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ContScout: sensitive detection and removal
of contamination from annotated genomes

Balázs Bálint 1, Zsolt Merényi 1, Botond Hegedüs 1, Igor V. Grigoriev 2,3,
Zhihao Hou 1,4, Csenge Földi 1,4 & László G. Nagy 1

Contamination of genomes is an increasingly recognized problem affecting
several downstream applications, from comparative evolutionary genomics to
metagenomics. Here we introduce ContScout, a precise tool for eliminating
foreign sequences from annotated genomes. It achieves high specificity and
sensitivity on synthetic benchmark data even when the contaminant is a clo-
sely related species, outperforms competing tools, and can distinguish hor-
izontal gene transfer fromcontamination. A screenof 844 eukaryotic genomes
for contamination identified bacteria as themost common source, followedby
fungi and plants. Furthermore, we show that contaminants in ancestral gen-
ome reconstructions lead to erroneous early origins of genes and inflate gene
loss rates, leading to a false notion of complex ancestral genomes. Taken
together, we offer here a tool for sensitive removal of foreign proteins, identify
and remove contaminants fromdiverse eukaryotic genomes andevaluate their
impact on phylogenomic analyses.

Recent technological advances in high-throughput sequencing and
plummeting sequencing costs are leading to unprecedented growth in
genomic sequence databases1,2. Instruments that deliver long-read
sequences and the greatly improved throughput of short-read plat-
forms are enabling the resolution of complex eukaryotic genomes in
addition to the prokaryotic ones that dominated early sequencing
projects. Recently, several large-scale eukaryote sequencing initiatives
have been launched with the goal of capturing the genomes of tens of
thousands of insects3, vertebrates4, fungi5, plants6, or ultimately the
entire eukaryotic biodiversity on Earth7.

Due to various biological or technical issues, genomes may con-
tain sequences that do not belong to the targeted organism8,9 with
projects relying on preserved museum- or metagenomic samples are
particularly vulnerable to contamination10–12. If not carefully addres-
sed, contaminated reference genomes poison public databases with
inaccurately labeled sequence data, as demonstrated by a recent study
that identified over 2 million records corresponding to contamination
in GenBank alone13. The extent of contamination within a genome can
vary from project to project, but in some extreme cases a separate

draft genome representing the contaminant organism could be
assembled in addition to the one of the targeted specimen14,15.

It iswell known that contaminationcan interferewithdownstream
analyses, be misinterpreted as horizontal gene transfer (HGT)16,17 and
can negatively affect phylogenetic tree inference18–20. However, the
sensitivity of other phylo- and evolutionary genomic approaches, in
particular ancestral genome reconstruction, to contamination has not
been explored, despite remarkable expansion of these fields21,22. A
sensitivity of these approaches to certain analytical issues andHGThas
been documented (e.g. Pett et al.23. Hahn24), but the patterns intro-
duced by contamination are poorly known. Because HGT can make
genes appear older than they really are25, and contamination is picked
upby orthology assignments, it follows that contaminationmight have
a similar effect to horizontally transferred genes, although, this has not
been examined and quantified.

In the last decade, several tools were developed to detect con-
tamination, based on a range of search logics, such as database-
dependent taxonomic classification of raw reads or genes using BLAST
searches or other similarity-based approaches, utilizing either pre-
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selected marker genes or genome-wide catalogs. However, all these
approaches have limitations thatpreclude their use for explicit tagging
and removal of contaminating genes/proteins. Tools that build on
selected universal single-copy genes (e.g. CheckM26, BUSCO27 and
ConFindr28) can accurately detect the presence of contamination and
estimate its extent, but cannot identify and remove all alien sequences.
Most contamination assessment tools, such as CheckM26, CLARK29,
ConFindr28 Anvi’o30 and GUNC31 focus exclusively on prokaryotes
(Archaea, Bacteria) or accept only DNA sequences as input (e.g.
Kraken32, ProDeGe33, BlobTools34, PhylOligo35, CroCo36, CONSULT37).
BecauseDNA evolves faster than protein sequence38, tools that use the
former implicitly assume that the contaminating organism, or its close
relative is present in reference databases. This is often not the case
even in the best-sampled organismal groups, suggesting that protein-
based solutions may be necessary. BASTA39, Physeter9 and
Conterminator13 can use protein sequences as input, and the latter was
used to flag over 2.1 million DNA sequences in RefSeq and ~14,000
proteins as contamination in the NR database13. Despite these devel-
opments, efficient and highly sensitive tools that can flag and remove
contaminating proteins from genomes and public databases are cur-
rently sparse.

In this work, we present ContScout, a tool to identify and remove
contaminating proteins fromannotated genomes. ContScout assigns a
label for each query sequence at six taxon levels of increasing resolu-
tion (superkingdom, kingdom, phylum, class, order, family), together

with a confidence score. This information is then combined with gene
position data, resulting in an improved classification accuracy when
compared to existing methods. Screening 844 published eukaryotic
genomes with ContScout, we identified 51,222 contaminating
sequences primarily from bacteria but also from fungi, plants and
metazoans. We also show that, while accurately identifying con-
taminant sequences, ContScout inmost cases does not recogniseHGT
as contamination. We demonstrate the adverse effects of contamina-
tion on evolutionary genomic analyses that lead to spurious ancestral
gene count estimates and severely inflated gene loss rates.

Results
Description of the ContScout algorithm
WedevelopedContScout, a contamination detection and removal tool
that combines reference database-based taxonomic classification of
proteins with gene position data (Fig. 1). Each predicted protein from a
query genome is first classified at multiple taxonomic levels via a
speed-optimized protein sequence search against a taxonomy-aware
reference database using either DIAMOND40 orMMseqs41. Hit lists with
taxonomic labels are then trimmed retaining only the top-scoring hits
in the first taxon (Fig. 1b), resulting in protein-level taxon labels at all
levels of the taxonomic hierarchy (family to kingdom). In the next step,
in order to increase sensitivity and specificity, classifications are then
combined with contig / scaffold information, leading to consensus
taxonomic labels for each contig / scaffold in the assembly (Fig. 1c).
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Fig. 1 | Overview of the ContScout algorithm. a A quick database search with the
query proteins is performed against a taxonomy-aware reference database. The
circles represent individual proteins whose color correspond to different taxo-
nomic lineages: green=metazoa, blue=fungi, purple=bacteria, orange=vir-
idiplantae. The expected lineage one of the query genome (metazoa) is shown as a
dotted green frame. Each colored frame with a group of colored dots and a
thumbnail image represents one of the many reference genomes in the database.
b The bar charts, illustrating cases 1-4, show query versus reference database
alignment scores ranked in decreasing order. Taxon information of the best hit is
assigned to each query protein together with a confidence score (proportional to

dot size). Protein-wise taxon call examples: Case 1: many hits support the metazoa
(green) taxon label that is assigned with a high confidence score. Case 2: bacteria
(purple) taxon label is assigned but due to limited support, the confidence score is
lower. Case 3: Fungi label (blue) from a single hit is assigned albeit with a very low
confidence score. Case 4: No hit observed for query in the reference database.
c Protein taxon votes are summarized over contigs / scaffolds (∑ sign) and turned
into consensus contig calls based on the user-defined threshold. When the con-
sensus taxon label of a contig / scaffold disagrees with that of the query genome,
the contig is removed, together with all associated proteins.
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Contigs with the majority of taxonomic labels matching that of the
query proteome are kept while those that disagree are marked as
contamination and are removed with all encoded proteins (Fig. 1c).

The data storage footprint ofContScout is between0.1-7,8 GBytes
per query genomewith a run time of 46–113minutes benchmarked on
a server machine using 24 CPU cores with the RAM usage being con-
strained to 150 GB. The rate-limiting step is the similarity search that
accounts for 80–99% of the total run time (Supplementary Fig. 1).

ContScout is implemented in R, with all software components and
their dependencies placed in a Docker container for easy deployment.
The software package contains a database downloader script that
allows for convenient download and pre-formatting of public refer-
ence databases while it also enables users to import custom reference
databases of their own.

Performance assessment on synthetic data
To assess the performance of ContScout, we created pairwise combi-
nations of nine contamination-free genomes (Supplementary Data 1).
In each synthetic mix, 100, 200, 400, 800, 1600 or 3200 contaminant
proteins were inserted into the recipient proteome and then classified

byContScout as either host or contaminant at several taxon ranks. The
genomes were selected so that both distantly related (for example:
human in bean) and closely related genome pairs (for example: Can-
dida albicans in Saccharomyces cerevisiae) could be evaluated. In
addition, eight single-direction, biologically inspired synthetic mix-
tures (i.e. frequently coexisting species) were generated, such as the
mosquito genome contaminated with malaria parasites (Plasmodium),
an insect genome contaminated with a parasitic wasp, or the mouse
genome contaminated with human sequences, to name a few (for a
complete list see Supplementary Data 1). These data were used to
assess the performance of ContScout in classification at the phylum,
class, order or family level.

Figure 2 shows area under the curve (AUC) metrics for repre-
sentative pairwise genome combinations (for all combinations, see
Supporting Fig. 1 with theDOI link given at theData Availability section
below).ContScoutwas able to accurately separate all but one synthetic
mixture at the highest taxon rank where the lineages of the twomixed
genomes first diverged, with AUC values close to 1. When tested with
closely related synthetic mixtures of bacteria (Pseudomonas aerugi-
nosa→Escherichia coli) and yeasts (C. albicans→ S. cerevisiae),
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Fig. 2 | Performance of ContScout on synthetic data. Artificially contaminated
genomes were created by transferring varying numbers of proteins between all
possible combinations of source and target proteomes. Proteins were then classi-
fied by ContScout as either contamination or host. Matrix of boxplots shows dis-
tributions of the calculated area under the curve (AUC) values where column
position of charts corresponds to the contamination source genome while row

positions indicate the recipient genome. Within each of the boxplots, axis x refers
to the taxonomic rank at which decontamination was performed. At each rank, 100
independent ContScout runs were carried out, each of them with 400 randomly
selected source proteins being spiked in. See Supporting Fig. 1 for all genome
combinations and all spike-in levels located under https://doi.org/10.6084/m9.
figshare.23507517. Source data are provided as a Source Data file.
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ContScout accurately separated contaminant and recipient proteins at
the order or family level (Fig. 2) with the AUC range for the order-level
bacterial mix being 0.994–0.999, while the family-level AUC range for
the yeasts ranging between 0.995-1. In addition, wemeasured similarly
high classification performance on the seven biologically inspired
contamination scenarios (Supplementary Fig. 2).

As an outlier among the tested pairs, Acanthamoeba castellanii
mixed with Homo sapiens represented a very difficult case to resolve
(Supplementary Fig. 3). Even at the kingdom level, ContScout failed to
accurately identify all A. castellanii proteins as contaminants, resulting
in an AUC range between 0.5 and 0.727. The observed weak classifi-
cation performance can be attributed to the fact that over 45% of A.
castellanii proteins did not have enough closely related sequences in
the Uniref100 database, making many A. castellanii proteins and their
associated contigs unclassifiable. By default, such uncharacterized
contigs are retained by ContScout that allowed a large proportion of
amoeba sequences to escape detection and removal. This known
limitation is discussed in more detail, along with analysis options and
best practices, in the user documentation that is provided together
with the software source code at the GitHub repository (see URL at
Code availability section below).

Comparison of ContScout, conterminator and BASTA
The two hundred most contaminated genomes from the compre-
hensive eukaryote genome data set (Supplementary Data 3) were
used as a benchmark set to compare the detection performance of
ContScout with Conterminator (Steinegger & Salzberg, 2020) and
the LCA-based tool BASTA39 (Fig. 3). Among the 3,397,481 tested
proteins, ContScout marked 43,605 for removal, while Con-
terminator and BASTA identified 4298 and 8377 alien proteins,
respectively. Hit lists of the three tools overlapped with each other,
as 96% and 97% of the proteins tagged by Conterminator and

BASTA, respectively, were identified as alien sequences by at least
one additional tool (Fig. 3a). We found that top10 taxon support
value distributions (defined as the ratio of matches supporting
query taxon among the ten best scoring database hits, seeMethods)
also agreed well with alien hit lists as 99–100% of the proteins that
were tagged by at least two independent tools had a taxon support
ratio smaller than 0.25 (Fig. 3b). On the other hand, more than 95%
of the 3,353,405 sequences that were considered as non-
contaminant proteins by all three tools had a taxon support rate
larger than 0.75 (Fig. 3b). Remarkably, out of the 33,196 proteins
that were detected exclusively by ContScout, 93.4% had a taxon
support rate below 0.25 and only 2% showed a support rate value
above 0.75 (Fig. 3b), suggesting that these are accurate con-
tamination calls. At the same time, 33% of the hits exclusively
reported by Conterminator and 84% of BASTA-specific hits dis-
played taxon support values above 0.75 indicating possible false
positives. In general, our data suggests that ContScout outperforms
both BASTA and Conterminator by accurately identifying five to ten
times more contaminating proteins.

Accuracy assessment on manually filtered genomes
Four sets of manually curated contaminant sequences were collected
as ground truth to assess the sensitivity and specificity of ContScout as
well as other tools capable of contamination detection (Con-
terminator) or LCA-based taxon assignment (BASTA, MMSeqs,
DIAMOND). Contaminant sequences from Aspergillus zonatus
(filamentous fungus, n = 1476)42 Papilio xuthus (butterfly, n = 2527)43

and, Bombus impatiens (bumblebee, n = 680)15,44 genomes were
manually curated by the original authors. Additionally, we applied a
BUSCO-based protein selection strategy (see Materials and Methods)
on the Quercus suber (cork oak) genome45 that yielded 7955 fungal-
specific proteins.
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Fig. 3 | Performance comparison between ContScout, Conterminator
and BASTA. Proteins from the two hundred most contaminated genomes were
assigned into eight categories according to the tools that detected them as con-
taminants. Venn diagram (a) shows the number of proteins in each detection
category. Letters are as follows: CS: Detected by ContScout, CT: Detected by
Conterminator, BA: Detected by BASTA, NONE: Detected by none of the tools. For
eachquery sequence, a taxonomy support valuewas calculatedbasedon the top 10

hits from the taxonomy-aware UniRef100 database. Violin plots (b) summarize
taxonomy support ratio distributionswithin eachprotein categorywhere value one
means perfect support from queries while zero means complete disagreement
between the taxonomy label of the query and thatof its tophits. Color codingof the
violin plots, as well as the letter combinations used in their x axis labels correspond
to the different areas of the Venn diagram. Source data are provided as a Source
Data file.
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While ContScout accurately marked all the 1476 (100%) manually
confirmed bacterial proteins in A. zonatus, BASTA identified 1341 (91%)
contaminant proteins, DIAMOND tagged 1155 (78%), MMSeqs identi-
fied 1059 (72%), while Conterminator marked only 948 (64%) (Fig. 4).
None of the tested tools yielded any false positives in this genome
(Table 1). Similarly, out of the 680 bacterial symbiont proteins that
were manually identified as contamination in the bumblebee genome,
ContScout precisely identified all 680 sequences (100%), followed by
MMSeqs (654 sequences, 96%) and Diamond (639 sequences, 94%).
BASTA and Conterminator performed much worse than the other
tools tagging only 162 (24%) and 8 (1%) proteins as bacteria, respec-
tively (Fig. 4).

For P. xuthus, ContScout identified 2467 (98%) microsporidian
proteins, followed by BASTA (542 sequences, 21%) and MMSeqs
(207 sequences, 8%). For this genome, Diamond and Conterminator
performed worse identifying only 132 (5%) and 57 (2%) of the con-
taminant proteins, respectively. From this genome, ContScout made
one incorrect (false positive) protein call, while no other tools yielded
any false positive hit.

Finally, ContScout accurately detected all 7955 fungal proteins in
the cork oak genome, while BASTA, the tool with the second closest
match, could only identify 909 sequences as fungal (11%). Con-
terminator and MMSeqs detected 46 (<1%) and 13 (<1%) sequences,
respectively, while Diamond failed to accurately call any of the tested
proteins (Fig. 4). We also compared ContScout to the DNA-based tool
FCS-GX46. The two tools performed comparably, removing all bacterial
contigs from A. zonatus and tagging most of the Microsporidia con-
tamination in P. xuthus. Likewise, predictions for Q. suber were highly
concordant between the two tools with ContScout yielding slightly
more hits (Supplementary Table 1).

Overall, our data show that only ContScout managed to detect all
manually flagged foreign proteins in the four data sets whilemost other
tested tools missed a considerable proportion of the test proteins. The
two genomes in which all contaminant proteins were manually flagged
(A. zonatus andP. xuthus) allowed the assessmentofboth sensitivity and
specificity of the tested tools. Only one protein reported by ContScout
for P. xuthus turned out to be a false positive, while all other tools
reported zero false positives for this genome. None of the tested tools
reported any false positive for A. zonatus (Table 1).

ContScout does not recognize HGT as contamination
To assess how well ContScout can distinguish horizontally transferred
genes from contamination, we analyzed HGT events reported from
bacteria to anaerobic rumen fungi47, Ascomycota fungi to Basidiomy-
cota fungi48 and ten documented bacterial HGTs of antibiotic resis-
tance markers49. These data comprised 18 genomes with 1-165
literature-reported HGT genes. Table 2 shows that ContScout did not
recognize any of the proteins encoded by HT genes in eukaryote
genomes as contamination, with the exception of 1 out of 79 (1.2%) in
the case of Armillaria ostoyae, 1 out of 165 (0.6%) in Neocallimastix
californiae and 6 out of 117 (5.1%) in Orpinomyces sp. Similarly, Con-
tScout removed only one antibiotic resistance marker of known HGT
from Phascolarctobacterium succinatutens while it kept all proteins
encoded by HGT genes in the other nine tested bacterial genomes
(Supplementary Data 2).

Upon scrutinizing CountScout’s decision process, we can see that
a larger number of proteins were labeled as suspicious in the protein-
wise taxonomic tagging step of the algorithm (Table 2 and Supple-
mentary Data 2); however, the majority of these were later confirmed
as host proteins in the second step, when taxonomic information is
summed over contigs.

Overall, ContScout flagged 0–5.1% of previously published HGT
genes in eukaryotes as contamination, indicating that in the context of
theseexamples, it could distinguish these two types of alienproteins in
annotated genomes. Similarly, in nine out of ten tested cases, Con-
tScout did not confuse bacterial HGT events for contamination (Sup-
plementary Data 2). Notably, a close inspection of the removed
bacterial sequence revealed that it most likely represents a 3.8 kb cir-
cular plasmid. Since all five encoded proteins on the plasmid were
tagged as alien, the whole plasmid was subsequently removed by
ContScout. The risk of confusing non-integrated transferrable extra-
chromosomal elements with contamination is a known limitation of
ContScout that is further discussed below in the Discussion section.

Rampant and diverse contamination in eukaryotic genomes
To assess levels of contamination across high-level taxa (kingdoms,
supergroups) in public genome databases, we analyzed ContScout
outputs obtained on a set of 844 eukaryotic genomes representing all
major lineages (341 metazoans, 129 plants, 272 fungi and 102 other
eukaryotes, Supplementary Data 3,4). ContScout revealed the pre-
sence of rampant contamination, detecting at least one contaminating
protein in 447 genomes, on average reporting 114 alien proteins per
genome (range: 1–12,656, see Fig. 5a). The prevalence of contamina-
tion was lowest among fungi (43% of the species), slightly higher in
animals (55%) and plants (56%) and highest among other eukar-
yotes (66%).
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Fig. 4 | Sensitivity comparison between ContScout, Conterminator (ConTerm),
Diamond, MMseqs and BASTA on manually validated contaminant lists. Bar
charts show the percentage of known contaminants found by each of the
tested tools.

Table 1 | Sensitivity and specificity comparison between
ContScout, Conterminator, Diamond,MMSeqs and BASTAon
manually decontaminated genomes

Tool Genome True
positives

False
negatives

False
positives

ContScout A. zonatus 1476 0 0

Conterminator A. zonatus 948 528 0

BASTA A. zonatus 1341 135 0

MMSeqs A. zonatus 1059 417 0

Diamond A. zonatus 1155 321 0

ContScout P. xuthus 2467 60 1

Conterminator P. xuthus 57 2470 0

BASTA P. xuthus 542 1985 0

MMSeqs P. xuthus 207 2320 0

Diamond P. xuthus 132 2395 0
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Bacteria and fungi turned out to be the most frequent sources of
contamination, donating 30,666 and 17,531 alien proteins, respec-
tively. Of the fungal proteins, however, 12,631 could be linked to a
single massively contaminated plant genome Q. suber (Fig. 5b).

Viridiplantae (1538) and Metazoa (1069) together accounted for no
more than five percent of the contaminating proteins. Viruses yielded
273 contaminants while 76 contaminating proteins with an archaeal
origin were detected.

Table 2 | The performance of ContScout on literature-reported cases of horizontal gene transfer

Species # of reported
HGT genes

HGT type # proteins flagged as
suspicious in step 1.

# HGT proteins dis-
carded as contamination

Armillaria cepistipes 66 Fungi to fungi 2 0

Armillaria mellea 77 Fungi to fungi 4 0

Armillaria ostoyae 79 Fungi to fungi 3 1

Armillaria solidipes 73 Fungi to fungi 2 0

Anaeromyces sp. 147 Bacteria to fungi 4 0

Piromyces finnis 132 Bacteria to fungi 3 0

Neocallimastix californiae 165 Bacteria to fungi 12 1

Orpinomyces sp. 117 Bacteria to fungi 6 6
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Fig. 5 | Summary of contamination statistics across 844 genomes. a Violin plot
showing the number of contaminant proteins detected in 844 eukaryote genomes.
Proteomes with no contamination (N: 397) were omitted from the plot. Violin plots
are colored according to the taxonomic lineages of the tested genomes with blue
color representing animals, purple corresponding to fungi, green standing for
plants and orange for other eukaryotes. b Bar plot summarizing the numbers of
proteins between each detected contamination-recipient pair. Pairs are charted in

decreasing order. c Heatmap (cells in shades of blue) indicate the contributions of
each high-level taxa to contaminants detected in each of the top 200 contaminated
genomes. Heatmap label colorings matches the color coding used for the violin
plots in panel a, as described in the figure legend above. For full-length species
names, see Supplementary Data 3. BDR (cells in shades of red) corresponds to the
ratio of domains of bacterial origin among the domains detected on contaminant
proteins. Source data are provided as a Source Data file.
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Of the 200 most contaminated genomes, 140 had contaminants
originating from multiple sources, while in 60 cases contaminants
could be traced to a single high-level taxon source. Out of these,
bacteria turned out to be the sole source of contamination in 55 cases
(Fig. 5c). The prevalence of bacteria as a source of contamination was
also confirmed by Pfam domain analysis within the contaminant
sequences: in 52 out of the 200 most contaminated genomes, Pfam
domains exclusive to bacteria made up more than 50% of the surplus
domains thatwere not truly part of the query genomebut got assigned
due to contamination. Sequences marked by ContScout are listed in
Supplementary Data 4.

Since ContScout applies a consensus taxon calling over groups of
proteins that are encoded on the same contig, it can occasionally
remove proteins that, based on their protein-wise taxon calls match
that of the query. Using the 200 most contaminated genomes, we
counted the number of proteins thatmatched the (high-level) taxon of
the query but were removed due to their contig contexts. We found
that the number of such proteins remained low in all tested cases
(Supplementary Data 5).

Contamination bias analyses of ancestral gene content
We next addressed the hypothesis that contamination can bias phy-
logenomic analyses of gene content and reconstructions of ancestral
genomes. Both approaches have recently gained momentum and, in
several taxa revealed an early burst of gene duplication followed by
gene loss, which was postulated to be a dominant mechanism of

genome evolution (e.g., refs. 50–53). However, how contamination
influences ancestral genome reconstruction has not been assessed
to date.

We addressed this question here using reconstructions of ances-
tral gene content in early eukaryote ancestors in a 36-species data
(Supplementary Data 6) set containing 10 contaminated genomes and
inferred gene gain, duplication and loss patterns using the original
genomes and those cleaned by ContScout. Figure 6 shows consider-
able differences in inferred ancestral genome sizes between con-
taminated and clean data. For example, based on contaminated data,
Last Eukaryotic Common Ancestor (LECA) possessed 9355 protein-
coding genes, whereas in decontaminateddata it possessed 7712, a 21%
overestimation. The largest difference (88% overestimation) was
observed in the Archaeplastidamost recent common ancestor (MRCA,
N51 on Fig. 6), in which contaminated data suggested 6149 more
ancestral genes (13,116) than decontaminated data did (6967). This
node reflects a single strong signal from the heavily contaminated Q.
suber genome, including 12,631 fungal genes. Using a series of partially
decontaminated data, we measured the effect of each of the con-
taminated genomes. As expected, ancient gene copy number over-
estimation at the MRCA of Archaeplastida (N51) was mostly explained
by contaminations in Q. suber, while at Last Universal Common
Ancestor (LUCA) of all life (N37) it mainly originated from multiple
insect and fungal genomes contaminated with bacterial sequences.
These results reveal that the effect of contamination additively builds
up as we move from recent to ancient nodes in the tree.
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Fig. 6 | Effect of contamination on ancestral genome reconstruction in the 36
genome data set. a Proportionally scaled, color-coded semi-circles correspond to
copy number estimates, calculated by Compare22 with the red color representing
contaminated and blue color standing for cleaned data. Additionally, the copy
numbers for sevenprominent internal nodes are providedwithin the species tree as
text node labels. b Bar plots show the bias of individual contaminated genomes
introduced to copy number prediction at six selected internal nodes (N37: LUCA,
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Across the whole data set, the contaminated analysis suggested
11,062 more gene gains and 63,243 more gene losses than the
decontaminated analyses, indicating that contamination-biased gene
losses nearly five times more. To uncover why contamination inflates
gene loss to such a great extent, we manually checked the pyridoxal
kinase protein family that is involved in the pyridoxal 5’-phosphate
salvage pathway. This family is conserved across the entire tree of life
and ContScout identified one contaminating protein in Q. suber and
one in B. impatiens (Supplementary Fig. 4). The maximum likelihood
gene tree readily identified twomis-positioned proteins: one of the Q.
suber proteins clusteredwith fungi (Quersube_4764, SH support value:
0.98), whereas one from B. impatiens grouped in the bacteria (Bom-
bimpa_11962, SH support value: 0.97). In line with the gene tree,
ContScout tagged Quersube_4764 as fungal and Bombimpa_11962 as
bacterial.

Gene tree - species tree reconciliation and mapping of gene gain/
loss events on the species phylogeny indicated that the contaminated
anddecontaminated gene trees could be explained by 23 (6 gene gains
and 17 losses) and 9 (7 gains, 2 losses) events, respectively (Supple-
mentary Fig. 5). We found that Quersube_4764 and Bombimpa_11962
have induced eight and ten gene losses, respectively. In the case of
Quersube_4764 these losses were introduced because, during the
mapping, it was assigned to a 1-to-1 orthogroup with a fungal protein
(Zymps_805618) the origin of which was mapped to the most recent
common ancestor of plants and fungi. It follows that for this
orthogroup to be explained along the phylogeny, losses had to be
counted for all descendents of the plant/fungal ancestor except Q.
suber and Zymoseptoria tritici.

Taken together, these results indicate that contamination can
introduce considerable bias into ancestral genome reconstruction and
uncover how it inflates gene loss estimates in particular.

Discussion
In this paper, we presented a tool for identifying contaminating pro-
teins in annotated genome sequences and demonstrated that in evo-
lutionary genomics contamination can lead to a false notion of
complex ancestral genomes and overestimated gene loss rates. Con-
tamination is a widely recognized problem in sequence databases and
can stem from a variety of reasons (reviewed by Cornet et al.54).
Several tools have been developed for the detection of contamination
in large sequence databases13 or estimating contamination level in
(meta)genomes (e.g. CheckM26, BUSCO27). Most previous tools focus
on classifying raw sequencing reads as host or alien29,32 or rely on
measures of similarity to a pre-selected set of marker genes26,27,55,
whereas genome-wide tools that can clean genomes of contamination
are at paucity13. ContScout is a genome-wide method that relies on a
reference database and genome annotation data to identify and
remove contaminating proteins. After inferring protein-wise taxon
calls based on similarity searches against taxonomy-aware reference
databases, ContScout summarizes these across contigs/scaffolds and
flags contaminating sequences. Thus, ContScout can clean genomes
from encoded contaminating proteins. We anticipate this feature will
become more and more important as genome sequencing efforts are
extended to field andmuseum specimens, mixtures of organisms (e.g.
host and its parasite, metagenomes) or unculturable single-cells, all of
which increase the risk of contamination. Our analyses of synthetic
data, benchmarking against manually curated sequences, as well as a
comparison to other decontamination tools indicated that ContScout
achieved high sensitivity and specificity even at fine taxon levels
(family, order), while it spared horizontally transferred genes and
outperformed most competing tools. The only exception where Con-
tScout achieved lower accuracy were protist genomes, which can be
explained by the scarcity of sequenced genomes in these taxa, a
situation that is expected to change quickly. Depending on the gen-
ome, ContScout required 46-113minutes on a server computer.

We think the overall goodperformance of our tool is rooted in the
combination of taxonomic classification with scaffold-level decision
making. First, the non-fixed size of considered hit lists may yield more
robust taxon call assignment than fixed-size hit lists (e.g. top 100 hits),
whichareused inmostprevious software (seeMEGAN56 for exception),
and can help minimize the effect of mis-labeled proteins, sporadically
present in reference databases. Second, if a contig is marked for
removal byContScout, any ambiguousproteins codedon itwill be also
discarded, which potentially increases sensitivity. On the other hand,
those horizontally acquired genes that are integrated into the chro-
mosome of the recipient organism, are not discarded by ContScout,
because most proteins encoded on those chromosomes/scaffolds will
match the taxon label of thequery genome.However,when the foreign
DNA does not integrate into a recipient chromosome but remains
maintained as a circular plasmid, ContScout will identify it as con-
tamination as seen with the SAT-4 streptothricin acetyltransferase
region in P. succinatutens (See Supplementary Data 2). This is a known
limitation in ContScout’s ability to handle certain HGT events. Addi-
tional limitations of ContScout probably lie in fragmented genome
assemblies (i.e. low N50 values, small contigs), screening within
undersampled groups (e.g. protists) and in chimeric contigs, the latter
of which albeit exist, are likely rare57,58.

Our analyses of literature-reported HGT events demonstrate
that, in the context of the analyzed empirical examples, ContScout
performed well in distinguishing contamination from both recent
and ancient HGT. This is an important ability since both con-
tamination and HGT can display signals of alienness relative to the
host genome, but removing HGT is not a goal of most decontami-
nation analyses. We found that ContScout greatly outperformed
Conterminator and BASTA, two recent cleaning tools for protein
data. For example, while ContScout identified all proteins that were
manually flagged as contamination in A. zonatus42, Conterminator
and BASTA identified only 64% and 91% of them, respectively. We
hypothesize that the loss sensitivity of both BASTA and Con-
terminator lies in using fixed similarity thresholds with values being
set high by default. This implicitly assumes that the contaminating
organism, or its close relative, is present in the reference database.
Even with the dense sampling of genomes we have today, having the
genome of the exact contaminating taxon in the database is a rare
situation, so we think themore dynamic and sensitive search engine
implemented in ContScout is warranted. Comparison of ContScout
with FCS-GX46 revealed that the two tools yield highly concordant
results (Supplementary Table 1) with FCS operating exclusively at
the DNA level and ContScout dealing with predicted proteins
backed up by protein annotation data.

Using ContScout we screened 844 published eukaryotic genomes
and found widespread contamination, most commonly bacteria and
fungi. We identified >50,000 contaminating proteins in this set, while
Conterminator identified 327−14,148 depending on the database
configuration used. These figures agree with previous reports of
contamination in reference sequence databases59 and (meta)
genomes10,26,60–62, however, our inventory highlighted a range of novel
patterns. First, the number of contaminating proteins covered three
orders of magnitudes: it ranged from a handful of proteins up to
>12,000, in extreme cases allowing the subtraction of presumably
complete protein repertoires of the contaminating organism14,15 from
the contaminated genome. The taxonomic distribution of con-
taminating organisms reflects common lifestyles of microbes as sym-
bionts, parasites, food sources or commensals. Previous studies have
also reported bacteria as a common contaminant8, whereas in our
analyses fungi also emerged as frequent contaminating organisms,
possibly due to their diverse associations with plants and metazoans.
Finally,weexpect the cleanedgenomeannotations for 844eukaryotes,
covering all eukaryotic supergroups and phyla to form a gold standard
resource on which comparative analyses can be built.
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Whereas the effects of contamination on metagenomic studies
and functional interpretation of genomes is quite straightforward31,57,
the biases they cause in the context of evolutionary genomics is poorly
explored. We found that ancestral genome estimation can suffer when
contamination is present in the data: alien proteins pushed gene family
origins towards the root of the tree, resulting in an overestimation of
ancestral gene contents (up to 80%), and that of the number of gene
losses (up to 5,7-fold). This effect was additive when multiple con-
taminated species were present in the data set. This can give the
impression of highly complex ancestral genomes, as inferred in recent
empirical studies on ancestral gene content in several groups, such as
animals, plants50 or LECA63. A recent report demonstrated that
incomplete genome annotation and unrecognizedHGTcan also inflate
gene loss estimates64. While genome annotation errors will induce
excess losses distributed randomly across the tree and affect mostly
terminal branches, excess loss introduced by contamination and HGT
might cause more serious problems. Indeed, in our analyses con-
tamination yielded a strong bias in gene loss estimates, mostly
affecting deep branches and causing a several-fold overestimation.
These results underscore the necessity of assessing contamination
levels of genomes before being included in comparative genomic
analyses.

In summary, we developed a highly sensitive contamination
detection and removal tool, demonstrated its utility for decontami-
nating large numbers of published and annotated genomes even in the
presence of HGT, provided a broad set of cleaned eukaryotic genomes
and uncovered a massive impact of contamination on evolutionary
genomics studies. Given the widespread occurrence of contamination
in the analyzed genomes, we advocate the reporting of measures of
contamination in publications of annotated genomes and expect that
ContScout and the analyses presented here will facilitate the accu-
mulation of high-quality genomes and improve their utilization in
diverse fields.

Methods
Selection of a comprehensive eukaryote data set
In total, 844 published genomes, comprised of 341 animals, 272 fungi,
129 plants, and 102 other eukaryotes, were downloaded from public
databases (JGIMycoCosm5, ENSEMBL65, Genbank66) toperformabroad
contamination screening. If multiple isoforms of the same gene were
present, we selected the longest one for analysis. Genomes included in
the study, together with their source databases and accession num-
bers, are summarized in SupplementaryData 3. Date of data collection:
July, 2019.

Selection of a 36-genome data set
In order to assess the effect of contamination on ancestral genome
reconstruction, a 36-genome data set has been compiled encompass-
ing five bacteria, eight animals, four fungi, seven plants and twelve
other eukaryotes. Altogether, the data set included ten genomes
(Aspergillus zonatus, Bombus impatiens, Caenorhabditis remanei, Dic-
tyostelium purpureum, Drosophila bipectinata, Drosophila obscura,
Medicago truncatula,Naegleria gruberii, Pyrus x bretschneideri,Quercus
suber) that contained between 28 and 12,656 contaminant proteins
each. Contaminated genomes, each matched with a contamination-
free related genome, were selected so as to represent all major
eukaryotic lineages in which we frequently found contamination.

ContScout run parameters
ContScout runs were carried out using the docker image h836472/
contscout:natcomm. Uniref100 database (release 2022_1) was selected
as the reference database (-d uniref100) with MMSeqs used as the
search engine (-a mmseqs) with the search sensitivity set to very fast
(-s 2). The minimum sequence identity threshold was set to 20 per-
cent (-p 20).

Performance testing on synthetic data
Nine genomes (2 bacteria, 2 animals, 2 fungi, 2 plants, 1 other eukar-
yotes) from the 844-genome data set with no evidence of con-
tamination (basedonanalyses of the 844 genomes) were collected and
used to assess the contamination / host classification performance of
ContScout. Artificially contaminated genomes were created by trans-
ferring proteins between each possible source and recipient genome
pair within the data set. Additionally, seven genome mixes were cre-
ated between pairs of closely related genomes taken from the 844
genome set, each mimicking a plausible real-life contamination sce-
nario (amoeba→human, human→mouse, fungi→fungi, nematode→pig,
Plasmodium→mosquito, wasp→moth, alga→plant, for details see Sup-
plementary Data 1).

For each genome pair, a set of 100, 200, 400, 800, 1600 or 3200
randomly selected proteins were transferred, assigned to random
virtual contigs each holding one, two, five, ten or twenty alien proteins.
At each of the six spike-in levels, 100 random replicate sets were
generated. ContScout was then executed on the artificially con-
taminated data to classify proteins as either host or contamination.
Receiver operating characteristic curves were calculated by the
pROC67 package in R68, with the area under the curve (AUC) metric
being used to assess the classification performance.

Performance assessment on manually curated genomes
The 844-genome data set included three projects (A. zonatus42, B.
impatiens44 and P. xuthus43) where the authors carried out manual
genome decontamination and released clean assembly versions after
our data collection took place. In addition, Martinson and co-workers
released a separate draft genome for the gut symbiont gamma
proteobacterium15, which they identified as the sole source of con-
tamination within the original B. impatiens assembly. For A. zonatus,
and P. xuthus we used the proteins that were removed by authors as a
ground truth, yielding 1476 and 2527 manually curated contaminants,
respectively. For B. impatiens we mapped back proteins from the
published symbiont proteome to the contaminated B. impatiens data
using a sequence identity threshold of 95% and a sequence coverage
threshold of 0.6. Thatway, we identified 680 symbiont proteins within
the B. impatiens proteome that served as positive control for
contamination.

Our preliminary analysis of the 844 genomes indicated a massive
fungal contamination in theQ. suber genome45. In order to validate this
finding ascomycota, as well as plant-specific proteins were marked in
the draft genome based on a search with BUSCO v5.4.427 using taxon-
specific orthoDBv1069 reference HMM sets.

Contigs that contained a minimum of 100 proteins, out of which
at least 20 were specific to ascomycota and had no hits specific to
plants, were classified as confirmed contaminants of ascomycota ori-
gin. A total of 7955 proteins codedon the selected ascomycota-specific
contigs were used as a ground truth for contamination in Quercus.

Large-scale comparison between ContScout, Conterminator
and BASTA
In order to carry out a Conterminator screen in a way similar to that
of13, the 844-genome data set was combined with the UniRef100
database70 (release 2022_01). Whenever a protein sequence was pre-
sent in both sources, redundancy was resolved by keeping only the
copy from the 844-genome set. Conterminator was then executed in
protein mode, using default parameters. Then, Conterminator hit list
was truncated to keep only the subset that corresponded to the 200
most contaminated genome, as identified by the ContScout screen of
the 844-genome dataset. Similarly, hit list of the 200 most con-
taminated genomes of the 844 data set were extracted from Con-
tScout hit list and used in the comparison.

BASTA39 (V1.4) was used with default parameters to assign taxon
labels to each protein of the 200 most contaminated genomes of the
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844 genome data set, using the Uniprot database (downloaded by
BASTA on the 8th of November 2022) as the reference. Any mismatch
between theobtained andexpected taxon call at high-level taxon ranks
(superkingdom/kingdom) was considered as contaminant.

Hit lists of the three tools were compared grouping query pro-
teins into groups according to the tools that identified them as con-
taminant. Taxon support value distributions based on the best ten
reference hits per query were also calculated and visualized.

Taxon support ratio calculation
Taxon tags suggested by the ten best-scoring database hits were taken
for each query protein. Taxon support ratio was calculated as the ratio
of tags supporting the expected query taxon among the ten best hits.
Value close to 1 suggests genuine host protein while value close to 0
indicates strong disagreement between the expected and observed
taxon data.

Domain analyses
Interproscanv5.44.79.071 was used to search for protein domains in the
comprehensive eukaryote genome set. Bacterial-specific domains
were extracted from thePfamdatabase72 basedon the ratio of bacterial
sequences within the seed alignments. Domains with over 95% bac-
terial sequences in their seed alignments were considered as bacterial.
In order to collect Fungi-specific domains, the UniprotKB database73

together with IPR annotations was downloaded. A domain was con-
sidered as fungi-specific if at least 95% of the associated UniProtKB
proteins originated from the kingdom Fungi.

Ancient genome reconstruction and copy number estimation
We followed published pipelines for reconstructing ancestral gen-
omes using the G36 dataset (Supplementary Data 6), which briefly,
utilized a species tree and reconciled gene trees for each of the
protein families identified in the input genomes22,74,75. For inferring a
species tree, BUSCO27 v3 HMM profiles were used to collect 428
conserved single-copy candidate proteins from the decontami-
nated G36 data set. MMSeqs was then applied to calculate an all
versus all protein similarity network among the proteins on which
Markov-clustering with hipMCL76 was carried out with an inflation
parameter of I = 2 to identify protein families. Predicted protein
families were filtered manually, keeping only the conserved single-
copy ones. Mafft (v7.40777) with the --auto option was used to per-
form multiple sequence alignment for each single-copy protein
family. Uninformative and poorly aligned parts were removed with
TrimAl78 (parameters: -gt 0.95) and the resulting trimmed alignment
were concatenated into a supermatrix of 428 protein families and
172,083 characters. RAxML 8.2.1279 was used to infer a maximum-
likelihood species tree under the PROTGAMMALGmodel of protein
evolution. The model was partitioned gene-by-gene.

For assessing the impact of contamination on ancestral gen-
ome reconstruction, a series of semi-decontaminated data sets was
generated based on the 36-species collection where each dataset
retained contamination from only one of the ten contaminated
genomes (Aspergillus zonatus, Bombus impatiens, Caenorhabditis
remanei, Dictyostelium purpureum, Drosophila bipectinata, Droso-
phila obscura, Medicago truncatula, Naegleria gruberii, Pyrus x
bretschneideri, Quercus suber). The data series was then completed
with the fully decontaminated as well as the original G36 versions.
For each variant in the series, orthologous protein families were
identified by Orthofinder v2.4.180 using the species tree as a refer-
ence. Ancient genome reconstruction as well as gene gain/loss
events were inferred by using the COMPARE pipeline as described
before. Effects of individual contaminated genomes were deter-
mined by comparing gene gain/loss counts between contaminated
and clean versions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Genomic data used in the study are available in the JGI Mycocosm /
ENSEMBL / NCBI databases. Individual source information and acces-
sionnumber for eachgenome isprovided in SupplementaryData 3 and
Supplementary Data 6. The Uniref100 database, that was used as a
reference, is available at UniProt under the releasenumber 2022_01. All
custom R scripts written to perform the analyses within the presented
study as well as codes created to summarize and visualize the results
have been deposited to the Figshare repository under the https://doi.
org/10.6084/m9.figshare.23507517. Source data are provided with
this paper.

Code availability
An executable image of ContScout with the version matching the one
used for the study can be downloaded as a Docker image from
DockerHub repository under h836472/contscout:natcomm. Source
code for ContScout, together with a user manual, tutorials and a
minimal example data, is provided at https://github.com/h836472/
ContScout/ under the NatComm branch. Third-party software tools
that were used for data manipulation, data analysis and visualization
are listed in Supplementary Table 2.

References
1. Katz, K. et al. The Sequence Read Archive: a decade more of

explosive growth. Nucleic Acids Res. 50, D387–D390 (2022).
2. Nasko, D. J., Koren, S., Phillippy, A. M. & Treangen, T. J. RefSeq

database growth influences the accuracy of k-mer-based lowest
common ancestor species identification. Genome Biol. 19,
165 (2018).

3. Robinson, G. E. et al. Creating a Buzz About Insect Genomes. Sci-
ence (1979) 331, 1386 (2011).

4. Scientists, G. 10 KC. of. Genome 10K: A Proposal to Obtain Whole-
Genome Sequence for 10000 Vertebrate Species. J. Heredity 100,
659–674 (2009).

5. Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal
genomes. Nucleic Acids Res. 42, D699–D704 (2014).

6. Cheng, S. et al. 10KP: A phylodiverse genome sequencing plan.
Gigascience 7, 1–9 (2018).

7. Lewin, H. A. et al. Earth BioGenome Project: Sequencing life for the
future of life. Proc. Natl Acad. Sci. 115, 4325–4333 (2018).

8. Artamonova, I. I. & Mushegian, A. R. Genome Sequence Analysis
Indicates that theModel Eukaryote Nematostella vectensis Harbors
Bacterial Consorts. Appl. Environ. Microbiol 79, 6868–6873 (2013).

9. Cornet, L. et al. Consensus assessment of the contamination level
of publicly available cyanobacterial genomes. PLoS One 13,
e0200323 (2018).

10. Dam, A. R. Van, Orizondo, J. O. C., Lam, A. W., McKenna, D. D. &
Dam, M. H. Van Metagenomic clustering reveals microbial con-
tamination as an essential consideration in ultraconserved element
design for phylogenomics with insect museum specimens. Ecol.
Evol. 12, e8625 (2022).

11. Raxworthy, C. J. & Smith, B. T. Mining museums for historical DNA:
advances and challenges in museomics. Trends Ecol. Evol. 36,
1049–1060 (2021).

12. Straube, N. et al. Successful application of ancient DNA extraction
and library construction protocols to museum wet collection spe-
cimens. Mol. Ecol. Resour. 21, 2299–2315 (2021).

13. Steinegger, M. & Salzberg, S. L. Terminating contamination: large-
scale search identifies more than 2,000,000 contaminated entries
in GenBank. Genome Biol. 21, 115 (2020).

Article https://doi.org/10.1038/s41467-024-45024-5

Nature Communications |          (2024) 15:936 10

https://doi.org/10.6084/m9.figshare.23507517
https://doi.org/10.6084/m9.figshare.23507517
https://github.com/h836472/ContScout/
https://github.com/h836472/ContScout/


14. Durfee, T. et al. The Complete Genome Sequence of Escherichia
coli DH10B: Insights into the Biology of a Laboratory Workhorse. J.
Bacteriol. 190, 2597–2606 (2008).

15. Martinson, V. G., Magoc, T., Koch, H., Salzberg, S. L. & Moran, N. A.
Genomic features of a bumble bee symbiont reflect its host envir-
onment. Appl. Environ. Microbiol 80, 3793–3803 (2014).

16. Arakawa, K. Noevidence for extensive horizontal gene transfer from
the draft genome of a tardigrade. Proc. Natl Acad. Sci. USA 113,
E3057 (2016).

17. Boothby, T. C. et al. Evidence for extensive horizontal gene transfer
from the draft genome of a tardigrade. Proc. Natl Acad. Sci. 112,
15976–15981 (2015).

18. Laurin-Lemay, S., Brinkmann, H. & Philippe, H. Origin of land plants
revisited in the light of sequence contamination and missing data.
Curr. Biol. 22, R593–R594 (2012).

19. Owen, C. L. et al. Detecting and Removing Sample Contamination
in Phylogenomic Data: An Example and its Implications for Cicadi-
dae Phylogeny (Insecta: Hemiptera).Syst Biol. 71, 1504–1523 (2022).

20. Simion, P. et al. To What Extent Current Limits of Phylogenomics
Can Be Overcome? in Phylogenetics in the Genomic Era 2.1:1–2.1:34
(No commercial publisher, 2020).

21. Eisen, J. A. Phylogenomics Improving Functional Predictions for
Uncharacterized Genes by Evolutionary Analysis. Genome Res. 8,
163–167 (1998).

22. Nagy, L. G. et al. Latent homology and convergent regulatory
evolution underlies the repeated emergence of yeasts. Nat. Com-
mun. 5, 4471 (2014).

23. Pett, W. et al. The Role of Homology and Orthology in the Phylo-
genomic Analysis of Metazoan Gene Content.Mol. Biol. Evol. 36,
643–649 (2019).

24. Hahn, M. W. Bias in phylogenetic tree reconciliation methods:
implications for vertebrate genome evolution. Genome Biol. 8,
R141 (2007).

25. Capra, J. A., Stolzer, M., Durand, D. & Pollard, K. S. How old is my
gene? Trends Genet. 29, 659–668 (2013).

26. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson,
G. W. CheckM: assessing the quality of microbial genomes recov-
ered from isolates, single cells, and metagenomes. Genome Res.
25, 1043–1055 (2015).

27. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. &
Zdobnov, E. M. BUSCO: assessing genome assembly and annota-
tion completeness with single-copy orthologs. Bioinformatics 31,
3210–3212 (2015).

28. Low, A. J., Koziol, A. G., Manninger, P. A., Blais, B. & Carrillo, C. D.
ConFindr: rapid detection of intraspecies and cross-species con-
tamination in bacterial whole-genome sequence data. PeerJ 7,
e6995 (2019).

29. Ounit, R., Wanamaker, S., Close, T. J. & Lonardi, S. CLARK: fast and
accurate classification of metagenomic and genomic sequences
using discriminative k-mers. BMC Genom 16, 236 (2015).

30. Eren, A. M. et al. Community-led, integrated, reproducible multi-
omics with anvi’o. Nat. Microbiol 6, 3–6 (2021).

31. Orakov, A. et al. GUNC: detection of chimerism and contamination
in prokaryotic genomes. Genome Biol. 22, 178 (2021).

32. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic
sequence classification using exact alignments. Genome Biol. 15,
R46 (2014).

33. Tennessen, K. et al. ProDeGe: a computational protocol for fully
automated decontamination of genomes. ISME J. 10,
269–272 (2016).

34. Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome
assemblies. F1000Res 6, 1287 (2017).

35. Mallet, L., Bitard-Feildel, T., Cerutti, F. & Chiapello, H. PhylOligo: a
package to identify contaminant or untargeted organism sequen-
ces in genome assemblies. Bioinformatics 33, 3283–3285 (2017).

36. Simion, P. et al. A software tool ‘CroCo” detects pervasive cross-
species contamination in next generation sequencing data’. BMC
Biol. 16, 28 (2018).

37. Rachtman, E., Bafna, V. & Mirarab, S. CONSULT: accurate con-
tamination removal using locality-sensitive hashing. NAR Genom.
Bioinform 3, lqab071 (2021).

38. Pearson,W. R. An Introduction toSequenceSimilarity (“Homology”)
Searching. Curr. Protoc. Bioinforma. 42, 3.1.1–3.1.8 (2013).

39. Kahlke, T. & Ralph, P. J. BASTA – Taxonomic classification of
sequences and sequence bins using last common ancestor esti-
mations. Methods Ecol. Evol. 10, 100–103 (2019).

40. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein
alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

41. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets. Nat.
Biotechnol. 35, 1026–1028 (2017).

42. Vries, R. P. de et al. Comparative genomics reveals high biological
diversity and specific adaptations in the industrially and medically
important fungal genus Aspergillus. Genome Biol. 18, 28
(2017).

43. Li, X. et al. Outbred genome sequencing and CRISPR/Cas9 gene
editing in butterflies. Nat. Commun. 6, 8212 (2015).

44. Sadd, B. M. et al. The genomes of two key bumblebee species with
primitive eusocial organization. Genome Biol. 16, 76 (2015).

45. Ramos, A.M. et al. Thedraft genomesequenceof cork oak.Sci. Data
5, 180069 (2018).

46. Astashyn, A. et al. Rapid and sensitive detection of genome con-
tamination at scale with FCS-GX. bioRxiv 2023.06.02.543519
https://doi.org/10.1101/2023.06.02.543519 (2023).

47. Murphy, C. L. et al. Horizontal Gene Transfer as an Indispensable
Driver for Evolution of Neocallimastigomycota into a Distinct Gut-
Dwelling Fungal Lineage. Appl. Environ. Microbiol 85,
e00988–19 (2019).

48. Sahu, N. et al. Genomic innovation and horizontal gene transfer
shaped plant colonization and biomass degradation strategies of a
globally prevalent fungal pathogen. bioRxiv 2022.11.10.515791
https://doi.org/10.1101/2022.11.10.515791 (2022).

49. Apjok, G. et al. Characterization of antibiotic resistomes by repro-
grammed bacteriophage-enabled functional metagenomics in
clinical strains. Nat. Microbiol 8, 410–423 (2023).

50. Bowles, A. M. C., Bechtold, U. & Paps, J. The Origin of Land Plants Is
Rooted in Two Bursts of Genomic Novelty. Curr. Biol. 30,
530–536.e2 (2020).

51. Fernández, R. & Gabaldón, T. Gene gain and loss across the
metazoan tree of life. Nat. Ecol. Evol. 4, 524–533 (2020).

52. Griesmann, M. et al. Phylogenomics reveals multiple losses of
nitrogen-fixing root nodule symbiosis. Science (1979) 361,
eaat1743 (2018).

53. Nagy, L. G. et al. Genetic Bases of Fungal White Rot Wood Decay
Predicted by Phylogenomic Analysis of Correlated Gene-
Phenotype Evolution. Mol. Biol. Evol. 34, 35–44 (2017).

54. Cornet, L. & Baurain, D. Contamination detection in genomic data:
more is not enough. Genome Biol. 23, 60 (2022).

55. Saary, P., Mitchell, A. L. & Finn, R. D. Estimating the quality of
eukaryotic genomes recovered from metagenomic analysis with
EukCC. Genome Biol. 21, 244 (2020).

56. Gautam, A., Zeng, W. & Huson, D. H. MeganServer: facilitating
interactive access to metagenomic data on a server. Bioinformatics
39, btad105 (2023).

57. Chen, L.-X., Anantharaman, K., Shaiber, A., Eren, A. M. & Banfield, J.
F. Accurate and complete genomes from metagenomes. Genome
Res. 30, 315–333 (2020).

58. Mineeva,O., Rojas-Carulla,M., Ley, R. E., Schölkopf, B. & Youngblut,
N. D. DeepMAsED: evaluating the quality of metagenomic assem-
blies. Bioinformatics 36, 3011–3017 (2020).

Article https://doi.org/10.1038/s41467-024-45024-5

Nature Communications |          (2024) 15:936 11

https://doi.org/10.1101/2023.06.02.543519
https://doi.org/10.1101/2022.11.10.515791


59. Lupo, V. et al. Contamination in Reference Sequence Databases:
Time for Divide-and-Rule Tactics. Front Microbiol 12, 755101 (2021).

60. Aylward, J., Wingfield, M. J., Roets, F. & Wingfield, B. D. A high-
quality fungal genome assembly resolved from a sample acciden-
tally contaminated by multiple taxa. Biotechniques 72,
39–50 (2022).

61. Francois, C. M., Durand, F., Figuet, E. & Galtier, N. Prevalence and
Implications of Contamination in Public Genomic Resources: A
Case Study of 43 Reference Arthropod Assemblies. G3 Genes|
Genomes|Genet. 10, 721–730 (2020).

62. Lu, J. & Salzberg, S. L. Removing contaminants from databases of
draft genomes. PLoS Comput. Biol. 14, e1006277 (2018).

63. Fritz-Laylin, L. K. et al. The Genome of Naegleria gruberi Illuminates
Early Eukaryotic Versatility. Cell 140, 631–642 (2010).

64. Deutekom, E. S., Snel, B. & Dam, T. J. Pvan Benchmarking orthology
methods using phylogenetic patterns defined at the base of
Eukaryotes. Brief. Bioinform 22, bbaa206 (2021).

65. Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50,
D988–D995 (2022).

66. Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W.
GenBank. Nucleic Acids Res. 44, D67–D72 (2016).

67. Robin, X. et al. pROC: an open-source package for R and S+ to
analyze and compare ROC curves. BMC Bioinforma. 12, 77 (2011).

68. R Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.
Available online at https://www.r-project.org/ (2022).

69. Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of ani-
mal, plant, fungal, protist, bacterial and viral genomes for evolu-
tionary and functional annotations of orthologs. Nucleic Acids Res.
47, D807–D811 (2019).

70. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H.
UniRef: comprehensive and non-redundant UniProt reference
clusters. Bioinformatics 23, 1282–1288 (2007).

71. Jones, P. et al. InterProScan 5: genome-scale protein function
classification. Bioinformatics 30, 1236–1240 (2014).

72. Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic
Acids Res. 49, D412–D419 (2021).

73. Bateman, A. et al. UniProt: the Universal Protein Knowledgebase in
2023. Nucleic Acids Res. 51, D523–D531 (2023).

74. Guijarro-Clarke, C., Holland, P.W. H. & Paps, J.Widespreadpatterns
of gene loss in the evolution of the animal kingdom.Nat. Ecol. Evol.
4, 519–523 (2020).

75. Thomas, G. W. C. et al. Gene content evolution in the arthropods.
Genome Biol. 21, 15 (2020).

76. Azad, A., Pavlopoulos, G. A., Ouzounis, C. A., Kyrpides, N. C. &
Bulu̧c, A. HipMCL: a high-performance parallel implementation of
the Markov clustering algorithm for large-scale networks. Nucleic
Acids Res. 46, e33–e33 (2018).

77. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment
Software Version 7: Improvements in Performance and Usability.
Mol. Biol. Evol. 30, 772–780 (2013).

78. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a
tool for automated alignment trimming in large-scale phylogenetic
analyses. Bioinformatics 25, 1972–1973 (2009).

79. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinformatics 30,
1312–1313 (2014).

80. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology
inference for comparative genomics. Genome Biol. 20, 238 (2019).

Acknowledgements
This work was funded by the Momentum Program of the Hungarian
Academy of Sciences (LP2019-13/2019 to LGN) and by the European
ResearchCouncil (GrantNo. 758161, to LGN) (both to LGN). This research
was performed under the Facilities Integrating Collaborations for User
Science (FICUS) program (proposal: https://doi.org/10.46936/10.
25585/60008430) and used resources at the DOE Joint Genome Insti-
tute (JGI) (https://ror.org/04xm1d337) and theNational Energy Research
Scientific Computing Center (NERSC) (https://ror.org/05v3mvq14),
which are DOEOffice of ScienceUser Facilities operated under Contract
No. DE-AC02-05CH11231.

Author contributions
L.G.N., B.B, Z.M., B.H. and I.G. conceptualized and designed the
research, B.B., wrote the code and performed the analyses. B.B, C.F. and
Z.H. performed the test of the tool, L.G.N., Z. M. and B.B., interpreted the
results and wrote the paper. All authors have read and agreed to the
published version of the manuscript.

Funding
Open access funding provided byHUN-RENBiological ResearchCentre,
Szeged.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45024-5.

Correspondence and requests for materials should be addressed to
László G. Nagy.

Peer review information Nature Communications thanks Ingo Ebers-
berger and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45024-5

Nature Communications |          (2024) 15:936 12

https://www.r-project.org/
https://doi.org/10.46936/10.25585/60008430
https://doi.org/10.46936/10.25585/60008430
https://ror.org/04xm1d337
https://ror.org/05v3mvq14
https://doi.org/10.1038/s41467-024-45024-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	ContScout: sensitive detection and removal of contamination from annotated genomes
	Results
	Description of the ContScout algorithm
	Performance assessment on synthetic�data
	Comparison of ContScout, conterminator and�BASTA
	Accuracy assessment on manually filtered genomes
	ContScout does not recognize HGT as contamination
	Rampant and diverse contamination in eukaryotic genomes
	Contamination bias analyses of ancestral gene content

	Discussion
	Methods
	Selection of a comprehensive eukaryote data�set
	Selection of a 36-genome data�set
	ContScout run parameters
	Performance testing on synthetic�data
	Performance assessment on manually curated genomes
	Large-scale comparison between ContScout, Conterminator and�BASTA
	Taxon support ratio calculation
	Domain analyses
	Ancient genome reconstruction and copy number estimation
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




