in 200-bp bins and log-transformed average levels of each feature calculated for each bin.
The model was built using simple linear regression lm() function in R and the resulting prediction correlated
(Pearson) with the observed values for both 5meC levels and DNMT3b occupancy.

Data access
Data can be accessed at GEO (Gene Expression Omnibus) under the accession GSE6691.
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Supplementary File 1 

A: Yeast Whole Genome Bisulfite Sequencing Data

NAME STRAIN GROWTH PHASE READ 
LENGTH # READS MAPPED READS MAPPABILITY (%) 

EV strain 1 W303 stationary phase 50 5618700 4238470 75.44 

EV_strain 2 BY4741 stationary phase 50 5693179 4184515 73.50 

EV strain 3 W303 stationary phase 100 18656763 13587923 72.83 

EV_strain 4 W303 stationary phase 100 18334345 13334549 72.73 

3b_exp W303 exponential growth 100 30969585 20311078 65.58 

3b strain 1 W303 stationary phase 100 30168485 19944982 66.11 

3b strain 2 W303 stationary phase 100 16815631 12460190 74.10 

3b strain 3 W303 stationary phase 100 18976985 14054606 74.06 

3b strain 4 W303 stationary phase 100 15158680 11099360 73.22 

3b strain 5 W303 stationary phase 50 10538019 8543601 81.07 

3b strain 6 W303 stationary phase 50 11206761 9269664 82.71 

3b strain 7 BY4741 stationary phase 50 11155426 8762918 78.55 

3b strain 8 BY4741 stationary phase 50 8821778 7240328 82.07 

B: Yeast MNase Sequencing Stats

NAME STRAIN GROWTH PHASE TYPE READ 
LENGTH # READS MAPPED 

READS 
MAPPABILITY 

(%) 
EV 

strain 1 W303 stationary naked-DNA 50 18421958 17828771 96.78 

3b 
strain 1 W303 stationary naked-DNA 50 19889834 19215569 96.61 

EV 
strain 1 W303 stationary MNase-digested 

chromatin 50 18746212 18061975 96.35 

3b 
strain 1 W303 stationary MNase-digested 

chromatin 50 18536100 17957774 96.88 

C: Yeast mRNA Sequencing Stats

NAME STRAIN GROWTH PHASE READ LENGTH # READS MAPPED READS MAPPABILITY (%) 

EV strain 3 W303 stationary phase 50 17028551 14576036 85.60 

EV_strain 4 W303 stationary phase 50 16542825 13793873 83.38 

3b strain 2 W303 stationary phase 50 16739897 13835362 82.65 

3b strain 3 W303 stationary phase 50 16534790 13435040 81.25 

3b strain 4 W303 stationary phase 50 15793246 13140669 83.20 
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D: Yeast ChIP Sequencing Stats

NAME SALT 
(mM) STRAIN GROWTH 

PHASE 
READ 

LENGTH # READS MAPPED 
READS MAPPABILITY (%) 

polII 140 W303 stationary 50 13558635 9428180 69.5 

DNMT3b 140 W303 stationary 50 11345100 7548780 66.5 

H3K4me1 500 W303 stationary 50 18396633 13745135 74.7 

H3K4me3 500 W303 stationary 50 15892023 12360992 77.8 

H3K36me3 500 W303 stationary 50 16039999 12993099 81.0 

INPUT_1 140 W303 stationary 50 18552692 13700075 73.8 

INPUT_2 500 W303 stationary 50 15269649 8392024 55.0 

E: Yeast Whole Genome Bisulfite Sequencing Data for mutant strains

NAME STRAIN GROWTH PHASE READ LENGTH # READS MAPPED READS MAPPABILITY (%) 

set1Δ replicate 1 BY4741 stationary phase 50 12825798 10723394 83.6 

set1Δ replicate 2 BY4741 stationary phase 50 9443269 7989638 84.6 

set2Δ replicate 1 BY4741 stationary phase 50 10521217 8621585 81.9 

set2Δ replicate 2 BY4741 stationary phase 50 11537314 9252601 80.2 

dot1Δ replicate 1 W303 stationary phase 50 11307035 9018367 79.8 

dot1Δ replicate 2 W303 stationary phase 50 10711735 8624989 80.5 

F: Whole Genome Bisulfite Sequencing in mouse

NAME TIME READ 
LENGTH # READS MAPPED 

READS MAPPABILITY (%) 

E13.5 E13.5 50 244054365 175922769 72.1 

E16.5  E16.5 100 1080044130 750630672 69.5 

P2.5 P2.5 100 621842708 416532028 67.0 

G: ChIP Sequencing Stats in mouse

NAME TIME READ 
LENGTH # READS MAPPED 

READS MAPPABILITY (%) 

E16.5 INPUT E16.5 50 103447430 37359661 36.1 

E16.5 K36me3 IP E16.5 50 72711515 28013262 38.5 
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Supplementary File 2 

A: Yeast dinucleotide context methylation 

NAME STRAIN GROWTH PHASE 
5meC CONTEXT (METHYLATION  PERCENTAGE) 

all CpG CpA CpT CpC 

EV strain 1 W303 stationary phase 0.19 0.27 0.17 0.19 0.18 

EV strain 2 BY4741 stationary phase 0.18 0.26 0.15 0.18 0.18 

EV strain 3 W303 stationary phase 0.21 0.25 0.18 0.23 0.22 

EV strain 4 W303 stationary phase 0.23 0.26 0.20 0.25 0.24 

3b exp W303 exponential growth 0.81 1.76 0.77 0.55 0.54 

3b strain 1 W303 stationary phase 1.51 6.00 0.91 0.56 0.54 

3b strain 2 W303 stationary phase 1.21 6.08 0.43 0.28 0.25 

3b strain 3 W303 stationary phase 0.94 4.52 0.35 0.26 0.24 

3b strain 4 W303 stationary phase 0.86 4.06 0.32 0.26 0.24 

3b strain 5 W303 stationary phase 1.47 7.73 0.55 0.29 0.24 

3b strain 6 W303 stationary phase 1.44 7.65 0.58 0.30 0.25 

3b strain 7 BY4741 stationary phase 0.70 3.27 0.29 0.24 0.23 

3b strain 8 BY4741 stationary phase 0.75 3.33 0.38 0.29 0.25 

	

B: Yeast mutant strains dinucleotide context methylation 

NAME STRAIN GROWTH PHASE 
5meC CONTEXT (METHYLATION  PERCENTAGE) 

all CpG CpA CpT CpC 

set1Δ replicate 1 BY4741 stationary phase 0.34 0.84 0.27 0.25 0.23 

set1Δ replicate 2 BY4741 stationary phase 0.30 0.78 0.20 0.22 0.21 

set2Δ replicate 1 BY4741 stationary phase 0.48 1.90 0.24 0.24 0.23 

set2Δ replicate 2 BY4741 stationary phase 0.52 1.97 0.31 0.27 0.25 

dot1Δ replicate 1 W303 stationary phase 1.17 5.96 0.44 0.27 0.24 

dot1Δ replicate 2 W303 stationary phase 1.20 6.16 0.50 0.29 0.25 

EV strain 1 W303 stationary phase 0.19 0.27 0.17 0.19 0.18 

EV strain 2 BY4741 stationary phase 0.18 0.26 0.15 0.18 0.18 

EV strain 3 W303 stationary phase 0.21 0.25 0.18 0.23 0.22 

EV strain 4 W303 stationary phase 0.23 0.26 0.20 0.25 0.24 

C: Mouse Germ Cells dinucleotide context methylation 

NAME TIME 
5meC CONTEXT (METHYLATION  PERCENTAGE) 

all CpG CpA CpT CpC 

E13.5 E13.5 3.3 6.8 3.3 2.9 3.1

E16.5  E16.5 5.1 56.2 5.8 1.8 0.7

P2.5 P2.5 7.99 77.1 9.9 2.9 0.9
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Supplementary File 3: available at 
https://elifesciences.org/content/4/e06205/article-data#fig-data-datasets 

Supplementary File 4: available at 
https://elifesciences.org/content/4/e06205/article-data#fig-data-datasets 

Supplementary File 5 

Correletion coefficients of DNMT3b occupancy and 5meC levels predictions 

PREDICTOR(S) 
PREDICTED: 5meCPG LEVELS PREDICTED: DNMT3B OCCUPANCY 

CORRELATION ADJ R2 CORRELATION ADJ R2 

H3K4me3 0.675381 0.4453 0.4309058 0.1637 

H3K36me3 0.3837221 0.1474 0.6271073 0.3927 

DNMT3b/5meC 0.7000648 0.4627 0.7000648 0.4627 

nucleosome 0.0715297 0.003606 0.147471 0.02157 

RNApolII 0.004768579 -3.43E-05 0.3148327 0.1119 

H3K4me3 H3K36me3 0.7868484 0.6114 0.7713618 0.5749 

DNMT3b/5meC H3K36me3 0.7034986 0.4657 0.8002787 0.6194 

H3K4me3 H3K36me3 nucleosome 0.786882 0.6114 0.7783655 0.5832 

H3K4me3 H3K36me3 RNApolII 0.7873445 0.6134 0.7760999 0.583 

H3K4me3 H3K36me3 DNMT3b/5meC 0.8215763 0.6635 0.8090604 0.632 

all 0.8247778 0.6706 0.8221772 0.6533 
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Supplementary File 6 

A: Plasmids used in this study 

PLASMIDS NAME IN THE PAPER EXPRESSION OF 

pYES2 EV N/A 

pYES2-DNMT3b DNMT3b MmDNMT3b 

B: Yeast strains used in this study 

PLASMIDS GENETIC BACKGROUND GENOTYPE 

W303 W303 MATa, leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 

BY4741 BY4741 MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0 

set1Δ (KLY170) BY4741 MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, set1::KAN 

set2Δ (KLY156) BY4741 MATa, his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, set2::HIS3 

dot1Δ W303 MATa, leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15, dot1::KAN 

C: Oligonucleotides used in this study 

NAME TARGET SEQUENCE NOTES 

3b_Fw DNMT3b TAAATATAAA AAGCTT C GGT CCG GCC TCA CGA CAG GAA ACA AT Used to amplify 
pCR-BLUNT II-
TOPO DNMT3b 3b_Rev DNMT3b AATTATTTTA GGATC CGG ACC GTCCCCAGTCCTGGGTAGAAC 

Dot1_UP45 KanMX CACCAGTAATTGTGCGCTTTGGTTACATTTTGTTGTACAGTAATGATAACTTCGTATAATGTATGC Used to amplify 
kanMX cassette 

with loxP 
flanking 

sequences for 
PCR-based 

gene disruption 

Dot1_DOWN45 KanMX CTTAGTTATTCATACTCATCGTTAAAAGCCGTTCAAAGTGCCTCATGATAACTTCGTATAGCATAC 

yTDH1_qFw TDH1 TGCTGCTAAGGCTGTCGGTA 
qPCR primers 

yTDH1_qRev TDH1 CAACGGCATCTTCGGTGTAA 

mDNMT3b_qFw DNMT3b CTGTGGAGTTTCCGGCTACC 
qPCR primers 

mDNMT3b_qRev DNMT3b TGCTCTCTGCATCCACCTGT 

D: Antibodies used in this study 

TARGET SUPPLIER CATALOG # LOT # USED FOR ChIP 
(µl) 

RNA pol II Covance MMS-126R-200 D13HF02305 2.5 

H3K4me1 Abcam ab8895 GR149140-1 2.5 

H3K4me3 Active Motif 39159 12613005 3 

H3K36me3 Abcam ab9050 GR114293-1 4 

DNMT3b Abcam ab2851 GR101720-2 3 
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ABSTRACT 

Methylation at the 5’ carbon of cytosine in RNA is an epigenetic mark prevalent in all of 

life. Though well studied in non-coding RNA, methylation of messenger RNA (mRNA) is 

less understood. We report a method to quantify 5-methylcytosine in polyA(+)-RNA extracts 

from mouse hypothalamus and human stem cells using next-generation sequencing. 

Following bisulfite treatment, and library preparation, we sequenced hypothalamus 

samples from two mouse strains (C57 and DBA) and human stem cells on the Illumina 

platform. A pipeline was developed to analyze data using BS-seeker2 software. Unlike 

DNA, where methylation is enriched at CpG, we found that methylcytosines in polyA-RNA 

are equally represented in CG and CH (H=ATC) contexts.  We report approximately 6000 

uniquely methylated sites in our samples, with a correlation of 0.89 (p-value: 2.2e10^-16) for 

sites shared in samples from the same mouse strains, of which 200 were methylated across all 

samples.  Among these conserved sites, a small set showed strain-specific methylation that 

was correlated with the expression of RNA methyltransferase enzymes (Nsun7 and Dnmt2) in 
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the hypothalamus. Finally, we performed an analysis of the RNA secondary structure of 

fragments proximal to methylcytosines and found that these are enriched for low free energy 

regions with secondary structure. 

INTRODUCTION 

Methylation at the 5’ carbon of cytosine (5mC) is common in RNA and is found across a diverse 

range of organisms (1).  In contrast to N6-methyladenosine (m6A), less is understood about the 

biological significance of 5mC in RNA (2). Numerous RNA-methyltransferases (RMTs) have 

been identified, and deletions or mutations of these enzymes have been implicated in 

developmental defects, mental retardation, and cancer (3). However, the RMT(s) responsible for 

5mC in RNA are incompletely characterized.  

Bisulfite RNA sequencing (bsRNAseq) is the primary approach used to detect 5mC in RNA. The 

method has been successfully applied to HeLa cell RNA extracts which were sequenced on the 

SOLiDTM platform, revealing over 10,000 mRNA and non-coding RNA methylation sites (4). 

Methylation of tRNA has also been analyzed with bsRNAseq, and in mice it was shown that 5mC 

is associated with tRNA stability (5).  

Recently, a number of studies have begun to elucidate the role of RNA cytosine methylation in 

biological processes. For example, enhancer-RNA methylation by the RMT NSun7 can increase 

transcription of PGC-1α-regulated genes with metabolic consequences for the cell (6). PGC-1α 

transcription is increased in certain melanoma cell lines and correlates with MITF, a 

transcription factor that regulates melanin production in response to ultraviolet (UV) light (7). 

Another RMT, NSun2, is a target of the Myc transcription factor and is up-regulated in breast 

cancer (8).  Methylation of mRNAs by Nsun2 may prolong transcript half-life (9). This finding is 
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consistent with a recent study showing that a lack of vault-RNA methylation by Nsun2 resulted 

in elevated processing of substrates into microRNAs (10).  

To further characterize the targeting of cytosine methylation in mRNA we have developed a 

profiling technique that uses the Illumina sequencing platform.  This approach relies on the 

bisulfite treatment of polyA RNA to yield transcriptome-wide views of the polyA RNA 

methylome.  We have developed an informatics pipeline for processing the data that builds on 

previous methods for analyzing 5mC in DNA, in particular the BSSeeker2 program. Using these 

experimental and informatic strategies we have identified hundreds of sites consistently 

methylated in mRNA across independent samples from mouse brain tissues and human stem 

cells. 

RESULTS 

Generation of bisulfite mRNA libraries 

To leverage the efficiency of the latest generation of DNA sequencers, we have developed 

a protocol to measure transcriptome wide levels of methylcytosine in mRNA using the 

Illumina platform. Bisulfite treatment of mRNA converts cytosine residues to uracil, 

leaving 5-methylcytosine residues unaffected. Thus, after PCR amplification, unmethylated 

cytosines are read as thymine ("T"), while methylated cytosines are protected from bisulfite 

and read as cytosine ("C"). This bisulfite sequencing method provides single-

nucleotide resolution information on the 5mC status of RNA.  

The procedure for library preparation is described in detail in the Methods section and shown 

schematically in Figure 4.1. In short, RNA is enriched for polyA-containing transcripts and 

then treated with sodium bisulfite. Following RNA fragmentation and adaptor ligation, 

DNA is synthesized from these templates by PCR and sequenced on the Illumina HiSeq2500.  
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The RNA used in our study was extracted from the hypothalamus of two mouse strains, 

C57BL/6J (C57) and DBA/2J (DBA). A total of six samples: two from C57 and four from DBA, 

were prepared for sequencing and analysis. We also generated a library from a 

human embryonic stem cell line. 

Methylation levels observed in the hypothalamus 

To measure DNA methylation profiles reads were aligned end-to-end and only those with an 

alignment length > 30, and the sense strand were used for calculation of methylation. Between 

12-25 million reads were uniquely aligned to the transcriptome with a mappability of ~50% for

each dataset (Table 4.1). This level of mappability is similar  to  what  we  usually  observe  for 

DNA methylation libraries.   The reason for restricting our analysis to reads that  align to the 

forward direction of transcription is that our protocol is stranded, and predominantly  generates 

reads for the forward strand, with little signal on the reverse strand. Moreover, reverse 

reads  are  potentially  due  to  DNA  contamination  or  antisense  transcription  and  do  not 

necessarily reflect the methylation status of the mRNA. 

To test the accuracy of our pipeline we analyzed the methylation status of a positive and negative 

control.  As a negative control, a sample of in vitro transcribed RNA from a kanMX containing 

plasmid was spiked in one of the DBA samples. Since the plasmid was transcribed in vitro with 

only unmethylated ribonucleotides, we expect the methylation level to reflect the background 

rates of methylation in our assay. Reassuringly, we found that kanMX cytosines are mostly 

(~99.8%) converted to uracil by the bisulfite treatment.  Moreover, we were able to estimate 

these conversion rates with high accuracy as the average coverage of the transcript was > 4000 

per base (Figure 4.2a).  

As a positive control we looked at the methylation of ribosomal RNA.  Although our library used 

poly(dT) enrichment to select for mRNA and poly(A)+ non-coding RNA (ncRNA), we also 

obtained some reads that mapped to rRNA, very likely due to its high abundance.  It is well 
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established that rRNA is significantly methylated (15). We therefore examined the 

methylation of rRNA in our libraries, each aligned against a reference containing a single 

copy of mouse ribosomal and transfer RNA genes. For each sample we observed multiple 

highly methylated sites in rRNA, supporting the notion that our approach is able to identify 

methylated cytosines in RNA (Figure 4.2b).

Having identified both positive and negative controls, we next turned our attention to the 

methylation of cytosines in poly(A)+ RNA.  We observe numerous methylated cytosines 

across poly(A)+ RNA, with two representatives in exonic and UTR regions shown in Figures 

4.2c and 4.2d.  When  analyzing  DNA  methylation  we  typically  separate  cytosines  into  two 

groups, depending on whether they are followed by guanine (CpG) or not followed by a 

guanine (CpH).  This is because mammalian DNA methyltransferases preferentially act on 

CpG dinucleotides.  We found that unlike mammalian DNA, which is heavily methylated 

at CpG sites, but mostly unmethylated at CpH sites, RNA methylation patterns of CG and 

CH are quite similar (Figure 4.3).  

To identify significantly methylated cytosines, we counted the number of altered (T) 

and unaltered (C) cytosines aligned to each cytosine within our transcripts, and 

computed the methylation ratio as the fraction of C/(C + T) at that base. We used a test based 

on the binomial distribution to identify significantly methylated sites, and set the background 

rate to the average methylation of the kanMX unmethylated control (~ 0.2%). In addition, we 

used the Benjamini-Hochberg approach to correct for multiple testing, and used a false 

discovery rate of 1% as our threshold.  Finally, we also required that each methylation call 

was supported by at least 5 cytosines.  This approach yielded between 500-1,000 sites that 

were significantly methylated in each sample, and a total of ~6,000 unique sites across 

all six samples. In a pair-wise comparison, about 30-40% of these sites were observed in 

common between DBA mice, or DBA and C57 mice (Figure 4.4). 

The   methylation    levels    of    common    sites    were    significantly    correlated    between
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 individuals from the same (Figure 4.5a), or different strains of mice (DBA2/3 correlation is 0.89, 

p-value: < 2.2e-16, and DBA3/C57-1 correlation is 0.71, p-value < 2.2e-16, Figure 4.5b).  To 

observe the patterns of methylated sites across the different mice, we identified the 

significant sites in common from all six datasets and plotted their methylation levels in a 

clustered heat map (Figure 4.6). The plot contained about 200 of the 6,000 unique sites 

(Supplemental Figure 4.1). We find ~10 sites heavily methylated (> 60%) across all of our mice in 

both strains (Figure 4.6,  arrow). In addition, there are sites that are  differentially 

methylated between C57 and DBA strains  (Figure 4.6,   brackets).    The  distribution  of 

methylation   levels   showed   strain   specific   effects  across  sites  that are  significantly 

methylated in all samples. Specifically, C57 mice tend to  have  more  highly  methylated 

sites  (above 50%  methylation,  Figure 4.7)  and  a  bimodal  distribution  of  methylation 

intensity, which is not observed in DBA mice. Using the DAVID functional annotation tool 

(16) we found that the transcripts that contain significantly methylated sites across all mice 

are enriched in neuronal maintenance and cell sorting pathways (Table 4.2).  We asked if RMT 

expression in the hypothalamus of C57 and DBA mice differs, and might be associated with 

the methylation of these transcripts. Using a hypothalamic transcriptome (11) reported for 99 

mouse  strains,  the  RMT  genes  Nsun2 and  Wbscr22 were  found  to  have  the    highest 

expression  across  both  mice  strains.    Moreover,    Nsun7    (p-value  0.0002)    and   Dnmt2      

(p-value   0.05)     found   to   be   differentially   expressed   between   these   strains 

(Supplementary    Table   4.1) suggesting a possible mechanism for the methylation profile 

observed for the strain specific methylated mRNAs. Nsun7, in particular has higher average 

FPKM in C57 compared to DBA and correlates with higher methylation levels observed in that 

strain (Figure 4. 7). 

Properties of Methylated Cytosines 

To determine if methylation of polyA-RNA might have positional specificity, we calculated the 

fractional position of all methylated sites from each dataset. We find that the methylation is
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enriched toward the 3’ ends of the transcripts (Figure 4.8). However, we did not observe 

a consensus sequence in methylated cytosines (Supplementary Figure 4.2).  

To test if methylated sites are part of regions with secondary structure, we calculated the 

free energy of folding of regions surrounding methylated cytosines. The sequence of 50 

bases flanking each conserved methylated site (~200) was extracted, and its free 

energy was calculated using the mfold server (17). As a negative control, 200 randomly 

generated sequences of the same length from the mouse transcriptome were also computed. 

The distribution of these free energy values suggests that the two groups originate from 

different distributions, with methylated RNAs forming more stable structures (Figure 9a, 

Kolmogorov-Smirnov p-value: 5.5e-05). Some of these regions are heavily methylated (above 

70%), at numerous positions (up to ~70 sites), which occur at both single and double stranded 

regions (Figure 4.10). We also tested if sites of methylation in poly-A RNA might overlap 

with microRNA (miRNA) binding sites. For this we queried the uniquely methylated sites 

against the mouse databank for miRNA binding sites (18). Compared to a set of randomly 

selected transcriptome coordinates, methylated sites have a higher proportion of at least one 

miRNA binding site (p-value: 2.2e-16, Supplementary Figure 4.3). It is possible that our 

transcripts are overly represented in the miRNA database, nevertheless, it is tempting to 

speculate that methylation might stabilize miRNA binding.  

Human polyA-RNA methylation and structure

 We prepared a human polyA-RNA library from embryonic stem cells followed by bisulfite 

RNA sequencing. Using the human hg19 transcriptome as reference, our pipeline identified 

about 500 significantly methylated sites.  To determine if methylation is influenced by unique 

RNA secondary structure, we analyzed our data against Parallel Analysis of RNA Structure 

(PARS) measurements (19).  The PARS value for each base is an estimate of whether that 

base resides in single or double stranded RNA.
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The RNA is cleaved with V1 nuclease that cuts 3’ end of double stranded RNA. Following 

library preparation of the digested molecules and high throughput sequencing, the base at the 

5’ end of each aligned read represents the (nth + 1) site of RNA cleavage. Together with S1 

nuclease that cuts the 3’ end of single-stranded RNA, a transcriptome picture of RNA 

secondary structure is generated.  

When we compared the PARS values for our methylated sites to a random set from the 

hg19 transcriptome, we observed that the two sets were differentially distributed 

(Figure 9b, Kolmogorov-Smirnov p-value: 2.2e-06). Interestingly, about 54% of 

methylated sites were associated with PARS > 0, compared to ~30% of sites with PARS < 0, 

suggesting that that this modification is targeted to double stranded RNA. 

DISCUSSION 

We developed an informatics pipeline to characterize polyA-RNA methylation using 

bisulfite sequencing.  Our method takes advantage of the Illumina DNA sequencing 

platform. Our pipeline builds on the BS-Seeker2 software, a commonly used tool for the 

analysis of DNA methylation.   Using bisulfite-treated RNA from mouse hypothalamus, we 

were able to detect methyation of ribosomal RNA molecules to confirm the efficacy of our  

method. Subsequently, ~6000 uniquely methylated sites were detected in non-ribosomal 

transcripts.  The methylation measurements were reproducible across individual mice, with a 

correlation of ~0.9 between mice of the same strain. We find that methylated transcripts 

are enriched in pathways involved in neuronal maintenance and cell sorting (Table 4.2). 

Notably we observe strain-specific differences in the methylation percentage and 

distributions of RNA sites (Figures 4.6 and 4.7), which correspond to expression differences 

of Nsun7 and Dnmt2 RMTs (Supplementary Table 4.1 and (11)). 
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Most RMTs in higher eukaryotes are localized in the nucleus (1). One of the differentially 

expressed enzymes from our analysis, Dnmt2, is similar to DNA methyltransferases 

with a single conserved cysteine in motif IV in contrast to two cysteines found in motifs IV 

and VI of other RMTs. Moreover, according to a prior study, Dnmt2 is the only RMT 

associated with the cytoplasmic compartment (20).  

Our analysis of methylated sites reveals that they preferentially occur in hairpin loops or 

double stranded RNA (Figure 4.10). A study using molecular dynamics simulation of a 

bacterial RNA methyltransferase (Fmu) suggested that 16S rRNA binds in a folded state with 

target cytosines in close proximity to the enzyme’s active site (21). We observed that the sites 

with significant methylation are energetically more stable, and structured (Figure 4.9), 

when compared to a population of randomly selected sequences from the transcriptome. 

Despite these similarities, it is possible that mRNA substrates will have different structured 

conformations than rRNA. Moreover, different RMTs may have diverse substrate 

requirements (2). For example the bacterial RMT gene (YebU) encodes a C-terminal 

RNA binding domain (22) for substrate recruitment, while a mitochondrial orthologue 

(Nsun4) requires a cofactor protein for this purpose (23).  

Additional cell biological studies, including knock-down or over-expression combined with 

methylation profiling will help reveal enzymatic requirements for mRNA methylation in the 

future. Our method can be robustly applied to various cell types and also in genetic mapping 

experiments to determine epigenetic mechanisms affecting RNA. 
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MATERIALS AND METHODS 

Bisulfite RNA library preparation 

Samples were extracted from brains of males from two mouse strains C57BL/6J (C57) and 

DBA/2J (DBA) fed a high fat/high sugar diet, (11), and from human embryonic stem cells. Total 

RNA (2-3 µg) was treated with DNaseI and enriched for polyA-containing transcripts using 

oligo-dT beads (Illumina TruSeq mRNA kit). The RNA was then treated with bisulfite (EZ RNA 

Methylation kit, Zymo Research) according to the manufacturer’s instructions. The converted 

RNA was fragmented to an average of 150 nt using an RNA-fragmentation buffer (NEB) for 3 

minutes at 94°C. Fragmented RNA was then purified using RNA clean and concentrator-5 

(Zymo Research). The RNA was treated with T4 PNK (NEB) for 30 minutes at 37°C, and 

purified again using RNA clean and concentrator-5. The 3’-Adapter (Illumina TruSeq Small 

RNA kit) was ligated to the RNA using T4 RNA ligase 2 Truncated KQ (NEB cat# M0373S) 

according to the manufacturer’s instruction. The 5’-Adapter ligation and reverse transcription 

were performed according to the Illumina TruSeq Small RNA kit instructions. First strand 

products were amplified through 20 cycles of PCR, following TruSeq small RNA kit conditions. 

The final libraries were purified using AMPure XP beads with a 1:1.2 ratio (DNA:AMPure XP 

beads). 

Alignment of bisulfite mRNA reads 

To analyze the 5mC RNA data, we modified an existing pipeline for processing DNA bisulfite 

sequencing data. Reads were mapped using the BS-seeker2 software specifically designed for 

bisulfite sequencing (12). Following demultiplexing, the six mouse datasets were aligned against 

a mouse transcriptome as reference. This reference was generated from the Ensembl database 

by selecting cDNA sequences for the mouse genes (version GRCm38.p4). The FASTA-formatted 

file was filtered so only one transcript represents each gene.  For this purpose we selected the 
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longest fragment that encompassed all the exons. The human reference FASTA file was 

assembled from hg19 transcriptome as prepared by Wan, Y. et al. (19). 

Mapping and analysis 

The coordinates for significantly methylated RNA were obtained by applying the binomial 

distribution test (discussed below) on the entire map obtained from BS-seeker2. The methylated 

positions were used to navigate the bam-formatted alignments for visualization with the IG-

Viewer software (13). Venn and Logos plots were prepared using the bioinformatics servers 

Venn Diagram from Ghent University and WebLogo (14). Statistical analysis and figures were 

prepared using the programming language R and packages: vioplot, gplot, and ggpot2. 
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)LJXUH��.���Schematic�of polyA-enriched RNA-BS seq workflow. The reagents used are from 
the Illumina TruSeq mRNA v2 kit, Illumina small RNA TruSeq kit, NEB and Zymo Research.
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)LJXUH��.���Coverage and methylation profile for (a) an un-methylated kanMX control, 
and (b) a section of the 28S ribosomal RNA across four independent samples. Methylated-
CpG sites are shown in red and un-methylated in blue. Methylation profiles of Lars2 3’-
UTR (c) and a section of Puf60 (d).
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)LJXUH� �.��� Global RNA cytosine methylation levels of six mouse samples in CG and 
CH contexts.

)LJXUH��.���Common methylation sites between two DBA, or C57 and DBA mice. Each 
colored circle represents a different individual mouse.
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)LJXUH� �.��� Significantly methylated common mRNA sites observed between (a) the 
same strain, DBA, or (b) different strains, C57 vs. DBA mice.

)LJXUH��.���RNA methylation of common sites across all samples. Each row is a different 
site across the genome. Highly methylated sites (arrow) and differentially methylated sites (*) 
are shown. Highly methylated sites are blue, while lowly methylated sites are colored in 
yellow.
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)LJXUH� �.��� Distribution of methylation levels for all significant sites determined 
by Benjamini-Hochberg test at 1% FDR.

)LJXUH� �.��� Metagene plot showing the distribution of all significant methylated 
sites determined by Benjamini-Hochberg test at 1% FDR.
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)LJXUH� �.��� a) Free energy of RNA folding of the ~200 methylated sites flanked by 50 
bases (red), compared to a sample of 200 random RNA sequences (blue).  b) PARS 
score distribution of human methylated sites.

)LJXUH� �.����Methylated sites (blue cytosines) in selected transcript RNAs. Label 
format: ensemble gene ID-ensemble transcript ID-site number.
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6XSSOHPHQWDU\� )LJXUH� �.��� Venn diagram showing overlap of significantly 
methylated sites across six (C57 and DBA) mice samples.
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6XSSOHPHQWDU\� )LJXUH� �.��� Consensus sequence of five bases flanking 
highly methylated cytosines. a) greater than 40%, b) greater than 60% methylation.

D�

E�
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6XSSOHPHQWDU\� )LJXUH� �.��� Distribution of poly-A RNA methylated sites with 
coverage greater than or equal to one (> 1) for miRNA binding sites.
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SAMPLE TOTAL 
READS 

UNIQUE 
READS % MAPPABILITY % mCG % mCH 

C57-1 29,656,975 14,815,991 50 0.1 0.08 
C57-2 27,732,482 12,286,177 44.4 0.1 0.09 
DBA-1 44,854,774 24,702,130 55.1 0.1 0.08 
DBA-2 27,702,064 15,035,502 54.3 0.1 0.08 
DBA-3 28,497,048 16,535,606 58.1 0.1 0.08 
DBA-4 28,035,715 14,993,569 53.6 0.1 0.08 

HESC 10,422,699 3,940,175 38 0.3 0.2 

Table �.1: Alignment statistics for bisulfite RNA libraries. 

Term Count p-value
GO:0043209~myelin sheath 12 4.7e-09 
GO:0043005~neuron projection 12 8.3e-06 
GO:0019901~protein kinase binding 11 4.2e-05 
GO:0070062~extracellular exosome 26 7.6e-05 
GO:0008021~synaptic vesicle 6 0.00050 
GO:0019904~protein domain specific binding 7 0.0027 
GO:0009611~response to wounding 4 0.0032 
GO:0050998~nitric-oxide synthase binding 3 0.0049 
GO:0005829~cytosol 18 0.0056 
GO:0032403~protein complex binding 7 0.0085 

Table � . 2: Gene ontology analysis of transcripts significantly methylated in C57 and 

DBA mice. DAVID annotation background genes definition: union of genes with > 

10X coverage across mouse samples. 
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Supplementary Table �.1: Expression of the various RNA methyltransferases from 

mouse hypothalamus (shown are RPKM values). 
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